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A survey on discrete surface theory

Student: Han-Chung Wu Advisor: Dr. Mao-Pei Tsui

Department of Mathematics
National Taiwan University

Abstract

In this thesis, we discuss discrete surface theories developed by M. Kotani, H. Naito
and T. Omori in ([3]). We first review the general results from their paper. Then we
discuss the behavior of the mean curvature flow of skew line tetrahedron and the issue

of the convergence of discrete curvatures and Gauss-Bonnet Theorem.
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Chapter 1

The classical surface theory in R’

In this chapter, we briefly review basic facts of the classical surface theory in
R3. We review the definition of first fundamental form, second fundamental form,
the Weingarten map, mean curvature and Gauss curvature. See Dierkes et al.(2010) [2]
for example for details.

Let M C R3 be a regular surface (of class C?), which is (locally) parameterized
by, say, p = p(u,v) : @ — R?, where Q C R?. The tangent plane 7, M at p = p(u,v)
is the vector space spanned by the partial derivatives d,p and J,p of p with respect to
u and v, respectively. It is equipped with the standard inner product (-, -) in R?.

The first fundamental form 1 = 1(u,v) of M at p(u,v) is a symmetric 2-tensor

defined as
I =dp-dp=(0up,0up)du - du + 2(0yp, Oyp)du - dv + (Oyp, Opp)duv - dv,

which is also expressed by the matrix-form:

- (E F) _ ((&m Oup)  (Oup, (9vp>>
F G (Oup; Oup)  (Oup, Oup)
The matrix I(u, v) has rank 2 (positive definite) since we assume that M is regular. The

unit normal vector field

=, v) = Oup X Oyp
I T8, X O]

is well-defined at every point (u,v) € 2. The second fundamental form 11 = 1l(u,v)
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is then defined as

L M —(Oup, Ouyn)  —(Oup, Opn)
II=—dp-dn = = |
M _<avp7 aun> _<avp7 av”)

which is also a symmetric tensor.

Fact 1.0.1. The partial derivatives d,n and 0,n of n, which is perpendicular to n, can

be represented by {0,p, 0,p}:

8n:FM_GL8p+FL_EM8p
“ EG—F2 7" EG —F2 "7 (1.0.1)
E)n:FN_GME)p—}—FM_ENap.
b EG—F2 " EG—F2 "

We define the Weingarten map S = Vn : T,M — T,M. By the symmetry of
IT, S is a symmetric operator in the sense that it satisfies (SV, W) = (V, SW) for any
V,W € T,M. Half of the trace of S is called the mean curvature H(p) and the deter-
minant of S is called the Gauss curvature K (p), respectively. Since the representation

matrix of S with respect to {9,p, O,p} is I, we have

Fact 1.0.2. The mean curvature H (p) and the Gauss curvature K (p) are defined by

EN +GL —-2FM

H(p) = %tr(l_lll) =

_ |2 ’
LNQQE\?Q ) (1.0.2)
It is easy to see
S? —2H(p)S + K(p)ld = 0. (1.0.3)

We also define the third fundamental form 111 = 1ll(u, v) as

Il = dn - dn = (@n,&m) <8un,avn>> |

(O, Oyn)  (Oym, Oyn)

doi:10.6342/NTU202002893



Because of the symmetry of S, (9,n, d,n) = (Sd,p, SO,p) = (S?0,p, O.p) and so on,

from (1.0.3) we infer

K(p)I —2H (p)l1+ 111 = 0. (1.0.4)

We are ready to present several different meanings of the Gauss curvature. To do
so let us consider the Gauss map n : M — S? from M to the unit sphere S?. Then the

Gauss curvature appears in its area element.

Fact 1.0.3. The Gauss curvature is written as the ratio of the infinitesimal area ele-

ments:

. Ag.(n)
K =1 = 1.0.
| (p(UO,U()))| €1~I>I(1) AQE(p)v ( 05)
where €. C 2 is an e-neighborhood of (ug, vy) € 2.
Proof. 1t is easy by using (1.0.1) to have
LN — M?
Oun X Oyn = m(aup X Opp) = K(p)(Oup X Opp). (1.0.6)

If we take an e-neighborhood 2. C 2 of (ug, vy) € €2 for any € > 0, then since

Aq.(p) = |Oup X Oyp| dudv,
Qe
Ag_(n) = |Oun X Oyn| dudv = / | K||Oup % Oyp| dudv
Qe Qe
are the areas of the image p(Q2.) € M and n(Q.) C S?, respectively. O

A variational approach is also available for the formulation of the curvatures as
follows. Let p : 2 — R3 be a regular surface of class C2. The functional A(p) defined

as

A(p) = / |Oup X Oyp| dudv = / dA
Q Q
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is called the area functional, whose first and second variation formulas are those we
want. Let ¢; = q(u,v,t) = p+tV : Q x (—¢,¢) be a variation of p with the variation

vector field, say,
V(u,v) = " (1, 0)0up(u, v) + 9 (1, 0)9,p(u, v) + 1 (u, ), 0)

where ¢, ¢ € CH(Q) (i = 1,2).

Fact 1.0.4. The first variation of A at p is then given as

d

Algr) = 2 / b - H(p)|0up x Oup| dudo, (10.7)
=0 Q

t

independently of variations in the tangential direction.
While the second variation of 4 at a general regular surface p with respect to the normal

variation V' = vn (that is, ! = ©? = 0) is given as

EAp o) = [ (Vabl? + 20°K(0) d (1.038)

where the norm |V ,¢|? is taken with respect to I, sometimes called the first Beltrami

differentiator.

A surface M C R3 satisfying H(p) = 0 for any point p € M is said to be minimal.
At the end of this chapter, we state a characterization of minimal surfaces as fol-

lows:

Fact 1.0.5. Let p = p(u,v) : Q — R? be a regular surface of class C? and n : ) — R?

be its Gauss map. Then
Opn X Oyp — Oy X Oyp = 2H (p)|Oup X Opp|n, (1.0.9)

or equivalently,

d(n x dp) = —2H (p)ndA

doi:10.6342/NTU202002893



where n X dp = (n x d,p)du+ (n x d,p)dv is a differential 1-form on €2 along p. That

is to say, p : 2 — R? is a minimal surface if and only if n x dp is closed.

doi:10.6342/NTU202002893



Chapter 2
A discrete surface theory for graphs in

RB

In this chapter, we introduce the definition of discrete normal vector, discrete co-
variant derivative, discrete mean curvature and discrete Gauss curvature on an embed-
ded trivalent graph. Most of the materials in this chapter come from the paper ([3]) by

M. Kotani, H. Naito and T. Omori.

2.1 Definition of curvatures

Let X = (V, E) be a locally finite graph, where V' denotes the set of vertices, and
E the set of the oriented edges. The oriented edge e is identified with a 1-dimensional
cell complex. Thus we can assume that every edge e is identified with the interval
[0, 1]. The reverse edge is denoted by €, and E, is the set of edges which emerge from
avertexr € V.

First, we identify X with the 1-dimensional CW-complex V U (E x [0,1])/ ~,
where the equivalence relation ~ is defined by o(e) ~ (e,0), t(e) ~ (e, 1) and (e, a) ~
(e,1 — a), where o(e) and t(e) is the origin and terminus of e, respectively. We define
an embedding ® : X — R®as follows: Forz € V, ®(z) € R3, which satisfies §(x) #
O(y) ifx # y, fore(a) € (E x [0,1])/ ~, set P(e(a)) = aP(o(e)) + (1 — a)P(t(e)).

In the followings, we abbreviate ®(e(a)) to ®(e).
Definition 2.1.1. An embedding ® : X — R3 of a discrete surface if

(i) X = (V, E) is a 3-valent graph, that is a graph of degree 3,

doi:10.6342/NTU202002893



(if) foreach x € V, at least two vectors in {®(e) | e € E, } are linearly independent

as vectors in R3,

(ii1) locally oriented, that is, the order of the three edges is assumed to be assigned to

each vertex of X.

As said in the introduction, since our targets have necessarily no natural faces, we
should take a different approach to develop a surface theory from the existing ones such
as Bobenko and Pinkall(1996) [1] or Pinkall and Polthier(1993) [4].

