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摘要 

隨著網路零售營業額成長與購物環境的變化大量的送貨到府的需求使得物流業面臨極大

的挑戰。其中，「最後一哩運送」攸關消費者之顧客滿意度的重要關鍵之一。然而，在實務

上時常出現顧客因為各樣因素而延遲取貨、最後導致送貨失敗，甚至取消訂單，使廠商增加

營運成本。因此，如何在有限的時間內針對隨機的顧客狀態合理地調度送貨員，在滿足客戶

需求的情況下使得總運營最小而得到最佳利潤為物流業者重要的課題。 

本研究的目標為開發出一個可考量利潤與隨機顧客之車輛模型（Vehicle routing problem 

with profits and stochastic customers），並針對其特性與策略進行架構。在研究方法中，本研

究在模型建立中進一步提出軟時間窗與容量限制考量，並建立出一個二階段整數規劃模式進

行尋求解答方案。在觀察該問題特性後，本研究另外提出兩套演算法來加速求解過程。第一

套演算法在第一階段運用插入式啟發演算法去進行第一階段的路徑建立並在第二階段用迭代

區域搜索法進行各情境之優化；第二套演算法中，第一階段則改以遺傳演算法進行隨機初始

選擇，並同於第二階段用迭代區域搜索法優化路徑。 

 

關鍵字：物流問題、考量利潤之車輛途程問題、軟時窗、混合整數規劃模型、啟發式演算法 
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ABSTRACT 

With the growth of internet retails and the changing of shopping environment in popularity, the 

large amount of home delivery brings with a new batch of ecommerce logistics challenges. "Last 

mile delivery" is one of the important factor to customer satisfaction and often leads to delivery 

failure due to the absence for customer, causing the increase of operating costs. Therefore, logistics 

enterprises are dedicating to the minimizing the total operation cost and optimum the profit, 

considering the best way to dispatch the deliveryman reasonably within a limited time. 

The aim of this research was to develop an optimization model for Vehicle Routing Problem 

with Profits and Stochastic Customers (VRPPSC). In the thesis, soft time windows and capacity 

constraints are considered. A two-stage stochastic mixed-integer programming model was first 

proposed for the problem. Since the problem is NP-hard, two problem procedures are constructed 

for solving the generated problem. The first procedures is based on a combination of inserted 

heuristic and iterated local search algorithms, while the second using a genetic algorithm to do the 

randomizing of the first stage selection.  

 

Keywords: Logistic problem, Vehicle Routing Problem with Profits, Soft Time windows, Mixed-

integer Programming Model, Heuristic Algorithm 
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Chapter 1 Introduction 

1.1 Background Information and Motivation 

Nowadays, the businesses of online shopping and e-commerce are inflating enormously among 

the entire market. Fig. 1.1 shows the estimation and forecasting of the global e-commerce share of 

retail sales. The increasing of e-commerce sales change has remained positive since 2015. 

According to eMarketer (2020), the e-retail accounted for 14.1 % of all retail sales in 2019, and 

forecasts predict an increase of up to 22% to 2023. With the popularization of smart devices and the 

using of Internet, retailers open their own e-commerce platforms in order to catch on the trend. The 

remarkable growth of e-commerce orders leads to the challenge on logistics service. 

 

Fig. 1.1 Worldwide retail e-commerce sales (2015-2023) 
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The last mile delivery has been viewed as the key actors in e-commerce logistics. The phase 

refers to the final stage of transportation in the logistics network, which the order placement and the 

service encounter occur. Gevaers, Voorde, and Vanelslander (2011) mention that the last mile 

delivery is the most cost-intensive part of the supply chain. With the rising attention on the last mile 

logistic, the probability of failed deliveries is focused. The failure can be caused by product 

returning, missing of customers, wrong sending and so forth. The unsuccessful delivery leads to the 

growth cost on the reverse flow. In most countries, more than half of all online shoppers have 

returned an online purchase. The highest incidence is where 77% of online shoppers have made a 

return in Germany. Blanchard (2007) mentions that the product returns are reducing profits of 

manufacturers and retailers by 3.8% per average. The uncertainty for the customers’ behavior has 

caused the difficulty in the delivery dealing and has decreased the effectiveness of the route 

planning.  

For logistic problem, the optimizing of the delivery route aims to identify the most profitable 

set of customers, which a set of customers to serve is selected while different profits are associated 

with each customer. Such problem has been referred to as the vehicle routing problem with profits 

(VRPP). In the context of the VRPP, it is not compulsory to visit all customers. Some previous 

researches have putting the probability of traveling time and service time into considerations. 

However, seldom literature studies the stochasticity of customers in the logistic mathematical 
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model.  

1.2 Research Objective 

The aim of this thesis is to develop an optimization method for logistics network model. For the 

planning of the last mile delivery, some factors, such as time window and capacity are essential to 

consider for the delivery. Since the occurrence of the customer is uncertain, the objective of the 

proposed model in this research is to maximize the expected profit from different scenarios. 

1.3 Research Structure 

The structure of this research is outlined as follows. First, the related literature is reviewed in 

chapter 2. In chapter 3, a mixed-integer programming model for solving the stochastic VRPP model 

is formulated and two optimization algorithms are developed to solve the problem more efficiently. 

Next, numerical experiments are conducted in chapter 4, and the results are discussed. Finally, a 

comprehensive discussion of this research and suggestions for future works are made in chapter 5. 
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Chapter 2 Literature Review 

The main difference between vehicle routing problem with profits (VRPP) and classical vehicle 

routing problem is that not all the customers have to be served for the routing. In other words, two 

decisions are considered. In section 2.1, a number of typical VRPP are first reviewed. In order to 

provide more satisfactory and efficiency way, the enterprises have allowed the requisition from 

customer of the goods delivery within specific time windows. Meanwhile, in real world, couriers have 

to consider the capacity of vehicle. Thus, the variants of VRPP with time window constraints, capacity 

constraints and stochasticity consideration are discussed in section 2.2. Seldom research studied the 

VRPP with stochastic customers; therefore, a variety of VRP with stochastic customer (VRPSC) 

models are reviewed and the methods for solving the problems are compared in section 2.3. 

2.1 Vehicle Routing Problem with Profits   

VRPP has been studied widely. The differences between the VRPP and the regular traveling 

salesman problem (TSP) are the requirement of selecting customers and consideration for the profit. 

In the VRPP, a customer is selected based on the trade-off between its profit and the extra travel 

cost required to include the customer. The most interesting customer can bring the highest 

profitability. Vansteenwegen and Gunawan (2019) classified the routing problem with profits in two 

ways: One way is based on the number of vehicles or routes and another way is based on the 

manner where the profit and the travel cost, mostly distance or time, are modeled.  
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The basic VRPPs and their characteristics are summarized in table 2.1. For single VRPP, three 

basic problems are classified. The first one is called the profitable tour problem (PTP). PTP 

combines both profit and travel cost in the objective function. Therefore, the objective of the PTP is 

to visit a subset of customers that maximizes the total collected profit minus the total travel cost. 

The second problem is described as the prize-collecting traveling salesperson problem (PCTSP). 

The objective of PCTSP is to minimize the total travel cost to reach the lower bound on the profit to 

be collected from a subset of customers may be visited. The third problem, usually named the 

orienteering problem (OP), is the other way around by which is also known as the selective 

traveling salesperson problem. The objective is to maximize the total collected profit by visiting a 

subset of customers, while not exceeding a given travel cost, typically a time constraint or a limited 

route length.  

The routing problems with profits and multiple vehicles can be viewed as the extension of 

three basic problems. The multi-vehicle PTP (MVPTP) is the generation for PTP. Toth and Vigo 

(2014) described the multi-vehicle extension of PCTSP as capacitated prize collecting VRP 

(CPCVRP). The generalization for OP with multiple vehicle, known as the team orienteering 

problem (TOP), was first introduced by Butt and Cavalier(1994) with the name multiple tour 

maximum collection problem (MTMCP). TOP is by far the only one studied in depth among the 

routing problems with profits and multiple vehicles. Many algorithms have been proposed for the 
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TOP. Surveys on the OP and TOP (and many variants) can be found in Vansteenwegen et al. (2011) 

and Gunawan et al. (2016).  

Table 2.1 Summary for VRPP 

2.2 Variants of Vehicle Routing Problem with Profits 

In this section, the variants of vehicle routing problem with profits are presented. For logistic 

company, mostly plural drivers are designated to accomplish the delivery; thus, the review will first 

focus on VRPP with multiple vehicles. Since the profitability for the customer is most considered, 

the review will focus on variants for TOP and MVPTP will be. Next, the literature for VRPP with 

the consideration of uncertainty will be reviewed.  

