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Abstract

A sequential phenotyping strategy is proposed to detect a set of superior genotypes
efficiently from a candidate population. In this study, we assume that all of the
individuals in the candidate population have been already genotyped. The iterative
searching process is composed of the following steps. Step 0: a starting training set is
determined from the candidate population according to the r-score algorithm. Step 1: a
multiple-trait GBLUP model is trained using the phenotype and genotype data of the
current training set. Step 2: a composite selection index (CSI) is constructed and
estimated for each individual in the candidate population with genotypes based on the
resulting multiple-trait GBLUP model. Step 3: two assessment indices, correctly
identified proportion (CIP) and normalized discounted cumulative gain (NDCGQG) are
calculated based on the estimates of CSI for a set of candidate individuals, and are used
to evaluate the accuracy for the detection of the superior individuals. Step 4: four
acquisition functions, r-score, M-PGV, EI-PGV and EI-PGV-fwd, are used to select
additional training set added with the current training set. We further provide a stopping
rule for the sequential strategy for practical applications. Three genome datasets are

analyzed to illustrate our proposed sequential phenotyping strategy.

Keywords: Sequential phenotyping strategy, Multiple traits, Composite Selection index,

r-score, GBLUP
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Introduction

Food security issues have become very important since the rapid growth of the global
population in the last few decades. Many innovative biotechnologies and breeding
strategies have been applied to plant breeding for improving the yield and quality of
crops (Tester and Langride, 2010; Khoury et al., 2014). Although it has indeed achieved
a remarkable improvement in the breeding selection process, the genetic diversity of
crops has been gradually decreasing (Reif et al., 2005; Hyten et al., 2006). Genetic
diversity is related to the potential of genetic improvement, further influencing the
efficiency of breeding. Therefore, introgression of rich variation from wild, exotic, or
indigenous germplasms becomes essential to promote the use of genetic diversity, and
to enhance the efficiency of plant breeding programs (Tanksley and McCouch, 1997;
McCouch et al., 2013). To tackle this problem, plant breeders first need to identify
superior accessions from the germplasm collections. In this thesis, we focus on the
identification of superior genotypes from a candidate population through a sequential
phenotyping strategy. The proposed strategy is developed based on genomic prediction
(GP), which can potentially accelerate the rate of genetic gain in crops.

The GP takes advantage of high-density DNA markers over a whole genome to
predict the genotypic values, and then applies the estimated genotypic values to

genomic selection in plant breeding (Meuwissen et al. 2001). The most common DNA
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markers used in GP are single nucleotide polymorphisms (SNPs). Typically, a training

population with known genotype and phenotype data is used to train a GP model. The

resulting GP model is then employed to predict genomic estimated breeding values

(GEBVs) for the individuals of a breeding population with known genotype data. The

GP allows us to use limited phenotypic data to evaluate a large number of individuals

with genotypes in the breeding population. The GP has been implemented for the two

common objectives: (i) identify inbred lines either for hybrid parent development or

cultivar release; (ii) increase the frequency of favorable alleles through rapid recurrent

genomic selection (Gaynor et al. 2017).

Mixed effects model methods have been widely used to GP such as ridge

regression best linear unbiased predictor (rr-BLUP) model (Meuwissen et al. 2001),

and genomic BLUP (GBLUP) model (VanRaden 2008). Specifically, GBLUP model

can be extended to predict GEBVs for multiple traits simultaneously (Covarrubias-

Pazaran, 2016). Moreover, Jia and Jannink (2012), Hayashi and Iwata (2013) and Guo

et al. (2014) highlighted that multiple-trait GP models can provide better prediction

accuracy than single-trait GP models for those traits with low heritabilities but highly

correlated to the traits with high heritabilities. However, to evaluate the comprehensive

performance of an individual under multiple traits, a suitable selection index is required

to identify superior ones from a candidate population (Schulthess et al. 2016).
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In the genomic era, genotyping costs have dramatically dropped while the

phenotyping costs stay relatively constant. In this sense, it would be advantageous to

sample individuals for selective phenotyping in more than one stages, because a multi-

stage sampling scheme can reduce the size of the training population set in GP, hence

the cost of phenotyping. Recently, Tanaka and Iwata (2018) proposed a multi-stage

strategy using GP in pre-breeding to discover the best genotype from a candidate

population. They implemented the concept of Bayesian optimization in the GP. The

main idea of Bayesian optimization is to treat the desired objective function as a random

variable, which is usually assumed to be a Gaussian process. Then an acquisition

function, such as expected improvement (EI) or upper confidence bound, is constructed

based on the posterior estimation for determining new query points to evaluate the

objective function. The choice of the new query points should balance the trade-off

between exploration and exploitation so that one can optimize the objective function

using as few query points as possible (Shahriari et al. 2016; Gong et al. 2019).

In this thesis, we modify the strategy proposed by Tanaka and Iwata (2018) to

identify superior individuals for multiple traits. We propose a new standardized

multiple-trait GBLUP model to predict a composite selection index of multiple traits.

