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摘要 

物種豐富度常做為物種多樣性評估指標。近年由於公民科學興起，可望成為

蒐集生物多樣性資料的一項方法。公民科學主要分為兩類：系統性公民科學與非系

統性公民科學。系統性公民科學比非系統性公民科學更具有標準化的調查方法，但

志工培訓與參與度維持的成本也較高，資料缺失發生頻率相對較高。非系統性公民

科學沒有一致的標準調查方法，且志工參與條件較低，大量的觀測資料有機會彌補

系統性公民科學的資料缺失。基於非系統性公民科學在調查上的彈性，物種偵測率

與努力量的變異（例如：調查持續時間）都很容造成資料偏差。僅管預測物種豐富

度可以減少不完美物種偵測率所造成的偏差，但在非系統性公民科學中，不同物種

豐富度預測方法的表現仍不清楚。另外，在非系統性公民科學，較缺乏探討時間調

查努力量與物種豐富度之間的非線性關係。本研究使用誤差值(bias)，以台灣繁殖

鳥類大調查(BBS)樣區之原始物種豐富度為比較基準，計算與該樣區鄰近範圍eBird

紀錄清單在標準化時間調查努力量下評估物種豐富度預測表現。我選擇包含在每

個獨立的 2×2 km BBS 樣區內所有 eBird 紀錄清單，並計算三種物種豐富度預測方

法中誤差值最小的預測方法。為探討物種豐富度經預測後在標準化時間調查努力

量上的表現，我於四個非線性方程式中探討時間調查努力量與物種豐富度表現最

好的方程式。本研究發現，Chao1 物種豐富度預測方法有最低的誤差值。而冪函數

方程式為解釋時間調查努力量與物種豐富度關係的最佳非線性方程式。在 60 分鐘

基準之冪函數方程式上，從原始物種豐富度經過 Chao1 物種豐富度預測後，誤差

值更接近於零(從-0.34 至-0.14)。代表 eBird 物種豐富度經預測後相對於 BBS 紀錄

物種數從 66%提升至 86%。結果指出，單獨使用原始物種豐富度來做物種豐富度

指標時，不完美偵測率可能導致資料誤差。經過物種豐富度預測後會增加物種豐富

度指標的準確度。在非系統性公民科學中，調查方法與物種偵測率影響偵測物種數

量。另外，低時間調查努力量容易產生較高比例的單隻種(singleton)，影響物種豐

富度預測的準確性，可能限制非系統性公民科學資料的使用性。本研究建議，非系

統性公民科學的物種豐富度需經過預測才能降低不完美偵測率所造成的資料偏差。

另外，使用 Chao1 物種豐富度方法執行預測時，需評估樣本的單隻種比例所產生

之預測誤差。
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Abstract 

Ecologists have long recognized species richness as an essential indicator of 

biodiversity and ecosystem functioning. More recently, citizen science has emerged as a 

means for collecting species richness data. There are two main categories of citizen 

science: structured and unstructured citizen science. These two categories employ 

different investigations methods, as structured citizen science tends to be more rigorous, 

but requires volunteers with more training and determination, resulting in high frequency 

of missing observations. In contrast, unstructured citizen science is less formal and easier 

to participate, and may be considered to make up for missing observations. However, 

unstructured citizen science tends to suffer from biases due to imperfect species detection 

probability and variable effort (e.g., survey duration). Although species richness 

estimation methods have been applied to many datasets in order to account for imperfect 

detection probability, the ability of these estimators to control for biases and the non-

linear relationship between duration and species richness in unstructured citizen science 

data remain unclear. This study was aimed to investigate the effectiveness of species 

richness estimation applied to eBird dataset by comparing it to observed species richness 

of Breeding Bird Survey Taiwan (BBS) sites at a standardized duration. For this 

comparison, I selected eBird checklists that fell within a 2×2 km square buffer placed 

around BBS sites across Taiwan. Bias was used to evaluating the effectiveness of species 

richness estimates from the eBird dataset. I presented three species richness estimation 

methods based upon the eBird dataset that have been commonly reported in the ecological 

literature. To measure the reduction value of bias with before and after species richness 

estimation at a standardized duration, four non-linear functions were first used to examine 

the relationship between duration and species richness. The result showed that the Chao1 

estimator was the least biased estimation method. The power function was the best 



doi:10.6342/NTU202002665

ix 

selected parsimonious of non-linear function to explain the relationship between duration 

and species richness. Based on the power function, the eBird dataset can produce species 

richness estimates comparable to those generated using the BBS dataset raised from 66% 

to 86% after applying the Chao1 estimator on the eBird dataset. These results suggested 

that measuring species richness by raw species count alone would be biased, and species 

richness estimation takes imperfect detection probability into account, which improved 

the accuracy of measuring species richness. Survey protocols and species detection 

probability significantly influenced the species detected in unstructured citizen science 

data. Problems with biased results derived from high occurrence of singleton species, 

especially in low-effort surveys, limit the quality and potential uses of unstructured 

citizen science data. Overall, to accurately present species richness in a given area, I 

suggest species richness should be estimated, and the effect of number of singletons 

should be evaluated before applying Chao1 estimation from unstructured citizen science 

data. 

Keywords: community richness, species detection probability, Chao estimator, sampling 

effort, sampling bias, monitoring 
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Introduction

Biodiversity loss impacts ecosystem functions and ecosystem services worldwide 

(Cardinale et al., 2012). In recent decades, the loss of biodiversity has been driven largely 

by habitat fragmentation and conversion, invasions of non-native species, and by climate 

change (Schumaker, 1996; Fahrig, 2003; Clavero et al., 2009; Pacifici et al., 2015). Given 

these trends, it has become essential that scientists develop methods for measuring 

biodiversity, and tracking its change through time. Species richness, defined as the 

number of species in a local community (Gotelli & Colwell, 2001; Soroye et al., 2018) is 

one of the most common measures of biodiversity. But quantifying species richness is 

expensive and labor-intensive, and often beyond the means of modestly funded research 

studies. In contrast, citizen science has recently emerged as a means for rapidly and 

efficiently collecting species richness data. 

In citizen science projects, volunteers participate in, and contribute to scientific 

projects (Dickinson et al., 2010). Citizen science exists in many forms, for example, 

volunteers assist with biodiversity monitoring (Dickinson et al., 2010), take part in 

recreational or nature-based activities, or contribute to research studies with inherent 

value (Sullivan et al., 2014; Geoghegan et al., 2016). Citizen science provides unique and 

valuable opportunities for the public to become involved in species conservation. In such 

cases, the data collection process often involves documenting species richness, which 

benefits the measurement of biodiversity. The potential for citizen science to contribute 

substantially to formal biodiversity research has been increasing as more data are 

collected by citizen science volunteers (Dickinson et al., 2010). 

Citizen science is grouped into two principal categories: structured citizen science 

(e.g., the Christmas Bird Count, the North American Breeding Bird Survey) and 

unstructured citizen science (e.g., iNaturalist, eBird). Structured citizen science aims to 
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improve the quality of data through volunteer training, thereby increasing the 

identification rate, determining the survey locations, and time of survey to standardize 

sampling effort (Soroye et al., 2018). On the other hand, volunteers to this unstructured 

citizen science do not receive mandatory training and allowing observations to be 

reported at any time and space (Soroye et al., 2018). In contrast to unstructured citizen 

science, structured citizen science projects usually follow a standard survey protocol. 

In Taiwan, the Breeding Bird Survey Taiwan (BBS Taiwan, hereafter referred as 

BBS) serves as an example of structured citizen science, since the BBS follows a standard 

survey protocol. Volunteers participating in BBS visit each BBS site twice a year during 

the breeding season, and always adhere to a rigorous data collection methodology. 

Nevertheless, the effort placed upon recruiting BBS volunteers is quite high, and 

logistical constraints such as extreme weather events or road maintenance can interfere 

with data collection (Theobald et al., 2015). As a consequence, datasets acquired through 

structured citizen science frequently have gaps resulting from missing observations.  

eBird is a large biodiversity-related citizen science project, managed by Cornell 

Lab of Ornithology. eBird’s mobile app allows a wide range of skill levels of birders to 

collect observations anywhere in the world, documenting bird abundance, distribution, 

and date of survey through checklist data. eBird project, on the other hand, provides an 

illustration of unstructured citizen science. While this category of citizen science projects 

tends to be less structured, they incorporate more variance from a survey, and produce 

abundant observation data. Consequently, it is thought that species richness data from 

eBird might be used to make up for missing observations in BBS surveys. In addition, it 

is straightforward to access eBird datasets via an online database. Still, eBird datasets will 

frequently have shortcomings that will introduce biases into species richness measures. 

Two common sources of bias in eBird data stem from imperfect species detection 



doi:10.6342/NTU202002665

3 

probabilities and variable sampling efforts (Crall et al., 2011; Bird et al., 2014; Steen et 

al., 2019). Such problems have reduced the potential of eBird datasets to fill gaps in the 

datasets compiled through formal research activities or structured citizen science projects. 

Unstructured citizen science has generally been recognized as suffering from 

issues of bias resulting from the large numbers of inadequately trained participants these 

efforts rely upon. Surveying variability frequently contributes to biased measurement of 

local species richness, and can be attributed to two primary sources: (1) variable survey 

effort over time; (2) variable species detection probability and surveyor identification 

skills (Crall et al., 2011; Bird et al., 2014; Steen et al., 2019). In fact, bias attributable to 

variable duration of effort has emerged to become the most common signature of 

unstructured citizen science (Dickinson et al., 2010). Duration strongly affects the 

number of species detected (Gotelli & Colwell, 2001; Chao & Chiu, 2014). However, 

duration is rarely used to correct species richness measures when comparing different 

communities (Walther & Martin, 2001). This problem is especially prevalent in eBird 

datasets, as the surveyor may adopt any survey duration, based solely upon their interest. 

For example, it has been found that using uneven duration of datasets for each host species 

could cause a pseudo positive correlation between parasite species richness and duration 

(Walther et al., 1995). If samples are standardized by using equal duration, a comparison 

would be more accurate and informative on species richness measurements (Colwell & 

Coddington, 1994). Failure to take into account of variable duration and the lack of 

standardization can strongly bias the measurement of species richness. 

Survey bias resulting from variable species detection probability and surveyor 

identification skills has also become an important area of concern in regards to citizen 

science studies (Crall et al., 2011; Bird et al., 2014). Species detection probability can be 

defined as the probability of detecting at least one individual of a species during a fixed 
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period of time in a given area (MacKenzie et al., 2002). Unfortunately, species detection 

probability is never invariant; thus, a complete count of species over an area is almost 

impossible to achieve (Kellner & Swihart, 2014). In practice, vegetation structure, time 

of day, weather condition, surveyor identification skills, and species rarity all affect 

species detection probability (Robbins, 1981; Pacifici et al., 2008; Kellner & Swihart, 

2014; Guillera‐Arroita, 2017). For surveyor identification skills, bias can also be 

introduced when some surveyors collect more accurate or thorough data than others. 

Together, these sources of uncertainty limit our ability to assess the accuracy of citizen 

science data sets, especially when the intent is to quantify species richness.  

