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ABSTRACT

With the growth of internet retails and the changing of shopping environment in popularity, the

large amount of home delivery brings with a new batch of ecommerce logistics challenges. "Last

mile delivery" is one of the important factor to customer satisfaction and often leads to delivery

failure due to the absence for customer, causing the increase of operating costs. Therefore, logistics

enterprises are dedicating to the minimizing the total operation cost and optimum the profit,

considering the best way to dispatch the deliveryman reasonably within a limited time.

The aim of this research was to develop an optimization model for Vehicle Routing Problem

with Profits and Stochastic Customers (VRPPSC). In the thesis, soft time windows and capacity

constraints are considered. A two-stage stochastic mixed-integer programming model was first

proposed for the problem. Since the problem is NP-hard, two problem procedures are constructed

for solving the generated problem. The first procedures is based on a combination of inserted

heuristic and iterated local search algorithms, while the second using a genetic algorithm to do the

randomizing of the first stage selection.

Keywords: Logistic problem, Vehicle Routing Problem with Profits, Soft Time windows, Mixed-

integer Programming Model, Heuristic Algorithm
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Chapter 1 Introduction

1.1 Background Information and Motivation

Nowadays, the businesses of online shopping and e-commerce are inflating enormously among

the entire market. Fig. 1.1 shows the estimation and forecasting of the global e-commerce share of

retail sales. The increasing of e-commerce sales change has remained positive since 2015.

According to eMarketer (2020), the e-retail accounted for 14.1 % of all retail sales in 2019, and

forecasts predict an increase of up to 22% to 2023. With the popularization of smart devices and the

using of Internet, retailers open their own e-commerce platforms in order to catch on the trend. The

remarkable growth of e-commerce orders leads to the challenge on logistics service.
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Fig. 1.1 Worldwide retail e-commerce sales (2015-2023)
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The last mile delivery has been viewed as the key actors in e-commerce logistics. The phase

refers to the final stage of transportation in the logistics network, which the order placement and the

service encounter occur. Gevaers, Voorde, and Vanelslander (2011) mention that the last mile

delivery is the most cost-intensive part of the supply chain. With the rising attention on the last mile

logistic, the probability of failed deliveries is focused. The failure can be caused by product

returning, missing of customers, wrong sending and so forth. The unsuccessful delivery leads to the

growth cost on the reverse flow. In most countries, more than half of all online shoppers have

returned an online purchase. The highest incidence is where 77% of online shoppers have made a

return in Germany. Blanchard (2007) mentions that the product returns are reducing profits of

manufacturers and retailers by 3.8% per average. The uncertainty for the customers’ behavior has

caused the difficulty in the delivery dealing and has decreased the effectiveness of the route

planning.

For logistic problem, the optimizing of the delivery route aims to identify the most profitable

set of customers, which a set of customers to serve is selected while different profits are associated

with each customer. Such problem has been referred to as the vehicle routing problem with profits

(VRPP). In the context of the VRPP, it is not compulsory to visit all customers. Some previous

researches have putting the probability of traveling time and service time into considerations.

However, seldom literature studies the stochasticity of customers in the logistic mathematical
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model.
1.2 Research Objective

The aim of this thesis is to develop an optimization method for logistics network model. For the
planning of the last mile delivery, some factors, such as time window and capacity are essential to
consider for the delivery. Since the occurrence of the customer is uncertain, the objective of the
proposed model in this research is to maximize the expected profit from different scenarios.
1.3 Research Structure

The structure of this research is outlined as follows. First, the related literature is reviewed in
chapter 2. In chapter 3, a mixed-integer programming model for solving the stochastic VRPP model
is formulated and two optimization algorithms are developed to solve the problem more efficiently.
Next, numerical experiments are conducted in chapter 4, and the results are discussed. Finally, a

comprehensive discussion of this research and suggestions for future works are made in chapter 5.

doi:10.6342/NTU202002814



Chapter 2 Literature Review

The main difference between vehicle routing problem with profits (VRPP) and classical vehicle
routing problem is that not all the customers have to be served for the routing. In other words, two
decisions are considered. In section 2.1, a number of typical VRPP are first reviewed. In order to
provide more satisfactory and efficiency way, the enterprises have allowed the requisition from
customer of the goods delivery within specific time windows. Meanwhile, in real world, couriers have
to consider the capacity of vehicle. Thus, the variants of VRPP with time window constraints, capacity
constraints and stochasticity consideration are discussed in section 2.2. Seldom research studied the
VRPP with stochastic customers; therefore, a variety of VRP with stochastic customer (VRPSC)
models are reviewed and the methods for solving the problems are compared in section 2.3.

2.1 Vehicle Routing Problem with Profits

VRPP has been studied widely. The differences between the VRPP and the regular traveling
salesman problem (TSP) are the requirement of selecting customers and consideration for the profit.
In the VRPP, a customer is selected based on the trade-off between its profit and the extra travel
cost required to include the customer. The most interesting customer can bring the highest
profitability. Vansteenwegen and Gunawan (2019) classified the routing problem with profits in two
ways: One way is based on the number of vehicles or routes and another way is based on the

manner where the profit and the travel cost, mostly distance or time, are modeled.
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The basic VRPPs and their characteristics are summarized in table 2.1. For single VRPP, three

basic problems are classified. The first one is called the profitable tour problem (PTP). PTP

combines both profit and travel cost in the objective function. Therefore, the objective of the PTP is

to visit a subset of customers that maximizes the total collected profit minus the total travel cost.

The second problem is described as the prize-collecting traveling salesperson problem (PCTSP).

The objective of PCTSP is to minimize the total travel cost to reach the lower bound on the profit to

be collected from a subset of customers may be visited. The third problem, usually named the

orienteering problem (OP), is the other way around by which is also known as the selective

traveling salesperson problem. The objective is to maximize the total collected profit by visiting a

subset of customers, while not exceeding a given travel cost, typically a time constraint or a limited

route length.

The routing problems with profits and multiple vehicles can be viewed as the extension of

three basic problems. The multi-vehicle PTP (MVPTP) is the generation for PTP. Toth and Vigo

(2014) described the multi-vehicle extension of PCTSP as capacitated prize collecting VRP

(CPCVRP). The generalization for OP with multiple vehicle, known as the team orienteering

problem (TOP), was first introduced by Butt and Cavalier(1994) with the name multiple tour

maximum collection problem (MTMCP). TOP is by far the only one studied in depth among the

routing problems with profits and multiple vehicles. Many algorithms have been proposed for the
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TOP. Surveys on the OP and TOP (and many variants) can be found in Vansteenwegen et al. (2011)

and Gunawan et al. (2016).