Then, we implement the EI criterion to sample potential candidate individuals. Two

indices of correctly identified proportion (CIP) and normalized discounted cumulative
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gain (NDCG) are used to evaluate the proposed strategy. In addition, three real datasets

of 44k rice (Zhao et al. 2011), tropical rice (Spindle et al. 2015) and wheat (Crossa et

al. 2010) are analyzed to illustrate the sequential phenotyping strategy.
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Materials and Methods

44K rice dataset

There are 413 rice accessions in the dataset, presented in Zhao et al. (2011), which
has 36 traits in the phenotype data and 44100 SNP markers in the genotype data. Quality
control has been already performed and 36901 SNP markers were retained with call
rate > 70% and minor allele frequency > 0.01, then impute the major allele to all missing
position in genotype data. Here, we select two traits, flowering time at Arkansas (FTAA)
and plant height (PLHE) for analyzing in this study. Since it should not have any
missing data in phenotype data when performing the sequential strategy, we remove the
accession which phenotype data are missing either in FTAA or PLHE. Finally, we have
36901 SNP markers, two traits without any missing and 373 accessions consists of 12
aromatic, 55 aus, 72 indica, 86 temperate japonica, 90 tropical japonica, and 58

admixed.

Tropical rice breeding lines dataset

We use a tropical rice breeding lines dataset which was presented in Spindel et al.
(2015). It contains 363 lines and 73147 SNP markers for its genotype data. There are
three traits in the dataset: yield (YLD), plant height (PH) and flowering time (FT). Since

these data were collected from different years and seasons, these data have been already
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adjusted by fitting a linear model. Integrating and averaging all phenotypic data, then

merge the genotypic and phenotypic data, and finally 328 out of 363 lines were obtained.

Wheat dataset
The dataset was used in Crossa et al. (2010), which contains 599 accessions with
grain yield data derived from four different environmental conditions in the phenotype

data, and there are 1279 DArT markers in the genotype data.

Standardized Multiple-trait GBLUP Model
Let w; = (y; —¥;1,)/s;, where y; and s; are the sample mean and the sample
standard deviation of phenotypic values for trait i, i.e. y; = [Vi1, ... , Vinl®, for i =

1,2,...,t. Also, let

Wy
w,=|:

Wi

Uy g1

y Be = y 9 =

€
and e, =| i |,
€

where p;, g; and e; denote the general mean, the vector of genotypic values and the

U gt

vector of random errors for trait i, respectively. Then we consider the following

standardized multiple-trait GBLUP model

Wc:”c®1n+gc+em (1)

where 1,, isthe unit vector of order n and & denotes the Kronecker product (Searle,

1982, P266). It is assumed that
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g.~MVN(0,2, ® K)
and

e.~MVN(Q,Z, ®I,),
where 0 is the zero vector; K is a genomic relationship matrix; X is the genetic
variance-covariance matrix among traits; I,, is the identity matrix of order n and X,

is the variance-covariance matrix of random errors among traits. Also, let

2 2

0-91 Gg1t 091 0€1t
;=1 i | and X, = :

2 2

Gg1t agt G€1t Get

In this study, we use K = MM" /p, where M is the standardized marker score
matrix and p is the number of SNP markers. Let A be the original marker score
matrix with elements equal to -1, 0 and 1, corresponding to homozygous alleles (4, 4),
heterozygous alleles (4;4,) and the other homozygous alleles (4,4,), respectively.
Also, let m;; and a;; separately denote the (ij)t" elements of M and A. Then,
m;; = (a;; — @;)/sj, where a; and s; are the sample mean and the sample standard

deviation of column j (corresponding to SNP j) in A.

Composite Selection Index
To evaluate an individual with multiple traits, we propose a selection index
simultaneously accounting for all the traits of interest. Define the composite selection

index (CSI) for individual j as
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CSljy = Yio Hpi9ij>
where p; is the specified weight for trait i; g;; is the genotypic value of trait i on
individual j and the sign of (%) is taken “+” if the trait follows the rule “the larger

the better”; otherwise “— if the trait follows “the smaller the better”.

The Distribution of Predicted Genotypic Values

Let
Wiq Wis g1
We = s W = G = O
Wi Weo i1
g1z €11 €12
G2 = ; €1 = | ¢ and e, =| * |,
G2 €¢1 €2

where w;;, g;; and e;; respectively denote the vectors of standardized phenotypic
values, genotypic values and random errors for the training set. The training set is
assumed to consist of n; individuals. Likewise, w;,, g;» and e;, denote the
corresponding vectors for the remaining n, individuals not chosen in the training set
(non-phenotyped set), where n; +n, =n. Thus, the standardized multiple-trait

GBLUP model of (1) can be equivalently written as

1
warl =1 ® 1"+ [ga] + [eci]

where

Ge1] _ ( [K11 K12]>
gcz] MVN(0,2; & K, Kj,|)
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We used the R package sommer (Covarrubias-Pazaran, 2016) to find the REMLs for
X, and X,; and BLUP for g, using the training set data. That was based on the
following model: woy = . ® 1,4 + gc1 + €., where g ~MVN(0,2; @ K14).
These estimated values are denoted as fi, f'g, Y, and §.,.

Under the condition that fi,, 2 9> Y, and g, are all assumed to be fixed and
known values, the distribution of predicted genotypic values (PGVs) for the non-
phenotyped set is given by

gczl(ﬁo fg,fe,gcl)“’MVN(ﬁgcz,fgcz)a (2)
where ﬁgcz =02 = K21(K11)_1gc1 and 2—'\'gcz = Eg ® (Kyz — Ky (K1) 7 Ky5).
Note that the calculation for fi,., and p) gcz doesn’t involve X, i.e. the distribution

of g, is free from the random or environmental variation.

