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ᄔ要

圖卷積網路 (graph convolutional networks)是一項近年來被成功地應

用在許多基於圖結構的問題上的技術，然而，要有效率地訓練大規

模的圖卷積網路仍然非常具有挑戰性。在本篇論文中，我們仔細地

討論了圖卷積網路的背景知識，透過點分類問題的例子介紹模型的

概念，並給出其最佳化問題的數學表達式，以進行複雜度分析。在回

顧完背景後，我們仔細地比較了現有的圖卷積網路訓練算法，以及

其潛在的問題，大體來說，現今有許多研究者提出基於隨機梯度法

的方法來解決訓練緩慢的問題，但他們仍有很高的計算成本，並且

當圖卷積網路的深度加大後，其運算成本會以指數型地增長，另一

方面，有些方法也在記憶體資源上的要求很高，甚至需要儲存整張

圖上每個節點的嵌入向量 (embedding vector)作為基礎，這些方法在

遇到大規模的圖資料時可能會遭遇到運算資源上的瓶頸或甚至不可

行。在本篇論文中，我們提出了一個快速訓練圖卷積網路的方法—聚

類圖卷積網路法 (Cluster-GCN)，這個方法仍基於隨機梯度法，但充分

利用了圖結構的特性來加速訓練，聚類圖卷積網路法的具體步驟如

下：在預處理階段中，我們首先使用了圖聚類演算法 (graph clustering

algorithm)來將整張圖切塊成多個子圖 (subgraph)，之後在每一輪訓練

時，我們隨機抽樣一個子圖的節點們，並將圖卷積網路過程中的鄰

居搜索 (neighborhood search)限制在該子圖範圍內，最後基於隨機梯

度法來做模型的更新。這個簡單且有效的方法可以將記憶體資源以

及計算成本大大地改善，並且也能達到跟先前方法相仿的模型正確

率，在本篇論文的實驗中，我們在多個面向如：記憶體需求、訓練
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時間、以及每輪的收斂速度上來檢驗不同的訓練方法，實驗結果顯

示我們的算法相較於其他論文能達到幾乎最佳的表現，為了更進一

步地測試該算法之擴展性 (scalability)，我們還創造了一個新的圖數

據集 Amazon2M，其原始資料來自於 Amazon購物網站上的商品分類

資訊，我們利用消費者是否經常同時購買此兩產品的資訊，以圖的

方式表達產品與產品之間的聯繫，具體來說形成了一個共同購買網

路，該數據有 200萬個節點以及 6100萬條邊。實驗結果顯示我們提

出的聚類圖卷積網路法在 Amazon2M上的表現卓越，相比於先前最

佳的訓練演算法我們可以達到較快的訓練速度並且使用了更少的記

憶體資源，更進一步地，我們也在這篇論文中分析如何有效地訓練

深度圖卷積網路，我們提出的聚類圖卷積網路法能避免掉高額的運

算，並且其訓練時間以及資源成本並無增加太多，此項進展也帶來了

在眾多公開數據集的突破，舉例來說：在 PPI這個數據上，我們的算

法成功訓練了一個 5層的圖卷積網路並達到了 99.36的Micro-F1正確

率，相比於先前最佳的結果 98.71還要高，顯示出我們提出的聚類圖

卷積網路法能有效地訓練深度網路，而其簡單有效的特性可以作為

基礎來訓練更複雜多樣的圖卷積網路法，我們也開放本算法的原始

碼在 https://github.com/google-research/google-research/tree/master/

cluster_gcn自由供公眾使用。

ᜢᗖӷ： 圖卷積網路、大規模圖學習、深度學習
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Abstract

Graph convolutional network (GCN) has been successfully applied to

many graph-based applications; however, training a large-scale GCN remains

challenging. In this thesis, we detailedly discuss technical background of

graph convolutional networks. We begin with introducing a node classifica-

tion example to motivate the problem and ideas of GCN models. Then we

give mathematical notations to describe the optimization problem of GCN.

After reviewing the background, we analyze existing methods for solving

large-scaleGCN and discuss some possible issues in previousmethods. Roughly

speaking, current SG-based algorithms suffer from either a high computa-

tional cost that exponentially grows with number of GCN layers, or a large

space requirement for keeping the entire graph and the embedding of each

node in memory. To resolve those issues, we propose Cluster-GCN, a novel

GCN algorithm that is suitable for SG-based training by exploiting the graph

clustering structure. Cluster-GCN works as the following: at each step, it

samples a block of nodes that associate with a dense subgraph identified by

a graph clustering algorithm, and restricts the neighborhood search within

this subgraph. This simple but effective strategy leads to significantly im-

proved memory and computational efficiency while being able to achieve

comparable test accuracy with previous algorithms. To demonstrate the scal-

ability of our algorithm, we create a new Amazon2M data with 2 million

nodes and 61 million edges. When training a 3-layer GCN on Amazon2M,

Cluster-GCN is faster than previous state-of-the-art methods with much less

vii
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memory usage. Cluster-GCN also allows us to train much deeper GCN with-

out much time and memory overhead, which leads to improved prediction

accuracy—using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1

score 99.36 on the PPI dataset, while the previous best result was 98.71.

Our codes are publicly available at https://github.com/google-research/

google-research/tree/master/cluster_gcn.

Keywords: graph convolutional networks, large-scale graph mining, deep

learning
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Chapter 1

Introduction

Graph convolutional network (GCN) [10] has become increasingly popular in addressing

many graph-based applications, including semi-supervised node classification [10], link

prediction [20] and recommender systems [18]. Given a graph, GCN uses a graph convo-

lution operation to obtain node embeddings layer by layer—at each layer, the embedding

of a node is obtained by gathering the embeddings of its neighbors, followed by one or a

few layers of linear transformations and nonlinear activations. The final layer embedding

is then used for some end tasks. For instance, in node classification problems, the final

layer embedding is passed to a classifier to predict node labels, and thus the parameters of

GCN can be trained in an end-to-end manner.

Since the graph convolution operator in GCN needs to propagate embeddings using the

interaction between nodes in the graph, this makes training quite challenging. Unlike other

neural networks that the training loss can be perfectly decomposed into individual terms

on each sample, the loss term in GCN (e.g., classification loss on a single node) depends

on a huge number of other nodes, especially when GCN goes deep. Due to the node

dependence, GCN’s training is very slow and requires lots of memory – back-propagation

needs to store all the embeddings in the computation graph in GPU memory.

Previous GCNTraining Algorithms: To demonstrate the need of developing a scal-

able GCN training algorithm, we first discuss the pros and cons of existing approaches,

1
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in terms of 1) memory requirement1, 2) time per epoch2 and 3) convergence speed (loss

reduction) per epoch. These three factors are crucial for evaluating a training algorithm.

Note that memory requirement directly restricts the scalability of algorithm, and the later

two factors combined together will determine the training speed. In the following discus-

sion we denote N to be the number of nodes in the graph, F the embedding dimension,

and L the number of layers to analyze classic GCN training algorithms.

• Full-batch gradient descent is proposed in the first GCN paper [10]. To compute

the full gradient, it requires storing all the intermediate embeddings, leading to

O(NFL) memory requirement, which is not scalable. Furthermore, although the

time per epoch is efficient, the convergence of gradient descent is slow since the

parameters are updated only once per epoch.