Problem name Objective Vehicle

Orienteering Problem (OP)
(Selective TSP, Maximum Collection max profit Single

Problem, Bank Robber Problem)

Profitable Tour Problem (PTP) max (profit - cost) Single
Prize-collecting traveling salesperson problem

min cost Single
(PCTSP)
Team Orienteering Problem (TOP)

max profit Multiple
(Multiple Tour Maximum Collection Problem)
Multi-vehicle PTP (MVPTP) max (profit - cost) Multiple
Multi-vehicle Prize Collecting VRP (MVPCVRP) | min cost Multiple

Table 2.1 Summary for VRPP
2.2 Variants of Vehicle Routing Problem with Profits
In this section, the variants of vehicle routing problem with profits are presented. For logistic
company, mostly plural drivers are designated to accomplish the delivery; thus, the review will first
focus on VRPP with multiple vehicles. Since the profitability for the customer is most considered,
the review will focus on variants for TOP and MVPTP will be. Next, the literature for VRPP with
the consideration of uncertainty will be reviewed.

The capacitated TOP (CTOP) is a variant of TOP that additionally considers a capacity
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constraint. In the problem, a demand is associated to each customer and each vehicle has a

maximum capacity. The objective is to maximize the total collected profit while satisfying the

capacity and duration constraint for each route. Please refer to Archetti et al. (2009), Archetti,

Bianchessi, and Speranza (2013a), Luo et al. (2013) and Tarantilis, Stavropoulou, and Repoussis

(2013). In theory, it can be beneficial to only serve a customer partially and receive the proportional

partial profit. Archetti et al. (2013b) further extended the problem to be more beneficial by relaxing

with allowing incomplete services for a customer, which is called the CTOP with incomplete

service (CTOP-IS). The study proved the advantage of its advantage on profit collection ability with

a branch-and-price algorithm. Another extension of the CTOP allows the customer to be served by

more than one route to fulfill the service of a customer, named the split delivery CTOP (SDCTOP).

Further extensions of SDCTOP are the SDCTOP with incomplete service (SDCTOP-IS) and the

SDCTOP with minimum delivery amounts (SDCTOP-MDA). These variants are discussed in

Archetti et al.(2013b, 2014a, 2014b) and Wang et al.(2014) respectively. The articles of CTOP and

the variants reviewed are summarized in table 2.2.
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Problem name Characteristic Representative Articles
CTOP Associated demand for each | Archetti et al. (2009),
customer and the capacity Archetti, Bianchessi, and Speranza (2013a)
constraint Luo et al. (2013)
Tarantilis, Stavropoulou, and Repoussis (2013)
CTOP-IS Allowing partial demand Archetti et al. (2013b)
service for each customer
and the capacity constraint
SDCTOP Split demand for each Archetti et al.(2014a)
customer and the capacity
constraint
SDCTOP-IS Allowing split demand Archetti et al.(2014b)
service and partial demand
service for each node and
the capacity constraint
SDCTOP-MDA | Split demand with minimum | Wang et al. (2014)
delivery amounts

Table 2.2 Variants of CTOP

The TOP with time windows (TOPTW), another variant of TOP, has received considerable

attention from the heuristic community in the last decades. The customers has an associated time

window, which means the service for a particular customer has to start within the predefined time

window. An early arrival to a particular customer leads to waiting times, while a late arrival causes

an infeasibility issue. Many heuristic algorithms have been proposed and overall obtained good
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average results on benchmark instances, see as Vansteenwegen et al.(2009) ,Montemanni and

Gambardella (2009) ,Gambardella, Montemanni, and Weyland (2012), Lin and Yu(2012), Labadie

et al.(2013) and Hu and Lim(2014).

The capacitated TOP with time windows (CTOPTW) is a hybrid of TOPTW and CTOP. The

problem aims to search the highest profit where opening hours of customers and the capacity of

vehicle need to be considered. Due to the complexity, only very few literature study practically on

the problem. Garcia et al.(2010) extended the team orienteering problem with time windows

(TOPTW) by adding multiple constrains and described it as the multi-constrained team Orienteering

problem with time windows (MCTOPTW). The study proposed an iterated local search (ILS)

heuristic algorithm to solve the problem. Later, Aghezzaf and Fahim (2014) developed a variable

neighborhood search approach for MCTOPTW. Recently, an exact algorithm is presented by Park et

al.(2017) to solve the problem by applying the branch-and-price (B&P) scheme of Boussier et

al.(2007) to the CTOPTW.

Contract to TOP, there is a paucity of literature on MVPTP. The capacitated and multiple-

vehicle version of the PTP (CPTP) studied from Archetti et al (2009) can be viewed as the variant

of MVPTP with capacity constraints. The problem is defined that each customer has a demand and

the fleet of vehicles has a prefixed capacity, which must not be exceeded by the route. The study

presents one exact and three heuristic algorithms. Archetti, Bianchessi, and Speranza (2013a)
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presented a different B&P algorithm to solve the problem. Later, Archett et al. (2018) extended CTP

to the undirected capacitated general routing problem with profits (UCGRPP), which customers can

be located on either vertices or edges of the graph, and constructed a two-phase exact algorithm to

solve. It is noted that not all CPTP in literatures refers to MVPTP. Jepsen (2011) proposed a branch-

and-cut (B&C) algorithm for the undirected version of CPTP, which only allows one tour going

through the depot. Sun et al. (2018) introduced the time-dependent capacitated profitable tour

problem with time windows and precedence constraints and the study considered single vehicle

rather than multiple vehicles.

For the variants of VRPP with stochastic aspects ,most studies focus on stochastic traveling

time, service time and waiting time, see as Campbell, Gendreau, and Thomas (2011),

Papapanagiotou, Montemanni, and Gambardella (2014) and Evers et al. (2014). Ilhan, Iravani, and

Daskin (2008) were the first to introduce uncertainties in the collected scores. They discussed the

orienteering problem with stochastic profits (OPSP) as a variant of OP. In OPSP, the profits

associated with the nodes are stochastic with a known distribution. The objective of the OPSP is to

maximize the probability that the total collected score, or profit, from the route will be greater than

a predefined target value. However, these researches only model single tour and lack of the aspects

on stochastic customer.

10
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2.3 Vehicle Routing Problem with Stochastic Customers

In real world, parameters of the problem, such as costumers' demands, travel times, costs, or
service times are often stochastic or unknown during the planning horizon. Usually, information about
upcoming events is available through historical data, which can be converted into information models.
The stochastic VRP (SVRP) is basically any VRP where one or more parameters are stochastic,
meaning that some future events are random variables with a known probability distribution.
Generally, the random variables have a probability distribution. Ritzinger, Puchinger, and Hartl (2015)
provided a survey on dynamic and stochastic vehicle routing problem.

VRPSC is the problem which customers are either present or absent with a given probability. A
number of models and solution procedures for VRPSC allow recourse actions to adjust a priori
solution after the uncertainty is revealed. Many studies present VRPSC as a two-stage stochastic
programming problem. The first stage is to determining some initial routes that adhere to the VRP
constraints. After presenting the customer, the second stage solution is to follow up the routes set by
the first stage, while skipping the absent customers. Waters (1989) re-optimized the route after
skipping the absent customers for better result. The vehicle routing problem with stochastic customers
and demands (VRPSCD) combines stochastic customers and stochastic demands, see as Bertsimas
(1992), Benton and Rossetti (1993) and Gendreau, Laporte, and Séguin (1995,1996).

