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摘要

一個好的動作辨識模型需要對人類或其他物體的移動模式有良好的了

解。然而我們發現，即使是許多目前表現最好的模型，都會一定程度的利用

周遭環境中的靜止物件來判斷當下發生的動作，而非使用該動作本身當作判

斷依據。這種對周遭特定物件的依賴性，使得模型在應用到擁有不同物件

分佈的環境中時，無法維持原來的表現，因為許多動作像是「拿取」，不會

跟固定的物件做連結。在此篇論文中，我們將上述問題稱為物件謬誤依賴

(Fallacious Object Reliance, or FOR)，並且詳盡地討論了關於物件特徵偏差

（object representation bias）在許多動作辨識資料集中造成的影響。我們提

出了數個量化方法來測量 FOR問題的嚴重性，並且提出了一個「對抗式物

件合成訓練（AdvOST）」的方法來減輕模型的 FOR問題。AdvOST方法訓

練了一個神經網路合成器，把各種物件的圖片合成到訓練資料集的影片中，

並且該合成器在需要混淆動作辨識模型的同時做出合理的生成來通過另一個

神經網路鑑別器的偵測。此方法驅使動作辨識模型去忽略無關的靜止物件

線索，以此減輕 FOR 問題。我們的實驗發現 AdvOST 方法可幫助 I3D 跟

SlowFast等頂尖的動作辨識模型在 EPIC-KITCHENS與 HMDB51資料集

上獲得更好的表現。

關鍵字： 動作辨識、資料集偏差、對抗式訓練
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Abstract

The action recognition task requires agents to understand the motion per-

formed by humans or objects. However, we found that recognition models

tend to predict the action based on the surrounding static objects instead of

the action itself. This dependency may hurt the robustness of such models

when applied to new environments with different object distribution as many

action classes could be associated with different subjects (e.g. ”take”). In

this paper, we regard this problem as the Fallacious Object Reliance (FOR)

issue and discuss the role that the object representation bias plays in different

datasets. Based on the observation, we propose several metrics to measure

the severity of the FOR issue. Moreover, we propose a new training proce-

dure called Adversarial Object Synthesis Training (AdvOST) to mitigate this

issue. AdvOST trains a synthesizer pasting objects onto training videos to

obfuscate the classification model and uses a discriminator that regularizes

the synthesizer to generate natural synthesis. This method forces the action

model to ignore unrelated object clues and successfully reduces the FOR is-

sue. Finally, we obtain decent accuracy improvement on the validation sets

of the EPIC-KITCHENS using the state-of-the-art I3D and SlowFast after

applied AdvOST. We also acquire consistently accurate improvement on the

three splits of HMDB51 using I3D.

Keywords: Action Recognition, Dataset Bias, Adversarial Training
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Chapter 1

Introduction

(a) Input Video (b) CAM of I3D (c) CAM of I3D with AdvOST

Figure 1.1: The grad-CAM [27] visualization of I3Dmodel with and without our proposed
AdvOST that helps alleviate the Fallacious Object Reliance. In the first row, the hand on
the left is taking something behind the cabinet. The I3D model without AdvOST notices
the handle-like object and predicts this action as ”close”, while I3D with AdvOST focuses
on where the motion occurs and successfully predicts this action as ”take”. In the second
row, although bothmodels correctly predict the action as ”wash”, the onewithout AdvOST
pays more attention on the appearance of the sink instead of the hands washing the dishes.

Deep learning has achieved significant progress in the image domain since the intro-

duction of Convolutional Neural Network (CNN). Videos, as another commonly used data

format in our daily lives, have also attracted lots of research attention in recent years. Sim-

ilar to image classification, action recognition is one of the most fundamental problems

among the various video understanding tasks like action localization [17, 14, 31] and cap-

tioning [21, 42]. Hence, lots of benchmarks [22, 32, 19, 28, 2, 5, 13] and deep models

[29, 37, 34, 2, 9] are proposed for the action recognition task.

However, even for the state-of-the-art method I3D [2] and SlowFast [9], we still found
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action models sometimes utilize supposedly unrelated hints to infer action classes that are

not tied to specific objects (e.g. ”take”). Two examples of the training set visualization in

Fig. 1.1 suggest that the model concentrates on unrelated regions to make predictions. In

our observation, this behavior diminishes the robustness of the trained model because it

is highly likely that in new environments, these specific objects will not appear or will be

associated with different actions.