Let®: X = (V, E) — M C R? be a discrete surface. For each vertex z € V, we
assume it is of 3-valent, namely the set £, = {ej, 2, 3} of edges with origin x consists
of three oriented edges. In the sequel, we sometimes use the notation ®(z) =z € M
to denote the vertex in M which corresponds to x € V and ®(e) = e € M to denote
the edge in M which corresponds to e € E. The tangent plane T, at ®(x) is then the
plane with n(x) as its oriented unit normal vector, n(x) at ®(x) is defined as

B e F e
SLose = (2.1.1)

&g X €y + €9 X €3+ €3 X €
e X €5+ €5 X €3+ €3 X €4

Note that we use the condition of graphs to be 3-valent to define its tangent plane.
Now let x € V be a vertex, £, = {e1,eq,e3}, z; := t(e;) (1 = 1,2,3), and
consider the triangle A(z) = A(xy, 2y, 25) C R3 with ordered vertices x, z,, 3, to
each of which the unit normal vectors n, := n(x;), n, := n(xs), ny := n(x3) are
assigned respectively. We set v, :=¢e; —e3 = 21 — 25 and v, 1= e, — €5 = Ty — Z3.

The first fundamental form 1(x) at = is now defined as

£ F (v1,01) (U1, 5)
I(z) := = , 2.1.2
B <F G) (<Q2721> @2722)) ( :

where (-, -) stands for the standard inner product of R®. We also define the directional
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n(x)

Figure 2.1: The oriented unit normal vector n(z) at ®(z).

derivative V;n(x) of n along v, as
Vin = Vin(z) := Projln; — ny] := (n; — 13) — (n; — n3,1()) n(z)

fori = 1,2, where n(z) is the unit normal vector of /A (x). That is, Proj is the orthogonal
projection onto the tangent plane 7). As is straightforward to check, Vin and Vsn are

in fact written, respectively, as

FM,—GL  FL—EM,
G Ut e e
FN —GM,  FM,— EN

Von = v v

EG — F?2 1 EG — F?2 %

Vin =
(2.1.3)
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where F/, F' and G are given by (2.1.2) and L, My, Ms and N are defined as

L M - \Y — \Y
1(x) — 2\ _ [~ Vim) —{uy, Vo) (0.14)
M, N — (v, Vin) = (vy, Van)
in the second fundamental form at x.

Remark 2.1.2. The second fundamental form (2.1.4) can be written as

n) = [~ (O, = n3) = (v, 0y — 123 (2.15)
— (U, 0y —n3)  —(Vy,ny — 1)
because v, = z,—x5 (i = 1, 2) lies on T}, whereas V;n = Proj[n; —ns] is the orthogonal

projection onto 7T},.

Note here that M; # M, is possible in our case although the classical theory de-
pends on the symmetry of the second fundamental form. But, there exist some graphs

with symmetric second fundamental form.

Remark2.1.3. If the graph X is just K4 or in other words, the discrete surface & : X —

IR3 is just tetrahedron then the second fundamental form is symmetric.

Proof. Given X = Ky with vertices V' = {pi,ps, ps3,ps} and let p = ®(p,) € R* be
the vertices in R?, a = 1, 2, 3,4. W.L.0O.G., by renumbering, we set that the right hand
rule on A = A(p,,p,.p,) is same direction as the vector from A to p, .(see Fig. 2.2)
First, we focus on py, the set E,, = {e; = {p1,p2},e2 = {p1.ps},es = {p1,pa}} of
edges with origin p; consists of three oriented edges. Then, the unit normal vector on
p1 1s defined as

(e —e5) X (e — €&3) (p2—p4)><(p3—p4)

n(p) := (€1 — e3) X (en — €3)] N |(132 _54) X @3 _54”7

Thus, n(p;) is orthogonal to p, —p, and p, — p, . Similarly for all unit normal vectors
n(p,) := n, on every points.

Let (4,7, k,0) = (1,2,3,4),(2,3,1,4),(3,4,1,2) or (4,1, 3,2). Then, easy to see that
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Figure 2.2: A tetrahedron with normal.

the right hand rule on A = A(]_)j, p,.p,) is same direction as the vector from A to p..

By above argument, if we focus on p;, we have
n; L (p, —p,).
But we back to p;, from the definition,

—Mi(pi) =< vy, Vin >=<p, —p,n; —n; >

=<p, —P,—1y>.
Similarly,

—My(pi) =<y, Von >=<p, —p,n, —n >

10
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Thus, we have

My(pi) = Mi(pi) =<p, —p, - > = <p —p, -1y >

=0.

This shows that second fundamental form is symmetric at p; for all 7, as desired. [

The rest of the discussion of the symmetry of a discrete surface is in Chapter 3. We

now focus on the definition of discrete curvatures.

Definition 2.1.4. For a discrete surface ® : X = (V, E) — R3, the mean curvature

H (z) and the Gauss curvature K (x) at x € V are defined, respectively, as

H@p:%ﬁ; (2.1.6)

K(z) :=detS,, (2.1.7)
where S, : T, — T,, the Weingarten-type map, is defined as S, = —Vn(x).
A discrete surface is said to be minimal if its mean curvature vanishes at every vertex.
The following result comes from definition of S,.

Proposition 2.1.5. The mean curvature H(x) and the Gauss curvature K(x) have,

respectively, the following representations:

H(z) = %tr(l(x)lll(x)) _ EN+GL— F(M: + My)

AEG — F?) (2.1.8)
K (z) = det(I(z) " I(z)) = %

Proof. Let 8; = v, fori = 1,2. Then from (2.1.3),

GL—FMlB +EM1—FL
EG—-F2 """ EG - F?

SCE(/Bl) = _vylﬂ(x) - 627

11
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GM, — FN EN — FM.
Su(Be) = ~Vuyn(a) = —o 2 B+ T

627

Then, the representation of .S, relative to this base is

S.], = 1 GL—-FM, GM,—FN
T EG-F2\EM, — FL EN—FM,
1 G —-F\[L M
A 2] =1(z) ().
EG-F*\_r E)J\M N
And then we get the result. [

The third fundamental form 11(x) at x € V' is now defined as

(z) = ( ) _ (<Vlﬂ(w),V1ﬂ(w)> <Vlﬂ(x),Vzﬂ<w)>). 2.1.9)
Co1 €22 (Van(z), Vin(z)) (Van(z), Von(z))

Proposition 2.1.6. With the definition, we have

K(2)I(z) — 2H (z)1(z) + 1II(x) M, = My (EMl S AL BN FM2> .

EG-F2\FM,—GL FN —GM,
(2.1.10)

In particular, the second fundamental form 11(x) is symmetric if and only if

K(z)I(z) — 2H (x)II(x) + I(x) = 0.

Proof. A straightforward computation using (2.1.3) gives

EM?2 — 2FLM; + GL?

C11 = EG — F? )
EMyN — FLN — FMMs + GLM,
C12 = C21 = EG — 2 )
EN? —2FM,N + GM?
2 = EG — F?

These equalities combined with (2.1.2), (2.1.4) and (2.1.8) yield the required equality.
O]

12
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On the other hand, we can obtain the following.

Proposition 2.1.7. The Gauss curvature K (z) satisfies
Vin(z) x Vaon(z) = K(z)(v; X vy). (2.1.11)

Thus, in particular, the absolute value of the Gauss curvature K (x) is given by

_ [Vin(z) x V2E($)|_

v X vy

K ()]

Proof. The proof again follows from a direct computation using (2.1.3) as follows:

FM,—~GL  FL-— EM,
I R repy
FN—GM,  FM,—EN

Vin(z) x Van(z) = (

e ut pe e v
V1 XU
= m{(mw1 — GL)(FM, — EN)

— (FL— EM;)(FN — GM,)}

V1 X Uy

— (BG_ FoF {(FM,FMy+ GLEN)
— (FLFN + EM,GM,)}
LN — M, M,)(EG — F?
B e R
LN — MM,
TRz (LX)
=K(z)(v; X vy),
as required. [

Remark 2.1.8. In fact, H(x) and K (z) defined above can be also written by the area-
weighted average of the three curvatures around the vertex x.