Recently, Sungur et al.(2010) considered the Courier Delivery Problem with uncertainty on the

11
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service times and presence of customers. Customers have soft time windows while a hard constraint
is considered on the route duration. Uncertainty is represented by scenarios. To solve the large-scale
problem, a two-phase approximate solution heuristic is developed.

2.4 Summary

In this chapter, works of literature regarding vehicle routing problem with profits, vehicle routing
problem with stochastic customers and the extensions of these problems are reviewed. Different
VRPP schemes have different concerns in applications. For instance, OP is useful for the problem
with no costing concerned and aims to search the highest value from the route, while PCTSP only
consider the cost, and PTP scheme is favorable for both reducing travel cost and increasing the
collecting profits. Next, for VRPP with multiple vehicle, there are many studies focus on TOP and its
variants but few concerned for the MVPTP and its extension. Meanwhile, VRPP with capacity
constraints and time windows constraints has little researches, although it may have better simulation
on real world application.

To summary, with large amount of studies on VRPP, there is still little literature considering the
stochasticity of customer. In some real-life problems, the time window for the logistics allows some
violation by adding an extra punishment for the delay; however, there is seldom review for the soft
time window in VRPP. Moreover, existing researches concerning to logistics problem have suggested

that more detail could be concerned and studied. Therefore, this researches aims to construct an

12
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optimization method for VRPP with stochastic customers, which constraints of time windows and

capacity are considered in the formulation.

13
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Chapter 3 Research Methodology

3.1 Overview

In this chapter, the vehicle routing problem with stochastic customers is designed with
additional constraints of capacity and soft time windows, which can be viewed as a stochastic
capacitated multi-vehicle routing problem with profit and soft time window (SCMVRPPSTW). A
mathematical formulation model is proposed for the problem. Then, two heuristic algorithms are
developed to solve the model efficiently in a limited time.

The mathematical problem is formulated as a two-stage stochastic program. The first-stage
decision variables decide the must-served customers before the realization of the uncertain data is
shown. Based on the first stage variables, when the occurrence of customers become available on
the second stage, the routes in each sample scenario will be optimized to find the most profitable
route in the scenario.

Since the SCMVRPPSTW is a highly constrained problem and very difficult to solve, it is
unlikely to solve the problem to optimality within a limited time. Therefore, the development of a
high quality and fast optimization algorithm is necessary. In this study, two two-stage algorithms
were proposed. In the beginning, the first algorithm presents an insertion heuristic to selected the
customers and construct the initial route, while a genetic algorithm is used to selects the customer as

a randomizing program in the second algorithm. In the procedure, the initial solution from first

14
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stage algorithm will be put into iterated local search algorithm and re-optimize. That is, the route in
each scenario will be improve. The algorithm returned the best-found solution after certain
termination criteria was met.
3.2 Basic Assumptions

According to the interviews from the manager, courier of logistic company, related news and
research, pickup demands, service times and traveling times are usually reported with ambiguous
words, and large amount of complexity and uncertainty may not be concerned. Therefore, the
assumptions of the problems and constraints are presented:

1. Each customer can be served at most by one vehicle.

2. The load of each vehicle is restricted by its capacity.

3. The unexpected incidents on the roads are not considered.

4. The service time for each customer are static and known in advance.

5. A vehicle is allowed to arrive at a customer before the relevant time window, but the driver

cannot serve the customer until the time window opens.

6. The set of the customers in each scenario may be different.
3.3 Mixed-integer Programming model
3.3.1 Network Formulation

In this section, the formulation of mixed-integer programming model is introduced. The model

15
doi:10.6342/NTU202002814



is a variant from the capacitated vehicle routing problem with profits and time window
(CVRPPTW). The problem is formulated in the directed graph G = (V,4) where V is the set of all
vertices and A4 is the sets of arcs. V includes three sets node sets: sets of origin depots O, sets of
destinations depots D and sets of customers V. Noted that not all customers must be served in the
problem. For customer 7, a non-negative demand ciq , a non-negative revenue 1; and a time window
[a;, b;] is associated. A symmetric travel time t;; and distance d;; are associated with each edge
(i, j) € A. Each vehicle k can visit any subset of customers with a total demand that does not exceed
the capacity q,. The profit of each customer can be collected by one vehicle at most.

For CVRPPTW, the problem can be categorized with the characteristic. In the CTOPTW, the
subset of the potential customers available has to be selected. The objective is to maximize the total
collected profit while satisfying a time limit 774 on the tour duration and the capacity constraint g,
for vehicle and time window limit for customers.

In the capacitated profitable tour problem with time windows (CPTPTW), a subset of the
potential customers available has to be selected with the objective of maximizing the difference
between the total collected profit and the cost of the total distance travelled. The tour for customer
must satisfy the capacity constraint q, for each vehicle and time window constraint for customers.

In real world, the customers usually allow a certain delay since the time interval are often

described ambiguously, but the delivery may be canceled by customer if the delay is over the
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tolerance range. Therefore, the time window in this model is assumed to be violated barring a
penalty cost in the problem if the delay time is no more than Ty eeq-

An example of a problem instance is provided in Fig 3.1a. The origin depot and the destination
depot are both set as 1. Here q;= 6, clq =2,i=2,..,6, ¢;;=2 for each edge (i, j) except for edge
(2, 3) and edge (5,6) that has cost c;3 =1 and c5¢ = 3. The time window for customer 2 and 3 is
[0, 3] and the others is [0, 4]. The time limit T,,,, forthe CTOPTW is equal to 6. Based on the
categories for VRPP, the problem can be extended in different considerations. Fig 3.1b shows the
optimal solution for CTOPTW while the optimal solution for CPTPTW is presented in fig 3.1c. For
CPTPTW, the problem has no time limit for the tour; however, the time limit 7,4 can be viewed as
the time window of the destination in VRPTW. Therefore, an optimal solution for the CPTPTW
with time limit is presented in fig 3.1d.

Fig 3.1e, 3.1f and 3.1g shows three examples for CPTP with soft time window (CPTPSTW).
All problems allow a Tgyceeq = 1, while the unit penalty cost = 0.5 in fig 3.1e, cost = 2.5 in fig 3.1f
and cost =5 in fig 3.1g. It shows that the cost on penalty changes the optimum route. When the
penalty reaches to a high amount, the optimal solution will be the same as the optimal solution of

the CPTPTW.
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Tw=[0,3] Tw =[0,4] Tw=[0,3] ®Tw =[0,4]
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A problem instance Optimal solution of the CTOPTW
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Fig. 3.1 A problem instance and optimal solutions of the CVRPPTW.
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3.3.2 Model Formulation

In this section, the notations in the model are first defined, than the MIP model will be
described in details.

