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摘要

多行為推薦的目標是利用用戶及物品的多交互關係例如購買和加入

購物車來進行建模以解決推薦中常見的資料稀疏及冷啟動問題。雖然

最近一些基於多行為的推薦演算法成功地利用不同種類的用戶及物品

交互行為來提升推薦效果，但這些方法還存在一些限制。第一，大多

數開創性的工作將單一行為當作目標行為且只根據目標行為來優化模

型；然而，這需要重新訓練模型以預測其它行為，因此對於大規模資

料集和許多實際應用來說效率很低。第二，雖然近期有些研究透過結

合所有種類的行為一起進行模型優化以解決上述問題，但模型學習到

的行為向量是所有用戶及物品都共用的，這樣的設定非常粗糙且不足

以補抓用戶在不同行為下的偏好。除此之外，雖然這些最先進的多行

為推薦演算法看似能對針對不同的行為對用戶推薦商品，但其它行為

的預測並沒有被明確地評估在相關論文。我們透過使用個性化多互動

偏好排名（PMiPR）來解決這些限制，它是應用於多行為推薦中有效

及高效向量學習框架。具體來說，PMiPR透過學習用戶及物品在每種

行為下的特定行為向量將多行為信息整合至建模過程中。這不僅以更

細粒度的方式對多行為信息建模，也讓我們能透過利用為指定的用戶

及物品的行為向量來對不同的行為進行推薦。在四個公開的基準資料

集上進行的綜合實驗證明了 PMiPR在多行為推薦的有效性及效能。

關鍵字：協同過濾、多行為推薦、偏好排序
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Abstract

The goal ofmulti-behavior recommendation is to leverage user-item inter-

actions such as purchase and add-to-cart into the modeling process to address

the commonly-faced data sparsity or cold start issues in recommendation. Al-

though some recent multi-behavior-based recommendation algorithms suc-

cessfully leverage different types of user-item interactions to improve rec-

ommendation performance, these methods still have limitations. First, most

pioneering works treat a single behavior as the target behavior and optimize

the model based on the target behavior only; this however necessitates re-

training of the model to predict other behaviors and is thus inefficient for

large-scale datasets and many real-world applications. Second, although re-

cent studies address this issue by jointly optimizing the model based on all

types of behaviors, the learned behavior embeddings are shared across all

users and items, which is coarse-grained and insufficient to capture user pref-

erences under different behaviors. Moreover, although such state-of-the-art

multi-behavior recommendation algorithms seem able to recommend items

for users w.r.t. different behaviors, they do not explicitly evaluate their meth-

ods in the reported experiments. We address these limitations with personal-

ized multi-interaction preference ranking (PMiPR), an effective and efficient

embedding learning framework for multi-behavior recommendation. Specifi-
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cally, the proposed PMiPR incorporates multi-behavioral information into the

modeling process by learning user-specific and item-specific behavior em-

beddings for each type of behavior. This not only models multi-behavioral

information in a more fine-grained way but enables us to make recommen-

dations w.r.t. different behaviors by leveraging the designated behavior em-

beddings for users and items. Comprehensive experiments on four public

benchmark datasets demonstrate the effectiveness and efficiency of PMiPR

for multi-behavior recommendation.

Keywords: Collaborative filtering, Multi-Behavior Recommendation, Pref-

erence ranking
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Chapter 1

Introduction

In this chapter, we discuss the motivation and contributions of this research by illus-

trating the shortcomings of different recommendation methods in Section 1.1, and provide

an overview of each chapter in Section 1.2.

1.1 Research Motivation

With the rapid expansion of Internet services, recommender systems have become

a convenient tool by which to reduce information overload for users and improve the

user experience. Such systems have been applied on almost all e-commerce platforms to

mine potential items for users [1]. Typically, these platforms collect user-item interactions

such as click, purchase, add-to-cart, and view. Such multi-behavior data constitutes infor-

mative user preference signals which are helpful for building fine-grained recommender

systems [2]. However, most conventional recommender systems [3–10] are limited to

leveraging a single type of behavioral data (in most cases, purchase behavior) or simply

assuming that different user behaviors are the same while model training, leaving other

informative behavioral data unexplored or not well-utilized.

To better leverage such multi-behavior data, researchers have begun to consider dif-

1
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ferent types of behavioral data when training the models. Even so, most pioneering works

treat a single behavior as the target behavior and optimize the models based on the the

target behavior only [11–15]. For example, MBGCN [13] applies graph neural networks

to learn user and item representations by optimizing the target behavior; upon recommen-

dation, for each user, items are ranked based on their similarity scores calculated with

their representations against the user representation. Note that such approaches focus on

target behavior prediction, leaving unexplored prediction of other behaviors, which are

however also important and may provide useful business insights. For example, given a

user who often puts apparel in his/her shopping cart and regularly purchases daily neces-

sities, we could surmise that this user likes apparel but is less likely to purchase it due to

its high prices. In this case, if the model were able to accurately predict potential apparel

that will be added to the shopping cart, then the company could provide special offers to

this user based on the predicted items. Therefore, various marketing strategies could be

devised to improve the user experience if the model were capable of providing recom-

mendations w.r.t. different user behavior. However, such target-behavior-based models

(e.g., MBGCN) must be re-trained to predict other behaviors and thus are inefficient for

large-scale datasets and many real-world applications.

More recently, some studies have applied multi-task learning to learn user and item

embeddings as well as behavior embeddings for multi-behavior recommendation [16,17],

where these different embeddings are jointly embedded into the modeling process, af-

ter which the user, item, and behavior embeddings are aggregated for prediction. Such

designs enable recommendation w.r.t. different user behavior with a unified model. For

example, EHCF [16] assumes strong transfer relations among different behaviors and thus

uses a transfer matrix to describe such relations; GHCF [17], in turn, leverages graph neu-

ral networks to aggregate information concerning users, items, and behaviors to achieve

state-of-the-art performance. However, note that in existing approaches, every user shares

2
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the same behavior embedding given a specific behavior, which lacks the granularity nec-

essary to capture individual user preferences, since it is more intuitive that each user has

his/her own behavior embedding given a certain behavior. For example, while user A

tends to add all of the items of interest into the shopping cart and then clear it on payday,

user B tends to purchase daily necessities directly, while only adding luxury items to the

cart. Moreover, to exploit each item’s characteristics, an item should have its own behav-

ior embedding under each behavior. For example, luxury items that normal users cannot

afford are usually added to the cart, whereas basic commodities are usually purchased

directly.