To this end, we prepare several notations. Let z € V be a vertex, E, = {ej, €2, €3}

13
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and (o, 8) = (1,2),(2,3) or (3,1). If we choose the triangle A5 = A(zy, 2, 25) as

Ly = Proj[®(z)],  z, = ®(i(ea)) and z5 = D(t(eg)),

—Q

(see Fig. 2.1) then the first, second and third fundamental form of Az, are defined as

L) (Ve ®, Ve, @) (V@ V., P)
ap\T) = >
’ (Ve,®,V,.0) (V,,0,V,,0)

II ( ) - <v€aq)7 vﬁaﬂ> - <v€aq)7 ve[gﬂ>
ap\l) = s
8 —(Ve,®,Ven) —(V,®,Ve,n)
III ( ) <V6aﬂ7 Veaﬂ> <V€aﬂi veﬁﬂ>
ap\T) = ,
’ (Veun, Vean) (Veyn, Ve,n)

respectively, where for e € E,, and the derivatives are defined as

Ve® = Proj[®(e)] = ¢ — (¢, n(x)) n(z), Ven := Proj[n(i(e)) — n(o(e))],

so that V.®, V.n € T,. Under this settings, we can define the mean curvature H,z(x)
and the Gauss curvature K,z(z) for A, similarly as we defined H (z) and K (x) for

the triangle A(z) = A(zy, 24, 23),

1
Hag = §tr Saﬁ,

Kag = det Sa[j,
where S, : T,, — T, the Weingarten-type map, is defined as

Saﬁ(v&yq)) = _veaﬂa

Sag(VeB@ = -V n.

€p

14
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Then

H(z) = sign,,(x) A Hop(x), (2.1.12)
a,B

K(z)=Y signaﬁ(x)A:{[gg)U VK oo(), (2.1.13)
a,B

where the summations are taken over any («, 5) € {(1,2), (2,3), (3,1)}, also, A(x) is

half of the denominator of (2.1.1):
1
Az) = §|(§1 —e3) X (e — &3)| = §|§1 Xeytey XeztezXe

is the area of the triangle A(z) = A(zy, 2y, 23), and Ayp(x):

1 1 1
Anp() 1= §|Vea¢xveﬁ¢l = §I(£a—£o)><(£g—£o)l = §|£a><zg+£ﬂ X ZTo+ToX T,

is the area of the triangle A5 = A(zy,z,,,25). And sign, () is the difference of

orientations between A(x) and A,z5(z):

1, if A (z) and A,p (x) are same direction of orientation.

signaﬁ(x) = {

—1, if A (z)and A.p (x) are opposite direction of orientation.

2.2 Harmonic and minimal surface

Definition 2.2.1. Let X = (V, £/, m) be a weighted graph with weightm : £ — (0, c0)
satisfying m(e) = m(€). A discrete surface ® : X = (V, E,m) — R? is said to be
harmonic with weight m if it is a harmonic realization with weight m, that is, if it
satisfies

m(ez1)P(er1) +mlez2)P(era) +mle3)P(er3) =0 (2.2.1)
for every vertex x € V, where E, = {€,1, €2, €:3}.

Exact representation of H and K in the case of discrete harmonic surfaces is given

15
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as follows.

Proposition 2.2.2. Let X = (V, E,m) be a weighted graph with weight m : E —
(0, 00) satisfying m(e) = m(e), and ® : X = (V, E,m) — R? be a 3-valent discrete
harmonic surface, x € V be fixed and E, = {e,eq,e3}. Then the mean curvature

H(z) and the Gauss curvature K (x) are, respectively, written as

miy + ma +mg (€as5)({€arng) + (4, €5))
_ Z B B B

H(r) = = ok o , (2.2.2)

(a,8,7)

K(x) =

_ml + mo _|_ ms Z <§a7ﬂﬁ><gﬁﬁﬂa> (2 2 3)

2
4A(x) G My
where m; = m(e;), A(x) = |eg X €5+ €y X €5+ ¢e5 X €1|/2, ¢, = V., & = O(e;) €

T, is a tangent vector at ®(x), n, = n(t(e;)) is the oriented unit normal vector at

each adjacent vertex of ®(x), for i = 1,2, 3, and the summations are taken over any
(a7 /67 7) - {(17 27 3)7 (27 37 ]')7 (37 17 2)}'
Proof. We derive H(x) and K (x) by using (2.1.12) and (2.1.13). We first make the

following observations which are easily proved from (2.2.1):

(i) Every ®(e;) lies on the tangent plane 7, at ®(z), so thate, = V., & = ®(¢;) € T,

fori =1,2,3.

(i) mz'(e; % €y) = mi'(ey X €3) = m5'(e5 X ;) and is parallel to n(x). This,
means that the normal vector of any point in the surface is perpendicular to those

edges joining the point.

Let (o, B) = (1,2), (2,3) or (3,1) be fixed. The first fundamental form 1,5 and the
second fundamental form Il of the triangle A,z = A(®(2),t(e,),t(es)) (see Re-

mark 2.1.8) are, respectively, written as

I _ <<§a7§a> <§a7§8>) I _ < 0 - <§aaﬂﬁ>>
af ) af
(€5 €a) (€8:€5) — (5. 1) 0
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because (e, n,) = 0 = (eg,n4) by (ii). Then we have

=) =

_ {ar2s) (ear5) + (€5, 1) 2.2.4)

2(/eql2lesl? = (eares)’)
leal?les]? — (eares)

Ao

afB

Here we note that

4A(z)*m2

(my + ma +m3)?’

2
leal*les]? — (enre5)” = detlag = e, X €5]° =

where v # «, 5. The desired expressions are now immediately obtained from

det Iag (.73)

1
2] Hows = VBN (€ar€5) ({€arnp) + (€5, 1))
4+ my (€ar€5) (0 125) + (€5 1)
8A(x)? My
detI5() i ma + my — (€ar ) (€5, )
2A(x) o 4A(x)? My

]

A discrete harmonic surface needs not be minimal in the sense of Definition 2.1.4,
but we can provide a sufficient condition for a harmonic surface to be minimal, which

is corresponding to the conformality of graphs.

Theorem 2.2.3. Let X = (V,E,m) be a weighted graph with m : E — (0, 00)
satisfying m(e) = m(€). A 3-valent harmonic discrete surface ® : X = (V, E,m) —

R3 is minimal if

(®(e1), P(e2)) = (P(e2), P(e3)) = (P(e3), P(er)) (2.2.6)

holds at every x € V, where E, = {ey,es,e3}. Moreover, if m : E — (0,00) is
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constant, then the condition (2.2.6) is equivalent to
|@(e1)] = [P(e2)] = |P(es)| (22.7)

Proof. We use the same notation as in Proposition 2.2.2. We then sort (2.2.2) by terms

involving the common n,, to compute

my + ma + ms 3 (Car 5) ((€nr 11g) + (Ng, €5))

Hz) = 8A(x)? My

(a,8,7)

Z MaMg(€y: eﬂ>(<€a’ ”B> + <ﬂaaﬁﬂ>)
(.B8,7)

. myi + Mo + M3
814( )2m1m2m3

mi + Mo + M3

= 8A Z {maomg(e,, e ><€57Qa> + m’yma<ew ea><n7’ €}

2m1m2m3

mq + mo + ms
- « o) & 13 "‘ €4
8SA(x)2mimams (O;/)m ((eq, €5)mpes + (e e, >m7n7 ),

which equals zero provided (2.2.6); (¢;, €5) = (e, €3) = (€3, €;) holds because mge;+
mye., = —Mgg, 1s perpendicular to n,.
Moreover, if the weight m : E — (0,00) is constant, then the equation (2.2.1)

becomes e; + e, + e5 = 0, which gives
‘ea‘ _<§o¢7gﬁ> - <§77§o¢>

lesl” = —(en-5) — (€, €5)

after taking the inner product with e, and e;. This shows |e,| = [e;] if and only if

<§v7§a> <—7766> =
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Chapter 3

Discrere surface structure on a sphere

In this chapter, we mainly compute the defined discrete curvature of 3-valent graphs
on a sphere. We find a criterion for discrete curvatures that corresponds well in the cases
above: when normal vectors of the 3-valent graph equal those of the surface at each

vertex, the discrete curvature corresponds to the curvature of the continuous surface.

3.1 Plane graphs

A 3-valent discrete surface @ : X = (V, E) — R? is said to be a plane if its image
®(X) lies on a plane in R3. Since the second fundamental form of a plane vanishes
identically, independently of the choice of its side at each point, so do both its mean
curvature and Gauss curvature. Since its third fundamental form again vanishes, the

second variation of the area functional also vanishes.

3.2 Sphere-shaped graphs

Proposition 3.2.1. Let X = (V. E) be a finite graph, S*(r) C R3 be the round sphere
with radius v > 0 and with center at the origin, and ® : X = (V,E) — S*(r) be a

3-valent discrete surface with the property that

O(z) = rn(x) (3.2.1)
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for every vertex x € V, where n(x) is the oriented unit normal vector at x € V. Then

the mean curvature H and the Gauss curvature K of ® are given, respectively, as
H(z)=—-, K(x) == (3.2.2)
r

regardless of x € V.

Proposition 3.2.1 is obtained by direct calculations using (3.2.1). And we have

some necessary and sufficient condition for (3.2.1).