Sets:

® ] Sets of vertices, indexed by i and ;.

® O: Sets of origin depots. O S V.

® D: Sets of destination depots. D € V.

® N: Sets of customers, N € V.

® K: Sets of vehicles, indexed by £.

® 4: Sets of arcs, indexed by a tuple of two customers.

® §: Sets of scenarios, indexed by s.

® N.: Sets of customers in scenario s.

Parameters:

® |K|: number of vehicles.

® n: number of customers.

® T,...: maximum allowable travel time for a vehicle route.

® T, cceq: maximum allowable exceed time for time window penalty.

® d;;: traveling distance between customer i and customer ;.
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: traveling time between customer i and customer ;.

~-
~.

® q;: time window starting time of customer i.

® p;: time window ending of customer .

® 7;:service time of customer i.

® 1;: revenue for customer .

® [;: selective revenue for customer i.

7. demand for customer .

o
)
~Q

® g,: capacity for vehicle k.

® 1. unit vehicle operating cost.

® (2: cost per unit distance traveled.

® (3: cost per unit time penalty.

® ¢*: cost per using penalty vehicle

®  Pr;: probability of occurrence for scenario s.

® M: alarge constant.

Variables (continuous variables):

® ;s load transported on arc (i,j) by vehicle k in scenario s.

® Tj.s: service starting time for customer i by vehicle k in scenario s.

® T : exceeding time for customer i by vehicle k in scenario s.
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Variables (binary variables):

® w;: selection variables, 1 if the customers i € N was chosen to be served and 0 otherwise

® X s binary variable equal to 1 if arc (i,j) is traversed by the vehicle & in scenario s, and
0 otherwise;

®  y; s binary variable equal to 1 if customer i is visited by the vehicle & in scenario s, and 0
otherwise;

For the model, the first-stage solution is to set the customers must be visited in the routing

plan. The mathematical programming formulation is shown as the following:

max liwi + E[Q (Wi, S)] 1
ZV (1)
w; € (0,1},Vi €N 2)

The objective function (1) consists of maximizing the selection revenue and the expected
routing revenue .Constraint (2) states the binary variables in the first stage, which is used in the
second stage for solving the expectation value E[Q(w;, S)]:

E[Q(w;, S)] = Xses PrsQ(wy, 5) 3)
Where Q(wj;,s) is the optimal value of the second-stage problem for scenario s € S. The second

stage model is formulated as below.
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Vs €S,

max Q(w;, s) = Z Tiz z Xiji,s = Ch Z Z Xijk,s

IENS jeV keK (i,j)eA kek
RADICIDIETIETD I I = )
(i,j)EA keK IEN kEK
injk,S:yik's,ViENUO,kEK, (5)
jev
Z le‘k's = yik,S! VieNU D,k (S K, (6)
jev
ZyOR,S < |K|' (7)
keEK
keEK
Z Yiks = Wi, Vi €N, ©)
keEK
Yn+1ks — Yoks = 0,Vk €K, (10)
Z tijxl'jk,s + z Tiyik,s < Tmaxt vk € K, (11)
(i,j)eA i€eK
Tik,s +71; + tij — Tjk,s < (1 - Xijk,s)M,V(l‘,j) €Ak €EK, (12)
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AiYik,s =< Tik,s =< biyik,s + Texceed;Vi EN, k € K, (13)

Ties = Tis — biViks Vi € Nk €K, (14)
Z“iik's_Z- Ujiks = ¢, Vi €N,k €K, (15)
jev eV

Uijrs < q,Vi € N,k €K, (16)
Xijks € {0,1},V(i,j) EAk €K, (17)
Yiks €{0,1}, Vi€V, k € K, (18)
Uijks = 0ViEV,k EK, (19)
Ties = 0Vi € N,k €K, (20)
Ties = 0Vi€ N,k €K, 1)

The objective function for second-stage problem (4) aims to maximize the expected profit,

which is the difference between total revenue generated from customers and total cost of purchasing

customers, operating the vehicles and time penalty. Constraints (5) and (6) ensure that one arc
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enters and one arc leaves each visited customers. Constraints (7) limits the number of routes to be at

most |K]|, while constraints (8) and (9) guarantee that the customers selected in the first stage must

be served. Constraints (10) ensures that the origin and destination customers of a request are visited

by the same vehicle. Constraint (11) ensures the total transporting time on each route will not exist

the maximum allowable transporting time. Constraint (12) guarantees the consistency of time.

Precedence constraints are imposed through inequalities constraint (13) and constraint (14) ensures

schedule feasibility with respect to time windows. Note that for a given k, the value of Tj; is

meaningless whenever customer i is not visited by vehicle k. Constraints (15) is the capacity

constraints for the route. Finally, constraints (17)-(21) states the binary and non-negativity

properties of the decision variable.
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3.4 Heuristic Algorithm

Time is always a managerial issued for an industry. Normally for real logistics, the problem
setting for a vehicle may up to 70 or more customers. The solving time increases rapidly as the
scale of networks grows. Since the problem can be viewed as an integration of two NP-hard
optimization problems where each separate problem is by its own difficult to solve, two kinds of
two-stage solving frameworks are built for the problem.

The first two-stage framework is a hybridization of two local search model, as shown in Fig.
3.2 and 3.3. For fig 3.2, the first stage is a simple insertion heuristic. Customers are selected from
the score calculated based on certain factors. Considering the formulation with improving and
switching for the initial route, another first two-stage framework, replacing first local search model
to genetic algorithm (GA), is constructed. Fig. 3.3 shows the framework. The procedure combines
genetic operators, selection, and crossover with an efficient local search to be the first stage
selection. Next, the second stage applies the iterated local search scheme from Pieter
Vansteenwegen et al. (2009) in order to re-optimize the route planning based on the selection in first

stage, shown in Fig. 3.4. The detail of heuristic stage will be described in the following sections.
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Initial network population

While routes<vehicles number

Set an empty new route

Exusting customer to insert i the route?

Select the customer with best score
which 1s not in the route

v

Insert the customer

; l
Initial solution <+
| I

A

»”
ol

Not_improve= 1

Not_improve +1 ';#

Not_improve Shaking

v

Local Search: Hill Clhimbing

Upload best solution

Better solution found? i
of scenario s

s+1 —

Output best solution

Fig. 3.2 Two-Stage Structure for insertion heuristic and ILS
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Fig. 3.3 Two-Stage Structure for genetic algorithm and ILS
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3.4.1 First-stage method

For the two-stage model, the first stage of the algorithm consist of the maximizing the number
of customer must served. An initial route is constructed based on the selected customers.
3.4.1.1 Insertion method

For the insertion method, the initial route will be constructed based on the selected customers.
Let (iy, i ...1p) be the current initial route, with iy = i, = 0. For each unrouted customer, the best
feasible insertion place in the emerging set is set as

best(i(w),u,j(u)) = max|best(ip_1,u,i,)],p = 1,...,e,u unrouted and feansilble.