Inspired by this idea, we propose personalized multi-interaction preference ranking

(PMiPR), a lightweight, interaction-level embedding learning framework formulti-behavior

recommendation. In contrast to the above studies, which treat nodes as basic training

units, PMiPR treats interaction as the basic training unit, thus modeling the similarity

between multi-behavior user-item interactions in a more natural way under a pairwise

ranking framework. Specifically, if two users interact with the same (or a different) item

under the same behavior, then these two interactions are clustered together in the embed-

ding space. Moreover, in the proposed framework, an interaction embedding (describing

the relation for a user and an item under a certain behavior) is composed of not only the

associated user and item embeddings but also the behavior embeddings corresponding to

the user and the item. Each user and item has a different behavior embedding under that

behavior; in this way we exploit user and item preferences in a more fine-grained man-

ner. Additionally, to deal with the sparsity of less-frequent behaviors, we further present a

simple yet effective approach to incorporate global behavior information. Notably, in con-

trast to many end-to-end recommendation models, PMiPR generates a set of user and item

embeddings as well as user and item behavior embeddings for recommendation, so that

in practice, many calculations are completed offline or approximated by nearest-neighbor

3
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search to deal with large-scale data.

1.2 Research Contributions

To summarize, the main contributions of this work are as follows:

• We propose personalized multi-interaction preference ranking (PMiPR) which learns

fine-grained behavior embeddings for multi-behavior recommendation.

• We conduct extensive experiments on four real-world datasets, showing the superiority

of the proposed method to predict various types of user behavior using a single unified

model.

• We present an effective, efficient implementation, which has faster computation times

than recent state-of-the art methods.1

1.3 Chapter Overview

This thesis is categorized into six sections:

• The first chapter is the introduction, which introduces the research topic of this

work, and outlines the research motivation and research contributions.

• The second chapter is the literature review, which introduces the related researches

and methods of recommender systems based on single-behavior and multi-behavior

respectively.

• The third chapter is the research method, which introduces the problem formulation

and proposed method in this research in detail.
1The source code will be available online at a GitHub repository upon publication.

4
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• The fourth chapter is the experimental setup, which introduces the roadmap of

experiments and details the experimental settings including datasets description,

datasets preprocessing, baselines introduction, parameters settings and evaluation

metrics.

• The fifth chapter is the experimental results, which presents the several experimental

results in both table and graphical.

• The sixth chapter is the conclusion and future work, which summarizes the experi-

ments of this research and discusses possible future improvements.

5
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Chapter 2

Literature Review

In this chapter, we introduce the background knowledge of our research in Section 2.1,

after that we introduce some recommendation methods including single-behavior recom-

mendation and multi-behavior recommendation in Sections 2.2 and 2.3 respectively.

2.1 Background of Recommender System

Recommender system is a widely used service to alleviate information overload for

users, it has been using in various platforms to predict the “preference” or “rating” that

a user would give to an item [1]. Generally, there are two types of user feedback data,

which categorized as implicit feedback data, such as viewing, clicking, adding to cart

list, and purchasing items, and explicit feedback data, such as rating, both are shown in

the user-item interaction matrix in Figure 2.1. Implicit feedback data is a binary matrix

that assigns 1 to the interacted items and 0 to the unobserved/not interested items, while

explicit feedback data is a rating matrix that shows the rating of a user given to an item.

The former aims to predict whether a user will interact to unobserved items in future while

the latter aims to predict the possible rating that a user will give to unobserved items.

In real-world scenarios, most feedback is not explicit but implicit, since user implicit

6
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(a) Implicit feedback data (b) Explicit feedback data

Figure 2.1: An example of implicit and explicit feedback data.

feedback can be collected easily and such feedback is already available in many platforms,

such as users’ behavior records in e-commerce platforms. As a result, most studies focus

on recommendation models that work well with implicit feedback data.

2.2 Single-behavior Recommendation

First, we review some studies in single-behavior scenarios. Singular Value Decompo-

sition based (SVD) model such as SVD++ [18] is one of the traditional work that factor-

izes the binary interaction matrix and assume that users dislike unobserved items. Recent

works [19,20] utilize Bayesian Personalized Ranking (BPR) [7] to learn user and item rep-

resentations, where BPR is a pairwise learning algorithm which assumes that users prefer

the observed items to the unobserved items.

Vanilla matrix factorization assumes that the latent space and the original represen-

tation space are linearly mapped, such setting may not sufficient to capture the complex

structure of user interaction data, so many recent studies start to utilize Deep Neural Net-

work (DNNs) to better learn the complex mapping between these two spaces. Deep Ma-

trix Factorization (DMF) [21] proposed a neural network architecture to map the users and

items into a common low-dimensional space with non-linear projection. Neural network-

based Collaborative Filtering (NCF) [20] replaces the inner product with a neural archi-

7
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tecture that can learn an arbitrary function from data, containing the fusion of General-

ized Matrix Factorization (GMF) and Multi-Layer Perceptron (MLP). Deep Collaborative

Filtering (DeepCF) [22] incorporates the collaborative filtering methods based on repre-

sentation learning and matching function learning to improve the performance. Attentive

Collaborative Filtering (ACF) [23] proposes an attention mechanism in CF that introduces

item- and component-level attention model to assign attentive weights for inferring the un-

derlying users＇preferences encoded in the implicit user feedback.

Figure 2.2: An illustration of DMF model [21]

Figure 2.3: An illustration of NCF model [20].

8



doi:10.6342/NTU202203790

Figure 2.4: An illustration of ACF model [23].

In recent years, inspired by Graph Neural Networks (GNNs), which represents data

in graph structure and apply neighborhood aggregation to learn node representations, re-

searchers start to focus on development of graph-based recommendation. Neural Graph

Collaborative Filtering (NGCF) [24] explicitly encodes the collaborative signal in the form

of high-order connectivities in the user-item integration graph by performing embedding

propagation. LightGCN [9] further improve NGCF by discarding two standard opera-

tions (feature transformation and nonlinear activation) in GCNs but inevitably increase

the training difficulty. Disentangled Graph Collaborative Filtering (DGCF) [10] considers

user-item relationships at the finer granularity of user intents and generates disentangled

representations to improve the performance.

9
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Figure 2.5: An illustration of NGCF model [24]. (the arrowed lines present the flow of
information). The representations of user u1 (left) and item i4 (right) are refined with
multiple embedding propagation layers, whose outputs are concatenated to make the final
prediction.

Figure 2.6: An illustration of LightGCN model [13]. In LightGCN, only the normal-
ized sum of neighbor embeddings is performed towards next layer; other operations like
self-connection, feature transformation, and nonlinear activation are all removed, which
largely simplifies GCNs. In Layer Combination, we sum over the embeddings at each
layer to obtain the final representations.

10
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Figure 2.7: An illustration of DGCF model [10].

Existing single-behavior models have achieved great success in single-behavior rec-

ommendation. However, in real-word scenarios, the collected users’ behavioral data is

multi-behavior. For example, in e-commerce platform, a user can click, add-to-cart and

purchase an item. So several studies start to utilize such informative behavioral data to

further improve the recommendation performance, which is discussed in next section.

2.3 Multi-behavior Recommendation

Multi-behavior recommendation leverages multiple types of user-item interactions

into training process to improve the recommendation performance on the target behavior,

an example of multiple types of user feedback is shown in Figure 2.8. In general, exist-

ing studies of multi-behavior recommendation are divided into two categories: single-task

learning and multi-task learning. We will describe each category in the following subsec-

tions.