[memory: bad; time per epoch: good; convergence: bad]

• Mini-batch SG is proposed in [6]. Since each update is only based on a mini-

batch gradient, it can reduce the memory requirement and conduct many updates per

epoch, leading to a faster convergence. However, mini-batch SG introduces a sig-

nificant computational overhead due to the neighborhood expansion problem—to

compute the loss on a single node at layer L, it requires that node’s neighbor nodes’

embeddings at layer L − 1, which again requires their neighbors’ embeddings at

layer L − 2 and recursive ones in the downstream layers. This leads to time com-

plexity exponential to the GCN depth. GraphSAGE [6] proposed to use a fixed size

of neighborhood samples during back-propagation through layers and FastGCN [1]

proposed importance sampling, but the overhead of these methods is still large and

will become worse when GCN goes deep.

[memory: good; time per epoch: bad; convergence: good]

• VR-GCN [2] proposes to use a variance reduction technique to reduce the size of

neighborhood sampling nodes. Despite successfully reducing the size of samplings

1Here we consider the memory for storing node embeddings, which is dense and usually dominates the
overall memory usage for deep GCN.

2An epoch means a complete data pass.

2
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(in our experiments VR-GCN with only 2 samples per node works quite well), it

requires storing all the intermediate embeddings of all the nodes in memory, leading

to O(NFL) memory requirement. If the number of nodes in the graph increases to

millions, the memory requirement for VR-GCN may be too high to fit into GPU.

[memory: bad; time per epoch: good; convergence: good.]

In this thesis, we propose a novel GCN training algorithm by exploiting the graph clus-

tering structure. We find that the efficiency of a mini-batch algorithm can be characterized

by the notion of “embedding utilization”, which is proportional to the number of links be-

tween nodes in one batch or within-batch links. This finding motivates us to design the

batches using graph clustering algorithms that aims to construct partitions of nodes so that

there are more graph links between nodes in the same partition than nodes in different

partitions. Based on the graph clustering idea, we proposed Cluster-GCN, an algorithm to

design the batches based on efficient graph clustering algorithms (e.g., METIS [9]). We

take this idea further by proposing a stochastic multi-clustering framework to improve the

convergence of Cluster-GCN. Our strategy leads to huge memory and computational ben-

efits. In terms of memory, we only need to store the node embeddings within the current

batch, which is O(bFL) with the batch size b. This is significantly better than VR-GCN

and full gradient decent, and slightly better than other SG-based approaches. In terms

of computational complexity, our algorithm achieves the same time cost per epoch with

gradient descent and is much faster than neighborhood searching approaches. In terms of

the convergence speed, our algorithm is competitive with other SG-based approaches. Fi-

nally, our algorithm is simple to implement since we only compute matrix multiplication

and no neighborhood sampling is needed. Therefore for Cluster-GCN, we have [memory:

good; time per epoch: good; convergence: good].

We conducted comprehensive experiments on several large-scale graph datasets and

made the following contributions:

• Cluster-GCN achieves the best memory usage on large-scale graphs, especially on

deep GCN. For example, Cluster-GCN uses 5x less memory than VRGCN in a 3-

layer GCN model on Amazon2M. Amazon2M is a new graph dataset that we con-

3
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struct to demonstrate the scalablity of the GCN algorithms. This dataset contains a

amazon product co-purchase graph with more than 2 millions nodes and 61 millions

edges.

• Cluster-GCN achieves a similar training speed with VR-GCN for shallow networks

(e.g., 2 layers) but can be faster than VR-GCN when the network goes deeper (e.g.,

4 layers), since our complexity is linear to the number of layers L while VR-GCN’s

complexity is exponential to L.

• Cluster-GCN is able to train a very deep network that has a large embedding size.

Although several previous works show that deep GCN does not give better perfor-

mance, we found that with proper optimization, deeper GCN could help the accu-

racy. For example, with a 5-layer GCN, we obtain a new benchmark accuracy 99.36

for PPI dataset, comparing with the highest reported one 98.71 by [19].

Implementation of our proposed method is publicly available.3 The rest of the thesis is

organized as follows. In Chapter 2, we review the background of GCN and discuss its

challenges in terms of memory and computation bottlenecks. We then propose a cluster-

GCN algorithm in Chapter 3 to resolve these issues and present the experimental results

in Chapter 4.4 We conclude the thesis in Chapter 5.

3https://github.com/google-research/google-research/tree/master/cluster_gcn
4Note that Chapters 3 and 4 are based on our earlier paper [3]

4
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Chapter 2

Background of GCN

In this chapter we discuss technical background of graph convolutional networks. We

begin with introducing a toy example to motivate the research problem and ideas of GCN

models. Then we give mathematical notations to describe the optimization problem of

GCN. Later we review existing methods for solving large-scale GCN and discuss some

possible issues in their methods.

2.1 A Toy Example

We begin with an example of node classification on a citation networks shown in Fig-

ure 2.1, where each node corresponds to a paper and each edge represents the citation

relationship between papers. In this example, some paper nodes are labelled with their

topics (e.g., CV or NLP) and we assume feature vectors describing contents of papers

(e.g., term frequency) are given. Our goal is to design a model that utilizes the above

information to predict categories of unlabelled paper nodes. Unlike some traditional ma-

chine learning tasks where only features and labels are involved, node classification on

graph brings more complexity to the problem as relations between data points need to be

properly handled to make better predictions. That is, we not only learn a mapping from

the feature space to the label space but also hope to better utilize those given relations be-

tween existing data points. For example, a citation relationship between two papers could

be an indication that their topics are somewhat related. The idea of GCN is to obtain bet-

5
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Figure 2.1: A toy example of node classification on a citation networks.

ter representation vectors that integrate original feature vectors with their neighborhood

information. The resulting representation vectors can then be useful for downstream tasks

like node classification, graph classification and also link prediction.

2.2 Notations

Now we formally introduce mathematical notations of node classification problems. Sup-

pose we are given a graph G = (V , E , A), which consists of N = |V| vertices and |E|

edges such that an edge between any two vertices i and j represents their similarity. The

corresponding adjacency matrix A is an N ×N sparse matrix, where

Aij =


1 if there is an edge between i and j,

0 otherwise.

Also, each node is associatedwith anF -dimensional feature vectorxi and aK-dimemsional

vector yi, whereK is the number of classes considered in the classification problem. In a

multi-class setting, if the node i is in class k then

yi = [0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0]T ∈ RK .

On the other hand, in a multi-label setting, more than one entry in yi may have the value

1. We denote the feature matrix X ∈ RN×F and the label matrix Y ∈ RN×K for all N

6



doi:10.6342/NTU202002967

1

2

34

Figure 2.2: A 4-node graph.

nodes.

2.3 The Idea of GCN

A GCN layer aims to obtain better node representations by incorporating neighboring

embedding vectors and multiply them with a weighted matrix W (i) to generate output

vectors. A L-layer GCN repeats the procedure L times as follows.

X(0) = X
GCN Layer−−−−−→
A,W (0)

X(1) · · ·X(L−1) GCN Layer−−−−−−→
A,W (L−1)

X(L),

whereX(L) is the final representation vectors we desire to obtain. A vanilla GCN layer [10]

considers averaging all embedding vectors in the neighborhood. For example, if we con-

sider an example of four nodes in Figure 2.2, Node-1’s new embedding x
(1)
1 is obtained

by

x
(1)
1 = σ(W (0)mean(x(0)

1 ,x
(0)
2 ,x

(0)
3 ,x

(0)
4 )),

where σ(·) is an activation function such as RELU and W (0) ∈ RF0×F1 is a weighted

matrix. Similarly, other nodes’ embeddings are updated by

x
(1)
2 = σ(W (0)mean(x(0)

2 ,x
(0)
1 )),

x
(1)
3 = σ(W (0)mean(x(0)

3 ,x
(0)
1 )),

x
(1)
4 = σ(W (0)mean(x(0)

4 ,x
(0)
1 )).

