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摘要 

使用多批次外表型收集策略來從一組候選族群中找到一群優良基因型群體，以達

到能節省外表型資料的蒐集，進而找到優良基因型群體。在本研究中我們假設候

選族群已擁有基因型資料，並分多次選取部分個體收集其外表型，而後使用具有

外表型資料的個體建立 GBLUP多性狀模型、並估計候選族群個體的基因型值、

對於不同性狀給予不同權重後相加成一個選拔指標，並進行排序。其中用於選取

訓練族群個體的方法有 r-score、M-PGV、EI-PGV以及 EI-PGV-fwd，而所有方法

的第一組起始個體選取皆使用 r-score的方法，因為 r-score只需要使用基因型的

資訊而不需要考慮外表型的資訊。多性狀模型的應用讓我們同時針對多個性狀進

行估計、然後根據不同性狀的重要性進行加權總合、最終得到的值稱作 composite 

selection index (CSI)。針對排序後的 CSI則使用 correctly identified proportion (CIP)

以及 normalized discounted cumulative gain (NDCG) 作為評估指標，這兩項指標

可以對感興趣的前幾名個體進行評量，且 NDCG 還多考慮了排序的正確性。經

由上述的流程，最終能夠輔助我們選拔出個體來進行外表型資料蒐集、使得模型

有良好的估計與排序，進而有效率的找到優良的基因型群體。 

 

關鍵字： 多批次外表型收集策略、多性狀、選拔指標、r-score、GBLUP 
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Abstract 

A sequential phenotyping strategy is proposed to detect a set of superior genotypes 

efficiently from a candidate population. In this study, we assume that all of the 

individuals in the candidate population have been already genotyped. The iterative 

searching process is composed of the following steps. Step 0: a starting training set is 

determined from the candidate population according to the r-score algorithm. Step 1: a 

multiple-trait GBLUP model is trained using the phenotype and genotype data of the 

current training set. Step 2: a composite selection index (CSI) is constructed and 

estimated for each individual in the candidate population with genotypes based on the 

resulting multiple-trait GBLUP model. Step 3: two assessment indices, correctly 

identified proportion (CIP) and normalized discounted cumulative gain (NDCG) are 

calculated based on the estimates of CSI for a set of candidate individuals, and are used 

to evaluate the accuracy for the detection of the superior individuals. Step 4: four 

acquisition functions, r-score, M-PGV, EI-PGV and EI-PGV-fwd, are used to select 

additional training set added with the current training set. We further provide a stopping 

rule for the sequential strategy for practical applications. Three genome datasets are 

analyzed to illustrate our proposed sequential phenotyping strategy.  

 

Keywords: Sequential phenotyping strategy, Multiple traits, Composite Selection index, 

r-score, GBLUP 
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Introduction 

Food security issues have become very important since the rapid growth of the global 

population in the last few decades. Many innovative biotechnologies and breeding 

strategies have been applied to plant breeding for improving the yield and quality of 

crops (Tester and Langride, 2010; Khoury et al., 2014). Although it has indeed achieved 

a remarkable improvement in the breeding selection process, the genetic diversity of 

crops has been gradually decreasing (Reif et al., 2005; Hyten et al., 2006). Genetic 

diversity is related to the potential of genetic improvement, further influencing the 

efficiency of breeding. Therefore, introgression of rich variation from wild, exotic, or 

indigenous germplasms becomes essential to promote the use of genetic diversity, and 

to enhance the efficiency of plant breeding programs (Tanksley and McCouch, 1997; 

McCouch et al., 2013). To tackle this problem, plant breeders first need to identify 

superior accessions from the germplasm collections. In this thesis, we focus on the 

identification of superior genotypes from a candidate population through a sequential 

phenotyping strategy. The proposed strategy is developed based on genomic prediction 

(GP), which can potentially accelerate the rate of genetic gain in crops.  

The GP takes advantage of high-density DNA markers over a whole genome to 

predict the genotypic values, and then applies the estimated genotypic values to  

genomic selection in plant breeding (Meuwissen et al. 2001). The most common DNA 
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markers used in GP are single nucleotide polymorphisms (SNPs). Typically, a training 

population with known genotype and phenotype data is used to train a GP model. The 

resulting GP model is then employed to predict genomic estimated breeding values 

(GEBVs) for the individuals of a breeding population with known genotype data. The 

GP allows us to use limited phenotypic data to evaluate a large number of individuals 

with genotypes in the breeding population. The GP has been implemented for the two 

common objectives: (i) identify inbred lines either for hybrid parent development or 

cultivar release; (ii) increase the frequency of favorable alleles through rapid recurrent 

genomic selection (Gaynor et al. 2017).  

Mixed effects model methods have been widely used to GP such as ridge 

regression best linear unbiased predictor (rr-BLUP) model (Meuwissen et al. 2001), 

and genomic BLUP (GBLUP) model (VanRaden 2008). Specifically, GBLUP model 

can be extended to predict GEBVs for multiple traits simultaneously (Covarrubias-

Pazaran, 2016). Moreover, Jia and Jannink (2012), Hayashi and Iwata (2013) and Guo 

et al. (2014) highlighted that multiple-trait GP models can provide better prediction 

accuracy than single-trait GP models for those traits with low heritabilities but highly 

correlated to the traits with high heritabilities. However, to evaluate the comprehensive 

performance of an individual under multiple traits, a suitable selection index is required 

to identify superior ones from a candidate population (Schulthess et al. 2016). 
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In the genomic era, genotyping costs have dramatically dropped while the 

phenotyping costs stay relatively constant. In this sense, it would be advantageous to 

sample individuals for selective phenotyping in more than one stages, because a multi-

stage sampling scheme can reduce the size of the training population set in GP, hence 

the cost of phenotyping. Recently, Tanaka and Iwata (2018) proposed a multi-stage 

strategy using GP in pre-breeding to discover the best genotype from a candidate 

population. They implemented the concept of Bayesian optimization in the GP. The 

main idea of Bayesian optimization is to treat the desired objective function as a random 

variable, which is usually assumed to be a Gaussian process. Then an acquisition 

function, such as expected improvement (EI) or upper confidence bound, is constructed 

based on the posterior estimation for determining new query points to evaluate the 

objective function. The choice of the new query points should balance the trade-off 

between exploration and exploitation so that one can optimize the objective function 

using as few query points as possible (Shahriari et al. 2016; Gong et al. 2019).  

In this thesis, we modify the strategy proposed by Tanaka and Iwata (2018) to 

identify superior individuals for multiple traits. We propose a new standardized 

multiple-trait GBLUP model to predict a composite selection index of multiple traits. 

Then, we implement the EI criterion to sample potential candidate individuals. Two 

indices of correctly identified proportion (CIP) and normalized discounted cumulative 
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gain (NDCG) are used to evaluate the proposed strategy. In addition, three real datasets 

of 44k rice (Zhao et al. 2011), tropical rice (Spindle et al. 2015) and wheat (Crossa et 

al. 2010) are analyzed to illustrate the sequential phenotyping strategy. 
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Materials and Methods 

44k rice dataset 

There are 413 rice accessions in the dataset, presented in Zhao et al. (2011), which 

has 36 traits in the phenotype data and 44100 SNP markers in the genotype data. Quality 

control has been already performed and 36901 SNP markers were retained with call 

rate > 70% and minor allele frequency > 0.01, then impute the major allele to all missing 

position in genotype data. Here, we select two traits, flowering time at Arkansas (FTAA) 

and plant height (PLHE) for analyzing in this study. Since it should not have any 

missing data in phenotype data when performing the sequential strategy, we remove the 

accession which phenotype data are missing either in FTAA or PLHE. Finally, we have 

36901 SNP markers, two traits without any missing and 373 accessions consists of 12 

aromatic, 55 aus, 72 indica, 86 temperate japonica, 90 tropical japonica, and 58 

admixed. 

