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離散曲面理論之探討

學生：吳漢中 指導教授：崔茂培 博士

國立台灣大學 數學系

摘 要

在本篇論文，我們主要是探討 M. Kotani, H. Naito and T. Omori ([3])所提出

的離散曲面理論。我們首先回顧他們論文的總體結果。然後我們討論了斜線四

面體的平均曲率流的行為以及離散曲率和高斯­博內定理的收斂問題。

關鍵字：離散曲面；平均曲率；高斯曲率
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A survey on discrete surface theory

Student: Han­Chung Wu Advisor: Dr. Mao­Pei Tsui

Department of Mathematics
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Abstract

In this thesis, we discuss discrete surface theories developed byM.Kotani, H. Naito

and T. Omori in ([3]). We first review the general results from their paper. Then we

discuss the behavior of the mean curvature flow of skew line tetrahedron and the issue

of the convergence of discrete curvatures and Gauss­Bonnet Theorem.

Keywords: discrete surface; mean curvature; Gauss curvature
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Chapter 1

The classical surface theory in R3

In this chapter, we briefly review basic facts of the classical surface theory in

R3. We review the definition of first fundamental form, second fundamental form,

the Weingarten map, mean curvature and Gauss curvature. See Dierkes et al.(2010) [2]

for example for details.

Let M ⊆ R3 be a regular surface (of class C2), which is (locally) parameterized

by, say, p = p(u, v) : Ω → R3, where Ω ⊆ R2. The tangent plane TpM at p = p(u, v)

is the vector space spanned by the partial derivatives ∂up and ∂vp of p with respect to

u and v, respectively. It is equipped with the standard inner product 〈·, ·〉 in R3.

The first fundamental form I = I(u, v) of M at p(u, v) is a symmetric 2­tensor

defined as

I = dp · dp = 〈∂up, ∂up〉du · du+ 2〈∂up, ∂vp〉du · dv + 〈∂vp, ∂vp〉dv · dv,

which is also expressed by the matrix­form:

I =

(
E F

F G

)
=

(
〈∂up, ∂up〉 〈∂up, ∂vp〉
〈∂vp, ∂up〉 〈∂vp, ∂vp〉

)
.

The matrix I(u, v) has rank 2 (positive definite) since we assume thatM is regular. The

unit normal vector field

n = n(u, v) =
∂up× ∂vp

|∂up× ∂vp|

is well­defined at every point (u, v) ∈ Ω. The second fundamental form II = II(u, v)

1
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is then defined as

II = −dp · dn =

(
L M

M N

)
=

(
−〈∂up, ∂un〉 −〈∂up, ∂vn〉
−〈∂vp, ∂un〉 −〈∂vp, ∂vn〉

)
,

which is also a symmetric tensor.

Fact 1.0.1. The partial derivatives ∂un and ∂vn of n, which is perpendicular to n, can

be represented by {∂up, ∂vp}:

∂un =
FM −GL

EG− F 2
∂up+

FL− EM

EG− F 2
∂vp,

∂vn =
FN −GM

EG− F 2
∂up+

FM − EN

EG− F 2
∂vp.

(1.0.1)

We define the Weingarten map S = ∇n : TpM → TpM . By the symmetry of

II, S is a symmetric operator in the sense that it satisfies 〈SV,W 〉 = 〈V, SW 〉 for any

V,W ∈ TpM . Half of the trace of S is called the mean curvature H(p) and the deter­

minant of S is called the Gauss curvatureK(p), respectively. Since the representation

matrix of S with respect to {∂up, ∂vp} is I−1II, we have

Fact 1.0.2. The mean curvature H(p) and the Gauss curvatureK(p) are defined by

H(p) =
1

2
tr(I−1II) =

EN +GL− 2FM

2(EG− F 2)
,

K(p) = det(I−1II) =
LN −M2

EG− F 2
.

(1.0.2)

It is easy to see

S2 − 2H(p)S +K(p)Id = 0. (1.0.3)

We also define the third fundamental form III = III(u, v) as

III = dn · dn =

(
〈∂un, ∂un〉 〈∂un, ∂vn〉
〈∂vn, ∂un〉 〈∂vn, ∂vn〉

)
.

2



doi:10.6342/NTU202002893

Because of the symmetry of S, 〈∂un, ∂un〉 = 〈S∂up, S∂up〉 = 〈S2∂up, ∂up〉 and so on,

from (1.0.3) we infer

K(p)I− 2H(p)II+ III = 0. (1.0.4)

We are ready to present several different meanings of the Gauss curvature. To do

so let us consider the Gauss map n : M → S2 fromM to the unit sphere S2. Then the

Gauss curvature appears in its area element.

Fact 1.0.3. The Gauss curvature is written as the ratio of the infinitesimal area ele­

ments:

|K(p(u0, v0))| = lim
ε→0

AΩε(n)

AΩε(p)
, (1.0.5)

where Ωε ⊂ Ω is an ε­neighborhood of (u0, v0) ∈ Ω.

Proof. It is easy by using (1.0.1) to have

∂un× ∂vn =
LN −M2

EG− F 2
(∂up× ∂vp) = K(p)(∂up× ∂vp). (1.0.6)

If we take an ε­neighborhood Ωε ⊆ Ω of (u0, v0) ∈ Ω for any ε > 0, then since

AΩε(p) =

∫
Ωε

|∂up× ∂vp| dudv,

AΩε(n) =

∫
Ωε

|∂un× ∂vn| dudv =

∫
Ωε

|K||∂up× ∂vp| dudv

are the areas of the image p(Ωε) ⊆M and n(Ωε) ⊆ S2, respectively.

A variational approach is also available for the formulation of the curvatures as

follows. Let p : Ω → R3 be a regular surface of class C2. The functionalA(p) defined

as

A(p) :=

∫
Ω

|∂up× ∂vp| dudv =

∫
Ω

dA

3
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is called the area functional, whose first and second variation formulas are those we

want. Let qt = q(u, v, t) = p+ tV : Ω× (−ε, ε) be a variation of p with the variation

vector field, say,

V (u, v) = φ1(u, v)∂up(u, v) + φ2(u, v)∂vp(u, v) + ψ(u, v)n(u, v)

where φi, ψ ∈ C1(Ω) (i = 1, 2).

Fact 1.0.4. The first variation of A at p is then given as

dA(p, V ) =
d

dt

∣∣∣∣
t=0

A(qt) = −2

∫
Ω

ψ ·H(p)|∂up× ∂vp| dudv, (1.0.7)

independently of variations in the tangential direction.

While the second variation ofA at a general regular surface pwith respect to the normal

variation V = ψn (that is, φ1 = φ2 = 0) is given as

d2A(p, ψn) =

∫
Ω

(
|∇Mψ|2 + 2ψ2K(p)

)
dA, (1.0.8)

where the norm |∇Mψ|2 is taken with respect to I, sometimes called the first Beltrami

differentiator.

A surfaceM ⊆ R3 satisfyingH(p) = 0 for any point p ∈M is said to beminimal.

At the end of this chapter, we state a characterization of minimal surfaces as fol­

lows:

Fact 1.0.5. Let p = p(u, v) : Ω → R3 be a regular surface of class C2 and n : Ω → R3

be its Gauss map. Then

∂vn× ∂up− ∂un× ∂vp = 2H(p)|∂up× ∂vp|n, (1.0.9)

or equivalently,

d(n× dp) = −2H(p)ndA

4
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where n×dp = (n×∂up)du+(n×∂vp)dv is a differential 1­form on Ω along p. That

is to say, p : Ω → R3 is a minimal surface if and only if n× dp is closed.

5
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Chapter 2

A discrete surface theory for graphs in

R3

In this chapter, we introduce the definition of discrete normal vector, discrete co­

variant derivative, discrete mean curvature and discrete Gauss curvature on an embed­

ded trivalent graph. Most of the materials in this chapter come from the paper ([3]) by

M. Kotani, H. Naito and T. Omori.

2.1 Definition of curvatures

Let X = (V,E) be a locally finite graph, where V denotes the set of vertices, and

E the set of the oriented edges. The oriented edge e is identified with a 1­dimensional

cell complex. Thus we can assume that every edge e is identified with the interval

[0, 1]. The reverse edge is denoted by ē, and Ex is the set of edges which emerge from

a vertex x ∈ V .

First, we identify X with the 1­dimensional CW­complex V ∪ (E × [0, 1])/ ∼,

where the equivalence relation∼ is defined by o(e) ∼ (e, 0), t(e) ∼ (e, 1) and (e, a) ∼

(ē, 1− a), where o(e) and t(e) is the origin and terminus of e, respectively. We define

an embeddingΦ : X → R3 as follows: For x ∈ V ,Φ(x) ∈ R3, which satisfiesΦ(x) 6=

Φ(y) if x 6= y, for e(a) ∈ (E × [0, 1])/ ∼, set Φ(e(a)) = aΦ(o(e)) + (1− a)Φ(t(e)).

In the followings, we abbreviate Φ(e(a)) to Φ(e).

Definition 2.1.1. An embedding Φ : X → R3 of a discrete surface if

(i) X = (V,E) is a 3­valent graph, that is a graph of degree 3,

6
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(ii) for each x ∈ V , at least two vectors in {Φ(e) | e ∈ Ex} are linearly independent

as vectors in R3,

(iii) locally oriented, that is, the order of the three edges is assumed to be assigned to

each vertex of X .

As said in the introduction, since our targets have necessarily no natural faces, we

should take a different approach to develop a surface theory from the existing ones such

as Bobenko and Pinkall(1996) [1] or Pinkall and Polthier(1993) [4].

Let Φ : X = (V,E) →M ⊆ R3 be a discrete surface. For each vertex x ∈ V , we

assume it is of 3­valent, namely the setEx = {e1, e2, e3} of edges with origin x consists

of three oriented edges. In the sequel, we sometimes use the notation Φ(x) = x ∈ M

to denote the vertex inM which corresponds to x ∈ V and Φ(e) = e ∈ M to denote

the edge inM which corresponds to e ∈ E. The tangent plane Tx at Φ(x) is then the

plane with n(x) as its oriented unit normal vector, n(x) at Φ(x) is defined as

n(x) :=
(e1 − e3)× (e2 − e3)

|(e1 − e3)× (e2 − e3)|

=
e1 × e2 + e2 × e3 + e3 × e1
|e1 × e2 + e2 × e3 + e3 × e1|

.