The Expected Improvement criteria for the CSI
Let Geo(j) = [Ge21¢y  ** Geze(jy]T be the vector of the t genotypic values on
individual j in Expression (2). Then the €SI, for the individuals in the non-
phenotyped set is given by
CSljy = Zi_1(EPifcaic)-
Clearly, ﬁl( j) 1s a linear combination of g, (j), so that its distribution can be easily

obtained from Expression (2) . The distribution of ﬁl(j) is described as
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CS Iijy ~ N(fcsicjy 635,( j))- The improvement function for f§l( j) is defined as

0, if CSIjjy < fu

Im(CSlj) =1 — 3
( (J)) { CSl¢jy — fu, otherwise,

where f, is the maximal estimated CSIgjy value among the training set which is
obtained from g.,. Here, Im(ffl(j)) is a random variable associated with the
distribution of CF’§1( j) and its expected value called the expected improvement (EI),
can be derived as
EI(CS1() = (fcsig, = fu) @(Z)) + besi )9 (2)), ©

where Z; = (ﬁcsz(j) - fM) /Besiy s ®(-) is the cumulative density function of the
standard normal distribution and ¢(-) is the probability density function of the
standard normal distribution.

Furthermore, let h denote the vector of ﬁl( j) for the non-phenotyped set. The
distribution of h can be denoted as h ~ MVN (fics;, 2¢cs;). Partition h, fics; and
2'CSI as

h= [C;{f* ; Best = ﬁéfl] and E'CSI = I;ésll ggja
where CSI* represents the genotype with largest EI (ﬁl(j)) of Equation (3), i.e. the
genotype with CSI* is the first selected from the non-phenotyped set. Subsequently,
we searched for the next genotype with the largest El (ffl( j)) among the remaining

genotypes whose PGVs follow the conditional distribution

h|(CSI" = pgs)) ~ MYN (B, 23). ©
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where fi, =" and X}, = 23, — 25,(64) ' 21, . Let Ezj) ~N (ﬁ;l(j)' (5;;(]‘))2),
representing a marginal distribution in Expression (4), then the corresponding EI can
be derived as

EI(h{j) = (he) — fu) (Z(5)) + Grep @ (Z(5). ©)
where Z(;) = (ﬁ;‘l(j) - fM)/G;;(j). The El of (3) is abbreviated as EI-PGV, and the EI

of (5) as EI-PGV-fwd. Also, M-PGYV is the criterion using the mean values of PGVs.

r-score method

Ou an Liao (2019) proposed an optimization method to determine a training set
for genomic selection. Their proposed method was derived from the Pearson’s
correlation between GEBVs and phenotypic values, called as r-score method. The r-
score method was verified to be advantageous over some existing optimization method
(Ou and Liao, 2019), and it can be used to choose an optimal training set from a
candidate population with genotype data only.

In this study, we use r-score method to determine a starting training set for the

sequential phenotyping strategy. The r-score criterion can be described as

q12

vV 4192

r-score =

where
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g =my—1)+ Tr[Xg(Ino _]_no)XO];

q; = Tr[ATXY (1, — Jn, ) XoA] + Tr[XTATXY (1, — T, ) XoAX].

Here X and X, are design matrices for the training and test sets, respectively, and
A = XT(XXT + AI)71. The r-score together with M-PGV, EI-PGV and EI-PGV-fwd
will be compared to determine the training data to update the prediction model in our

strategy.

The Assessment indices
We use the estimates of CSI(;) from the whole phenotype and genotype data as

the true €SIy values in this study.

CIP@k
Suppose that the breeder hopes to identify the top k individuals for the true
CSI¢jy values. Let T be the set consisting of the top k individuals for the estimated
CSljy values. Also, let kg be the number of individuals which are exactly among the
top k individuals for the true CSI;) values. Then, correctly identified proportion

(CIP@k) is defined as
k

CIP@k = 7

NDCG@k

12 doi:10.6342/NTU202002551



Blondel et al. (2015) promoted the use of NDCG (normalized discounted
cumulative gain) to measure the ability of various genomic selection strategies to select
the top k individuals for the true CSI(j) values. The NDCG has been commonly used
to measure the ability of search engines to retrieve highly relevant documents in the top
search result (Jarelin and Kekalainen, 2000).

Let CSl1y = CSlzy == CSlyny be the true CSly values sorted in
decreasing order, where m = (my, my,..., T,) is a permutation of my = (1, 2, ...,
n). Also, let hy = (551(1), 551(2), s Efl(n)) be the estimated vector of hy =
(C Sly, CSlyy, ..., CS I(n)). Then, the DCG score at position k ofthe predicted ranking

is defined as

k
DCG@K(ho, (Rp)) = ) F(CSI(r))d()

]

and the DCG score at position k of the ideal ranking is defined as

k
DCG@K(ho, mo(ho)) = ) F(CSI)A()

]

where f(CSI;)) is a monotonically increasing gain function and d(j) is a
monotonically decreasing discounted function. We consider that f (CSI(]-)) = (Sl

(linear gain) and

1
log,(j+1)

d(j) =

The NDCG score at position k for the selection strategy is then defined as
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DCG@k(ho,m(Ry))
DCG@k(ho,mo (o))’

NDCG@k(ho, hy) =

The NDCG score ranges between 0 to 1.

Iterative strategy
Step 0:  Select n, individuals as an initial training set according to the r-score
method, denoted by S,. Initialize n;. < ny and S < S,, where S, denotes the

current training set and ng, is its sample size.

Step 1:  Standardize the phenotypic data of training set, then perform the standardized

multiple-trait GBLUP model, and yield the estimated values fi,, 2 9> Y, and g,

Step 2:  Estimate predicted genotypic value of the non-phenotyped set, denoted g,

and calculate 5§I(j) by ga-(j) fori=1,2,..,t; j=1,2,..,n;.