11
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Figure 2.8: An example of multiple types of user feedback [17].

2.3.1 Single-task Learning

Single-task Learning leverages all behavioral data into training process, but only opti-

mizes the target behavior to learn user and item representation, such setting only can pre-

dict items on target behavior. Early studies perform multiple learning of different behav-

iors by extending the Matrix Factorization (MF) [25–28]. For example, Collective Matrix

Factorization (CMF) [27] decomposes the data matrices of multiple behavior types simul-

taneously to correlate the multiple factorization processes by sharing the embeddings of

common entities. Apart from that, some studies [14,15,29] apply different negative sam-

pling strategies to get better performance on the target behavior prediction. For example,

Multi-feedback Bayesian Personalized Ranking (MFBPR) [14] extends the standard BPR

sampling model by exploiting the difference in strength among user feedback｀channels＇

. Memory-Augmented Transformer Networks (MATN) [11] developed a multi-behavior

dependency encoder with a transformer architecture and augmented the multi-behavior

transformer network with a memory attention mechanism to model behavioral context

and behavior inter-dependencies.

12
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Figure 2.9: An illustration of CMF model [27]

Figure 2.10: The model architecture of the proposed MATN framework [11]. The initial-
ized embedding layer shares parameters across different behavior types. The transformer-
based behavior dependency encoder takes all kinds of behavioral interaction data for de-
pendency modeling. Different types of behaviors are individually transformed by the cus-
tomized context learning with shared key and memory slots.

Recently, inspired by several GNN-based studies on single-behavior [8–10], Multi-

Behavior Graph Convolutional Network (MBGCN) [13] applies GNN to learn user and

item embedding through optimizing the target behavior. Knowledge-Enhanced Hierar-

chical Graph Transformer Network (KHGT) [12] perform the joint information aggrega-

tion over the user-item and item-item collaborative relations in multiple knowledge-aware

behavior modalities. However, these models need to be re-evaluated and re-tuned for

prediction on other behaviors by changing the target behavior, which are inefficient for

large-scale datasets and many real-world applications.
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Figure 2.11: An illustration of MBGCN model [13], where node u1 is the target user and
i5 is the target item.

Figure 2.12: An illustration of KHGT model [12].
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2.3.2 Multi-task Learning

This category of works apply multi-task learning strategy into the modeling process

and able to predict various types of user behaviors using one unified model. Neural Multi-

Task Recommendation (NMTR) [30] assume there exists a order between behaviors, and

proposed a sequential model that adopts NCF [20] for each type of behavior under multi-

task learning framework, where the optimization on each behavior is treated as a task.

Efficient Heterogeneous Collaborative Filtering (EHCF) [16] assumes there are strong

transfer relations among different behaviors then using a transfer matrix to describe it.

Contrastive Meta Learning (CML) [31] distills transferable knowledge across different

types of behaviors via the constructed contrastive loss. Graph Heterogeneous Collabo-

rative Filtering (GHCF) [17] leverages the GNN to aggregate the information of users,

items and behaviors information to achieve state-of-the-art performance. Note that EHCF

and GHCF jointly embeds both representations of users, items and behaviors for multi-

behavior prediction and perform the advanced efficient non-sampling optimization under

a multi-task learning framework.

Figure 2.13: An illustration of NMTR model [30].
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Figure 2.14: An illustration of EHCFmodel [16]. (a) Illustration of the model framework.
(b) An example of the relationships among behaviors, where h1, h2, and h3 denotes the
prediction functions of behaviors: view, add-to-cart, and purchase, respectively (note that
EHCF is not limited to these examples). (c) Illustration of the transfer scheme of two
relational behaviors.

Figure 2.15: An illustration of CML model [31].
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Figure 2.16: An illustration of GHCF model [17]

In our work, we build a multi-behavior user-item interactions graph based on users’

and items’ behavioral information, and leverage the interaction based pairwise ranking

framework to learn fine-grained behavior embeddings for multi-behavior recommenda-

tion, which are introduced in next chapter.
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Chapter 3

Research Method

To better exploit the various types of user behaviors, in this work we propose personal-

ized multi-interaction preference ranking (PMiPR), a unified embedding learning frame-

work for multi-behavior recommendation (see Fig. 3.1 for an overview of the framework).

In this section we first define the problem formulation in our work in Sections 3.1. After

that, we detail embedding learning for the proposed PMiPR in Sections 3.2 and 3.3, after

which we present a strategy to sample behavioral-based interaction triplets for optimiza-

tion in Sections 3.4 and 3.5. Then we summarize the method with the procedure shown in

Algorithm 1. Additionally, we propose the concept of global behavior embedding to deal

with the sparsity of less-frequent behavior in Section 3.6. Finally, we detail the scoring

functions used for recommending items w.r.t. different behaviors in Section 3.7.
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Figure 3.1: Overview of proposed PMiPR framework
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3.1 Problem Formulation

In this section, we formulate the problem of multi-behavior recommendation. In real-

world scenarios, users of online information systems interact with items in many ways.

Take the social website Reddit, for an example: a Reddit user can interact with a post

by clicking, pushing, sharing, replying, and creating. Nevertheless, most conventional

recommendation algorithms are designed only for a single type of user-item interaction,

or simply assume that different user behaviors are the same. For instance, e-commerce

recommender systems target purchase behavior and thus ignore behaviors such as clicks

and views. In this study, we seek to design a unified, interaction-level embedding learning

framework to better exploit different types of users and item behaviors for multi-behavior

recommendation.

Definition 3.1.1 (Multi-behavior User-item Interaction Graph). Let U , I , and R denote

the set of users, items, and behaviors, respectively. A multi-behavior user-item interaction

graph is an indirect graph defined as G(V , E , ψ), where ψ(·) is an edge-type mapping

function ψ : E → 2R, V and E denote the sets of all nodes (i.e., V = U ∪ I) and all edges

in the graph, respectively, and (u, i) ∈ E denotes an edge between a user u ∈ U and an

item i ∈ I .

Note that the co-domain of ψ(·) is the power set of R, as general multi-behavior rec-

ommendation scenarios sometimes involve more than one behavior between a user and

an item. For example, a Reddit user u ∈ U can interact with a post i ∈ I both by click-

ing ri ∈ R and by sharing rj ∈ R; in this case, for edge (u, i) ∈ E between u and i,

ψ((u, i)) = {ri, rj}.

Definition 3.1.2 (Personalized Multi-interaction Preference Ranking for Multi-behavior

Recommendation). Given the multi-behavior user-item interaction graph G(V , E , ψ) de-

fined in Definition 3.1.1, our goal is to learn an embedding matrix Θ ∈ R(n+m)×(1+k)×d,
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where n = |U |,m = |I|, k = |R|, and d denotes the embedding size, to better address the

problem of multi-behavior recommendation. Specifically, for each user u (or each item i),

the model generates its own personalized user embedding denoted as θu (or item embed-

ding denoted as θi, respectively). Additionally, associated with each user (or item) is a

behavior embedding for each behavior ri ∈ R, denoted as θriu (or θrii , respectively), result-

ing in (n+m)× (1 + k) learned embeddings in total. It is expected that with our unified

learning framework, the learned embedding matrix Θ properly encodes different types

of user-item interactions for recommendation. Furthermore, the proposed model enables

us to make the recommendation w.r.t. different behaviors by leveraging the designated

behavior embeddings for users and items.1

3.2 Multi-interaction Preference Ranking

The proposed PMiPRmodels various types of user-item interactions in a unified frame-

work, generating a universal embedding matrix Θ for multi-behavior recommendation.

