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摘摘摘要要要

關係萃取的任務是從文本中自動學習、抽取兩個實體間的關係。

近年來，神經網路模型被廣泛應用在關係萃取上，也取得了優異的表

現。然而，神經網路需要大量的訓練資料，而在生醫領域，因為標記

成本昂貴，缺乏大量的訓練資料，所以我們進一步探索只需要少量標

記資料來微調模型的自監督式學習方法。

MTB是一個利用自監督式學習方法的關係萃取模型，藉由相同兩

實體組成的實體對(entity pair)出現在不同句子也可能隱含相同關係的

假設，MTB得以訓練任意兩實體間的關係向量表示。不像過去許多深

度學習之關係萃取模型，MTB並未利用額外的自然語言特徵，故我們

認為若加入兩實體間的依存路徑資訊，有機會讓MTB訓練得更好。另

外，由於MTB僅利用不同的兩實體對是否相同當作訓練依據，負面樣

本(非完全相同的實體對)的選定格外重要，因此，我們認為除了 MTB

提出的兩種負面樣本外，還存在使MTB訓練更有效的負面樣本。

因此，基於MTB模型，我們提出兩個改善方向：(1)藉由四種網路

模組編碼並嵌入實體對之間的依存關係 (2)藉由行內(inline)負樣本，使

MTB模型不能只學會關鍵字匹配，而作為真正學到基於上下文的關係

表示。在不同設置的實驗下，我們證明了相對於MTB原本架構，我們

提出的兩個改善方向都能有效地提升關係萃取的效能。我們並探索了

在簡單或複雜的句法關係下，更適合的依存神經網路模組，也證明了

在更細粒度的方向性關係下，我們的模型仍能有效辨別並超越MTB原

始架構的表現。

關關關鍵鍵鍵字字字:關係萃取、生醫關係萃取、關係分類、深度學習、非監督式學

習、自監督式學習
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Abstract

Relation extraction is the task that learns and extracts relations between

entities from the text. In recent years, neural network models have been

widely used in relation extraction, and have achieved the state-of-the-art

performance. However, neural networks require a large amount of training

data. In the biomedical domain, because acquiring labeled instances is

expensive and the training dataset is often small-sized, we further explore

self-supervised learning methods that require only a small amount of

labeling data for fine-tuning the model. Matching The Blank (MTB) is a

self-supervised based relation extraction model. With the assumption that if

two entity pair from two sentences are the same, it also implies that they are

having the same relation, MTB can train the vector of relation representation

between any two entities. However, unlike many deep learning relationship

extraction models in the past, MTB does not use additional natural language

features other than text. Hence, we believe that if the dependency parsing

information between the two entities in a sentence is taken into account, there

is an opportunity for MTB to be trained better. In addition, since negative

samples play an important role in MTB training, the selection of negative

iv
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v

samples (non-identical entity pairs) is particularly important. Therefore, we

believe there exists a new type of negative samples that is more effective

for MTB training. Therefore, based on the MTB model, we propose two

directions for improvement: (1) four neural network modules to encode the

dependency relationship between entities, and (2) inline negative samples

that the MTB model will not just learn to do keyword matching, but will

truly learn context-based relation representation. With the various experiment

settings for robustness, we prove that compared with the original structure

of MTB, the two directions that we propose can improve the effectiveness

of relation extraction. We also explore more suitable dependency modules

under simple or complex dependency relationships of an entity pair, and also

prove that under more fine-grained directional relations, our model can still

effectively identify and outperform the original structure of MTB.

Keywords: Relation extraction, Biomedical relation extraction, Relation

classification, Deep learning, Unsupervised Learning, Self-supervised

Learning



doi:10.6342/NTU202002454

Table of Contents

口口口試試試委委委員員員會會會審審審定定定書書書 i

誌誌誌謝謝謝 ii

摘摘摘要要要 iii

Abstract iv

List of Figures viii

List of Tables x

Chapter 1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Literature Review 8
2.1 Pipelined Relation Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Joint learning Relation Extraction . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Relation Extraction with few labeled data . . . . . . . . . . . . . . . . . . . 16
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 3 Methodology 20
3.1 Problem Definition of Self-supervised Training . . . . . . . . . . . . . . . 20
3.2 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 BERT Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Dependency Path Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Merging Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Training Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Few-shot Relation Classification . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 4 Empirical Evaluations 33

vi



doi:10.6342/NTU202002454

TABLE OF CONTENTS vii

4.1 Experiment Setting for Self-supervised Learning . . . . . . . . . . . . . . 33
4.2 Compared Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Experiment setting for Few-shot Relation Classification . . . . . . . . . . 36
4.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Chapter 5 Conclusions 46
5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

References 48



doi:10.6342/NTU202002454

List of Figures

1.1 Through ”remains”, we know ENT1 is associated with ENT2 and they

have a relationship of ISA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Through ”treated with”, we know ENT1 is associated with ENT2 and they

have a relationship of ADMINISTERED TO. . . . . . . . . . . . . . . . . 6

2.1 An demonstration of process of a pipelined method, which starts from

recognizing two entities from a given text (NER), then classifying the

relation of this entity pair (RC) . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 An example of neural named entity recognition from (Lample et al., 2016) 10

2.3 An example of RNN relation classification model from (Zhang and Wang,

2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 An example of CNN relation classification model from (Zhang and Wang,

2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 An example of position embedding from (Zhang and Wang, 2015), that

the position of word ”son” is [3,−2] is the relative distance to the two

entities and will be further passed through the embedding layer. . . . . . . 13

viii



doi:10.6342/NTU202002454

LIST OF FIGURES ix

2.6 An example of joint neural relation extraction model from (Wei et al., 2019) 15

2.7 An example of training task of Word2vec (Mikolov et al., 2013) . . . . . . 18

2.8 An example of training task of BERT (Devlin et al., 2018) . . . . . . . . . 19

3.1 An illustration of our relation encoder model. . . . . . . . . . . . . . . . . 21

3.2 An illustration of the BERT encoder . . . . . . . . . . . . . . . . . . . . . . 22

3.3 An illustration of dependency parsed result of a sentence. . . . . . . . . . 23

3.4 An illustration of Pair base module . . . . . . . . . . . . . . . . . . . . . . 26

3.5 An illustration of Pair independent module . . . . . . . . . . . . . . . . . . 27

3.6 An illustration of Pair concatenated module . . . . . . . . . . . . . . . . . 28

3.7 An illustration of Path module . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.8 An illustration of Merging Layer . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 The result of increasing the shot number on different modules . . . . . . . 44



doi:10.6342/NTU202002454

List of Tables

4.1 Statistics of the self-supervised dataset . . . . . . . . . . . . . . . . . . . . 34

4.2 Hyper parameters for self-supervised learning . . . . . . . . . . . . . . . . 35

4.3 Statistics of relation classification . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Statistics of the general testing set . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Statistics of the directional testing set . . . . . . . . . . . . . . . . . . . . . 39

4.6 Main evaluation result of methods . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Experiment results of different setting of five-class classification for two

modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.8 Type-wised performance on which Pair(25)+inl outperforms most . . . . 41

4.9 Type-wised performance on which Path(25)+inl outperforms most . . . . 41

4.10 Entropy of each relation, where the green color relations represent the top

3 relations of Path module, and the red color relations represent the top 3

relations of Pair module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.11 Result of binary classification for directional relations . . . . . . . . . . . 45