Step 3:  Calculate CIP@k and NDCG@k for a top set of all individuals according
to the 6?1( j)- These two indices are used to evaluate the accuracy for the detection of

the superior individuals.

Step 4:  Select ng,; additional training set individuals from the non-phenotyped set,

14 doi:10.6342/NTU202002551



denoted S,;, according to four different acquisition functions, r-score, M-PGV, EI-
PGV and EI-PGV-fwd. And add those new training set to the current training set. That
is, the union of S, and S,,; makes the new training set, expressed as S;,- < S U

Sser- Similarly, ny, < ng + nge. Go to step 1.

Criteria Comparison Based on Real Datasets

There are three datasets used to demonstrate the iterative strategy and to compare
the selection criteria by assessment index based on true CSIj) values defined above.
The size of starting training set n, and training set selected at each batch ng,; were
the same. Here, we considered the following five cases: (1) ny = nge; = 30 for the 44k
rice dataset, denoted 44k 30; (ii)) ny = ng,; = 10 for the tropical rice breeding lines
dataset, denoted TR _10; (iii)) ny = ng,; = 30 for the tropical rice breeding lines
dataset, denoted TR 30; (iv) ny = ng,; = 50 for the tropical rice breeding lines
dataset, denoted TR_50; (v) ny = ng,; = 30 for the wheat dataset, denoted wheat 30.
Also, we analyzed different scenarios setting for each dataset as shown in Table 1. There
are three scenarios for 44k rice dataset, four scenarios for tropical rice breeding lines
dataset and one scenario for wheat dataset. The procedures of Steps 0 to 4 were repeated

30 times for each case and each scenario.
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The Stopping Rule for the Iterative Strategy

For a real dataset, the true CSI ;) values are unknown among the candidate
population, so we need a stopping rule for the iterative searching process. This stopping
rule is according to the EI values in each batch. If the box-plot for a batch approaches
0, then the searching process can stopping. In other word, there is no more improvement
made by adding phenotyped individuals to update GBLUP model, whereas the EI

values gets equal to 0.
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Results

Criteria Comparison Based on Assessment Indices
The 44Kk rice dataset

The results of case (i) for the 44k rice dataset were displayed in Figure 1. In the
figure, M-PGYV criterion had a better performance than the other criteria before the 5™
batch. Around the 5% batch, EI-PGV and EI-PGV-fwd criteria would outperform the
other criteria and approached 1 on the NDCG@k, regardless of whether the number of
selected individuals k is equal to 1, 5 or 10. And CIP@10 values are greater than 0.9
around the 6™ batch.
The tropical rice dataset

Cases (i1), (i11) and (1v) were the analyses of the tropical rice breeding lines dataset
with different batch size setting. The results of case (i1) were displayed in Figure 2. In
the figure, M-PGV and r-score criteria had a better performance in the early batches for
all the scenarios, regardless of that we used CIP@k or NDCG@k to display. Around
the 8" batch, EI-PGV and EI-PGV-fwd criteria would outperform the other two criteria.
In the figure, the NDCG indices would be approached 1 around the 16™ batch, that’s a
position which could stop the strategy. For the results of cases (iii) and (iv) were
displayed in Figure 3 and 4, we could find the performance of four acquisition functions

is similar to the case (ii), and the EI criteria would outperform the other methods after
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the training set size reached a certain number. And the NDCG indices approached 1
around the 5™ batch and the 3™ batch for case (ii) and case (iii), respectively. Therefore,
whether the setting of the size of batch with the same dataset, the training set sizes that
made model have enough estimation ability are almost the same.

The wheat dataset

The results of case (v) for the wheat dataset were displayed in Figure 5. Here we
used this dataset to demonstrate the average of the four responses. The NDCG indices
approached 1 around the 13" batch and the 15" batch with EI-PGV and EI-PGV-fwd
criteria. The EI methods have better performance than other criteria.

To compare the results of case (i), (iii) and (v), in which the size of initial training
set and the batch size are both fixed at 30. For the 44k rice and tropical rice datasets,
they used less than half of the size of population to make the model estimate well; but
the wheat dataset used more than half of the size of population to achieve the same

performance as the other datasets.

The Stopping Rule for the Iterative Strategy
To evaluate the stopping rule for the iterative strategy, we observed the EI values
for EI-PGV-fwd, EI-PGV and M-PGYV criteria in boxplot, and find the batches whose

values approached 0.
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The results of case (i) for the 44k rice dataset were shown in Figure 6. The EI
values for the criteria approached 0 approximately between batches 5 and 7; the results
of case (ii) for the tropical rice breeding lines were shown in Figure 7, and the EI values
approached 0 approximately between batches 10 and 12; the results of case (iii) for the
tropical rice breeding lines were shown in Figure 8, and the EI values approached 0
approximately between batches 5 and 7; the results of case (iv) for the tropical rice
breeding lines were shown in Figure 9, and the EI values approached 0 approximately
between batches 3 and 4; the results of case (v) for the wheat dataset were shown in
Figure 10, and the EI values approached 0 approximately between batches 14 and 16.
These results above are consistent with the results of assessment indices, that the

batches were chosen to stop the strategy.