A possible reason for this phenomenon is that spatio-temporal 3D CNN architectures

focus more on static clues than motion structures. Authors of [35, 26, 9] also pointed

out that the temporal dimension is essentially not symmetrical to the spatial dimensions,

so it’s not ideal to simply add an extra dimension on the 2D CNN kernel to handle action

recognition tasks. Hence, recent deep action models that achieve outperforming results

usually have more carefully designed temporal modeling to process the complex and long-

range temporal information [35, 26, 9, 16], but they still highly depend on static clues.

Besides the insufficient temporal modeling problem, Li et al.[23] also showed that

there exist biases about objects, scenes, and people in the commonly used action datasets

including HMDB51, UCF101, ActivityNet, and Kinetics, etc. These biases lead to erro-

neous conclusions when the dataset is not well-calibrated. Given the two facts that SOTA

model architectures tend to focus on static images and datasets often have object biases,

it becomes more of an issue for models to learn the motion essence of actions instead of

the invalid dependencies of biased objects in the training set.

In this paper, we analyze this characteristic of action recognition models and propose a

measurement called Object Reliance Level (ORL) to quantify this phenomenon. We also

design a method to evaluate the object bias difference between training and testing sets

and propose the Fallacious Object Reliance (FOR) score to measure the severity of wrong

object-action association that hinders the robustness of actionmodels in new environments

(see 3.2 for details).

In addition to the above analysis, we further propose a training procedure called Adver-

sarial Object Synthesis Training (AdvOST) to address the FOR issue. AdvOST augments

the object diversity of training videos in an adversarial approach so the action recognition

2
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model could be trained to reduce FOR. Our method is tested on several benchmarks and

proved to improve the performance and mitigate the issue we observed.

Overall, this paper makes two major contributions. First, we discuss and propose

methods to measure the Object Reliance Level and FOR score of action models. Sec-

ond, we propose a training structure called AdvOST to alleviate the FOR issue and obtain

decent performance improvement.

3
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Chapter 2

Related work

2.1 Temporal Modeling of Action Recognition

Videos can be modeled as three-dimensional data containing 2 spatial and 1 temporal

dimensions. A few works extract the temporal information using iDT [10] or optical flow

[29] as auxiliary information with spatial data to make predictions. C3D [34] propose

to use 3d convolutional kernels to process video data without pre-processing. Proposals

that factorize C3D in order to solve its large parameter number issue are presented [26,

35, 40]. As long-range and complex temporal modeling gets more and more attention,

network designs with different strategies to handle the temporal dimension have also been

developed [41, 9, 38]. Our goal in this paper is to enhance the temporal modeling of action

models, but we approach the task from the perspective of augmenting training data in an

adversarial way.

2.2 Datasets Bias

Exploiting unintended dataset bias and mitigating the consequent issues are crucial for

machine learning. For instance, the ethnic or gender bias in the datasets is studied for fair-

ness [15, 1]. Li et al.[23] discusses the representation bias (in objects, scenes, and people)

in action recognition datasets and mitigates the bias by resampling existing datasets. In-

stead, our proposed method forces action models to ignore irrelevant clues by dynamically

4
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increasing the object diversity without recollecting new data. Choi et al.[4] addresses the

scene bias problem in action recognition by encouraging models to learn representation

which is not able to predict scene types.

2.3 Cut-and-paste Synthesis

Synthetic labels are useful due to the expensiveness of human annotation. There are re-

searches using cut-and-paste approaches to synthesize labels for object detection or track-

ing tasks [8, 7, 36, 11, 20]. The proposed method also uses this cut-and-paste approach;

however our intention is not to produce labels but encourage models to ignore irrelevant

objects.

2.4 Adversarial Learning

Adversarial training [33] was used to augment the diversity of training data with adver-

sarial examples, which may increase the robustness of the model. Therefore, lots of tasks

construct the network with such a learning framework like image synthesis, generative

sampling and synthetic data generation [3, 6, 24, 30]. A-Fast-RCNN [39] modifies the

features by spatial dropout to mimic occlusion and deformations. The ST-GAN approach

[24] generates compositing images with geometric corrections for the purpose of warping

the foreground image fitting the background image. [36] employs an adversarial learning

paradigm to train their 3-way competition networks. We follow their adversarial manner

to ensure the realistic of generated images are realistic. However, we composite uncor-

related objects onto input images to eliminate the effects caused by object reliance issue

within datasets, instead of generating new or meaningful data for training.