This procedue helps to integrate neighborhood information into each node’s embedding.

When a L-layer GCN is considered, the final representation vector of a node will incor-

porate information of its L-hop neighborhood (i.e., nodes reachable by ≤ L steps).

7
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In fact, if we construct a normalized adjacency matrix

A′ = D−1A,

where D is diagonal with Dii =
∑N

j=1 Aij , a GCN layer can be then represented in a

matrix form

Z(l+1) = A′X(l)W (l), X(l+1) = σ(Z(l+1)), (2.1)

whereW (l) ∈ RFl×Fl+1 is the feature transformation matrix which will be learned for the

downstream tasks. Note that for simplicity we assume the feature dimensions are the same

for all layers (F1 = · · · = FL = F ).

When using GCN for node classification, the goal is to learn weight matrices in (2.1)

by minimizing the following objective with a loss function ξ(·):

L =
1

N

N∑
i=1

ξ(yi, z
(L)
i ), (2.2)

where z(L)
i is the i-th row of Z(L) indicating the final layer prediction of node i, and yi

is the ground-truth label. In practice, a cross-entropy loss is commonly used for node

classification in multi-class or multi-label problems.

2.4 Challenges in Large-scale GCNs

In this section, we discuss why solving a large-scale GCN can be difficult. The first no-

table difference between GCN and other common networks (e.g., fully connected nets,

convolutional nets) is that the loss associated with each data point depends not only on its

input feature x(0)
i but all its neighboring embeddings. To see the difference, we take CNN

as an example. We know a CNN maps one image to one label vector so its optimization

problem can be decomposed as

min
θ

1

N

N∑
i=1

ξ(yi,CNNθ(z
(0)
i )),

8
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where θ is the collection of all weight matrices in the CNN model and

ξi = ξ(yi,CNNθ(z
(0)
i ))

solely relies on z
(0)
i . However, we cannot conduct the same point-level decomposition

for GCN because the final output z(L)
i may depend on other input feature vectors. For

example, in Figure 2.2, the new embedding of node-1 is

z
(1)
1 = σ(W (0)mean(z(0)

1 , z
(0)
2 , z

(0)
3 , z

(0)
4 )).

Hence training a large GCN becomes challenging because of the following reasons.

1. Calculating full gradient can be prohibitively expensive

2. Stochastic gradients (SG) methods can not be directly applied as the loss function

is not decomposable

3. An implementation for handling large graphs is not trivial

We take the previous example in Figure 2.3 to demonstrate why calculating subsampled

gradient over some instances is not trivial. Suppose a 2-layer GCN is used and we desire

to calculate the loss and gradient associated with the target node 1 (like taking batch size

= 1). To obtain its loss and gradient, we need to calculate its final representation z
(2)
1 ,

which further requires all node embeddings in its 2-hop neighborhood. That is, we need

to access all neighbors’ neighbors of the target node (the yellow circle). The calculation

looks like a recursive process

z
(2)
1 = σ(W (1)mean(z(1)

1 , z
(1)
2 , z

(1)
3 , z

(1)
4 )),

where
z
(1)
1 = σ(W (0)mean(z(0)

1 , z
(0)
2 , z

(0)
3 , z

(0)
4 ))

z
(1)
2 = σ(W (0)mean(z(0)

1 , z
(0)
2 , z

(0)
5 ))

...

9
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Figure 2.3: 2-hop neighborhood of the target node.

There are some potential issues when conducting such a procedure

1. Frequent indexing: the loss and gradient evaluation involves the indexing of neigh-

boring nodes, making the implementation complicated

2. Low embedding utilization: in this case, 10 nodes’ embeddings are considered but

we only get one z(2)
1

3. Neighborhood explosion: the size of neighbors can grow exponentially as the num-

ber of GCN layers increases

In fact, the above issues occur when a small number of nodes is selected. We will explain

more details in the next section.

2.5 Issues of Existing Methods

In this section, we discuss issues of some existing methods and detailedly analyze their

time and memory complexity.

In the original GCN paper [10], full gradient descent is used to train GCN, but it suffers

from high computational and memory cost. In terms of memory, computing the full gra-

dient of (2.2) by back-propagation requires storing all the embedding matrices {Z(l)}Ll=1

which needs O(NFL) space. In terms of the convergence speed, since the model is only

updated once per epoch, the training requires more epochs to converge.

10
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It has been shown that mini-batch SG can improve the training speed and memory

requirement of GCN in some recent works [6, 1, 2]. Instead of computing the full gradient,

SG only needs to calculate the gradient based on a mini-batch for each update. in this

thesis, we use B ⊆ [N ] with size b = |B| to denote a batch of node indices, and each SG

step will compute the gradient estimation

1

|B|
∑
i∈B

∇ξ(yi, z
(L)
i ) (2.3)

to perform an update. Despite faster convergence in terms of epochs, SG will introduce

another computational overhead on GCN training (as explained in the previous section),

which makes it having much slower per-epoch time compared with full gradient descent.

Why does vanilla mini-batch SG have slow per-epoch time? We consider the com-

putation of the gradient associated with one node i : ∇ξ(yi, z
(L)
i ). Clearly, this requires

the embedding of node i, which depends on its neighbors’ embeddings in the previous

layer. To fetch each node i’s neighbor nodes’ embeddings, we need to further aggregate

each neighbor node’s neighbor nodes’ embeddings as well. Suppose a GCN has L + 1

layers and each node has an average degree of d, to get the gradient for node i, we need to

aggregate features from O(dL) nodes in the graph for one node. That is, we need to fetch

information for a node’s hop-k (k = 1, · · · , L) neighbors in the graph to perform one

update. Computing each embedding requires O(F 2) time due to the multiplication with

W (l), so in average computing the gradient associated with one node requires O(dLF 2)

time.

Embedding utilization can reflect computational efficiency. If a batch has more

than one node, the time complexity is less straightforward since different nodes can have

overlapped hop-k neighbors, and the number of embedding computation can be less than

the worst case O(bdL). To reflect the computational efficiency of mini-batch SG, we de-

fine the concept of “embedding utilization” to characterize the computational efficiency.

During the algorithm, if the node i’s embedding at l-th layer z(l)
i is computed and is reused

u times for the embedding computations at layer l+1, then we say the embedding utiliza-

11
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tion of z(l)
i is u. For mini-batch SG with random sampling, u is very small since the graph

is usually large and sparse. Assume u is a small constant (almost no overlaps between

hop-k neighbors), then mini-batch SG needs to compute O(bdL) embeddings per batch,

which leads to O(bdLF 2) time per update and O(NdLF 2) time per epoch.

We illustrate the neighborhood expansion problem in the left panel of Fig. 2.4. On

the contrary, full-batch gradient descent has the maximal embedding utilization—each

embedding will be reused d (average degree) times in the upper layer. As a consequence,

the original full gradient descent [10] only needs to compute O(NL) embeddings per

epoch, which means on average only O(L) embedding computation is needed to acquire

the gradient of one node.

To make mini-batch SG work, previous approaches try to restrict the neighborhood

expansion size, which however do not improve embedding utilization. GraphSAGE [6]

uniformly samples a fixed-size set of neighbors, instead of using a full-neighborhood set.

We denote the sample size as r. This leads to O(rL) embedding computations for each

loss term but also makes gradient estimation less accurate. FastGCN [1] proposed an

important sampling strategy to improve the gradient estimation. VR-GCN [2] proposed

a strategy to store the previous computed embeddings for all the N nodes and L layers

and reuse them for unsampled neighbors. Despite the high memory usage for storing all

the NL embeddings, we find their strategy very useful and in practice, even for a small r

(e.g., 2) can lead to good convergence.