The insertion for # must follows the time window constraints and the capacity constraints.
Since the only uncertainty for the problem is the occurrence of customers, other parameters are
assumed to be known in advance. For the routing, the profit, costing and time most considered for
building the route. Therefore, the approach is described,

best,(i,u,j) = myn, + myly, —mg(tiy + tyj — t; ;) — Mupunish, — msa,
mq, My, M3, My, Mg = 0,

The insertion aims to maximize the benefit from the insertion, therefore, if m; and m, are
set as 0, the calculation will have an addition check for the adding score to avoid negative-score
insertion. After no more customer with feasible insertions can be found, the method starts a new

route, unless the total number of vehicle routing reaches the vehicle numbers. It is clear that
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different values of m;, m,, m3, m, and ms lead to different possible criteria for selecting the
customer for insertion and its best insertion. This method can have a simple and fast selection for
the first step; however, the heuristic cannot contrast the goodness of the initial routes constructed
from the proposed heuristic. Therefore, a genetic algorithm is served as a randomized mutation of
the first-stage method.
3.4.1.2 Genetic algorithm

In this thesis, GA, a powerful and common used optimized heuristic methodology, is
introduced to make a random selection of must-served customers for the later algorithm. The main
elements of GA includes chromosome coding, population initialization, fitness function, selection
procedure, crossover procedure and mutation procedure. Size of population (pop), crossover rate
(cross_rate), mutation rate (mutate rate), and the number of generations (gen numbers) will be the
main parameters in the proposed algorithm. In a GA, the chromosomes or individuals are
represented as strings which encode candidate solutions for an optimization problem, that later
evolve towards better solutions.

The general schema for the GA algorithm is as following:

1. Generate a population of successive solutions. The chromosome for selection is

demonstrated as Fig. 3.5.

2. While the number of generations < than maximum number of generation:
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a. If arandom generated probability < crossover rate, a crossover operation is performed

on a pair of chromosomes to obtain a new solution that reflects aspects of both parents.

b. Else, for one or some randomized chromosomes, perform the mutation operation in

them to obtain a new solution.

C. Apply the local search to improve the solution obtained from the evaluation operation.

As can be seen from Fig. 3.4, the binary stream only represents the selection. The

selection will be put into further ILS heuristics to get the best solution.

Fig. 3.4 A solution representation as a chromosome of the problem

3.4.2 Second-stage method

To simulate the reality, the scenarios are generated into the problem. Since VRP problems are
proofed to be NP-hard, it may takes time to make the optimization of the routing in each scenario.
Meanwhile, the visit should be verified that the new visit scheduled in the tour must satisfy time
window and vehicle’s capacity limitation. To provide a higher ability heuristic, which may escape
local optima and ensure the quality of the result, an iterated local search (ILS) scheme of
Vansteenwegen et al. (2009) is applied. The heuristic combines an insertion step and a shaking step
to escape from local optima.

® Insertion step
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The insertion step aims to provide a visit insertion for the original route. To decrease time on
checking the feasibility on time window, the time of waiting at the location and maximum allowable
shifting time for each included location were recorded. Since the service can only start when the
time window opens, let v; be the arriving-time at location i and Wait; be the waiting time.

Wait; equals 0 if the arrival takes place during the time window.
Wait; = max[0,a; — v;] (22)

Let Maxshift; be the maximum allowable shifting time for location i without causing
infeasible visit in the route. Maxshift; of location i is equal to the sum of Wait; and Maxshift;
of the next location i+, unless the service time is limited by its own time window. It is noted that
only the maximum allowable shifting time for origin depot and destination depot has no allowable
exceed time, which other location has a tolerance on exceeding time.

Maxshift; = min[b; + Texceeqa — (Vi + Wait;), Wait; ., + Maxshift;,1],i € N (23)

Maxshift; = min[b; — (v; + Wait;), Wait;,, + Maxshift;,1],i € (O UD)

The total time consumption (Shift;) to insert an extra visit j between the further constructed

visits i and k is defined as
Shift; = t;; + Wait; + 7; + tj — ty (24)
To make a feasible insertion for visit j between i and & for vehicle v, Shift; should be limited

to the sum of Wait, and Maxshit, for location k. Meanwhile, Shift; should be limited by the
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total time limit of the route. The following formulas were defined to check the feasible time:
Shift; = t;; + Wait; + 1; + tj — ty < Wait, + Maxshity
Shift; < Maxshitgestination,v
Service j should be followed by the time window constraints of customer j and the capacity constraint
for the routing.

For a vehicle routing problem with soft time window, it allows the visit to have a exceed time
for flexibility in moving. The exceeded time from the time window of customer i is record as
Punish;. If the visit take place in the time window, Punish; will equal zero.

Punish; = max[0, v; — b;] (25)

Realexist; ; is represented as the existence of the which will equal 1 if customer i exist and 0
otherwise. The revenue score;; for a visit j inserted is defined as:

score; s = Realexistjri — ¢t — c2(t;; + tj — ti) — ¢ (Punish; + influence) (26)

shift; and score; are the values to determine to be the better possible insertion, which
influence is the punishment changing due to the insertion for customer i. For each visit the heuristic
aims to find the highest possible score; 5, while the lowest score; ¢ presents the better insertion
spaces for further improvement. In order to determine the best selection in all feasible visit, a ratio
is calculated as following.

Ratio; s = (score;s)? /shift;
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The visit with the highest ratio will be selected for the insertion. Since the objective of the model is
to optimal the revenue and the visit is constrained by the time window, the relevant of the time
consumption should be less than the scoring in the decision for visiting insertion. Due to the
possibility for the negative revenue with high cost, a triple of the score is applied in the calculation
of ratio.

After the procedure, all other visits should be updated. The procedure for the heuristic
algorithm is presented in Fig. 3.5. The total score is first update, and the visits after the insertion
should update the waiting time, the arrival time, the service time, Maxshift and Punish. The
allowable shifting time for the service starting and the following services will gradually decreased
due to the waiting time for the visit. If Punish changes in the procedure, the total score calculated
should also be update. This gives the following formulas to update the visits after the insertion
position, when customer j is inserted between i and £ :

Shiftj =t + Waitj + 7 + i — ik
Waity, = max[0, Wait, — Shift;]
Uk« = Vi + Shift;
Shift, = max[0,Shift; — Waity]
Totalscore = Totalscore — ¢3(max[0, vy, — bx] — Punishy.)

Punishy, = max[0, vy, — by]
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Maxshiftk* = Maxshiftk - Shlftk

Shift, and the same formulas are then used to update the visit after k. The procedure will continue

until Shift;, is reduced to zero. Meanwhile, MaxShift of the visits before the insertion j should

be updated using formula (23) mentioned above.