The True Genotypic Values for Specific Batches

To illustrate that the top 10 individuals were selected for specific batches, we
transformed the true CSIjy values back to the true genotypic values, and evaluated the
average values of 30 repetitions for each trait. The specific batches were determined by
the boxplot of stopping rule for each case.
The 44Kk rice dataset

The result for case (i) is shown in Table 2. The two traits FTAA and PLHE follow
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“the smaller the better”, so we expected the true genotypic values would decrease as
the weight increases. From the table, the true genotypic values of each scenario
completely follow the weights set in Table 1(a).
The tropical rice dataset

For cases (ii), (iii) and (iv), the trait YLD follows “the larger the better”, and the
traits PH and FT follow “the smaller the better”. From Table 3 for case (ii), the results
of EI-PGV-fwd and EI-PGYV criteria follow the weights set in Table 2(b), although there
is some slight deviation on trait FT for some batches, the difference in the values is very
small among the scenarios; the result of M-PGV criterion completely follow the
weights set in Table 2(b) until the 12" batch on trait YLD. And cases (iii) and (iv) have
the same results with the results of case (ii) on the EI-PGV-fwd and EI-PGV criteria,
which are displayed in Table 4 and 5, respectively; the result of M-PGV criterion has
the same performance with the other criteria in cases (iii) and (iv).
The wheat dataset

The weights of case (v) we set here represent the highest average yield in all
environments. However, we just used this dataset to demonstrate the average of the four
responses in this study, and the result of case (v) was displayed in Table 6. GY_E1
doesn’t follow the weights in the performance of different batches and acquisition

functions, but the performance of other responses follows the setting well.
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Discussion

In this study, we applied the r-score method instead of random sampling used in
Tanaka and Iwata (2018) and Shen and Liao (2019). The initial training set determined
by random sampling doesn’t consider any information from dataset. On the other hand,
the r-score method considers the information of genotypes, and determines an optimal
training set for improving model estimation ability. We re-performed the strategy for
cases (i), (ii1) and (v) with using the random sampling to determine the initial training
set, then calculated the average of CIP@10 and NDCG@]10 at the first batch with the
30 repetitions, the results are presented in Table 7. The results show that the r-score can
indeed make the model have better estimation ability at the first batch, and r-score is
even much better than random sampling under Tropical rice dataset. Using r-score at
the first batch can make the strategy more efficient, in other words, it has better model
prediction ability and it can select superior genotypes in earlier batches.

The assessment indices, CIP@k and NDCG@k, seem to be similar, but NDCG
not only compares the top k individuals like CIP, but also considers their ranking and
the individuals other than the top k. We find the EI-PGV and EI-PGV-fwd criteria seem
to be more stable on training set determination for model estimation, even they didn’t
have the best performance in earlier batches, but they could approach 1 faster than other

criteria by NDCG@k. For the 44k rice and Tropical rice datasets, the training set size
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just requires less than half of the dataset size according to the NDCG@k index, and

it’s enough to make the model have great prediction ability; but the wheat dataset

requires more than half of the dataset size to achieve the same performance. The

possible reason for the wheat dataset is that the number of markers is too small,

resulting in inaccurate model estimation. The 44k rice dataset needs about 150 out of

373 training individuals for performing the strategy according to Figure 6; the tropical

rice dataset needs about 150 to 160 out of 328 training individuals for performing the

strategy according to Figures 7, 8, and 9; but the wheat dataset needs about 420 out of

599 training individuals for performing the strategy according to Figure 10.

We used a stopping rule for the strategy if the true genotypic values are unknown.

Comparison of plot for the assessment indices and boxplot for stopping rule, their

results are consistent. It means that this stopping rule can really help us decide when to

stop the strategy. However, we need to further study the feasibility of CSI. The resulting

tables of the true genotypic values show that the values indeed follow the scenarios in

this study. In general, EI-PGV and EI-PGV-fwd criteria have better performance in the

sequential phenotyping strategy, it can select superior genotypes more effectively and

efficiently than other criteria. And CSI can indeed be effectively applied to the multiple-

trait selection.

The EI-PGV and EI-PGV-fwd criteria performed in Tanaka and Iwata (2018) and
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Shen and Liao (2019) were used to explore the best individual. In our study, these
criteria are used to determine the training set, and the superior genotypes are selected
by ffl( j)- However, even if the EI criteria were applied for different objectives, they
were shown to have a great performance on the strategy of this study.

In general, this strategy really helps us to detect superior genotypes in an efficient
way. We used several acquisition functions and two assessment indices to find best
training set determination methods for this strategy. Finally, we observed that EI criteria
have the most stable and better performance than other criteria. From this study, it
showed that EI methods not only have a great performance in exploring the best
genotype (Shen and Liao, 2019), but also have a good performance in selecting a good
training population for model estimation. In our experience, the computing time for
performing our proposed iterative process could mainly depend on the number of traits
and the number of individuals in the candidate population. We compare the computing
time for Cases (1), (ii1), and (v) which all have the batch size of 30. It required about 4
to 5 hours for completing the 44k rice dataset analysis with 2 traits and 373 individuals
in Case (i). Similarly, it required about 1 day, and 6 to 7 days for the tropical rice dataset
with 3 traits and 328 individuals in Case (iii), and the wheat dataset with 4 traits and
599 individuals in Case (v), respectively. Developing an effective algorithm to reduce

the computing time will be our future study.
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Table 1. The specified weight for trait i of each dataset.

() 44 rice dataset

Weight (p;)
Scenarios FTAA  PLHE
1 1 0
2 0 1
3 0.5 0.5
(b) Tropical rice breeding lines dataset
Weight (p;)
Scenarios YLD PH FT
1 1 0
2 0.7 0.3
3 0.7 0 0.3
4 0.7 0.15 0.15
(c) Wheat dataset
Weight (p;)

Scenarios GD El GD E2 GD E3 GD E4

1 0.25 0.25 0.25

0.25
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Table 2. For the 44k rice dataset with the batch size is set to 30, the average of true genotypic values of the

individuals which are selected on specific batches according to the stopping rule over the 30 repetitions.