 

Tropical rice breeding lines dataset 

We use a tropical rice breeding lines dataset which was presented in Spindel et al. 

(2015). It contains 363 lines and 73147 SNP markers for its genotype data. There are 

three traits in the dataset: yield (YLD), plant height (PH) and flowering time (FT). Since 

these data were collected from different years and seasons, these data have been already 
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adjusted by fitting a linear model. Integrating and averaging all phenotypic data, then 

merge the genotypic and phenotypic data, and finally 328 out of 363 lines were obtained. 

 

Wheat dataset 

The dataset was used in Crossa et al. (2010), which contains 599 accessions with 

grain yield data derived from four different environmental conditions in the phenotype 

data, and there are 1279 DArT markers in the genotype data. 

 

Standardized Multiple-trait GBLUP Model 

Let 𝒘𝑖 = (𝒚𝑖 − �̅�𝑖𝟏𝑛)/𝑠𝑖, where �̅�𝑖 and 𝑠𝑖 are the sample mean and the sample 

standard deviation of phenotypic values for trait 𝑖, i.e. 𝒚𝑖 = [𝑦𝑖1, … , 𝑦𝑖𝑛]𝑇, for 𝑖 =

1, 2, … , 𝑡. Also, let 

𝒘𝑐 = [

𝒘1

⋮
𝒘𝑡

] ;  𝝁𝑐 = [

𝜇1

⋮
𝜇𝑡

] ; 𝒈𝑐 = [

𝒈1

⋮
𝒈𝑡

] and 𝒆𝑐 = [

𝒆1

⋮
𝒆𝑡

], 

where 𝜇𝑖, 𝒈𝑖 and 𝒆𝑖 denote the general mean, the vector of genotypic values and the 

vector of random errors for trait 𝑖 , respectively. Then we consider the following 

standardized multiple-trait GBLUP model 

 𝒘𝑐 = 𝝁𝑐 ⊗ 𝟏𝑛 + 𝒈𝑐 + 𝒆𝑐, (1) 

where 𝟏𝑛 is the unit vector of order 𝑛 and ⊗ denotes the Kronecker product (Searle, 

1982, P266). It is assumed that 
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𝒈𝑐 ~ 𝑀𝑉𝑁(𝟎, 𝜮𝑔 ⊗ 𝑲) 

and 

𝒆𝑐 ~ 𝑀𝑉𝑁(𝟎, 𝜮𝑒 ⊗ 𝑰𝑛), 

where 𝟎 is the zero vector; 𝑲 is a genomic relationship matrix; 𝜮𝑔 is the genetic 

variance-covariance matrix among traits; 𝑰𝑛 is the identity matrix of order 𝑛 and 𝜮𝑒 

is the variance-covariance matrix of random errors among traits. Also, let 

𝜮𝑔 = [

𝜎𝑔1
2 ⋯ 𝜎𝑔1𝑡

⋮ ⋱ ⋮
𝜎𝑔1𝑡

⋯ 𝜎𝑔𝑡
2

] and 𝜮𝑒 = [

𝜎𝑒1
2 ⋯ 𝜎𝑒1𝑡

⋮ ⋱ ⋮
𝜎𝑒1𝑡

⋯ 𝜎𝑒𝑡
2

]. 

In this study, we use 𝑲 = 𝑴𝑴𝑇/𝑝, where 𝑴 is the standardized marker score 

matrix and 𝑝  is the number of SNP markers. Let 𝑨  be the original marker score 

matrix with elements equal to -1, 0 and 1, corresponding to homozygous alleles (𝐴1𝐴1), 

heterozygous alleles (𝐴1𝐴2) and the other homozygous alleles (𝐴2𝐴2), respectively. 

Also, let 𝑚𝑖𝑗  and 𝑎𝑖𝑗  separately denote the (𝑖𝑗)𝑡ℎ  elements of 𝑴  and 𝑨 . Then, 

𝑚𝑖𝑗 = (𝑎𝑖𝑗 − �̅�𝑗)/𝑠𝑗, where �̅�𝑗 and 𝑠𝑗 are the sample mean and the sample standard 

deviation of column j (corresponding to SNP j) in 𝑨. 

 

Composite Selection Index 

To evaluate an individual with multiple traits, we propose a selection index 

simultaneously accounting for all the traits of interest. Define the composite selection 

index (CSI) for individual 𝑗 as 
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𝐶𝑆𝐼(𝑗) = ∑ (±)𝑝𝑖𝑔𝑖𝑗
𝑡
𝑖=1 , 

where 𝑝𝑖 is the specified weight for trait 𝑖; 𝑔𝑖𝑗 is the genotypic value of trait 𝑖 on 

individual 𝑗 and the sign of (±) is taken “+” if the trait follows the rule “the larger 

the better”; otherwise “−” if the trait follows “the smaller the better”. 

 

The Distribution of Predicted Genotypic Values 

Let 

𝒘𝑐1 = [

𝒘11

⋮
𝒘𝑡1

] ; 𝒘𝑐2 = [

𝒘12

⋮
𝒘𝑡2

] ;  𝒈𝑐1 = [

𝒈11

⋮
𝒈𝑡1

] ; 

𝒈𝑐2 = [

𝒈12

⋮
𝒈𝑡2

] ;  𝒆𝑐1 = [

𝒆11

⋮
𝒆𝑡1

] and 𝒆𝑐2 = [

𝒆12

⋮
𝒆𝑡2

], 

where 𝒘𝑖1, 𝒈𝑖1 and 𝒆𝑖1 respectively denote the vectors of standardized phenotypic 

values, genotypic values and random errors for the training set. The training set is 

assumed to consist of 𝑛1  individuals. Likewise, 𝒘𝑖2 , 𝒈𝑖2  and 𝒆𝑖2  denote the 

corresponding vectors for the remaining 𝑛2 individuals not chosen in the training set 

(non-phenotyped set), where 𝑛1 + 𝑛2 = 𝑛 . Thus, the standardized multiple-trait 

GBLUP model of (1) can be equivalently written as 

[
𝒘𝑐1

𝒘𝑐2
] = 𝝁𝑐 ⊗ [

𝟏𝑛1

𝟏𝑛2

] + [
𝒈𝑐1

𝒈𝑐2
] + [

𝒆𝑐1

𝒆𝑐2
], 

where 

[
𝒈𝑐1

𝒈𝑐2
] ~ 𝑀𝑉𝑁 (𝟎, 𝜮𝑔 ⊗ [

𝑲11 𝑲12

𝑲21 𝑲22
]). 



doi:10.6342/NTU2020025519 
 

We used the R package sommer (Covarrubias-Pazaran, 2016) to find the REMLs for 

𝜮𝑔  and 𝜮𝑒 ; and BLUP for 𝒈𝑐1  using the training set data. That was based on the 

following model: 𝒘𝑐1 = 𝝁𝑐 ⊗ 𝟏𝑛1 + 𝒈𝑐1 + 𝒆𝑐1  where 𝒈𝑐1 ~ 𝑀𝑉𝑁(𝟎, 𝜮𝑔 ⊗ 𝑲11) . 