We consider this to be a universal framework as the proposed model enables us to make

the recommendation w.r.t. different behaviors via the learned universal embedding ma-

trix Θ. In the mainstream literature on recommender systems, node embeddings are used

to capture relations between users and items via matrix factorization and derivative tech-

niques (e.g., [7,9,20,24,32,33]). Such methods, however, typically ignore the differences

between various user behaviors; thus, they do not properly leverage the different types of

interactions, nor do they offer recommendations w.r.t. different behaviors.

We address this problem with PMiPR, a pairwise interaction-level ranking algorithm

for modeling the preferences of users and items under different behaviors. Inspired by

[34], which changes the main idea of most ranking-based recommendation algorithms
1Note that in this paper, we interpret the term “multi-behavior recommendation” as making the recom-

mendation w.r.t. different behaviors.
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from node-level [7] to interaction-level modeling and clusters similar user-item interac-

tions in a self-supervised manner, we further construct behavior embeddings for all users

and items with different behaviors to facilitate the various recommendations.

Let H be the set containing all user-item interactions from G(V , E , ψ), where each

element hrui ∈ H denotes a user-item interaction in which user u interacts with item i with

behavior r. Given an interaction hrui, we define a basic training unit (also known as an

interaction-level triplet) of the proposed PMiPR as

(hrui, h̃
r+

u+i+ , h̃
r−

u−i−), (3.1)

along with the relation h̃r+u+i+ ≻hr
ui
h̃r

−

u−i− (see the second panel from the left in Figure 3.1).

This relation denotes that the pseudo positive interaction h̃r+u+i+ is “more alike” to hrui than

the pseudo negative interaction h̃r−u−i− . Note that in this framework, h̃
r+

u+i+ and h̃r−u−i− are

built artificially regarding hrui and do not necessarily appear in the graphG(V , E , ψ); thus,

they can be freely defined to correspond to different application scenarios. For general

multi-behavior recommendation, we propose a strategy to sample such triplets for opti-

mization, as detailed in Section 3.4.

With the triplet definition in Eq. (3.1), we then construct training dataDH : H×H+
hr
ui
×

H−
hr
ui
as

DH:=
{(
hrui, h̃

r+

u+i+ , h̃
r−

u−i−

)∣∣∣hrui ∈ H∧
h̃r

+

u+i+ ∈ H+
hr
ui
∧ h̃r−u−i− ∈ H−

hr
ui

}
, (3.2)

whereH+
hr
ui
(H−

hr
ui
) denotes the set of pseudo positive interactions (that of negative interac-

tions, respectively) w.r.t. hrui.
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3.3 Embedding Matrix Learning

The pioneer work on interaction-level preference ranking [34] only utilizes user and

item embeddings to model different user-item ratings, which is difficult to generalize

for recommendations w.r.t. different behavior for multi-behavior recommendation. To

this end, in addition to the original user and item embedding (i.e., θu and θi (see Defi-

nition 3.1.2), we further incorporate behavior embeddings for users and items to model

different types of user-item interactions, resulting in (θu, θru, θi, θri ) for each user-item in-

teraction. Thus (θu, θru) can be treated as a user uwith his/her behavioral preference, while

(θi, θ
r
i ) denotes an item i with its behavior characteristics. For example, daily necessities

are more frequently purchased than luxury goods; in our design, this is modeled properly

via behavior embeddings for items.

Next, given an interaction hrui (or a pseudo interaction h̃r+u+i+ or h̃r−u−i−), we define

its embedding as hrui := f(θu, θ
r
u, θi, θ

r
i ), where f(·) is an arbitrary function to combine

the user, item, and behavior embeddings. Note that instead of using h̃r+u+i+ or h̃r−u−i− for

denoting the embeddings of pseudo interactions, we refer to these as hr+u+i+ or hr−u−i− to

simplify the notation. In this paper, for similar reasons to those in [9], we adopt the addition

operator as our aggregator, resulting in

hrui = θu + θru + θi + θri . (3.3)

Other operators will be investigated in the future.

WithDH, our objective is to find an embeddingmatrixΘ that maximizes the likelihood

function from observed multi-behavior user-item interactions:

OPMiPR =
∏
t∈DH

p

(
h̃r

−

u−i− ≺hr
ui
h̃r

+

u+i+

∣∣∣∣Θ)
, (3.4)
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where t = (hrui, h̃
r+

u+i+ , h̃
r−

u−i−). Furthermore, with the definition of the interaction embed-

dings in Eq. (3.3), the individual probability that an interaction h̃r+u+i+ is more similar to

hrui than h̃r
−

u−i− is defined as

p

(
h̃r

−

u−i− ≺hr
ui
h̃r

+

u+i+

∣∣∣∣Θ)
= σ

(〈
hrui, hr

+

u+i+ − hr−u−i−

〉)
, (3.5)

where σ(·) denotes the sigmoid function and ⟨·, ·⟩ denotes the dot product between two

vectors.

With Eqs. (3.3)–(3.5), we formulate the maximum posterior estimator to derive the

optimization criterion for the proposed PMiPR as

PMiPR-OPT := ln p(Θ| ≺hr
ui
) ∝ ln p

(
≺hr

ui
|Θ

)
p (Θ)

= ln
∏
t∈DH

p
(
h̃r

−

u−i− ≺hr
ui
h̃r

+

u+i+

)
p(Θ)

=
∑
t∈DH

lnσ
(〈

hrui, hr
+

u+i+ − hr−u−i−

〉)
− λΘ||Θ||2, (3.6)

where λΘ is a model-specific regularization parameter.

To explore the advantages of such behavioral-based interaction triplets, we further

decompose the interaction embedding hrui into two components eru and eri for analysis,

where eru := θu + θru and eri := θi + θri (see Eq. (3.3)). Then, the likelihood in Eq. (3.5)

can be rewritten as

σ

(〈
hrui, hr

+

u+i+ − hr−u−i−

〉)
= σ

(〈
eru + eri ,

(
er+u+ + er+i+

)
−
(
er−u− + er−i−

)〉)
= σ

(〈
eru, (er

+

u+ − er−u−) +
(
er+i+ − er−i−

)〉
+

〈
eri ,

(
er+u+ − er−u−

)
+
(
er+i+ − er−i−

)〉)
. (3.7)

The above likelihood in Eq. (3.7) can be decomposed into the following four components:
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1.
〈
eru, er

+

u+ − er−u−

〉
: Models the user interaction similarity to user u with behavior r re-

garding users u+ with behavior r+ and u− with behavior r−.