Insertion step:

For each non included visit in customer:
Calculate possible insert position Wait, Arrive, Punish, Ratio;
Determine best possible insert position and shift
Insert visit with highest ratio(j);
Update TotalScore;
For each visit after j(until Shift == 0):
Update Wait, Arrive, Maxshift, Shift;
If Punish change then:
Update TotalScore, Punish
Visit j: Update Maxshift;
For each visit before j(until Maxshift remains the same):
Update Maxshift;

Fig. 3.5 Pseudo code for the insertion

®  Shaking step

The shaking step aims to escape from the local optimum when the solution makes no

improvement after a number of iterations. Oone or more visits will be removed from the original

tour during this step. For every shaking step, Remove and Start_shake are set as the inputs of

number to remove from the single tour and the place starts the removing. If the end location is
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reached during the removal, the process continues after the start location. Meanwhile, the shaking
step only allows the visits not selected in the chromosome from GA to move.

After the removal, all visits following the removed visits are shifted to the beginning. The
shifted visit should be updated similar to the process shown in the insertion stop. For the visits

before the remove. The pseudo for the shaking step can be seen in Fig. 3.6.

Shaking step:

For each route:
if set of visits i=>j not in must:
Delete visits:
Calculate Shift;
For each visit after j(until Shift == 0):
Update Wait, Arrive, Maxshift, Shift;
If Punish change then:
Update TotalScore, Punish
For each visit before i(until Maxshift remains the same):
Update Maxshift;

Update score

Fig. 3.6 Pseudo code for the shaking

Fig. 3.7 presents the iterated local search heuristics pseudo code for a single scenario. Since the

selection in GA does not represent a real network, a local search with time oriented applied to

construct a first stage solution, and the route for each scenarios will be optimal from first stage

solution. Vehicles not used in the first stage will be set as empty routes. The heuristic follows a loop

until no improvements are identified for the best solution determined during a fixed number NI of
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times. Firstly, the insertion step is applied to the route. The insertion stop when it reaches a local

optimum. If the score of the solution is better than the best score recorded, the score and the

solution are recorded and Remove is reset to one for the next shake step. Secondly, the shake step

is applied. After each shake step, Start_shake is increased by the value Remove and Remove

is increased by one for the next shake step. If Start_shake is equal to or greater than the size of

the smallest tour, this size is subtracted to determine the new position. If Remove equals the

maximum number of removable locations ML, the number is reset to one. By using the shaking

parameters as described following, almost all customers, except the selected ones in the GA, are

removed at least once in the entire procedure.
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Iterated local search:

Input: Initial route,
Output: BestFound

Start shake«1
Remove«1
NumberOfTimesNolmprovement = 0;

while NumberOfTimesNolmprovement < N/ do
while not local optimum do
Insert;
If Solution better than BestFound then
BestFound«—Solution;
Re1;
NumberOfTimesNolmprovement = 0;
Else
NumberOfTimesNolmprovement«—NumberOfTimesNolmprovement+1;
Shake Solution (R, S);
Start shake«—Start shake +Remove;
Remove = Remove+1,;
If Start_shake >=Size of smallest Tour then
Start shake«Start shake- Size of smallest Tour;
If Remove== ML then
Remove«1;

Return BestFound:;

Fig. 3.7 Pseudo code for the ILS
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Chapter 4 Computational Result

In this section, some test instances are designed. All the computational experiments in this
research were conducted on a desktop computer with Linux operating system, Intel 17-7700 with
CPU @3.6 GHz and 16 GB Random Access Memory (RAM). Results of comparison tested data
were solved at the Gurobi Mathematical Programming Solver 8.1 with Python interface, and the
optimization algorithm was coded with Python Programming Language 2.7.

4.1 Test instances

Since no test problems for SCMVRPPSTW are available, and the algorithms are modified
specifically to deal with this variant, a small test set and a large test set are generated by revising
Solomon’s VRPTW benchmarks (refer to Solomon (1987)). The small test set checks the accuracy
of two heuristic algorithms while the large test set is aimed to test the calculating time of the
algorithms with a more practical size. The data sets uses the original instances from C1 and C2
types while the small test problems contain first 20 customers and the large test problems contain all

100 customers. The descriptions for the problem sets refers to Table 4.1.

Type | Sets | Capacity Maximum Time Service time Customers | Width of
the time
windows

C1 9 200 1236 90 Clustered | Tight

C2 8 700 3390 90 Clustered | Soft

Table 4.1 Description for Solomon’s problem sets.
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In real world, the profit of a good depends on the size and its weight; therefore, the profit
earned from each customer is designed to be proportional to the customer’s demand. The revenue
r; for customer i is set as quintuple of ¢;. The operating cost for the vehicle ¢! is set as 10 while
the distance traveling cost c¢? is 2.5. Since the time penalty should be avoid, the cost for time
penalty c3 is set as 20. Mostly, customers want to have a successful transaction for the order; thus,
the possibility of the customer in the test instances is presented as a number between 0.5 to 0.99. It
can be seen that the scenarios have different probability since the customers are associated to
uneven probability.

The number of scenarios grows exponentially with the rising number of customers, which
means that for each increasing customer, the number of scenarios set will be twice as the original,
and it will cost large amount of time to calculate the expected revenue of all scenarios. Since the
influence on the expectation of revenue for the scenario is correlated to its probability, the scenario
with low possibility have little effect on the outcome; thus, in the problem sets, the scenarios are
selected from 10000 random samples. The sample scenarios with the top five highest possibility are
selected in small problem test and the top thirty highest possibility are selected in the large problem
test for the later approach.

Three groups of different value combination m,, m,, ms,my,and ms for insertion heuristic

are set. The first group sets the profitability of the customer as the priority; therefore, for the first

39
doi:10.6342/NTU202002814



insertion heuristic, the parameters are set as following: m; = 1,m, = 1,m3 = 2,my = 20,mgs =

0. The second type considered the time consuming between each customer; thus, the parameters for

the second type are set as: my = 0,m, = 0,m3 = 1, m, = 0,mg = 0. The third type considers

both insertion timing and the moving time for customers to avoid the insertion with short distance

but large waiting time, which the parameters are m; = 0,m, = 0,m3 = 0.5,my = 0, ms = 0.5.

The maximum number of iteration without improvement N/ and the maximum number of

removable locations ML are the parameters predetermined in the heuristic. N/ is set as 150 for

initial. For ML, a percentage of n/|K| (number of customers/ number of vehicles) is used for the

second stage test. The initial generation number is set as 3000 for small problem sets and 10000 for

large problem sets. The mutation number is set as 0.05 and the reverse number is set as 1. The

performance of the heuristic in small problem sets is compared with the result from Gurobi solver

with the preset to terminate when running time reached three hours (10800 seconds).

4.2 Results

Table 4.1 shows the result from the solver with different number of vehicles. The column LB

represents the best solution found in three hours and UB represents the best upper bound. The gap

between the LB and UB is between 0% to 7%. Table 4.2-4.4 compare the outcome obtained from

the solver and two heuristic model. ‘gap’ denotes the difference between result from heuristic and

solver. The negative gap means the heuristic has a result that is closer to the optimum solution than
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the result from the solver.