44k 30 True Genotypic Value
scenario EI-PGV-fwd EI-PGV M-PGV
(Batch 4) FTAA PLHE FTAA PLHE FTAA PLHE
1 64.29 97.97 64.30 98.25 64.45 97.91
2 86.26 87.73 85.18 87.88 78.62 87.03
3 67.10 92.23 67.36 92.06 67.14 93.18
(Batch 5) FTAA PLHE FTAA PLHE FTAA PLHE
1 64.07 97.95 64.04 98.01 64.42 97.97
2 82.68 86.65 83.17 86.88 78.52 86.72
3 66.43 92.53 66.69 92.23 66.99 92.36
(Batch 6) FTAA PLHE FTAA PLHE FTAA PLHE
1 64.02 98.01 64.01 98.01 64.10 98.03
2 79.86 86.23 79.41 86.22 78.45 86.44
3 66.35 92.59 66.40 92.49 67.34 91.34
(Batch 7) FTAA PLHE FTAA PLHE FTAA PLHE
1 64.01 98.04 64.01 98.01 64.10 97.89
2 78.18 86.04 78.11 86.07 77.94 86.22
3 66.25 92.72 66.32 92.61 67.11 91.48
(Batch 8) FTAA PLHE FTAA PLHE FTAA PLHE
1 64.01 98.03 64.01 98.01 64.01 98.03
2 77.68 86.08 77.61 86.07 77.23 86.18
3 66.25 92.71 66.25 92.70 67.07 91.53

FTAA: flowering time at Arkansas; PLHE: plant height; M-PGV: the strategy based on the mean of

predicted genotypic values; EI-PGV: the strategy with the expected improvement criterion based on

distribution of predicted genotypic values; EI-PGV-fwd: the strategy with the forward expected

improvement criterion based on distribution of predicted genotypic values.
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Table 3. For the tropical rice breeding lines dataset with the batch size is set to 10, the average of true genotypic

values of the individuals which are selected on specific batches according to the stopping rule over the 30

repetitions.
TR_10 True Genotypic Value
scenario EI-PGV-fwd EI-PGV M-PGV

(Batch 9) YLD PH FT YLD PH FT YLD PH FT

5464.35 107.36 85.60 5470.46 107.08 85.88 5421.93 109.14 86.80
5454.64 10595 86.04 542991 10545 86.16 537141 10352 85.81
543544 109.76 85.04 5435.94 108.36 85.06 5430.98 106.20 85.01

A W0 N

5462.45 107.04 8537 546421 106.85 85.80 5399.88 104.75 85.12

(Batch 10) YLD PH FT YLD PH FT YLD PH FT

1 5481.60 107.66 85.73 5480.57 107.39 85.95 5428.80 109.30 86.91
2 5459.02 105.46 8593 546549 10565 8595 537517 103.48 85.77
3 5450.73 109.99 85.13 5457.62 108.56 85.27 5438.37 106.58 85.09
4 5477.00 107.00 8545 547494 107.01 8593 5411.35 104.70 85.17

(Batch 11) YLD PH FT YLD PH FT YLD PH FT

5485.25 107.38 85.75 5486.14 107.60 8598 543539 109.03 86.80
5461.65 105.09 85.73 5467.74 10545 85.82 5383.78 103.30 85.61
5457.02 109.88 85.03 5473.53 108.56 85.30 5445.17 106.70 84.96

A WO N

5481.12 106.90 85.61 5479.31 107.08 85.93 5424.62 104.75 85.01

(Batch 12) YLD PH FT YLD PH FT YLD PH FT

5489.30 107.57 85.78 5487.19 107.52 85.93 5450.63 108.88 86.75
5460.67 104.82 85.65 5458.60 104.99 85.69 5391.27 103.17 85.55
5463.99 109.23 85.14 5477.24 108.21 85.21 544949 106.81 84.83

A WO N

5485.62 106.91 85.67 5479.78 106.72 85.85 5433.93 104.88 84.84

(Batch 13) YLD PH FT YLD PH FT YLD PH FT

5488.12 107.49 8579 548785 107.76 86.02 545792 109.06 86.75
545254 104.28 85.60 5457.24 10442 85,57 5401.02 103.01 85.40
547498 108.48 85.12 5480.55 108.05 85.06 545593 106.82 84.82

A W0 N

5484.46 106.60 8550 548120 106.19 85.66 5439.40 105.05 84.97

YLD: grain yield; PH: plant height; FT: flowering time; M-PGV: the strategy based on the mean of predicted
genotypic values; EI-PGV: the strategy with the expected improvement criterion based on distribution of
predicted genotypic values; EI-PGV-fwd: the strategy with the forward expected improvement criterion based

on distribution of predicted genotypic values.
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Table 4. For the tropical rice breeding lines dataset with the batch size is set to 30, the average of true genotypic

values of the individuals which are selected on specific batches according to the stopping rule over the 30

repetitions.
TR 30 True Genotypic Value
scenario EI-PGV-fwd EI-PGV M-PGV

(Batch 4) YLD PH FT YLD PH FT YLD PH FT

5493.85 107.30 85.77 5499.73 107.43 8581 5484.73 107.58 86.06
5466.46 104.98 8555 5457.58 104.49 8554 5426.63 102.39 84.89
5466.56 107.85 84.99 547243 107.93 84.97 5468.98 106.47 84.74