Proposition 3.2.2. Let X = (V, E) be a finite graph, S*(r) C R? be the round sphere
with radius v > 0 and with center at the origin, and ® : X = (V, E) — S*(r) be a
3-valent discrete surface. Let vg € V, B, = {e1, e, €3} and x; = t(e;) (i = 1,2,3),

then ® (o) = rn(zo) if and only if
le1| = lea| = les]- (3.2.3)

Moreover, we have ®(x) = rn(z) for all x € V ifand only if all of edges in ®(X) have

equal length, i.e. it is equilateral.

This proposition is just obtained from ¢ has range in sphere and the definition of

normal n.

Corollary 3.2.3. (1) a regular hexahedron, (2) a regular dodecahedron and (3) a reg-
ular truncated icosahedron (fullerene Cy) are all 3-valent discrete surfaces with con-
stant curvatures:

H(r)= -, K(r) =

r2

where r > 0 is the radius of the round sphere on which these surfaces lie.

Proof. 1t is easily from Proposition 3.2.1 and Proposition 3.2.2 because all of them are

equilateral. O
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But, how about the surface on sphere with unequal length edges? Here we give
some examples. Note that we use spherical coordinate system (r, 0, ¢) with0 < 0 < 27
and 0 < ¢ < 7. Then, we will defined two types of graph on the sphere at below. Note

that » will be fixed and we only need to consider the graph as (#, ¢)” on R? and map it

o 7 sin ¢ cos 6
Pr - (gb) = | rsin¢gsind

r COS ¢

to R? with p,., where

In the following, we will calculate the mean curvature and the Gauss curvature of a
spherical brick graph Sph, (r, h, v). The brick graph Br(h, v) which has two direction,
k = 1 means the bricks stacked vertically, and £ = 2 means them stacked horizontally.

And the spherical brick graph Sph, (h, v) is the image of Br, (%, v) under p.

Figure 3.1: The spherical brick graph and the normal on it. The left hand side is type k = 1 (or type
x) and the right hand side is type £ = 2 (or type y).

First, for the type k = 1, when given h and v, we divide [0, 27) in to 2h parts, give

2h + 1 equal points, z; = % fori = 0,...,2h, and every part of length x;; — z; = 7.
L

And divide [0, 7] in to v+1 parts, give v+2 equal points, y; = % forj=0,1,...,0+

and every part of length y;.1 — y; = ;35.

Secondly, we connect the points. In this process, we ignore line y = y, and line

Yy = Yp+1 since them all map to the two poles on the sphere. And, we connect all

vertical line, that is all (z;,y;)” to (z;,y;41)" withi =0,...,2h, j =1,...,v — 1. For
the horizontal line, we connect the whole first and final line, (z;, y1)7 to (241, y1)?
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and (z;,y,)T to (w41, ,)7 withi = 0,...,2h — 1. And now, since we want to make
a brick, we might not connect all the horizontal line, but skip one between every two
of them. More precisely, we connect (z;, ;)7 to (z;41,y;)” when i, j are both even or

both odd for: =0,....,.2h—1, 7 =2,...,v — 1.
When given h, v we set

o= (). e (1)

and then the set of vertices V' (Br; (h,v)) and the set of edges E(Br;(h, v)) of the brick

=13

graph of type one can be represented as

V(Bry(h,v)) = {§ = a4y + Q2a, | ap € {0,...,2h}, as € {1, ...,v}},

ap = P10 — o = £1

E(Bri(h,v)) = < (a1ay + a2ay, fra, + Poa
( 1( )) {(11 2T P 22) a2252:10rv,a1—51::|:1

ay = Py =2,...,v—1with
a1 — 1 = —1, if ay, o has same parity or

a1 — 1 = +1, if aq, as has different parity

Definition 3.2.4. For any pair of integers (h,v) € Z x Z satisfying h > 0 and v > 2
and r > 0, a spherical brick of type one (sometimes we call #fype x) Sph, (r, h,v) is
a 3-valent discrete surface ®1,.5,, : Bri(h,v) = (V(h,v), E(h,v)) — S(r) C R?
defined by p,, which is defined as above. See Fig. 3.1 for an example. More precisely,

Sph, (r, h,v) is the embedded graph in R* with

V(Sphy (7, h,v)) = @1, 4,(V(h,v))

E(Sphy(r; h,v)) = {(Prno(2), Prone(y)) | (2,y) € E(h,v)}.

Next, for the type £ = 2, when given h and v, we again divide [0, 27) in to 2h
parts, divide [0, 7] in to v + 1 parts, get the equal points, z; = % fori =0,...,2h, and

yj = % for 7 = 0,1,...,v + 1. However, now, we are not going to use these y;s, but
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to use y; = W(JTJ?) forj=0,1,...,v.

And, we connect the points. In the type two, we connect all horizontal line, that is
all (25, 9)" to (zi41,9;)" withi = 0,...,2h—1, j = 0, ..., v. For the vertical line, since
we again skip one between every two of them. More precisely, we connect (z;, y;)T to

(:Ei,y§~+1)T when 7, j are both even or both odd fori =0, ...,2h, 7 =0,...,v — 1.
When given h, v we set

we (i) - (2)

and then the set of vertices V' (Bry(h, v)) and the set of edges E(Bry(h, v)) of the brick

=13

graph of type two can be represented as

V(Bry(h,v)) = {§ = 10, + Q2a,

1
a; € {0,...,2h}, a2 € {0, ..., v} + 5} ,

E(Bray(h,v)) = {(c1a; + a2a,, f1a; + [oay) | g = [o, 00 — 1 = %1
] = 51 = O, ceey 2h — 1 with

g — By = —1, ifag, g — % has same parity or

oy — o = +1, if oy, ap — 5 has different parity

Definition 3.2.5. For any pair of integers (h,v) € Z x Z satisfying h > 0 and v > 2
and r > 0, a spherical brick of type two (sometimes we call fype y) Sph,(r, h,v) is
a 3-valent discrete surface @5, : Bra(h,v) = (V(h,v), E(h,v)) — S(r) C R?
defined by p,, which is defined as above. See Fig. 3.1 for an example. More precisely,
Sphy(r, h, v) is the embedded graph in R? with

V(Sphy(r, h,v)) = @o o (V (R, v))

E(Sphy(r, h, v)) = {(Prnv(2), Porno(y)) | (z,y) € E(h,v)},

Now we come to the calculation of the discrete curvatures of Sphy(r, h, v). In the

following, we fix r € Rt h € Z* and v > 2.
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Proposition 3.2.6. Note that for type one, we pick (ay,an) € {0,...,2h} x {1,...,v}
(:= Q) and for type two, we pick (a1, o) € {0, ..., 2h} x ({0, ..., v} + 3) (= Q). 4

vertex x(ay, ) = g po(Cra; + asay) of Sphy(r, h,v) is represented as

sin Cyavg cos Cay

z(ag,az) =7 | sinChassinChag |, (3.2.4)
cos Coary
where
e T
= - . 3.2.5
(C1.C) (MH) (3.25)

Although the vertices in these two types are different, we still can classify any
vertex x(ay, a) of Sphy(r, h, v) in the following eight cases: The first four cases are

of type one, Sph, (r, h, v), we have

1. north polar circle case: z, = (a1, 1) and

zy=x(n,2), zp:=z(n+1,1), z3:=x( —1,1)

2. F-case: zy = z(oy, an) with 1 < as < v and

=zl + 1), 2y :=x(an, 00— 1), z5:=z(ar, a2+ 1)
3. —-case: zy = z(ay, az) with 1 < ap < v and
zy=xz(n — 1a), zy=z(a, 0 +1), z5:=z(a, a2 —1)

4. south polar circle: z, = z(ay,v) and

z =z(a,v—1), 25:=2(a1 —Lv), z5:=2z(0q+1v)
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The last four cases are of type two, Sph,(r, h,v), we have

5. north polar circle: z, = z(a, ) and

1 1
) :Zz(a1,1+§), Ty :Zg(a1+2,§), Ty :=£(Oz1—2,§)

6. L-case: x, = z(a, a0) with 1 < ay < v and

(o1 + 1, )

I
(=

z =z, 0 — 1), 2y :=z(n — 1,az), x3:

7. T-case: x, = z(ay, o) with 1 < ay < v and

z=x(, 0+ 1), 2y =x(an +1,00), z5:=z(0n — 1,0)

8. south polar circle: z, = z(ay, v + %) and

1 1
2y =2(a,v=-5) =zl —20+g), 25= (e + 20+ )

Observe and find out that except for case 2 and 3, every case else seem like | -case or

T-case.