Fig. 4.1- 4.3 are the comparisons for the gap in different problem sets. From the figures, it

clearly illustrates that the vehicle number has no apparent influence on the gap for the problem sets

with wider time windows (c2), which means both heuristic have similar gap in c2-type problem sets

whether the allowing vehicle number is large or small. In contrast, the gap for the problem sets with

short scheduling horizon (c1) using GA and ILS is much smaller than using the insertion heuristic

and ILS with single vehicle and the difference decreases when the vehicle number rises. The largest

gap and smallest gap to UB for the heuristic using insertion algorithm and ILS are 37% and 2%,

while for the heuristic using GA and ILS are 15 % and 0%. Fig 4.4 and 4.5 depict the computational

times for small problem sets and testing time of two heuristics for large problem sets are illustrated

in Fig 4.6 and 4.7. It appears that insertion and ILS heuristic have significant advantage of

calculation time to GA and ILS, while both heuristics run shorter time to have the result than the

solver for small number. There is no significant relation shows between the computational time and

the vehicle number, since for small number of vehicle the allowable route changing and

improvement is limited, and the adding vehicles are vacant when the best routing plan is found.
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vehicle=1 vehicle = 2 vehicle=3

customer customer customer
LB UB gap LB uB gap LB UB gap
selection selection selection

c101-20 7 741.38 | 74259 | 0.16% 19 1275.67 | 1278.55 | 0.22% 19 1275.67 | 1275.79 | 0.01%

€102-20 10 757.76 | 759.77 | 0.26% 19 1294.78 | 1294.78 | 0.26% 19 1294.78 | 1294.90 | 0.26%

c103-20 10 757.76 | 759.17 | 0.19% 19 1301.59 | 1301.59 | 0.19% 19 1301.59 | 1301.70 | 0.19%

c104-20 10 757.76 | 760.01 | 0.30% 19 1306.83 | 1306.83 | 0.30% 19 1306.83 | 1306.95 | 0.30%

€105-20 10 746.04 | 748.27 | 0.30% 18 1267.10 | 1300.24 | 0.30% 19 1275.67 | 1293.01 | 0.30%

€106-20 7 741.52 | 743.74 | 0.30% 15 1171.27 | 1282.95 | 0.30% 19 1275.67 | 1278.65 | 0.30%

c107-20 8 735.53 | 757.59 | 3.00% 16 1196.92 | 1312.55 | 3.00% 19 1235.36 | 1317.39 | 3.00%

€108-20 7 738.36 | 761.12 | 2.99% 17 1223.18 | 1312.14 | 6.78% 18 1235.42 | 1320.24 | 6.42%

€109-20 9 750.48 | 759.97 | 2.13% 18 1293.50 | 1310.34 | 2.13% 19 1274.60 | 1318.64 | 2.13%

c201-20 16 1188.84 | 1227.40 | 2.53% 19 1204.15| 1243.39 | 2.53% 19 1208.96 | 1252.64 | 2.53%

c202-20 19 1245.68 | 1255.70 | 2.93% 19 1250.75 | 1257.42 | 2.93% 19 1250.56 | 1261.59 | 2.93%

€203-20 18 1229.96 | 1257.80 | 3.33% 19 1249.62 | 1259.26 | 3.33% 19 1248.49 | 1259.56 | 3.33%

€204-20 19 1261.84 | 1265.63 | 3.73% 19 1262.36 | 1262.36 | 3.73% 19 1262.36 | 1266.15 | 3.73%

€205-20 17 1213.25| 1249.33 | 4.13% 18 1223.31| 1261.79 | 4.13% 19 1220.76 | 1260.50 | 4.13%

€206-20 19 1224.49 | 1254.30 | 2.38% 18 1221.58 | 1259.41 | 3.00% 19 1222.61 | 125755 | 2.78%

c207-20 17 1208.26 | 1250.85 | 4.53% 18 1216.45 | 1254.03 | 4.53% 18 1215.85| 1257.02 | 4.53%

c208-20 19 1222.70 | 1252.91 | 4.93% 19 1224.58 | 1259.65 | 4.93% 19 1228.54 | 1258.58 | 4.93%

Table 4.2 Testing outcome for Gurobi solver for 3hours
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Gurobi solver(3hr) Insertion + ILS GA+ILS
customer customer customer
LB uB value |gap(LB) | gap(UB) value | gap(LB) | gap(UB)
selection selection selection

c101-20 7 741.38 | 742.59 9 696.76 6% 6% 11 732.87 1% 1%
c102-20 10 757.76 | 759.77 8 584.28 23% 23% 9 672.91 11% 11%
c103-20 10 757.76 | 759.17 11 603.89 20% 20% 11 675.65 11% 11%
c104-20 10 757.76 | 760.01 8 649.51 14% 15% 12 707.64 7% 7%
c105-20 10 746.04 | 748.27 11 569.48 24% 24% 11 746.04 0% 0%
c106-20 7 74152 | 743.74 10 629.66 15% 15% 11 732.87 1% 1%
c107-20 8 735.53 | 757.59 11 569.48 23% 26% 11 746.04 -1% 2%
c108-20 7 738.36 | 761.12 11 487.36 34% 37% 11 746.04 -1% 2%
c109-20 9 750.48 | 759.97 12 617.57 18% 19% 11 746.46 1% 2%
c201-20 16 1188.84 | 1227.40 17 1078.55 9% 13% 18 1072.73 10% 13%
c202-20 19 1245.68 | 1255.70 18 1170.06 6% % 19 1165.25 6% 7%
€203-20 18 1229.96 | 1257.80 18 1158.28 6% 8% 19 1158.28 6% 8%
€204-20 19 1261.84 | 1265.63 20 1133.90 | 10% 10% 19 1153.50 9% 9%
€205-20 17 1213.25 | 1249.33 19 1165.78 4% % 20 1165.78 4% 7%
€206-20 19 1224.49 | 1254.30 19 1165.78 5% 7% 20 1165.78 5% 7%
€207-20 17 1208.26 | 1250.85 19 1065.19 | 12% 15% 20 1065.19 | 12% 15%
€208-20 19 1222.70 | 1252.91 19 1177.22 4% 6% 20 1165.78 5% 7%
average