However, few studies have accounted for imperfect species detection probability, 

leading to persistent underestimates of true species richness (Chao & Chiu, 2014). In fact, 

Walther and Moore (2005) concluded that, as an index, observed species richness usually 

leads to the worst performance in comparison to other species richness estimation 

methods. Species richness estimation methods account for imperfect detection probability, 

and attempt to estimate true species richness in a community from incomplete samples 

(Walther & Moore, 2005). Non-parametric methods of species richness estimators make 

no assumptions about species detection probabilities (i.e., heterogeneity among species 

detection probabilities) or species abundance distribution (Chao & Chiu, 2014). Chao1 

(Chao, 1984; Chao & Chiu, 2014), Incidence-based Coverage Estimator (ICE) (Chao & 

Chiu, 2014) and first-order Jackknife (Burnham & Overton, 1978; Colwell & Coddington, 

1994) are commonly used assessment methods. 

The Chao1 index is calculated based upon an assumption that the probability of 

finding a new species in an additional sample approximately equals to the proportion of 

rare species in an assemblage being observed (Chao & Lee, 1992), and estimates the 

lower bound of expected species richness (Chao & Chiu, 2014); The ICE is calculated 
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from both the occurrence probability of species and the estimated sample coverage ( i.e., 

the proportion of the total incidence probabilities of observed species), based on the 

reference sample (Chao & Chiu, 2014). Jackknife was developed mainly to reduce the 

bias of a biased estimator; it uses the number of singletons to represent the undetected 

species (Chao & Chiu, 2014). As a consequence, problems with over-reporting rare 

species and under-reporting common species are common in unstructured citizen science 

datasets (Dickinson et al., 2010), and they influence estimates of species richness in 

applying those methods (Tyre et al., 2003; Jarzyna & Jetz, 2016). 

While citizen science brings significant benefit of large datasets, problems with 

variable duration serve as a fundamental obstacle, especially in unstructured citizen 

science data. Walther et al. (1995) concluded that using a linear relationship to control 

for the effect of duration on species richness estimates could be misleading. In general, 

as sample size increases, the discrepancy between observed and true species richness 

decreases (Bean et al., 2012). A non-linear function could be applied to illustrate the 

relationship between sample size and observed species richness (Flather, 1996). Four 

non-linear functions are applicable for fitting species-accumulation relationship – 

Gompertz function (Zeide, 1993); Power function (Flather, 1996); Schumacher function 

(Schumacher, 1939); and Logistic function (Zeide, 1993). The Gompertz, Schumacher, 

and Logistic functions, were commonly applied to a growth model (Zeide, 1993). The 

power function was original to present the species-area relationship (Preston, 1962). The 

properties of all the above non-linear functions indicate that as the sample size increases, 

they will reach the asymptotic value. Although it has been found that a non-linear 

relationship exists between the number of individuals encountered and species richness 

(Colwell et al., 2012), the relationship between duration and species richness is still 

poorly understood, particularly in data sets derived from unstructured citizen science. 
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As a result, the biased measures of species richness derived from unstructured 

citizen science data may produce misleading assessments of community composition. 

Better accounting for the duration and imperfect detection probability of each checklist 

will produce a better understanding of measures of species richness (Bird et al., 2014). 

While many studies have focused on the quality and reliability of citizen science data 

(Bird et al., 2014; Kamp et al., 2016; Callaghan et al., 2017), few have addressed the 

problem of non-standard survey duration, or have assessed the accuracy of species 

richness derived from unstructured citizen science data (Dickinson et al., 2010). 

Developing a more thorough understanding of the effect of duration on species richness 

measurement should help researchers to take better advantage of unstructured citizen 

science data. 

Soroye et al. (2018) found that few studies have assessed the reliability of 

unstructured citizen science data by comparing them to professionally monitoring citizen 

science datasets. But doing so is certainly possible, as it would be straightforward to make 

use of comparisons between species richness estimates obtained from professional 

assessments and unstructured citizen science to estimate the effect that variable duration 

has on accuracy (Walther & Morand, 1998; Walther & Martin, 2001; Walther & Moore, 

2005). Measures of bias are used to calculate the closeness of an estimate to an accepted 

reference value, or to true species richness (Walther & Martin, 2001; Walther & Moore, 

2005). Structured citizen science programs can extend the geographic range of surveys, 

can expand survey effort by adding many survey points, and when coupled with a 

standard survey protocol, may accurately estimate the true species richness in a 

community (Walther & Martin, 2001). Once sample bias and duration have been 

accounted for using non-linear functions, we may evaluate the closeness of species 
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richness data generated from unstructured citizen science to that produced by structured 

citizen science. 

In this study, I assert that BBS represents structured citizen science data, and eBird 

represents unstructured citizen science data. I treated species richness measures derived 

from a BBS dataset as a standard to represent an accepted reference value, and made 

comparisons with an eBird dataset to: 1) investigate the difference in observed measures 

of species richness derived from the BBS and eBird datasets; 2) identify the least biased 

non-parametric method of estimating species richness applied in the eBird dataset; 3) 

explore the effect of survey duration on observed species richness using four non-linear 

functions applied to the eBird dataset; 4) measure the value of bias based on a non-linear 

function for the application of species richness estimation on eBird dataset, and 5) 

calculate the increment percentage of species richness derived from species richness 

estimation applied to the eBird dataset based on a 60-minutes of a non-linear function. 
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Materials 

1. Study site

This study was focused on Taiwan island (from 119°59’48.82’’E to 

122°0’26.97’’E; from 21°53’44.16’’N to 25°18’10.10’’N), an area of approximately of 

36,000 km2 with highest elevation of 3952 m a.s.l. The adjacent islands under jurisdiction 

of the Republic of China (commonly known as “Taiwan”), including Xiaoliuqiu, Lanyu, 

Green Island, the Penghu Archipelago, the Dongsha Islands in the South China Sea, and 

the two islands groups bordering mainland China, the Matsu Archipelago and the Kinmen 

Islands, were not included in this study. According to 2020 Chinese Wild Bird Federation 

Checklist of Birds of Taiwan (Ding et al., 2020), a total of 634 bird species have been 

recorded in Taiwan, including 153 resident bird species and 16 summer visitor species. 

2. Bird datasets

a) BBS dataset

The BBS monitoring program, led by Endemic Species Research Institute in 

Taiwan, has been conducted since 2009. The aim of the BBS is to monitor the long-term 

population dynamic of breeding birds in Taiwan. The BBS dataset included 457 BBS 

sites located across the Taiwan island from 2009 to 2017 (Figure 1), ranging from 0 m 

a.s.l. to 3900 m a.s.l. Each BBS site included 6 to 10 points located within an area of

2×2km, and each point was spaced at least 200 m apart. 

The BBS surveys were conducted by point counts from local sunrise to 4 hours 

after local sunrise in good weather conditions (i.e., no rain during the survey). The 

surveyor counted and recorded the number of all the birds heard or seen for six minutes 

at each point in three distance bands (0–25, 25–100, and >100 m). Birds heard or seen 

were not recorded between traveling from point to point. Each BBS site/point was visited 
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twice in each year except of the year 2009, which was visited three times in a year. These 

two visits of a given site should be at least two weeks apart. In order to match the bird 

breeding season at different altitudes of Taiwan, low-elevation sites (<1000 m a.s.l.) were 

surveyed once in March and once in May; mid-elevation sites (1000–2500 m a.s.l.) were 

surveyed once in April and once in June; and high-elevation sites (>2500 m a.s.l.) were 

surveyed once in May and once in June. Each visit of a BBS site included a total duration 

of between 36 to 60 minutes (6–10 points) and a total survey area of between 0.1884 to 

0.3140 km2 (based on the 100 m radius circles). 

Among the 142 BBS sites originally established since 2009, only 27 BBS sites 

(19%) were continuously surveyed until 2017 (Table S1). The Endemic Species Research 

Institute recommended that a maximum of four surveyors could participate in each visit, 

in order to control the effect of number of surveyors on the survey. From 2009 to 2017, 

only 0.42% of the 4949 visits had five or more surveyors. The average of observed species 

richness reported from each point was 7.16 species (Figures S1). The average of observed 

species richness reported from each visit was 15.78 species (Figures S2). In the rank 

abundance distribution plot of all BBS survey data from 2009 to 2017, I applied the Null, 

Preemption, Log-normal, and Zipf models evaluated by Bayesian Information Criterion 

(BIC). The Log-normal distribution (BIC = 43335) has the best fit among all the models 

for rank abundance distribution from a total of 4949 visits (Figure S3). 
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Figure 1 Location of the 457 BBS sites surveyed on Taiwan island from 2009 to 2017 
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b) eBird dataset

I downloaded eBird data recorded from 1967 to 2018 through the eBird database 

(https://ebird.org/data/download/ebd). eBird database has recorded more than four 

hundred thousand checklists in Taiwan (as of July 2020) (https://ebird.org/taiwan/home). 

Four primary survey protocols have been defined in eBird – stationary, traveling, 

historical, and incidental. The definitions of the four primary survey protocols are as 

follows: (1) stationary survey protocol follows in a single fixed location with no more 

than 30 m away from the starting point of the checklist, and the surveyor is required to 

know the exact start time and duration. According to the eBird’s survey protocol 

recommendation, duration under three hours makes the better information of the checklist 

(i.e., shorter checklist gives scientists more accurate information about the exact location 

and time of birds occurrence); (2) traveling survey protocol follows a distance with more 

than 30 m away from the starting point of the checklist, and the surveyor is required to 

know the exact start time and duration. In addition, the specific distance of traveling is 

required to submit or the surveyor needs to estimate the distance traveled to the best of 

their ability. The eBird’s survey protocol recommends keeping traveling distance under 

eight km in order to make a better quality of checklists; (3) historical survey protocol only 

requires the surveyor to know the date of birding. In other words, the exact time of day, 

duration, and distance traveled are not required to submit. In some cases, historical 

checklists may consist of historical bird watching events. For example, data from the 

Taiwan Bird Record of Chinese Wild Bird Federation (CWBF), had recorded 102,716 

checklists from 1972 to 2017 (Lin et al., 2020). However, some locations and duration 

reported were not accurate from the CWBF dataset; (4) incidental survey protocol refers 

to those checklists which bird watching is not the primary purpose (e.g., attention might 

be focused on driving, gardening or doing indoor activities). Incidental checklists lack 
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important survey information (e.g., the exact start time, duration, and distance traveled) 

and are less useful for scientific purposes. The eBird database also notifies “complete 

checklists,” which surveyors report all bird species they were able to detect and identify 

(does not exclude species or report only highlights). On the other hand, an “incomplete 

checklist” happens when surveyor intentionally omits any wild bird species that was 

present, detected, and identified (exclude introduced species, invasive species, and heard 

or seen-only species). Still, it is feasible to omit any captive species. 

In the rank abundance distribution plot of all eBird data recorded in Taiwan from 

1967 to 2018, I applied the Null, Preemption, Log-normal, and Zipf models evaluated by 

BIC. The Log-normal distribution (BIC = 907987) has the best fit among all models for 

rank abundance distribution from a total of 313,050 eBird checklists (Figure S4). In 

addition, the three most common sampling protocols each made up nearly one-third of 

the total dataset: stationary (31.21%), historical (31.34%), and traveling (30.35%), 

incidental (7.07%) (Figure S5). Checklists with a duration of ≥6 minutes made up 

93.48% of the dataset (Figure S5 and Figure S6). 
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Methods 

1. Bird data

a) BBS dataset

I obtained BBS dataset recorded from 2009 to 2017 through the Endemic Species 

Research Institute, Taiwan (https://sites.google.com/a/birds-tesri.twbbs.org/bbs-

taiwan/bbs-zi-liao-shen-qing). I selected data which were recorded from March to July. I 

excluded BBS sites that contained less than 6 points and BBS data that were recorded 

farther than 100 m from each point. I only included bird species that regularly breed in 

Taiwan during the breeding season. A total of 135 diurnal resident and summer visitor 

bird species from BBS dataset were included in this study (Table S2). Thus, non-breeding 

bird species (i.e., wintering, transient migrant, pelagic seabird, vagrant, and introduced 

species) were all excluded throughout the study (Table S2). The migratory statuses of 

bird species followed the 2020 Checklists of Birds of Taiwan, Chinese Wild Bird 

Federation. 