We summarize the time and space complexity in Table 2.1. Clearly, all the SG-based

algorithms suffer from exponential complexity with respect to the number of layers, and

for VR-GCN, even though r can be small, they incur huge space complexity that could go

beyond aGPU’smemory capacity. In Chapter 3, we introduce our Cluster-GCN algorithm,

which achieves the best of two worlds—the same time complexity per epoch with full

gradient descent and the same memory complexity with vanilla SG.

12
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Table 2.1: Time and space complexity of GCN training algorithms. L is number of layers,
N is number of nodes, ∥A∥0 is number of nonzeros in the adjacency matrix, and F is
number of features. For simplicity we assume number of features is fixed for all layers.
For SG-based approaches, b is the batch size and r is the number of sampled neighbors per
node. Note that due to the variance reduction technique, VR-GCN can work with a smaller
r than GraphSAGE and FastGCN. For memory complexity, LF 2 is for storing {W (l)}Ll=1

and the other term is for storing embeddings. For simplicity we omit the memory for
storing the graph (GCN) or sub-graphs (other approaches) since they are fixed and usually
not the main bottleneck.

Time Complexity Memory Complexity
GCN [10] O(L∥A∥0F + LNF 2) O(LNF + LF 2)
Vanilla SG O(dLNF 2) O(bdLF + LF 2)

GraphSAGE [6] O(rLNF 2) O(brLF + LF 2)
FastGCN [1] O(rLNF 2) O(brLF + LF 2)
VR-GCN [2] O(L∥A∥0F + LNF 2 + rLNF 2) O(LNF + LF 2)
Cluster-GCN O(L∥A∥0F + LNF 2) O(bLF + LF 2)

Figure 2.4: The neighborhood expansion difference between traditional graph convolution
and our proposed cluster approach in Chapter 3. The red node is the starting node for
neighborhood nodes expansion. Traditional graph convolution suffers from exponential
neighborhood expansion, while our method can avoid expensive neighborhood expansion.
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Chapter 3

Proposed Method

3.1 Vanilla Cluster-GCN

Our Cluster-GCN technique is motivated by the following question: In mini-batch SG

updates, can we design a batch and the corresponding computation subgraph to maximize

the embedding utilization? We answer this affirmative by connecting the concept of em-

bedding utilization to a clustering objective.

Consider the case that in each batch we compute the embeddings for a set of nodes B

from layer 1 to L. Since the same subgraph AB,B (links within B) is used for each layer

of computation, we can then see that embedding utilization is the number of edges within

this batch ∥AB,B∥0. Therefore, to maximize embedding utilization, we should design a

batch B to maximize the within-batch edges, by which we connect the efficiency of SG

updates with graph clustering algorithms.

Now we formally introduce Cluster-GCN. For a graph G, we partition its nodes into

c groups: V = [V1, · · · Vc] where Vt consists of the nodes in the t-th partition. Thus we

have c subgraphs as

Ḡ = [G1, · · · , Gc] = [{V1, E1}, · · · , {Vc, Ec}],

where each Et only consists of the links between nodes in Vt. After reorganizing nodes,

15
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the adjacency matrix is partitioned into c2 submatrices as

A = Ā+∆ =


A11 · · · A1c

... . . . ...

Ac1 · · · Acc

 (3.1)

and

Ā =


A11 · · · 0

... . . . ...

0 · · · Acc

 ,∆ =


0 · · · A1c

... . . . ...

Ac1 · · · 0

 , (3.2)

where each diagonal blockAtt is a |Vt|×|Vt| adjacency matrix containing the links within

Gt. Ā is the adjacency matrix for graph Ḡ; Ast contains the links between two partitions

Vs and Vt; ∆ is the matrix consisting of all off-diagonal blocks of A. Similarly, we can

partition the feature matrixX and training labels Y according to the partition [V1, · · · ,Vc]

as [X1, · · · , Xc] and [Y1, · · · , Yc]whereXt and Yt consist of the features and labels for the

nodes in Vt respectively.

The benefit of this block-diagonal approximation Ḡ is that the objective function of

GCN becomes decomposible into different batches (clusters). Let Ā′ denotes the normal-

ized version of Ā, the final embedding matrix becomes

Z(L) = Ā′σ(Ā′σ(· · ·σ(Ā′XW (0))W (1)) · · · )W (L−1) (3.3)

=


Ā′

11σ(Ā
′
11σ(· · ·σ(Ā′

11X1W
(0))W (1)) · · · )W (L−1)

...

Ā′
ccσ(Ā

′
ccσ(· · ·σ(Ā′

ccXcW
(0))W (1)) · · · )W (L−1)


due to the block-diagonal form of Ā (note that Ā′

tt is the corresponding diagonal block of

Ā′). The loss function can also be decomposed into

LĀ′ =
∑
t

|Vt|
N
LĀ′

tt
and LĀ′

tt
=

1

|Vt|
∑
i∈Vt

ξ(yi, z
(L)
i ). (3.4)

The Cluster-GCN is then based on the decomposition form in (3.3) and (3.4). At each
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step, we sample a cluster Vt and then conduct SG to update based on the gradient of LĀ′
tt
,

and this only requires the sub-graph Att, the Xt, Yt on the current batch and the models

{W (l)}Ll=1. The implementation only requires forward and backward propagation of ma-

trix products (one block of (3.3)) that is much easier to implement than the neighborhood

search procedure used in previous SG-based training methods.

We use graph clustering algorithms to partition the graph. Graph clustering methods

such as Metis [9] and Graclus [5] aim to construct the partitions over the vertices in the

graph such that within-clusters links are much more than between-cluster links to bet-

ter capture the clustering and community structure of the graph. These are exactly what

we need because: 1) As mentioned before, the embedding utilization is equivalent to the

within-cluster links for each batch. Intuitively, each node and its neighbors are usually

located in the same cluster, therefore after a few hops, neighborhood nodes with a high

chance are still in the same cluster. 2) Since we replaceA by its block diagonal approxima-

tion Ā and the error is proportional to between-cluster links∆, we need to find a partition

to minimize number of between-cluster links.

In Figure 2.4, we illustrate the neighborhood expansionwith full graphG and the graph

with clustering partition Ḡ. We can see that cluster-GCN can avoid heavy neighborhood

search and focus on the neighbors within each cluster. In Table 3.1, we show two different

node partition strategies: random partition versus clustering partition. We partition the

graph into 10 parts by using random partition and METIS. Then use one partition as a

batch to perform a SG update. We can see that with the same number of epochs, using

clustering partition can achieve higher accuracy. This shows using graph clustering is

important and partitions should not be formed randomly.

Time and space complexity. Since each node in Vt only links to nodes inside Vt, each

node does not need to perform neighborhoods searching outsideAtt. The computation for

each batch will purely be matrix products Ā′
ttX

(l)
t W (l) and some element-wise operations,

so the overall time complexity per batch is O(∥Att∥0F + bF 2). Thus the overall time

complexity per epoch becomes O(∥A∥0F +NF 2). In average, each batch only requires

computing O(bL) embeddings, which is linear instead of exponential to L. In terms of

17
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Table 3.1: Random partition versus clustering partition of the graph (trained onmini-batch
SG). Clustering partition leads to better performance (in terms of test F1 score) since it
removes less between-partition links. These three datasetes are all public GCN datasets.
We will explain PPI data in the experiment part. Cora has 2,708 nodes and 13,264 edges,
and Pubmed has 19,717 nodes and 108,365 edges.