And then, a normal vector of Sph, (r, h, v) is computed as follows.

Proposition 3.2.7. On Sph,(r, h,v), for any (a1, as) € S, the outer unit normal
vector ny = n(aq, an) at xy = x(aq, ay) is based on different classes, and defined as
ng = my/|my| where my = x, X x5+ x5 X x5+ x5 X x,. We have the following

On Sph, (1, h,v), the normal vector

1. north polar circle case: x, = z(ay,1) and

—(cos 2Cy — cos Cy) * (cos Chav )
my = 2r*sin CysinCy | —(cos 20, — cos Cy) * (sin Cary)

sin 2C5 — sin C5 cos Cy
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2. F-case: xy = z(aq,an) with 1 < ag < v and

my = 2r?sin Cy

+ Sin2 CQO[Q sin Cl (@1 + 1) + COS2 CQOfQ sin 01061 — COS 02 sin ClOél
— sin% Cyap cos Ci(ay + 1) — cos? Cyas cos Craq + cos Cy cos Chay

sin Cyae cos Cyarg sin C

3. d-case: xy = x(0o, an) with 1 < ay < v and

mg = 2r*sin Cy

— sin% Cyarp sin Ci(ay — 1) — cos? Chag sin Chay + cos Cy sin Cray
+sin® Cyary cos C (o — 1) 4 cos? Cyary cos Chay — cos Cy cos Chay

sin Cyavg cos Cyarg sin C

4. south polar circle: z, = x(ay,v) and

(cos Cy(v — 1) — cos Cav) * (cos Cray)
mg = 2r*sin Covsin Cy | (cos Cy(v — 1) — cos Cyv) * (sin Cyoy )

—sinCy(v — 1) + sin Cyv cos Cy

On Sphy(r, h,v), the normal vector

5. north polar circle: y = z(o, 1) and

X —(cos Cy(5 + 1) — cos Ca2) * (cos Chavy)
my = 2r? sin 025 sin2C | —(cos Cy(3 + 1) — cos Co3) * (sin Choy)

sin Cy(3 + 1) — sin Cs3 cos 2Cy
6. L-case: xy = x(ay, ) withl < ap < v and
(cos Ca(ag — 1) — cos Caare) * (cos Cravy)

mg = 2r?sin Coag sinC | (cos Ca(ag — 1) — cos Chary) * (sin Choy)

—sin Cy(ag — 1) + sin Coap cos C
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7. T-case: xy = x(ay, ) with 1 < ay < v and
—(cos Cy(ag + 1) — cos Chrare) * (cos Cray )

my = 2r? sin Cyay sin C) —(cos Cy(ag + 1) — cos Chrarg) * (sin Chayy)

sin CQ(OZQ + 1) — sin 02042 COS Cl

8. south polar circle: x, = x(ay,v + %) and

—_

my = 2r?sin Cy(v + =) sin 20

2
(cos Co(v — 2) — cos Co(v + 1)) * (cos Cray)
(cos Co(v — 3) — cos Co(v + 1)) * (sin Chovy)

—sin Cy(v — %) + sin Cy(v + %) cos 2C4

Remark 3.2.8. Since the unit normal vector needs to be divided by the length, we have
the following more accurate results (right double arrow means divided by a constant):

On Sph, (7, h, v), the normal vector

1. north polar circle case: z, = z(«y, 1) and

sin(2$2) x (cos Cray) 0
my = 2sin(72) sin(32) « (sin Chovy) | + 0
cos(2£2) —sinCy(cos Cy — 1)
sin(3¢2) x (cos Ch v
(320) ( 10) (cosCy — 1)

= | sin(Z52) * (sin Cyon) ——— 0

2sin(32) '
cos(22) —sinCy

2. F-case: 2, = z(a, az) with 1 < ay < vand
sin Czag(cos(_clmglﬂ)))
my = 2sin Chovs sin(;l) sin Cza2(sin(ol(202¢1+1) ))
cos Cha cos( L)
+sin Cra; (1 — cos Cy)
+ | —cos Cray (1 —cos Cy)
0
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sin OQCYQ(COS(M)) +sinChay

. . cl(zjlﬂ) (1 — cos Cs)
= | sin Chap(sin(—5)) 23in(%) sin Cocrg —cos Ciay
cos Cra cos(4L) 0
3. d-case: z, = z(ay, az) with 1 < ay < vand
sin CQOZQ(COS(—Cl(le_l)))
my = 2sin CQCKQ Sln(é) sin OQO[Q(Sin(%))
cos Cha cos(SL)
—sinCyay (1 — cos Cy)
+ | +cosCray (1 — cos Cs)
0
sin CQOCQ(COS(Cl(Zglil) ) —sinCiay
= | sin Chary(sin(L20=0Y) (1~ cos Ct) +cos Cha
2 2 2sin(SL) sin Chan 11
cos Coary cos(%) 0
4. south polar circle: z, = z(ay,v) and
c sin(oz’@;_l)) * (cos Cra) 0
my = 2sin(72) sin(CQ(QS’_l)) * (sinChaq) | + 0
cos(%) + sin Cyv(cos Cy — 1)
sin(c2(22“_1)) % (cos Chay) o
cos Cy —
= sin(%) * (sin Oloq) W
cos(%) ? + sin Cov
On Sphy(r, h, v), the normal vector
5. north polar circle: z, = z(a, ) and
1
c sin(w) * (cos Cha) 0
1
my = 23in(72) sin(@) * (sinChoy) | + 0
COS(_CQ(22%+1)) —sin Cy3(cos 2C) — 1)
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1
sin(02(222+1)) * (cos Chay) et 1
1 cos -
= sin(@) * (sin Ch o) # 0
C2(2241) 2s1n( 2) : 1
cos(—2—) —sinCy5
6. L-case: x, = z(ay, ) with 1 < ay < v and
. sin(%) * (cos Cha)
my = 2 sin({) sin(%) * (sin Cray )
cos(—02(2‘;2_1))
0
+ 0
+ sin Cyan(cos C7 — 1)
sin(C2 (20— 1)) * (cos Cray) o1
cos C —
= Sin(02(2a2 1) ) % (SlHClCY1) + ﬁ
cos(02(2§2 ) + sin Caag
7. T-case: x, = z(ay, o) with 1 < ay < v and
. sin( 222210 & (cos Cra)
my = 2sin(72) sin(02(2+2+1)) * (sin Cray)
COS(CQ(2§2+1))
0
+ 0
—sin Cyap(cos Cy — 1)
sin( <2 2O‘QH)) * (cos Cray) o
cos C —
= | sin(22222t) 4 (sin Cyan) | + feos Gy ~1) 5 smz% )
cos(c2(2+2+l)) —sin Chay

8. south polar circle: z, = z(ay,v + 3) and

1y
. sin(w) * (cos Cray)
1
my = 2sin(72) sin(w) * (sin Ch o)
1
3

2
Co(2(v+ )71))

cos( 5
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0

1
+ sin Cy (v + 5)(cos 2C;—1)10
1
sin( 2220,

1
N sin(w) * (sin Chay)

* (COS Clal)

(cos2C) — 1) sinCo(v + 3)

02(2(1)%)71))

cos( 3

2sin(2)

The remaining calculations we use computer to complete, and we show in the fol-

lowing picture. Fig. 3.2 and Fig. 3.3 show Gauss curvature and mean curvature of

spherical brick graph with (h,v) = (5, 10).

(a) type k=1 (b) type k=2

Figure 3.2: Gauss curvature of spherical brick graph.

(a) type k=1 (b) type k=2

Figure 3.3: Mean curvature of spherical brick graph.
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Chapter 4

Mean curvature flow

The mean curvature flow of a compact, convex surface converges to one point.
How about the mean curvature flow of the discrete surface? Given a family of discrete
surface ® : X = (V,E) x [0,00) — R3, consider the mean curvature flow as the

following forallv € V,

dd(v,t)
dt

= H(v,t)n(v,t).

But, note that the MCF is not trivial for the discrete surface, even if it’s just a triangular

pyramid. So, in the following, we just consider the MCF of some special tetrahedron.