To make our results comparable to the eBird database, I only selected BBS sites 

which included at least six completed and approved eBird checklists within a 2x2 km 

square buffer based on centroid point from each BBS site with ArcGIS 10.6. More than 

half of the BBS sites (55%) included less than six completed and approved eBird 

checklists (Figure S7). The main principle for establishing BBS sites is based on the 

criteria to include national parks, important bird and biodiversity areas (IBA), and wildlife 

refuges, which represents the complete breeding bird community and environment in a 

particular area. The BBS sites established along the coast are intended to include more 

types of habitats (habitat heterogeneity). Thus, to exclude the main habitats of the most 

wintering, transient migrant, and pelagic seabird species, I removed BBS sites which were 

intersected with coastline. A total of 204 BBS sites were retained after selection (Figure 
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2). Among the 204 remaining BBS sites (n = 2238 visits), 165 sites were located in low-

elevation (<1000 m a.s.l.); 29 sites in mid-elevation (1000–2500 m a.s.l.), and 10 sites in 

high-elevation (>2500 m a.s.l.) (Table S1). 
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Figure 2 Distribution of selected 204 BBS sites (orange-colored) across Taiwan island 
from the original of 457 BBS sites from 2009 to 2017 
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b) eBird dataset

I included eBird dataset recorded from March to July, 2008 to 2018. As described 

above, I only included diurnal birds that breed in Taiwan. A total of 144 bird species from 

eBird dataset were included in the study (Table S2). 

I selected the completed and approved checklists which were intersected within a 

2x2 km square buffer based on centroid point from each BBS site with ArcGIS 10.6. A 

total of 2591 locations were reported across Taiwan’s main island (Figure 3). If any 

location where eBird checklists uploaded was intersected from two or more BBS sites at 

the same time, I treated eBird checklists separately belonging to each BBS site; though, 

this rarely occurred. 

To avoid duplicate checklists in the eBird and BBS datasets, I excluded eBird 

checklists with location names that had similar patterns to BBS sites, such as “BBS-A35-

19”. For survey protocol selection, I selected checklists from the three most common 

survey protocols, as follows: stationary, traveling, historical (including data uploaded 

from the Taiwan Bird Record of Chinese Wild Bird Federation). I only included 

checklists that were at least 6 minutes in duration for the comparison to the BBS dataset 

(Figure S6). Based on the two primary high intensity periods of bird activity during a day 

(Robbins, 1981), I restricted eBird checklist start times to after 4 AM and end times to 

before 7 PM (Figure S8). The number of surveyors in each eBird checklist was mostly 

under four persons (Figure S9), which matches the BBS survey protocol of including 

under four surveyors in each visit. 

To minimize misleading results of species richness estimation in subsequent 

analyses, I removed the whole checklist if any bird species was reported as “X” (no 

specific individual count) throughout the study; I removed species independently with the 

individual count which obtained “NA” (no data available) from the report. For the 
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Incidence-based species richness estimation, which only requires to submit presence-

absence data, I transformed any species reporting more than one individual to “1”. I 

removed species independently with the individual count which obtained “NA” (no data 

available) from the report. To represent the presence of a species, I transformed any 

species reporting as “X” to “1”, without removing the whole checklist. Also, I removed 

the duplicated checklists, which were usually shared by individuals of same birding group, 

based on the sampling event identifier. Eventually, a total of 14596 checklists that fell 

within BBS sites were collected for further analyses. 
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Figure 3 Distribution of eBird checklists reported locations across Taiwan. A total of 

2591 locations were reported from 2008 to 2018. 
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2. Statistical analysis

a) Observed species richness comparison

The different BBS survey methods employed in 2009, caused a different time of 

duration in each visit than other years (i.e., 6-minute point count surveys were conducted 

from 2010–2017, while 9-minute point count surveys were conducted in 2009). I 

therefore removed all visits from the BBS dataset from 2009. 

To make the results comparable, I compiled species records and duration of 

survey points of a given BBS site in a visit. After compiling records of a visit into a 

checklist in each site separately, a total of 2238 checklists were collected from each visit 

across the 204 BBS sites in Taiwan. To be comparable with BBS’s survey duration, I 

only included eBird checklists with a duration of between 36 to 60 minutes, with a total 

of 2164 eBird checklists retained. I performed a two-tailed Wilcoxon rank-sum test on 

both datasets to test the difference of observed species richness. 

b) Species richness estimation methods

For the selected 14596 eBird checklists that fell within BBS sites, species richness 

estimation was based on each separate checklist (checklist-based). Three non-parametric 

approaches of species richness estimation methods were applied to the eBird dataset: (1) 

abundance-based estimator, Chao1 (Chao, 1984; Colwell & Coddington, 1994; Chao & 

Chiu, 2014); (2) Incidence-based Coverage Estimator (ICE) (Chao & Chiu, 2014): 

recommended by Chao and Chiu (2014), I set up 10 individuals as a cut-off point to define 

infrequent or frequent species group; (3) and first-order Jackknife, an estimator based on 

the number of singleton species (Burnham & Overton, 1978; Colwell & Coddington, 

1994). Chao1 estimation was performed using the “iNEXT” package (Hsieh et al., 2016); 
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ICE and first-order Jackknife estimation methods were performed with the “vegan” 

package (Oksanen et al., 2016) in the R platform. 

c) Evaluating the performance of species richness estimation methods

To quantify the performance of the species richness estimation methods from the 

eBird dataset, I calculated the bias value based on estimated species richness from each 

eBird checklist against the compiled observed species richness from 2009–2017 in each 

BBS site separately (i.e., the asymptote of total species richness from accumulated annual 

surveys was assumed to be known as the total species richness in each BBS site, likely to 

represent the local bird community) (Walther & Morand, 1998; Walther & Martin, 2001; 

Walther & Moore, 2005; Tingley et al., 2020). In other words, each eBird checklist 

produced one result value of bias (unless the eBird location was intersected with more 

than two BBS sites, then I treated the eBird checklists separately belonging to the shared 

BBS sites). The bias value was calculated by the following formula: 

Bias = 
[𝑬𝒊𝒋#𝑨𝒊]
[𝑨𝒊]

with j = eBird checklists in the i th BBS site (i.e., j th sample in each BBS site); 

with i =1 to 204 (refers to the i th BBS site). Eij is the estimated species richness in each 

eBird checklist; Ai is the compiled observed species richness of the i th BBS site from 

2009 to 2017. The bias calculation was performed in Microsoft Excel 2019. Finally, I 

used one-tailed Wilcoxon rank-sum test to examine the least biased species richness 

estimator among the three estimation methods by comparing each pair of estimators. The 

selected least biased species richness estimator was applied to the species richness 

estimation in order to access the two datasets comparison in the following questions. 
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d) Determining the effect of duration on bias after species richness estimation

(1) Evaluating the effect of duration on observed species richness

Before taking the next step to examine the effect of duration on bias, I tested the 

effect of duration on observed species richness across all included 14596 eBird checklists. 

I fitted four non-linear functions independently by using the least squares method (James 

et al., 2013). The four non-linear functions are used to estimate the asymptote of species 

richness as duration increase (Magurran & McGill, 2011), and formulas are depicted as 

follows: 

(1) Gompertz function (Zeide, 1993)

𝑦 = 	𝑎𝑒!"#!"# 

(2) Power function (Flather, 1996)

𝑦 = 	𝑎𝑥" 

(3) Schumacher function (Schumacher, 1939)

𝑦 = 	𝑎𝑒
!"
$

(4) Logistic function (Zeide, 1993)

𝑦 = 	
𝑎

1 + 𝑐𝑒!"$

where, y is the observed species richness, as the dependent variable, and x is the 

duration, as the independent variable; a, b, c denote the parameters to be estimated by the 

least squares method. This parameter estimation was calculated with the “stats” package 

(Team & Worldwide, 2002) in the R platform. 

To compare the goodness-of-fit of the four different non-linear models, I 

compared the fitted curve with the BIC (Gideon, 1978). BIC was used instead of Akaike 

information criterion (AIC), since our objective was to explain the relationship between 

duration and observed species richness, instead of predicting the value (Shmueli, 2010). 
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Under the Bayesian probability framework, the probability of selecting the true model 

increases as the training sample size increases (Friedman et al., 2001; Magurran & McGill, 

2011). BIC model selection was performed with the “AICcmodavg” package (Mazerolle 

& Mazerolle, 2019) in the R platform. The best selected non-linear function was used to 

address the relationship between the duration and bias in the following process. 

(2) Calculating the reduction of bias after species richness estimation

To make a comparison of the reduction of bias before and after estimating species 

richness at a standardized duration, for the same reasons as above, I removed all visits 

from the BBS dataset from 2009. With a total of 14596 eBird checklists, I treated duration 

in each eBird checklist as an independent variable; bias derived from observed and 

estimated species richness were treated as a dependent variable separately. Bias was 

calculated by the following formula: 

Bias = 
[𝑶𝒊𝒋#𝑨𝒊]
[𝑨𝒊]

with j = eBird checklists in the i th BBS site (i.e., j th sample in each BBS site); 

with i =1 to 204 (refers to the i th BBS site). Oij is the observed species richness in each 

eBird checklist; Ai is the compiled observed species richness from the i th BBS site 

recorded from 2010 to 2017. 

Bias = 
[𝑬𝒊𝒋#𝑨𝒊]
[𝑨𝒊]

with j = eBird checklists in the i th BBS site (i.e., j th sample in each BBS site); 

with i =1 to 204 (refers to the i th BBS site). Eij is the estimated species richness in each 

eBird checklist (note that the estimation was based on the least biased estimation method); 
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Ai is the compiled observed species richness from the i th BBS site recorded from 2010 to 

2017. 

To test the effect of duration on the bias across all included 14596 eBird checklists, 

I fitted both independent and dependent variables with the selected non-linear function 

described above by using the least squares method (James et al., 2013). Parameter 

estimation was calculated with “stats” package (Team & Worldwide, 2002) in the R 

platform. Finally, based on the non-linear function at a 60-minutes, the reduction value 

of bias can be measured with – the bias value after species richness estimation minus the 

bias value before species richness estimation. 

(3) Evaluating improvement on proportion of species richness from eBird against BBS 

after species richness estimation 

To evaluate the improvement of species richness after estimation from eBird 

dataset against BBS dataset at the duration of 60 minutes, I included BBS sites which 

only included 10 points (i.e., a total of 60 minutes in each visit was conducted from a 

BBS site), and removed all visits from 2009. I calculated the average observed species 

richness from each visit in each BBS site (i.e., the average number of species recorded in 

each visit of BBS). A total of 92 BBS sites were retained after selection (Figure 4), 

accompanied with a total of 6611 eBird checklists. I treated duration in each eBird 

checklist as an independent variable; bias derived from observed and estimated species 

richness were treated as a dependent variable separately. Bias was calculated by the 

following formula: 

Bias = 
[𝑶𝒊𝒋#𝑨𝒊]
[𝑨𝒊]
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with j = eBird checklists in the i th BBS site (i.e., j th sample in each BBS site); 

with i =1 to 92 (refers to the i th BBS site). Oij is the observed species richness in each 

eBird checklist; Ai is the average observed species richness from each visit in the i th BBS 

site recorded from 2010 to 2017. 