2.
〈
eru, er

+

i+ − er
−

i−

〉
: Models the item interaction preference ranking between item i+ with

behavior r+ and i− with behavior r− for user u with behavior r.

3.
〈
eri , er

+

u+ − er
−

u−

〉
: Models the user interaction preference ranking between user u+ with

behavior r+ and u− with behavior r− for item i with behavior r.

4.
〈
eri , er

+

i+ − er−i−
〉
: Models the item interaction similarity to item i with behavior r re-

garding items i+ with behavior r+ and i− with behavior r−.

Note that each of the above components corresponds to (a)–(d) in the rightmost panel

of Figure 3.1. Moreover, for (a) (or d)), the model tends to cluster users (items, respec-

tively) that involve similar interactions with items (users, respectively) in the embedding

space; as for (b) and (c), the model tends to cluster users and items that involve similar

interactions with each other in the embedding space. Such a design not only enables fine-

grained modeling for different types of user-item interactions but also naturally yields a

powerful representation matrix Θ that is suitable for various behavioral recommendation

tasks.

3.4 Sampling Strategy

Recall that the pseudo positive interaction h̃r+u+i+ and the negative equivalent h̃r−u−i− in

a triplet given hrui defined in Eq. (3.1) can be freely defined to correspond to different ap-

plication scenarios. For general multi-behavior recommendation, we propose a strategy to

sample such triplets to construct the training dataDH in Eq. (3.2) for optimization. Specif-
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ically, for an interaction hrui in G(V , E , ψ), this is the set of pseudo positive interactions:

H+
hr
ui
:=

{
h̃r

+

u+i+

∣∣ (u, i+), (u+, i) ∈ E ∧
r+ = r ∧ r+ ∈ ψ(u, i+) ∧ r+ ∈ ψ(u+, i)

}
. (3.8)

We illustrate this sampling strategy with Fig. 3.1 (see the leftmost panel of the figure).

Given an interaction between user u and item i with a specific behavior r (the solid line

between two black nodes), i.e., hrui, we sample a “pseudo” positive interaction h̃r
+

u+i+ con-

structed by a sampled positive item i+ (a neighbor of u) and a sampled positive user u+ (a

neighbor of i) with behavior r (both nodes are orange). For the pseudo negative interac-

tion h̃r−u−i− ∈ H
−
hr
ui
, we randomly select an interaction from all interactions in G(V , E , ψ)

(i.e., H) to construct H−
hr
ui
for simplicity. We leave more complicated settings for future

work.

3.5 Optimization

With the training data DH in Eq. (3.2) and the objective function in Eq. (3.6), we

optimize the embedding matrix as

Θ← Θ+ α

(
∂PMiPR-OPT

∂Θ

)
, (3.9)

where α is the learning rate. Specifically, for each given interaction hrui ∈ H, we randomly

sample a pseudo positive interaction h̃r+u+i+ ∈ H
+
hr
ui
defined in Eq. (3.8) and a negative

interaction h̃r−u−i− ∈ H. The resulting interaction-level triplet (hrui, h̃r
+

u+i+ , h̃
r−

u−i−) ∈ DH is
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adopted to update the model parameter matrix Θ with this gradient:

∂PMiPR-OPT
∂Θ

=
∂

∂Θ
lnσ(x̂)− λΘ

∂

∂Θ
||Θ||2

∝ e−x̂

1 + e−x̂

∂

∂Θ
x̂− λΘΘ, (3.10)

where

x̂ :=

〈
hrui, hr

+

u+i+ − hr−u−i−

〉
=

〈
eru + eri ,

(
er+u+ + er+i+

)
−
(
er−u− + er−i−

)〉
.

Additionally, we follow [32, 33, 35] by utilizing asynchronous stochastic gradient ascent

(ASGD) [36] to efficiently update parameter matrix Θ in a parallel manner. Algorithm 1

details the complete model training procedure.

Algorithm 1 Training with proposed PMiPR algorithm
Inputs: G(V , E , ψ), N iterations
Output: Θ
1: Randomly initialize Θ
2: H ← all user-item interactions from G(V , E , ψ)
3: for e = 1 to N do
4: Draw a user-item interaction hrui fromH
5: Construct positive interaction setH+

hr
ui

6: Construct negative interaction setH−
hr
ui

7: Draw a positive interaction hr+u+i+ ∈ H
+
hr
ui

8: Draw a negative interaction hr−u−i− ∈ H
−
hr
ui

9: Update Θ with Eqs. (3.9)–(3.10)
10: end for

3.6 Global Behavior Embedding

To fully leverage the multi-behavior information and account for the sparsity of less-

frequent behaviors, we additionally incorporate global behavior information in the multi-

behavior user-item interaction graph G(V , E , ψ). That is, if there exist ℓ different types

26



doi:10.6342/NTU202203790

of behavior in a multi-behavior recommendation dataset, we additionally create a pseudo

behavior, namely the global behavior rg, resulting in |R| = ℓ + 1 = k types of behaviors

in the graph. Specifically, for any edge (u, i) between a user u and an item i in E , rg ∈

ψ((u, i)). In the other words, there exists a global relation between user u and item i if

u has interacted with i with any of the relations r ∈ {r|r ∈ R ∧ r ̸= rg}. Experimental

results show the effectiveness of such a design in Section 5.2.

3.7 Scoring Function for Multi-behavior Recommenda-

tion

Algorithm 1 yields the embedding matrix Θ ∈ R(n+m)×(1+k)×d. The learned Θ en-

ables us to make recommendations w.r.t. different behaviors. Specifically, for any target

behavior r ∈ {r|r ∈ R ∧ r ̸= rg}, at the inference stage, for each user u, we calculate the

scores considering all items as

ŷrui =
(
θu + θru

∥∥ θu + θrgu
)
·
(
θi + θri

∥∥ θi + θ
rg
i

)
, (3.11)

where a
∥∥b denotes the concatenation of the embedding vectors a and b, and rg ∈ R is

the global behavior (see Section 3.6). We then rank the items according to the score in

Eq. (3.11) for each user to obtain the recommended items for the target behavior.
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Chapter 4

Experimental Setup

In this section, we first introduce the roadmap of experiments in Section 4.1. After that,

we detail the experimental settings including dataset description, datasets preprocessing,

baselines introduction, parameters settings and evaluation metrics in Section 4.2.

4.1 Roadmap for experiments

• Experiment 1: Overall performance comparison on various behavior.

• Experiment 2: Ablation studies on global behavior embeddings.

• Experiment 3: Sensitivity analysis on hyper-parameters.

• Experiment 4: Computational efficiency comparison.

The experiments seek to answer the following research questions (RQs):

• RQ1: How does the proposed framework perform compared to other state-of-the-

art baseline models for the prediction of different behaviors?

• RQ2: How does the global behavior embedding influence ourmodel’s performance?
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• RQ3: How does the sensitivity of hyperparameters (α, λ and n) affect the perfor-

mance of our model?

• RQ4: How does the computational time of our model compare with that of the

compared models?