Dataset random partition clustering partition
Cora 78.4 82.5

Pubmed 78.9 79.9
PPI 68.1 92.9

space complexity, in each batch, we only need to load b samples and store their embed-

dings on each layer, resulting in O(bLF ) memory for storing embeddings. Therefore our

algorithm is also more memory efficient than all the previous algorithms. Moreover, our

algorithm only requires loading a subgraph into GPU memory instead of the full graph

(though graph is usually not the memory bottleneck). The detailed time and memory

complexity are summarized in Table 2.1.

3.2 Stochastic Multiple Partitions

Although vanilla Cluster-GCN achieves good computational and memory complexity,

there are still two potential issues:

• After the graph is partitioned, some links (the ∆ part in Eq. (3.1)) are removed.

Thus the performance could be affected.

• Graph clustering algorithms tend to bring similar nodes together. Hence the distri-

bution of a cluster could be different from the original data set, leading to a biased

estimation of the full gradient while performing SG updates.

In Figure 3.1, we demonstrate an example of unbalanced label distribution by using the

Reddit data with clusters formed by Metis. We calculate the entropy value of each cluster

based on its label distribution. Comparing with random partitioning, we clearly see that

entropy of most clusters are smaller, indicating that the label distributions of clusters are

biased towards some specific labels. This increases the variance across different batches

and may affect the convergence of SG.
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Figure 3.1: Histograms of entropy values based on the label distribution. Here we present
within each batch using random partition versus clustering partition. Most clustering par-
titioned batches have low label entropy, indicating skewed label distribution within each
batch. In comparison, random partition will lead to larger label entropy within a batch
although it is less efficient as discussed earlier. We partition the Reddit dataset with 300
clusters in this example.

To address the above issues, we propose a stochastic multiple clustering approach to

incorporate between-cluster links and reduce variance across batches. We first partition

the graph into p clusters V1, · · · ,Vp with a relatively large p. When constructing a batchB

for an SG update, instead of considering only one cluster, we randomly choose q clusters,

denoted as t1, . . . , tq and include their nodes {Vt1∪· · ·∪Vtq} into the batch. Furthermore,

the links between the chosen clusters,

{Aij | i, j ∈ t1, . . . , tq},

are added back. In this way, those between-cluster links are re-incorporated and the com-

binations of clusters make the variance across batches smaller. Figure 3.2 illustrates our

algorithm—for each epochs, different combinations of clusters are chosen as a batch. We

conduct an experiment on Reddit to demonstrate the effectiveness of the proposed ap-

proach. In Figure 3.3, we can observe that using multiple clusters as one batch could

improve the convergence. Our final Cluster-GCN algorithm is presented in Algorithm 1.
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Figure 3.2: The proposed stochastic multiple partitions scheme. In each epoch, we ran-
domly sample q clusters (q = 2 is used in this example) and their between-cluster links to
form a new batch. Same color blocks are in the same batch.

Figure 3.3: Comparisons of choosing one cluster versus multiple clusters. The former
uses 300 partitions. The latter uses 1500 and randomly select 5 to form one batch. We
present epoch (x-axis) versus F1 score (y-axis).
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Algorithm 1: Cluster GCN
Input: Graph A, feature X , label Y ;
Output: Node representation X̄

1 Partition graph nodes into c clusters V1,V2, · · · ,Vc by METIS;
2 for iter = 1, · · · ,max_iter do
3 Randomly choose q clusters, t1, · · · , tq from V without replacement;
4 Form the subgraph Ḡ with nodes V̄ = [Vt1 ,Vt2 , · · · ,Vtq ] and links AV̄,V̄ ;
5 Compute g ← ∇LAV̄,V̄ (loss on the subgraph AV̄,V̄) ;
6 Conduct Adam update using gradient estimator g
7 Output: {Wl}Ll=1

3.3 Issues of Training Deeper GCNs

Previous attempts of training deeper GCNs [10] seem to suggest that adding more layers

is not helpful. However, the datasets used in the experiments may be too small to make

a proper justification. For example, [10] considered a graph with only a few hundreds

of training nodes for which overfitting can be an issue. Moreover, we observe that the

optimization of deep GCN models becomes difficult as it may impede the information

from the first few layers being passed through. In [10], they adopt a technique similar

to residual connections [7] to enable the model to carry the information from a previous

layer to a next layer. Specifically, they modify (2.1) to add the hidden representations of

layer l into the next layer.

X(l+1) = σ(A′X(l)W (l)) +X(l) (3.5)

Here we propose another simple technique to improve the training of deep GCNs. In

the original GCN settings, each node aggregates the representation of its neighbors from

the previous layer. However, under the setting of deep GCNs, the strategy may not be

suitable as it does not take the number of layers into account. Intuitively, neighbors nearby

should contribute more than distant nodes. We thus propose a technique to better address

this issue. The idea is to amplify the diagonal parts of the adjacency matrix A used in

each GCN layer. In this way, we are putting more weights on the representation from the

previous layer in the aggregation of each GCN layer. An example is to add an identity to
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Ā as follows.

X(l+1) = σ((A′ + I)X(l)W (l)) (3.6)

While (3.6) seems to be reasonable, using the same weight for all the nodes regardless

of their numbers of neighbors may not be suitable. Moreover, it may suffer from numer-

ical instability as values can grow exponentially when more layers are used. Hence we

propose a modified version of (3.6) to better maintain the neighborhoods information and

numerical ranges. We first add an identity to the originalA and perform the normalization

Ã = (D + I)−1(A+ I), (3.7)

and then consider

X(l+1) = σ((Ã+ λdiag(Ã))X(l)W (l)). (3.8)

Experimental results of adopting the “diagonal enhancement” techniques are presented in

Section 4.4 where we show that this new normalization strategy can help to build deep

GCN and achieve SOTA performance.
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Chapter 4

Experiments and Results

4.1 Experiment Settings

We evaluate our proposed method for training GCN on two tasks: multi-label and multi-

class classification on four public datasets. The statistic of the data sets are shown in Table

4.1. Note that the Reddit dataset is the largest public dataset we have seen so far for GCN,

and the Amazon2M dataset is collected by ourselves and is much larger than Reddit (see

more details in Section 4.3).

We include the following state-of-the-art GCN training algorithms in our comparisons:

• Cluster-GCN (Our proposed algorithm): the proposed fast GCN training method.

• VRGCN1 [2]: It maintains the historical embedding of all the nodes in the graph

and expands to only a few neighbors to speedup training. The number of sampled

neighbors is set to be 2 as suggested in [2]2.
1GitHub link: https://github.com/thu-ml/stochastic_gcn
2Note that we also tried the default sample size 20 in VRGCN package but it performs much worse than

sample size= 2.

Table 4.1: Data statistics

Datasets Task #Nodes #Edges #Labels #Features
PPI multi-label 56,944 818,716 121 50
Reddit multi-class 232,965 11,606,919 41 602
Amazon multi-label 334,863 925,872 58 N/A
Amazon2M multi-class 2,449,029 61,859,140 47 100
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Table 4.2: The parameters used in the experiments.

Datasets #hidden units # partitions #clusters per batch
PPI 512 50 1
Reddit 128 1500 20
Amazon 128 200 1
Amazon2M 400 15000 10

• GraphSAGE3 [6]: It samples a fixed number of neighbors per node. We use the

default settings of sampled sizes for each layer (S1 = 25, S2 = 10) in GraphSAGE.