4.12 Result of multiclass classification for the general and directional testing sets 45

x



doi:10.6342/NTU202002454

Chapter 1

Introduction

1.1 Background

There are more and more unstructured data like texts available online, and we can

learn the relations between entities by reading the context. However, reading and

arranging the relations between entities by human is expensive, because large amount

of corpus need to be processed, especially for some domains that require professional

experts to label. Relation extraction (RE) is the task to classify the relation between two

named entities (NE) from the text (Pawar et al., 2017), and a relation can be represented

as a triple (relation, head, tail). For example:

• IBM was founded by Harlow Bundy in Binghamton. → (FOUNDED BY, IBM,

Harlow Bundy)

• Only progestins have this effect on insulin receptors. → (INTERACTS WITH,

progestins, insulin receptors)

In most cases, the total number of relation types is usually pre-defined based

1
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on the task we work on. Relation extraction can support various interesting

applications, including detecting gene-disease relationships (Zheng et al., 2017) ,

detecting protein-protein interaction (Nadeau and Sekine, 2007) , building knowledge

bases (Subasic et al., 2019), supporting question answering (Srihari and Li, 1999) . For

example, in the biomedical domain, if we can extract the relation (Treat, Drug, Disease),

(Interact, Drug, Drug) from the biomedical literature, we can help researchers better

summarize the research results at a glance.

Relation extraction can be divided into two types: (1) pipelined method and (2) joint

learning method (Zheng et al., 2017) . Pipelined methods decompose relation extraction

into two subtasks: Named Entity Recognition (NER) and Relation Classification (RC).

NER is to recognize information units (e.g., names, numeric expressions) (Nadeau and

Sekine, 2007) , then RC further classifies the relation between the extracted entities

into a pre-defined relation type. In contrast, joint learning methods conduct NER and

RC together and these methods use an end-to-end model to detect entities and classify

relations.

For the biomedical domain, we can just consider the relation classification task

because entities recognition can be easily done by UMLS Metathesaurus mapping

(Bodenreider, 2004). For relation classification, many recent works use neural network

models with supervised training (Liu et al., 2013; Miwa and Bansal, 2016; Zhao et al.,

2019). However, neural supervised training is associated with a main drawback that data

labeling for entities and relations is expensive, especially in professional domains, and

neural network needs a huge amount of training data. So if we just get into a new field,
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few-shot learning based methods are required.

To address this drawback, the following approaches have been proposed in the

literature:

• Distant supervised labeling approach (Mintz et al., 2009; Yao et al., 2010)

• Semi-supervised learning approach (Agichtein and Gravano, 2000; Brin, 1999;

Ravichandran and Hovy, 2002)

• Self-supervised learning approach (Baldini Soares et al., 2019)

However, in the biomedical domain, there is not a well-established relation knowledge

base, so the distant supervised labeling approach cannot be applied effectively. For

semi-supervised learning, it often suffers from low precision and semantic drift (Mintz

et al., 2009). The self-supervised approach with few-shot learning setting is considered

most appropriate in this situation. Furthermore, this approach can facilitate another

applications, e.g., relation discovery, because this approach does not need to pre-define

relation types, it can easily generalize to different various relations with different

granularities. Besides, for few-shot learning, we can define the relation types of

interest, provide few labeled instances, and obtain few-shot classification results without

re-training the representation model. In addition, we can also cluster the entity-pair

embeddings and explore the clusters for new relations.

Matching The Blank (MTB) (Baldini Soares et al., 2019) is a self-supervised model,

learning distributional similarity for relation between two entities from a large unlabeled

corpus, and using this pre-trained model to conduct further classification tasks. The
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intuition behind MTB is that identical entity pairs in different texts (i.e., sentences) are

likely to have the same relation, and different entity pairs generally are associated with

different relations. For example:

• Bromocriptine suppressed prolactin to < 3 ng/ml. → INHIBITS

• Suppression of prolactin by bromocriptine prevented this effect. → INHIBITS

• Ovulation and pregnancy were induced with bromocriptine in all 17 patients. →

AUGMENTS

The training process of MTB is that, MTB uses BERT (Devlin et al., 2018), a

multi-layer neural network model, to encode a relation statement, which is a sentence with

a pair of entities, as a n-dimensional vector as the relation representation between the two

entities. Given a relation statement, another relation statement whose entity pairs are the

same as that of the given relation statement is called a positive sample. Accordingly, the

vectors of two relation statements belonging to a positive sample should be similar. That

is, the inner product of the vectors of the relation statements of a positive sample should be

large. On the other hand, for a negative sample (two relation statements with at least one

entity being different), the inner product of the corresponding relation statements should

be small. Accordingly, MTB uses the binary cross entropy as the loss function, where a

positive sample is labeled as 1, a negative sample is labeled as 0.
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1.2 Research Motivation

Based on the model structure of MTB, our first research motivation is to encode

additional information to improve the training effectiveness of MTB. MTB does not

utilize extra information, but just uses BERT to encode inherent relation between two

entities. However, many existing relation extraction methods also add dependency parsing

as a part of the model or features (Fundel et al., 2007; Ningthoujam et al., 2019; Song

et al., 2019), and human discriminate the relation between two entities not only by the

meaning of entities and context, but also by the dependency relation. We can think about

this process using our two examples shown in Figure 1.1 and Figure 1.2. So we would

like to explore different structures to encode and represent dependency information in the

model to help the training process of MTB.

Figure 1.1: Through ”remains”, we know ENT1 is associated with ENT2 and they have

a relationship of ISA.

Our second research motivation is to incorporate different type of negative samples

to improve training effectiveness. MTB trains with positive samples and two types of

negative samples, where the types of negative samples include (easy) negative examples

(entity pairs of two relation statements are totally different) and strong negative examples

(entity pairs of two relation statements are partially different). But there may still exist

another type of negative samples, which are stronger and thus can provide additional clues
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Figure 1.2: Through ”treated with”, we know ENT1 is associated with ENT2 and they

have a relationship of ADMINISTERED TO.

for MTB training.
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1.3 Research Objectives

On the basis of the aforementioned research motivation, our research objectives

include the following: First, we propose 4 network structures to encode dependency

parsing in conjunction with the BERT structure. Second, we propose inline-negative

samples for MTB training process as harder examples. Finally, we utilize Bio-BERT

(Lee et al., 2020) as the pre-trained language model for the biomedical domain.

For the training process, we train the model by the MTB process with MEDLINE

sentences, in which the entities in the sentences are labeled by SemMed (Kilicoglu

et al., 2012). For evaluation, we use MEDLINE sentences labeled by a medical doctor

as the testing instances of relation classification. Specifically, we extract the relation

embeddings of sentences, and then employ the kNN classification method for few-shot

learning for relation classification.
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Chapter 2

Literature Review

2.1 Pipelined Relation Extraction

The pipelined relation extraction approach decomposes the relation extraction task

into the named entity recognition (NER) subtask and the relation classification (RC)

subtask (as Figure 2.1 illustrates).