4.2 Experimental Settings

4.2.1 Datasets Description

Weconducted experiments on four public recommendation datasets to evaluate PMiPR.

All datasets contain three common types of e-commerce behaviors, as summarized in Ta-

ble 4.1 and Fig. 4.1.

• Beibei1. This is the dataset obtained from Beibei, the largest infant product e-

commerce platform in China. There are 21716 users and 7977 items with three

types of behaviors, including purchase, cart and view collected in this dataset.

• Taobao2. This is the dataset collected from Tmall, the largest e-commerce platform

in China. There are 48749 users and 39493 items with three types of behavior,

including purchase, cart and view collected in this dataset.

• Ecommerce3. This is the dataset collected from a medium cosmetics online store.

There are 55608 users and 48547 items with three types of behavior, including pur-

chase, cart and view collected in this dataset.

• Rees464. This is the dataset collected from a large multi-category online store.
1https://www.beibei.com/
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
3https://www.kaggle.com/datasets/mkechinov/ecommerce-events-history-in-cosmetics-shop
4https://www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
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There are 20399 users and 31972 items with three types of behavior, including pur-

chase, cart and view collected in this dataset.

Table 4.1: Dataset statistics

Dataset #User #Item #View #Cart #Purchase

Beibei 21,716 7,977 2,412,586 642,622 304,576

Taobao 48,749 39,493 1,548,126 193,747 259,747

Ecommerce 55,608 48,547 1,945,122 1,860,450 905,847

Rees46 20,399 31,972 112,652 48,313 47,368

view

71.8%

cart
19.1%

purchase

9.1%

(a) Beibei

view

77.3%

cart

9.7%

purchase

13.0%

(b) Taobao

view
41.3%

cart

39.5%

purchase

19.2%

(c) Ecommerce

view 54.1%

cart

23.2%

purchase

22.7%

(d) Rees46

Figure 4.1: Dataset statistics in graphical.

4.2.2 Datasets Preprocessing

For Beibei, Taobao, and Ecommerce, we followed the settings in [17], which filters

out users and items with fewer than five purchase interactions. For the smaller Rees46
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dataset, we filtered out users with fewer than two purchase interactions. For each dataset,

we took each user’s last purchase record as the test data for the purchase recommendation

evaluation. We also took each user’s last cart and view records as the test data for the

cart and view behavior evaluations, respectively, for both Rees46 and Ecommerce. As

Beibei and Taobao did not include timestamps for each interaction, we could not split

the dataset for other behaviors like view and cart; therefore, for these, we evaluated the

recommendation performance only for the purchase behavior, which is available in the

original datasets provided and used in previous studies [13, 16, 17].

4.2.3 Baselines

To demonstrate the effectiveness of our method, we compared it with seven baseline

methods. These baselines can be categorized into two groups: 1) single-behavior models

that utilize only single-behavior data and neglect other behavioral data in the training pro-

cess, and 2) multi-behavior models that consider all types of behavioral data in the training

process.

Single-behavior models

• BPR [7]: a widely used pairwise learning framework that considers node-level triplets

for model training.

• LightGCN [9]: a simplified architecture of the graph neural network (GNN) from

NGCF [24] that usually achieves state-of-the-art performance for single-behavior rec-

ommendation.

Multi-behavior models

• MC-BPR [14]: a multi-behavior recommendation algorithm that assumes an impor-

tance order between different behaviors and extends BPR [7] by building sampling pairs

with a type of positive behavior and a type of weaker behavior.
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• NMTR [30]: a neural model that involves joint optimization based on the multi-task

learning framework, where the optimization on each behavior is treated as a task.

• MBGCN [13]: a graph convolutional network (GCN) that learns the strengths of dif-

ferent behaviors by the user-item propagation layer and item-item propagation layer.

• EHCF [16]: a non-sampling transfer learning solution model good for modeling both

single- and multi-behavior data.

• GHCF [17]: a GCN-based model that jointly embeds user, item, and behavior repre-

sentations for multi-behavior modeling, which also utilizes non-sampling optimization

as in [16] to improve performance.

We re-trained single-behavior models for each type of behavior and evaluated the per-

formance based on the corresponding model. For multi-behavior models, note the follow-

ing: 1) as MC-BPR only models importance order between different behaviors and does

not provide behavior-dependent recommendations, we use the same recommended list for

different behavior evaluation; 2) as MBGCN utilizes the target behavior to optimize the

loss function, we had to re-train the model for different behaviors by changing the target

behavior for different behavior evaluation; 3) as NMTR, EHCF, and GHCF predict for

each behavior via their multi-task learning frameworks, there was no need to re-train the

model; thus evaluation for different behaviors leveraged the learned behavior embeddings.

4.2.4 Parameters Settings

We set dimension d of the embedding vectors of all the baselines and the proposed

model to 128. For PMiPR, we set the L2 regularization coefficient λ, learning rate α and

negative sample n to 0.001, 0.025 and 5, respectively. For the baselines, we initialized

the hyperparameters and used a grid search over different settings per the corresponding
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papers, selecting the hyperparameters that yielded the best performance. For each method,

the final reported results were calculated by averaging the results over five repetitions.

4.2.5 Evaluation Metrics

Following previous studies [7, 37, 38], for each user in the test set under target be-

havior, we treated all items that the user has not interacted with as negative items. Then

we used each method to generate a ranking list for each user with the user＇s preference

scores over all the items, except for the positive ones in the training set of target behav-

ior. To evaluate the performance of the ranking list, we adopted two common metrics

for top-N recommendation: recall (Recall@N) and normalized discount cumulative gain

(NDCG@N) with N = 10, 50, 100 in our experiments.

• Recall@N. Recall measures whether the testing items is found in the top-N item

ranking list (1 for yes and 0 for no).

• NDCG@N. Normalized Discounted Cumulative Gain (NDCG) is a position sen-

sitive metric which hits in higher positions on the item ranking list are assigned a

higher score.

Let UT = {u1, u2, ..., un} be the user test set. The generated recommendation item list for

user u ∈ UT is denoted asRu = {i1, i2, ..., iN}, where N is the number of recommendation

item, ik is an item that ranked at the k-th position inRu. Tu denotes the set of u＇s interacted

item in the test set. The above matrices are formulated as follows:

Recall@N =
1

|UT |
∑
u∈UT

|Tu ∩Ru|
|Tu|

NDCG@N =
1

Z
DCG@N =

1

Z|U |
∑
u∈UT

N∑
j=1

2I(|{i
j}∩Tu|) − 1

log2(j + 1)
, (4.1)
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in which I(x) denotes an indicator function whose value is 1 when x > 0, and 0 otherwise,

and Z is the maximum possible value ofDCG@N for normalization. Note that the larger

value indicates better performance in both metrics.
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Chapter 5

Experimental Results

In this section, we describe experiments conducted on public datasets to demonstrate

the effectiveness of the proposed PMiPR. We describe several experiments in Section 5.1

to Section 5.4

5.1 Experiment 1: Overall Performance Comparison on

Various Behavior

In this section, we compared PMiPR with several single-behavior and multi-behavior

baselines for recommendation tasks w.r.t. different behaviors, including purchase, cart,

and view prediction, as shown in Tables 5.1–5.3. The best results are in boldface; the best-

performing method among all the baselines is indicated by “†”; “Improv. (%)” indicates

the percentage improvement of the proposed model w.r.t. the best-performing baselines.