Bias = 
[𝑬𝒊𝒋#𝑨𝒊]
[𝑨𝒊]

with j = eBird checklists in the i th BBS site (i.e., j th sample in each BBS site); 

with i =1 to 92 (refers to the i th BBS site). Eij is the estimated species richness in each 

eBird checklist (note that the estimation was based on the least biased estimation method); 

Ai is the average observed species richness from each visit in the i th BBS site recorded 

from 2010 to 2017. 

To test the effect of duration on the bias across all included 6611 eBird checklists, 

I fitted both independent and dependent variables with the selected non-linear function 

described above by using the least squares method (James et al., 2013). To test the 

performance of eBird dataset after species richness estimation, based on the non-linear 

function, 60-minutes was set to standardize the comparison of bias before and after 

species richness estimation. Finally, the improvement on proportion of species richness 

from eBird dataset after the estimation can be calculated through the bias formula. 
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Figure 4 Distribution of selected 92 BBS sites with criteria of 10 points/site from 2010 

to 2017 across Taiwan from the original of 457 BBS sites 
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Results 

1. Observed species richness 

After restricting duration from both BBS and eBird datasets (36–60 

minutes/checklist), the BBS dataset (204 sites) had a statistically higher observed species 

richness than the 2164 eBird checklists which were recorded within a 2×2 km square 

buffer based on centroid point from the BBS sites (W = 3826200, effect size = 0.503, p < 

0.001) (Figure 5). The median per checklist of observed species richness for BBS (n = 

2238) and eBird (n = 2164) datasets were 15 and 9 species, respectively. Inter-quartile 

range (IQR) for BBS (n = 2238) and eBird (n = 2164) datasets were 9 and 8, respectively 

(Figure 5). 

 

Figure 5 Observed species richness per checklist recorded in BBS and eBird datasets. 

BBS dataset included 2238 visit-based checklists, with a total of 204 sites. eBird dataset 

included 2164 checklists. Both datasets had durations restricted to the range of 36–60 

minutes. 
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2. The performance of species richness estimation methods 

Chao1 estimator (median bias = -0.693) was overall least biased (W = 12369000, 

p < 0.05) compared with other two estimators (median bias of ICE = -0.730; median bias 

of Jackknife = -0.773) against compiled observed species richness from each BBS site 

(Table 1, Table 2 and Figure 6). ICE estimator was less biased than Jackknife (W = 

119220000, p < 0.001) (Table 2). Estimates of species richness by eBird checklists varied 

by estimation methods, but generally underestimated the true community size (bias < 0) 

(n = 14596) (Table 1). However, the outcome of estimated species richness varied across 

estimation methods. Bias derived from the Chao1 estimator varied between -0.987 and 

5.602, while bias derived from the Jackknife estimator has a generally smaller range, 

varied between -1.000 and 1.000 (Table 1). 
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Table 1 Performance of three species richness estimation methods for the eBird dataset 

against observed species richness from the BBS dataset, evaluated by the result value of 

bias summarized by all included checklists (n = 14596). Bias was calculated to make a 

comparison among estimators. 

 Mean  SD Median IQR Minimum Maximum 

Chao1 -0.576 0.393 -0.693 0.440 -0.987 5.602 

ICE -0.640 0.286 -0.730 0.351 -0.983 1.222 

Jackknife -0.689 0.267 -0.773 0.317 -1.000 1.000 

 

Table 2 One-tailed Wilcoxon rank-sum test between species richness estimation methods 

 W–value p–value 

Chao1 vs. ICE 123690000 < 0.05* 

Chao1 vs. Jackknife 123690000 < 0.05* 

ICE vs. Jackknife 119220000 < 0.001*** 
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Figure 6 Performance of Chao1, ICE, and Jackknife estimators on species richness 

estimation methods. Bias was measured by comparing the result of each estimation 

method against compiled species richness from each BBS site. (A) The difference of 

Chao1 subtracted from ICE estimator; (B) The difference of Chao1 subtracted from 

Jackknife estimator; (C) The difference of ICE subtracted from Chao1 estimator; (D) The 

difference of ICE subtracted from Jackknife estimator; (E) The difference of Jackknife 

subtracted from Chao1 estimator; (F) The difference of Jackknife subtracted from ICE 

estimator. Asterisks in plots indicate the significance level between estimation methods 

by one-tailed Wilcoxon rank-sum test (p < 0.05 = *; p < 0.001 = ***). Note that the result 

value of bias only presents from -0.05 to 0.05. 
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3. Relationship between duration and observed species richness 

The power function was the best model to represent the relationship between 

duration and observed species richness, based on the BIC values (Table 3, Table 4 and 

Figure 7). As a result, the power function was selected to examine the effect of duration 

on bias in subsequent analyses. 

 

Table 3 BIC model selection results from the relationship of duration and observed 

species richness  

Non-linear function K BIC Delta_BIC BICWt Log-likelihood 

Power function 3 41262.13 0.0000 0.6921 -20617.87 

Gompertz function 4 41263.75 1.6198 0.3079 -20614.28 

Logistic function 4 41282.44 20.3053 0.0000 -20623.62 

Schumacher function 3 42041.85 779.7200 0.0000 -21007.73 

 

Table 4 Parameter estimates from the power function by least squares method on the 

relationship of duration and observed species richness 

Parameter Estimate Standard Error t–value p–value 

a 2.867213 0.059096 48.52 <0.001*** 

b 0.304814 0.004471 68.17 <0.001*** 

*Note: the power function formula is depicted above with parameters (a and b) to be 

estimated. Residual standard error: 5.606 on 14594 degrees of freedom 
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Figure 7 The relationship of duration and observed species richness from eBird checklists 

(n = 14596). Power function (top right of the figure) was used to fit the relationship of 

duration and observed species richness by a least squares approach. 
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4. Bias reduction after species richness estimation 

Underestimation is represented by negative bias (bias < 0), while overestimation 

is represented by positive bias (bias > 0). In general, as survey duration increased, both 

observed and estimated species richness of eBird checklists were closer to the observed 

species richness of BBS sites (Figure 8 and Figure 9). A non-linear power function 

explained the effect of duration on the bias of species richness of eBird checklists, 

comparing with BBS checklists (Table 5 and Table 6). Based on the power function at 

60-minutes, bias was closer to zero (from -0.61 to -0.50) after species richness being 

estimated by the Chao1 estimator in eBird dataset; that is, species richness from eBird 

dataset was overall closer to BBS dataset after the Chao1 species richness estimation 

(Figure 8 and Figure 9). In addition, bias was significantly closer to zero after the Chao1 

species richness estimation (V = 61101000, p < 0.05). 

When comparing observed species richness in the eBird and BBS datasets, 

according to the power function by least squares approach, at 60-minutes the eBird dataset 

had a bias of -0.61 (Figure 8), which indicated the eBird dataset recorded an average of 

39% of the BBS species richness at 60-minutes. The eBird dataset failed to record the 

same number of observed species at the duration of between 6 to 780 minutes based on 

power function (bias = 0) (Figure 8). 

When comparing the Chao1 species richness estimated from the eBird dataset to 

observed species richness in the BBS dataset, according to the power function, at 60-

minutes the eBird dataset had a bias of -0.50 (Figure 9), which indicated that the eBird 

dataset recorded an average of 50% of the BBS species richness after the Chao1 species 

richness estimation. According to the power function, eBird checklists would need a 

duration of 554.22 minutes to reach 0 bias value (Figure 9). With over a duration of 

554.22 minutes, only 5 out of 28 (18%) included eBird checklists had a positive bias 
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(Figure 9). The longest duration (780 minutes) among all eBird checklists (n = 14596), 

had a bias of -0.14 (Figure 9).  
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Table 5 Parameter estimates from the power function by least squares method on the 

relationship of duration and bias (observed species richness of eBird vs. observed species 

richness of BBS) 

Parameter Estimate Standard Error t–value p–value 

a 0.099773  0.002515 39.67 <0.001*** 

b 0.330131  0.005414 60.98 <0.001*** 

*Note: the power function is depicted above with parameters (a and b) to be estimated. 

Residual standard error: 0.2595 on 14594 degrees of freedom 

 

Figure 8 The relationship of duration on eBird checklists and bias (observed species 

richness of eBird vs. observed species richness of BBS) across 204 BBS sites. The power 

function (top-right in the figure) was used to fit the relationship of bias and duration by a 

least squares approach. Bias was calculated with observed species richness from both 

eBird and BBS datasets. A total of 14596 eBird checklists were included in the analyses. 

Note that bias calculation of observed species richness in BBS was computed by 

compiling observed species richness from 2009–2017 across each 204 BBS site 

separately. Since the minimum result value of bias is -1, I added -1 in order to scale the 

formula. 
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Table 6 Parameter estimates from the power function by least squares method on the 

relationship of duration and bias (estimated species richness of eBird vs. observed species 

richness of BBS) 

Parameter Estimate Standard Error t–value p–value 

a 0.140924 0.004192 33.62 <0.001*** 

b 0.310248 0.006439 48.18  <0.001*** 

*Note: the power function is depicted above with parameters (a and b) to be estimated. 

Residual standard error: 0.4049 on 14594 degrees of freedom 

 

Figure 9 The relationship of duration on eBird checklists and bias (estimated species 

richness of eBird vs. observed species richness of BBS) across 204 BBS sites. The power 

function (top-right in the figure) was used to fit the relationship of bias and duration by a 

least squares approach. Bias was calculated with estimated species richness from eBird 

dataset and observed species richness from BBS dataset. A total of 14596 eBird checklists 

were included in the analyses. Note that bias calculation of observed species richness in 

BBS was computed by compiling observed species richness from 2009–2017 across each 

204 BBS site separately. Since the minimum result value of bias is -1, I added -1 in order 

to scale the formula. 
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5. Improvement of proportion of species richness against BBS dataset after the Chao1 

species richness estimation 

Again, a non-linear power function explained the effect of duration from eBird 

checklists on bias (Table 7 and Table 8). In general, as survey duration increased, the 

observed and estimated species richness of eBird checklists were closer to the average 

observed species richness of BBS sites (Figure 10 and Figure 11). Based on power 

function at 60-minutes, bias was closer to zero (from -0.34 to -0.14) after species richness 

being estimated by the Chao1 estimator in eBird dataset, indicating eBird dataset can 

record the same number of species richness from the BBS dataset raised from 66% to 

86% (i.e., species richness from eBird dataset was closer to the average observed species 

richness from BBS dataset after the Chao1 species richness estimation) (Figure 10 and 

Figure 11). At 60-minutes, compared to the number of checklists reported a bias >1 before 

species richness estimation (n = 4), nearly three times (3.25) of eBird checklists were 

reported a bias >1 after the Chao1 species richness estimation (n = 13) – that is, more 

than twice as many eBird as BBS species richness were reported when bias >1 

(overestimation) (Figure 10 and Figure 11). 