(2.1.1)

Note that we use the condition of graphs to be 3­valent to define its tangent plane.

Now let x ∈ V be a vertex, Ex = {e1, e2, e3}, xi := t(ei) (i = 1, 2, 3), and

consider the triangle 4(x) = 4(x1, x2, x3) ⊆ R3 with ordered vertices x1, x2, x3, to

each of which the unit normal vectors n1 := n(x1), n2 := n(x2), n3 := n(x3) are

assigned respectively. We set v1 := e1 − e3 = x1 − x3 and v2 := e2 − e3 = x2 − x3.

The first fundamental form I(x) at x is now defined as

I(x) :=

(
E F

F G

)
=

(
〈v1, v1〉 〈v1, v2〉
〈v2, v1〉 〈v2, v2〉

)
, (2.1.2)

where 〈·, ·〉 stands for the standard inner product of R3. We also define the directional

7
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Figure 2.1: The oriented unit normal vector n(x) at Φ(x).

derivative ∇in(x) of n along vi as

∇in = ∇in(x) := Proj[ni − n3] := (ni − n3)− 〈ni − n3, n(x)〉n(x)

for i = 1, 2, wheren(x) is the unit normal vector of4(x). That is, Proj is the orthogonal

projection onto the tangent plane Tx. As is straightforward to check,∇1n and∇2n are

in fact written, respectively, as

∇1n =
FM1 −GL

EG− F 2
v1 +

FL− EM1

EG− F 2
v2,

∇2n =
FN −GM2

EG− F 2
v1 +

FM2 − EN

EG− F 2
v2,

(2.1.3)

8
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where E, F and G are given by (2.1.2) and L,M1,M2 and N are defined as

II(x) :=

(
L M2

M1 N

)
=

(
−〈v1,∇1n〉 − 〈v1,∇2n〉
− 〈v2,∇1n〉 − 〈v2,∇2n〉

)
(2.1.4)

in the second fundamental form at x.

Remark 2.1.2. The second fundamental form (2.1.4) can be written as

II(x) =

(
−〈v1, n1 − n3〉 − 〈v1, n2 − n3〉
− 〈v2, n1 − n3〉 − 〈v2, n2 − n3〉

)
(2.1.5)

because vi = xi−x3 (i = 1, 2) lies on Tx whereas∇in = Proj[ni−n3] is the orthogonal

projection onto Tx.

Note here that M1 6= M2 is possible in our case although the classical theory de­

pends on the symmetry of the second fundamental form. But, there exist some graphs

with symmetric second fundamental form.

Remark 2.1.3. If the graphX is justK4 or in other words, the discrete surfaceΦ : X →

R3 is just tetrahedron then the second fundamental form is symmetric.

Proof. Given X = K4 with vertices V = {p1, p2, p3, p4} and let p
a
= Φ(pa) ∈ R3 be

the vertices in R3, a = 1, 2, 3, 4. W.L.O.G., by renumbering, we set that the right hand

rule on 4 = 4(p
2
, p

3
, p

4
) is same direction as the vector from 4 to p

1
.(see Fig. 2.2)

First, we focus on p1, the set Ep1 = {e1 = {p1, p2}, e2 = {p1, p3}, e3 = {p1, p4}} of

edges with origin p1 consists of three oriented edges. Then, the unit normal vector on

p1 is defined as

n(p1) :=
(e1 − e3)× (e2 − e3)

|(e1 − e3)× (e2 − e3)|
=

(p
2
− p

4
)× (p

3
− p

4
)

|(p
2
− p

4
)× (p

3
− p

4
)|
,

Thus, n(p1) is orthogonal to p2 − p
4
and p

3
− p

4
. Similarly for all unit normal vectors

n(pa) := na on every points.

Let (i, j, k, l) = (1, 2, 3, 4), (2, 3, 1, 4), (3, 4, 1, 2) or (4, 1, 3, 2). Then, easy to see that

9
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p
1

p
2

p
3

p
4

n1 = n(p1)

n4

n2

n3

Figure 2.2: A tetrahedron with normal.

the right hand rule on 4 = 4(p
j
, p

k
, p

l
) is same direction as the vector from 4 to p

i
.

By above argument, if we focus on pj , we have

nj ⊥ (p
k
− p

l
).

But we back to pi, from the definition,

−M1(pi) =< v2,∇1n >=< p
k
− p

l
, nj − nl >

=< p
k
− p

l
,−nl > .

Similarly,

−M2(pi) =< v1,∇2n >=< p
j
− p

l
, nk − nl >

=< p
j
− p

l
,−nl > .

10
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Thus, we have

M2(pi)−M1(pi) =< p
k
− p

l
,−nl > − < p

j
− p

l
,−nl >

=< p
k
− p

j
,−nl >

= 0.

This shows that second fundamental form is symmetric at pi for all i, as desired.

The rest of the discussion of the symmetry of a discrete surface is in Chapter 3. We

now focus on the definition of discrete curvatures.

Definition 2.1.4. For a discrete surface Φ : X = (V,E) → R3, the mean curvature

H(x) and the Gauss curvature K(x) at x ∈ V are defined, respectively, as

H(x) :=
1

2
trSx, (2.1.6)

K(x) := detSx, (2.1.7)

where Sx : Tx → Tx, the Weingarten­type map, is defined as Sx = −∇n(x).

A discrete surface is said to be minimal if its mean curvature vanishes at every vertex.

The following result comes from definition of Sx.

Proposition 2.1.5. The mean curvature H(x) and the Gauss curvature K(x) have,

respectively, the following representations:

H(x) =
1

2
tr(I(x)−1II(x)) =

EN +GL− F (M1 +M2)

2(EG− F 2)
,

K(x) = det(I(x)−1II(x)) =
LN −M1M2

EG− F 2
.

(2.1.8)

Proof. Let βi = vi for i = 1, 2. Then from (2.1.3),

Sx(β1) = −∇v1
n(x) =

GL− FM1

EG− F 2
β1 +

EM1 − FL

EG− F 2
β2,

11
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Sx(β2) = −∇v2
n(x) =

GM2 − FN

EG− F 2
β1 +

EN − FM2

EG− F 2
β2,

Then, the representation of Sx relative to this base is

[Sx]β =
1

EG− F 2

(
GL− FM1 GM2 − FN

EM1 − FL EN − FM2

)

=
1

EG− F 2

(
G −F
−F E

)(
L M2

M1 N

)
= I(x)−1II(x).

And then we get the result.

The third fundamental form III(x) at x ∈ V is now defined as

III(x) :=

(
c11 c12

c21 c22

)
=

(
〈∇1n(x),∇1n(x)〉 〈∇1n(x),∇2n(x)〉
〈∇2n(x),∇1n(x)〉 〈∇2n(x),∇2n(x)〉

)
. (2.1.9)

Proposition 2.1.6. With the definition, we have

K(x)I(x)− 2H(x)II(x) + III(x) =
M1 −M2

EG− F 2

(
EM1 − FL EN − FM2

FM1 −GL FN −GM2

)
.

(2.1.10)

In particular, the second fundamental form II(x) is symmetric if and only if

K(x)I(x)− 2H(x)II(x) + III(x) = 0.

Proof. A straightforward computation using (2.1.3) gives

c11 =
EM2

1 − 2FLM1 +GL2

EG− F 2
,

c12 = c21 =
EM1N − FLN − FM1M2 +GLM2

EG− F 2
,

c22 =
EN2 − 2FM2N +GM2

2

EG− F 2
.

These equalities combined with (2.1.2), (2.1.4) and (2.1.8) yield the required equality.

12
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On the other hand, we can obtain the following.

Proposition 2.1.7. The Gauss curvature K(x) satisfies

∇1n(x)×∇2n(x) = K(x)(v1 × v2). (2.1.11)

Thus, in particular, the absolute value of the Gauss curvatureK(x) is given by

|K(x)| = |∇1n(x)×∇2n(x)|
|v1 × v2|

.

Proof. The proof again follows from a direct computation using (2.1.3) as follows:

∇1n(x)×∇2n(x) = (
FM1 −GL

EG− F 2
v1 +

FL− EM1

EG− F 2
v2)

× (
FN −GM2

EG− F 2
v1 +

FM2 − EN

EG− F 2
v2)

=
v1 × v2

(EG− F 2)2
{(FM1 −GL)(FM2 − EN)

− (FL− EM1)(FN −GM2)}

=
v1 × v2

(EG− F 2)2
{(FM1FM2 +GLEN)

− (FLFN + EM1GM2)}

=
(LN −M1M2)(EG− F 2)

(EG− F 2)2
(v1 × v2)

=
LN −M1M2

EG− F 2
(v1 × v2)

=K(x)(v1 × v2),

as required.

Remark 2.1.8. In fact, H(x) and K(x) defined above can be also written by the area­

weighted average of the three curvatures around the vertex x.

To this end, we prepare several notations. Let x ∈ V be a vertex, Ex = {e1, e2, e3}

13
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and (α, β) = (1, 2), (2, 3) or (3, 1). If we choose the triangle 4αβ = 4(x0, xα, xβ) as

x0 = Proj[Φ(x)], xα = Φ(t(eα)) and xβ = Φ(t(eβ)),

(see Fig. 2.1) then the first, second and third fundamental form of4αβ , are defined as

Iαβ(x) =

(
〈∇eαΦ,∇eαΦ〉

〈
∇eαΦ,∇eβΦ

〉〈
∇eβΦ,∇eαΦ

〉 〈
∇eβΦ,∇eβΦ

〉) ,
IIαβ(x) =

(
−〈∇eαΦ,∇eαn〉 −

〈
∇eαΦ,∇eβn

〉
−
〈
∇eβΦ,∇eαn

〉
−
〈
∇eβΦ,∇eβn

〉) ,
IIIαβ(x) =

(
〈∇eαn,∇eαn〉

〈
∇eαn,∇eβn

〉〈
∇eβn,∇eαn

〉 〈
∇eβn,∇eβn

〉) ,
respectively, where for e ∈ Ex, and the derivatives are defined as

∇eΦ := Proj[Φ(e)] = e− 〈e, n(x)〉n(x), ∇en := Proj[n(t(e))− n(o(e))],

so that∇eΦ,∇en ∈ Tx. Under this settings, we can define the mean curvatureHαβ(x)

and the Gauss curvature Kαβ(x) for 4αβ similarly as we defined H(x) and K(x) for

the triangle 4(x) = 4(x1, x2, x3),

Hαβ :=
1

2
trSαβ,

Kαβ := detSαβ,

where Sαβ : Tx → Tx, the Weingarten­type map, is defined as

Sαβ(∇eαΦ) = −∇eαn,

Sαβ(∇eβΦ) = −∇eβn.