5
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Chapter 3

Analysis of the Fallacious Object

Reliance (FOR) Issue

As we have illustrated in Fig. 1.1, the main observation that motivates us to proposed

AdvOST is that action models focus on static and unrelated object clues. We regard this

phenomenon as the Fallacious Object Reliance (FOR) issue. In this section, we will dis-

cuss the role that dataset bias plays in this problem, measure how action models rely upon

object hints, and find out when the object reliance property of models becomes problem-

atic and hurt the robustness.

3.1 Object Reliance Level (ORL)

We believe the bias in action datasets is the source that encourages models to rely on

unrelated clues. Fig. 3.2 shows one example of a repeated co-occurrence of an object

and action in the training videos. This kind of association has been discussed in [23] and

defined as a representation bias. Take objects in a dataset of an action dataset D as an

example, they define the object representation bias:

Bobj = log
P (D,Mobj−→act(θobj(D)))

Prand(D)
(3.1)

6
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Here, θobj(D) is the object representation of samples in D extracted by a pre-trained

object classifier, and Mobj−→act is another model trained on dataset D with θobj(D) as in-

put. P (D,Mobj−→act(θobj)) is the accuracy of Mobj−→act, and Prand(D) is the random guess

accuracy of D. Bobj indicates how we can use only object information to predict action

labels.

Using this formula, we can compare object representation biases among different

datasets. However, it does not reveal if an action model Mvid−→act actually depends on

the bias. Therefore, we propose a new measurement that uses the performance align-

ment between Mobj−→act and Mvid−→act to quantify the Object Reliance Level (ORL) of an

action model. The idea is that if the action model Mvid−→act heavily relies on objects, its

behavior will be similar toMobj−→act, which uses only object representation as its input.

To compute performance alignment, we have to break the performance measure P in

eq. 3.1 into per-group performance Pk (e.g. grouped by action class and compute the f1

score for each action), where k denotes the group index. Then, we pick an alignment mea-

surement methodA. For example, one good choice is the Pearson Correlation Coefficient:

Acorr(x, y) =

∑K
k=1(xk − x)(yk − y)√∑K
k=1(xk − x)2(yk − y)2

(3.2)

where K denotes the number of groups. Another reasonable alignment method choice is

the slope of the least-square fit regression line:

Aslope(x, y) =

∑K
k=1(xk − x̄)(yk − ȳ)∑K

k=1(xk − x̄)2
(3.3)

Finally, ORL is formulated as:

ORL(Mvid−→act) = A(P (D,Mvid−→act), P (D,Mobj−→act)) (3.4)

Fig. 3.1 visualizes the strong ORL of I3D in three different datasets. Here per-class

f1 scores are used to compute the per-group performance Pk, and a linear regression clas-

sifier is chosen as the model Mobj−→act, which means it uses only the linear combination

of extracted object features θobj to predict the action.

7
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(a) EPIC-KITCHENS (b) HMDB51 split 1 (c) Moments in Time
Mobj→act f1-score Mobj→act f1-score Mobj→act f1-score

Figure 3.1: The Object Reliance Level(ORL) of I3D on three different datasets. We can
see the strong ORL for all the tested datasets, indicating that high ORL is a prevailing
property across action datasets even for the state-of-the-art action model I3D. Note that
because the EPIC-Kitchens dataset has imbalanced label distribution, we calculate the
weighted version of both Acorr and Aslope and visualize the support number of each class
using different point sizes.

3.2 Fallacious Object Reliance

It should be noted that it is not intrinsically wrong for action models to have a high object

reliance level. If the captured object bias is universal over different datasets, we should

consider the object as an essential part of that action. For instance, it is true that action

”playing piano” does associate with the object ”piano”.

However, object biases in the training setDtrain and testing setDtest are not guaranteed

to be the same. In this situation, action models with heavy object reliance will learn the

wrong object-action association and make inaccurate predictions in the testing set (see

Fig. 3.2).