When comparing observed species richness of the eBird and BBS datasets, 

according to the power function by least squares approach, at 60-minutes the eBird dataset 

had a bias of -0.34 (Figure 10). the eBird dataset recorded an average of 66% of the BBS 

species richness at 60-minutes. According to the power function, eBird checklists would 

need a duration of 221.89 minutes to reach 0 bias value (Figure 10). 

When comparing the Chao1 species richness estimated from the eBird dataset to 

average observed species richness in the BBS dataset, according to the power function, 

at 60-minutes the eBird dataset had a bias of -0.14 (Figure 11). Based on the bias formula 

described in the methods section, the eBird dataset recorded an average of 86% of BBS 
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species after the Chao1 species richness estimation. Although the Chao1 estimator could 

improve the record observed species, eBird dataset was still failed to reach the same 

number of species richness against the BBS dataset at the 60-minutes even the Chao1 

estimator was applied. According to the power function, eBird checklists would need a 

duration of 96.42 minutes to reach 0 bias value after the Chao1 species richness 

estimation (Figure 11). 
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Table 7 Parameter estimates from the power function by least squares method on the 

relationship of duration and bias (observed species richness of eBird vs. average observed 

species richness of BBS) 

Parameter Estimate Standard Error t–value p–value 

a 0.177926  0.005805 30.65 <0.001*** 

b 0.319615 0.007070 45.21 <0.001*** 

*Note: the power function is depicted above with parameters (a and b) to be estimated. 

Residual standard error: 0.4077 on 6609 degrees of freedom 

 

Figure 10 The relationship of duration on eBird checklists and bias (observed species 

richness of eBird vs. average observed species richness of BBS) across 92 BBS sites. The 

power function (top-right in the figure) was used to fit the relationship of bias and 

duration by a least squares approach. Bias was calculated with observed species richness 

from both eBird and BBS datasets. A total of 6611 eBird checklists were included in the 

analyses. Note that bias calculation of observed species richness in BBS dataset was 

computed by averaging compiled observed species richness from visits in 2010–2017 

across each 92 BBS site separately. Since the minimum result value of bias is -1, I added 

-1 in order to scale the formula. 
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Table 8 Parameter estimates from the power function by least squares method on the 

relationship of duration and bias (estimated species richness of eBird vs. average 

observed species richness of BBS) 

Parameter Estimate Standard Error t–value p–value 

a 0.247240 0.009437 26.20 <0.001*** 

b 0.305866 0.008325 36.74 <0.001*** 

*Note: the power function is depicted above with parameters (a and b) to be estimated. 

Residual standard error: 0.634 on 6609 degrees of freedom

 
Figure 11 The relationship of duration on eBird checklists and bias (estimated species 

richness of eBird vs. average observed species richness of BBS) across 92 BBS sites. The 

power function (top-right in the figure) was used to fit the relationship of bias and 

duration by a least squares approach. Bias was calculated with estimated species richness 

from eBird dataset and the average observed species richness from BBS dataset. A total 

of 6611 eBird checklists were included in the analyses. Note that bias calculation of 

observed species richness in BBS dataset was computed by averaging compiled observed 

species richness from visits in 2010–2017 across each 92 BBS site separately. Since the 

minimum result value of bias is -1, I added -1 in order to scale the formula. 
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Discussion 

1. Non-linear relationship – the effect of duration on species richness and bias 

In this study, I compared four non-linear models to examine the relationship 

between duration and species richness. The results showed that a power function was the 

best-performing model for explaining the relationship between duration and species 

richness, indicating that duration strongly affects the number of species recorded. The 

performance of the power function has also been evaluated by Flather (1996) who 

compared a total of nine non-linear models derived from the North American Breeding 

Bird Survey. Power functions fitted well (2nd best fit) among all models (𝑅%& > 0.96) in 

the species-accumulation curve (Flather, 1996). The power-based functions have a 

slightly better fit (higher r2) than exponential functions (Ulrich, 2006). Power functions 

were originally used to address the relationship between the survey area size and the 

number of species (also known as the “species-area relationship”) (Arrhenius, 1921). As 

the survey area increases, the number of species tends to increase as a response. 

Except survey area, duration can also be used as a sampling unit, which describes 

the accumulation of undetected species at an increasing period of time (also known as 

“species-time relationship”) (Flather, 1996; Ulrich, 2006; Lopez et al., 2012; Sorte & 

Somveille, 2020). Flather (1996) applied duration as a unit to calculate the species 

accumulation curve; however, duration was restricted with 3-minute point count surveys 

(3 minutes as a unit) from a total of 50 stops of each survey route, and these are not likely 

to present the comprehensive view of continuous duration. In other words, the number of 

species recorded may be varied within 3 minutes of point count surveys. Our study has 

addressed this problem with a continuous duration as a unit (one minute as a unit), 

providing more reliable results to understand the relationship between duration and 

species richness. On the other hand, a power function also explained the relationship 
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between duration and bias. By using a power function, Lopez et al. (2012) examined 185 

communities and found that as sample intensities (abundance/richness) increased, bias 

decreased. Above all, these findings suggest that the power function explains the effect 

of duration on either species richness or bias on further use of unstructured citizen science 

data. 

2. Species richness estimation methods 

It is crucial to evaluate the effectiveness of the species richness estimation 

methods before comparing species richness from various data sources (Walther & Martin, 

2001). Once the performance of the estimation method is evaluated, better biodiversity 

measures can be applied. Here, I assessed the least biased estimator from three species 

richness estimation methods in the eBird dataset. The Chao1 estimator was found to out-

perform all other estimators, followed by the ICE and Jackknife estimators. 

This finding was also reported by Walther and Martin (2001) based on their well-

sampled (20-minutes point counts) bird species richness study in Canada. When 

comparing 7 non-parametric and 12 accumulation curve models, their results showed that 

the Chao1 and Chao2 estimators were overall the least biased, followed by the Jackknife 

(3rd least biased), and ICE (10th least biased) estimators (Walther & Martin, 2001). 

Similarly, Walther and Morand (1998) reported on the Chao estimator’s superior 

performance, even though their study focused on other taxa. For example, in their real 

parasite dataset, the Chao2 estimator performed the best among all other eight species 

richness estimation methods. The Jackknife estimator was the second least biased, 

followed by Chao1 which came in third (Walther & Morand, 1998). 

ICE and Jackknife estimators appear to generate inconsistent conclusions in 

different studies. This inconsistency may be attributable to the data sources having been 
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derived from different communities and sampling protocols (Walther & Morand, 1998). 

The ICE estimator is calculated from the occurrence probability of infrequent species, 

and the number of individuals to define infrequent species group which is used as a 

determinant in species richness estimation, can be user-defined (Chao & Chiu, 2014). For 

example, it is recommended to set 10 individuals as a cut-off point to distinguish between 

infrequent or frequent species group (Chao & Chiu, 2014). Walther and Morand (1998) 

found that after the increment of 5 from 5 to 20, to define the number of individuals in 

the infrequent species group, the estimates of ICE estimator varied by approximately 5%. 

The Jackknife estimator, alternatively, provides the least biased estimates with small 

sample sizes (Colwell & Coddington, 1994). In addition to species richness estimation 

techniques, raw species count has performed the worst with negatively biased estimates 

of the total species richness (Walther & Morand, 1998). 

In this study, I used Chao1 as the species richness estimation method to compare 

bird community data with eBird dataset. Using raw species count as a richness index will 

underestimate species richness in a given area. Chao estimators (Chao1 and Chao2) have 

been widely applied across many taxa to access the regional asymptote richness. For 

example, the Chao2 estimator has been applied to estimate lichens species richness from 

citizen science data (Casanovas et al., 2014). The performance of estimators can influence 

determinations of the highest priority areas of conservation concern. To be reliable, 

estimators should have the potential to achieve zero bias. It is therefore important to 

compare different estimators of species richness before taking any steps to address 

community-scale questions. 
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3. Species richness biases in eBird relative to BBS 

As well as comparing species richness derived from different datasets, controlling 

data quality and validation are prerequisites (Sullivan et al., 2009; Bonter & Cooper, 2012; 

Steen et al., 2019; Gómez-Martínez et al., 2020). In this study, I controlled for various 

factors that may bias results developed using different survey methods (e.g., the BBS and 

eBird datasets), including: (1) time of season; (2) sampling area within 2×2km; (3) 

minimum number of eBird checklists; (4) time of day; (5) removal of incomplete, 

unaccepted, and incidental eBird checklists; and (6) removal of group sharing checklists. 

Here, I focused primarily on comparisons of species richness estimates derived from 

eBird and BBS datasets. Whether the eBird checklist is completed will influence the total 

reported species, thus affecting the species richness measures. Once the potential factors 

that could bias results are dealt with, comparisons between two different datasets 

addressing the effects of duration on bias will be more informative. 

A more comprehensive approach can be taken by analyzing the results of bias 

across a survey effort of large duration (Walther & Morand, 1998). In this study, I 

presented the relationship between long-duration surveys and bias. Once the relationship 

between survey effort and species richness has been established, it is important to 

standardize sample size before comparing different data sources (Gómez-Martínez et al., 

2020). In this study, I used a 60-minutes cut-off point to compare the value of bias from 

two different datasets. The Chao1 estimator increased the number of detected species in 

the eBird dataset against the BBS dataset from 66% to 86%. This result highlights the 

improvement in accuracy gained from using a species richness estimator. However, at 60 

minutes, the eBird dataset was unable to achieve the same value for species richness as 

the BBS dataset (bias = -0.14). 
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According to the BBS and eBird datasets, the BBS dataset recorded a median of 

15 species from each visit, and the eBird dataset recorded a median of 9 species from 

each checklist. Bias derived from overestimation or underestimation of the mean can 

occur due to flaws in the data collection or estimation process (Bird et al., 2014). These 

apparent underestimation estimates of species richness from the eBird dataset are likely 

due to several reasons: 

(1) Higher likelihood of recording more species across points in a BBS site 

BBS monitoring program is generally designed to record a large number of 

common and widespread bird species that regularly breed in a specific area (Newson et 

al., 2005). To monitor common bird species occupying a range of habitats in Taiwan, 

BBS was designed to survey 6 to 10 points to cover all the possible breeding birds within 

a 2×2 km survey area. Taiwan has large changes in elevation over short distances, 

resulting in closely spaced heterogenous habitats; therefore, species composition may be 

different within the survey area (Lee, 1995). Although BBS followed a point count survey 

protocol, BBS sites include over six points within a 2x2 km, and the surveyor may record 

different bird species across points in each visit. On the contrary, the eBird dataset 

included the stationary survey protocol. Stationary survey protocol only retains bird 

records when the location is fixed, and the starting point from the surveyor is no more 

than 30 meters away. BBS surveyors may therefore record more bird species. 

(2) Weather conditions 

Bird activities level is strongly related to weather conditions (Robbins, 1981). 

Robbins (1981) investigated the influence of weather conditions on bird activity levels 

using a point count method in the North America. His study showed that half of the 

families of birds examined had reduced population estimates in light rain. All BBS 
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surveys were restricted to good weather conditions. On the other hand, eBird volunteers 

could conduct surveys during bad weather conditions. Thus, more bird species may be 

recorded from BBS under better weather conditions. 