14
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Then

H(x) =
∑
α,β

signαβ(x)
Aαβ(x)

A(x)
Hαβ(x), (2.1.12)

K(x) =
∑
α,β

signαβ(x)
Aαβ(x)

A(x)
Kαβ(x), (2.1.13)

where the summations are taken over any (α, β) ∈ {(1, 2), (2, 3), (3, 1)}, also, A(x) is

half of the denominator of (2.1.1):

A(x) :=
1

2
|(e1 − e3)× (e2 − e3)| =

1

2
|e1 × e2 + e2 × e3 + e3 × e1|

is the area of the triangle 4(x) = 4(x1, x2, x3), and Aαβ(x):

Aαβ(x) :=
1

2
|∇eαΦ×∇eβΦ| =

1

2
|(xα−x0)×(xβ−x0)| =

1

2
|xα×xβ+xβ×x0+x0×xα|

is the area of the triangle 4αβ = 4(x0, xα, xβ). And signαβ(x) is the difference of

orientations between 4(x) and 4αβ(x):

signαβ(x) =

{
1, if4 (x) and 4αβ (x) are same direction of orientation.
−1, if4 (x) and 4αβ (x) are opposite direction of orientation.

2.2 Harmonic and minimal surface

Definition 2.2.1. LetX = (V,E,m) be aweighted graphwithweightm : E → (0,∞)

satisfying m(e) = m(ē). A discrete surface Φ : X = (V,E,m) → R3 is said to be

harmonic with weight m if it is a harmonic realization with weight m, that is, if it

satisfies

m(ex,1)Φ(ex,1) +m(ex,2)Φ(ex,2) +m(ex,3)Φ(ex,3) = 0 (2.2.1)

for every vertex x ∈ V , where Ex = {ex,1, ex,2, ex,3}.

Exact representation ofH andK in the case of discrete harmonic surfaces is given

15
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as follows.

Proposition 2.2.2. Let X = (V,E,m) be a weighted graph with weight m : E →

(0,∞) satisfying m(e) = m(ē), and Φ : X = (V,E,m) → R3 be a 3­valent discrete

harmonic surface, x ∈ V be fixed and Ex = {e1, e2, e3}. Then the mean curvature

H(x) and the Gauss curvatureK(x) are, respectively, written as

H(x) =
m1 +m2 +m3

8A(x)2

∑
(α,β,γ)

〈eα, eβ〉(〈eα, nβ〉+ 〈nα, eβ〉)
mγ

, (2.2.2)

K(x) = −m1 +m2 +m3

4A(x)2

∑
(α,β,γ)

〈eα, nβ〉〈eβ, nα〉
mγ

, (2.2.3)

where mi = m(ei), A(x) = |e1 × e2 + e2 × e3 + e3 × e1|/2, ei = ∇eiΦ = Φ(ei) ∈

Tx is a tangent vector at Φ(x), ni = n(t(ei)) is the oriented unit normal vector at

each adjacent vertex of Φ(x), for i = 1, 2, 3, and the summations are taken over any

(α, β, γ) = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.

Proof. We derive H(x) and K(x) by using (2.1.12) and (2.1.13). We first make the

following observations which are easily proved from (2.2.1):

(i) EveryΦ(ei) lies on the tangent plane Tx atΦ(x), so that ei = ∇eiΦ = Φ(ei) ∈ Tx

for i = 1, 2, 3.

(ii) m−1
3 (e1 × e2) = m−1

1 (e2 × e3) = m−1
2 (e3 × e1) and is parallel to n(x). This,

means that the normal vector of any point in the surface is perpendicular to those

edges joining the point.

Let (α, β) = (1, 2), (2, 3) or (3, 1) be fixed. The first fundamental form Iαβ and the

second fundamental form IIαβ of the triangle 4αβ = 4(Φ(x), t(eα), t(eβ)) (see Re­

mark 2.1.8) are, respectively, written as

Iαβ =

(
〈eα, eα〉

〈
eα, eβ

〉〈
eβ, eα

〉 〈
eβ, eβ

〉) , IIαβ =

(
0 −

〈
eα, nβ

〉
−
〈
eβ, nα

〉
0

)

16
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because 〈eα, nα〉 = 0 =
〈
eβ, nβ

〉
by (ii). Then we have

H△αβ
=

〈
eα, eβ

〉
(
〈
eα, nβ

〉
+
〈
eβ, nα

〉
)

2(|eα|2|eβ|2 −
〈
eα, eβ

〉2
)

, (2.2.4)

K△αβ
= −

〈
eα, nβ

〉 〈
eβ, nα

〉
|eα|2|eβ|2 −

〈
eα, eβ

〉2 . (2.2.5)

Here we note that

|eα|2|eβ|2 −
〈
eα, eβ

〉2
= det Iαβ = |eα × eβ|2 =

4A(x)2m2
γ

(m1 +m2 +m3)2
,

where γ 6= α, β. The desired expressions are now immediately obtained from

√
det Iαβ(x)
2A(x)

H△αβ
=

1

4A(x)
√

det Iαβ(x)
〈
eα, eβ

〉
(
〈
eα, nβ

〉
+
〈
eβ, nα

〉
)

=
m1 +m2 +m3

8A(x)2

〈
eα, eβ

〉
(
〈
eα, nβ

〉
+
〈
eβ, nα

〉
)

mγ√
det Iαβ(x)
2A(x)

K△αβ
=
m1 +m2 +m3

4A(x)2
−
〈
eα, nβ

〉 〈
eβ, nα

〉
mγ

A discrete harmonic surface needs not be minimal in the sense of Definition 2.1.4,

but we can provide a sufficient condition for a harmonic surface to be minimal, which

is corresponding to the conformality of graphs.

Theorem 2.2.3. Let X = (V,E,m) be a weighted graph with m : E → (0,∞)

satisfying m(e) = m(e). A 3­valent harmonic discrete surface Φ : X = (V,E,m) →

R3 is minimal if

〈Φ(e1),Φ(e2)〉 = 〈Φ(e2),Φ(e3)〉 = 〈Φ(e3),Φ(e1)〉 (2.2.6)

holds at every x ∈ V , where Ex = {e1, e2, e3}. Moreover, if m : E → (0,∞) is

17
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constant, then the condition (2.2.6) is equivalent to

|Φ(e1)| = |Φ(e2)| = |Φ(e3)| (2.2.7)

Proof. We use the same notation as in Proposition 2.2.2. We then sort (2.2.2) by terms

involving the common nα to compute

H(x) =
m1 +m2 +m3

8A(x)2

∑
(α,β,γ)

〈eα, eβ〉(〈eα, nβ〉+ 〈nα, eβ〉)
mγ

=
m1 +m2 +m3

8A(x)2m1m2m3

∑
(α,β,γ)

mαmβ〈eα, eβ〉(〈eα, nβ〉+ 〈nα, eβ〉)

=
m1 +m2 +m3

8A(x)2m1m2m3

∑
(α,β,γ)

{mαmβ〈eα, eβ〉〈eβ, nα〉+mγmα〈eγ, eα〉〈nγ, eα〉}

=
m1 +m2 +m3

8A(x)2m1m2m3

∑
(α,β,γ)

mα〈〈eα, eβ〉mβeβ + 〈eγ, eα〉mγnγ, eα〉,

which equals zero provided (2.2.6); 〈e1, e2〉 = 〈e2, e3〉 = 〈e3, e1〉 holds becausemβeβ+

mγeγ = −mαeα is perpendicular to nα.

Moreover, if the weight m : E → (0,∞) is constant, then the equation (2.2.1)

becomes e1 + e2 + e3 = 0, which gives

|eα|2 = −〈eα, eβ〉 − 〈eγ, eα〉

|eβ|2 = −〈eα, eβ〉 − 〈eγ, eβ〉

after taking the inner product with eα and eβ . This shows |eα| = |eβ| if and only if

〈eγ, eα〉 = 〈eγ, eβ〉.

18
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Chapter 3

Discrere surface structure on a sphere

In this chapter, wemainly compute the defined discrete curvature of 3­valent graphs

on a sphere. We find a criterion for discrete curvatures that correspondswell in the cases

above: when normal vectors of the 3­valent graph equal those of the surface at each

vertex, the discrete curvature corresponds to the curvature of the continuous surface.

3.1 Plane graphs

A 3­valent discrete surface Φ : X = (V,E) → R3 is said to be a plane if its image

Φ(X) lies on a plane in R3. Since the second fundamental form of a plane vanishes

identically, independently of the choice of its side at each point, so do both its mean

curvature and Gauss curvature. Since its third fundamental form again vanishes, the

second variation of the area functional also vanishes.

3.2 Sphere­shaped graphs

Proposition 3.2.1. Let X = (V,E) be a finite graph, S2(r) ⊆ R3 be the round sphere

with radius r > 0 and with center at the origin, and Φ : X = (V,E) → S2(r) be a

3­valent discrete surface with the property that

Φ(x) = rn(x) (3.2.1)
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for every vertex x ∈ V , where n(x) is the oriented unit normal vector at x ∈ V . Then

the mean curvature H and the Gauss curvature K of Φ are given, respectively, as

H(x) = −1

r
, K(x) =

1

r2
(3.2.2)

regardless of x ∈ V .

Proposition 3.2.1 is obtained by direct calculations using (3.2.1). And we have

some necessary and sufficient condition for (3.2.1).