Figure 2.1: An demonstration of process of a pipelined method, which starts from

recognizing two entities from a given text (NER), then classifying the relation of this entity

pair (RC)

Named entity recognition (NER)

The objective of NER is to find the entities in a sentence. Early works employ

hand-crafted features, such as case, digit pattern, punctuation, character, morphology

8
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(prefix, suffix), part-of-speech, ngram pattern, local syntax (position in sentence), and

frequency and co-occurrences of words and phrases (Bick, 2004; Bikel et al., 1998;

Collins, 2002; Nadeau and Sekine, 2007). To train an NER model, the CRF method

(Bundschus et al., 2008; Sutton et al., 2007), SVM (Asahara and Matsumoto, 2003) and

decision tree (Sekine, 1998) are applied for entity classification. Recently, many works

consider NER as a sequence labeling problem and then use the neural network approach to

recognize named entities from a given collection of sentences (Chiu and Nichols, 2016;

Dernoncourt et al., 2017; Ju et al., 2018; Lample et al., 2016). Specifically, sequence

labeling is to predict the label of every word token in a given sentence in a unified

framework.

For example, Figure 2.2 uses a bi-LSTM with a CRF layer to predict whether each

word token is within an entity (e.g., the begin, end or middle token of an entity) using the

IOB format (inside, outside, beginning, etc.), and also predict the entity type of this token.

Relation Classification (RC)

The objective of relation classification is to classify the relation of the extracted

entity pair in a given sentence into a pre-defined set of relation types. Early studies use

hand-crafted features pertaining to the two extracted entities (Kambhatla, 2004; Pawar

et al., 2017; Zhou et al., 2005). For example, (Kambhatla, 2004) uses the following

features to construct a ruled-based model: word features (entities and words in between),

entity types and mention level (e.g., nominal or pronoun) of the entities, overlap (e.g.,

number of words in between, if two entities are in the same NP, VP), dependency structure

(e.g., POS of the word where the entity is dependent on, path between the two entities or
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Figure 2.2: An example of neural named entity recognition from (Lample et al., 2016)

the number of links of the focal path).

Recently, many works adopt the neural network approach, such as CNN (Lin et al.,

2016; Liu et al., 2013; Zeng et al., 2014, 2015) and RNN (Kavuluru et al., 2017; Miwa

and Bansal, 2016; Peng et al., 2018) to extract features and learn a relation classification

model.

SemRep (Rindflesch and Fiszman, 2003; Rindflesch et al., 2005) is a rule-based

NLP system, using lexical and ontological semantics from Unified Medical Language

System (UMLS) (Bodenreider, 2004; Lindberg et al., 1993), to extract semantic relations

from biomedical literature in PubMed (Kilicoglu et al., 2020). The process of SemRep
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(Kilicoglu et al., 2020) is as follows: The first phase is pre-linguistic analysis, in which

SemRep performs sentence splitting, tokenization, and acronym/abbreviation detection.

The second phase is lexical/syntactic analysis. Specifically, SemRep lookups from UMLS

SPECIALIST Lexicon (McCray et al., 1994) to know the POS tags of words. In the

third phase, SemRep conducts referential analysis by using MetaMap (Aronson and Lang,

2010) to detect and link the entities in a sentence to the ontology in database. MetaMap

is a program linking UMLS Metathesaurus from biomedical text. In the last phase,

SemRep conducts relational analysis; i.e., given two entities within a sentence, it predicts

predication (relation) of the sentence by lexical, syntactic and semantic features. For

example, one of the rules for the ISA relation is as follows: Two NPs separated by some

keywords (e.g., is, remain, such as), so for example: “ Non-steroidal anti-inflammatory

drugs such as indomethacin.” ill be identified as having an ISA relation between the two

highlighted entities in the sentence.

(Zhang and Wang, 2015) (see Figure 2.3) use e1, /e1, e2, /e2 as position indicators,

for example: <e1> people </e1> have been moving back into <e2> downtown </e2> . The

model inputs word embedding into a Bi-LSTM model, and takes the global max pooling

of the hidden states as the representation of the sentence.

PCNN (Zeng et al., 2015) (see Figure 2.4) takes a sequence of word embedding and

position embedding (see Figure 2.5) and segments the sentence into three parts by two

entities as input. Accordingly, PCNN performs the convolution of embedding and the

max-pooling on each part separately, and then, with a fully connected layer, generates the

relation representation vector of a relation statement.
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Figure 2.3: An example of RNN relation classification model from (Zhang and Wang,

2015)

Figure 2.4: An example of CNN relation classification model from (Zhang and Wang,

2015)
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Figure 2.5: An example of position embedding from (Zhang and Wang, 2015), that the

position of word ”son” is [3,−2] is the relative distance to the two entities and will be

further passed through the embedding layer.
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2.2 Joint learning Relation Extraction

Joint learning relation extraction conducts named entity recognition and relation

extraction subtasks jointly because the pipeline approach is prone to the propagation of

errors from the NER task to the RE task (Pawar et al., 2017).

Traditionally, integer linear programming (Roth and Yih, 2004) and graphical model

(Roth and Yih, 2002) are adopted to make a global decision. Recently, applying the deep

learning, many neural network based joint model also proposed (Fu et al., 2019; Giorgi

et al., 2019; Wei et al., 2019; Yu et al., 2019).

The study by (Wei et al., 2019) learns to predict (subject entity, relation, object entity)

triples directly with BERT (Devlin et al., 2018) as the base encoder, instead of predicting

entities and relations in a sentence separately, as Figure 2.6 illustrates. First, a layer of

NN is used to predict whether each token is the start or end of a subject entity with token

representations. Then, based on each detected subject entity, object tagger concatenates

targeted token representation and the averages of token representations within the subject

to predict the start or end position of the corresponding object entity.

(Yu et al., 2019) separate the task as entity pair extraction and relation type

classification. First, they use a shared parameters encoder to encode the token

representations. Then, they use a HE Extractor to distinguish head entities with max

pooled global contextual embedding and token hidden state at current step. Similarly,

a TER Extractor is adopted to predict tail entities and relations with global embedding,

current hidden state, head entity representation and head-tail relative distance position
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Figure 2.6: An example of joint neural relation extraction model from (Wei et al., 2019)

embedding. The structure of HE Extractor and TER Extractor is a Hierarchical Boundary

Tagger (HBT), which use Bi-LSTM to predict the start tags of entities and find the

corresponding end tags.

(Giorgi et al., 2019) use BERT to predict NER first. Their proposed method then feeds

the predicted result to build entity pair set, take the last word as head and tail entity, and

classifies the relation of the pairs (NEG for no relation or wrong pair). (Fu et al., 2019)

encode token representation with Bi-LSTM, and build the graph of tokens based on the

syntactic dependency relation between tokens with a dependency parser. After this, they

use Bi-GCN (Kipf and Welling, 2016) to further combine the neighbor tokens information

for each token. Then, based on the token representation, they use a fully connected layer

to predict the entity type and relation of the token as the 1st-phase prediction. Using
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the predicted relation as edges, they further build relational graphs for all relation type

separately, again using Bi-GCN and a fully connected layer to conduct the 2nd-phase

prediction, and consider the 1st and 2nd entity losses and relation loss for training.

2.3 Relation Extraction with few labeled data

For the biomedical domain, we can detect the entities easily by UMLS linking tools.

However, for the relation classification training data, there are many unlabeled sentences

from PubMed, but only very limited labeled sentences (each is with two entities and

a relation) to serve as the training data for relation classification (Bravo et al., 2015;

Krallinger et al., 2017; Van Mulligen et al., 2012). To deal with this problem, this

study focuses on relation classification with few labeled data but with ample unlabeled

data. To address relation extraction with few labeled data, prior studies have proposed

several different approaches that can be classified into three categories: distant supervised

labeling, semi-supervised learning and self-supervised learning.