Therefore, we propose a new method to inspect the discrepancy of object represen-

tation bias between Dtrain and Dtest. The idea is to calculate the performance drop of

Mobj−→act when trained on Dtrain and test on Dtest:

Bdiff(Dtrain, Dtest, k) =Pk(Dtrain,Mobj−→act(θobj(Dtrain))−

Pk(Dtest,Mobj−→act(θobj(Dtest)),

whereMobj−→act = argmax
M ′

P (Dtrain,M
′(θobj(Dtrain))

(3.5)

In our experiments, we chooseMobj−→act as a simple linear regression classifier and Pk

as the per-class f1 scores, hence equation 3.5 can be interpreted as the object distribution

8
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(a) (b)

Figure 3.2: Examples of Fallacious Object Reliance with the action class ”throw”. (a)
in the EPIC-KITCHENS dataset, ”throw” is often tied to ”trash can”, so the model re-
lies on trash cans to predict the throwing action. However, in the testing set, ”throw”
may be associated with other things like the highlighted pot. (b) in HMDB51, ”throw”
is related to totally different objects from EPIC-KITCHENS. Action recognition models
should capture the motion part of actions and avoid these FOR problems.

divergence of Dtrain and Dtext given an action k.

If an action model performs worse on groups whose object bias discrepancy is large, it

indicates the model is using the wrong object-action association to predict actions. Using

this idea, we further propose our Fallacious Object Reliance (FOR) measurement, which

is used to evaluate the alignment between the action model performance on Dtest and the

negative of object bias discrepancy.

FOR(Mvid−→act) = A(P (Dtest,Mvid−→act),−Bdiff(Dtrain, Dtest, k)) (3.6)

Fig. 3.3 shows the FOR scores of I3D on three different datasets. Note that because

Mobj−→act has almost 100% accuracy on theDtrain of HMDB split 1, Bdiff(Dtrain, Dtest, k) is

close to (1− the performance on Dtest), so Fig. 3.3 (b) is almost the same to Fig. 3.1 (b).

9
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(a) EPIC-KITCHENS (b) HMDB51 split 1 (c) Moments in Time

Figure 3.3: The Fallacious Object Reliance (FOR) scores of I3D on three different
datasets. As we can see, although I3D has strong ORL on all the three datasets, it remains
high FOR scores only on EPIC-KITCHENS and HMDB51. This indicates that either Mo-
ments in Time dataset is better calibrated so that it contains enough object diversity or it
has similar object-action associations between its training and test sets.

10



Chapter 4

Proposed Method

Synthesizer 
Classifier

Discriminator

Augmented Video Vaug

Original Video Vorig

Object Image Iobj & 
Object Mask Mobj

Pasted Mask Mpaste Optical Flow of  Vorig

Lflow_overlap

LG
LD

Lclf
Ladv

Figure 4.1: The overall architecture of AdvOST. AdvOST is composed of three different
sub-networks: (a) a synthesizer S that affinely transforms the given object image and
pastes it onto the original video to form an augmented video, (b) the classifierC to predict
the action class given the augmented video at the training stage, and (c) the discriminator in
charge of judging whether the input video is original or augmented and providing training
signals for the synthesizer to produce natural synthesis. Additional regularization term
called flow overlap loss is added to prevent the synthesizer paste on where motion occurs.

4.1 AdvOST

We show our overall training architecture called AdvOST in Fig. 4.1. This architecture

consists of a synthesizer S, a classifier C, and a discriminator D.

For the synthesizer S, given an original video vorig ∈ Vorig and an object image i ∈ Iobj,

11



S will infer an affinement matrix to apply on the object image. The affined object image

is pasted onto vorig and produce a augmented video vaug. Its network structure is illustrated

and described in Fig. 4.2.

The classifier’s target is to predict the action given vaug in the training stage and vorig

in the testing stage. Its architecture can be any action recognition models, therefore the

AdvOST is model-agnostic.

The final sub-network D acts just like the discriminator in the traditional structure of

the generative adversarial network [12]. In each batch, vorig and vaug are fed toD, and it has

to judge if the input video is authentic (vorig) or synthesized (vaug). Its goal is to prevent the

synthesizer S from pasting objects in unnatural positions or at weird angles. Otherwise,

it will be easy for the classifier to ignore the unnatural parts and make our purpose less

effective.