(3) Skills of identification 

Surveyors with higher identification skill levels are more likely to detect any given 

species than surveyors with lower identification skills (Farmer et al., 2012). Uncommon 

species may be under-reported simply because they are challenging to identify, such as 

lacking distinguishing vocalizations and key features (Gardiner et al., 2012; Swanson et 

al., 2016). Volunteers can be trained to decrease the misidentification rate of species 

(Ratnieks et al., 2016). Examples drawn from the New York Breeding Bird Atlas and 

Massachusetts Butterfly Club surveys illustrate that volunteers in citizen science showed 

increased identification skill levels after attending training programs (Soroye et al., 2018). 

Moreover, as identification skill levels increased, the proportion of false-positives 

declined significantly (Farmer et al., 2012). 

BBS held at least two volunteer training programs each year since 2012, and 

nearly 30 training programs have been held from 2010 to 2011 (K. Tsai, personal 

communication, July 9, 2020). The training program included courses on common 

breeding bird identification (heard and seen), techniques for conducting point count 

surveys, and practical instructions on conducting field surveys. These courses increase 

the identification skill levels of BBS surveyors. 

In contrast to BBS, eBird volunteers are not required to receive training on the 

identification of birds. Observations can be made by individuals with any skill level 

whatsoever. While some professional birders will contribute to eBird surveys, many are 

birding amateurs. And these untrained volunteers with varying identification skills may 
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cause the accuracy in species identification or counting to decrease (Crall et al., 2011; 

Bird et al., 2014). Although I am unable to divide eBirders into skill levels categories in 

this study, it should keep in mind is that the uncertainly of using eBird dataset derived 

from varied skill levels of identification still remains. 

(4) Time of day 

According to the BBS survey protocols, surveyors are required to finish a survey 

within four hours after local sunrise. This time limitation was set up because birds tend 

to be more active during the early morning. For example, Robbins (1981) found that 

Scissor-tailed Flycatcher (Tyrannus forficatus) was more conspicuous (25%) in the 

sunrise hour, and activity declined by about 30% over the subsequent 3 hours. 

Furthermore, the genus Myiarchus had a peak activity in the first hour after sunrise, then 

declined as morning progressed; the number of species recorded was lowest at 13:00 in 

the all-day count at a single location (recorded as four consecutive 5-minute point count) 

(Robbins, 1981). In this study, I restricted checklist start times to after 4 AM and end 

times to before 7 PM in the eBird dataset. Although birds usually have two main activity 

peaks within a day, bird activity levels during the afternoon are lower relative to the 

morning (Robbins, 1981). Therefore, birds are more easily detected during the early 

morning. 

It should be noted that, in this study, I only applied species richness as a 

comparative index. Other biodiversity metrics such as evenness and similarity might be 

applicable to eBird dataset as well, and used to compare with BBS dataset. Moreover, the 

eBird program has the benefit of identifying species that are poorly covered by BBS. In 

this study, the eBird dataset included nine species that were not reported by the BBS 

surveys (Table S2). Similarly, Soroye et al. (2018) compared structured (Butterflies of 
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Canada) and unstructured (eButterfly) citizen science databases on butterflies. The results 

showed that the eButterfly database recorded five more species than did the Butterflies 

of Canada database. Thus, unstructured citizen science might have a higher potential of 

recording rare or uncommon species than structured citizen science. 

Based upon my results, I suggest BBS should remain to be the standard 

monitoring program to record breeding bird species in Taiwan. When BBS sites contain 

few eBird checklists and with lots of missing visits of observations, we may still be able 

to include eBird checklists under a certain threshold of bias (Chazdon et al., 1998). 

Walther and Morand (1998) suggested implementing such a policy by setting the variance 

threshold to less than 5% of the estimated species richness from samples to represent the 

local community. Consequently, this may result in the inclusion of more eBird checklists 

in estimates of species richness. 

4. Issues of overestimation from the Chao1 estimator 

The flaws in estimation process may produce bias derived from overestimation of 

the mean (Bird et al., 2014). Samples obtained from lower survey effort often leads to 

overestimation of the mean, such as lower duration, fewer individuals. The results showed 

that nearly three times (3.25) of eBird checklists were reported a bias >1 after Chao1 

species richness estimation at 60-minutes. Among species richness estimations, the 

Chao1 estimator is especially sensitive to the number of singletons from a reference 

sample. When restricting duration of between 36 to 60 minutes from both BBS and eBird 

datasets, the median of percentage of singleton was 21.4 and 26.2, respectively (Figure 

S10). Percentage of singletons in the eBird dataset was significantly higher than in the 

BBS dataset (W = 1688300, p < 0.001) (Figure S10).  



doi:10.6342/NTU202002665

48 
 

It has been found that a low sampling effort may result in more singletons than 

larger sampling effort (Lopez et al., 2012). Chao1 estimator specifies the number of 

singletons in a sample with rare or undetected species (Chao & Chiu, 2014). This might 

result in biased estimation when a large number of singleton species appear in a reference 

sample. I investigated the relationship between the number of singletons and bias from 

the eBird dataset. The results showed that as the number of singletons increased, the 

outcome value of bias increased as a response (Figure S11 and Table S4). This confirms 

that the number of singletons may determine the probability of overestimation by the 

Chao1 estimator. Therefore, Chao1 may overestimate the true species richness when 

singleton species are abundant. 

The number of singletons is likely to present an issue, especially in unstructured 

citizen science. Soroye et al. (2018) explored the accuracy of the species richness 

estimation derived from unstructured citizen science – eButterfly. When using eButterfly 

to predict the regional species richness in which rare species were excluded, species 

richness estimation was more accurate than including rare species (Soroye et al., 2018). 

A reliable estimate needs to take the effect of the number of singletons into account, 

particularly in unstructured citizen science. 

One way to decrease the number of singleton species is by increasing the sampling 

intensity and sampling effort (Lopez et al., 2012). This would reduce the possibility of 

overestimating the true species richness. Therefore, I applied a linear regression analysis 

to examine the relationship between duration and percentage of singleton species derived 

from each eBird checklist. The percentage of singleton species had a significant negative 

relationship with duration (Table S3). In other words, as duration increased, the 

percentage of singleton species decreased significantly. Further, I investigated the 

relationship between percentage of singleton species and bias by linear regression 
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analysis. The results showed that the value of bias had a significant positive relationship 

with percentage of singleton species, indicating as percentage of singleton species 

increased, the value of bias increased as a response (Table S4 and Figure S11). Generally, 

large sampling efforts will produce more accurate predictions than small sampling efforts 

(de Caprariis et al., 1981). 

Although non-parametric approaches of species richness estimation methods 

make no assumption on distribution of species abundance, variable species abundance 

distributions present in samples can still affect the performance of these estimators 

(Bunge & Fitzpatrick, 1993; Soberón & Llorente, 1993). This is probably also due to the 

number of singleton species. As mentioned above, the number of singleton species affects 

the value of bias. In addition, the survey duration over which samples are collected might 

influence the shape of species abundance distributions (Magurran, 2007). Low-duration 

samples have an increased probability of containing singleton species, which will in-turn 

influence the shape of species abundance distributions. Finally, I suggest the future use 

of species richness estimation on unstructured citizen science data should increase 

sampling effort (e.g., duration, number of individuals), to decrease the bias in estimates 

of species richness. Another way to increase power and reduce the uncertainty around 

associated results is to combine datasets or checklists. Additional observations may 

improve our ability to detect more individuals of a species and species count within the 

data (Soroye et al., 2018). Thus, we may compile more than one eBird checklist, or 

combine them with BBS dataset to decrease bias in the results. 

Nevertheless, insufficient checklists will still be common in some inaccessible or 

distant areas (Tulloch & Szabo, 2012; Klemann-Junior et al., 2017). And further, 

checklists collected in unstructured citizen science exhibit a considerable spatial bias 

towards more densely populated regions or interesting sites (Boakes et al., 2010; Lin et 
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al., 2015; Kamp et al., 2016). In this study, I set up a minimum requirement that each 

BBS site contained at least six eBird checklists. From a total of 457 BBS sites, only 204 

BBS sites (45%) met the requirement. Thus, more than half of the BBS sites were located 

in places that eBird volunteers appeared unwilling or uninterested in visiting. This clearly 

complicates the strategy of using species richness estimates from eBird to make up for 

missing BBS data. 

In summary, unstructured citizen science has become a prominent mechanism for 

collecting biodiversity information in recent decades. But, the results from my study 

showed that eBird surveys failed to record the same number of species as BBS. This 

discrepancy might result from the number of BBS survey points located in various 

habitats, from weather conditions, from surveyor skill levels, and from the time of day 

that samples were taken. Chao1 performed the best among all estimators examined, and 

increased the number of recorded species from 66% to 86% in the eBird dataset. I also 

found that the number of singletons present in a dataset may bias estimates of species 

richness. Finally, I conclude that species richness estimates derived from unstructured 

citizen science studies should always account for imperfect detection probability. When 

applying Chao1 estimation in the eBird dataset, more attention should be paid to the 

biased result derived from the number of singletons, particularly in the low-effort samples. 

Once the species richness is estimated, and the effect of singletons are dealt with, better 

conservation strategies can be established for the areas where biodiversity has been 

impacted. 
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Appendixes 

Table S1 Summary of a total of 204 BBS sites from this study, including the number of 

points, time of visits, and total time of duration recorded from 2009 to 2017. “A” denotes 

sites located in low-elevation (<1000 meters a.s.l.); “B” denotes sites located in mid-

elevation (1000–2500 meters a.s.l.); “C” denotes sites located in high-elevation (>2500 

meters a.s.l). 

Site ID Number 
of points 

Time of visits in 
2009 

Time of visits from 
2010 to 2017 

Total survey duration 
(min.) 

A01-02 10 3 14 1110 
A02-06 10 0 2 120 
A03-07 10 0 6 360 
A03-10 6 0 6 216 
A03-18 6 0 12 432 
A03-20 9 0 6 324 
A03-21 10 0 3 180 
A04-04 6 3 16 738 
A04-05 6 3 12 594 
A04-09 10 0 9 540 
A04-10 6 0 9 324 
A04-16 10 0 11 660 
A04-18 10 0 13 780 
A04-19 10 0 11 660 
A04-20 10 0 14 840 
A04-21 10 0 11 660 
A04-22 10 0 6 360 
A04-23 10 0 13 780 
A04-24 10 0 12 720 
A04-25 7 0 14 588 
A04-26 10 0 8 480 
A04-27 10 0 3 180 
A04-28 10 0 14 840 
A04-30 9 0 9 486 
A04-31 10 0 10 600 
A04-32 6 0 14 504 
A04-34 10 0 9 540 
A04-41 10 0 7 420 
A04-43 10 0 12 720 
A04-44 8 0 11 528 
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Table S1 (continued) 

Site ID Number 
of points 

Time of visits in 
2009 

Time of visits from 
2010 to 2017 

Total survey duration 
(min.) 

A04-45 8 0 12 576 
A04-46 6 0 12 432 
A04-48 11 0 11 726 
A04-49 10 0 10 600 
A04-50 8 0 11 528 
A04-52 6 0 4 144 
A04-53 8 0 7 336 
A04-54 6 0 6 216 
A04-55 6 0 6 216 
A04-56 6 0 4 144 
A04-57 6 0 4 144 
A05-01 6 3 14 666 
A05-02 6 3 10 522 
A05-15 8 0 10 480 
A05-19 6 0 3 108 
A05-21 6 0 2 72 
A07-10 10 0 6 360 
A09-01 6 3 13 630 
A09-03 6 2 11 504 
A09-09 8 0 4 192 
A09-10 6 0 5 180 
A09-12 8 0 6 288 
A09-13 10 0 12 720 
A09-15 10 0 12 720 
A09-24 9 0 10 540 
A09-29 10 0 11 660 
A09-30 6 0 11 396 
A09-31 10 0 9 540 
A09-32 13 0 8 624 
A09-33 9 0 8 432 
A09-35 6 0 8 288 
A09-36 6 0 8 288 
A09-38 6 0 8 288 
A09-44 7 0 12 504 
A09-45 10 0 12 720 
A09-46 10 0 12 720 
A09-47 8 0 3 144 
A09-48 7 0 9 378 
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Table S1 (continued) 

Site ID Number 
of points 

Time of visits in 
2009 

Time of visits from 
2010 to 2017 

Total survey duration 
(min.) 