4.1 M.C.F. of regular tetrahedron

First, for the simplest case, we consider the MCF of a regular tetrahedron. Given
a regular tetrahedron, A, = ({p1, pa2, p3, P4}, F), and its coordinate ® : A, — R3, Let

p, = ®(p,). Since translation and rotation doesn’t change the curvature, we can set

0 0 —6 6
p,=r| 0 |, p,=r4V3 ]|, p,=r|-2vV3]|, p,=r|-2V3
36 V6 V6 —V6

We also get the normal vector of p; to be

my = (p, —p,) < (2, = p,)
0—-6 —6—6 —6 —12
=7 | 4V3—(=2V3) | xr | —2vB3—=(=2v3) | =7 | 6v3 | x| 0
V6 — (=V6) —v/6 — (—/6) 0 0
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0
:7’2 0 //B1
72v/3

The unit normal at p; is n, = ﬁ—h //p,- And the others are

0
my = (p, —p,) % (p, —p,) = 7" | 48V6 | //p,,
—244/3
—72v/2
my = (p, —p,) X (p,—p,) =7 | —24V6 | //p,,
—244/3
72v/2
my = (p, —p,) % (p, —p,) =7 [ =24V6 | //p,-

—244/3

So the unit normal ny, ny,n4//p,, p,, p,, respectively. More precisely, the unit

normal vectors are

! 0 1 ~v6 1 Ve
n= 1[0}, =3 V2|, my=o | V2|, m=g V2
1 —1 —1 —1

We have the formula of the first fundamental form and the second fundamental

form of p; (and also ps, p3, ps).

Now the discrete curvatures are

LN — M;M,  4y/6r % 4/6r 1

K p— p— p—
(P) = —fa—p T2 % 7212 B2’
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EN — F(My+ M)+ GL  —4V6r=72r*(4—1—-144) /6

H(p) = _ r
(1) 2(EG — F?) 2% 72r2 % 72r2(4 — 1) 187

It is easy to verify that the curvatures at all points are the same. Note that the normal

vector are a constant multiple of the position, that is

where [ = 3+/6r.

Back to the MCF equation

d®(p,t)
dt

= H(p,t)n(p,t).

Since the mean curvature is independent of points and the unit normal is also indepen-
dent of time, we can rewrite the equation of discrete surface ®(p,t) = C(t)®(p,0)
for some scalar function C'(¢) which is only dependent on time. And then we have the
mean curvature H (p,t) = %H (p,0) = %H (0). We can reduce the MCF equation
to the following

d®(p,t)

P = HOne) > SO0 = ZH0)- 19(.0)
We get
%@ — ?ﬁ = C(t) = [ 2(er + ?t).

Put ¢ = 0 and get the constant ¢; = 3, and then C(f) = /1 — 5=5t. This means
that when ¢ comes to 27r%, we have ®(p,t) — po with py is the center of the regular
tetrahedron A\,.. This case is similar to the MCF of a compact, convex smooth surface.

(see Fig. 4.1)
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Figure 4.1: A mcf on regular tetrahedron.

4.2 M.C.F. of perpendicular skew line tetrahedron

Now, we consider a little more complicated case.

Given a tetrahedron A,y = [p1, P2, p3, pa] With vy L paps, pips L 1@ and
M 1L @ where A, B are the midpoints of pyps, p3pa, respectively. Let O be the mid-

point of AB and W.O.L.G. set O be the origin and AB lies on x-axis, and let p1p3, D3pa

parallel y-axis, z-axis,respectively. Set the length of Ap, (or Aps, Bps, Bp,) is b, and

AO (or BO) is a for some a, b > 0.(see Fig. 4.2)

Pa
P2
—”
- -
-~
A =7
O -
1:]--—_-;1.----- -:..:-Il---—- B
-
-
-
b-- -
-
-
-
-

ey g

Figure 4.2: perpendicular skew line tetrahedron
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Then, the coordinates of the vertices are

b1 = (&, _ba O)ta b2 = (CL, b> O)t

p3 = (—Cl, 07 _b)t> Ps = (—G, 07 b>t
First we focus on p;, we have
vi(p1) = (2a,b,b)",  wva(py) = (0,0, 2b)°
and the first fundamental form is
E F B 4a? + 26> 2b?
F G o2 4p?)
The unit normal vector of each vertices are

1
(b?, —2ab,0)", ny = 7(b2, 2ab, 0)"

ny =

ng =

1
(=b%,0,—2ab)", ny = 7(—b2,0,2ab)t

where | = v/b* + 4a2b? And the second fundamental form is

]

(L M2> 1 <—(2a,b, b) - (26%,2ab, 2ab) —(2a,b,b) - (0,0,4ab)>

M, N
1 (—8ab® —4ab?
I\ —4ab® —8ab?)
Then, the curvatures are

Ko — —L 8a2b' 1247
PU= 0 4020 160202 + 40°  (da® + 12)2

H(p) =+

—(0,0,2b) - (202, 2ab, 2ab) —(0,0,2b) - (0,0, 4ab)

1 (4a® + 2b*)(—8ab?) + (4b*)(—8ab?) — (2b*)(—4ab?) — (2b*)(—4ab?)

I 32a2h? + 8b*
_ 1-32a%h* — 16ab® — 32ab* + 16ab’
] 32a2b? + 8b4
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_ 1—-4a® —4ab® 1 —4a(a® +b?)
L e+ L da? 4B

Consider the mean curvature flow which is a realization ® : X x [0,00) — R?

which various along time ¢ and satisfy the following:

DD (w,t) = H(w;, t) % i, 1),

AL

(%‘;0) = Pi-

where z; € V is vertices of X, H(x;,t) is mean curvature of ®(xz;,t) and 7i(z;, t) is
unit normal vector of & (z;, t).

In this case, we have that A, is constant mean curvature. And notice that the
direction of the unit normal vector is related to that of the coordinate of the point, so we
have that in any time ¢, ® is of form that is similar to A,y. That is ® is just determined
from a, b and a, b are just one valued function of ¢. In this case, we can only focus on

point p; and rewrite the equations :
4 (a, —b,0) = 12 4 112, —2ab,0),
(a(0>7 —b(O), 0) = (a(], —b(], 0)

where ag, by > 0 are some fixed constants. But, note that

d 1 —4a(a®+b*) 1
—(a(t), —b(t = L (b, —2ab
dt<a( )7 ( )70) l 4a2+b2 * l( Y a 70)
_ 2, 32
B (e 0 T E P A

T 2(da? 1 b2)2
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and then we have O.D.E.

—4a(a+b%)(b
a,(t> = b(4(a2——i-i_b2))2(_)
(4.2.1)
—4a(a?+b2)(2a
V() = _b(ELa2—:-b2))(2 :
We can rewrite (4.2.1) and get
402 (a2 42
ad'(t) = Tt

_8a2(a24b2
b (1) = ity

This means that
d d

_b2 — 2_ 2
dt at”

and this means > — 2a? is a constant.

V() — 2a°*(t) = by — 2ag == C

or
PO e
- =
C 5C
Let A(t) = a?(t) and B(t) = b*(t). Then we have
—8a?(a?4b? —8A(A+B
A'(t) = 2ad'(t) = (4a2(+b;_)2) = (4A(+§L)2)
_ _ —16a%(a®+b?) _ —16A(A+B)
B'(t) = 20'(t) = —Garpyp— = aainy
and

B(t) = C + 2A(t)

Vo 8@ +1?) _ —8A(A+ B)
A'(t) = 2ad (t) = (a2 +12)2 (44 + B)?
_ 84(C+34)

(C + 6A)?
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This is only one equation, we can solve it:

(C + 64)? %
8t =~ A= (124 ——)dA
Sdt = Jo e = 2+ s ag)
C -3C
= —8dt = (124  + 5o )dA
=k — 8t =12A+ C'log(A) — C'log(C + 3A)

A€ exp(12A)

Now, we have three case,

« C = Othatis b3 = 2a2, or we can say this tetrahedron is regular, then the equation

reduced to
(1) = —8A(0+ 34) _ —_2
(0+6A)2 3

So,

—2 —4 —4
Alt) = —t+ad B(t) = <t 202 = <t be,

—2 [—4

When t = %, the MCF goes to one point and stop.

« If C' < 0, this means b3 < 2a3 or By < 2A,. Note that B’ = 24/, so we have

that B goes to 0 earlier than A. It goes to a segment. (see Fig. 4.3)

« If C' > 0, this means b3 > 2a3 or By > 2A,. Note that B’ = 24/, so we have

that A goes to 0 earlier than B. It goes to a square. (see Fig. 4.4)

From these analysis, we know that the MCF doesn’t converge to a point if C' # 0.
Since C' # 0, we have the right hand side of equation (4.2.2) goes to negative infinity
when A goes to 0. This means that it takes infinity time for the MCF to collapse to

either a square or a line segment.
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Figure 4.3: A mcfon perpendicular skew line tetrahedron with b2 < 2a? and then end likes a segment.