The capacitated TOP (CTOP) is a variant of TOP that additionally considers a capacity 

Problem name Objective Vehicle 

Orienteering Problem (OP)  

(Selective TSP, Maximum Collection  

Problem, Bank Robber Problem) 

max profit Single 

Profitable Tour Problem (PTP) max (profit - cost) Single 

Prize-collecting traveling salesperson problem 

(PCTSP) 
min cost Single 

Team Orienteering Problem (TOP) 

(Multiple Tour Maximum Collection Problem) 
max profit Multiple 

Multi-vehicle PTP (MVPTP) max (profit - cost) Multiple 

Multi-vehicle Prize Collecting VRP (MVPCVRP) min cost Multiple 
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constraint. In the problem, a demand is associated to each customer and each vehicle has a 

maximum capacity. The objective is to maximize the total collected profit while satisfying the 

capacity and duration constraint for each route. Please refer to Archetti et al. (2009), Archetti, 

Bianchessi, and Speranza (2013a), Luo et al. (2013) and Tarantilis, Stavropoulou, and Repoussis 

(2013). In theory, it can be beneficial to only serve a customer partially and receive the proportional 

partial profit. Archetti et al. (2013b) further extended the problem to be more beneficial by relaxing 

with allowing incomplete services for a customer, which is called the CTOP with incomplete 

service (CTOP-IS). The study proved the advantage of its advantage on profit collection ability with 

a branch-and-price algorithm. Another extension of the CTOP allows the customer to be served by 

more than one route to fulfill the service of a customer, named the split delivery CTOP (SDCTOP). 

Further extensions of SDCTOP are the SDCTOP with incomplete service (SDCTOP-IS) and the 

SDCTOP with minimum delivery amounts (SDCTOP-MDA). These variants are discussed in 

Archetti et al.(2013b, 2014a, 2014b) and Wang et al.(2014) respectively. The articles of CTOP and 

the variants reviewed are summarized in table 2.2.  
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Table 2.2 Variants of CTOP 

The TOP with time windows (TOPTW), another variant of TOP, has received considerable 

attention from the heuristic community in the last decades. The customers has an associated time 

window, which means the service for a particular customer has to start within the predefined time 

window. An early arrival to a particular customer leads to waiting times, while a late arrival causes 

an infeasibility issue. Many heuristic algorithms have been proposed and overall obtained good 

Problem name Characteristic Representative Articles 

CTOP Associated demand for each 

customer and the capacity 

constraint 

Archetti et al. (2009), 

Archetti, Bianchessi, and Speranza (2013a) 

Luo et al. (2013)  

Tarantilis, Stavropoulou, and Repoussis (2013) 

CTOP-IS Allowing partial demand 

service for each customer 

and the capacity constraint 

Archetti et al. (2013b) 

SDCTOP Split demand for each 

customer and the capacity 

constraint 

Archetti et al.(2014a) 

SDCTOP-IS Allowing split demand 

service and partial demand 

service for each node and 

the capacity constraint 

Archetti et al.(2014b) 

SDCTOP-MDA Split demand with minimum 

delivery amounts 

Wang et al. (2014) 
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average results on benchmark instances, see as Vansteenwegen et al.(2009) ,Montemanni and 

Gambardella (2009) ,Gambardella, Montemanni, and Weyland (2012), Lin and Yu(2012), Labadie 

et al.(2013) and Hu and Lim(2014).  

The capacitated TOP with time windows (CTOPTW) is a hybrid of TOPTW and CTOP. The 

problem aims to search the highest profit where opening hours of customers and the capacity of 

vehicle need to be considered. Due to the complexity, only very few literature study practically on 

the problem. Garcia et al.(2010) extended the team orienteering problem with time windows 

(TOPTW) by adding multiple constrains and described it as the multi-constrained team Orienteering 

problem with time windows (MCTOPTW). The study proposed an iterated local search (ILS) 

heuristic algorithm to solve the problem. Later, Aghezzaf and Fahim (2014) developed a variable 

neighborhood search approach for MCTOPTW. Recently, an exact algorithm is presented by Park et 

al.(2017) to solve the problem by applying the branch-and-price (B&P) scheme of Boussier et 

al.(2007) to the CTOPTW. 

Contract to TOP, there is a paucity of literature on MVPTP. The capacitated and multiple-

vehicle version of the PTP (CPTP) studied from Archetti et al (2009) can be viewed as the variant 

of MVPTP with capacity constraints. The problem is defined that each customer has a demand and 

the fleet of vehicles has a prefixed capacity, which must not be exceeded by the route. The study 

presents one exact and three heuristic algorithms. Archetti, Bianchessi, and Speranza (2013a) 
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presented a different B&P algorithm to solve the problem. Later, Archett et al. (2018) extended CTP 

to the undirected capacitated general routing problem with profits (UCGRPP), which customers can 

be located on either vertices or edges of the graph, and constructed a two-phase exact algorithm to 

solve. It is noted that not all CPTP in literatures refers to MVPTP. Jepsen (2011) proposed a branch-

and-cut (B&C) algorithm for the undirected version of CPTP, which only allows one tour going 

through the depot. Sun et al. (2018) introduced the time-dependent capacitated profitable tour 

problem with time windows and precedence constraints and the study considered single vehicle 

rather than multiple vehicles. 

For the variants of VRPP with stochastic aspects ,most studies focus on stochastic traveling 

time, service time and waiting time, see as Campbell, Gendreau, and Thomas (2011), 

Papapanagiotou, Montemanni, and Gambardella (2014) and Evers et al. (2014). Ilhan, Iravani, and 

Daskin (2008) were the first to introduce uncertainties in the collected scores. They discussed the 

orienteering problem with stochastic profits (OPSP) as a variant of OP. In OPSP, the profits 

associated with the nodes are stochastic with a known distribution. The objective of the OPSP is to 

maximize the probability that the total collected score, or profit, from the route will be greater than 

a predefined target value. However, these researches only model single tour and lack of the aspects 

on stochastic customer.  
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2.3  Vehicle Routing Problem with Stochastic Customers 

 In real world, parameters of the problem, such as costumers' demands, travel times, costs, or 

service times are often stochastic or unknown during the planning horizon. Usually, information about 

upcoming events is available through historical data, which can be converted into information models. 

The stochastic VRP (SVRP) is basically any VRP where one or more parameters are stochastic, 

meaning that some future events are random variables with a known probability distribution. 

Generally, the random variables have a probability distribution. Ritzinger, Puchinger, and Hartl (2015) 

provided a survey on dynamic and stochastic vehicle routing problem.  

VRPSC is the problem which customers are either present or absent with a given probability. A 

number of models and solution procedures for VRPSC allow recourse actions to adjust a priori 

solution after the uncertainty is revealed. Many studies present VRPSC as a two-stage stochastic 

programming problem. The first stage is to determining some initial routes that adhere to the VRP 

constraints. After presenting the customer, the second stage solution is to follow up the routes set by 

the first stage, while skipping the absent customers. Waters (1989) re-optimized the route after 

skipping the absent customers for better result. The vehicle routing problem with stochastic customers 

and demands (VRPSCD) combines stochastic customers and stochastic demands, see as Bertsimas 

(1992), Benton and Rossetti (1993) and Gendreau, Laporte, and Séguin (1995,1996).  

Recently, Sungur et al.(2010) considered the Courier Delivery Problem with uncertainty on the 
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service times and presence of customers. Customers have soft time windows while a hard constraint 

is considered on the route duration. Uncertainty is represented by scenarios. To solve the large-scale 

problem, a two-phase approximate solution heuristic is developed. 

2.4 Summary 

In this chapter, works of literature regarding vehicle routing problem with profits, vehicle routing 

problem with stochastic customers and the extensions of these problems are reviewed. Different 

VRPP schemes have different concerns in applications. For instance, OP is useful for the problem 

with no costing concerned and aims to search the highest value from the route, while PCTSP only 

consider the cost, and PTP scheme is favorable for both reducing travel cost and increasing the 

collecting profits. Next, for VRPP with multiple vehicle, there are many studies focus on TOP and its 

variants but few concerned for the MVPTP and its extension. Meanwhile, VRPP with capacity 

constraints and time windows constraints has little researches, although it may have better simulation 

on real world application. 