A W0 N

5486.37 106.72 8555 5479.49 106.37 85.39 5451.39 104.24 84.79

(Batch 5) YLD PH FT YLD PH FT YLD PH FT

1 5503.18 107.68 86.01 5506.64 107.90 86.05 5497.01 107.84 86.19
2 5461.34 10420 8543 545297 103.66 85.29 5430.89 102.37 84.90
3 5495.06 107.06 84.91 5493.37 107.22 84.82 547441 106.84 84.71
4 5488.54 106.01 8531 5487.99 10594 85.27 5459.36 104.46 84.74

(Batch 6) YLD PH FT YLD PH FT YLD PH FT

5509.42 107.70 86.03 5512.26 107.73 86.05 5505.04 108.36 86.41
5446.90 103.02 85.21 544235 102.87 85.23 543536 102.54 84.94
5494.45 106.73 84.57 5497.15 106.86 84.51 5485.12 107.16 84.64

A WO N

5491.08 105.49 85.09 5491.74 10559 85.02 5458.72 104.25 84.60

(Batch 7) YLD PH FT YLD PH FT YLD PH FT

551454 107.83 86.06 5518.04 107.89 86.17 5509.58 108.92 86.69
5437.02 102.18 84.98 5439.01 102.37 85.06 5434.67 102.28 84.94
5496.59 106.73 84.38 5499.20 106.80 84.42 5494.09 107.48 84.61

A WO N

5479.63 10498 84.55 5484.40 105.09 84.66 5465.23 104.18 84.60

(Batch 8) YLD PH FT YLD PH FT YLD PH FT

5520.61 108.11 86.00 5522.22 108.13 86.05 5515.32 108.86 86.55
5435.65 102.00 84.91 543796 102.07 84.89 5432.88 102.04 84.95
5492.05 106.61 84.25 549197 106.54 84.26 5497.79 107.32 84.55

A W0 N

545416 103.44 84.22 5455.13 103.33 84.33 5469.02 104.24 84.57

YLD: grain yield; PH: plant height; FT: flowering time; M-PGV: the strategy based on the mean of predicted
genotypic values; EI-PGV: the strategy with the expected improvement criterion based on distribution of
predicted genotypic values; EI-PGV-fwd: the strategy with the forward expected improvement criterion based

on distribution of predicted genotypic values.
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Table 5. For the tropical rice breeding lines dataset with the batch size is set to 50, the average of true genotypic

values of the individuals which are selected on specific batches according to the stopping rule over the 30

repetitions.
TR 50 True Genotypic Value
scenario EI-PGV-fwd EI-PGV M-PGV

(Batch 2) YLD PH FT YLD PH FT YLD PH FT

5462.68 106.66 85.34 5467.87 106.47 8533 5470.19 107.69 86.12
542359 10538 85.93 5420.73 104.93 85.82 5417.25 10359 85.18
5417.13 109.47 85.20 5448.85 108.65 84.97 5442.65 106.95 85.04

A w0 N

5434.60 106.87 85.58 5448.67 106.45 8539 544180 104.94 85.02

(Batch 3) YLD PH FT YLD PH FT YLD PH FT

1 5504.23 107.35 85.76 5506.12 107.23 85.71 549421 107.99 86.07
2 5459.48 104.41 85.42 5466.83 104.62 85.44 5431.75 10242 85.01
3 5492.00 107.83 84.79 5499.86 107.68 84.99 548158 106.62 84.68
4 5498.24 106.54 85.36 5494.83 106.07 85.22 5463.41 104.36 84.72

(Batch 4) YLD PH FT YLD PH FT YLD PH FT

5515.60 107.44 85.76 5516.85 107.45 85.78 5510.10 108.71 86.44
5454.11 103.21 85.05 5452.32 103.27 8521 5433.26 102.16 84.96
5501.04 106.90 84.50 5499.44 106.84 84.40 5489.44 107.04 84.47

A w0 N

5497.82 105.60 84.94 549486 10549 84.90 5475.62 106.65 84.69

(Batch 5) YLD PH FT YLD PH FT YLD PH FT

1 5523.78 10796 85.84 5523.22 108.01 85.77 5518.65 108.71 86.53
2 5443.78 102.37 84.87 544447 102.38 84.85 543510 102.01 84.93
3 5485.93 106.34 84.15 5488.13 106.40 84.19 549474 107.10 84.40
4 5465.63 104.21 84.24 5468.12 104.33 84.23 5470.81 1042 84.45
(Batch 6) YLD PH FT YLD PH FT YLD PH FT
1 5527.90 107.69 85.58 5527.89 107.77 85.71 5526.26 108.20 86.23
2 5434.69 101.91 84.83 5436.31 101.97 84.82 543292 101.87 84.90
3 5483.01 106.07 84.01 5483.88 106.11 84.02 5485.68 106.45 84.07
4 547140 104.36 84.14 5464.38 103.84 84.18 5469.97 104.21 84.15

YLD: grain yield; PH: plant height; FT: flowering time; M-PGV: the strategy based on the mean of predicted
genotypic values; EI-PGV: the strategy with the expected improvement criterion based on distribution of
predicted genotypic values; EI-PGV-fwd: the strategy with the forward expected improvement criterion based

on distribution of predicted genotypic values.
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Table 6. For the wheat dataset with the batch size is set to 30, the average of true genotypic values of the

individuals which are selected on specific batches according to the stopping rule over the 30 repetitions.