Figure 4.4: A mcf on perpendicular skew line tetrahedron with b2 > 2a? and then end likes a square.

Remark 4.2.1. How about if there is a little change of the shape? Notice in the perpen-
dicular skew line tetrahedron, we require szQ) € 1?;94. Here we give a small change,
the angle between z_ol—p_g and ﬁg—jﬁ are a little less then 7, and we see how the mean cur-
vature flow goes in computer. (see Fig. 4.5) We will see that angle goes smaller then

the initial and it will replace the original and become a new type.
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Figure 4.5: A mcf on skew line tetrahedron with angle between p;p3 and pop; less then 7 /2.
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Chapter 5

Convergence of discrete curvatures

We first recall the convergence result from the paper [3]. Then we discuss the
convergence of discrete curvatures using the discrete approximation of the sphere con-

structed in Section 3.2.

5.1 Convergence theorem

The following is the general convergence result from [3].

Proposition 5.1.1. Let {®;, : X}, = (Vi, Ex) — R3}2, be a sequence of 3-valent

discrete surfaces with the following properties.

(i) The sequence of sets of points { Py (V) }22, converges to a smooth surface M in

R3 in the Hausdorff topology.

(ii) For any p € M, the unit normal vector n,(zy) of @y at x;, € Vj. converges
to the unit normal n(p) of M at p, independently of the choice of {xy}3>, with

O (zr) = pas k — oo.

(iii) The Weingarten map Sy, : T,, — T, of ®j converges to the Weigarten map
S : T,M — T,M of M in the following sense: for {x;}3>, with ®(x)) — p as

k — oo and for {v, € T, }2, converging to some v € T,M, it follows
Se(u) = S(v)

inR3 as k — .
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Then both the mean curvature Hy(xy) and the Gauss curvature Ky () of ®y. respec-
tively converge to the mean curvature H(p) and the Gauss curvature K (p) of M for

{zg }32, with y(xy) — pas k — oc.

Proof. Let p € M be a point and {x;}72, be a sequence of points z; € V}, such that
®,, () converges to p in R?. For any tangent vector v € T'pM, as is easily seen using
(ii), it follows that the sequence {v,, } 32 ;, where v, is the orthogonal projection of v onto
Ty, , converges to v. If we take a pair of linearly independent vectors {v, w} C T,M
so that v x w has the same direction as n(p), then, the vectors {v,,w,} C T, which
are respectively obtained from {v, w} C T),M as in the above manner are also linearly
independent as well as v, x w, has the same direction as n (z},) for sufficiently large

k € N. Then, by (iii),

<<yk72k> <Qk7ﬂk>)l<<2k75k(ﬂk)> <Qka5k(wk)>>

(W, vg) (W, wy) (wy, Sk(vg))  (wy, Sk(wy))

whose trace is equal to Hy(xy)(resp. determinant is equal to Kj(xzy)), converges, as

k — oo, to
(m @,@)1(@75@» (Q,S(w»)
wv) (ww)) \(wS@) (wSw))’
whose trace is equal to H (p)(resp. determinant is equal to K (p)). O

The following examples show that the condition of the preceding proposition is

optimal in the most general settings.

Example 5.1.2. Let X, be the regular hexagonal lattice in the plane with the exception
at a vertex, say, (0, 0), which is located at (0, 0, hy), where hy > 0. If the distance of

adjacent vertices becomes small with order 1/k, then

(1) X does not converge to the plane in the Hausdorff sense unless h; converges to

0as k — oo.
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(i1) The normal vector does not converge provided kh;, is bounded away from 0O as

k — o0.

(iii) The Weingarten map does not converge provided k%A, is bounded away from 0

as k — oo.

5.2 Convergence of sphere

In Section 3.2, we define discrete surfaces on sphere, Sph, (7, h, v). Here, we fixed
r = 1, that is we just focus on unit sphere. Given some (A, v), and focus on both types
of graphs, £ = 1 and 2, and compute their curvatures. Moreover, when we put (h, k)
to infinity, we will get a finer subdivision and a series of curvatures. Since we usually
guess that the discrete curvatures (including Gaussian and mean) approach the smooth
one, is it true in our case?

Given a strictly monotone increasing sequence { (2™, v(")}>° and let X be the
spherical brick graph Sph, (1, b, v() with fixed k. By the definition of spherical brick
graph (see Definition 3.2.4 and Definition 3.2.5), it is easy to see that the subdivision
of spherical graph converges to unit sphere in the Hausdorff topology as 7 raises. More

precisely, given any point p € S?, we take the spherical coordinate of p,

sin ¢ cos
p=p(0,0)" = | singsinp
cos ¢

For any pair (h®,0®), let C; = C1 = 7 and Cy = c Then for (0, ¢)7,

_ ™
EONS
we have the following two cases: If p is not a pole, then we have ¢ # 0 or 7. Hence,

When i is large enough, p will fall on at least one brick, and then take 2(*) = ( §“, ozéi))
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be any one vertex on this brick. Then the coordinate of z(*) be

sin(Cgag)) cos(Clozgi))
D100 (1) = p(a) = 2(a)?, 0") = | sin(C2al) sin(Caf”)
cos(Cgaéi))

Because any brick in graph X ) has length and width (C}, 2C5) (for k = 1) or (2C}, C)
(for k = 2). We know that the difference between (6, ¢) and (ozgi), a(;)) is at most
(201, 2C,). After the realization map p, the distance between p and ®(2(")) is at most
2,/C% + C% and converges to 0 as 7 increases. And, the other case, p is actually a pole,
then we have ¢ = 0 (or 7, resp.). We will take aﬁ“ to be any one in {0, ..., 2h®) — 1},
and o’ = 1 (or v, resp.) in type k = 1 and o) = L (or v® + 1 resp.) in type
k = 2. Then, the distance between p and ®(x(?) is at most C; and converges to 0 as
increases.

The above paragraph shows that the convergence of the distance between z(?) and
p is independent of position of p, means that { X )1 actually converges to the sphere
S? in Hausdorff topology. Hence, these subdivision holds the condition () in Proposi-
tion 5.1.1.

For the condition (i), recall Remark 3.2.8, we discuss the convergence of normal

vector case by case.

1. For the north and south polar circle case in type £ = 1 and for the | and T
case in type k = 2, we have the normal vector n() = n(a\”, al) of 2 has the

following form

) )
sin(%) % (cos Cral)

() )
sin( 22222 FUy o (sin ¢y al?)

2
C2(208)F1) )
2

(cosCy — 1) 0
2sin(22)

sin Cy ag)

cos(

2. For the north and south polar circle case in type k = 2, we have the normal vector
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n® = n(al? al?) of ) has the following form

) )
sin(%) % (cos Crat)

() . cos2C; — 1
Sin(w) * (sin Clagz)) (QS,m—(l@)) 0
COS(OQ(mQé’)qu)) 2 sin Cgagi)

3. Forthe - and - case in type k = 1, we have the normal vector n(!) = @(a?’, aéi))

of () has the following form

. () .
(sin Caad?) (cos(w)) +sin Cyal’
: (i) s C1 (2000 41) (1 —cosCy) cos Cral?
(sin Cho!)sin( 240 | 4+~ | 5 cos Caal
0 . sin(5t)(sin Cyary”)
(cos Caay”) cos(FH) 0

For any choice of {1}, with ®(z(?) — pasi — oo, we have, C;,Cy — 0 and

(C1al?, Coal!) = (0, ¢) as i — oo. Note that hC, = (v + 1)Cy = 7 are fixed.
sin(¢) cos(

0)
So, the first term in any case of the choice will converge to | sin(¢)sin(#) [, which

cos(9)

is the normal vector of p. And for the second term (we call it the error term), consider

the coefficient of it, we can see the following Taylor expansions (take C; = tC}),

(cosCy —1) —t? t2(2t% — 1)

— 3 4
cos2C; —1 t2(8t? — 1
( QSin(lc—2) =2 12 g +o(cy)
2
(1 —cosCy) 1 =2 . sy 1
— = (02 + Cy +0(C3)) ——.
2sin($!)(sin Coal?) <2t 2T g8t 2 ( 2))sm(y)

These means if we fixed the ratio C, /Cy, which is equal to (v +1) /h(?, then we have
the error term converges to 0.
Finally comes to the condition (i77), for {z(" 12, with ®(z®) — pasi — oo and

for {w® € T, }22, converging to some w € T,S?, we want to show the Weingarten
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map SO : T, ) — T, of ® satisfies
SO (w"™) = S(w)
inR? as i — oo, where S : T,S* — T,S? of S? is the Weigarten map.