These estimated values are denoted as �̂�𝑐, �̂�𝑔, �̂�𝑒 and �̂�𝑐1. 

Under the condition that �̂�𝑐, �̂�𝑔, �̂�𝑒 and �̂�𝑐1 are all assumed to be fixed and 

known values, the distribution of predicted genotypic values (PGVs) for the non-

phenotyped set is given by 

 �̃�𝑐2|(�̂�𝑐, �̂�𝑔, �̂�𝑒 , �̂�𝑐1)~𝑀𝑉𝑁(�̂�𝑔𝑐2, �̂�𝑔𝑐2), (2) 

where �̂�𝑔𝑐2 = �̂�𝑐2 = 𝑲21(𝑲11)−1�̂�𝑐1  and �̂�𝑔𝑐2 = �̂� ̂𝑔 ⊗ (𝑲22 − 𝑲21(𝑲11)−1𝑲12) . 

Note that the calculation for �̂�𝑔𝑐2 and �̂�𝑔𝑐2 doesn’t involve �̂� ̂𝑒, i.e. the distribution 

of �̂�𝑐2 is free from the random or environmental variation. 

 

The Expected Improvement criteria for the CSI 

Let �̃�𝑐2(𝑗) = [�̃�𝑐21(𝑗) ⋯ �̃�𝑐2𝑡(𝑗)]𝑇 be the vector of the 𝑡 genotypic values on 

individual 𝑗  in Expression (2) . Then the 𝐶𝑆𝐼(𝑗)  for the individuals in the non-

phenotyped set is given by 

𝐶𝑆�̃�(𝑗) = 𝛴𝑖=1
𝑡 (±)𝑝𝑖�̃�𝑐2𝑖(𝑗). 

Clearly, 𝐶𝑆�̃�(𝑗) is a linear combination of �̃�𝑐2(𝑗), so that its distribution can be easily 

obtained from Expression (2) . The distribution of 𝐶𝑆�̃�(𝑗)  is described as 
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𝐶𝑆�̃�(𝑗) ~ 𝑁(�̂�𝐶𝑆𝐼(𝑗), �̂�𝐶𝑆𝐼(𝑗)
2 ). The improvement function for 𝐶𝑆�̃�(𝑗) is defined as 

𝐼𝑚(𝐶𝑆�̃�(𝑗)) = {  
 0 ,   if  𝐶𝑆�̃�(𝑗) < 𝑓𝑀

𝐶𝑆�̃�(𝑗) − 𝑓𝑀 ,   otherwise,
 

where 𝑓𝑀  is the maximal estimated 𝐶𝑆𝐼(𝑗)  value among the training set which is 

obtained from �̂�𝑐1 . Here, 𝐼𝑚(𝐶𝑆�̃�(𝑗))  is a random variable associated with the 

distribution of 𝐶𝑆�̃�(𝑗) and its expected value called the expected improvement (EI), 

can be derived as 

 𝐸𝐼(𝐶𝑆�̃�(𝑗)) = (�̂�𝐶𝑆𝐼(𝑗)
− 𝑓𝑀) 𝛷(𝑍𝑗) + �̂�𝐶𝑆𝐼(𝑗)

𝜙(𝑍𝑗), (3) 

where 𝑍𝑗 = (�̂�𝐶𝑆𝐼(𝑗)
− 𝑓𝑀) /�̂�𝐶𝑆𝐼(𝑗)

 ; 𝛷(∙)  is the cumulative density function of the 

standard normal distribution and 𝜙(∙)  is the probability density function of the 

standard normal distribution.  

Furthermore, let �̃� denote the vector of 𝐶𝑆�̃�(𝑗) for the non-phenotyped set. The 

distribution of �̃�  can be denoted as �̃� ~ 𝑀𝑉𝑁(�̂�𝐶𝑆𝐼 , �̂�𝐶𝑆𝐼) . Partition �̃�   �̂�𝐶𝑆𝐼  and 

�̂�𝐶𝑆𝐼 as 

�̃� = [𝐶𝑆�̃�∗

�̃�∗
] ;  �̂�𝐶𝑆𝐼 = [

�̂�𝐶𝑆𝐼
∗

�̂�∗ ] and �̂�𝐶𝑆𝐼 = [
�̂�𝐶𝑆𝐼

2 �̂�12
∗

�̂�21
∗ �̂�22

∗
], 

where 𝐶𝑆�̃�∗ represents the genotype with largest 𝐸𝐼(𝐶𝑆�̃�(𝑗)) of Equation (3), i.e. the 

genotype with 𝐶𝑆�̃�∗ is the first selected from the non-phenotyped set. Subsequently, 

we searched for the next genotype with the largest 𝐸𝐼(𝐶𝑆�̃�(𝑗)) among the remaining 

genotypes whose PGVs follow the conditional distribution 

 �̃�∗|(𝐶𝑆�̃�∗ = �̂�𝐶𝑆𝐼
∗ ) ~ 𝑀𝑉𝑁(�̂�ℎ

∗ , �̂�ℎ
∗ ), (4) 
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where �̂�ℎ
∗ = �̂�∗  and �̂�ℎ

∗ = �̂�22
∗ − �̂�21

∗ (�̂�𝐶𝑆𝐼
2 )−1�̂�12

∗  . Let ℎ̃(𝑗)
∗  ~ 𝑁 (�̂�ℎ(𝑗)

∗ , (�̂�ℎ(𝑗)
∗ )

2
) , 

representing a marginal distribution in Expression (4), then the corresponding EI can 

be derived as 

 𝐸𝐼(ℎ̃(𝑗)
∗ ) = (�̂�ℎ(𝑗)

∗ − 𝑓𝑀)𝛷(𝑍(𝑗)
∗ ) + �̂�ℎ(𝑗)

∗ 𝜙(𝑍(𝑗)
∗ ), (5) 

where 𝑍(𝑗)
∗ = (�̂�ℎ(𝑗)

∗ − 𝑓𝑀)/�̂�ℎ(𝑗)
∗ . The EI of (3) is abbreviated as EI-PGV, and the EI 

of (5) as EI-PGV-fwd. Also, M-PGV is the criterion using the mean values of PGVs.  

 

r-score method 

Ou an Liao (2019) proposed an optimization method to determine a training set 

for genomic selection. Their proposed method was derived from the Pearson’s 

correlation between GEBVs and phenotypic values, called as r-score method. The r-

score method was verified to be advantageous over some existing optimization method 

(Ou and Liao, 2019), and it can be used to choose an optimal training set from a 

candidate population with genotype data only. 