To summary, with large amount of studies on VRPP, there is still little literature considering the 

stochasticity of customer. In some real-life problems, the time window for the logistics allows some 

violation by adding an extra punishment for the delay; however, there is seldom review for the soft 

time window in VRPP. Moreover, existing researches concerning to logistics problem have suggested 

that more detail could be concerned and studied. Therefore, this researches aims to construct an 
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optimization method for VRPP with stochastic customers, which constraints of time windows and 

capacity are considered in the formulation. 
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Chapter 3 Research Methodology 

3.1 Overview 

 In this chapter, the vehicle routing problem with stochastic customers is designed with 

additional constraints of capacity and soft time windows, which can be viewed as a stochastic 

capacitated multi-vehicle routing problem with profit and soft time window (SCMVRPPSTW). A 

mathematical formulation model is proposed for the problem. Then, two heuristic algorithms are 

developed to solve the model efficiently in a limited time.  

The mathematical problem is formulated as a two-stage stochastic program. The first-stage 

decision variables decide the must-served customers before the realization of the uncertain data is 

shown. Based on the first stage variables, when the occurrence of customers become available on 

the second stage, the routes in each sample scenario will be optimized to find the most profitable 

route in the scenario.  

Since the SCMVRPPSTW is a highly constrained problem and very difficult to solve, it is 

unlikely to solve the problem to optimality within a limited time. Therefore, the development of a 

high quality and fast optimization algorithm is necessary. In this study, two two-stage algorithms 

were proposed. In the beginning, the first algorithm presents an insertion heuristic to selected the 

customers and construct the initial route, while a genetic algorithm is used to selects the customer as 

a randomizing program in the second algorithm. In the procedure, the initial solution from first 
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stage algorithm will be put into iterated local search algorithm and re-optimize. That is, the route in 

each scenario will be improve. The algorithm returned the best-found solution after certain 

termination criteria was met. 

3.2 Basic Assumptions 

According to the interviews from the manager, courier of logistic company, related news and 

research, pickup demands, service times and traveling times are usually reported with ambiguous 

words, and large amount of complexity and uncertainty may not be concerned. Therefore, the 

assumptions of the problems and constraints are presented:  

1. Each customer can be served at most by one vehicle. 

2.  The load of each vehicle is restricted by its capacity.  

3. The unexpected incidents on the roads are not considered.  

4. The service time for each customer are static and known in advance.  

5. A vehicle is allowed to arrive at a customer before the relevant time window, but the driver 

cannot serve the customer until the time window opens. 

6. The set of the customers in each scenario may be different. 

3.3 Mixed-integer Programming model 

3.3.1 Network Formulation 

In this section, the formulation of mixed-integer programming model is introduced. The model 
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is a variant from the capacitated vehicle routing problem with profits and time window 

(CVRPPTW). The problem is formulated in the directed graph G = (V,A) where V is the set of all 

vertices and A is the sets of arcs. V includes three sets node sets: sets of origin depots O, sets of 

destinations depots D and sets of customers N. Noted that not all customers must be served in the 

problem. For customer i, a non-negative demand 𝑐𝑖
𝑞
, a non-negative revenue 𝑟𝑖 and a time window 

[𝑎𝑖, 𝑏𝑖] is associated. A symmetric travel time 𝑡𝑖𝑗 and distance 𝑑𝑖𝑗 are associated with each edge 

(i, j) ∈ A. Each vehicle k can visit any subset of customers with a total demand that does not exceed 

the capacity 𝑞𝑘
 . The profit of each customer can be collected by one vehicle at most.  

For CVRPPTW, the problem can be categorized with the characteristic. In the CTOPTW, the 

subset of the potential customers available has to be selected. The objective is to maximize the total 

collected profit while satisfying a time limit Tmax on the tour duration and the capacity constraint 𝑞𝑘
  

for vehicle and time window limit for customers. 

In the capacitated profitable tour problem with time windows (CPTPTW), a subset of the 

potential customers available has to be selected with the objective of maximizing the difference 

between the total collected profit and the cost of the total distance travelled. The tour for customer 

must satisfy the capacity constraint 𝑞𝑘
  for each vehicle and time window constraint for customers.  

In real world, the customers usually allow a certain delay since the time interval are often 

described ambiguously, but the delivery may be canceled by customer if the delay is over the 



doi:10.6342/NTU202002814
17 

 

tolerance range. Therefore, the time window in this model is assumed to be violated barring a 

penalty cost in the problem if the delay time is no more than 𝑇𝑒𝑥𝑐𝑒𝑒𝑑.  

An example of a problem instance is provided in Fig 3.1a. The origin depot and the destination 

depot are both set as 1. Here 𝑞𝑘
 = 6, 𝑐𝑖

𝑞 = 2, i = 2,..., 6, 𝑐𝑖𝑗= 2 for each edge (i, j) except for edge 

(2, 3) and edge (5,6) that has cost 𝑐23 = 1 and 𝑐56 = 3. The time window for customer 2 and 3 is 

[0, 3] and the others is [0, 4]. The time limit 𝑇𝑚𝑎𝑥 for the CTOPTW is equal to 6. Based on the 

categories for VRPP, the problem can be extended in different considerations. Fig 3.1b shows the 

optimal solution for CTOPTW while the optimal solution for CPTPTW is presented in fig 3.1c. For 

CPTPTW, the problem has no time limit for the tour; however, the time limit Tmax can be viewed as 

the time window of the destination in VRPTW. Therefore, an optimal solution for the CPTPTW 

with time limit is presented in fig 3.1d.  

Fig 3.1e, 3.1f and 3.1g shows three examples for CPTP with soft time window (CPTPSTW). 

All problems allow a 𝑇𝑒𝑥𝑐𝑒𝑒𝑑 = 1, while the unit penalty cost = 0.5 in fig 3.1e, cost = 2.5 in fig 3.1f 

and cost = 5 in fig 3.1g. It shows that the cost on penalty changes the optimum route. When the 

penalty reaches to a high amount, the optimal solution will be the same as the optimal solution of 

the CPTPTW. 
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Fig. 3.1 A problem instance and optimal solutions of the CVRPPTW.  
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3.3.2 Model Formulation 

In this section, the notations in the model are first defined, than the MIP model will be 

described in details. 

Sets: 

 V: Sets of vertices, indexed by i and j.  

 O: Sets of origin depots. 𝑂 ⊆ 𝑉. 

 D: Sets of destination depots. 𝐷 ⊆ 𝑉. 

 N: Sets of customers, 𝑁 ⊆ 𝑉. 

 K: Sets of vehicles, indexed by k. 

 A: Sets of arcs, indexed by a tuple of two customers. 

 S: Sets of scenarios, indexed by s. 

 𝑁𝑠: Sets of customers in scenario s. 

Parameters: 

 |𝐾|: number of vehicles. 

 𝑛: number of customers. 

 𝑇𝑚𝑎𝑥: maximum allowable travel time for a vehicle route. 

 𝑇𝑒𝑥𝑐𝑒𝑒𝑑: maximum allowable exceed time for time window penalty. 

 𝑑𝑖𝑗: traveling distance between customer i and customer j. 
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 𝑡𝑖𝑗: traveling time between customer i and customer j. 

 𝑎𝑖: time window starting time of customer 𝑖. 

 𝑏𝑖: time window ending of customer 𝑖. 

 𝜏𝑖: service time of customer 𝑖.  

 𝑟𝑖: revenue for customer 𝑖.  

 𝑙𝑖: selective revenue for customer 𝑖.  

 𝑐𝑖
𝑞: 𝑑emand for customer 𝑖.  

 𝑞𝑘
 : capacity for vehicle 𝑘. 

 𝑐1: unit vehicle operating cost. 

 𝑐2: cost per unit distance traveled. 

 𝑐3: cost per unit time penalty. 

 𝑐4: cost per using penalty vehicle 

 𝑃𝑟𝑠: probability of occurrence for scenario 𝑠. 

 𝑀: a large constant. 

Variables (continuous variables): 

 𝑢𝑖𝑗𝑘,𝑠: load transported on arc (𝑖, 𝑗) by vehicle 𝑘 in scenario 𝑠. 

 𝑇𝑖𝑘,𝑠: service starting time for customer 𝑖 by vehicle 𝑘 in scenario 𝑠. 