Distant supervised labeling

Distant supervision (Mintz et al., 2009; Yao et al., 2010) based methods deal with

the problem of lack of labeled examples. Distant supervision method uses a knowledge

base to obtain relation tuples, assuming that when a sentence contains both entities in a

tuple, we assume that this sentence depicts the relation defined in the tuple. But in some

specific or fast-changing domains (e.g., biomedical domain), they are not associated with

a well-established knowledge base (e.g., WikiData).

Semi-supervised learning
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Semi-supervised learning methods use lots of unlabeled data with only few labeled

data for training with various assumptions to utilize these unlabeled data. An example of

such assumption is smoothness assumption: Two data may have the same label if they are

close in a high density region.

Some semi-supervised works for relation extraction using bootstrapping are adopted

(Agichtein and Gravano, 2000; Brin, 1999; Ravichandran and Hovy, 2002). In (Brin,

1999), they iteratively find patterns from a set of tuples (each contains an entity pair and

a relation) or find tuples from a set of patterns. Despite the fact that bootstrap only needs

a few seed samples, because this approach generates initial patterns from a very limited

labeled data, the initial patterns often suffer from low precision and semantic drift (Mintz

et al., 2009).

Self-supervised learning

Self-supervised learning (Baldini Soares et al., 2019; Devlin et al., 2018; Lan et al.,

2019; Mikolov et al., 2013; Pennington et al., 2014; Vaswani et al., 2017), sometimes

called unsupervised learning or pre-training, requires only unlabeled data in order to

formulate a pretext learning task (Kolesnikov et al., 2019), It uses the data itself

(withhold some of the data) to generate labels, and then trains a model in a supervised

manner to predict the label (withheld part). After the pre-training process, most

studies further fine-tune their models for the target task which is only few labeled data

available. Self-supervised learning tasks have been popular and have been used in many

state-of-the-art works from Word2Vec (Mikolov et al., 2013), Skip-Thought (Kiros et al.,

2015), GPT (Radford et al., 2018), Transformer (Vaswani et al., 2017), BERT (Devlin
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et al., 2018), to MTB (Baldini Soares et al., 2019).

Word2Vec (Mikolov et al., 2013) uses surrounding words to predict the central word

(CBOW) or uses a central word predict its surrounding words (Skip-gram), as Figure 2.7

illustrates.

Figure 2.7: An example of training task of Word2vec (Mikolov et al., 2013)

BERT (Devlin et al., 2018) trains a language model with Masked Language Model

(MLM) that predicts the masked token by its context and Next Sentence Prediction

(NSP) that predicts whether two sentences are consecutive sentences or not with a deep

self-attention model (please see Figure 2.8). BERT’s model is the encoder of Transformer

(Vaswani et al., 2017) , which is a multi-layer neural network model, using position

embedding and multi-head self-attention to replace RNN structure to build a deep model.

BERT’s model pre-trains on large scaled corpus, which makes it a powerful language

model.

MTB (Baldini Soares et al., 2019) trains a language model with the same entity pairs

in different sentences as positive samples and different entity pairs as negative samples.

If two entity pairs are identical, their vector representations should be similar, otherwise
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Figure 2.8: An example of training task of BERT (Devlin et al., 2018)

should be dissimilar. To train a model to learn the relation from context instead of entity

linking, MTB randomly masks some entities with a [BLANK] token.

2.4 Summary

Because the self-supervised learning approach has achieved the state-of-the-art

performance (Baldini Soares et al., 2019), and can deal with the challenge of the

availability of only few labeled data, we will focus on improving MTB, the self-supervised

relation representation model. We believe that there still exists some room for MTB model

to improve, which can be split by two folds:

• Encode additional information to improve training effectiveness: MTB model can

take into account dependency parsing information of the focal sentence when

learning relation representation.

• Incorporate different type of negative samples to improve training effectiveness:

We develop harder negative samples that help MTB train better.
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Methodology

3.1 Problem Definition of Self-supervised Training

Given a relation statement r = (seq,s1,s2) , seq = [t0,t1, ...,tn] is a sentence, formed by

a sequence of tokens (a token is part of a term), which is tokenized by BERT tokenizer.

s1 = [ent1 start,ent1 end] and s2 = [ent2 start,ent2 end] which mean the start and the

end positions of the first entity and those of the second entity, respectively. The entity in

the front is called the first entity (entity 1 or ent1), and the other is called the second entity

(entity 2 or ent2). For example:

amphotericin b remains the preferred drug.

→ seq = [CLS] am ##ph ##oter ##ici ##n b remains the preferred drug . [SEP] is the

token sequence after tokenizing process.

→ s1 = [2,6] , s2 = [10,10] are the span of the first entity and the second entity.

The task of self-supervised is to learn a model to encode a relation statement to a n

dimensional vector.

20
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3.2 Model Overview

As Figure 3.1 shows, our main model, relation encoder, consists of three components:

BERT encoder, dependency path encoder, and merging layer.

Figure 3.1: An illustration of our relation encoder model.

• BERT encoder

• Dependency path encoder

• Merging layer

For the BERT encoder, we follow the setting of MTB. For the dependency path

encoder, we propose four different modules to encode the dependency path between

two entities in a sentence. For the merging layer, we use a linear layer to merge two

representations generated by the two encoders and output the final relation representation.
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3.3 BERT Encoder

Following the best experimental result reported in (Baldini Soares et al., 2019), we

use ENTITY MARKERS – ENTITY START setting with BERT (see Figure 3.2) to

encode a relation statement as the base relation encoder

Figure 3.2: An illustration of the BERT encoder

ENTITY MARKERS setting add [E1], [/E1], [E2], [/E2] as the special tokens of

the start ([E1], [E2]) and end ([/E1], [/E2]) of an entity to encode the position spans of

the two entities. For example:

Amphotericin b remains the preferred drug. → [CLS] [E1] am ##ph ##oter ##ici ##n

b [/E1] remains the preferred [E2] drug [/E2] . [SEP]

The ENTITY START setting concatenates the hidden state (representation) vectors

of [E1] and [E2] , r = [he1∣he2]

The BERT model takes the whole sequence of tokens as input, conducts multi-layer
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embedding, self-attention and linear transformation to get the representation of every

token, and we can add a fully connected layer on this pretrained model and fine-tune

this layer for the target task.

3.4 Dependency Path Encoder

The dependency path between two entities is the path from entity 1 to the lowest

common ancestor of entity 1 and entity 2 and then to entity 2, for example:

• Four dogs were treated with cytotoxic drugs (Figure 3.3)

• Entity 1: dogs Entity 2: cytotoxic drugs

• Lowest common ancestor: treated

• Path: dogs ← treated → with → cytotoxic drugs

Figure 3.3: An illustration of dependency parsed result of a sentence.

We use SpaCy 1 dependency parser to parse our data. SpaCy is a fast and accurate

(Honnibal and Johnson, 2015; Neumann et al., 2019) industrial-strength natural language

processing package in Python.

1https://spacy.io/



doi:10.6342/NTU202002454

3.4. DEPENDENCY PATH ENCODER 24

Dependency path

A dependency path is formed by edges (where each edge denotes connection between

two terms as head and tail) in the path (e.g., “treated with” is one of the edges in the

example above), which includes:

• Relation type: The dependency labels defined by spaCy (e.g., nsubjpass, prep, pobj)

plus “END” label which means the tail term is the lowest common ancestor of the

two entities. In this study, we also add “LONG” label, meaning the path is longer

than the maximum path length allowed.