In this study, we use r-score method to determine a starting training set for the 

sequential phenotyping strategy. The r-score criterion can be described as 

𝑟-𝑠𝑐𝑜𝑟𝑒 =
𝑞12

√𝑞1𝑞2

 

where 

𝑞12 = 𝑇𝑟[𝑿0
𝑇(𝑰𝑛0

− �̅�𝑛0
)𝑿0𝑨𝑿]; 
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𝑞1 = (𝑛0 − 1) + 𝑇𝑟[𝑿0
𝑇(𝑰𝑛0

− �̅�𝑛0
)𝑿0]; 

𝑞2 = 𝑇𝑟[𝑨𝑇𝑿0
𝑇(𝑰𝑛0

− �̅�𝑛0
)𝑿0𝑨] + 𝑇𝑟[𝑿𝑇𝑨𝑇𝑿0

𝑇(𝑰𝑛0
− �̅�𝑛0

)𝑿0𝑨𝑿]. 

Here 𝑿 and 𝑿0 are design matrices for the training and test sets, respectively, and 

𝑨 = 𝑿𝑇(𝑿𝑿𝑇 + 𝜆𝑰)−1. The r-score together with M-PGV, EI-PGV and EI-PGV-fwd 

will be compared to determine the training data to update the prediction model in our 

strategy. 

 

The Assessment indices 

We use the estimates of 𝐶𝑆𝐼(𝑗) from the whole phenotype and genotype data as 

the true 𝐶𝑆𝐼(𝑗) values in this study. 

 

CIP@𝒌 

Suppose that the breeder hopes to identify the top 𝑘  individuals for the true 

𝐶𝑆𝐼(𝑗) values. Let 𝑇𝑠 be the set consisting of the top 𝑘 individuals for the estimated 

𝐶𝑆𝐼(𝑗) values. Also, let 𝑘𝑠 be the number of individuals which are exactly among the 

top 𝑘  individuals for the true 𝐶𝑆𝐼(𝑗)  values. Then, correctly identified proportion 

(CIP@𝑘) is defined as 

𝐶𝐼𝑃@𝑘 =
𝑘𝑠

𝑘
. 

NDCG@𝒌 



doi:10.6342/NTU20200255113 
 

Blondel et al. (2015) promoted the use of NDCG (normalized discounted 

cumulative gain) to measure the ability of various genomic selection strategies to select 

the top 𝑘 individuals for the true 𝐶𝑆𝐼(𝑗) values. The NDCG has been commonly used 

to measure the ability of search engines to retrieve highly relevant documents in the top 

search result (Jarelin and Kekalainen, 2000). 

Let 𝐶𝑆𝐼(1) ≥ 𝐶𝑆𝐼(2) ≥ ⋯ ≥ 𝐶𝑆𝐼(𝑛)  be the true 𝐶𝑆𝐼(𝑗)  values sorted in 

decreasing order, where 𝜋 = (𝜋1, 𝜋2, … , 𝜋𝑛)  is a permutation of 𝜋0 = (1, 2, … ,

𝑛) . Also, let �̂�0 = (𝐶𝑆�̂�(1), 𝐶𝑆�̂�(2), … , 𝐶𝑆�̂�(𝑛))  be the estimated vector of 𝒉0 =

(𝐶𝑆𝐼(1), 𝐶𝑆𝐼(2), … , 𝐶𝑆𝐼(𝑛)). Then, the DCG score at position 𝑘 of the predicted ranking 

is defined as 

𝐷𝐶𝐺@𝑘(𝒉0, 𝜋(�̂�0)) = ∑ 𝑓(𝐶𝑆𝐼(𝜋𝑗))𝑑(𝑗)

𝑘

𝑗=1

 

and the DCG score at position 𝑘 of the ideal ranking is defined as 

𝐷𝐶𝐺@𝑘(𝒉0, 𝜋0(𝒉0)) = ∑ 𝑓(𝐶𝑆𝐼(𝑗))𝑑(𝑗)

𝑘

𝑗=1

 

where 𝑓(𝐶𝑆𝐼(𝑗))  is a monotonically increasing gain function and 𝑑(𝑗)  is a 

monotonically decreasing discounted function. We consider that 𝑓(𝐶𝑆𝐼(𝑗)) = 𝐶𝑆𝐼(𝑗) 

(linear gain) and 

𝑑(𝑗) =
1

𝑙𝑜𝑔2(𝑗+1)
. 

The NDCG score at position 𝑘 for the selection strategy is then defined as 
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𝑁𝐷𝐶𝐺@𝑘(𝒉0, �̂�0) =
𝐷𝐶𝐺@𝑘(𝒉0,𝜋(�̂�0))

𝐷𝐶𝐺@𝑘(𝒉0,𝜋0(𝒉0))
. 

The NDCG score ranges between 0 to 1. 

 

Iterative strategy 

Step 0: Select 𝑛0  individuals as an initial training set according to the r-score 

method, denoted by 𝑺0 . Initialize 𝑛𝑡𝑟 ← 𝑛0  and 𝑺𝑡𝑟 ← 𝑺0 , where 𝑺𝑡𝑟  denotes the 

current training set and 𝑛𝑡𝑟 is its sample size. 

 

Step 1: Standardize the phenotypic data of training set, then perform the standardized 

multiple-trait GBLUP model, and yield the estimated values �̂�𝑐, �̂�𝑔, �̂�𝑒 and �̂�𝑐1. 

 

Step 2: Estimate predicted genotypic value of the non-phenotyped set, denoted �̂�𝑐2, 

and calculate 𝐶𝑆�̂�(𝑗) by �̂�𝑐𝑖(𝑗) for 𝑖 = 1, 2, … , 𝑡; 𝑗 = 1, 2, … , 𝑛𝑖. 

 

Step 3: Calculate CIP@𝑘 and NDCG@𝑘 for a top set of all individuals according 

to the 𝐶𝑆�̂�(𝑗). These two indices are used to evaluate the accuracy for the detection of 

the superior individuals. 

 

Step 4: Select 𝑛𝑠𝑒𝑙 additional training set individuals from the non-phenotyped set, 
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denoted 𝑺𝑠𝑒𝑙, according to four different acquisition functions, r-score, M-PGV, EI-

PGV and EI-PGV-fwd. And add those new training set to the current training set. That 

is, the union of 𝑺𝑡𝑟 and 𝑺𝑠𝑒𝑙 makes the new training set, expressed as 𝑺𝑡𝑟 ← 𝑺𝑡𝑟 ∪

𝑺𝑠𝑒𝑙. Similarly, 𝑛𝑡𝑟 ← 𝑛𝑡𝑟 + 𝑛𝑠𝑒𝑙. Go to step 1. 

 

Criteria Comparison Based on Real Datasets 

 There are three datasets used to demonstrate the iterative strategy and to compare 

the selection criteria by assessment index based on true 𝐶𝑆𝐼(𝑗) values defined above. 

The size of starting training set 𝑛0 and training set selected at each batch 𝑛𝑠𝑒𝑙 were 

the same. Here, we considered the following five cases: (i) 𝑛0 = 𝑛𝑠𝑒𝑙 = 30 for the 44k 

rice dataset, denoted 44k_30; (ii) 𝑛0 = 𝑛𝑠𝑒𝑙 = 10 for the tropical rice breeding lines 

dataset, denoted TR_10; (iii) 𝑛0 = 𝑛𝑠𝑒𝑙 = 30  for the tropical rice breeding lines 

dataset, denoted TR_30; (iv) 𝑛0 = 𝑛𝑠𝑒𝑙 = 50  for the tropical rice breeding lines 

dataset, denoted TR_50; (v) 𝑛0 = 𝑛𝑠𝑒𝑙 = 30 for the wheat dataset, denoted wheat_30. 