We implement our method in PyTorch [15]. For the other methods, we use all the original

papers’ code from their github pages. Since [10] has difficulty to scale to large graphs, we

do not compare with it here. Also as shown in [2] that VRGCN is faster than FastGCN, so

we do not compare with FastGCN here. For all the methods we use the Adam optimizer

with learning rate as 0.01, dropout rate as 20%, weight decay as zero. Themean aggregator

proposed by [6] is adopted and the number of hidden units is the same for all methods.

Note that techniques such as (3.8) is not considered here. In each experiment, we consider

the same GCN architecture for all methods. For VRGCN and GraphSAGE, we follow the

settings provided by the original papers and set the batch sizes as 512. For Cluster-GCN,

the number of partitions and clusters per batch for each dataset are listed in Table 4.2.

Note that clustering is seen as a preprocessing step and its running time is not taken into

account in training. In Section 6.1, we show that graph clustering only takes a small

portion of preprocessing time. All the experiments are conducted on a machine with a

NVIDIA Tesla V100 GPU (16 GB memory), 20-core Intel Xeon CPU (2.20 GHz), and

192 GB of RAM.

4.2 Training Performance for Median Size Datasets

Training Time vs Accuracy: First we compare our proposed method with other methods

in terms of training speed. In Figure 4.2, the x-axis shows the training time in seconds,

and y-axis shows the accuracy (F1 score) on the validation sets. We plot the training time

3GitHub link: https://github.com/williamleif/GraphSAGE
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Table 4.3: Comparisons of memory usages on different datasets. Numbers in the brackets
indicate the size of hidden units used in the model.

2-layer 3-layer 4-layer
VRGCN Cluster-GCN GraphSAGE VRGCN Cluster-GCN GraphSAGE VRGCN Cluster-GCN GraphSAGE

PPI (512) 258 MB 39 MB 51 MB 373 MB 46 MB 71 MB 522 MB 55 MB 85 MB
Reddit (128) 259 MB 284 MB 1074 MB 372 MB 285 MB 1075 MB 515 MB 285 MB 1076 MB
Reddit (512) 1031 MB 292 MB 1099 MB 1491 MB 300 MB 1115 MB 2064 MB 308 MB 1131 MB
Amazon (128) 1188 MB 703 MB N/A 1351 MB 704 MB N/A 1515 MB 705 MB N/A

Table 4.4: Benchmarking on the Sparse Tensor operations in PyTorch and TensorFlow.
A network with two linear layers is used and the timing includes forward and backward
operations. Numbers in the brackets indicate the size of hidden units in the first layer.
Amazon data is used.

PyTorch TensorFlow
Avg. time per epoch (128) 8.81s 2.53s
Avg. time per epoch (512) 45.08s 7.13s

versus accuracy for three datasets with 2,3,4 layers of GCN. Since GraphSAGE is slower

than VRGCN and our method, the curves for GraphSAGE only appear for PPI and Reddit

datasets. We can see that our method is the fastest for both PPI and Reddit datasets for

GCNs with different numbers of layers.

For Amazon data, since nodes’ features are not available, an identity matrix is used

as the feature matrix X . Under this setting, the shape of parameter matrixW (0) becomes

334863x128. Therefore, the computation is dominated by sparse matrix operations such

as AW (0). Our method is still faster than VRGCN for 3-layer case, but slower for 2-

layer and 4-layer ones. The reason may come from the speed of sparse matrix operations

from different frameworks. VRGCN is implemented in TensorFlow, while Cluster-GCN

is implemented in PyTorch whose sparse tensor support are still in its very early stage. In

Table 4.4, we show the time for TensorFlow and PyTorch to do forward/backward oper-

ations on Amazon data, and a simple two-layer network are used for benchmarking both

frameworks. We can clearly see that TensorFlow is faster than PyTorch. The difference

is more significant when the number of hidden units increases. This may explain why

Cluster-GCN has longer training time in Amazon dataset.

Memory usage comparison: For training large-scale GCNs, besides training time,

memory usage needed for training is often more important and will directly restrict the

scalability. The memory usage includes the memory needed for training the GCN for
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Table 4.5: The most common categories in Amazon2M.

Categories number of products
Books 668,950

CDs & Vinyl 172,199
Toys & Games 158,771

many epochs. As discussed in Section 2.5, to speedup training, VRGCN needs to save

historical embeddings during training, so it needs much more memory for training than

Cluster-GCN. GraphSAGE also has higher memory requirement than Cluster-GCN due

to the exponential neighborhood growing problem. In Table 4.3, we compare our memory

usage with VRGCN’s memory usage for GCN with different layers. When increasing the

number of layers, Cluster-GCN’s memory usage does not increase a lot. The reason is that

when increasing one layer, the extra variable introduced is the weight matrixW (L), which

is relatively small comparing to the sub-graph and node features. While VRGCN needs

to save each layer’s history embeddings, and the embeddings are usually dense and will

soon dominate the memory usage. We can see from Table 4.3 that Cluster-GCN is much

more memory efficient than VRGCN. For instance, on Reddit data to train a 4-layer GCN

with hidden dimension to be 512, VRGCN needs 2064MB memory, while Cluster-GCN

only uses 308MB memory.

4.3 Experimental Results on Amazon2M

AnewGCNdataset: Amazon2M.By far the largest public data for testingGCN is Reddit

dataset with the statistics shown in Table 4.1, which contains about 200K nodes. As shown

in Figure 4.2 GCN training on this data can be finished within a few hundreds seconds. To

test the scalability of GCN training algorithms, we constructed a much larger graph with

over 2 millions of nodes and 61 million edges based on Amazon co-purchasing networks

[14, 13]. The raw co-purchase data is from Amazon-3M4. In the graph, each node is a

product, and the graph link represents whether two products are purchased together. Each

node feature is generated by extracting bag-of-word features from the product descriptions

4http://manikvarma.org/downloads/XC/XMLRepository.html
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Table 4.6: Comparisons of running time, memory and testing accuracy (F1 score) for
Amazon2M.

Time Memory Test F1 score
VRGCN Cluster-GCN VRGCN Cluster-GCN VRGCN Cluster-GCN

Amazon2M (2-layer) 337s 1223s 7476 MB 2228 MB 89.03 89.00
Amazon2M (3-layer) 1961s 1523s 11218 MB 2235 MB 90.21 90.21
Amazon2M (4-layer) N/A 2289s OOM 2241 MB N/A 90.41

followed by Principal Component Analysis [8] to reduce the dimension to be 100. In

addition, we use the top-level categories as the labels for that product/node (see Table 4.5

for the most common categories). The detailed statistics of the data set are listed in Table

4.1.

In Table 4.6, we compare with VRGCN for GCNs with a different number of layers in

terms of training time, memory usage, and test accuracy (F1 score). As can be seen from

the table that 1) VRGCN is faster than Cluster-GCN with 2-layer GCN but slower than

Cluster-GCN when increasing one layer while achieving similar accuracy. 2) In terms of

memory usage, VRGCN is using much more memory than Cluster-GCN (5 times more for

3-layer case), and it is running out of memory when training 4-layer GCN, while Cluster-

GCN does not need much additional memory when increasing the number of layers, and

achieves the best accuracy for this data when training a 4-layer GCN.

4.4 Training Deeper GCNs

In this section we consider GCNs with more layers. We first show the timing compar-

isons of Cluster-GCN and VRGCN in Table 4.7. PPI is used for benchmarking and we

run 200 epochs for both methods. We observe that the running time of VRGCN grows

exponentially because of its expensive neighborhood finding, while the running time of

Cluster-GCN only grows linearly.