Wheat_30 True Genotypic Value

scenario EI-PGV-fwd EI-PGV M-PGV

(Batch12) GY E1 GY_E2 GY_E3 GY_E4 GY_El GY_E2 GY_E3 GY E4 GY El GY E2 GY E3 GY_FE4

1 0.01 0.91 0.93 0.91 0.00 0.90 0.92 092 -0.30 0.84 0.88 1.06

(Batch13) GY_E1 GY_E2 GY_E3 GY_E4 GY_El GY_E2 GY_E3 GY E4 GY_El GY E2 GY_E3 GY_E4

1 0.01 0.91 0.93 0.92 0.00 0.91 0.93 0.92 -0.28 0.82 0.87 1.07

(Batch14) GY E1 GY_E2 GY_E3 GY_E4 GY_El GY_E2 GY_E3 GY _E4 GY El GY E2 GY_E3 GY_FE4

1 -0.01 0.91 0.94 0.94 0.00 0.90 0.93 0.93 -0.25 0.83 0.88 1.06

(Batch15) GY_E1 GY_E2 GY E3 GY _E4 GY_El GY E2 GY_E3 GY E4 GY_El GY E2 GY_E3 GY_E4

1 -0.03 0.92 0.95 0.96 -0.02 0.91 0.94 0.95 -0.26 0.84 0.88 1.06

(Batch16) GY_E1 GY_E2 GY_E3 GY_E4 GY_El GY_E2 GY_E3 GY _E4 GY El GY E2 GY_E3 GY_FE4

1 -0.04 0.91 0.95 0.98 -0.02 0.92 0.95 0.96 -0.26 0.86 0.90 1.05

GY_El: grain yield at environment 1; GY E2: grain yield at environment 2; GY_ E3: grain yield at
environment 3; GY E4: grain yield at environment 4; M-PGV: the strategy based on the mean of predicted
genotypic values; EI-PGV: the strategy with the expected improvement criterion based on distribution of
predicted genotypic values; EI-PGV-fwd: the strategy with the forward expected improvement criterion based

on distribution of predicted genotypic values.
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Table 7. Comparison that the average of CIP@10 and NDCG(@ 10 for random sampling and r-score at the first
batch with size is fixed at 30.

() 44k rice dataset

CIP@10 NDCG@10
Scenario RS r-score RS r-score
1 0.17 0.19 0.39 0.46
2 0.12 0.16 0.69 0.70
3 0.12 0.09 0.55 0.53
(b) Tropical rice breeding lines dataset
CIP@10 NDCG@10
Scenario RS r-score RS r-score
1 0.12 0.30 0.35 0.62
2 0.16 0.42 0.29 0.56
3 0.11 0.26 0.34 0.59
4 0.14 0.35 0.32 0.57
(c) Wheat dataset
CIP@10 NDCG@10
scenario RS r-score RS r-score
1 0.05 0.05 0.30 0.43

CIP@10: correct identification proportion of top 10 individuals; NDCG@]10: normalized discounted

cumulative gain of top 10 individuals; RS: random sampling.
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(b) Scenario 2
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(c) Scenario 3
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Figure 1. The assessment indices for case (i). For the 44k rice dataset with the batch size is set to 30,

the average of correct identification proportion (CIP) and normalized discounted cumulative gain of
top k individuals (NDCG@k), which were calculated at each batch over the 30 repetitions.
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(c) Scenario 3
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(d) Scenario 4
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Figure 2. The assessment indices for case (ii). For the tropical rice breeding lines dataset with the batch
size is set to 10, the average of correct identification proportion (CIP) and normalized discounted

cumulative gain of top k individuals (NDCG(@k), which were calculated at each batch over the 30
repetitions.
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(d) Scenario 4
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Figure 3. The assessment indices for case (iii). For the tropical rice breeding lines dataset with the
batch size is set to 30, the average of correct identification proportion (CIP) and normalized discounted
cumulative gain of top k individuals (NDCG(@k), which were calculated at each batch over the 30
repetitions.
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(d) Scenario 4
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Figure 4. The assessment indices for case (iv). For the tropical rice breeding lines dataset with the

batch size is set to 50, the average of correct identification proportion (CIP) and normalized discounted

cumulative gain of top k individuals (NDCG(@k), which were calculated at each batch over the 30

repetitions.
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(@) Scenario 1
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Figure 5. The assessment indices for case (v). For the wheat dataset with the batch size is set to 30, the
average of correct identification proportion (CIP) and normalized discounted cumulative gain of top

k individuals (NDCG@k), which were calculated at each batch over the 30 repetitions.
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Figure 6. The stopping rule for case (i). For the 44k rice dataset with the batch size is set to 30, the
expected values of training set which is determined by EI-PGV-fwd, EI-PGV and M-PGV at each
batch.
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Figure 7. The stopping rule for case (ii). For the tropical rice breeding lines dataset with the batch size
is set to 10, the expected values of training set which is determined by EI-PGV-fwd, EI-PGV and M-
PGV at each batch.
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Figure 8. The stopping rule for case (iii). For the tropical rice breeding lines dataset with the batch size
is set to 30, the expected values of training set which is determined by EI-PGV-fwd, EI-PGV and M-
PGV at each batch.
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Figure 9. The stopping rule for case (iv). For the tropical rice breeding lines dataset with the batch size
is set to 50, the expected values of training set which is determined by EI-PGV-fwd, EI-PGV and M-
PGV at each batch.
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Figure 10. The stopping rule for case (v). For the tropical rice breeding lines dataset with the batch
size is set to 30, the expected values of training set which is determined by EI-PGV-fwd, EI-PGV and

M-PGYV at each batch.
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