 

A09-50 6 0 10 360 
A09-51 8 0 10 480 
A09-52 10 0 9 540 
A09-54 8 0 8 384 
A09-56 8 0 8 384 
A09-57 8 0 8 384 
A16-01 6 3 13 630 
A16-02 6 3 16 738 
A16-03 6 3 12 594 
A16-04 10 4 12 1080 
A17-03 6 2 12 540 
A17-04 10 2 15 1080 
A17-12 9 0 3 162 
A17-14 7 0 4 168 
A17-15 8 0 4 192 
A17-18 7 0 5 210 
A18-04 10 0 12 720 
A18-07 10 0 4 240 
A18-08 6 0 4 144 
A19-01 6 2 14 612 
A19-02 10 2 15 1080 
A19-14 7 0 4 168 
A20-02 10 3 9 810 
A20-03 8 3 15 936 
A20-04 10 3 15 1170 
A21-02 11 3 9 891 
A22-01 6 3 8 450 
A26-04 6 3 16 738 
A27-05 7 3 16 861 
A27-06 6 2 16 684 
A27-33 10 0 8 480 
A27-43 8 0 10 480 
A28-12 11 0 3 198 
A28-16 6 0 12 432 
A29-03 10 3 16 1230 
A29-13 10 0 2 120 
A29-17 10 0 14 840 
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Table S1 (continued) 

Site ID Number 
of points 

Time of visits in 
2009 

Time of visits from 
2010 to 2017 

Total survey duration 
(min.) 

 

A29-20 10 0 13 780 
A29-21 10 0 12 720 
A29-24 7 0 6 252 
A29-26 7 0 4 168 
A29-27 7 0 4 168 
A32-01 6 2 11 504 
A32-02 10 0 16 960 
A32-03 10 0 16 960 
A32-04 9 3 16 1107 
A32-09 6 0 2 72 
A32-11 6 0 2 72 
A33-01 10 3 16 1230 
A33-02 10 3 16 1230 
A33-04 10 3 8 750 
A33-06 7 3 12 693 
A33-07 10 3 16 1230 
A33-08 10 2 17 1200 
A33-14 10 0 14 840 
A33-15 10 0 14 840 
A33-18 10 0 12 720 
A33-23 10 0 2 120 
A33-26 10 0 14 840 
A33-27 10 0 10 600 
A33-28 9 0 10 540 
A33-30 6 0 6 216 
A33-32 7 0 4 168 
A33-33 6 0 4 144 
A33-37 8 0 2 96 
A34-05 9 3 13 945 
A34-08 10 3 15 1170 
A34-22 10 0 11 660 
A34-33 8 0 11 528 
A34-34 6 0 7 252 
A34-38 10 0 12 720 
A34-40 10 0 14 840 
A34-42 9 0 12 648 
A34-45 8 0 9 432 

 



doi:10.6342/NTU202002665

60 
 

Table S1 (continued) 

Site ID Number 
of points 

Time of visits in 
2009 

Time of visits from 
2010 to 2017 

Total survey duration 
(min.) 

 

A34-47 8 0 7 336 
A34-49 10 0 9 540 
A35-02 10 0 4 240 
A35-03 10 0 17 1020 
A35-07 7 0 11 462 
A35-09 10 0 9 540 
A35-10 10 0 5 300 
A35-15 8 0 14 672 
A35-16 10 0 8 480 
A35-17 10 0 2 120 
A35-18 8 0 10 480 
A35-19 9 0 12 648 
A36-01 9 0 16 864 
A36-05 8 2 14 816 
A36-15 10 0 14 840 
A36-17 8 0 6 288 
A37-05 11 3 7 759 
A37-08 6 0 10 360 
A39-01 6 3 12 594 
A39-08 8 0 13 624 
A40-15 9 0 7 378 
A40-16 8 0 10 480 
A40-17 10 0 6 360 
B06-01 10 3 12 990 
B10-01 10 3 16 1230 
B10-03 10 0 4 240 
B11-01 10 2 16 1140 
B14-01 10 2 16 1140 
B14-02 9 2 14 918 
B14-03 8 3 16 984 
B14-04 8 3 16 984 
B16-01 10 3 16 1230 
B16-02 6 4 12 648 
B21-01 10 3 10 870 
B28-01 9 3 15 1053 
B28-04 17 0 4 408 
B28-06 10 0 2 120 
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Table S1 (continued) 

Site ID Number 
of points 

Time of visits in 
2009 

Time of visits from 
2010 to 2017 

Total survey duration 
(min.) 

 

B29-02 10 0 10 600 
B30-01 10 3 14 1110 
B30-02 10 3 16 1230 
B30-04 10 3 16 1230 
B30-07 10 0 10 600 
B32-01 8 3 14 888 
B32-02 9 3 14 999 
B32-04 9 3 8 675 
B32-10 10 0 15 900 
B32-11 10 0 13 780 
B33-01 7 0 12 504 
B33-02 10 0 6 360 
B35-01 10 0 10 600 
B37-02 9 3 15 1053 
B38-07 10 0 8 480 
C14-03 10 4 11 1020 
C14-04 9 3 8 675 
C16-01 10 0 12 720 
C28-01 9 0 2 108 
C30-01 8 3 15 936 
C30-02 10 0 16 960 
C30-03 10 0 12 720 
C30-04 10 0 12 720 
C37-04 10 3 12 990 
C37-05 8 3 19 1128 
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Table S2 Bird species reported from the Breeding Bird Survey Taiwan (BBS) and 

eBird datasets. I included BBS dataset recorded from 2009 to 2017; and included eBird 

dataset recorded from 2008 to 2018. 

*Note: Where “1” represents the species reported from the datasets, “NA” represents 

the species that were not reported from the datasets. 

Common Name Scientific Name Chinese 
Common Name BBS eBird 

Barred Buttonquail Turnix suscitator 棕三趾鶉 1 1 

Long-tailed Shrike Lanius schach 棕背伯勞 1 1 

White-bellied Erpornis Erpornis zantholeuca 綠畫眉 1 1 

Large Cuckooshrike Coracina macei 花翅山椒鳥 1 1 

Gray-chinned Minivet Pericrocotus solaris 灰喉山椒鳥 1 1 

Taiwan Yellow Tit Machlolophus holsti 黃山雀 1 1 

Green-backed Tit Parus monticolus 青背山雀 1 1 

Coal Tit Periparus ater 煤山雀 1 1 

Chestnut-bellied Tit Sittiparus 
castaneoventris 赤腹山雀 1 1 

Alpine Accentor Prunella collaris 岩鷚 1 1 

Striated Swallow Cecropis striolata 赤腰燕 1 1 

Asian House-Martin Delichon dasypus 東方毛腳燕 1 1 

Barn Swallow Hirundo rustica 家燕 1 1 

Pacific Swallow Hirundo tahitica 洋燕 1 1 

Gray-throated Martin Riparia chinensis 棕沙燕 1 1 

Oriental Pratincole Glareola maldivarum 燕鴴 1 1 
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Table S2 (continued)     

Common Name Scientific Name Chinese 
Common Name BBS eBird 

Bronzed Drongo Dicrurus aeneus 小卷尾 1 1 

Black Drongo Dicrurus macrocercus 大卷尾 1 1 

Black-naped Monarch Hypothymis azurea 黑枕藍鶲 1 1 

Japanese Paradise-
Flycatcher Terpsiphone atrocaudata 紫綬帶 1 1 

Rufous-capped Babbler Cyanoderma ruficeps 山紅頭 1 1 

Black-necklaced 
Scimitar-Babbler 

Megapomatorhinus 
erythrocnemis 大彎嘴 1 1 

Taiwan Scimitar-
Babbler Pomatorhinus musicus 小彎嘴 1 1 

Fire-breasted 
Flowerpecker Dicaeum ignipectus 紅胸啄花 1 1 

Plain Flowerpecker Dicaeum minullum 綠啄花 1 1 

White-backed 
Woodpecker Dendrocopos leucotos 大赤啄木 1 1 

Gray-headed 
Woodpecker Picus canus 綠啄木 1 1 

Gray-capped 
Woodpecker Yungipicus canicapillus 小啄木 1 1 

Common Kingfisher Alcedo atthis 翠鳥 1 1 

Crested Myna Acridotheres cristatellus 八哥 1 1 

Oriental Skylark Alauda gulgula 小雲雀 1 1 

Taiwan Barwing Actinodura morrisoniana 紋翼畫眉 1 1 

Morrison's Fulvetta Alcippe morrisonia 繡眼畫眉 1 1 

Taiwan Hwamei Garrulax taewanus 臺灣畫眉 NA 1 

White-eared Sibia Heterophasia auricularis 白耳畫眉 1 1 
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Table S2 (continued) 

Common Name Scientific Name Chinese 
Common Name BBS eBird 

Rusty Laughingthrush Ianthocincla 
poecilorhyncha 棕噪眉 1 1 

Rufous-crowned 
Laughingthrush Ianthocincla ruficeps 臺灣白喉噪眉 1 1 

Steere's Liocichla Liocichla steerii 黃胸藪眉 1 1 

White-whiskered 
Laughingthrush 

Trochalopteron 
morrisonianum 臺灣噪眉 1 1 

White-breasted 
Waterhen Amaurornis phoenicurus 白腹秧雞 1 1 

Eurasian Moorhen Gallinula chloropus 紅冠水雞 1 1 

Slaty-legged Crake Rallina eurizonoides 灰腳秧雞 1 1 

Ruddy-breasted Crake Zapornia fusca 緋秧雞 1 1 

Taiwan Yuhina Yuhina brunneiceps 冠羽畫眉 1 1 

Swinhoe's White-eye Zosterops simplex 斯氏繡眼 1 1 

Lowland White-eye Zosterops meyeni 低地繡眼 1 1 

Greater Painted-Snipe Rostratula benghalensis 彩鷸 1 1 

Taiwan Barbet Psilopogon nuchalis 五色鳥 1 1 

Rufous-faced Warbler Abroscopus albogularis 棕面鶯 1 1 

Yellowish-bellied Bush 
Warbler Horornis acanthizoides 深山鶯 1 1 

Brownish-flanked Bush 
Warbler Horornis fortipes 小鶯 1 1 

White Wagtail Motacilla alba 白鶺鴒 1 1 

Little Forktail Enicurus scouleri 小剪尾 1 1 

Snowy-browed 
Flycatcher Ficedula hyperythra 黃胸青鶲 1 1 

Ferruginous Flycatcher Muscicapa ferruginea 紅尾鶲 1 1 
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Table S2 (continued) 