Next we investigate whether using deeper GCNs obtains better accuracy. In Sec-

tion 4.4, we discuss different strategies of modifying the adjacency matrix A to facilitate

the training of deep GCNs. We apply the diagonal enhancement techniques to deep GCNs

and run experiments on PPI. Results are shown in Table 4.9. For the case of 2 to 5 lay-
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Figure 4.1: Convergence figure on a 8-layer GCN. We present numbers of epochs (x-
axis) versus validation accuracy (y-axis). All methods except for the one using (3.8) fail
to converge.

ers, the accuracy of all methods increases with more layers added, suggesting that deeper

GCNs may be useful. However, when 7 or 8 GCN layers are used, the first three methods

fail to converge within 200 epochs and get a dramatic loss of accuracy. A possible reason

is that the optimization for deeper GCNs becomes more difficult. We show a detailed

convergence of a 8-layer GCN in Figure 4.1. With the proposed diagonal enhancement

technique (3.8), the convergence can be improved significantly and similar accuracy can

be achieved.

State-of-the-art results by training deeper GCNs. With the design of Cluster-

GCN and the proposed normalization approach, we now have the ability for training much

deeper GCNs to achieve better accuracy (F1 score). We compare the testing accuracy with

other existing methods in Table 4.8. For PPI, Cluster-GCN can achieve the state-of-art

result by training a 5-layer GCN with 2048 hidden units. For Reddit, a 4-layer GCN with

128 hidden units is used.
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Table 4.7: Comparisons of running time when using different numbers of GCN layers.
We use PPI and run both methods for 200 epochs.

2-layer 3-layer 4-layer 5-layer 6-layer
Cluster-GCN 52.9s 82.5s 109.4s 137.8s 157.3s
VRGCN 103.6s 229.0s 521.2s 1054s 1956s

Table 4.8: State-of-the-art performance of testing accuracy reported in recent papers.

PPI Reddit
FastGCN [1] N/A 93.7
GraphSAGE [6] 61.2 95.4
VR-GCN [2] 97.8 96.3
GaAN [19] 98.71 96.36
GAT [16] 97.3 N/A
GeniePath [11] 98.5 N/A
Cluster-GCN 99.36 96.60

Table 4.9: Comparisons of using different diagonal enhancement techniques. For all meth-
ods, we present the best validation accuracy achieved in 200 epochs. PPI is used and
dropout rate is 0.1 in this experiment. Other settings are the same as in Section 4.2. The
numbers marked red indicate poor convergence.

2-layer 3-layer 4-layer 5-layer 6-layer 7-layer 8-layer
Cluster-GCN with (2.1) 90.3 97.6 98.2 98.3 94.1 65.4 43.1
Cluster-GCN with (3.7) 90.2 97.7 98.1 98.4 42.4 42.4 42.4
Cluster-GCN with (3.7) + (3.6) 84.9 96.0 97.1 97.6 97.3 43.9 43.8
Cluster-GCN with (3.7) + (3.8), λ = 1 89.6 97.5 98.2 98.3 98.0 97.4 96.2
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(a) PPI (2 layers) (b) PPI (3 layers) (c) PPI (4 layers)

(d) Reddit (2 layers) (e) Reddit (3 layers) (f) Reddit (4 layers)

(g) Amazon (2 layers) (h) Amazon (3 layers) (i) Amazon (4 layers)

Figure 4.2: Comparisons of different GCN training methods. We present the relation
between training time in seconds (x-axis) and the validation F1 score (y-axis).
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Chapter 5

Conclusions

In this work, we present ClusterGCN, a new GCN training algorithm that is fast and mem-

ory efficient. Experimental results show that this method can train very deep GCN on

large-scale graph, for instance on a graph with over 2 million nodes, the training time is

less than an hour using around 2G memory and achieves accuracy of 90.41 (F1 score).

Using the proposed approach, we are able to successfully train much deeper GCNs, which

achieve state-of-the-art test F1 score on PPI and Reddit datasets.
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Chapter 6

Appendix

6.1 More Details about the Experiments

In this section we describe more detailed settings about the experiments to help in repro-

ducibility.

6.1.1 Datasets and Software Versions

We describe more details about the datasets in Table 6.1. We download the datasets PPI,

Reddit from the website1 and Amazon from the website2. Note that for Amazon, we

consider GCN in an inductive setting, meaning that the model only learns from training

data. In [4] they consider a transductive setting. Regarding software versions, we install

CUDA 10.0 and cuDNN 7.0. TensorFlow 1.12.0 and PyTorch 1.0.0 are used. We down-

1http://snap.stanford.edu/graphsage/
2https://github.com/Hanjun-Dai/steady_state_embedding

Table 6.1: The training, validation, and test splits used in the experiments. Note that for
the two amazon datasets we only split into training and test sets.

Datasets Task Data splits (Tr./Val./Te.)
PPI Inductive 44906/6514/5524
Reddit Inductive 153932/23699/55334
Amazon Inductive 91973/242890
Amazon2M Inductive 1709997/739032
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load METIS 5.1.0 via the offcial website3 and use a Python wrapper4 for METIS library.

6.1.2 Implementation Details

Previous works [1, 2] propose to pre-compute the multiplication of AX in the first GCN

layer. We also adopt this strategy in our implementation. By precomputing AX , we are

essentially using the exact 1-hop neighborhood for each node and the expensive neighbors

searching in the first layer can be saved.

Another implementation detail is about the technique mentioned in Section 3.2. When

multiple clusters are selected, some between-cluster links are added back. Thus the new

combined adjacency matrix should be re-normalized to maintain numerical ranges of the

resulting embedding matrix. From experiments we find the renormalization is helpful.

As for the inductive setting, the testing nodes are not visible during the training process.

Thus we construct an adjacency matrix containing only training nodes and another one

containing all nodes. Graph partitioning are applied to the former one and the partitioned

adjacency matrix is then re-normalized. Note that feature normalization is also conducted.

To calculate the memory usage, we consider tf.contrib.memory_stats.BytesInUse() for

TensorFlow and torch.cuda.memory_allocated() for PyTorch.

6.1.3 The Running Time of Graph Clustering Algorithm and Data

Preprocessing

The experiments of comparing different GCN training methods in Section 4.1 consider

running time for training. The preprocessing time for each method is not presented in the

tables and figures. While some of these preprocessing steps such as data loading or parsing

are shared across different methods, some steps are algorithm specific. For instance, our

method needs to run graph clustering algorithm during the preprocessing stage.

In Table 6.2, we present more details about preprocessing time of Cluster-GCN on

the four GCN datasets. For graph clustering, we adopt Metis, which is a fast and scal-

3http://glaros.dtc.umn.edu/gkhome/metis/metis/download
4https://metis.readthedocs.io/en/latest/
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Table 6.2: The running time of graph clustering algorithm (METIS) and data preprocess-
ing before the training of GCN.

Datasets #Partitions Clustering Preprocessing
PPI 50 1.6s 20.3s
Reddit 1500 33s 286s
Amazon 200 0.3s 67.5s
Amazon2M 15000 148s 2160s

able graph clustering library. We observe that the graph clustering algorithm only takes

a small portion of preprocessing time, showing a small extra cost while applying such

algorithms and its scalability on large data sets. In addition, graph clustering only needs

to be conducted once to form the node partitions, which can be re-used for later training

processes.

6.2 Newton Methods for Training GCN

Recently, Newtonmethods have been investigated as an alternative optimization technique

for solving neural networks [17, 12]. We are interested in applying second-order methods

on GCN. In this section we derive the calculation of gradient and Jacobian matrix of GCN.