Also, we analyzed different scenarios setting for each dataset as shown in Table 1. There 

are three scenarios for 44k rice dataset, four scenarios for tropical rice breeding lines 

dataset and one scenario for wheat dataset. The procedures of Steps 0 to 4 were repeated 

30 times for each case and each scenario. 
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The Stopping Rule for the Iterative Strategy 

For a real dataset, the true 𝐶𝑆𝐼(𝑗)  values are unknown among the candidate 

population, so we need a stopping rule for the iterative searching process. This stopping 

rule is according to the EI values in each batch. If the box-plot for a batch approaches 

0, then the searching process can stopping. In other word, there is no more improvement 

made by adding phenotyped individuals to update GBLUP model, whereas the EI 

values gets equal to 0. 
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Results 

Criteria Comparison Based on Assessment Indices 

The 44k rice dataset 

The results of case (i) for the 44k rice dataset were displayed in Figure 1. In the 

figure, M-PGV criterion had a better performance than the other criteria before the 5th 

batch. Around the 5th batch, EI-PGV and EI-PGV-fwd criteria would outperform the 

other criteria and approached 1 on the NDCG@𝑘, regardless of whether the number of 

selected individuals 𝑘 is equal to 1, 5 or 10. And CIP@10 values are greater than 0.9 

around the 6th batch.  

The tropical rice dataset 

 Cases (ii), (iii) and (iv) were the analyses of the tropical rice breeding lines dataset 

with different batch size setting. The results of case (ii) were displayed in Figure 2. In 

the figure, M-PGV and r-score criteria had a better performance in the early batches for 

all the scenarios, regardless of that we used CIP@𝑘 or NDCG@𝑘 to display. Around 

the 8th batch, EI-PGV and EI-PGV-fwd criteria would outperform the other two criteria. 

In the figure, the NDCG indices would be approached 1 around the 16th batch, that’s a 

position which could stop the strategy. For the results of cases (iii) and (iv) were 

displayed in Figure 3 and 4, we could find the performance of four acquisition functions 

is similar to the case (ii), and the EI criteria would outperform the other methods after 
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the training set size reached a certain number. And the NDCG indices approached 1 

around the 5th batch and the 3rd batch for case (ii) and case (iii), respectively. Therefore, 

whether the setting of the size of batch with the same dataset, the training set sizes that 

made model have enough estimation ability are almost the same.  

The wheat dataset 

The results of case (v) for the wheat dataset were displayed in Figure 5. Here we 

used this dataset to demonstrate the average of the four responses. The NDCG indices 

approached 1 around the 13th batch and the 15th batch with EI-PGV and EI-PGV-fwd 

criteria. The EI methods have better performance than other criteria. 

To compare the results of case (i), (iii) and (v), in which the size of initial training 

set and the batch size are both fixed at 30. For the 44k rice and tropical rice datasets, 

they used less than half of the size of population to make the model estimate well; but 

the wheat dataset used more than half of the size of population to achieve the same 

performance as the other datasets. 

 

The Stopping Rule for the Iterative Strategy 

 To evaluate the stopping rule for the iterative strategy, we observed the EI values 

for EI-PGV-fwd, EI-PGV and M-PGV criteria in boxplot, and find the batches whose 

values approached 0. 
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The results of case (i) for the 44k rice dataset were shown in Figure 6. The EI 

values for the criteria approached 0 approximately between batches 5 and 7; the results 

of case (ii) for the tropical rice breeding lines were shown in Figure 7, and the EI values 

approached 0 approximately between batches 10 and 12; the results of case (iii) for the 

tropical rice breeding lines were shown in Figure 8, and the EI values approached 0 

approximately between batches 5 and 7; the results of case (iv) for the tropical rice 

breeding lines were shown in Figure 9, and the EI values approached 0 approximately 

between batches 3 and 4; the results of case (v) for the wheat dataset were shown in 

Figure 10, and the EI values approached 0 approximately between batches 14 and 16. 

These results above are consistent with the results of assessment indices, that the 

batches were chosen to stop the strategy. 

 

The True Genotypic Values for Specific Batches 

 To illustrate that the top 10 individuals were selected for specific batches, we 

transformed the true 𝐶𝑆𝐼(𝑗) values back to the true genotypic values, and evaluated the 

average values of 30 repetitions for each trait. The specific batches were determined by 

the boxplot of stopping rule for each case. 

The 44k rice dataset 

 The result for case (i) is shown in Table 2. The two traits FTAA and PLHE follow 
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“the smaller the better”, so we expected the true genotypic values would decrease as 

the weight increases. From the table, the true genotypic values of each scenario 

completely follow the weights set in Table 1(a). 

The tropical rice dataset 

For cases (ii), (iii) and (iv), the trait YLD follows “the larger the better”, and the 

traits PH and FT follow “the smaller the better”. From Table 3 for case (ii), the results 

of EI-PGV-fwd and EI-PGV criteria follow the weights set in Table 2(b), although there 

is some slight deviation on trait FT for some batches, the difference in the values is very 

small among the scenarios; the result of M-PGV criterion completely follow the 

weights set in Table 2(b) until the 12th batch on trait YLD. And cases (iii) and (iv) have 

the same results with the results of case (ii) on the EI-PGV-fwd and EI-PGV criteria, 

which are displayed in Table 4 and 5, respectively; the result of M-PGV criterion has 

the same performance with the other criteria in cases (iii) and (iv). 

The wheat dataset 

The weights of case (v) we set here represent the highest average yield in all 

environments. However, we just used this dataset to demonstrate the average of the four 

responses in this study, and the result of case (v) was displayed in Table 6. GY_E1 

doesn’t follow the weights in the performance of different batches and acquisition 

functions, but the performance of other responses follows the setting well. 
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Discussion 

 In this study, we applied the r-score method instead of random sampling used in 

Tanaka and Iwata (2018) and Shen and Liao (2019). The initial training set determined 

by random sampling doesn’t consider any information from dataset. On the other hand, 

the r-score method considers the information of genotypes, and determines an optimal 

training set for improving model estimation ability. We re-performed the strategy for 

cases (i), (iii) and (v) with using the random sampling to determine the initial training 

set, then calculated the average of CIP@10 and NDCG@10 at the first batch with the 

30 repetitions, the results are presented in Table 7. The results show that the r-score can 

indeed make the model have better estimation ability at the first batch, and r-score is 

even much better than random sampling under Tropical rice dataset. Using r-score at 

the first batch can make the strategy more efficient, in other words, it has better model 

prediction ability and it can select superior genotypes in earlier batches. 