 𝑇𝑖𝑘,𝑠
− : exceeding time for customer 𝑖 by vehicle 𝑘 in scenario 𝑠. 



doi:10.6342/NTU202002814
21 

 

Variables (binary variables): 

 𝑤𝑖: selection variables, 1 if the customers i ∈ 𝑁 was chosen to be served and 0 otherwise 

 𝑥𝑖𝑗𝑘,𝑠: binary variable equal to 1 if arc (i,j) is traversed by the vehicle k in scenario s, and 

0 otherwise; 

 𝑦𝑖𝑘,𝑠: binary variable equal to 1 if customer i is visited by the vehicle k in scenario s, and 0 

otherwise; 

For the model, the first-stage solution is to set the customers must be visited in the routing 

plan. The mathematical programming formulation is shown as the following: 

The objective function (1) consists of maximizing the selection revenue and the expected 

routing revenue .Constraint (2) states the binary variables in the first stage, which is used in the 

second stage for solving the expectation value 𝐸[𝑄(𝑤𝑖, 𝑆)]: 

Where 𝑄(𝑤𝑖, 𝑠) is the optimal value of the second-stage problem for scenario 𝑠 ∈ 𝑆. The second 

stage model is formulated as below. 

  

max ∑ 𝑙𝑖𝑤𝑖

𝑖∈𝑁

+ 𝐸[𝑄(𝑤𝑖, 𝑆)] (1) 

𝑤𝑖 ∈ {0,1},∀𝑖 ∈ 𝑁  (2) 

𝐸[𝑄(𝑤𝑖, 𝑆)] = ∑ 𝑃𝑟𝑠𝑄(𝑤𝑖, 𝑠)𝑠∈𝑆   (3) 
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∀𝑠 ∈ 𝑆,  

max 𝑄(𝑤𝑖, 𝑠) = ∑ 𝑟𝑖 ∑ ∑ 𝑥𝑖𝑗𝑘,𝑠

 

𝑘∈𝐾𝑗∈𝑉

 

𝑖∈𝑁𝑠

− 𝑐1 ∑ ∑ 𝑥𝑖𝑗𝑘,𝑠

𝑘∈𝐾(𝑖,𝑗)∈𝐴

  

−𝑐2 ∑ 𝑑𝑖𝑗 ∑ 𝑥𝑖𝑗𝑘,𝑠

𝑘∈𝐾(𝑖,𝑗)∈𝐴

− 𝑐3 ∑ ∑ 𝑇𝑖𝑘,𝑠
−

𝑘∈𝐾𝑖∈𝑁
 (4) 

∑ 𝑥𝑖𝑗𝑘,𝑠

𝑗∈𝑉

= 𝑦𝑖𝑘,𝑠, ∀𝑖 ∈ 𝑁 ∪ 𝑂, 𝑘 ∈ 𝐾, (5) 

∑ 𝑥𝑗𝑖𝑘,𝑠

𝑗∈𝑉

= 𝑦𝑖𝑘,𝑠, ∀𝑖 ∈ 𝑁 ∪ 𝐷, 𝑘 ∈ 𝐾, (6) 

∑ 𝑦0𝑘,𝑠 ≤

𝑘∈𝐾

|𝐾|, (7) 

∑ 𝑦𝑖𝑘,𝑠 ≤ 1

𝑘∈𝐾

, ∀𝑖 ∈ 𝑁, (8) 

∑ 𝑦𝑖𝑘,𝑠 ≥ 𝑤𝑖

𝑘∈𝐾

, ∀𝑖 ∈ 𝑁, (9) 

𝑦𝑛+1,𝑘,𝑠 − 𝑦0𝑘,𝑠 = 0, ∀𝑘 ∈ 𝐾, (10) 

( ∑ 𝑡𝑖𝑗𝑥𝑖𝑗𝑘,𝑠

(𝑖,𝑗)∈𝐴

+ ∑ 𝜏𝑖𝑦𝑖𝑘,𝑠

𝑖∈𝐾

) ≤ 𝑇𝑚𝑎𝑥, ∀𝑘 ∈ 𝐾, (11) 

𝑇𝑖𝑘,𝑠
 + 𝜏𝑖 + 𝑡𝑖𝑗 − 𝑇𝑗𝑘,𝑠

 ≤ (1 − 𝑥𝑖𝑗𝑘,𝑠)𝑀, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, (12) 
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The objective function for second-stage problem (4) aims to maximize the expected profit, 

which is the difference between total revenue generated from customers and total cost of purchasing 

customers, operating the vehicles and time penalty. Constraints (5) and (6) ensure that one arc 

𝑎𝑖𝑦𝑖𝑘,𝑠 ≤ 𝑇𝑖𝑘,𝑠
 ≤ 𝑏𝑖𝑦𝑖𝑘,𝑠 + 𝑇𝑒𝑥𝑐𝑒𝑒𝑑, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, (13) 

𝑇𝑖𝑘,𝑠
− ≥ 𝑇𝑖𝑘,𝑠

 − 𝑏𝑖𝑦𝑖𝑘,𝑠, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾,  (14) 

∑ 𝑢𝑖𝑗𝑘,𝑠

𝑗∈𝑉

− ∑ 𝑢𝑗𝑖𝑘,𝑠
𝑗∈𝑉

= 𝑐𝑖
𝑞

, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, (15) 

𝑢𝑖𝑗𝑘,𝑠 ≤ 𝑞𝑘,∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, (16) 

𝑥𝑖𝑗𝑘,𝑠 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, (17) 

𝑦𝑖𝑘,𝑠 ∈ {0,1}, ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾,  (18) 

𝑢𝑖𝑗𝑘,𝑠 ≥ 0,∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾, (19) 

𝑇𝑖𝑘,𝑠
 ≥ 0,∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, (20) 

𝑇𝑖𝑘,𝑠
− ≥ 0,∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, (21) 
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enters and one arc leaves each visited customers. Constraints (7) limits the number of routes to be at 

most |K|, while constraints (8) and (9) guarantee that the customers selected in the first stage must 

be served. Constraints (10) ensures that the origin and destination customers of a request are visited 

by the same vehicle. Constraint (11) ensures the total transporting time on each route will not exist 

the maximum allowable transporting time. Constraint (12) guarantees the consistency of time. 

Precedence constraints are imposed through inequalities constraint (13) and constraint (14) ensures 

schedule feasibility with respect to time windows. Note that for a given k, the value of 𝑇𝑖𝑘 is 

meaningless whenever customer i is not visited by vehicle k. Constraints (15) is the capacity 

constraints for the route. Finally, constraints (17)-(21) states the binary and non-negativity 

properties of the decision variable. 
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3.4 Heuristic Algorithm 

Time is always a managerial issued for an industry. Normally for real logistics, the problem 

setting for a vehicle may up to 70 or more customers. The solving time increases rapidly as the 

scale of networks grows. Since the problem can be viewed as an integration of two NP-hard 

optimization problems where each separate problem is by its own difficult to solve, two kinds of 

two-stage solving frameworks are built for the problem.  

The first two-stage framework is a hybridization of two local search model, as shown in Fig. 

3.2 and 3.3. For fig 3.2, the first stage is a simple insertion heuristic. Customers are selected from 

the score calculated based on certain factors. Considering the formulation with improving and 

switching for the initial route, another first two-stage framework, replacing first local search model 

to genetic algorithm (GA), is constructed. Fig. 3.3 shows the framework. The procedure combines 

genetic operators, selection, and crossover with an efficient local search to be the first stage 

selection. Next, the second stage applies the iterated local search scheme from Pieter 

Vansteenwegen et al. (2009) in order to re-optimize the route planning based on the selection in first 

stage, shown in Fig. 3.4. The detail of heuristic stage will be described in the following sections.  
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Fig. 3.2 Two-Stage Structure for insertion heuristic and ILS 
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Fig. 3.3 Two-Stage Structure for genetic algorithm and ILS 
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3.4.1 First-stage method 

 For the two-stage model, the first stage of the algorithm consist of the maximizing the number 

of customer must served. An initial route is constructed based on the selected customers. 

3.4.1.1 Insertion method 

 For the insertion method, the initial route will be constructed based on the selected customers. 

Let (𝑖0, 𝑖1 … 𝑖𝑒) be the current initial route, with 𝑖0 = 𝑖𝑒 = 0. For each unrouted customer, the best 

feasible insertion place in the emerging set is set as  

𝑏𝑒𝑠𝑡(𝑖(𝑢), 𝑢, 𝑗(𝑢)) = max[𝑏𝑒𝑠𝑡(𝑖𝑝−1, 𝑢, 𝑖𝑝)] , 𝑝 = 1, … , 𝑒, 𝑢 𝑢𝑛𝑟𝑜𝑢𝑡𝑒𝑑 𝑎𝑛𝑑 𝑓𝑒𝑎𝑛𝑠𝑖𝑙𝑏𝑙𝑒. 

The insertion for u must follows the time window constraints and the capacity constraints. 