Proposition 3.2.2. Let X = (V,E) be a finite graph, S2(r) ⊆ R3 be the round sphere

with radius r > 0 and with center at the origin, and Φ : X = (V,E) → S2(r) be a

3­valent discrete surface. Let x0 ∈ V , Ex0 = {e1, e2, e3} and xi := t(ei) (i = 1, 2, 3),

then Φ(x0) = rn(x0) if and only if

|e1| = |e2| = |e3|. (3.2.3)

Moreover, we haveΦ(x) = rn(x) for all x ∈ V if and only if all of edges inΦ(X) have

equal length, i.e. it is equilateral.

This proposition is just obtained from Φ has range in sphere and the definition of

normal n.

Corollary 3.2.3. (1) a regular hexahedron, (2) a regular dodecahedron and (3) a reg­

ular truncated icosahedron (fullerene C60) are all 3­valent discrete surfaces with con­

stant curvatures:

H(x) = −1

r
, K(x) =

1

r2

where r > 0 is the radius of the round sphere on which these surfaces lie.

Proof. It is easily from Proposition 3.2.1 and Proposition 3.2.2 because all of them are

equilateral.

20



doi:10.6342/NTU202002893

But, how about the surface on sphere with unequal length edges? Here we give

some examples. Note that we use spherical coordinate system (r, θ, ϕ)with 0 ≤ θ < 2π

and 0 ≤ ϕ ≤ π. Then, we will defined two types of graph on the sphere at below. Note

that r will be fixed and we only need to consider the graph as (θ, ϕ)T on R2 and map it

to R3 with ρr, where

ρr :

(
θ

ϕ

)
7→


r sinϕ cos θ
r sinϕ sin θ
r cosϕ

 .

In the following, we will calculate the mean curvature and the Gauss curvature of a

spherical brick graph Sphk(r, h, v). The brick graph Brk(h, v)which has two direction,

k = 1means the bricks stacked vertically, and k = 2means them stacked horizontally.

And the spherical brick graph Sphk(h, v) is the image of Brk(h, v) under ρ.

Figure 3.1: The spherical brick graph and the normal on it. The left hand side is type k = 1 (or type
x) and the right hand side is type k = 2 (or type y).

First, for the type k = 1, when given h and v, we divide [0, 2π) in to 2h parts, give

2h+ 1 equal points, xi = πi
h
for i = 0, ..., 2h, and every part of length xi+1 − xi =

π
h
.

And divide [0, π] in to v+1 parts, give v+2 equal points, yj = πj
v+1

for j = 0, 1, ..., v+1,

and every part of length yj+1 − yj =
π

v+1
.

Secondly, we connect the points. In this process, we ignore line y = y0 and line

y = yv+1 since them all map to the two poles on the sphere. And, we connect all

vertical line, that is all (xi, yj)T to (xi, yj+1)
T with i = 0, ..., 2h, j = 1, ..., v − 1. For

the horizontal line, we connect the whole first and final line, (xi, y1)T to (xi+1, y1)
T
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and (xi, yv)
T to (xi+1, yv)

T with i = 0, ..., 2h − 1. And now, since we want to make

a brick, we might not connect all the horizontal line, but skip one between every two

of them. More precisely, we connect (xi, yj)T to (xi+1, yj)
T when i, j are both even or

both odd for i = 0, ..., 2h− 1, j = 2, ..., v − 1.

When given h, v we set

a1 :=

(
π
h

0

)
, a2 :=

(
0
π

v+1

)

and then the set of vertices V (Br1(h, v)) and the set of edges E(Br1(h, v)) of the brick

graph of type one can be represented as

V (Br1(h, v)) =
{
ξ = α1a1 + α2a2

∣∣ α1 ∈ {0, ..., 2h}, α2 ∈ {1, ..., v}
}
,

E(Br1(h, v)) =

{
(α1a1 + α2a2, β1a1 + β2a2)

∣∣∣∣∣ α1 = β1, α2 − β2 = ±1

α2 = β2 = 1 or v, α1 − β1 = ±1

α2 = β2 = 2, ..., v − 1 with
α1 − β1 = −1, if α1, α2 has same parity or
α1 − β1 = +1, if α1, α2 has different parity

 .

Definition 3.2.4. For any pair of integers (h, v) ∈ Z × Z satisfying h > 0 and v > 2

and r > 0, a spherical brick of type one (sometimes we call type x) Sph1(r, h, v) is

a 3­valent discrete surface Φ1,r,h,v : Br1(h, v) = (V (h, v), E(h, v)) → S(r) ⊂ R3

defined by ρr, which is defined as above. See Fig. 3.1 for an example. More precisely,

Sph1(r, h, v) is the embedded graph in R3 with

V (Sph1(r, h, v)) = Φ1,r,h,v(V (h, v))

E(Sph1(r, h, v)) = {(Φr,h,v(x),Φ1,r,h,v(y)) | (x, y) ∈ E(h, v)}.

Next, for the type k = 2, when given h and v, we again divide [0, 2π) in to 2h

parts, divide [0, π] in to v + 1 parts, get the equal points, xi = πi
h
for i = 0, ..., 2h, and

yj =
πj
v+1

for j = 0, 1, ..., v + 1. However, now, we are not going to use these yjs, but
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to use y′j =
π(j+ 1

2
)

v+1
for j = 0, 1, ..., v.

And, we connect the points. In the type two, we connect all horizontal line, that is

all (xi, y′j)T to (xi+1, y
′
j)

T with i = 0, ..., 2h−1, j = 0, ..., v. For the vertical line, since

we again skip one between every two of them. More precisely, we connect (xi, y′j)T to

(xi, y
′
j+1)

T when i, j are both even or both odd for i = 0, ..., 2h, j = 0, ..., v − 1.

When given h, v we set

a1 :=

(
π
h

0

)
, a2 :=

(
0
π

v+1

)

and then the set of vertices V (Br2(h, v)) and the set of edges E(Br2(h, v)) of the brick

graph of type two can be represented as

V (Br2(h, v)) =
{
ξ = α1a1 + α2a2

∣∣∣∣ α1 ∈ {0, ..., 2h}, α2 ∈ {0, ..., v}+ 1

2

}
,

E(Br2(h, v)) = {(α1a1 + α2a2, β1a1 + β2a2) | α2 = β2, α1 − β1 = ±1

α1 = β1 = 0, ..., 2h− 1 with
α2 − β2 = −1, if α1, α2 − 1

2
has same parity or

α2 − β2 = +1, if α1, α2 − 1
2
has different parity

 .

Definition 3.2.5. For any pair of integers (h, v) ∈ Z × Z satisfying h > 0 and v > 2

and r > 0, a spherical brick of type two (sometimes we call type y) Sph2(r, h, v) is

a 3­valent discrete surface Φ2,r,h,v : Br2(h, v) = (V (h, v), E(h, v)) → S(r) ⊂ R3

defined by ρr, which is defined as above. See Fig. 3.1 for an example. More precisely,

Sph2(r, h, v) is the embedded graph in R3 with

V (Sph2(r, h, v)) = Φ2,r,h,v(V (h, v))

E(Sph2(r, h, v)) = {(Φr,h,v(x),Φ2,r,h,v(y)) | (x, y) ∈ E(h, v)}.

Now we come to the calculation of the discrete curvatures of Sphk(r, h, v). In the

following, we fix r ∈ R+, h ∈ Z+ and v > 2.
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Proposition 3.2.6. Note that for type one, we pick (α1, α2) ∈ {0, ..., 2h} × {1, ..., v}

(:= Ω1) and for type two, we pick (α1, α2) ∈ {0, ..., 2h} × ({0, ..., v}+ 1
2
) (:= Ω2). A

vertex x(α1, α2) = Φk,r,h,v(α1a1 + α2a2) of Sphk(r, h, v) is represented as

x(α1, α2) = r


sinC2α2 cosC1α1

sinC2α2 sinC1α1

cosC2α2

 , (3.2.4)

where

(C1, C2) :=

(
π

h
,

π

v + 1

)
. (3.2.5)

Although the vertices in these two types are different, we still can classify any

vertex x(α1, α2) of Sphk(r, h, v) in the following eight cases: The first four cases are

of type one, Sph1(r, h, v), we have

1. north polar circle case: x0 = x(α1, 1) and

x1 := x(α1, 2), x2 := x(α1 + 1, 1), x3 := x(α1 − 1, 1)

2. `­case: x0 = x(α1, α2) with 1 < α2 < v and

x1 := x(α1 + 1, α2), x2 := x(α1, α2 − 1), x3 := x(α1, α2 + 1)

3. a­case: x0 = x(α1, α2) with 1 < α2 < v and

x1 := x(α1 − 1, α2), x2 := x(α1, α2 + 1), x3 := x(α1, α2 − 1)

4. south polar circle: x0 = x(α1, v) and

x1 := x(α1, v − 1), x2 := x(α1 − 1, v), x3 := x(α1 + 1, v)
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The last four cases are of type two, Sph2(r, h, v), we have

5. north polar circle: x0 = x(α1,
1
2
) and

x1 := x(α1, 1 +
1

2
), x2 := x(α1 + 2,

1

2
), x3 := x(α1 − 2,

1

2
)

6. ⊥­case: x0 = x(α1, α2) with 1 < α2 < v and

x1 := x(α1, α2 − 1), x2 := x(α1 − 1, α2), x3 := x(α1 + 1, α2)

7. >­case: x0 = x(α1, α2) with 1 < α2 < v and

x1 := x(α1, α2 + 1), x2 := x(α1 + 1, α2), x3 := x(α1 − 1, α2)

8. south polar circle: x0 = x(α1, v +
1
2
) and

x1 := x(α1, v −
1

2
), x2 := x(α1 − 2, v +

1

2
), x3 := x(α1 + 2, v +

1

2
)

Observe and find out that except for case 2 and 3, every case else seem like ⊥­case or

>­case.

And then, a normal vector of Sphk(r, h, v) is computed as follows.