• POS type of tail: The part-of-speech labels of tail term defined by spaCy (e.g.,

NOUN, VERB, ADP), plus “ENT” label which means the tail term is one of the

two entities.

• Identifier of start entity: If the edge starts from entity 1 to the lowest common

ancestor, the Identifier should be 0. If the edge points to entity 2, Identifier should

be 1.

An example of dependency path is as follows (Four dogs were treated with

cytotoxic drugs):

• dogs ← treated (‘nsubjpass’, ‘ENT’, 0)

• treated ← X (‘END’, ‘VERB’, 0)

• cytotoxic drugs ← with (‘pobj’, ‘ENT’, 1)

• with ← treated (‘prep’, ‘ADP’, 1)
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• treated ← X (‘END’, ‘VERB’, 1)

The reason that we reverse the sub-path from the lowest common ancestor to entity

2 (in the above example, treated ← with ← cytotoxic drugs) is that, we think keeping

the same direction for both sub-paths from entity 1 and entity 2 to the lowest common

ancestor can simplify the encoding complexity that the model needs to learn and just

focuses on encoding only one structure. For discriminating the direction of an edge,

model still can utilize identifier of start entity to identify from the two directions.

For a dependency path longer than 14 edges, we replace the whole path by:

[(’LONG’,’ENT’,0), (’LONG’,’ENT’,1)] . We set the maximum dependency path length

as 14 because only 0.4% dependency paths of our testing data is longer than 14.

Dependency pair

Alternatively, to prevent encoding information that is too complicated, we also

develop a dependency pair encoder, which is just the starting edge of entity 1 and that

of entity 2. For example:

[(‘nsubjpass’, ‘ENT’, 0), (‘END’, ‘VERB’, 0), (‘pobj’, ‘ENT’, 1), (‘prep’, ‘ADP’, 1),

(‘END’, ‘VERB’, 1)]

→ (‘nsubjpass’, ‘pobj’)

Base module

To encode the information of dependency path, we propose four different modules to

map a path or a part of a path to vector representation. The first model is Base module.

It simply does nothing, i.e., does not encode dependency information (i.e., without using
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dependency information).

Pair base module

As Figure 3.4 illustrates, pair base module encodes the dependency pair for the two

entities using the same embedding space and add them together. Wpb ∈ RLr×dpb is the

embedding layer for both edges of the entity pair, Lr is the total number of relation types,

and dpb is the embedding dimension of the pair base encoder. edgeh,edget ∈ RLr is the

head edge and tail edge for the entity pair. hpb = edgehWpb+edgetWpb is the embedding

representation of the entity pair.

Figure 3.4: An illustration of Pair base module

Pair independent module

Pair independent module (see Figure 3.5) encodes dependency pair using different

embedding spaces and adds them together. Wpih,Wpit ∈ RLr×dpi is the embedding layer for

head edge and tail edge of the entity pair, respectively. dpi is the embedding dimension of

the pair independent encoder. hpi = edgehWpih+edgetWpit is the embedding representation
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of the entity pair.

Figure 3.5: An illustration of Pair independent module

Pair concatenated module

Pair concatenated module encode (as Figure 3.6 shows) encodes the dependency pair

using different embedding space and concatenates them together. Wpch ∈ RLr×dpch,Wpct ∈

RLr×dpct is the embedding layer for head edge and tail edge of the entity pair, and dpch,dpct

is the embedding dimension of head and tail edge of the pair concatenated encoder. hpi =

edgehWpch⊕edgetWpct is the embedding representation of the entity pair.

Path module

Path module (see Figure 3.7) encodes the dependency path using LSTM. Wrel ∈

RLr×drel ,Wpos ∈ RLr×dpos ,Wid f ∈ R2×did f , where Lp is the total number of POS tagging

types, and drel,dpos,did f is the embedding dimensions for relation type, POS tagging and

identifier of start entity of an edge in entity path, and dlstm is the hidden state dimension of
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Figure 3.6: An illustration of Pair concatenated module

LSTM module. hpath =LST M(rWrel⊕ pWpos⊕ iWid f ) is the representation of dependency

path, where r, p, i is relation type, POS tagging, and identifier of an edge. We then input

the edges to the LSTM model and take the hidden state of last token as the representation.

Figure 3.7: An illustration of Path module
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3.5 Merging Layer

The Merging Layer is shown in Figure 3.8. WbertFC ∈ R(dbert∗2)×dbert , where WbertFC is

the fully connected layer for MTB output. dbert is the hidden dimension of BERT model

output. The reason that dbert is multiplied by 2 is because ENTITY START structure

concatenates the start of two entities ([E1] and [E2]) as the relation representation. rel =

hd p⊕(hbertWbertFC) , where hd p,hbert are hidden state (embedding) of the dependency

path encoder and the output of BERT, and rel is the representation of the whole relation

statement.

Figure 3.8: An illustration of Merging Layer
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3.6 Training Process

An example for self-supervised learning is comprised of two relation statements,

which can be simplified as two entity pairs, r1 = (e11,e12),r2 = (e21,e22), and there

are three types of examples proposed by MTB on the basis of the two pairs:

• Positive example: e11 = e21 and e12 = e22

• (Easy) Negative example: e11 != e21 and e12 != e22

• Hard negative example: (e11 = e21 and e12 != e22) or (e11 != e21 and e12 = e22)

We propose a new type of negative examples called inline negative example, and the

definition is as follows:

• Inline negative example: (e11 = e21 and e12 != e22) or (e11 != e21 and e12 = e22)

and r1, r2 are in the same sentence

The intuition behind inline negative examples is that, for the relation statements in the

same sentence, the model cannot just discriminate whether two statements are the same

relation solely based on matching keywords. In this case, the model also needs to know

the dependency relation among the entities and keywords, so inline negative examples

serve as harder examples.

For a step during the training process, we randomly choose an entity pair and form a

positive group and a negative group for the focal entity pair:

• Positive group: includes relation statements whose entity pairs are the same as the

focal entity pair



doi:10.6342/NTU202002454

3.6. TRAINING PROCESS 31

• Negative group: includes relation statements whose entity pairs are different from

the focal entity pair

For a batch in one step, we generate b examples, b = bp + bn + bhn + bin , where

bp,bn,bhn,bin are the batch size of positive, negative, hard negative and inline negative

examples. For a positive example, we randomly draw two statements from the positive

group and label it as 1. For a negative, hard negative or inline negative example, we

randomly draw a statement from the positive group and a statement from the negative

group and label it as 0

The loss function of self-supervised learning is the binary cross entropy loss, which is

calculated as follows:

L = −
n
∑
i=1

yi log f (xi)+(1−yi)log(1− f (xi)) (3.1)

xi is an example, yi is the label of this example, and n is the batch size. f (x) =

1
1+e(−RE(r1)⋅RE(r2))

, which RE is the relation encoder model, and x = (r1,r2) is relation

statements pair of an example. With this binary cross entropy loss, the model learns to

map the representations of statements with the same entity pair to similar locations in the

space and map the representations of statements with different entity pairs to different

places.
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3.7 Few-shot Relation Classification

The task of few-shot relation classification is that with only few labeled data (for

example, from 1 to 100) for each pre-defined relation type, we try to determine the label

of each testing instance. This task is useful and practical because when getting into a new

domain, we do not have so many labeled data or it costs too much time or money to label.