Since the only uncertainty for the problem is the occurrence of customers, other parameters are 

assumed to be known in advance. For the routing, the profit, costing and time most considered for 

building the route. Therefore, the approach is described, 

𝑏𝑒𝑠𝑡1(𝑖, 𝑢, 𝑗) = 𝑚1𝑟𝑢 + 𝑚2𝑙𝑢 − 𝑚3(𝑡𝑖,𝑢 + 𝑡𝑢,𝑗 − 𝑡𝑖,𝑗) − 𝑚4𝑝𝑢𝑛𝑖𝑠ℎ𝑢 − 𝑚5𝑎𝑢 

𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5 ≥ 0, 

 The insertion aims to maximize the benefit from the insertion, therefore, if 𝑚1 and 𝑚2 are 

set as 0, the calculation will have an addition check for the adding score to avoid negative-score 

insertion. After no more customer with feasible insertions can be found, the method starts a new 

route, unless the total number of vehicle routing reaches the vehicle numbers. It is clear that 
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different values of 𝑚1, 𝑚2, 𝑚3, 𝑚4 and 𝑚5 lead to different possible criteria for selecting the 

customer for insertion and its best insertion. This method can have a simple and fast selection for 

the first step; however, the heuristic cannot contrast the goodness of the initial routes constructed 

from the proposed heuristic. Therefore, a genetic algorithm is served as a randomized mutation of 

the first-stage method. 

3.4.1.2 Genetic algorithm 

In this thesis, GA, a powerful and common used optimized heuristic methodology, is 

introduced to make a random selection of must-served customers for the later algorithm. The main 

elements of GA includes chromosome coding, population initialization, fitness function, selection 

procedure, crossover procedure and mutation procedure. Size of population (pop), crossover rate 

(cross_rate), mutation rate (mutate_rate), and the number of generations (gen numbers) will be the 

main parameters in the proposed algorithm. In a GA, the chromosomes or individuals are 

represented as strings which encode candidate solutions for an optimization problem, that later 

evolve towards better solutions. 

The general schema for the GA algorithm is as following: 

1. Generate a population of successive solutions. The chromosome for selection is 

demonstrated as Fig. 3.5. 

2. While the number of generations ≤ than maximum number of generation: 
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a. If a random generated probability ≤ crossover rate, a crossover operation is performed 

on a pair of chromosomes to obtain a new solution that reflects aspects of both parents. 

b. Else, for one or some randomized chromosomes, perform the mutation operation in 

them to obtain a new solution. 

c. Apply the local search to improve the solution obtained from the evaluation operation. 

As can be seen from Fig. 3.4, the binary stream only represents the selection. The 

selection will be put into further ILS heuristics to get the best solution. 

3.4.2 Second-stage method 

To simulate the reality, the scenarios are generated into the problem. Since VRP problems are 

proofed to be NP-hard, it may takes time to make the optimization of the routing in each scenario. 

Meanwhile, the visit should be verified that the new visit scheduled in the tour must satisfy time 

window and vehicle’s capacity limitation. To provide a higher ability heuristic, which may escape 

local optima and ensure the quality of the result, an iterated local search (ILS) scheme of 

Vansteenwegen et al. (2009) is applied. The heuristic combines an insertion step and a shaking step 

to escape from local optima. 

 Insertion step 

1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 

 

Fig. 3.4 A solution representation as a chromosome of the problem 
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The insertion step aims to provide a visit insertion for the original route. To decrease time on 

checking the feasibility on time window, the time of waiting at the location and maximum allowable 

shifting time for each included location were recorded. Since the service can only start when the 

time window opens, let 𝑣𝑖 be the arriving-time at location i and 𝑊𝑎𝑖𝑡𝑖 be the waiting time. 

𝑊𝑎𝑖𝑡𝑖 equals 0 if the arrival takes place during the time window. 

Let 𝑀𝑎𝑥𝑠ℎ𝑖𝑓𝑡𝑖 be the maximum allowable shifting time for location i without causing 

infeasible visit in the route. 𝑀𝑎𝑥𝑠ℎ𝑖𝑓𝑡𝑖 of location i is equal to the sum of 𝑊𝑎𝑖𝑡𝑖 and 𝑀𝑎𝑥𝑠ℎ𝑖𝑓𝑡𝑖 

of the next location i+1, unless the service time is limited by its own time window. It is noted that 

only the maximum allowable shifting time for origin depot and destination depot has no allowable 

exceed time, which other location has a tolerance on exceeding time.  

The total time consumption (𝑆ℎ𝑖𝑓𝑡𝑗) to insert an extra visit j between the further constructed 

visits i and k is defined as 

To make a feasible insertion for visit j between i and k for vehicle v, 𝑆ℎ𝑖𝑓𝑡𝑗 should be limited 

to the sum of 𝑊𝑎𝑖𝑡𝑘 and 𝑀𝑎𝑥𝑠ℎ𝑖𝑡𝑘 for location 𝑘. Meanwhile, 𝑆ℎ𝑖𝑓𝑡𝑗 should be limited by the 

𝑊𝑎𝑖𝑡𝑖 =  𝑚𝑎𝑥
 

[0, 𝑎𝑖 − 𝑣𝑖] (22) 

𝑀𝑎𝑥𝑠ℎ𝑖𝑓𝑡𝑖 = min[𝑏𝑖 + 𝑇𝑒𝑥𝑐𝑒𝑒𝑑 − (𝑣𝑖 + 𝑊𝑎𝑖𝑡𝑖), 𝑊𝑎𝑖𝑡𝑖+1 + 𝑀𝑎𝑥𝑠ℎ𝑖𝑓𝑡𝑖+1] , 𝑖 ∈ 𝑁  (23) 

 𝑀𝑎𝑥𝑠ℎ𝑖𝑓𝑡𝑖 = min[𝑏𝑖 − (𝑣𝑖 + 𝑊𝑎𝑖𝑡𝑖), 𝑊𝑎𝑖𝑡𝑖+1 + 𝑀𝑎𝑥𝑠ℎ𝑖𝑓𝑡𝑖+1] , 𝑖 ∈ (𝑂 ∪ 𝐷)  

𝑆ℎ𝑖𝑓𝑡𝑗 = 𝑡𝑖𝑗 + 𝑊𝑎𝑖𝑡𝑗 + 𝜏𝑖 + 𝑡𝑗𝑘 − 𝑡𝑖𝑘 (24) 
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total time limit of the route. The following formulas were defined to check the feasible time: 

Service j should be followed by the time window constraints of customer j and the capacity constraint 

for the routing. 

For a vehicle routing problem with soft time window, it allows the visit to have a exceed time 

for flexibility in moving. The exceeded time from the time window of customer i is record as 

𝑃𝑢𝑛𝑖𝑠ℎ𝑖 . If the visit take place in the time window, 𝑃𝑢𝑛𝑖𝑠ℎ𝑖 will equal zero. 

𝑅𝑒𝑎𝑙𝑒𝑥𝑖𝑠𝑡𝑖,𝑠 is represented as the existence of the which will equal 1 if customer i exist and 0 

otherwise. The revenue 𝑠𝑐𝑜𝑟𝑒𝑗,𝑠 for a visit j inserted is defined as: 

 𝑠ℎ𝑖𝑓𝑡𝑖 and 𝑠𝑐𝑜𝑟𝑒𝑖,𝑠 are the values to determine to be the better possible insertion, which 

influence is the punishment changing due to the insertion for customer i. For each visit the heuristic 

aims to find the highest possible 𝑠𝑐𝑜𝑟𝑒𝑖,𝑠, while the lowest 𝑠𝑐𝑜𝑟𝑒𝑖,𝑠 presents the better insertion 

spaces for further improvement. In order to determine the best selection in all feasible visit, a ratio 

is calculated as following. 

 𝑅𝑎𝑡𝑖𝑜𝑖,𝑠 = (𝑠𝑐𝑜𝑟𝑒𝑗,𝑠)3/𝑠ℎ𝑖𝑓𝑡𝑖  

𝑆ℎ𝑖𝑓𝑡𝑗 = 𝑡𝑖𝑗 + 𝑊𝑎𝑖𝑡𝑗 + 𝜏𝑖 + 𝑡𝑗𝑘 − 𝑡𝑖𝑘 ≤ 𝑊𝑎𝑖𝑡𝑘 + 𝑀𝑎𝑥𝑠ℎ𝑖𝑡𝑘 

𝑆ℎ𝑖𝑓𝑡𝑗 ≤ 𝑀𝑎𝑥𝑠ℎ𝑖𝑡𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛,𝑣 

 

𝑃𝑢𝑛𝑖𝑠ℎ𝑖 = max [0, 𝑣𝑖 − 𝑏𝑖] (25) 

𝑠𝑐𝑜𝑟𝑒𝑗,𝑠 = 𝑅𝑒𝑎𝑙𝑒𝑥𝑖𝑠𝑡𝑗,𝑠𝑟𝑗 − 𝑐1 − 𝑐2(𝑡𝑖𝑗 + 𝑡𝑗𝑘 − 𝑡𝑖𝑘) − 𝑐3(𝑃𝑢𝑛𝑖𝑠ℎ𝑖 + 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒) (26) 
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The visit with the highest ratio will be selected for the insertion. Since the objective of the model is 

to optimal the revenue and the visit is constrained by the time window, the relevant of the time 

consumption should be less than the scoring in the decision for visiting insertion. Due to the 

possibility for the negative revenue with high cost, a triple of the score is applied in the calculation 

of ratio. 