Proposition 3.2.7. On Sphk(r, h, v), for any (α1, α2) ∈ Ωk, the outer unit normal

vector n0 = n(α1, α2) at x0 = x(α1, α2) is based on different classes, and defined as

n0 = m0/|m0| wherem0 = x1 × x2 + x2 × x3 + x3 × x1. We have the following

On Sph1(r, h, v), the normal vector

1. north polar circle case: x0 = x(α1, 1) and

m0 = 2r2 sinC2 sinC1


−(cos 2C2 − cosC2) ∗ (cosC1α1)

−(cos 2C2 − cosC2) ∗ (sinC1α1)

sin 2C2 − sinC2 cosC1


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2. `­case: x0 = x(α1, α2) with 1 < α2 < v and

m0 = 2r2 sinC2
+ sin2C2α2 sinC1(α1 + 1) + cos2C2α2 sinC1α1 − cosC2 sinC1α1

− sin2C2α2 cosC1(α1 + 1)− cos2C2α2 cosC1α1 + cosC2 cosC1α1

sinC2α2 cosC2α2 sinC1



3. a­case: x0 = x(α1, α2) with 1 < α2 < v and

m0 = 2r2 sinC2
− sin2C2α2 sinC1(α1 − 1)− cos2C2α2 sinC1α1 + cosC2 sinC1α1

+ sin2C2α2 cosC1(α1 − 1) + cos2C2α2 cosC1α1 − cosC2 cosC1α1

sinC2α2 cosC2α2 sinC1



4. south polar circle: x0 = x(α1, v) and

m0 = 2r2 sinC2v sinC1


(cosC2(v − 1)− cosC2v) ∗ (cosC1α1)

(cosC2(v − 1)− cosC2v) ∗ (sinC1α1)

− sinC2(v − 1) + sinC2v cosC1



On Sph2(r, h, v), the normal vector

5. north polar circle: x0 = x(α1,
1
2
) and

m0 = 2r2 sinC2
1

2
sin 2C1


−(cosC2(

1
2
+ 1)− cosC2

1
2
) ∗ (cosC1α1)

−(cosC2(
1
2
+ 1)− cosC2

1
2
) ∗ (sinC1α1)

sinC2(
1
2
+ 1)− sinC2

1
2
cos 2C1



6. ⊥­case: x0 = x(α1, α2) with 1 < α2 < v and

m0 = 2r2 sinC2α2 sinC1


(cosC2(α2 − 1)− cosC2α2) ∗ (cosC1α1)

(cosC2(α2 − 1)− cosC2α2) ∗ (sinC1α1)

− sinC2(α2 − 1) + sinC2α2 cosC1


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7. >­case: x0 = x(α1, α2) with 1 < α2 < v and

m0 = 2r2 sinC2α2 sinC1


−(cosC2(α2 + 1)− cosC2α2) ∗ (cosC1α1)

−(cosC2(α2 + 1)− cosC2α2) ∗ (sinC1α1)

sinC2(α2 + 1)− sinC2α2 cosC1



8. south polar circle: x0 = x(α1, v +
1
2
) and

m0 = 2r2 sinC2(v +
1

2
) sin 2C1

(cosC2(v − 1
2
)− cosC2(v +

1
2
)) ∗ (cosC1α1)

(cosC2(v − 1
2
)− cosC2(v +

1
2
)) ∗ (sinC1α1)

− sinC2(v − 1
2
) + sinC2(v +

1
2
) cos 2C1


Remark 3.2.8. Since the unit normal vector needs to be divided by the length, we have

the following more accurate results (right double arrow means divided by a constant):

On Sph1(r, h, v), the normal vector

1. north polar circle case: x0 = x(α1, 1) and

m0 ⇒ 2 sin(
C2

2
)


sin(3C2

2
) ∗ (cosC1α1)

sin(3C2

2
) ∗ (sinC1α1)

cos(3C2

2
)

+


0

0

− sinC2(cosC1 − 1)



⇒


sin(3C2

2
) ∗ (cosC1α1)

sin(3C2

2
) ∗ (sinC1α1)

cos(3C2

2
)

+
(cosC1 − 1)

2 sin(C2

2
)


0

0

− sinC2


2. `­case: x0 = x(α1, α2) with 1 < α2 < v and

m0 ⇒ 2 sinC2α2 sin(
C1

2
)


sinC2α2(cos(C1(2α1+1)

2
))

sinC2α2(sin(C1(2α1+1)
2

))

cosC2α2 cos(C1

2
)



+


+ sinC1α1(1− cosC2)

− cosC1α1(1− cosC2)

0


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⇒


sinC2α2(cos(C1(2α1+1)

2
))

sinC2α2(sin(C1(2α1+1)
2

))

cosC2α2 cos(C1

2
)

+
(1− cosC2)

2 sin(C1

2
) sinC2α2


+ sinC1α1

− cosC1α1

0



3. a­case: x0 = x(α1, α2) with 1 < α2 < v and

m0 ⇒ 2 sinC2α2 sin(
C1

2
)


sinC2α2(cos(C1(2α1−1)

2
))

sinC2α2(sin(C1(2α1−1)
2

))

cosC2α2 cos(C1

2
)



+


− sinC1α1(1− cosC2)

+ cosC1α1(1− cosC2)

0



⇒


sinC2α2(cos(C1(2α1−1)

2
))

sinC2α2(sin(C1(2α1−1)
2

))

cosC2α2 cos(C1

2
)

+
(1− cosC2)

2 sin(C1

2
) sinC2α2


− sinC1α1

+ cosC1α1

0



4. south polar circle: x0 = x(α1, v) and

m0 ⇒ 2 sin(
C2

2
)


sin(C2(2v−1)

2
) ∗ (cosC1α1)

sin(C2(2v−1)
2

) ∗ (sinC1α1)

cos(C2(2v−1)
2

)

+


0

0

+ sinC2v(cosC1 − 1)



⇒


sin(C2(2v−1)

2
) ∗ (cosC1α1)

sin(C2(2v−1)
2

) ∗ (sinC1α1)

cos(C2(2v−1)
2

)

+
(cosC1 − 1)

2 sin(C2

2
)


0

0

+ sinC2v



On Sph2(r, h, v), the normal vector

5. north polar circle: x0 = x(α1,
1
2
) and

m0 ⇒ 2 sin(
C2

2
)


sin(C2(2

1
2
+1)

2
) ∗ (cosC1α1)

sin(C2(2
1
2
+1)

2
) ∗ (sinC1α1)

cos(C2(2
1
2
+1)

2
)

+


0

0

− sinC2
1
2
(cos 2C1 − 1)


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⇒


sin(C2(2

1
2
+1)

2
) ∗ (cosC1α1)

sin(C2(2
1
2
+1)

2
) ∗ (sinC1α1)

cos(C2(2
1
2
+1)

2
)

+
(cos 2C1 − 1)

2 sin(C2

2
)


0

0

− sinC2
1
2



6. ⊥­case: x0 = x(α1, α2) with 1 < α2 < v and

m0 ⇒ 2 sin(
C2

2
)


sin(C2(2α2−1)

2
) ∗ (cosC1α1)

sin(C2(2α2−1)
2

) ∗ (sinC1α1)

cos(C2(2α2−1)
2

)



+


0

0

+ sinC2α2(cosC1 − 1)



⇒


sin(C2(2α2−1)

2
) ∗ (cosC1α1)

sin(C2(2α2−1)
2

) ∗ (sinC1α1)

cos(C2(2α2−1)
2

)

+
(cosC1 − 1)

2 sin(C2

2
)


0

0

+ sinC2α2



7. >­case: x0 = x(α1, α2) with 1 < α2 < v and

m0 ⇒ 2 sin(
C2

2
)


sin(C2(2α2+1)

2
) ∗ (cosC1α1)

sin(C2(2α2+1)
2

) ∗ (sinC1α1)

cos(C2(2α2+1)
2

)



+


0

0

− sinC2α2(cosC1 − 1)



⇒


sin(C2(2α2+1)

2
) ∗ (cosC1α1)

sin(C2(2α2+1)
2

) ∗ (sinC1α1)

cos(C2(2α2+1)
2

)

+
(cosC1 − 1)

2 sin(C2

2
)


0

0

− sinC2α2



8. south polar circle: x0 = x(α1, v +
1
2
) and

m0 ⇒ 2 sin(
C2

2
)


sin(C2(2(v+

1
2
)−1)

2
) ∗ (cosC1α1)

sin(C2(2(v+
1
2
)−1)

2
) ∗ (sinC1α1)

cos(C2(2(v+
1
2
)−1)

2
)


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+ sinC2(v +
1

2
)(cos 2C1 − 1)


0

0

1



⇒


sin(C2(2(v+

1
2
)−1)

2
) ∗ (cosC1α1)

sin(C2(2(v+
1
2
)−1)

2
) ∗ (sinC1α1)

cos(C2(2(v+
1
2
)−1)

2
)

+
(cos 2C1 − 1) sinC2(v +

1
2
)

2 sin(C2

2
)


0

0

1



The remaining calculations we use computer to complete, and we show in the fol­

lowing picture. Fig. 3.2 and Fig. 3.3 show Gauss curvature and mean curvature of

spherical brick graph with (h, v) = (5, 10).

Figure 3.2: Gauss curvature of spherical brick graph.

Figure 3.3: Mean curvature of spherical brick graph.
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Chapter 4

Mean curvature flow

The mean curvature flow of a compact, convex surface converges to one point.

How about the mean curvature flow of the discrete surface? Given a family of discrete

surface Φ : X = (V,E) × [0,∞) → R3, consider the mean curvature flow as the

following for all v ∈ V ,

dΦ(v, t)

dt
= H(v, t)n(v, t).

But, note that the MCF is not trivial for the discrete surface, even if it’s just a triangular

pyramid. So, in the following, we just consider the MCF of some special tetrahedron.

4.1 M.C.F. of regular tetrahedron

First, for the simplest case, we consider the MCF of a regular tetrahedron. Given

a regular tetrahedron,4r = ({p1, p2, p3, p4}, E), and its coordinate Φ : 4r → R3. Let

p
a
:= Φ(pa). Since translation and rotation doesn’t change the curvature, we can set

p
1
= r


0

0

3
√
6

 , p
2
= r


0

4
√
3

−
√
6

 , p
3
= r


−6

−2
√
3

−
√
6

 , p
4
= r


6

−2
√
3

−
√
6

 .