14% 15% 5% 7%

gap

Table 4.3 Solution value and gap for vehicle = 1
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Gurobi solver(3hr) Insetion+ILS GA+ILS
customer customer customer
LB uB value | gap(LB) | gap(UB) value | gap(LB) |gap(UB)
selection selection selection

c101-20 19 1275.67 | 1278.55 17 1039.63 19% 19% 19 1275.67 0% 0%
€102-20 19 1294.78 | 1294.78 14 879.48 32% 32% 17 1142.01 12% 12%
c103-20 19 1301.59 | 1301.59 14 900.87 31% 31% 18 1173.26 10% 10%
c104-20 19 1306.83 | 1306.83 18 1074.39 18% 18% 18 1105.11 15% 15%
c105-20 18 1267.10 | 1300.24 19 1174.26 7% 10% 20 1174.26 7% 10%
c106-20 15 1171.27 | 1282.95 17 922.70 21% 31% 18 1118.72 4% 14%
c107-20 16 1196.92 | 1312.55 19 1174.26 2% 12% 20 1174.26 2% 12%
c108-20 17 1223.18 | 1312.14 20 1265.28 | -3% 4% 19 126528 | -3% 4%
€109-20 18 1293.50 | 1310.34 20 1290.48 0% 2% 18 1290.48 0% 2%
c201-20 19 1204.15 | 1243.39 20 1056.82 12% 15% 18 1072.73 11% 14%
c202-20 19 1250.75 | 1257.42 20 1176.70 6% 6% 19 1176.70 6% 6%
€203-20 19 1249.62 | 1259.26 19 1142.26 9% 9% 19 1158.28 7% 8%
€204-20 19 1262.36 | 1262.36 20 1133.90 10% 10% 19 1153.50 9% 9%
€205-20 18 1223.31 | 1261.79 19 1165.78 5% 8% 20 1165.78 5% 8%
€206-20 18 1221.58 | 1259.41 19 1165.78 5% 8% 20 1165.78 5% 8%
c207-20 18 1216.45 | 1254.03 19 1065.19 12% 16% 19 1078.17 11% 14%
€208-20 19 1224.58 | 1259.65 19 1165.78 5% 8% 20 1165.78 5% 8%
average

11% 14% 6% 9%

gap

Table 4.4 Solution value and gap for vehicle = 2

47
doi:10.6342/NTU202002814



Gurobi solver(3hr) Insetion+ILS GA+ILS
customer customer customer
LB UB value | gap(LB) | gap(UB) value | gap(LB) | gap(UB)
selection selection selection

c101-20 19 1275.67 | 1278.55 20 1194.55 6% 7% 19 1275.67 0% 0%
¢102-20 19 1294.78 | 1294.78 20 1072.69 17% 17% 20 1222.69 6% 6%
¢103-20 19 1301.59 | 1301.59 20 1089.69 16% 16% 20 1239.69 5% 5%
¢104-20 19 1306.83 | 1306.83 20 1097.33 16% 16% 18 1255.11 4% 4%
¢105-20 18 1267.10 | 1300.24 20 1194.55 6% 8% 20 1194.55 6% 8%
¢106-20 15 1171.27 | 1282.95 20 1194.55 2% 8% 20 1194.55 2% 8%
¢107-20 16 1196.92 | 1312.55 19 1174.26 2% 12% 20 1174.26 2% 12%
c108-20 17 1223.18 | 1312.14 20 1265.28 -3% 4% 20 1265.28 -3% 4%
¢109-20 18 1293.50 | 1310.34 20 1290.48 0% 2% 20 1290.48 0% 2%
c201-20 19 1204.15 | 1243.39 20 1056.82 12% 15% 18 1072.73 11% 14%
c202-20 19 1250.75 | 1257.42 20 1176.70 6% 6% 20 1176.70 6% 6%
c203-20 19 1249.62 | 1259.26 19 1142.26 9% 9% 19 1158.28 7% 8%
c204-20 19 1262.36 | 1262.36 20 1133.90 10% 10% 19 1153.50 9% 9%
c205-20 18 122331 | 1261.79 19 1165.78 5% 8% 20 1165.78 5% 8%
¢206-20 18 1221.58 | 1259.41 19 1165.78 5% 8% 20 1165.78 5% 8%
¢207-20 18 1216.45 | 1254.03 19 1065.19 12% 16% 19 1078.17 11% 14%
c208-20 19 1224.58 | 1259.65 19 1165.78 5% 8% 20 1165.78 5% 8%
average

7% 10% 4% 7%

gap

Table 4.5 Solution value and gap for vehicle = 3
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The small test problems with different soft time window allowable intervals are examined with
the insertion heuristic. The trend of objective value for the soft time window interval for both
problem sets are displayed in Fig.4.8-4.11. It appears that only c108-20, c201-100,202-100, c204-
100 and c208-100 show little improvement with the rising of interval. The penalty for arriving-late

time and the limitation for the total time T,,,, restricts the influence for the soft time window.
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Fig. 4.8 Objective revenue for small test instances cl in different allowable soft time window limit t

2000

1500

1000
50

c201-20 c202-20 c203-20 c204-20 c205-20 c206-20 c207-20 c208-20

o

o

H mt=50 mt=100 ®mt=150 ®mt=200 ™ t=250

Fig. 4.9 Objective revenue for small test instances ¢2 in different allowable soft time window limit t
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Chapter 5 Conclusions and Future research

Nowadays, the e-commerce has brought a profound change for economy and society. With the
further development of e-commerce, the uncertainty for the customers with the last-mile delivery
has brought more and more attention for the planning in logistic. In this research, a SCMVRPPSTW
model is constructed to make an application for logistic routing planning problem. Considering the
stochasticity of the problem, two two-stage heuristic algorithms are proposed. For the first stage
method, the first algorithm simply used an insertion heuristic to build the initial route while the
second algorithm adding the genetic algorithm to escape the local optima and search for better
result. The second stage solving method is based on an existing metaheuristic developed for the
TOPTW, which can proposed a fast re-optimizing for the adjusted routing.

The approximate test problems are generated by revising the Solomon’s benchmarks test
problems. The results from the algorithms were compared with the result from MIP model using
Gurobi Solver running for 10800 seconds. In the small testing, the GA with ILS has more standard
presents than insertion with ILS, while both heuristics are able to obtain optimal or near optimal
solutions for the tested problems in an acceptable computational time.

There are several directions for the future study. In this study, routes are assumed to start as a
distribution center and end at a collection center. Therefore, it is a single depot problem. For large

companies, the goods may be stored in more than one collection center which vehicles can be

o1
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stationed. Thus, how to extend one depot to multiple depots is a direction of the further study.

Meanwhile, each vehicle is assumed to perform at most one route in the same planning period

in this research. In some practical applications, the vehicle capacity is small or the planning period

is large, performing more than one route per vehicle may be more appropriate for practical

implementation. In urban areas, where travel times are rather small, it is often the case that after

performing short tours vehicles are reloaded and used again. Hence, how to extend one trip to

multiple trips is also a direction of the future works.

Moreover, the study only consider the stochasticity of the customer for logistics problem and

the traveling time for each routes is set as known. In real practice, the traveling time is usually not

certain due to other time dependent properties of the network such as congestion levels, incident

location, and construction zone on certain road segments. Sometimes when facing a traffic jam, the

deliverymen change the routing while the delivery. Therefore, how to extend the problem with a

dynamic planning is also a direction of the future works.
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