 After the procedure, all other visits should be updated. The procedure for the heuristic 

algorithm is presented in Fig. 3.5. The total score is first update, and the visits after the insertion 

should update the waiting time, the arrival time, the service time, 𝑀𝑎𝑥𝑠ℎ𝑖𝑓𝑡 and 𝑃𝑢𝑛𝑖𝑠ℎ. The 

allowable shifting time for the service starting and the following services will gradually decreased 

due to the waiting time for the visit. If 𝑃𝑢𝑛𝑖𝑠ℎ changes in the procedure, the total score calculated 

should also be update. This gives the following formulas to update the visits after the insertion 

position, when customer j is inserted between i and k : 

𝑆ℎ𝑖𝑓𝑡𝑗 = 𝑡𝑖𝑗 + 𝑊𝑎𝑖𝑡𝑗 + 𝜏𝑖 + 𝑡𝑗𝑘 − 𝑡𝑖𝑘 

𝑊𝑎𝑖𝑡𝑘∗ = 𝑚𝑎𝑥
 

[0, 𝑊𝑎𝑖𝑡𝑘 − 𝑆ℎ𝑖𝑓𝑡𝑗] 

𝑣𝑘∗ = 𝑣𝑘 + 𝑆ℎ𝑖𝑓𝑡𝑗 

𝑆ℎ𝑖𝑓𝑡𝑘 = 𝑚𝑎𝑥
 

[0, 𝑆ℎ𝑖𝑓𝑡𝑗 − 𝑊𝑎𝑖𝑡𝑘] 

𝑇𝑜𝑡𝑎𝑙𝑠𝑐𝑜𝑟𝑒 = 𝑇𝑜𝑡𝑎𝑙𝑠𝑐𝑜𝑟𝑒 − 𝑐3(𝑚𝑎𝑥
 

[0, 𝑣𝑘∗ − 𝑏𝑘] − 𝑃𝑢𝑛𝑖𝑠ℎ𝑘∗) 

𝑃𝑢𝑛𝑖𝑠ℎ𝑘∗ = 𝑚𝑎𝑥
 

[0, 𝑣𝑘∗ − 𝑏𝑘] 
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𝑀𝑎𝑥𝑠ℎ𝑖𝑓𝑡𝑘∗ = 𝑀𝑎𝑥𝑠ℎ𝑖𝑓𝑡𝑘 − 𝑆ℎ𝑖𝑓𝑡𝑘 

 

𝑆ℎ𝑖𝑓𝑡𝑘 and the same formulas are then used to update the visit after k. The procedure will continue 

until 𝑆ℎ𝑖𝑓𝑡𝑘 is reduced to zero. Meanwhile, 𝑀𝑎𝑥𝑆ℎ𝑖𝑓𝑡 of the visits before the insertion j should 

be updated using formula (23) mentioned above. 

 Shaking step 

The shaking step aims to escape from the local optimum when the solution makes no 

improvement after a number of iterations. Oone or more visits will be removed from the original 

tour during this step. For every shaking step, 𝑅𝑒𝑚𝑜𝑣𝑒 and 𝑆𝑡𝑎𝑟𝑡_𝑠ℎ𝑎𝑘𝑒 are set as the inputs of 

number to remove from the single tour and the place starts the removing. If the end location is 

Insertion step: 

 

For each non included visit in customer: 

 Calculate possible insert position Wait, Arrive, Punish, Ratio; 

 Determine best possible insert position and shift 

Insert visit with highest ratio(j); 

Update TotalScore; 

For each visit after j(until Shift == 0): 

 Update Wait, Arrive, Maxshift, Shift; 

If Punish change then: 

 Update TotalScore, Punish 

Visit j: Update Maxshift; 

For each visit before j(until Maxshift remains the same): 

 Update Maxshift;  

 

Fig. 3.5 Pseudo code for the insertion 
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reached during the removal, the process continues after the start location. Meanwhile, the shaking 

step only allows the visits not selected in the chromosome from GA to move. 

After the removal, all visits following the removed visits are shifted to the beginning. The 

shifted visit should be updated similar to the process shown in the insertion stop. For the visits 

before the remove. The pseudo for the shaking step can be seen in Fig. 3.6. 

Fig. 3.7 presents the iterated local search heuristics pseudo code for a single scenario. Since the 

selection in GA does not represent a real network, a local search with time oriented applied to 

construct a first stage solution, and the route for each scenarios will be optimal from first stage 

solution. Vehicles not used in the first stage will be set as empty routes. The heuristic follows a loop 

until no improvements are identified for the best solution determined during a fixed number 𝑁𝐼 of 

Shaking step: 

 

For each route: 

 if set of visits i=>j not in must: 

  Delete visits: 

 Calculate Shift; 

For each visit after j(until Shift == 0): 

  Update Wait, Arrive, Maxshift, Shift; 

If Punish change then: 

  Update TotalScore, Punish 

For each visit before i(until Maxshift remains the same): 

  Update Maxshift; 

 

Update score 

 
Fig. 3.6 Pseudo code for the shaking 
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times. Firstly, the insertion step is applied to the route. The insertion stop when it reaches a local 

optimum. If the score of the solution is better than the best score recorded, the score and the 

solution are recorded and 𝑅𝑒𝑚𝑜𝑣𝑒 is reset to one for the next shake step. Secondly, the shake step 

is applied. After each shake step, 𝑆𝑡𝑎𝑟𝑡_𝑠ℎ𝑎𝑘𝑒 is increased by the value 𝑅𝑒𝑚𝑜𝑣𝑒 and 𝑅𝑒𝑚𝑜𝑣𝑒 

is increased by one for the next shake step. If 𝑆𝑡𝑎𝑟𝑡_𝑠ℎ𝑎𝑘𝑒 is equal to or greater than the size of 

the smallest tour, this size is subtracted to determine the new position. If 𝑅𝑒𝑚𝑜𝑣𝑒 equals the 

maximum number of removable locations ML, the number is reset to one. By using the shaking 

parameters as described following, almost all customers, except the selected ones in the GA, are 

removed at least once in the entire procedure. 
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Iterated local search: 

 

Input: Initial_route, 

Output: BestFound 

 

Start_shake←1 

Remove←1 

NumberOfTimesNolmprovement = 0;  

while NumberOfTimesNolmprovement < NI do 

while not local optimum do  

Insert;  

If Solution better than BestFound then 

BestFound←Solution;  

R←1; 

NumberOfTimesNoImprovement = 0;  

Else  

NumberOfTimesNolmprovement←NumberOfTimesNolmprovement+1;  

Shake Solution (R, S);  

Start_shake←Start_shake +Remove;  

Remove = Remove+1; 

If Start_shake >=Size of smallest Tour then 

Start_shake←Start_shake- Size of smallest Tour; 

If Remove== ML then 

Remove←1;  

Return BestFound; 

 

 Fig. 3.7 Pseudo code for the ILS 
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Chapter 4 Computational Result 

In this section, some test instances are designed. All the computational experiments in this 

research were conducted on a desktop computer with Linux operating system, Intel i7-7700 with 

CPU @3.6 GHz and 16 GB Random Access Memory (RAM). Results of comparison tested data 

were solved at the Gurobi Mathematical Programming Solver 8.1 with Python interface, and the 

optimization algorithm was coded with Python Programming Language 2.7.  

4.1 Test instances 

Since no test problems for SCMVRPPSTW are available, and the algorithms are modified 

specifically to deal with this variant, a small test set and a large test set are generated by revising 

Solomon’s VRPTW benchmarks (refer to Solomon (1987)). The small test set checks the accuracy 

of two heuristic algorithms while the large test set is aimed to test the calculating time of the 

algorithms with a more practical size. The data sets uses the original instances from C1 and C2 

types while the small test problems contain first 20 customers and the large test problems contain all 

100 customers. The descriptions for the problem sets refers to Table 4.1. 