The assessment indices, CIP@𝑘 and NDCG@𝑘, seem to be similar, but NDCG 

not only compares the top 𝑘 individuals like CIP, but also considers their ranking and 

the individuals other than the top 𝑘. We find the EI-PGV and EI-PGV-fwd criteria seem 

to be more stable on training set determination for model estimation, even they didn’t 

have the best performance in earlier batches, but they could approach 1 faster than other 

criteria by NDCG@𝑘. For the 44k rice and Tropical rice datasets, the training set size 



doi:10.6342/NTU20200255122 
 

just requires less than half of the dataset size according to the NDCG@𝑘 index, and 

it’s enough to make the model have great prediction ability; but the wheat dataset 

requires more than half of the dataset size to achieve the same performance. The 

possible reason for the wheat dataset is that the number of markers is too small, 

resulting in inaccurate model estimation. The 44k rice dataset needs about 150 out of 

373 training individuals for performing the strategy according to Figure 6; the tropical 

rice dataset needs about 150 to 160 out of 328 training individuals for performing the 

strategy according to Figures 7, 8, and 9; but the wheat dataset needs about 420 out of 

599 training individuals for performing the strategy according to Figure 10. 

 We used a stopping rule for the strategy if the true genotypic values are unknown. 

Comparison of plot for the assessment indices and boxplot for stopping rule, their 

results are consistent. It means that this stopping rule can really help us decide when to 

stop the strategy. However, we need to further study the feasibility of CSI. The resulting 

tables of the true genotypic values show that the values indeed follow the scenarios in 

this study. In general, EI-PGV and EI-PGV-fwd criteria have better performance in the 

sequential phenotyping strategy, it can select superior genotypes more effectively and 

efficiently than other criteria. And CSI can indeed be effectively applied to the multiple-

trait selection. 

 The EI-PGV and EI-PGV-fwd criteria performed in Tanaka and Iwata (2018) and 
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Shen and Liao (2019) were used to explore the best individual. In our study, these 

criteria are used to determine the training set, and the superior genotypes are selected 

by 𝐶𝑆�̂�(𝑗). However, even if the EI criteria were applied for different objectives, they 

were shown to have a great performance on the strategy of this study. 

 In general, this strategy really helps us to detect superior genotypes in an efficient 

way. We used several acquisition functions and two assessment indices to find best 

training set determination methods for this strategy. Finally, we observed that EI criteria 

have the most stable and better performance than other criteria. From this study, it 

showed that EI methods not only have a great performance in exploring the best 

genotype (Shen and Liao, 2019), but also have a good performance in selecting a good 

training population for model estimation. In our experience, the computing time for 

performing our proposed iterative process could mainly depend on the number of traits 

and the number of individuals in the candidate population. We compare the computing 

time for Cases (i), (iii), and (v) which all have the batch size of 30. It required about 4 

to 5 hours for completing the 44k rice dataset analysis with 2 traits and 373 individuals 

in Case (i). Similarly, it required about 1 day, and 6 to 7 days for the tropical rice dataset 

with 3 traits and 328 individuals in Case (iii), and the wheat dataset with 4 traits and 

599 individuals in Case (v), respectively. Developing an effective algorithm to reduce 

the computing time will be our future study. 
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Table 1. The specified weight for trait 𝑖 of each dataset. 

(a) 44 rice dataset 

 Weight (𝑝𝑖) 

Scenarios FTAA PLHE 

1 1 0 

2 0 1 

3 0.5 0.5 

(b) Tropical rice breeding lines dataset 

 Weight (𝑝𝑖) 

Scenarios YLD PH FT 

1 1 0 0 

2 0.7 0.3 0 

3 0.7 0 0.3 

4 0.7 0.15 0.15 

(c) Wheat dataset 

 Weight (𝑝𝑖) 

Scenarios GD_E1 GD_E2 GD_E3 GD_E4 

1 0.25 0.25 0.25 0.25 
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Table 2. For the 44k rice dataset with the batch size is set to 30, the average of true genotypic values of the 

individuals which are selected on specific batches according to the stopping rule over the 30 repetitions. 

44k_30 True Genotypic Value 

scenario EI-PGV-fwd EI-PGV M-PGV 

(Batch 4) FTAA PLHE FTAA PLHE FTAA PLHE 

1 64.29 97.97 64.30 98.25 64.45 97.91 

2 86.26 87.73 85.18 87.88 78.62 87.03 

3 67.10 92.23 67.36 92.06 67.14 93.18 

(Batch 5) FTAA PLHE FTAA PLHE FTAA PLHE 

1 64.07 97.95 64.04 98.01 64.42 97.97 

2 82.68 86.65 83.17 86.88 78.52 86.72 

3 66.43 92.53 66.69 92.23 66.99 92.36 

(Batch 6) FTAA PLHE FTAA PLHE FTAA PLHE 

1 64.02 98.01 64.01 98.01 64.10 98.03 

2 79.86 86.23 79.41 86.22 78.45 86.44 

3 66.35 92.59 66.40 92.49 67.34 91.34 

(Batch 7) FTAA PLHE FTAA PLHE FTAA PLHE 

1 64.01 98.04 64.01 98.01 64.10 97.89 

2 78.18 86.04 78.11 86.07 77.94 86.22 

3 66.25 92.72 66.32 92.61 67.11 91.48 

(Batch 8) FTAA PLHE FTAA PLHE FTAA PLHE 

1 64.01 98.03 64.01 98.01 64.01 98.03 

2 77.68 86.08 77.61 86.07 77.23 86.18 

3 66.25 92.71 66.25 92.70 67.07 91.53 

FTAA: flowering time at Arkansas; PLHE: plant height; M-PGV: the strategy based on the mean of 

predicted genotypic values; EI-PGV: the strategy with the expected improvement criterion based on 

distribution of predicted genotypic values; EI-PGV-fwd: the strategy with the forward expected 

improvement criterion based on distribution of predicted genotypic values. 
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Table 3. For the tropical rice breeding lines dataset with the batch size is set to 10, the average of true genotypic 

values of the individuals which are selected on specific batches according to the stopping rule over the 30 

repetitions. 

TR_10 True Genotypic Value 

scenario EI-PGV-fwd EI-PGV M-PGV 

(Batch 9) YLD PH FT YLD PH FT YLD PH FT 

1 5464.35 107.36 85.60 5470.46 107.08 85.88 5421.93 109.14 86.80 

2 5454.64 105.95 86.04 5429.91 105.45 86.16 5371.41 103.52 85.81 

3 5435.44 109.76 85.04 5435.94 108.36 85.06 5430.98 106.20 85.01 

4 5462.45 107.04 85.37 5464.21 106.85 85.80 5399.88 104.75 85.12 

(Batch 10) YLD PH FT YLD PH FT YLD PH FT 

1 5481.60 107.66 85.73 5480.57 107.39 85.95 5428.80 109.30 86.91 

2 5459.02 105.46 85.93 5465.49 105.65 85.95 5375.17 103.48 85.77 

3 5450.73 109.99 85.13 5457.62 108.56 85.27 5438.37 106.58 85.09 

4 5477.00 107.00 85.45 5474.94 107.01 85.93 5411.35 104.70 85.17 

(Batch 11) YLD PH FT YLD PH FT YLD PH FT 

1 5485.25 107.38 85.75 5486.14 107.60 85.98 5435.39 109.03 86.80 

2 5461.65 105.09 85.73 5467.74 105.45 85.82 5383.78 103.30 85.61 

3 5457.02 109.88 85.03 5473.53 108.56 85.30 5445.17 106.70 84.96 

4 5481.12 106.90 85.61 5479.31 107.08 85.93 5424.62 104.75 85.01 

(Batch 12) YLD PH FT YLD PH FT YLD PH FT 

1 5489.30 107.57 85.78 5487.19 107.52 85.93 5450.63 108.88 86.75 

2 5460.67 104.82 85.65 5458.60 104.99 85.69 5391.27 103.17 85.55 

3 5463.99 109.23 85.14 5477.24 108.21 85.21 5449.49 106.81 84.83 

4 5485.62 106.91 85.67 5479.78 106.72 85.85 5433.93 104.88 84.84 

(Batch 13) YLD PH FT YLD PH FT YLD PH FT 

1 5488.12 107.49 85.79 5487.85 107.76 86.02 5457.92 109.06 86.75 

2 5452.54 104.28 85.60 5457.24 104.42 85.57 5401.02 103.01 85.40 

3 5474.98 108.48 85.12 5480.55 108.05 85.06 5455.93 106.82 84.82 

4 5484.46 106.60 85.50 5481.20 106.19 85.66 5439.40 105.05 84.97 

YLD: grain yield; PH: plant height; FT: flowering time; M-PGV: the strategy based on the mean of predicted 