So, if the few-shot task can be learned well, it can help us explore a novel domain quickly.

The input and the output of few-shot relation classification is as follows:

• Input: Relation types (e.g., LOCATION OF, ADMINISTERED TO, ISA), shot

number of labeled training data (relation statements and relation labels), labeled

testing data

• Output: Predicted labels for the testing data, accuracy score of predicted results on

the testing data

Following MTB and FewRel (Han et al., 2018), we adopt kNN as the classification

method. Specifically, the learning and prediction process is that, we first use the relation

encoder to get the vector representation of training and testing instances. Subsequently,

we feed the few-shot training data to kNN and use the cosine similarity function as the

metric. The testing instance will be classified to the majority class of the k instances in the

training set that are closest to the target testing instance. Finally, we evaluate all instances

in the testing data and calculate the accuracy score.
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Empirical Evaluations

4.1 Experiment Setting for Self-supervised Learning

For data collection, we download 93,825,701 relation statements from SemMed

(Kilicoglu et al., 2012). We randomly sub-sample the whole dataset with 1% probability

for each sample, and get 726,685 statements from the data as the training dataset.

For named entity recognition for inline negative examples, we extract 3,048,683

distinct entities as the entity set from all statements and build an entity recognition system

(i.e., if a term in a sentence is exactly matched an entity in the set, we label the term as

the matched entity) to generate inline negative examples. For entities in the entity set,

we lowercase them, replace consecutive blanks with only one blank, and remove entities

whose POS-tags are not ’PROPN’ or ’NOUN’ by spaCy.

Then, we preprocess the dataset. First, we remove those relation statements if one of

their two entities labeled by SemMed is not in the sentence. We also remove the relation

statements if the total count of their entity pairs are less than 5 in our dataset, because

there are not enough sentences containing this entity pair so that the positive examples for

33
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this entity pair will be not enough. Then, we tokenize sentences by BERT tokenizer and

remove those relation statements if the length of the tokenized sentences is longer than

60 (constrained by the limited memory of our GPU). Table 4.1 shows the statistics of our

final dataset for self-supervised learning.

Table 4.1: Statistics of the self-supervised dataset

Number of relation statements 535,339

Distinct group of entity pairs 390,757

Average token length of relation statements 39.66

Average dependency path length of entity pairs 5.70

The values for the hyperparameters for self-supervised learning in our work are given

in Table 4.2. We first freeze the BioBERT pretrained BERT layers untrainable, which is

the BERT encoder in our relation encoder, and we only train the dependency path encoder

and merging layer. After 10 steps, we unfreeze the pretrained BERT layers and make all

the layers in the model trainable. We also apply decaying layer-wised learning rates; that

is, for a layer in BERT, it will get a learning rate which is 0.95 multiplied by the learning

rate of its upper layer. The batch sizes of each type of examples are as follows:

• b = 32, bp = 16, bn = 8, bhn = 6, bin = 2 (6.25% inline negative examples).

• b = 32, bp = 16, bn = 8, bhn = 4, bin = 4 (12.5% inline negative examples)
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Table 4.2: Hyper parameters for self-supervised learning

BERT module BioBERT-Base

Batch size 32

Max sequence length 60

Learning rate 0.00005 with Adam

Epoch 1

Layer-wised learning rate decay 0.95

Warm up steps for linear learning rate scheduler 50

Unfreeze steps 10

Random seed 1126

4.2 Compared Methods

In this study, we conduct experiments on 12 different methods for comparing the effect

of different dependency encoding modules, different number of hidden dimensions and

different ratios of inline negative examples. The methods compared in this research is as

follows:

• Base: Base module with dbertFC = 525, which is the baseline method

• Base+inl: Base module with dbertFC = 525, replacing 6.25% hard negative examples

with inline negative examples in a batch

• Pair(25): Pair base module with dbertFC = 500 and dpb = 25

• Pair(25)+inl: Pair base module with dbertFC = 500 and dpb = 25, 6.25% inline

negative examples

• Pair(25)+inl2: Pair base module with dbertFC = 500 and dpb = 25, 12.5% inline

negative examples
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• Pair(50)+inl: Pair base module with dbertFC = 500 and dpb = 50, 6.25% inline

negative examples

• Pair-Ind(25)+inl: Pair independent module with dbertFC = 500 and dpi = 25, 6.25%

inline negative examples

• Pair(13+12)+inl: Pair concatenated module with dbertFC = 500 and dpch = 13 and

dpct = 12, 6.25% inline negative examples

• Path(25): Path module with dbertFC = 500 and drel = 10 and dpos = 10 and did f = 5

and dlstm = 25

• Path(25)+inl: Path module with dbertFC = 500 and drel = 10 and dpos = 10 and did f

= 5 and dlstm = 25, 6.25% inline negative examples

• Path(25)+inl2: Path module with dbertFC = 500 and drel = 10 and dpos = 10 and did f

= 5 and dlstm = 25, 12.5% inline negative examples

• Path(50)+inl: Path module with dbertFC = 500 and drel = 20 and dpos = 20 and did f

= 10 and dlstm = 50, 6.25% inline negative examples

4.3 Experiment setting for Few-shot Relation

Classification

For our data collection, we invited a medical doctor to help us label the data

from SemMed, and we obtain 15,641 statements with 37 relation type labels. We

follow the same pre-processing steps as those for the self-supervised learning dataset.
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After pre-processing, we obtain a dataset for relation classification, whose statistics are

summarized in Table 4.3.

Table 4.3: Statistics of relation classification

Number of relation statements 10,710

Average token length of relation statements 41.97

Average dependency path length of entity pairs 5.89

For different research purposes, we further process our original dataset and build 2

subsets. The first one is general testing set, where we choose the top 15 relation types out

of 37 relation types to build our testing dataset, and there are a total of 10,298 relation

statements remained. The other dataset is directional testing set, where the object and

subject relation of (entity 1, entity2) and (entity 2, entity 1) was labeled as different

relations. We build this dataset because our domain expert has identified the object and

subject of each entity pair, so more fine-grained directional relations between the two

entities of some relations can be studied.

For directional relations, an entity being a subject or an object matters and has

different meaning in this relation. We modify the labels of examples of these

relation types. That is, if object entity is in front of subject entity, we replace the

label with the original label plus ’ r’, which means a reverse relation (e.g., ISA →

ISA r). The directional relations include: ’LOCATION OF’, ’ADMINISTERED TO’,

’ISA’, ’PART OF’, ’INHIBITS’, ’AFFECTS’, ’PROCESS OF’, ’STIMULATES’,

’DISRUPTS’, ’AUGMENTS’, ’PRODUCES’.

For non-directional relations, the order of subject and object does not matter.
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They include ‘INTERACTS WITH’, ‘COMPARED WITH’, ‘COEXISTS WITH’,

‘NEG INTERACTS WITH’

Two examples for directional relation and non-directional relation is as follows:

• amphotericin b was more efficacious than fluconazole → HIGHER THAN

• only progestins have this effect on insulin receptors → INTERACTS WITH

The statistics of the general testing set is shown in Table 4.4, and the statistics of the

directional testing set is listed in Table 4.5.