Common Name Scientific Name Chinese 
Common Name BBS eBird 

Taiwan Whistling-
Thrush Myophonus insularis 臺灣紫嘯鶇 1 1 

Vivid Niltava Niltava vivida 黃腹琉璃 1 1 

Plumbeous Redstart Phoenicurus fuliginosus 鉛色水鶇 1 1 

White-browed Bush-
Robin Tarsiger indicus 白眉林鴝 1 1 

Taiwan Shortwing Brachypteryx 
goodfellowi 小翼鶇 1 1 

Collared Bush-Robin Tarsiger johnstoniae 栗背林鴝 1 1 

Scaly Thrush Zoothera dauma 虎斑地鶇 1 1 

Taiwan Fulvetta Fulvetta formosana 褐頭花翼 1 1 

Vinous-throated 
Parrotbill Sinosuthora webbiana 粉紅鸚嘴 1 1 

Golden Parrotbill Suthora verreauxi 黃羽鸚嘴 1 1 

Little Grebe Tachybaptus ruficollis 小鸊鷉 1 1 

Taiwan Cupwing Pnoepyga formosana 臺灣鷦眉 1 1 

Eurasian Wren Troglodytes troglodytes 鷦鷯 1 1 

Cattle Egret Bubulcus ibis 黃頭鷺 1 1 

Striated Heron Butorides striata 綠簑鷺 1 1 

Little Egret Egretta garzetta 小白鷺 1 1 

Pacific Reef-Heron Egretta sacra 岩鷺 1 1 

Malayan Night-Heron Gorsachius 
melanolophus 黑冠麻鷺 1 1 

Cinnamon Bittern Ixobrychus cinnamomeus 栗小鷺 1 1 

Yellow Bittern Ixobrychus sinensis 黃小鷺 1 1 
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Table S2 (continued)     

Common Name Scientific Name Chinese 
Common Name BBS eBird 

Black-crowned Night-
Heron Nycticorax nycticorax 夜鷺 1 1 

Brown Noddy Anous stolidus 玄燕鷗 NA 1 

Bridled Tern Onychoprion anaethetus 白眉燕鷗 NA 1 

Sooty Tern Onychoprion fuscatus 烏領燕鷗 NA 1 

Roseate Tern Sterna dougallii 紅燕鷗 NA 1 

Black-naped Tern Sterna sumatrana 蒼燕鷗 NA 1 

Little Tern Sternula albifrons 小燕鷗 1 1 

Great Crested Tern Thalasseus bergii 鳳頭燕鷗 NA 1 

Chinese Crested Tern Thalasseus bernsteini 
黑嘴端鳳頭燕

鷗 NA 1 

Crested Goshawk Accipiter trivirgatus 鳳頭蒼鷹 1 1 

Besra Accipiter virgatus 松雀鷹 1 1 

Black-winged Kite Elanus caeruleus 黑翅鳶 1 1 

Black Eagle Ictinaetus malaiensis 林鵰 1 1 

Black Kite Milvus migrans 黑鳶 1 1 

Mountain Hawk-Eagle Nisaetus nipalensis 熊鷹 1 1 

Crested Serpent-Eagle Spilornis cheela 大冠鷲 1 1 

Pheasant-tailed Jacana Hydrophasianus 
chirurgus 水雉 1 1 

Russet Sparrow Passer cinnamomeus 山麻雀 1 1 

Eurasian Tree Sparrow Passer montanus 麻雀 1 1 

Brown Dipper Cinclus pallasii 河烏 1 1 
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Table S2 (continued)     

Common Name Scientific Name Chinese 
Common Name BBS eBird 

Asian Emerald Dove Chalcophaps indica 翠翼鳩 1 1 

Ashy Wood-Pigeon Columba pulchricollis 灰林鴿 1 1 

Philippine Cuckoo-
Dove Macropygia tenuirostris 長尾鳩 1 1 

Black-chinned Fruit-
Dove Ptilinopus leclancheri 小綠鳩 NA 1 

Spotted Dove Streptopelia chinensis 珠頸斑鳩 1 1 

Oriental Turtle-Dove Streptopelia orientalis 金背鳩 1 1 

Red Collared-Dove Streptopelia 
tranquebarica 紅鳩 1 1 

Whistling Green-
Pigeon Treron formosae 紅頭綠鳩 1 1 

White-bellied Green-
Pigeon Treron sieboldii 綠鳩 1 1 

Eurasian Nuthatch Sitta europaea 茶腹鳾 1 1 

Chestnut Munia Lonchura atricapilla 黑頭文鳥 1 1 

Scaly-breasted Munia Lonchura punctulata 斑文鳥 1 1 

White-rumped Munia Lonchura striata 白腰文鳥 1 1 

Large-billed Crow Corvus macrorhynchos 巨嘴鴉 1 1 

Gray Treepie Dendrocitta formosae 樹鵲 1 1 

Eurasian Jay Garrulus glandarius 松鴉 1 1 

Eurasian Nutcracker Nucifraga caryocatactes 星鴉 1 1 

Taiwan Blue-Magpie Urocissa caerulea 臺灣藍鵲 1 1 

Flamecrest Regulus goodfellowi 火冠戴菊鳥 1 1 

Golden-headed 
Cisticola Cisticola exilis 黃頭扇尾鶯 1 1 
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Table S2 (continued)     

Common Name Scientific Name Chinese 
Common Name BBS eBird 

Zitting Cisticola Cisticola juncidis 棕扇尾鶯 1 1 

Striated Prinia Prinia crinigera 斑紋鷦鶯 1 1 

Yellow-bellied Prinia Prinia flaviventris 灰頭鷦鶯 1 1 

Plain Prinia Prinia inornata 褐頭鷦鶯 1 1 

Black-naped Oriole Oriolus chinensis 黃鸝 1 1 

Maroon Oriole Oriolus traillii 朱鸝 1 1 

Black-throated Tit Aegithalos concinnus 紅頭山雀 1 1 

House Swift Apus nipalensis 小雨燕 1 1 

Silver-backed 
Needletail 

Hirundapus 
cochinchinensis 灰喉針尾雨燕 1 1 

Taiwan Rosefinch Carpodacus formosanus 臺灣朱雀 1 1 

Gray-headed Bullfinch Pyrrhula erythaca 灰鷽 1 1 

Brown Bullfinch Pyrrhula nipalensis 褐鷽 1 1 

Taiwan Partridge Arborophila crudigularis 臺灣山鷓鴣 1 1 

Taiwan Bamboo-
Partridge Bambusicola sonorivox 臺灣竹雞 1 1 

Swinhoe's Pheasant Lophura swinhoii 藍腹鷴 1 1 

Ring-necked Pheasant Phasianus colchicus 環頸雉 1 1 

Mikado Pheasant Syrmaticus mikado 黑長尾雉 1 1 

Dusky Fulvetta Schoeniparus brunneus 頭烏線 1 1 

Mandarin Duck Aix galericulata 鴛鴦 1 1 

Eastern Spot-billed 
Duck Anas zonorhyncha 花嘴鴨 1 1 
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Table S2 (continued)     

Common Name Scientific Name Chinese 
Common Name BBS eBird 

Taiwan Bush-Warbler Locustella alishanensis 臺灣叢樹鶯 1 1 

Lesser Coucal Centropus bengalensis 番鵑 1 1 

Oriental Cuckoo Cuculus optatus 北方中杜鵑 1 1 

Large Hawk-Cuckoo Hierococcyx 
sparverioides 鷹鵑 1 1 

Brown-eared Bulbul Hypsipetes amaurotis 棕耳鵯 1 1 

Black Bulbul Hypsipetes 
leucocephalus 紅嘴黑鵯 1 1 

Light-vented Bulbul Pycnonotus sinensis 白頭翁 1 1 

Styan's Bulbul Pycnonotus taivanus 烏頭翁 1 1 

Collared Finchbill Spizixos semitorques 白環鸚嘴鵯 1 1 
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Table S3 Estimates for coefficient on linear regression analysis on the relationship of 

duration (min.) and percentage of singleton species (%) from eBird checklists. A total of 

14577 checklists were included in this analysis. Residual standard error was 23.87 on 

14575 degrees of freedom; adjusted R-squared was 0.029 and F-statistic was 436.3 on 1 

and 14575 DF. 

 Estimate Standard error t–value p–value 

Intercept 35.452252 0.265250 133.66 < 0.001*** 

Time of duration -0.048130 0.002304 -20.89 < 0.001*** 

 

Table S4 Estimates for coefficient on linear regression analysis on the relationship of 

percentage of singleton species (%) and bias. Residual standard error was 23.23 on 

14594 degrees of freedom; adjusted R-squared was 0.08323 and F-statistic was 1326 on 

1 and 14594 DF. 

 Estimate Standard error t–value p–value 

Intercept 29.8440 0.1996 149.55 < 0.001*** 

Percentage of 

singleton species 
31.7633 0.8723 36.41 < 0.001*** 
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Figure S1 Histogram of observed species richness reported in each point of each BBS 

site recorded from 2009 to 2017. An average of 7.16 species could be detected at each 

point.  
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Figure S2 Histogram of reported observed species richness in each visit of BBS sites 

recorded from 2009 to 2017. An average of 15.78 species could be detected in every 

visit (time of duration: 36–60 minutes).  
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Figure S3 Rank abundance distribution (RAD) curve from BBS dataset recorded from 

2009 to 2017 (n = 4949). Log-normal has the best fit from all models (BIC = 43335). 

BIC for three other models were: Null (BIC = 443780); Preemption (BIC = 119491); 

and Zipf (BIC = 143370). 
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Figure S4 Rank abundance distribution (RAD) curve from eBird dataset recorded from 

1967 to 2018 (n = 313050 checklists). Log-normal has the best fit from all models (BIC 

= 907987). BIC for three other models were: Null (BIC = 22196919); Preemption (BIC 

= 6209204); and Zipf (BIC = 4028677).  
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Figure S5 Percentage of eBird checklists from breeding/non-breeding season, sampling 

protocol and duration. Checklists were recorded from 1967 to 2018 in Taiwan. 
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Figure S6 Histogram of duration in each eBird checklist recorded from 2008 to 2018. A 

total duration with less than six minutes in the checklist were excluded. 
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Figure S7 Histogram of the number of eBird checklists in each BBS site across Taiwan 

recorded from 2009 to 2017. 
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Figure S8 Starting and time of ending of eBird checklists on all-day 24-hour scale 

recorded from 2008 to 2018. 
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Figure S9 Histogram of the number of surveyors in eBird checklists recorded from 

2008 to 2018. A maximum of 50 surveyors was reported here. 
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Figure S10-1 Boxplot of the percentage of singleton on both BBS and eBird datasets. 

BBS data included 2238 visit-based checklists, with a total of 204 sites. eBird data 

included 2164 checklists. Both datasets of duration were restricted with a duration of 

between 36 to 60 minutes. Median of percentage of singleton on both eBird and BBS 

datasets were 21.4 and 26.2, respectively; IQR were 15.8 and 28.6, respectively. 
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Figure S10-2 Comparison of the percentage of singleton on both BBS and eBird 

datasets. (A) BBS data included 2238 visit-based checklists, with a total of 204 sites. 

(B) eBird data included 2164 checklists. Both datasets were restricted with a duration of 

between 36 to 60 minutes. 
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Figure S11 Relationship between percentage of singletons and bias. Bias was 

calculated as follow: the outcome of bias after species richness estimation in eBird 

dataset subtract the outcome of bias before species richness estimation in eBird dataset. 

Species richness from eBird was applied as checklist-based, while species richness from 

BBS was compiled from years of visits recorded from 2009 to 2017. 

 