Video Convs

Object Convs

Feature Mixing Convs

Global 
Average 
Pooling

Affine Parameters 
Predictor (FC layers)

Translation tx, ty
Scaling sx, sy

Rotation θ

Affine Matrix

Affined 
Object

Mpaste

Synthesizer Output

Intermediate
input/output

Operation

Vorig

Iobj

Channel
Concatenation

Affine 
Transform

Affine 
Transform

Synthesizer Input

Affine Matrix

Iobj

Mobj Vorig

Paste Vaug

(a)

(b)

(c)

(d) (e)

Figure 4.2: The network architecture of our synthesizer. (a) The video convs block and the
object convs block extract the features of given videos and objects. The extracted features
are concatenated in the channel dimension and processed by (b) the feature mixing convs
block, where the output is then pooled by a global average pooling layer. The pooled
feature is then fed into (c) the affinement parameters predictor to predict 5 parameters of
the affinement matrix. The 5 degrees-of-freedom includes 2 translation, 2 scalings, and
1 rotation. We then apply the (d) affinement transformation on the object image Iobj and
its maskMobj and use them to (e) paste the affined object onto the original video Vorig and
produce the augmented video Vaug and an affined object maskMpaste.

12
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4.2 Loss Design

We’ll discuss the losses we design one by one in this section.

Classification Loss. A cross-entropy loss is used as our classification loss to train

our classifier C. Given an augmented video and the corresponding action label (v, y) ∈

(Vaug,Y) from k different action classes, the loss is:

Lclf = −E(v,y)∼(Vaug,Y)

N∑
k=1

yk logC(v) (4.1)

Adversarial Loss. To make the classifier more robust to unrelated objects, an ad-

versarial loss is added during the optimization of the synthesizer. It’s formulated as the

negative cross-entropy loss:

Ladv = E(v,y)∼(Vaug,Y)

N∑
k=1

yk logC(v) (4.2)

Realness Losses. We use the original GAN loss designed by Goodfellow et al.[12] to

implement our realness losses LG
real and LD

real. For the generator’s objective, we apply the

non-saturating version:

LD
real = −Ev∼Vorig

[logD(v)]− Ev∼Vorig
[1− logD(S(v)] (4.3)

LG
real = −Ev∼Vorig

[logD(S(v)] (4.4)

Flow Overlap Penalty. Because of Ladv, the synthesizer may learn to paste on where

the motion occurs when it’s the most discriminative area, which is against our goal. There-

fore, we come up with the Flow Overlap Penalty to penalize the overlapping area of the

paste maskMmask and the corresponding optical flow Fv of Vorig. Adding this penalty has

an extra benefit on preventing a trivial solution for the synthesizer: enlarge the pasted ob-

ject to occupy the whole video, because, in this situation, no unnatural sign can be found

by the discriminator, and no clue can be used by the classifier to predict the action. The

penalty is simply calculated by elementwisely multiply Mpaste and Fv for T frames with

13
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height H and widthW as follows.

Lflow_overlap =
T∑
t

W∑
x

H∑
y

Mpaste(x, y)× Fv(t, x, y) (4.5)

4.3 Optimization

The classifier, and the discriminator are trained using Lclf, LD
real, respectively. The syn-

thesizer is trained using λaLadv + λrL
G
real + λfLflow_overlap , where λa, λr, and λf are the

hyper-parameters during training.

14
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Chapter 5

Experiment

5.1 Datasets

Here we will introduce the action datasets on which we test AdvOST and the object source

datasets we use for Iobj.

Action datasets. EPIC-KITCHENS [5] is the main action recognition testbed we use

to test our analysis and AdvOST. This dataset consists of 39,594 segments in 432 videos,

where 125 daily kitchen activities labels like cooking, mixing, and cutting are provided.

This dataset is collected in the 31 different participants’ kitchens, therefore the environ-

ment difference among each kitchen must be considered. We manually split part of the

released training data into two validation sets, seen and unseen. The seen validation set

has 12% randomly sampled segments of videos in kitchens that have appeared in the train-

ing set, while the unseen validation set consists of videos only in kitchens of participant

05, 06, and 07, where 9.19% videos and 7.43% segments are included. The unseen set is

more difficult since the object and action distribution is very different from the training

set.

Besides, we also test on the benchmarks HMDB51 [22] and UCF101 [32]. HMDB51

includes 6.8K videos of 51 actions, while UCF101 is composed of around 13K videos of

101 actions. Both dataset organizers provided 3 splits, and each split has its own training

and testing data.