Below we separately discuss the results for the three prediction tasks.
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Table 5.1: Overall performance comparison on purchase recommendation

Beibei

Recall NDCG

@10 @50 @100 @10 @50 @100

BPR 0.0355 0.1276 0.2264 0.0182 0.0374 0.0533

LightGCN 0.0444 0.1339 0.1984 0.0212 0.0404 0.0501

MCBPR 0.0488 0.1969 0.3228 0.0226 0.0540 0.0743

NMTR 0.0414 0.2708 0.4534 0.0172 0.0651 0.0947

MBGCN 0.0582 0.3319 0.4823 0.0294 0.1506 0.171

EHCF 0.2424 0.4149 0.5009 0.1365 0.1748 0.1887

GHCF †0.2912 †0.4595 †0.5395 †0.1569 †0.1947 †0.2077

PMiPR 0.2387 0.5596 0.6514 0.1173 0.1957 0.2102

Improv. (%) -21.99% 21.78% 20.74% -33.76% 0.51% 1.20%

Taobao

Recall NDCG

@10 @50 @100 @10 @50 @100

BPR 0.0342 0.0664 0.0824 0.0204 0.0274 0.0300

LightGCN 0.0438 0.0819 0.1001 0.0258 0.0342 0.0371

MCBPR 0.0713 0.1190 0.1423 0.0383 0.0488 0.0526

NMTR 0.0803 0.1308 0.1666 0.0411 0.0523 0.0581

MBGCN 0.1092 0.1854 0.2465 0.0553 0.0788 0.0802

EHCF 0.1175 0.2387 0.3108 0.0667 0.0931 0.1048

GHCF †0.1359 †0.2833 †0.3676 †0.0768 †0.1090 †0.1226

PMiPR 0.2187 0.5270 0.6287 0.1087 0.1765 0.1932

Improv. (%) 60.93% 86.02% 71.03% 41.53% 61.93% 57.59%
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Ecommerce

Recall NDCG

@10 @50 @100 @10 @50 @100

BPR 0.0571 0.1269 0.1737 0.0320 0.0471 0.0547

LightGCN 0.0651 0.1853 0.2608 0.0332 0.0538 0.0660

MCBPR 0.0792 0.2070 0.2919 0.0407 0.0683 0.0820

NMTR 0.0691 0.2359 0.3543 0.0355 0.0630 0.0821

MBGCN 0.0657 0.1942 0.2790 0.0345 0.0591 0.0729

EHCF 0.1659 0.3881 0.5123 0.0907 0.1390 0.1592

GHCF †0.2330 †0.4351 †0.5347 †0.1375 †0.1819 †0.1981

PMiPR 0.2621 0.5532 0.6861 0.1447 0.2086 0.2302

Improv. (%) 12.49% 27.14% 28.31% 5.24% 14.68% 16.20%

Rees46

Recall NDCG

@10 @50 @100 @10 @50 @100

BPR 0.0876 0.2201 0.2972 0.0473 0.0759 0.0883

LightGCN 0.1656 0.1864 0.3925 0.0914 0.1143 0.1371

MCBPR 0.1743 0.3087 0.3598 0.0837 0.1139 0.1222

NMTR 0.1724 0.3160 0.3759 0.0825 0.1141 0.1238

MBGCN 0.1783 0.3469 0.4199 0.0990 0.1365 0.1483

EHCF 0.3563 0.5624 0.6223 0.2161 0.2623 0.2720

GHCF †0.3945 †0.5749 †0.6255 †0.2410 †0.2818 †0.2901

PMiPR 0.4118 0.6070 0.6620 0.2569 0.3010 0.3099

Improv. (%) 4.39% 5.58% 5.84% 6.60% 6.81% 6.83%
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Table 5.2: Overall performance comparison on cart recommendation

Ecommerce

Recall NDCG

@10 @50 @100 @10 @50 @100

BPR 0.0285 0.0697 0.1004 0.0153 0.0242 0.0291

LightGCN 0.0606 0.1245 0.2261 0.0324 0.0485 0.0644

MCBPR 0.0644 0.1702 0.2457 0.0407 0.0683 0.0820

NMTR 0.0744 0.1498 0.1951 0.0393 0.0558 0.0632

MBGCN 0.0708 0.1369 0.1894 0.0355 0.0521 0.0620

EHCF 0.0247 0.0743 0.1126 0.0121 0.0227 0.0289

GHCF †0.0889 †0.2129 †0.2938 †0.0479 †0.0747 †0.0878

PMiPR 0.1494 0.3592 0.4780 0.0803 0.1259 0.1451

Improv. (%) 68.05% 68.72% 62.70% 67.64% 68.54% 65.26%

Rees46

Recall NDCG

@10 @50 @100 @10 @50 @100

BPR 0.1058 0.2587 0.3291 0.0577 0.0913 0.1027

LightGCN 0.0606 0.1245 0.2261 0.0324 0.0485 0.0644

MCBPR 0.1431 0.2631 0.3148 0.0685 0.0951 0.1035

NMTR 0.1718 0.3143 0.3736 0.0823 0.1137 0.1233

MBGCN 0.2257 0.4001 0.4846 0.1363 0.2029 0.2253

EHCF 0.3217 0.5339 0.5945 0.1896 0.2370 0.2469

GHCF †0.3616 †0.5459 †0.5977 †0.2092 †0.2510 †0.2594

PMiPR 0.4089 0.6004 0.6565 0.2516 0.2948 0.3039

Improv. (%) 13.08% 9.98% 9.84% 20.27% 17.45% 17.15%
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Table 5.3: Overall performance comparison on view recommendation

Ecommerce

Recall NDCG

@10 @50 @100 @10 @50 @100

BPR 0.0257 0.0630 0.0890 0.0152 0.0232 0.0274

LightGCN 0.0560 0.1432 0.2025 0.0230 0.0487 0.0583

MCBPR 0.0433 0.1141 0.1649 0.0225 0.0378 0.0460

NMTR 0.0368 0.1161 0.1881 0.0189 0.0357 0.0473

MBGCN 0.0425 0.1298 0.1930 0.0296 0.0438 0.0531

EHCF 0.0314 0.0975 0.1482 0.0155 0.0296 0.0378

GHCF †0.0766 †0.1796 †0.2465 †0.0411 †0.0634 †0.0742

PMiPR 0.1015 0.2481 0.3337 0.0547 0.0866 0.1005

Improv. (%) 32.51% 38.14% 35.38% 33.09% 36.59% 35.44%

Rees46

Recall NDCG

@10 @50 @100 @10 @50 @100

BPR 0.1964 0.3775 0.4647 0.1094 0.1491 0.1632

LightGCN 0.2294 0.3845 0.4510 0.1365 0.1708 0.1816

MCBPR 0.1449 0.2707 0.3234 0.0849 0.1125 0.1211

NMTR 0.1625 0.3007 0.3575 0.0779 0.1085 0.1176

MBGCN 0.1960 0.3953 †0.4804 0.1035 0.1472 0.1610

EHCF †0.2137 †0.4101 0.4773 0.1132 †0.1567 †0.1676
GHCF 0.2120 0.3939 0.4553 †0.1137 0.1543 0.1643

PMiPR 0.2863 0.4722 0.5366 0.1806 0.2220 0.2325

Improv. (%) 33.97% 12.14% 11.70% 58.31% 41.67% 38.72%
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5.1.1 Purchase Recommendation
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Figure 5.1: Overall performance comparison on purchase recommendation.