Suppose we consider the following optimization problem

min
θ

f(θ), where f(θ) =
1

2C
θTθ +

1

N

N∑
i=1

ξ(yi, z
L
i ), (6.1)

where θ ∈ Rn is the collection of all weighted matrices W (i) and we consider a L2-

regularization term of θ in the objective function. ξ(·) is the loss function.

Newton method iteratively finds a search direction d by solving the following second-

order approximation of (6.1)

min
d
∇f(θ)Td+

1

2
dT∇2f(θ)d,

where∇f(θ) and∇2f(θ) are the gradient vector and the Hessian matrix, respecitively.
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The gradient of f(θ) can be derived as

∇f(θ) = 1

C
θ +

1

N

N∑
i=1

(J i)T∇
z
(L)
i
ξ(z

(L)
i ,yi),

where

J i =


∂z

(L)
i,1

∂θ1
. . .

∂z
(L)
i,1

∂θn

...
...

...
∂z

(L)
i,K

∂θ1
. . .

∂z
(L)
i,K

∂θn


K×n

, i = 1, . . . , N,

is the Jacobian of z(L)
i . The Hessian matrix of f(θ) is

∇2f(θ) =
1

C
I + 1

N

N∑
i=1

(J i)TBiJ i

+
1

N

N∑
i=1

K∑
j=1

∂ξ(z
(L)
i ,yi)

∂z
(L)
i,j


∂2z

(L)
i,j

∂θ1∂θ1
. . .

∂2z
(L)
i,j

∂θ1∂θn

... . . . ...
∂2z

(L)
i,j

∂θn∂θ1
. . .

∂2z
(L)
i,j

∂θn∂θn

 .

where

Bi
ts =

∂2ξ(z
(L)
i ,yi)

∂z
(L)
i,t ∂z

(L)
i,s

, 1 ≤ t, s ≤ K.

Here we consider Gauss-Newton approximation of the Hessian matrix

G =
1

C
I + 1

N

N∑
i=1

(J i)TBiJ i ≈ ∇2f(θ),

and solve the linear system

Gd = −∇f(θ).

by the Conjugate Gradient (CG) method. In each step of the CG procedure, a product

between G and any vector v is calculated as follows

Gv =
1

C
v +

1

N

N∑
i=1

(
(J i)T (Bi(J iv))

)
. (6.2)
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Following the derivation in [17], we transform the equations into a vector form.

vec(Z(m)) = vec(A′X(m)W (m))

= (I ⊗ A′X(m))vec(W (m)).

∂ξ

∂vec(W (m))
T
=

∂ξ

∂vec(Z(m))
T

∂vec(Z(m))

∂vec(W (m))
T

=
∂ξ

∂vec(Z(m))
T
(I ⊗ A′X(m))

= vec

(
(A′X(m))T

∂ξ

∂vec(Z(m))
T

)T

.

Assume ∂ξ/∂X(m+1) is available, we have

∂ξ

∂vec(Z(m))
T
=

∂ξ

∂vec(X(m+1))
T

∂vec(X(m+1))

∂vec(Z(m))
T
.

Compute ∂ξ/∂X(m) and pass it to the previous layer

∂ξ

∂vec(X(m))
T
=

∂ξ

∂vec(Z(m))
T

∂vec(Z(m))

∂vec(X(m))
T

=
∂ξ

∂vec(Z(m))
T

∂vec(A′X(m)W (m))

∂vec(X(m))
T

=
∂ξ

∂vec(Z(m))
T

∂
(
((W (m))T ⊗ A′)vec(X(m))

)
∂vec(X(m))

T

=
∂ξ

∂vec(Z(m))
T
((W (m))T ⊗ A′)T

= vec

(
A′ ∂ξ

∂vec(Z(m))
T
W (m)

)T

.

For the calculation of Jacobian, we partition thematrix in intoL blocks according to layers.

J i = [J1,iJ2,i . . . JL,i],
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where

Jm,i =

[
∂z

(L)
i

∂vec(W (m))
T

]
.

The calculation of Jacobian is similar to that for the gradient. Assume ∂vec(Z(L))/vec(Z(m))
T

is available, we have

∂vec(Z(L))

∂vec(W (m))
T
=

∂vec(Z(L))

∂vec(Z(m))
T

∂vec(Z(m))

∂vec(W (m))
T

=
∂vec(Z(L))

∂vec(Z(m))
T
(I ⊗ A′X(m))

= vec
(
(A′X(m))T

∂vec(Z(L))

∂Z(m)

)T

Based on the above derivation, we are able to conduct the matrix-vector product in (6.2).

Details can be found in Section 3.4 of [17].

38



doi:10.6342/NTU202002967

Bibliography

[1] J. Chen, T. Ma, and C. Xiao. FastGCN: Fast learning with graph convolutional

networks via importance sampling. In ICLR, 2018.

[2] J. Chen, J. Zhu, and S. Le. Stochastic training of graph convolutional networks with

variance reduction. In ICML, 2018.

[3] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh. Cluster-gcn: An

efficient algorithm for training deep and large graph convolutional networks. In

KDD, 2019.

[4] H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song. Learning steady-states of

iterative algorithms over graphs. In ICML, pages 1114–1122, 2018.

[5] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors a

multilevel approach. IEEE Trans. Pattern Anal. Mach. Intell., 29(11):1944–1957,

2007.

[6] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large

graphs. In NIPS, 2017.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

CVPR, pages 770–778, 2016.

[8] H. Hotelling. Analysis of a complex of statistical variables into principal compo-

nents. Journal of Educational Psychology, 24(6):417–441, 1933.

[9] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

39



doi:10.6342/NTU202002967

[10] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional

networks. In ICLR, 2017.

[11] Z. Liu, C. Chen, L. Li, J. Zhou, X. Li, L. Song, and Y. Qi. Geniepath: Graph neural

networks with adaptive receptive paths. In AAAI, 2019.

[12] J. Martens. Deep learning via Hessian-free optimization. In Proceedings of the 27th

International Conference on Machine Learning (ICML), 2010.

[13] J. McAuley, R. Pandey, and J. Leskovec. Inferring networks of substitutable and

complementary products. In KDD, 2015.

[14] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel. Image-based recommenda-

tions on styles and substitutes. In SIGIR, 2015.

[15] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-

maison, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. In NIPS-W,

2017.

[16] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph

attention networks. 2018.

[17] C.-C. Wang, K. L. Tan, and C.-J. Lin. Newton methods for convolutional neural net-

works. ACM Transactions on Intelligent Systems and Technology, 2020. To appear.

[18] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph

convolutional neural networks for web-scale recommender systems. In KDD, 2018.

[19] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung. Gaan: Gated attention

networks for learning on large and spatiotemporal graphs. In UAI, 2018.

[20] M. Zhang and Y. Chen. Link prediction based on graph neural networks. In NIPS,

2018.

40


	口試委員會審定書
	摘要
	Abstract
	Introduction
	Background of GCN
	A Toy Example
	Notations
	The Idea of GCN
	Challenges in Large-scale GCNs
	Issues of Existing Methods

	Proposed Method
	Vanilla Cluster-GCN
	Stochastic Multiple Partitions
	Issues of Training Deeper GCNs

	Experiments and Results
	Experiment Settings
	Training Performance for Median Size Datasets
	Experimental Results on Amazon2M
	Training Deeper GCNs

	Conclusions
	Appendix
	More Details about the Experiments
	Datasets and Software Versions
	Implementation Details
	The Running Time of Graph Clustering Algorithm and Data Preprocessing

	Newton Methods for Training GCN

	Bibliography