Table 4.1 Description for Solomon’s problem sets. 

 

Type Sets Capacity Maximum Time Service time Customers Width of 

the time 

windows 

C1 9 200 1236 90 Clustered Tight 

C2 8 700 3390 90 Clustered Soft 
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In real world, the profit of a good depends on the size and its weight; therefore, the profit 

earned from each customer is designed to be proportional to the customer’s demand. The revenue 

𝑟𝑖
  for customer i is set as quintuple of 𝑐𝑖

𝑞
. The operating cost for the vehicle 𝑐1 is set as 10 while 

the distance traveling cost 𝑐2 is 2.5. Since the time penalty should be avoid, the cost for time 

penalty 𝑐3 is set as 20. Mostly, customers want to have a successful transaction for the order; thus, 

the possibility of the customer in the test instances is presented as a number between 0.5 to 0.99. It 

can be seen that the scenarios have different probability since the customers are associated to 

uneven probability.  

The number of scenarios grows exponentially with the rising number of customers, which 

means that for each increasing customer, the number of scenarios set will be twice as the original, 

and it will cost large amount of time to calculate the expected revenue of all scenarios. Since the 

influence on the expectation of revenue for the scenario is correlated to its probability, the scenario 

with low possibility have little effect on the outcome; thus, in the problem sets, the scenarios are 

selected from 10000 random samples. The sample scenarios with the top five highest possibility are 

selected in small problem test and the top thirty highest possibility are selected in the large problem 

test for the later approach.  

Three groups of different value combination 𝑚1, 𝑚2, 𝑚3, 𝑚4, and 𝑚5 for insertion heuristic 

are set. The first group sets the profitability of the customer as the priority; therefore, for the first 
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insertion heuristic, the parameters are set as following: 𝑚1 = 1, 𝑚2 = 1, 𝑚3 = 2, 𝑚4 = 20, 𝑚5 =

0. The second type considered the time consuming between each customer; thus, the parameters for 

the second type are set as: 𝑚1 = 0, 𝑚2 = 0, 𝑚3 = 1, 𝑚4 = 0, 𝑚5 = 0. The third type considers 

both insertion timing and the moving time for customers to avoid the insertion with short distance 

but large waiting time, which the parameters are 𝑚1 = 0, 𝑚2 = 0, 𝑚3 = 0.5, 𝑚4 = 0, 𝑚5 = 0.5. 

The maximum number of iteration without improvement NI and the maximum number of 

removable locations ML are the parameters predetermined in the heuristic. NI is set as 150 for 

initial. For ML, a percentage of n/|K| (number of customers/ number of vehicles) is used for the 

second stage test. The initial generation number is set as 3000 for small problem sets and 10000 for 

large problem sets. The mutation number is set as 0.05 and the reverse number is set as 1. The 

performance of the heuristic in small problem sets is compared with the result from Gurobi solver 

with the preset to terminate when running time reached three hours (10800 seconds). 

4.2 Results 

Table 4.1 shows the result from the solver with different number of vehicles. The column LB 

represents the best solution found in three hours and UB represents the best upper bound. The gap 

between the LB and UB is between 0% to 7%. Table 4.2-4.4 compare the outcome obtained from 

the solver and two heuristic model. ‘gap’ denotes the difference between result from heuristic and 

solver. The negative gap means the heuristic has a result that is closer to the optimum solution than 
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the result from the solver.  

Fig. 4.1- 4.3 are the comparisons for the gap in different problem sets. From the figures, it 

clearly illustrates that the vehicle number has no apparent influence on the gap for the problem sets 

with wider time windows (c2), which means both heuristic have similar gap in c2-type problem sets 

whether the allowing vehicle number is large or small. In contrast, the gap for the problem sets with 

short scheduling horizon (c1) using GA and ILS is much smaller than using the insertion heuristic 

and ILS with single vehicle and the difference decreases when the vehicle number rises. The largest 

gap and smallest gap to UB for the heuristic using insertion algorithm and ILS are 37% and 2%, 

while for the heuristic using GA and ILS are 15 % and 0%. Fig 4.4 and 4.5 depict the computational 

times for small problem sets and testing time of two heuristics for large problem sets are illustrated 

in Fig 4.6 and 4.7. It appears that insertion and ILS heuristic have significant advantage of 

calculation time to GA and ILS, while both heuristics run shorter time to have the result than the 

solver for small number. There is no significant relation shows between the computational time and 

the vehicle number, since for small number of vehicle the allowable route changing and 

improvement is limited, and the adding vehicles are vacant when the best routing plan is found. 
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Fig. 4.1 Gap of heuristics for vehicle = 1 

 

Fig. 4.2 Gap of heuristics for vehicle = 2 

 

Fig. 4.3 Gap of heuristics for vehicle = 3 
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Fig. 4.4 Computational time of Insertion + ILS for small testing 

 

Fig. 4.5 Computational time for GA + ILS for small testing 

 

Fig. 4.6 Computational time of Insertion + ILS for large testing 
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Fig. 4.7 Computational time of GA+ ILS for large testing 
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  vehicle = 1 vehicle = 2 vehicle=3 

  

customer 

selection 

LB UB gap 

customer 

selection 

LB UB gap 

customer 

selection 

LB UB gap 

c101-20 7 741.38 742.59 0.16% 19 1275.67 1278.55 0.22% 19 1275.67 1275.79 0.01% 

c102-20 10 757.76 759.77 0.26% 19 1294.78 1294.78 0.26% 19 1294.78 1294.90 0.26% 

c103-20 10 757.76 759.17 0.19% 19 1301.59 1301.59 0.19% 19 1301.59 1301.70 0.19% 

c104-20 10 757.76 760.01 0.30% 19 1306.83 1306.83 0.30% 19 1306.83 1306.95 0.30% 

c105-20 10 746.04 748.27 0.30% 18 1267.10 1300.24 0.30% 19 1275.67 1293.01 0.30% 

c106-20 7 741.52 743.74 0.30% 15 1171.27 1282.95 0.30% 19 1275.67 1278.65 0.30% 

c107-20 8 735.53 757.59 3.00% 16 1196.92 1312.55 3.00% 19 1235.36 1317.39 3.00% 

c108-20 7 738.36 761.12 2.99% 17 1223.18 1312.14 6.78% 18 1235.42 1320.24 6.42% 

c109-20 9 750.48 759.97 2.13% 18 1293.50 1310.34 2.13% 19 1274.60 1318.64 2.13% 

c201-20 16 1188.84 1227.40 2.53% 19 1204.15 1243.39 2.53% 19 1208.96 1252.64 2.53% 

c202-20 19 1245.68 1255.70 2.93% 19 1250.75 1257.42 2.93% 19 1250.56 1261.59 2.93% 

c203-20 18 1229.96 1257.80 3.33% 19 1249.62 1259.26 3.33% 19 1248.49 1259.56 3.33% 

c204-20 19 1261.84 1265.63 3.73% 19 1262.36 1262.36 3.73% 19 1262.36 1266.15 3.73% 

c205-20 17 1213.25 1249.33 4.13% 18 1223.31 1261.79 4.13% 19 1220.76 1260.50 4.13% 

c206-20 19 1224.49 1254.30 2.38% 18 1221.58 1259.41 3.00% 19 1222.61 1257.55 2.78% 

c207-20 17 1208.26 1250.85 4.53% 18 1216.45 1254.03 4.53% 18 1215.85 1257.02 4.53% 

c208-20 19 1222.70 1252.91 4.93% 19 1224.58 1259.65 4.93% 19 1228.54 1258.58 4.93% 

Table 4.2 Testing outcome for Gurobi solver for 3hours 
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  Gurobi solver(3hr) Insertion + ILS GA+ILS 