We also get the normal vector of p1 to be

m1 = (p
2
− p

4
)× (p

3
− p

4
)

= r


0− 6

4
√
3− (−2

√
3)

−
√
6− (−

√
6)

× r


−6− 6

−2
√
3− (−2

√
3)

−
√
6− (−

√
6)

 = r2


−6

6
√
3

0

×


−12

0

0


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= r2


0

0

72
√
3

 //p
1
.

The unit normal at p1 is n1 =
m1

|m1|
//p

1
. And the others are

m2 = (p
1
− p

3
)× (p

4
− p

3
) = r2


0

48
√
6

−24
√
3

 //p
2
,

m3 = (p
1
− p

4
)× (p

2
− p

4
) = r2


−72

√
2

−24
√
6

−24
√
3

 //p
3
,

m4 = (p
1
− p

2
)× (p

3
− p

2
) = r2


72
√
2

−24
√
6

−24
√
3

 //p
4
.

So the unit normal n2, n3, n4//p2, p3, p4, respectively. More precisely, the unit

normal vectors are

n1 =


0

0

1

 , n2 =
1

3


0

2
√
2

−1

 , n3 =
1

3


−
√
6

−
√
2

−1

 , n4 =
1

3


√
6

−
√
2

−1


We have the formula of the first fundamental form and the second fundamental

form of p1 (and also p2, p3, p4).

(
E F

F G

)
= 36r2

(
4 2

2 4

)
= 72r2

(
2 1

1 2

)
(
L M2

M1 N

)
= −4r

(
2
√
6

√
6

√
6 2

√
6

)
= −4

√
6r

(
2 1

1 2

)

Now the discrete curvatures are

K(p1) =
LN −M1M2

EG− F 2
=

4
√
6r ∗ 4

√
6r

72r2 ∗ 72r2
=

1

54r2
,
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H(p1) =
EN − F (M1 +M2) +GL

2(EG− F 2)
=

−4
√
6r ∗ 72r2(4− 1− 1 + 4)

2 ∗ 72r2 ∗ 72r2(4− 1)
= −

√
6

18r
.

It is easy to verify that the curvatures at all points are the same. Note that the normal

vector are a constant multiple of the position, that is

na =
1

l
p
a
,

where l = 3
√
6r.

Back to the MCF equation

dΦ(p, t)

dt
= H(p, t)n(p, t).

Since the mean curvature is independent of points and the unit normal is also indepen­

dent of time, we can rewrite the equation of discrete surface Φ(p, t) = C(t)Φ(p, 0)

for some scalar function C(t) which is only dependent on time. And then we have the

mean curvature H(p, t) = 1
C(t)

H(p, 0) = 1
C(t)

H(0). We can reduce the MCF equation

to the following

dΦ(p, t)

dt
= H(t)n(p) ⇒ d

dt
C(t)Φ(p, 0) =

1

C(t)
H(0) · 1

l
Φ(p, 0),

We get
dC(t)

dt
=
H

l

1

C(t)
⇒ C(t) =

√
2(c1 +

H

l
t).

Put t = 0 and get the constant c1 = 1
2
, and then C(t) =

√
1− 1

27r2
t. This means

that when t comes to 27r2, we have Φ(p, t) → p0 with p0 is the center of the regular

tetrahedron4r. This case is similar to the MCF of a compact, convex smooth surface.

(see Fig. 4.1)
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Figure 4.1: A mcf on regular tetrahedron.

4.2 M.C.F. of perpendicular skew line tetrahedron

Now, we consider a little more complicated case.

Given a tetrahedron 4psl = [p1, p2, p3, p4] with −−→p1p2 ⊥ −−→p3p4, −−→p1p2 ⊥
−→
AB and

−−→p3p4 ⊥
−→
AB whereA,B are the midpoints of p1p2, p3p4, respectively. LetO be the mid­

point ofAB andW.O.L.G. setO be the origin andAB lies on x­axis, and let p1p2, p3p4

parallel y­axis, z­axis,respectively. Set the length of Ap1 (or Ap2, Bp3, Bp4) is b, and

AO (or BO) is a for some a, b > 0.(see Fig. 4.2)

Figure 4.2: perpendicular skew line tetrahedron
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Then, the coordinates of the vertices are

p1 = (a,−b, 0)t, p2 = (a, b, 0)t

p3 = (−a, 0,−b)t, p4 = (−a, 0, b)t

First we focus on p1, we have

v1(p1) = (2a, b, b)t, v2(p1) = (0, 0, 2b)t

and the first fundamental form is

(
E F

F G

)
=

(
4a2 + 2b2 2b2

2b2 4b2

)
.

The unit normal vector of each vertices are

n1 =
1

l
(b2,−2ab, 0)t, n2 =

1

l
(b2, 2ab, 0)t

n3 =
1

l
(−b2, 0,−2ab)t, n4 =

1

l
(−b2, 0, 2ab)t

where l =
√
b4 + 4a2b2 And the second fundamental form is

(
L M2

M1 N

)
=

1

l

(
−(2a, b, b) · (2b2, 2ab, 2ab) −(2a, b, b) · (0, 0, 4ab)
−(0, 0, 2b) · (2b2, 2ab, 2ab) −(0, 0, 2b) · (0, 0, 4ab)

)

=
1

l

(
−8ab2 −4ab2

−4ab2 −8ab2

)
.

Then, the curvatures are

K(p1) =
1

b4 + 4a2b2
48a2b4

16a2b2 + 4b4
=

12a2

(4a2 + b2)2

H(p1) =
1

l

(4a2 + 2b2)(−8ab2) + (4b2)(−8ab2)− (2b2)(−4ab2)− (2b2)(−4ab2)

32a2b2 + 8b4

=
1

l

−32a3b2 − 16ab4 − 32ab4 + 16ab4

32a2b2 + 8b4

35



doi:10.6342/NTU202002893

=
1

l

−4a3 − 4ab2

4a2 + b2
=

1

l

−4a(a2 + b2)

4a2 + b2
.

Consider the mean curvature flow which is a realization Φ : X × [0,∞) → R3

which various along time t and satisfy the following:


∂
∂t
Φ⃗(xi, t) = H(xi, t) ∗ n⃗(xi, t),

Φ⃗(xi, 0) = pi.

where xi ∈ V is vertices of X , H(xi, t) is mean curvature of Φ⃗(xi, t) and n⃗(xi, t) is

unit normal vector of Φ⃗(xi, t).

In this case, we have that 4psl is constant mean curvature. And notice that the

direction of the unit normal vector is related to that of the coordinate of the point, so we

have that in any time t, Φ is of form that is similar to4psl. That is Φ is just determined

from a, b and a, b are just one valued function of t. In this case, we can only focus on

point p1 and rewrite the equations :


d
dt
(a,−b, 0) = 1

l
−4a(a2+b2)

4a2+b2
∗ 1

l
(b2,−2ab, 0),

(a(0),−b(0), 0) = (a0,−b0, 0).

where a0, b0 > 0 are some fixed constants. But, note that

d

dt
(a(t),−b(t), 0) = 1

l

−4a(a2 + b2)

4a2 + b2
∗ 1

l
(b2,−2ab, 0)

=
−4a(a2 + b2)

b2(4a2 + b2)2
∗ (b2,−2ab, 0)
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and then we have O.D.E. 
a′(t) = −4a(a2+b2)(b)

b(4a2+b2)2

b′(t) = −4a(a2+b2)(2a)
b(4a2+b2)2

(4.2.1)

We can rewrite (4.2.1) and get


aa′(t) = −4a2(a2+b2)

(4a2+b2)2

bb′(t) = −8a2(a2+b2)
(4a2+b2)2

This means that
d

dt
b2 = 2

d

dt
a2

and this means b2 − 2a2 is a constant.

b2(t)− 2a2(t) = b20 − 2a20 := C

or
b2(t)

C
− a2(t)

1
2
C

= 1

Let A(t) = a2(t) and B(t) = b2(t). Then we have


A′(t) = 2aa′(t) = −8a2(a2+b2)

(4a2+b2)2
= −8A(A+B)

(4A+B)2

B′(t) = 2bb′(t) = −16a2(a2+b2)
(4a2+b2)2

= −16A(A+B)
(4A+B)2

and

B(t) = C + 2A(t)

A′(t) = 2aa′(t) =
−8a2(a2 + b2)

(4a2 + b2)2
=

−8A(A+B)

(4A+B)2

=
−8A(C + 3A)

(C + 6A)2
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This is only one equation, we can solve it:

−8dt =
(C + 6A)2

A(C + 3A)
dA = (12 +

C2

3A2 + CA
)dA

⇒ −8dt = (12 +
C

A
+

−3C

C + 3A
)dA

⇒ k − 8t = 12A+ C log(A)− C log(C + 3A)

= log(
AC exp(12A)
(C + 3A)C

). (4.2.2)

Now, we have three case,

• C = 0 that is b20 = 2a20, or we can say this tetrahedron is regular, then the equation

reduced to

A′(t) =
−8A(0 + 3A)

(0 + 6A)2
=

−2

3
.

So,

A(t) =
−2

3
t+ a20 B(t) =

−4

3
t+ 2a20 =

−4

3
t+ b20,

a(t) =

√
−2

3
t+ a20 b(t) =

√
−4

3
t+ b20.

When t = 3a20
2
, the MCF goes to one point and stop.

• If C < 0, this means b20 < 2a20 or B0 < 2A0. Note that B′ = 2A′, so we have

that B goes to 0 earlier than A. It goes to a segment. (see Fig. 4.3)

• If C > 0, this means b20 > 2a20 or B0 > 2A0. Note that B′ = 2A′, so we have

that A goes to 0 earlier than B. It goes to a square. (see Fig. 4.4)

From these analysis, we know that the MCF doesn’t converge to a point if C 6= 0.

Since C 6= 0, we have the right hand side of equation (4.2.2) goes to negative infinity

when A goes to 0. This means that it takes infinity time for the MCF to collapse to

either a square or a line segment.

38



doi:10.6342/NTU202002893

Figure 4.3: Amcf on perpendicular skew line tetrahedron with b2 < 2a2 and then end likes a segment.

Figure 4.4: A mcf on perpendicular skew line tetrahedron with b2 > 2a2 and then end likes a square.