This is the typical recommendation task evaluated in most studies on multi-behavior

recommender systems. Table 5.1 and Fig. 5.1 show the results on the four datasets; below

are the findings.

• PMiPR consistently outperforms all baselines over the four datasets except for Re-

call@10 and NDCG@10 on the Beibei dataset, which justifies the effectiveness of our

model.

• All multi-behavior models outperform the two single-behavior models, which attests

the effectiveness of leveraging multiple types of behavioral data for recommendation.

This is consistent with previous findings [16, 17].

• GHCF is the strongest baseline of the compared methods. Nevertheless, the proposed

PMiPR still yields significant improvements on all four datasets (e.g., ranging from

5.58% to 86.02% improvement in terms of Recall@50).
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5.1.2 Cart and View Recommendation
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Figure 5.2: Overall performance comparison on cart and view recommendation.

To verify the effectiveness of our model for recommendation w.r.t. different user be-

haviors, we further evaluated on cart and view recommendation; such tasks are however

overlooked and thus not evaluated in most of the literature. We report the results con-

ducted on the Ecommerce and Rees46 datasets, as shown in Tables 5.2 and 5.3, we also

show the graphical results in Fig. 5.2, observed from which we itemize the findings as

follows.

• PMiPR significantly outperforms all baselines over the two datasets in terms of all

metrics, demonstrating that it better predicts not only the “target behavior” but also

other behaviors compared to the state-of-the-art methods.

• GHCF still remains the strongest baseline, demonstrating the superiority of this

state-of-the-art GNN-based model for multi-behavior recommendation.

Overall, PMiPR shows the effectiveness of leveraging interaction as training units and

incorporating fine-grained behavior embeddings of users and items to learn a unified em-

bedding matrix for multi-behavior recommendation. Multi-behavior prediction tasks are

completed successfully with the proposed unified framework in a straightforward manner.
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These results demonstrate notable performance improvements over all three prediction

tasks compared to state-of-the-art multi-behavior recommendation approaches.

5.2 Experiment 2: Ablation Studies on Global Behavior

Embeddings
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Figure 5.3: Ablation studies on global behavior embeddings.

To understand the impact of our mechanism for global behavior embeddings, we addi-

tionally considered two variants of the proposed model: PMiPR (w/o global) and PMiPR

(w/ global), which disables and enables the global behavior rg inG(V , E , ψ), respectively

(see Section 3.6). Moreover, both variants apply ŷrui = (θu + θru) · (θi + θri ) as the scoring

function to estimate the likelihood that a user u will interact with an item i under behav-

ior r. (Note that the above score function is different from that used in the original PMiPR

in Eq. (3.11), which additionally concatenates the global behavior embeddings when cal-
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culating the scores.)

Figure 5.3 illustrates the results of the three PMiPR versions: PMiPR (w/o global),

PMiPR (w/ global), and PMiPR. As shown, adding global behavioral information indeed

yields better recommendation performance for all types of recommendation tasks (see the

bars representing the results of PMiPR (w/ global) and PMiPR). Moreover, PMiPR is

shown to consistently outperform PMiPR (w/ global), which demonstrates that including

global behavior embeddings in the scoring function further benefits performance and thus

yields superior results.

5.3 Experiment 3: Sensitivity Analysis on Hyperparam-

eters

In this section, we only report the hyperparameter analysis on the purchase prediction

results; predictions on other behaviors exhibit similar phenomena. Figure 5.4 plots the

effect of the L2 regularization parameter λΘ, where all datasets perform relatively poorly

when λΘ = 0 and show the best performance when λΘ = 0.001. In addition, we in-

vestigate the effect of the learning rate α, as shown in Fig. 5.5, and α = 0.025 leads the

best results for all datasets. Furthermore, we investigate the effect of number of negative

sample n w.r.t each dataset, where the number of negative sample that lead the best result

in each dataset is different due to different size of each dataset, as shown in Fig. 5.6.
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Figure 5.4: Sensitivity on Regularization.
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Figure 5.5: Sensitivity on Learning Rate.
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Figure 5.6: Sensitivity on Negative Sample.

5.4 Experiment 4: Computational Efficiency Compari-

son

We used Ecommerce, the largest dataset, to compare the computational efficiency

among different models. Figure 5.7 plots the execution time of the proposed model and

the seven compared methods.1 As observed, the proposed PMiPR requires around 600

seconds to complete the whole training process, which is much faster than all models ex-

cept BPR. Moreover, while BPR, MCBPR, and PMiPR use only CPU computations, other

models use GPU computations. Such results demonstrate the lightweight nature and com-

putational efficiency of the proposed embedding learning framework, which is thus more

practical than other advanced methods.
1Values reported in the figure vary when different implementations are applied.
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Figure 5.7: Execution Time Usage.
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Chapter 6

Conclusion and Future Work

We describe conclusion and future work of this research in Section 6.1 and Section 6.2

respectively.

6.1 Conclusion

In this paper, we propose personalized multi-interaction preference ranking (PMiPR),

a unified interaction-based pairwise ranking embedding framework that incorporates both

multi-behavior and global information for embedding learning. PMiPR samples and con-

structs interaction triples and then leverages a pairwise ranking algorithm to capture user

and item preferences under each behavior based on interaction similarity. Its effectiveness

and efficiency are demonstrated by extensive experiments and analysis.

6.2 Future Work

It is worth mentioning that although this paper follows most exiting multi-behavior

literature to conduct experiments on e-commerce datasets only, we plan to investigate

the performance on more diverse datasets, especially including the ones with much more
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types of user behaviors in the future work. Also, there are several possible future direc-

tions based on the proposed PMiPR framework. To name a few, first, we will explore

the possibility of artificially defining different types of user-item interactions by leverag-

ing the information from user profiles and item metadata. Such an attempt may further

refine the behaviors and thus make the model better accommodate different usage sce-

narios. Second, as the so-called“positive＂interaction and“negative＂interaction in a

triplet can be freely defined in our framework, we prepare to investigate other sampling

strategies for constructing positive and negative interactions for model training. Finally,

how to combine the proposed interaction-level modeling with knowledge graphs for the

task of recommendation is also an interesting future research direction.
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