15
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Object source datasets. our method makes use of object images to augment the training

videos with our synthesizer. Since EPIC-KITCHENS dataset has another detection track

for common kitchen objects, we use the bounding box annotation to crop object images,

which are used as Iobj when experimenting on EPIC-KITCHENS’s action track. When

testing on other action datasets, we use the objects cropped from COCO detection dataset

[25].

5.2 Experiment Details

The synthesizer loss weights λa, λr, and λf are all set to 1. The only exception is when

using TSN as our backbone, λf is empirically set to 0.1.

The I3D network we use is based on the InceptionV1 backbone[2] and pretrained on

Kinetics-400. For SlowFast, we choose 8× 8, R50 and use its official pretrained weights.

The TSN network we use is with the BNInception backbone [18] pretrained on ImageNet.

The sampled frame numbers for I3D, TSN, and SlowFast are 16, 16, and 32, respectively.

When training, we first resize the input video such that the shorter edge becomes 256

pixels length. Then, we randomly crop the videos into 256x256 and resize it to 224x224.

No other data augmentation technique is used. At testing, to make the comparison simple,

we do not include any test time augmentation.

We use the Adam optimizer with betas as 0.5 and 0.999 for all the backbones and our

sub-networks. The learning rate is set to 0.0001 and decay by 0.1 for every 5 epochs.

when training the baselines. When training AdvOST learning rates for the synthesizer,

classifier, and discriminator are set to 0.00015, 0.0003, and 0.00015, respectively. The

final scores we report for all experiments use the epoch that acquires the highest mean of

top 1 and top 5 accuracy of the validation set.

5.3 Results

EPIC-KITCHENS. Table 5.1 show the results of our AdvOST method and the Falla-

cious Object Reliance metrics (FOR) on the three different backbones, i.e. I3D, TSN, and
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Table 5.1: Performance of seen validation set of EPIC-KITCHENS dataset. After apply-
ing AdvOST, the baselines constantly get higher performance and have lower Fallacious
Object Reliance scores in the most case.

Split Method Top1 Acc.↑ Top5 Acc.↑ FORcorr ↓ FORslope ↓
Seen I3D 47.59% 79.70% 0.5346 0.8701

I3D+AdvOST 49.21% 80.58% 0.5145 0.8095
TSN 40.68% 79.64% 0.4865 0.7112
TSN+AdvOST 41.02% 79.64% 0.4610 0.6735
SlowFast 56.48% 82.53% 0.5984 0.9548
SlowFast+AdvOST 56.05% 82.56% 0.5879 1.024

unseen I3D 43.05% 74.24% 0.8231 1.122
I3D+AdvOST 43.43% 74.14% 0.8230 1.114
TSN 33.36% 71.59% 0.7383 0.9422
TSN+AdvOST 34.31% 72.21% 0.7674 0.9490
SlowFast 49.57% 77.83% 0.8747 1.193
SlowFast+AdvOST 51.60% 78.02% 0.8632 1.297

SlowFast. For the seen and unseen validation sets of EPIC-KITCHENS, all backbones

have intermediate or strong FOR scores, indicating that even the recent state-of-the-art

action models have the FOR issue. Also, the FOR scores in the unseen validation set is

much higher than the ones in the seen validation set. It’s because the unseen validation

set contains much different object-action joint distribution, which demonstrates the FOR

metrics we propose can exploit and reflect the issue we found.

After applying our AdvOST architecture, almost all the three backbones have Top1

accuracy improved compared to the ones without AdvOST, showing our proposed training

procedure does enhance the robustness of backbones.

For the FOR scores, we found that in the seen dataset, most of the backbones have

decreased FOR scores after using AdvOST. However, in the unseen dataset, only the two

SOTA models I3D and SlowFast have reduced FOR scores, while the TSN ones increase.

This result may imply that the TSN model cannot achieve high accuracy as other models

in the unseen dataset because it does not learn enough valid object association.

Moment in Time. As the Moment in Time dataset has a better variety of objects in the

training data, the FOR issue is less severe. Still, after applying our AdvOST, we still get
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Table 5.2: Performance of Moments in Time dataset.

Method Top1 Acc.↑ Top5 Acc.↑ FORcorr ↓ FORslope ↓
I3D 25.60% 51.38% -0.2410 -0.4197
I3D+AdvOST 27.05% 53.73% -0.2262 -0.3968

Table 5.3: Performance for the HMDB51 dataset. Our method could improve both the
action recognition accuracy and FOR scores in most cases.