Remark 4.2.1. How about if there is a little change of the shape? Notice in the perpen­

dicular skew line tetrahedron, we require −−→p1p2 ⊥ −−→p3p4. Here we give a small change,

the angle between −−→p1p2 and −−→p3p4 are a little less then π
2
, and we see how the mean cur­

vature flow goes in computer. (see Fig. 4.5) We will see that angle goes smaller then

the initial and it will replace the original and become a new type.
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Figure 4.5: A mcf on skew line tetrahedron with angle between −−→p1p3 and −−→p2p4 less then π/2.

40



doi:10.6342/NTU202002893

Chapter 5

Convergence of discrete curvatures

We first recall the convergence result from the paper [3]. Then we discuss the

convergence of discrete curvatures using the discrete approximation of the sphere con­

structed in Section 3.2.

5.1 Convergence theorem

The following is the general convergence result from [3].

Proposition 5.1.1. Let {Φk : Xk = (Vk, Ek) → R3}∞k=1 be a sequence of 3­valent

discrete surfaces with the following properties.

(i) The sequence of sets of points {Φk(Vk)}∞k=1 converges to a smooth surfaceM in

R3 in the Hausdorff topology.

(ii) For any p ∈ M , the unit normal vector nk(xk) of Φk at xk ∈ Vk converges

to the unit normal n(p) ofM at p, independently of the choice of {xk}∞k=1 with

Φk(xk) → p as k → ∞.

(iii) The Weingarten map Sk : Txk
→ Txk

of Φk converges to the Weigarten map

S : TpM → TpM ofM in the following sense: for {xk}∞k=1 with Φk(xk) → p as

k → ∞ and for {vk ∈ Txk
}∞k=1 converging to some v ∈ TpM , it follows

Sk(vk) → S(v)

in R3 as k → ∞.
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Then both the mean curvature Hk(xk) and the Gauss curvature Kk(xk) of Φk respec­

tively converge to the mean curvature H(p) and the Gauss curvature K(p) of M for

{xk}∞k=1 with Φk(xk) → p as k → ∞.

Proof. Let p ∈ M be a point and {xk}∞k=1 be a sequence of points xk ∈ Vk such that

Φk(xk) converges to p in R3. For any tangent vector v ∈ TpM , as is easily seen using

(ii), it follows that the sequence {vk}∞k=1, where vk is the orthogonal projection of v onto

Txk
, converges to v. If we take a pair of linearly independent vectors {v, w} ⊆ TpM

so that v × w has the same direction as n(p), then, the vectors {vk, wk} ⊆ Txk
which

are respectively obtained from {v, w} ⊆ TpM as in the above manner are also linearly

independent as well as vk × wk has the same direction as nk(xk) for sufficiently large

k ∈ N. Then, by (iii),

(
〈vk, vk〉 〈vk, wk〉
〈wk, vk〉 〈wk, wk〉

)−1(
〈vk, Sk(vk)〉 〈vk, Sk(wk)〉
〈wk, Sk(vk)〉 〈wk, Sk(wk)〉

)
,

whose trace is equal to Hk(xk)(resp. determinant is equal to Kk(xk)), converges, as

k → ∞, to

(
〈v, v〉 〈v, w〉
〈w, v〉 〈w,w〉

)−1(
〈v, S(v)〉 〈v, S(w)〉
〈w, S(v)〉 〈w, S(w)〉

)
,

whose trace is equal to H(p)(resp. determinant is equal toK(p)).

The following examples show that the condition of the preceding proposition is

optimal in the most general settings.

Example 5.1.2. LetXk be the regular hexagonal lattice in the plane with the exception

at a vertex, say, (0, 0), which is located at (0, 0, hk), where hk > 0. If the distance of

adjacent vertices becomes small with order 1/k, then

(i) Xk does not converge to the plane in the Hausdorff sense unless hk converges to

0 as k → ∞.
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(ii) The normal vector does not converge provided khk is bounded away from 0 as

k → ∞.

(iii) The Weingarten map does not converge provided k2hk is bounded away from 0

as k → ∞.

5.2 Convergence of sphere

In Section 3.2, we define discrete surfaces on sphere, Sphk(r, h, v). Here, we fixed

r = 1, that is we just focus on unit sphere. Given some (h, v), and focus on both types

of graphs, k = 1 and 2, and compute their curvatures. Moreover, when we put (h, k)

to infinity, we will get a finer subdivision and a series of curvatures. Since we usually

guess that the discrete curvatures (including Gaussian and mean) approach the smooth

one, is it true in our case?

Given a strictly monotone increasing sequence {(h(i), v(i))}∞i=1, and letX(i) be the

spherical brick graph Sphk(1, h(i), v(i))with fixed k. By the definition of spherical brick

graph (see Definition 3.2.4 and Definition 3.2.5), it is easy to see that the subdivision

of spherical graph converges to unit sphere in the Hausdorff topology as i raises. More

precisely, given any point p ∈ S2, we take the spherical coordinate of p,

p = ρ(θ, ϕ)T =


sinϕ cos θ
sinϕ sin ρ
cosϕ

 .

For any pair (h(i), v(i)), let C1 = C
(i)
1 = π

h(i) and C2 = C
(i)
2 = π

v(i)+1
. Then for (θ, ϕ)T ,

we have the following two cases: If p is not a pole, then we have ϕ 6= 0 or π. Hence,

When i is large enough, pwill fall on at least one brick, and then take x(i) = (α
(i)
1 , α

(i)
2 )
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be any one vertex on this brick. Then the coordinate of x(i) be

Φk,1,h(i),v(i)(x
(i)) = ρ(x(i)) = x(α

(i)
1 , α

(i)
2 ) =


sin(C2α

(i)
2 ) cos(C1α

(i)
1 )

sin(C2α
(i)
2 ) sin(C1α

(i)
1 )

cos(C2α
(i)
2 )

 .

Because any brick in graphX(i) has length andwidth (C1, 2C2) (for k = 1) or (2C1, C2)

(for k = 2). We know that the difference between (θ, ϕ) and (α
(i)
1 , α

(i)
2 ) is at most

(2C1, 2C2). After the realization map ρ, the distance between p and Φ(x(i)) is at most

2
√
C2

1 + C2
2 and converges to 0 as i increases. And, the other case, p is actually a pole,

then we have ϕ = 0 (or π, resp.). We will take α(i)
1 to be any one in {0, ..., 2h(i) − 1},

and α(i)
2 = 1 (or v(i), resp.) in type k = 1 and α(i)

2 = 1
2
(or v(i) + 1

2
, resp.) in type

k = 2. Then, the distance between p and Φ(x(i)) is at most C2 and converges to 0 as i

increases.

The above paragraph shows that the convergence of the distance between x(i) and

p is independent of position of p, means that {X(i)}∞i=1 actually converges to the sphere

S2 in Hausdorff topology. Hence, these subdivision holds the condition (i) in Proposi­

tion 5.1.1.

For the condition (ii), recall Remark 3.2.8, we discuss the convergence of normal

vector case by case.

1. For the north and south polar circle case in type k = 1 and for the ⊥ and >

case in type k = 2, we have the normal vector n(i) = n(α
(i)
1 , α

(i)
2 ) of x(i) has the

following form


sin(C2(2α

(i)
2 ∓1)

2
) ∗ (cosC1α

(i)
1 )

sin(C2(2α
(i)
2 ∓1)

2
) ∗ (sinC1α

(i)
1 )

cos(C2(2α
(i)
2 ∓1)

2
)

± (cosC1 − 1)

2 sin(C2

2
)


0

0

sinC2α
(i)
2



2. For the north and south polar circle case in type k = 2, we have the normal vector
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n(i) = n(α
(i)
1 , α

(i)
2 ) of x(i) has the following form


sin(C2(2α

(i)
2 ∓1)

2
) ∗ (cosC1α

(i)
1 )

sin(C2(2α
(i)
2 ∓1)

2
) ∗ (sinC1α

(i)
1 )

cos(C2(2α
(i)
2 ∓1)

2
)

± (cos 2C1 − 1)

2 sin(C2

2
)


0

0

sinC2α
(i)
2



3. For the ` and a case in type k = 1, we have the normal vector n(i) = n(α
(i)
1 , α

(i)
2 )

of x(i) has the following form


(sinC2α

(i)
2 )(cos(C1(2α

(i)
1 ±1)

2
))

(sinC2α
(i)
2 )(sin(C1(2α

(i)
1 ±1)

2
))

(cosC2α
(i)
2 ) cos(C1

2
)

+
(1− cosC2)

2 sin(C1

2
)(sinC2α

(i)
2 )


± sinC1α

(i)
1

∓ cosC1α
(i)
1

0



For any choice of {x(i)}∞i=1 with Φ(x(i)) → p as i → ∞, we have, C1, C2 → 0 and

(C1α
(i)
1 , C2α

(i)
2 ) → (θ, ϕ) as i → ∞. Note that h(i)C1 = (v(i) + 1)C2 = π are fixed.

So, the first term in any case of the choice will converge to


sin(ϕ) cos(θ)
sin(ϕ) sin(θ)

cos(ϕ)

, which

is the normal vector of p. And for the second term (we call it the error term), consider

the coefficient of it, we can see the following Taylor expansions (take C1 = tC2),

(cosC1 − 1)

2 sin(C2

2
)

=
−t2

2
C2 +

t2(2t2 − 1)

48
C3

2 +O(C4
2),

(cos 2C1 − 1)

2 sin(C2

2
)

= −2t2C2 +
t2(8t2 − 1)

12
C3

2 +O(C4
2),

(1− cosC2)

2 sin(C1

2
)(sinC2α

(i)
2 )

= (
1

2t
C2 +

t2 − 2

48t
C3

2 +O(C5
2))

1

sin(y)
.

These means if we fixed the ratioC1/C2, which is equal to (v(i)+1)/h(i), then we have

the error term converges to 0.

Finally comes to the condition (iii), for {x(i)}∞i=1 with Φ(x(i)) → p as i→ ∞ and

for {w(i) ∈ Tx(i)}∞i=1 converging to some w ∈ TpS2, we want to show the Weingarten
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map S(i) : Tx(i) → Tx(i) of Φ satisfies

S(i)(w(i)) → S(w)

in R3 as i→ ∞, where S : TpS2 → TpS2 of S2 is the Weigarten map.