Note that from the definition of the Weigarten map S (@) we have to write w® as

the combination of {g,(f) — gl(f) Lt — gl(f) }, which z, z;(,i) .2t are the neighbor of 2@,

like the following
o) — ) + BO — 1)),
Then, we have

§Ow?) = ~(AV ) — ) + BO (0 — ;).

Without loss of generality, we can just think about one direction and @(f) — gl(f) then

- ] 3 (ﬂa n
20— Ez(f) b
|w(l)| . ;
- = () () ﬂ((z) - Ql()))
|l’a Ly, |
(4) (4)
=—| (z)| Na™ — 1y
T
_ (i) Inﬁf’ - ﬂz(f)| | (z)| |ﬂg> _ ﬂz(m o0
2 — 2| 2 — 2|
(4) (4) (4) (@)
— —w lim ‘_aA = | + 1 |w(i)||ﬂaA M 0
T im0 |:L‘((;) _ :L‘(Z)| i—oo ng) xl(j)|_
nd) —n| o nd —n?|
= S(w) lim -=5——5 + lim [ =5—e®
7 oo’ia -z ‘ 1—00 To — T ‘

where ¢ is the difference of the direction of n{"”) — @l(f) and 2" — gl(f). There are many
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cases about difference between normal vector Q((f) , Q,(f) of neighbor of 2(?), here we just
compute one cases:
For the interior vertex of type k = 2, thatis L (or T, resp.) case, then neighbors of

@ will be T (or L, resp.) case, and then the difference of normal vector can be split

into two part Pgi) + Pg),

0 : ol .
sin( 2222V 4« (cos C1al?) sin(%) % (cos Cral))
; . N0 ‘ ; , NO) , :
Py = sm(%) * (sin C’lagi) - sm(w) * (sin Clagb))
(@) Q)
COS(C2(2a22a ?1)) COS(CQ(QO;% :Fl))
and
(cosCy — 1) 0 0
; cos Cy —
py) = 1~ 0 - 0 .
2 2sin(2) ( ) )

sin Coarl!

But, compare with Pg,f) = g,(f) — g,(f) where

sin((ngQ) * (cos C’la@) sin(Cgozg?) * (cos C’lozglg)
P = sin(Cyald?) * (sin Cral?) | — sin(C’Qoé?) * (sin Clozg?)
cos(Cgaga)) cos(Cga%))
It is easy to verify that lim;_, “PP@)" — 1 and the difference of direction e? is in part
3

two P{". But,

(cosCy — 1) " ’
; cos Cy —
Pl = —10( 0 o 0 )
2sin(%2) @) ()
sin Cyavy, sin Chauy,
0
(cosCyp — 1)
=~ e 5101 catadoat
2 5 cos C2 (aéi.; o) gin @(aé%—aéi?)
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0

=0or (cosCy — 1) 0

C2(2a8) +1)

COS 3

The last term holds because we are now in L or T case, these means aé’g - ozé? =0or

+1. So, lim;_,o, Py = 0 and so is lim;_,, ¥ = 0.

The rest of the term is %, we have |P3| ~ max{C}, Cs} sin ¢. Note we consider
[P2| . (cosCi—1)cos¢

Pal ~ {0y Cosmg 088 1 00

in the interior of X ¥, so sin ¢ # 0 and then

Combine together we have

n” —n”| [P £ PP

e
P — [P] [P P[P+ Y]
Py P PU)|
—>1—O<‘P§Z)in)‘ 140
Py
i B
i—00 @éﬁ) xl()%)’
and then
(@ _ @ A () (4)
lim S0 () = S(w) tim 20 ] jy 012 =10 ]
1—»00 1—00 |£al _gbl | i—00 |£al _ sz |
(4) (%) (4) (4)
P . P+ p
— S(w) tim TP i 0 i PP iy 0
1—+00 | | 1—+00 1—00 ’P3 | i—00
— S(w) + | # 0
= S(w),

as we desired. So, from Proposition 5.1.1, we have that the curvatures of z® converge
to the curvatures of p. Here, p can pick any point except the pole. Note that this
approximation will be fail when we pick p be the pole. Fig. 5.1 and Fig. 5.2 show the

error between the discrete curvatures and the smooth one.
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(@) type a (k=1) (b) type y (k=2)

012
1 01
0.08

0.08

002

Figure 5.1: Error of Gauss curvature of sphere between discrete sense and smooth sense.

(@) type a (k=1) (b) type y (k=2)

0.045

0.04

015
0035

Figure 5.2: Error of mean curvature of sphere between discrete sense and smooth sense.
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Chapter 6

Gauss-Bonnet Theorem

Finally, we comes to the Gauss-Bonnet theorem. In the smooth compact case, we

have the following Gauss-Bonnet Theorem.

Theorem 6.0.1 (Gauss-Bonnet Theorem). Suppose M is a compact two-dimensional

Riemannian manifold without boundary. Let K be the Gaussian curvature of M. Then

K dA = 2mx (M), (6.0.1)

M
where dA is the element of area of the surface. Here, x(M)is the Euler characteristic

of M.

The Gauss-Bonnet theorem connects the geometry of surfaces (in the sense of cur-
vature) to their topology (in the sense of the Euler characteristic). The theorem is true
for all Riemannian manifolds satisfying the condition. But, when we consider the dis-
crete case, the theorem fails. We discuss the failure of the discrete Gauss-Bonnet The-

orem in the following.

6.1 Discrete Gauss-Bonnet Theorem

For the discrete surface, we may try to establish a similar theorem like the following

statement.

Conjecture 6.1.1. Suppose M is a compact two-dimensional Riemannian manifold

without boundary and ® : X — M is a 3-valent discrete surface. Let Ky be the
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Gaussian curvature of X in discrete sense. Then,

D Kx(v) dAx(v) = 2mx(X), (6.1.1)

veX

where dAx (v) is the area of the triangle neighboring v. Here, x(X)is the Euler char-

acteristic of X (usually = x(M)).

But, the conjecture is wrong in this form. Just consider the regular tetrahedron,
both area and curvature are rational number with root of integer, so is the left hand side
of (6.1.1). But, the Euler characteristic of a tetrahedron is 2, so the right hand side of

the equation is 47. The two sides can’t match.

6.2 Numerical computations for convergence of Gauss-
Bonnet Theorem on sphere

Are we going to give up this theorem? No, we believe that when the cut is fine
enough, the discrete curvature will approach a smooth curvature. We expect that the
discrete sum (6.1.1) will be a Riemann sum of the integral (6.0.1) and will be close to
an integral.

More precisely, given a compact two-dimensional Riemannian manifold without
boundary M, for example, a sphere, and take a sequence of discrete surface ® : X —
M. Assume they are finer as ¢ increases, or the distance between adjacent points are

monotone decreasing. Then, we believe the following statement is true.

@ (y (@) () =
lim > K9(v) dAV(v) = 2mx (M), (6.2.1)
veX (@
Here, we give a example on sphere. Take M to be a unit sphere S? C R?, and take
X @ be the spherical brick graph Sph, (1, h®, v(®) which is introduced in Section. 3.2.

Take {h("} and {v(®} be strictly monotone increasing sequences. By the definition of
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spherical brick graph, it is easy to see the surfaces are finer as ¢ increases.
By using numerical computations, we obtain distributions of the error of Gauss-
Bonnet formula, or

error(i) = Z KO ()AY — 47

vex ()
Note that we compute two types of spherical brick graphs (see Section 3.2) and two
different choices {(h(”, v(")} with fixed ratio (") : v()). The detailed information are
shown in Fig. 6.1.

As we discuss in Section 5.2, the sequence of the spherical brick graph converges
in Hausdorff to the sphere. We expect the error of Gauss-Bonnet formula, error(z),
converges to zero. However, error(i) of type x may not converges while error(i) of
type y does converge in both parameters (see Fig. 6.1). This shows that the spherical
brick graph of type y is a better cut for a sphere. And notice that there are some constant
between the limit of error(i) of type x and the zero, this may indicate a slight flaw in

type x, we guess that the major error term comes from the points near the pole.

1.5

Cut finer

error

:
e -
"5 — *—-typex1:2
151 Q- typey1:2 ]
—S—type x 1:1
2 7'; —type y 1:1 4|
-25

Figure 6.1: Sequence of error of Gauss-Bonnet formula of sphere of two types and two
parameters.
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