Table 4.4: Statistics of the general testing set

Relation type # Relation type # Relation type #

LOCATION OF 2194 INHIBITS 571 STIMULATES 284

ADMINISTERED TO 1606 AFFECTS 457 DISRUPTS 212

ISA 1576 PROCESS OF 428 AUGMENTS 152

PART OF 1084 COMPARED WITH 336 NEG INTERACTS WITH 124

INTERACTS WITH 861 COEXISTS WITH 295 PRODUCES 118

For each experiment, we will average 60 different results to obtain a more robust

result. We choose kNN seeds from 30 to 49 and average 20 experiment results as the

score, and we average 1, 3, 5 neighbors of kNN experiment results as the score. And for

the similarity metric, we choose the cosine similarity.
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Table 4.5: Statistics of the directional testing set

Relation type # # r Relation type # # r Relation type # # r

LOCATION

OF
568 1626 INHIBITS 419 152 STIMULATES 191 93

ADMINIS

TERED TO
826 780 AFFECTS 386 71 DISRUPTS 162 50

ISA 671 905
PROCESS

OF
333 95 AUGMENTS 110 42

PART OF 343 741
COMPARED

WITH
336 —

NEG INTER

ACTS WITH
124 —

INTERACTS

WITH
861 —

COEXISTS

WITH
295 — PRODUCES 70 48

4.4 Experiment Results

First, we evaluate the overall performance of each model, using accuracy (%) as the

evaluation metric, and then, we compare models in different relation types [5, 10, 15]

classification task, for which we choose top 5, top 10, top 15 most common relations from

the general testing set. We further compare models in different shot number (number of

training examples, in the range of [5, 10, 25, 50, 100]) for more robust comparisons. The

main evaluation result of our proposed methods are shown in Table 4.6.

In our main result, Pair(25)+inl module and Path(25)+inl module perform best among

all the models. Comparing with the baseline model (Base module), these two models have

an average of 1.62% of performance improvement. However, Pair-Ind(25)+inl only has

0.74% improvement and Pair(13+12)+inl models does not have any improvement, so we

will skip these two models and dig deeper into Pair(25)+inl and Path(25)+inl models.

First, we would like to investigate why Pair(25)+inl performs better on 5 relation
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Table 4.6: Main evaluation result of methods

# relType 5 10 15

# shot 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 diff

Base 45.01 53.55 63.27 70.08 75.16 34.24 41.40 50.10 56.64 62.72 30.23 36.54 44.55 51.01 57.62 0.00

Base+inl 43.78 52.16 62.91 69.63 75.51 33.55 40.07 49.72 56.52 62.54 29.46 35.13 43.78 50.40 56.95 -0.67

Pair(25) 45.50 53.93 64.30 70.81 75.96 35.36 42.46 51.94 58.12 63.61 31.08 37.40 46.08 52.20 58.39 1.00

Pair(25)+inl 46.54 55.26 65.88 72.05 77.38 35.82 42.49 51.70 58.24 64.44 31.64 37.38 45.98 52.40 59.26 1.62
Pair(25)+inl2 44.01 52.34 62.64 69.60 75.63 34.31 40.61 50.05 57.12 63.30 30.26 35.67 44.13 50.86 57.48 -0.27

Pair(50)+inl 44.04 51.58 61.38 67.81 73.61 33.80 39.61 48.52 54.93 61.16 29.67 34.91 43.05 49.35 56.15 -1.50

Pair-Ind(25)+inl 45.13 54.21 64.57 71.09 76.34 35.27 41.90 51.08 57.58 63.22 30.89 36.77 45.48 51.82 57.83 0.74

Pair(13+12)+inl 43.40 50.74 62.04 68.56 73.99 33.15 39.51 48.90 55.36 61.16 29.11 34.79 43.73 50.20 56.51 -1.40

Path(25) 46.34 54.45 64.92 71.65 76.35 34.61 41.56 51.07 57.83 63.71 30.88 37.05 45.87 52.54 58.78 1.03

Path(25)+inl 45.30 55.25 64.84 71.46 77.04 35.63 43.32 52.22 58.56 64.52 31.35 38.16 46.44 52.86 59.48 1.62
Path(25)+inl2 43.45 51.65 61.87 69.36 75.24 33.72 40.48 49.95 56.77 63.07 29.52 35.44 44.40 51.01 57.71 -0.57

Path(50)+inl 45.90 54.10 64.88 71.30 76.38 35.02 42.06 51.34 57.63 63.19 31.00 37.21 45.66 51.88 58.13 0.90

types and Path(25)+inl performs better on 10 and 15 relation types. We want to know

if the performance changes because Pair(25)+inl works better for few relation types (5

types) or there exist some relation types in our target 10 or 15 relation types that is hard

for Pair(25)+inl to discriminate. So we control the total number of relation types for

classification to 5 classes, and conduct experiments on 1∼5, 6∼10, 11∼15, 16∼20, 21∼25

most common relation type sets from the whole testing dataset. After the experiments,

the result is displayed in Table 4.7. We find that for each model, there exists different sets

of relations that each model can perform better on. For Pair(25)+inl, it performs better on

1∼5, 6∼10 and 16∼20 sets, and for Path(25)+inl, it performs better on 11∼15 and 21∼25

sets.

Then, we want to know that on which relation types Pair(25)+inl can outperform

Path(25)+inl most and on which relation types Path(25)+inl outperforms Pair(25)+inl



doi:10.6342/NTU202002454

4.4. EXPERIMENT RESULTS 41

Table 4.7: Experiment results of different setting of five-class classification for two

modules

# relType 1∼5 6∼10 11∼15 16∼20 21∼25

# shot 5 10 5 10 5 10 5 10 5 10 diff

Pair(25)+inl 46.54 55.26 51.81 56.89 31.03 33.74 45.88 54.26 55.24 60.00 0.00

Path(25)+inl 45.30 55.25 51.80 56.51 32.77 35.29 43.92 52.02 55.36 63.55 0.11

most, so we evaluate class-wised performance of each relation type with f1 score, and

we sort the difference of the performance between two models (how much one model

performs better than the other model). As Table 4.8 and Table 4.9 illustrate, the top 3

relations that Pair(25)+inl outperforms most are INTERACTS WITH, PROCESS OF and

AFFECTS relations, and those that Pair(25)+inl outperforms most are ISA, AUGMENTS

and INHIBITS relations.

Table 4.8: Type-wised performance on which Pair(25)+inl outperforms most

module Pair(25)+inl Path(25)+inl Pair - Path

INTERACTS WITH 32.10 29.42 2.68

PROCESS OF 62.85 60.23 2.62

AFFECTS 28.13 25.70 2.43

Table 4.9: Type-wised performance on which Path(25)+inl outperforms most

module Pair(25)+inl Path(25)+inl Pair - Path

ISA 79.50 82.31 -2.81

AUGMENTS 10.71 13.29 -2.57

INHIBITS 33.44 35.95 -2.50

Then, we want to know the reason why there exists type-wised difference among

relations. We assume that because the Path module uses more dependency information

comparing with the Pair module, so it has an advantage on relations that are more
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complicated linguistically or on relations having a more diverse dependency relationship

between two entities. For simpler relations, the Pair module has an advantage because

it can avoid overfitting from encoding too much useless information. So we calculate

the entropy of a relation, which is the entropy between two entities of all the relation

statements belong to this relation. For example, assume there are 3 examples in a relation

type: (‘nsubjpass’, ‘pobj’), (‘nsubjpass’, ‘END’), (‘pobj’, ‘prep’). The probability

distribution of entities is: nsubjpass=2/6, pobj=2/6, END=1/6, prep=1/6. Accordingly,

the entropy of this relation is 1.918. We calculate the entropy for each relation, and sort

the relations by their entropy in the descending order. As Table 4.10 illustrates, we put the

top 3 relations that Pair(25)+inl outperforms most with red color and the top 3 relations

that Path(25)+inl outperforms most with green color. After observing the table, we find

that Pair(25)+inl outperforms most on the relation types with lower entropy, which means

simpler relations, and Pair(25)+inl outperforms most on the relation types with higher

entropy, which means more complicated relations. This match with our assumption that

because Path module encodes more detailed information of dependency, so it has an

advantage on more complicated relation statements, and Path module encodes simplified

information that just enough for simpler relation statements, so it has an advantage on

simpler relation statements.