Note that from the definition of the Weigarten map S(i), we have to write w(i) as

the combination of {x(i)a −x(i)b , x
(i)
c −x(i)b }, which x(i)a , x

(i)
b , x

(i)
c are the neighbor of x(i),

like the following

w(i) = A(i)(x(i)a − x
(i)
b ) +B(i)(x(i)c − x

(i)
b ).

Then, we have

S(i)(w(i)) = −(A(i)(n(i)
a − n

(i)
b ) +B(i)(n(i)

c − n
(i)
b )).

Without loss of generality, we can just think about one direction and x(i)a − x
(i)
b then

S(i)(w(i)) = −(A(i)(n(i)
a − n

(i)
b ))

= − w(i)

x
(i)
a − x

(i)
b

(n(i)
a − n

(i)
b )

= − |w(i)|
|x(i)a − x

(i)
b |

(n(i)
a − n

(i)
b )

= −|w(i)| n
(i)
a − n

(i)
b

|x(i)a − x
(i)
b |

= −w(i) |n
(i)
a − n

(i)
b |

|x(i)a − x
(i)
b |

+ |w(i)| |n
(i)
a − n

(i)
b |

|x(i)a − x
(i)
b |
e(i)

→ −w lim
i→∞

|n(i)
a − n

(i)
b |

|x(i)a − x
(i)
b |

+ lim
i→∞

|w(i)| |n
(i)
a − n

(i)
b |

|x(i)a − x
(i)
b |
e(i)

= S(w) lim
i→∞

|n(i)
a − n

(i)
b |

|x(i)a − x
(i)
b |

+ lim
i→∞

|w(i)| |n
(i)
a − n

(i)
b |

|x(i)a − x
(i)
b |
e(i)

where e(i) is the difference of the direction of n(i)
a −n(i)

b and x(i)a −x(i)b . There are many

46



doi:10.6342/NTU202002893

cases about difference between normal vector n(i)
a , n

(i)
b of neighbor of x(i), here we just

compute one cases:

For the interior vertex of type k = 2, that is⊥ (or>, resp.) case, then neighbors of

x(i) will be > (or ⊥, resp.) case, and then the difference of normal vector can be split

into two part P(i)
1 ± P(i)

2 ,

P(i)
1 =


sin(C2(2α

(i)
2a∓1)

2
) ∗ (cosC1α

(i)
1a)

sin(C2(2α
(i)
2a∓1)

2
) ∗ (sinC1α

(i)
1a)

cos(C2(2α
(i)
2a∓1)

2
)

−


sin(C2(2α

(i)
2b ∓1)

2
) ∗ (cosC1α

(i)
1b )

sin(C2(2α
(i)
2b ∓1)

2
) ∗ (sinC1α

(i)
1b )

cos(C2(2α
(i)
2b ∓1)

2
)


and

P(i)
2 =

(cosC1 − 1)

2 sin(C2

2
)

(


0

0

sinC2α
(i)
2a

−


0

0

sinC2α
(i)
2b

).

But, compare with P(i)
3 = x

(i)
a − x

(i)
b where

P(i)
3 =


sin(C2α

(i)
2a) ∗ (cosC1α

(i)
1a)

sin(C2α
(i)
2a) ∗ (sinC1α

(i)
1a)

cos(C2α
(i)
2a)

−


sin(C2α

(i)
2b ) ∗ (cosC1α

(i)
1b )

sin(C2α
(i)
2b ) ∗ (sinC1α

(i)
1b )

cos(C2α
(i)
2b )

 .

It is easy to verify that limi→∞
|P1|
|P(i)3 |

= 1 and the difference of direction e(i) is in part

two P(i)
2 . But,

P(i)
2 =

(cosC1 − 1)

2 sin(C2

2
)

(


0

0

sinC2α
(i)
2a

−


0

0

sinC2α
(i)
2b

)

=
(cosC1 − 1)

2 sin(C2

2
)


0

0

2 cos C2(α
(i)
2a+α

(i)
2b )

2
sin C2(α

(i)
2a−α

(i)
2b )

2


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= 0 or (cosC1 − 1)


0

0

cos C2(2α
(i)
2a±1)

2


The last term holds because we are now in⊥ or> case, these means α(i)

2a −α
(i)
2b = 0 or

±1. So, limi→∞ P2 = 0 and so is limi→∞ e(i) = 0.

The rest of the term is |P2|
|P3| , we have |P3| ≈ max{C1, C2} sinϕ. Note we consider

in the interior of X(i), so sinϕ 6= 0 and then |P2|
|P3| ≈

(cosC1−1) cosϕ
max{C1,C2} sinϕ → 0 as i→ ∞.

Combine together we have

|n(i)
a − n

(i)
b |

|x(i)a − x
(i)
b |

=
|P(i)

1 ± P(i)
2 |

|P(i)
3 |

⇒ |P(i)
1 | − |P(i)

2 |
|P(i)

3 |
≤ |P(i)

1 ± P(i)
2 |

|P(i)
3 |

≤ |P(i)
1 |+ |P(i)

2 |
|P(i)

3 |

→ 1− 0 ≤ |P(i)
1 ± P(i)

2 |
|P(i)

3 |
≤ 1 + 0

⇒ lim
i→∞

|n(i)
a − n

(i)
b |

|x(i)a − x
(i)
b |

= 1,

and then

lim
i→∞

S(i)(w(i)) = S(w) lim
i→∞

|n(i)
a − n

(i)
b |

|x(i)a − x
(i)
b |

+ lim
i→∞

|w(i)| |n
(i)
a − n

(i)
b |

|x(i)a − x
(i)
b |
e(i)

= S(w) lim
i→∞

|P(i)
1 + P(i)

2 |
|P(i)

3 |
+ lim

i→∞
|w(i)| lim

i→∞

|P(i)
1 + P(i)

2 |
|P(i)

3 |
lim
i→∞

e(i)

= S(w) + |w| ∗ 0

= S(w),

as we desired. So, from Proposition 5.1.1, we have that the curvatures of x(i) converge

to the curvatures of p. Here, p can pick any point except the pole. Note that this

approximation will be fail when we pick p be the pole. Fig. 5.1 and Fig. 5.2 show the

error between the discrete curvatures and the smooth one.
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Figure 5.1: Error of Gauss curvature of sphere between discrete sense and smooth sense.

Figure 5.2: Error of mean curvature of sphere between discrete sense and smooth sense.
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Chapter 6

Gauss­Bonnet Theorem

Finally, we comes to the Gauss­Bonnet theorem. In the smooth compact case, we

have the following Gauss­Bonnet Theorem.

Theorem 6.0.1 (Gauss­Bonnet Theorem). Suppose M is a compact two­dimensional

Riemannian manifold without boundary. LetK be the Gaussian curvature ofM . Then

∫
M

K dA = 2πχ(M), (6.0.1)

where dA is the element of area of the surface. Here, χ(M)is the Euler characteristic

ofM .

The Gauss­Bonnet theorem connects the geometry of surfaces (in the sense of cur­

vature) to their topology (in the sense of the Euler characteristic). The theorem is true

for all Riemannian manifolds satisfying the condition. But, when we consider the dis­

crete case, the theorem fails. We discuss the failure of the discrete Gauss­Bonnet The­

orem in the following.

6.1 Discrete Gauss­Bonnet Theorem

For the discrete surface, wemay try to establish a similar theorem like the following

statement.

Conjecture 6.1.1. Suppose M is a compact two­dimensional Riemannian manifold

without boundary and Φ : X → M is a 3­valent discrete surface. Let KX be the
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Gaussian curvature of X in discrete sense. Then,

∑
v∈X

KX(v) dAX(v) = 2πχ(X), (6.1.1)

where dAX(v) is the area of the triangle neighboring v. Here, χ(X)is the Euler char­

acteristic of X (usually = χ(M)).

But, the conjecture is wrong in this form. Just consider the regular tetrahedron,

both area and curvature are rational number with root of integer, so is the left hand side

of (6.1.1). But, the Euler characteristic of a tetrahedron is 2, so the right hand side of

the equation is 4π. The two sides can’t match.

6.2 Numerical computations for convergence of Gauss­

Bonnet Theorem on sphere

Are we going to give up this theorem? No, we believe that when the cut is fine

enough, the discrete curvature will approach a smooth curvature. We expect that the

discrete sum (6.1.1) will be a Riemann sum of the integral (6.0.1) and will be close to

an integral.

More precisely, given a compact two­dimensional Riemannian manifold without

boundaryM , for example, a sphere, and take a sequence of discrete surfaceΦ : X(i) →

M . Assume they are finer as i increases, or the distance between adjacent points are

monotone decreasing. Then, we believe the following statement is true.

lim
i→∞

∑
v∈X(i)

K(i)(v) dA(i)(v) = 2πχ(M), (6.2.1)

Here, we give a example on sphere. TakeM to be a unit sphere S2 ⊂ R3, and take

X(i) be the spherical brick graph Sphk(1, h(i), v(i)) which is introduced in Section. 3.2.

Take {h(i)} and {v(i)} be strictly monotone increasing sequences. By the definition of
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spherical brick graph, it is easy to see the surfaces are finer as i increases.

By using numerical computations, we obtain distributions of the error of Gauss­

Bonnet formula, or

error(i) =
∑

v∈X(i)

K(i)(v)A(i) − 4π.

Note that we compute two types of spherical brick graphs (see Section 3.2) and two

different choices {(h(i), v(i))} with fixed ratio h(i) : v(i). The detailed information are

shown in Fig. 6.1.

As we discuss in Section 5.2, the sequence of the spherical brick graph converges

in Hausdorff to the sphere. We expect the error of Gauss­Bonnet formula, error(i),

converges to zero. However, error(i) of type x may not converges while error(i) of

type y does converge in both parameters (see Fig. 6.1). This shows that the spherical

brick graph of type y is a better cut for a sphere. And notice that there are some constant

between the limit of error(i) of type x and the zero, this may indicate a slight flaw in

type x, we guess that the major error term comes from the points near the pole.

Figure 6.1: Sequence of error of Gauss­Bonnet formula of sphere of two types and two
parameters.
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