genotypic values; EI-PGV: the strategy with the expected improvement criterion based on distribution of 

predicted genotypic values; EI-PGV-fwd: the strategy with the forward expected improvement criterion based 

on distribution of predicted genotypic values. 
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Table 4. For the tropical rice breeding lines dataset with the batch size is set to 30, the average of true genotypic 

values of the individuals which are selected on specific batches according to the stopping rule over the 30 

repetitions.  

TR_30 True Genotypic Value 

scenario EI-PGV-fwd EI-PGV M-PGV 

(Batch 4) YLD PH FT YLD PH FT YLD PH FT 

1 5493.85 107.30 85.77 5499.73 107.43 85.81 5484.73 107.58 86.06 

2 5466.46 104.98 85.55 5457.58 104.49 85.54 5426.63 102.39 84.89 

3 5466.56 107.85 84.99 5472.43 107.93 84.97 5468.98 106.47 84.74 

4 5486.37 106.72 85.55 5479.49 106.37 85.39 5451.39 104.24 84.79 

(Batch 5) YLD PH FT YLD PH FT YLD PH FT 

1 5503.18 107.68 86.01 5506.64 107.90 86.05 5497.01 107.84 86.19 

2 5461.34 104.20 85.43 5452.97 103.66 85.29 5430.89 102.37 84.90 

3 5495.06 107.06 84.91 5493.37 107.22 84.82 5474.41 106.84 84.71 

4 5488.54 106.01 85.31 5487.99 105.94 85.27 5459.36 104.46 84.74 

(Batch 6) YLD PH FT YLD PH FT YLD PH FT 

1 5509.42 107.70 86.03 5512.26 107.73 86.05 5505.04 108.36 86.41 

2 5446.90 103.02 85.21 5442.35 102.87 85.23 5435.36 102.54 84.94 

3 5494.45 106.73 84.57 5497.15 106.86 84.51 5485.12 107.16 84.64 

4 5491.08 105.49 85.09 5491.74 105.59 85.02 5458.72 104.25 84.60 

(Batch 7) YLD PH FT YLD PH FT YLD PH FT 

1 5514.54 107.83 86.06 5518.04 107.89 86.17 5509.58 108.92 86.69 

2 5437.02 102.18 84.98 5439.01 102.37 85.06 5434.67 102.28 84.94 

3 5496.59 106.73 84.38 5499.20 106.80 84.42 5494.09 107.48 84.61 

4 5479.63 104.98 84.55 5484.40 105.09 84.66 5465.23 104.18 84.60 

(Batch 8) YLD PH FT YLD PH FT YLD PH FT 

1 5520.61 108.11 86.00 5522.22 108.13 86.05 5515.32 108.86 86.55 

2 5435.65 102.00 84.91 5437.96 102.07 84.89 5432.88 102.04 84.95 

3 5492.05 106.61 84.25 5491.97 106.54 84.26 5497.79 107.32 84.55 

4 5454.16 103.44 84.22 5455.13 103.33 84.33 5469.02 104.24 84.57 

YLD: grain yield; PH: plant height; FT: flowering time; M-PGV: the strategy based on the mean of predicted 

genotypic values; EI-PGV: the strategy with the expected improvement criterion based on distribution of 

predicted genotypic values; EI-PGV-fwd: the strategy with the forward expected improvement criterion based 

on distribution of predicted genotypic values. 
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Table 5. For the tropical rice breeding lines dataset with the batch size is set to 50, the average of true genotypic 

values of the individuals which are selected on specific batches according to the stopping rule over the 30 

repetitions.  

TR_50 True Genotypic Value 

scenario EI-PGV-fwd EI-PGV M-PGV 

(Batch 2) YLD PH FT YLD PH FT YLD PH FT 

1 5462.68 106.66 85.34 5467.87 106.47 85.33 5470.19 107.69 86.12 

2 5423.59 105.38 85.93 5420.73 104.93 85.82 5417.25 103.59 85.18 

3 5417.13 109.47 85.20 5448.85 108.65 84.97 5442.65 106.95 85.04 

4 5434.60 106.87 85.58 5448.67 106.45 85.39 5441.80 104.94 85.02 

(Batch 3) YLD PH FT YLD PH FT YLD PH FT 

1 5504.23 107.35 85.76 5506.12 107.23 85.71 5494.21 107.99 86.07 

2 5459.48 104.41 85.42 5466.83 104.62 85.44 5431.75 102.42 85.01 

3 5492.00 107.83 84.79 5499.86 107.68 84.99 5481.58 106.62 84.68 

4 5498.24 106.54 85.36 5494.83 106.07 85.22 5463.41 104.36 84.72 

(Batch 4) YLD PH FT YLD PH FT YLD PH FT 

1 5515.60 107.44 85.76 5516.85 107.45 85.78 5510.10 108.71 86.44 

2 5454.11 103.21 85.05 5452.32 103.27 85.21 5433.26 102.16 84.96 

3 5501.04 106.90 84.50 5499.44 106.84 84.40 5489.44 107.04 84.47 

4 5497.82 105.60 84.94 5494.86 105.49 84.90 5475.62 106.65 84.69 

(Batch 5) YLD PH FT YLD PH FT YLD PH FT 

1 5523.78 107.96 85.84 5523.22 108.01 85.77 5518.65 108.71 86.53 

2 5443.78 102.37 84.87 5444.47 102.38 84.85 5435.10 102.01 84.93 

3 5485.93 106.34 84.15 5488.13 106.40 84.19 5494.74 107.10 84.40 

4 5465.63 104.21 84.24 5468.12 104.33 84.23 5470.81 104.2 84.45 

(Batch 6) YLD PH FT YLD PH FT YLD PH FT 

1 5527.90 107.69 85.58 5527.89 107.77 85.71 5526.26 108.20 86.23 

2 5434.69 101.91 84.83 5436.31 101.97 84.82 5432.92 101.87 84.90 

3 5483.01 106.07 84.01 5483.88 106.11 84.02 5485.68 106.45 84.07 

4 5471.40 104.36 84.14 5464.38 103.84 84.18 5469.97 104.21 84.15 

YLD: grain yield; PH: plant height; FT: flowering time; M-PGV: the strategy based on the mean of predicted 

genotypic values; EI-PGV: the strategy with the expected improvement criterion based on distribution of 

predicted genotypic values; EI-PGV-fwd: the strategy with the forward expected improvement criterion based 

on distribution of predicted genotypic values. 
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Table 6. For the wheat dataset with the batch size is set to 30, the average of true genotypic values of the 

individuals which are selected on specific batches according to the stopping rule over the 30 repetitions.  