We further examine the effect of inline negative examples. From Table 4.6,

we compare Base, Pair(25) and Path(25) modules with Base+inl, Pair(25)+inl and

Path(25)+inl modules. We find that Base+inl module has a 0.67% worse than Base

module, but Pair(25) and Path(25) modules have 0.62% and 0.59% improvement
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Table 4.10: Entropy of each relation, where the green color relations represent the top 3

relations of Path module, and the red color relations represent the top 3 relations of Pair

module.

relation entropy relation entropy

INHIBITS 2.947 NEG INTERACTS WITH 2.506

PRODUCES 2.934 CAUSES 2.505

ISA 2.875 INTERACTS WITH 2.452
DISRUPTS 2.857 COMPARED WITH 2.451

STIMULATES 2.725 COEXISTS WITH 2.442

AUGMENTS 2.699 ASSOCIATED WITH 2.435

NEG INHIBITS 2.685 ADMINISTERED TO 2.415

NEG STIMULATES 2.579 AFFECTS 2.398
NEG AFFECTS 2.527 LOCATION OF 2.382

NEG ADMINISTERED TO 2.524 PROCESS OF 2.364

respectively. So in general speaking, inline negative examples make a slight improvement

on the accuracy of few-shot relation classification.

Then, we further investigate the effect of the number of inline negative examples.

We adjust the number of inline negative examples from 2 to 4 (6.25% to 12.5%) in

a batch and compare Pair(25)+inl and Path(25)+inl modules with Pair(25)+inl2 and

Path(25)+inl2 modules. We find that Pair(25)+inl2 has a 1.9% worse than Pair(25)+inl

and Path(25)+inl2 has a 2.19% worse than Path(25)+inl. Thus, increasing the number of

inline negative examples does not lead to better performance, only few replacement from

hard negative examples to inline negative examples is enough for the training.

We also examine the effect of the number of embedding dimensions of Pair and Path

that perform best in the previous experiment. We compare Pair(25)+inl and Path(25)+inl

modules with Pair(50)+inl and Path(50)+inl modules. We find that Pair(50)+inl has a
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3.13% worse than Pair(25)+inl and Path(50)+inl has a 0.72% worse than Path(25)+inl.

Accordingly, we can conclude that increasing the number of dimensions from 25 to 50

does not have a positive effect on both models.

We further study the trend of increasing the number of shots (number of training data

of few-shot classification) for Base, Pair and Path modules over different numbers of

relation types. We show the experimental results in Figure 4.1. We find that for every

module and every number of relation types, increasing the number of shots will first lead

to a huge increase in accuracy, while the increase will gradually become flattening, so a

small amount of labeled examples is enough for a comparable performance.

Figure 4.1: The result of increasing the shot number on different modules

We further investigate the fine-grained directional relations in the directional testing

set. We want to know whether our models can discriminate directional relation types.

We first conduct a binary classification for the top 3 most common directional relations.

For example, for the ISA relation, we perform a binary classification on ISA and ISA r.

We show the experimental results in Table 4.11, and find that Base module alone can

achieve a high accuracy over 90% with 100 shots, and Path module can further improve

the accuracy by more 1.52% on average. This result suggests that our modules have the
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ability to handle fine-grained directional relation types.

Table 4.11: Result of binary classification for directional relations

rel ADMINISTERED TO ISA LOCATION OF

# shot 5 10 25 50 100 5 10 25 50 100 5 10 25 50 100 diff

Base 92.02 95.01 96.67 98.14 98.92 67.89 78.45 88.18 91.80 93.30 86.78 90.32 93.77 95.82 97.38 0.00

Pair(25)+inl 95.24 96.82 97.44 98.20 99.03 71.56 79.74 86.11 89.13 91.71 87.02 90.73 94.86 96.91 98.40 0.56

Path(25)+inl 96.16 97.24 97.54 97.97 98.72 73.81 82.04 90.47 92.61 93.97 86.19 90.89 94.92 96.73 98.01 1.52

Then we want to know if we conduct an experiment on the complete directional testing

set, whether the performance will change as compared to that of the general testing set

(without the directions). For example, for the original 5 relations classification task, we

split the directional relations (e.g., ISA and ISA r) and reframe the task to 9 relations

classification task (because among the top 5 relations, only INTERACTS WITH is the

non-directional relation and it should not be split), and compare the performance between

5 and 9 relations classification. Table 4.12 shows the experimental results.

Table 4.12: Result of multiclass classification for the general and directional testing sets

# relType 5→9 10→17 15→26

# shot 5 10 25 5 10 25 5 10 25 diff

Base 45.00 53.55 63.27 34.24 41.40 50.10 30.24 36.54 44.55 0.00

Pair(25)+inl 46.54 55.26 65.88 35.82 42.49 51.70 31.64 37.38 45.98 1.62

Path(25)+inl 45.30 55.25 64.84 35.63 43.32 52.22 31.35 38.16 46.44 1.62

Base r 47.07 55.79 65.55 36.39 43.52 51.63 32.23 38.60 46.31 1.63

Pair(25)+inl r 49.63 58.08 67.41 38.40 45.57 54.07 34.08 40.12 48.50 3.79

Path(25)+inl r 49.50 57.84 67.39 39.21 46.33 54.24 35.09 41.02 48.78 4.08
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Chapter 5

Conclusions

5.1 Contributions

Based on MTB, we develop four modules to encode dependency structure and

propose inline negative examples as harder examples to improve self-supervised learning.

We conduct a range of experiments to ensure the evaluation results are robust. Our

Pair(25)+inl and Path(25)+inl modules outperform the original MTB model. We

investigate the difference between Pair and Path modules and find Pair module fits

better on simple dependency structure while Path module performs better on complicated

structure. We find that our model has ability to learn fine-grained directional relations.

When considering relation directions, Path module gets a substantial improvement over

4% in accuracy, and Base module and Pair module also have an improvement.

5.2 Future Works

In this study, we only use a subset (about 1%) of SemMed dataset because the

limitation of training resource. Using more training data on self-supervised pre-training

46
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task may further improve the classification performance. In the setting of MTB, we do

not need to define the relation types beforehand, so more fined-grained relations can be

detected by clustering the relation representation vectors. Future research can apply our

proposed models for discovering new relation types. In this study, we do not fine-tune

our model on all labeled data and compare with the state-of-the-art relation classification

models that are trained only on labeled data. Future study can take our proposed models

as the relation statement representation model and develop a more effective relation

classification technique that learns a classification model from labeled data.
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