  

customer 

selection 

LB UB 

customer 

selection 

value gap(LB) gap(UB) 

customer 

selection 

value gap(LB) gap(UB) 

c101-20 7 741.38 742.59 9 696.76 6% 6% 11 732.87 1% 1% 

c102-20 10 757.76 759.77 8 584.28 23% 23% 9 672.91 11% 11% 

c103-20 10 757.76 759.17 11 603.89 20% 20% 11 675.65 11% 11% 

c104-20 10 757.76 760.01 8 649.51 14% 15% 12 707.64 7% 7% 

c105-20 10 746.04 748.27 11 569.48 24% 24% 11 746.04 0% 0% 

c106-20 7 741.52 743.74 10 629.66 15% 15% 11 732.87 1% 1% 

c107-20 8 735.53 757.59 11 569.48 23% 26% 11 746.04 -1% 2% 

c108-20 7 738.36 761.12 11 487.36 34% 37% 11 746.04 -1% 2% 

c109-20 9 750.48 759.97 12 617.57 18% 19% 11 746.46 1% 2% 

c201-20 16 1188.84 1227.40 17 1078.55 9% 13% 18 1072.73 10% 13% 

c202-20 19 1245.68 1255.70 18 1170.06 6% 7% 19 1165.25 6% 7% 

c203-20 18 1229.96 1257.80 18 1158.28 6% 8% 19 1158.28 6% 8% 

c204-20 19 1261.84 1265.63 20 1133.90 10% 10% 19 1153.50 9% 9% 

c205-20 17 1213.25 1249.33 19 1165.78 4% 7% 20 1165.78 4% 7% 

c206-20 19 1224.49 1254.30 19 1165.78 5% 7% 20 1165.78 5% 7% 

c207-20 17 1208.26 1250.85 19 1065.19 12% 15% 20 1065.19 12% 15% 

c208-20 19 1222.70 1252.91 19 1177.22 4% 6% 20 1165.78 5% 7% 

average 

gap 
          14% 15%     5% 7% 

Table 4.3 Solution value and gap for vehicle = 1 
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  Gurobi solver(3hr) Insetion+ILS GA+ILS 

  

customer 

selection 

LB UB 

customer 

selection 

value gap(LB) gap(UB) 

customer 

selection 

value gap(LB) gap(UB) 

c101-20 19 1275.67 1278.55 17 1039.63 19% 19% 19 1275.67 0% 0% 

c102-20 19 1294.78 1294.78 14 879.48 32% 32% 17 1142.01 12% 12% 

c103-20 19 1301.59 1301.59 14 900.87 31% 31% 18 1173.26 10% 10% 

c104-20 19 1306.83 1306.83 18 1074.39 18% 18% 18 1105.11 15% 15% 

c105-20 18 1267.10 1300.24 19 1174.26 7% 10% 20 1174.26 7% 10% 

c106-20 15 1171.27 1282.95 17 922.70 21% 31% 18 1118.72 4% 14% 

c107-20 16 1196.92 1312.55 19 1174.26 2% 12% 20 1174.26 2% 12% 

c108-20 17 1223.18 1312.14 20 1265.28 -3% 4% 19 1265.28 -3% 4% 

c109-20 18 1293.50 1310.34 20 1290.48 0% 2% 18 1290.48 0% 2% 

c201-20 19 1204.15 1243.39 20 1056.82 12% 15% 18 1072.73 11% 14% 

c202-20 19 1250.75 1257.42 20 1176.70 6% 6% 19 1176.70 6% 6% 

c203-20 19 1249.62 1259.26 19 1142.26 9% 9% 19 1158.28 7% 8% 

c204-20 19 1262.36 1262.36 20 1133.90 10% 10% 19 1153.50 9% 9% 

c205-20 18 1223.31 1261.79 19 1165.78 5% 8% 20 1165.78 5% 8% 

c206-20 18 1221.58 1259.41 19 1165.78 5% 8% 20 1165.78 5% 8% 

c207-20 18 1216.45 1254.03 19 1065.19 12% 16% 19 1078.17 11% 14% 

c208-20 19 1224.58 1259.65 19 1165.78 5% 8% 20 1165.78 5% 8% 

average 

gap 
          11% 14%     6% 9% 

Table 4.4 Solution value and gap for vehicle = 2 
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  Gurobi solver(3hr) Insetion+ILS GA+ILS 

  
customer 

selection 
LB UB 

customer 

selection 
value gap(LB) gap(UB) 

customer 

selection 
value gap(LB) gap(UB) 

c101-20 19 1275.67 1278.55 20 1194.55 6% 7% 19 1275.67 0% 0% 

c102-20 19 1294.78 1294.78 20 1072.69 17% 17% 20 1222.69 6% 6% 

c103-20 19 1301.59 1301.59 20 1089.69 16% 16% 20 1239.69 5% 5% 

c104-20 19 1306.83 1306.83 20 1097.33 16% 16% 18 1255.11 4% 4% 

c105-20 18 1267.10 1300.24 20 1194.55 6% 8% 20 1194.55 6% 8% 

c106-20 15 1171.27 1282.95 20 1194.55 -2% 8% 20 1194.55 -2% 8% 

c107-20 16 1196.92 1312.55 19 1174.26 2% 12% 20 1174.26 2% 12% 

c108-20 17 1223.18 1312.14 20 1265.28 -3% 4% 20 1265.28 -3% 4% 

c109-20 18 1293.50 1310.34 20 1290.48 0% 2% 20 1290.48 0% 2% 

c201-20 19 1204.15 1243.39 20 1056.82 12% 15% 18 1072.73 11% 14% 

c202-20 19 1250.75 1257.42 20 1176.70 6% 6% 20 1176.70 6% 6% 

c203-20 19 1249.62 1259.26 19 1142.26 9% 9% 19 1158.28 7% 8% 

c204-20 19 1262.36 1262.36 20 1133.90 10% 10% 19 1153.50 9% 9% 

c205-20 18 1223.31 1261.79 19 1165.78 5% 8% 20 1165.78 5% 8% 

c206-20 18 1221.58 1259.41 19 1165.78 5% 8% 20 1165.78 5% 8% 

c207-20 18 1216.45 1254.03 19 1065.19 12% 16% 19 1078.17 11% 14% 

c208-20 19 1224.58 1259.65 19 1165.78 5% 8% 20 1165.78 5% 8% 

average 

gap 

     7% 10%   4% 7% 

            

Table 4.5 Solution value and gap for vehicle = 3 
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The small test problems with different soft time window allowable intervals are examined with 

the insertion heuristic. The trend of objective value for the soft time window interval for both 

problem sets are displayed in Fig.4.8-4.11. It appears that only c108-20, c201-100,202-100, c204-

100 and c208-100 show little improvement with the rising of interval. The penalty for arriving-late 

time and the limitation for the total time 𝑇𝑚𝑎𝑥 restricts the influence for the soft time window.  

 

Fig. 4.8 Objective revenue for small test instances c1 in different allowable soft time window limit t 

 

Fig. 4.9 Objective revenue for small test instances c2 in different allowable soft time window limit t 
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Fig. 4.10 Objective revenue for large test instances c1 in different allowable soft time window limit 

t 

 

Fig. 4.11 Objective revenue for large test instances c2 in different allowable soft time window limit 

t 
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Chapter 5 Conclusions and Future research 

Nowadays, the e-commerce has brought a profound change for economy and society. With the 

further development of e-commerce, the uncertainty for the customers with the last-mile delivery 

has brought more and more attention for the planning in logistic. In this research, a SCMVRPPSTW 

model is constructed to make an application for logistic routing planning problem. Considering the 

stochasticity of the problem, two two-stage heuristic algorithms are proposed. For the first stage 

method, the first algorithm simply used an insertion heuristic to build the initial route while the 

second algorithm adding the genetic algorithm to escape the local optima and search for better 

result. The second stage solving method is based on an existing metaheuristic developed for the 

TOPTW, which can proposed a fast re-optimizing for the adjusted routing.  

The approximate test problems are generated by revising the Solomon’s benchmarks test 

problems. The results from the algorithms were compared with the result from MIP model using 

Gurobi Solver running for 10800 seconds. In the small testing, the GA with ILS has more standard 

presents than insertion with ILS, while both heuristics are able to obtain optimal or near optimal 

solutions for the tested problems in an acceptable computational time. 

There are several directions for the future study. In this study, routes are assumed to start as a 

distribution center and end at a collection center. Therefore, it is a single depot problem. For large 

companies, the goods may be stored in more than one collection center which vehicles can be 
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stationed. Thus, how to extend one depot to multiple depots is a direction of the further study. 

Meanwhile, each vehicle is assumed to perform at most one route in the same planning period 

in this research. In some practical applications, the vehicle capacity is small or the planning period 

is large, performing more than one route per vehicle may be more appropriate for practical 

implementation. In urban areas, where travel times are rather small, it is often the case that after 

performing short tours vehicles are reloaded and used again. Hence, how to extend one trip to 

multiple trips is also a direction of the future works.  

Moreover, the study only consider the stochasticity of the customer for logistics problem and 

the traveling time for each routes is set as known. In real practice, the traveling time is usually not 

certain due to other time dependent properties of the network such as congestion levels, incident 

location, and construction zone on certain road segments. Sometimes when facing a traffic jam, the 

deliverymen change the routing while the delivery. Therefore, how to extend the problem with a 

dynamic planning is also a direction of the future works.  
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