Wheat_30 True Genotypic Value 

scenario EI-PGV-fwd EI-PGV M-PGV 

(Batch 12) GY_E1 GY_E2 GY_E3 GY_E4 GY_E1 GY_E2 GY_E3 GY_E4 GY_E1 GY_E2 GY_E3 GY_E4 

1 0.01 0.91 0.93 0.91 0.00 0.90 0.92 092 -0.30 0.84 0.88 1.06 

(Batch 13) GY_E1 GY_E2 GY_E3 GY_E4 GY_E1 GY_E2 GY_E3 GY_E4 GY_E1 GY_E2 GY_E3 GY_E4 

1 0.01 0.91 0.93 0.92 0.00 0.91 0.93 0.92 -0.28 0.82 0.87 1.07 

(Batch 14) GY_E1 GY_E2 GY_E3 GY_E4 GY_E1 GY_E2 GY_E3 GY_E4 GY_E1 GY_E2 GY_E3 GY_E4 

1 -0.01 0.91 0.94 0.94 0.00 0.90 0.93 0.93 -0.25 0.83 0.88 1.06 

(Batch 15) GY_E1 GY_E2 GY_E3 GY_E4 GY_E1 GY_E2 GY_E3 GY_E4 GY_E1 GY_E2 GY_E3 GY_E4 

1 -0.03 0.92 0.95 0.96 -0.02 0.91 0.94 0.95 -0.26 0.84 0.88 1.06 

(Batch 16) GY_E1 GY_E2 GY_E3 GY_E4 GY_E1 GY_E2 GY_E3 GY_E4 GY_E1 GY_E2 GY_E3 GY_E4 

1 -0.04 0.91 0.95 0.98 -0.02 0.92 0.95 0.96 -0.26 0.86 0.90 1.05 

GY_E1: grain yield at environment 1; GY_E2: grain yield at environment 2; GY_E3: grain yield at 

environment 3; GY_E4: grain yield at environment 4; M-PGV: the strategy based on the mean of predicted 

genotypic values; EI-PGV: the strategy with the expected improvement criterion based on distribution of 

predicted genotypic values; EI-PGV-fwd: the strategy with the forward expected improvement criterion based 

on distribution of predicted genotypic values. 
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Table 7. Comparison that the average of CIP@10 and NDCG@10 for random sampling and r-score at the first 

batch with size is fixed at 30. 

(a) 44k rice dataset 

 CIP@10 NDCG@10 

Scenario RS r-score RS r-score 

1 0.17 0.19 0.39 0.46 

2 0.12 0.16 0.69 0.70 

3 0.12 0.09 0.55 0.53 

(b) Tropical rice breeding lines dataset 

 CIP@10 NDCG@10 

Scenario RS r-score RS r-score 

1 0.12 0.30 0.35 0.62 

2 0.16 0.42 0.29 0.56 

3 0.11 0.26 0.34 0.59 

4 0.14 0.35 0.32 0.57 

(c) Wheat dataset 

 CIP@10 NDCG@10 

scenario RS r-score RS r-score 

1 0.05 0.05 0.30 0.43 

CIP@10: correct identification proportion of top 10 individuals; NDCG@10: normalized discounted 

cumulative gain of top 10 individuals; RS: random sampling. 
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(a) Scenario 1 
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(b) Scenario 2 
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(c) Scenario 3 

 

Figure 1. The assessment indices for case (i). For the 44k rice dataset with the batch size is set to 30, 

the average of correct identification proportion (CIP) and normalized discounted cumulative gain of 

top 𝑘 individuals (NDCG@k), which were calculated at each batch over the 30 repetitions.  
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(a) Scenarios 1 
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(b) Scenario 2 
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(c) Scenario 3 
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(d) Scenario 4 

 

Figure 2. The assessment indices for case (ii). For the tropical rice breeding lines dataset with the batch 

size is set to 10, the average of correct identification proportion (CIP) and normalized discounted 

cumulative gain of top 𝑘 individuals (NDCG@k), which were calculated at each batch over the 30 

repetitions.  
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(a) Scenario 1 
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(b) Scenario 2 
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(c) Scenario 3 
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(d) Scenario 4 

 

Figure 3. The assessment indices for case (iii). For the tropical rice breeding lines dataset with the 

batch size is set to 30, the average of correct identification proportion (CIP) and normalized discounted 

cumulative gain of top 𝑘 individuals (NDCG@k), which were calculated at each batch over the 30 

repetitions.  
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(a) Scenario 1 
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(b) Scenario 2 
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(c) Scenario 3 
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(d) Scenario 4 

 

Figure 4. The assessment indices for case (iv). For the tropical rice breeding lines dataset with the 

batch size is set to 50, the average of correct identification proportion (CIP) and normalized discounted 

cumulative gain of top 𝑘 individuals (NDCG@k), which were calculated at each batch over the 30 

repetitions.  
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(a) Scenario 1 

 

Figure 5. The assessment indices for case (v). For the wheat dataset with the batch size is set to 30, the 

average of correct identification proportion (CIP) and normalized discounted cumulative gain of top 

𝑘 individuals (NDCG@k), which were calculated at each batch over the 30 repetitions.  
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(a) Scenario 1 

 

(b) Scenario 2 

 

(c) Scenario 3 

 

Figure 6. The stopping rule for case (i). For the 44k rice dataset with the batch size is set to 30, the 

expected values of training set which is determined by EI-PGV-fwd, EI-PGV and M-PGV at each 

batch. 
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(a) Scenario 1 

 

(b) Scenario 2 

 

(c) Scenario 3 
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(d) Scenario 4 

 

Figure 7. The stopping rule for case (ii). For the tropical rice breeding lines dataset with the batch size 

is set to 10, the expected values of training set which is determined by EI-PGV-fwd, EI-PGV and M-

PGV at each batch. 
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(a) Scenario 1 

 

(b) Scenario 2 

 

(c) Scenario 3 
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(d) Scenario 4 

 

Figure 8. The stopping rule for case (iii). For the tropical rice breeding lines dataset with the batch size 

is set to 30, the expected values of training set which is determined by EI-PGV-fwd, EI-PGV and M-

PGV at each batch. 

 

  



doi:10.6342/NTU20200255156 
 

(a) Scenario 1 

 

(b) Scenario 2 

 

(c) Scenario 3 
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(d) Scenario 4 

 

Figure 9. The stopping rule for case (iv). For the tropical rice breeding lines dataset with the batch size 

is set to 50, the expected values of training set which is determined by EI-PGV-fwd, EI-PGV and M-

PGV at each batch. 
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(a) Scenario 1 

 

Figure 10. The stopping rule for case (v). For the tropical rice breeding lines dataset with the batch 

size is set to 30, the expected values of training set which is determined by EI-PGV-fwd, EI-PGV and 

M-PGV at each batch. 

 

 