Split Method Top1 Acc. ↑ Top5 Acc. ↑ FORcorr ↓ FORslope ↓
1 I3D 59.80% 88.69% 0.7392 0.6797

I3D+AdvOST 60.26% 88.23% 0.7239 0.6796
2 I3D 60.84% 87.40% 0.8221 0.7698

I3D+AdvOST 61.11% 87.64% 0.7675 0.6868
3 I3D 60.91% 87.45% 0.8236 0.8457

I3D+AdvOST 61.50% 88.16% 0.7845 0.8626

accuracy improvement as AdvOST forces the model to learn more about the motion itself

while staying low for the object dependency.

HMDB51. We also test AdvOST on a backbone I3D using HMDB51. Table 5.3 shows

that for the three testing sets, AdvOST consistently improves the performance in terms of

the Top1 accuracy and mitigates the FOR issue.

Table 5.4: Ablation study on the EPIC-KITCHENs dataset with I3D as backbone.

Synthesizer Discriminator Lflow_overlap Top1 Acc.↑ Top5 Acc.↑ FORcorr ↓ FORslope ↓
47.59% 79.70% 0.5346 0.8701

✓ ✓ 48.27% 79.67% 0.4823 0.8386
✓ ✓ 47.35% 80.01% 0.5097 0.8619
✓ ✓ ✓ 49.21% 80.58% 0.5145 0.8095

5.4 Ablation Study

To validate each component of AdbOST, we conducted an ablation study on the EPIC-

KITCHENs dataset with I3D as a backbone. From Table 5.4 we could observe that all the
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three components are necessary for AdbOST. Without the discriminator, the synthesizer

will generate unreasonable augmented videos so that the performance has a significant

drop. Also, without the flow overlap loss, it is trivial for the synthesizer to fool the model

by blocking the motion part.
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Chapter 6

Discussion

6.1 Per-class Improvement and Confusion Matrix

In order to dig deeper into what AdvOST contributes, we visualize the per-class score

improvement and the difference of confusion matrix of model I3D after applying AdvOST

in Fig. 6.1. The per-class improvement figure in (a) demonstrated the power of AdvOST,

especially for those actions that often occur in particular locations or with specific objects

such as ”peel”, ”pour”, ”dry”, and ”roll”, because for these classes, the original I3D may

spot the surrounding objects repeatedly and learn to make use of these hints.

The confusion matrix difference before and after applying AdvOST can be seen in 6.1

(b). This figure reveals more details hidden in (a). For example, in the left black dashed

box, we understand the improvement f1 score of action ”dry” is due to the decreased

misclassification to ”put”, ”open”, and ”close”, the actions that can take place in more

general scenes. The right black dashed box exposes similar information that after applying

AdvOST, the fallacious association of objects and actions is alleviated. Note that wemerge

the seen and unseen validation sets in the two figures and have filtered out those classes

with less than 20 examples in the validation set for clearer visualization.
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6.2 Grad-CAM Comparison

We show several grad-CAM visualizations in Fig 6.2 to compare the interior behaviors

of pure I3D and I3D with AdvOST and we could see the effectiveness of AdvOST that

guides action models to put more awareness on motion.

(a) Per-class Improvement  (b) Comfusion Matrix Difference

Figure 6.1: (a) The per-class f1 improvement and (b) the changes of the confusion ma-
trix after applying AdvOST on I3D with EPIC-KITCHENS validation sets. (a) shows
AdvOST helps our classifier improves most classes, especially for those actions subject
to certain places or particular objects. The changes in the confusion matrix after apply-
ing AdvOST (b) demonstrate where the improvement comes from in detail. Please refer
session 6.1 for in-depth discussion.
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(a) Input Video (b) CAM of I3D (c) CAM of I3D with AdvOST

Figure 6.2: Grad-CAM visualizations of pure I3D and I3D with AdvOST. Compared to
pure I3D, I3D with AdvOST focuses more on the hands performing that action instead of
the subjects of the action. Besides, as we can see in the first two rows, I3D with AdvOST
can pay attention on both hands if they are present, while pure I3D can not.
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Chapter 7

Conclusion

In this paper, we propose the Object Reliance Level and Fallacious Object Reliance (FOR)

to measure action recognition models’ erroneous dependency on objects in videos, based

on our observations on the dataset’s object bias and CNNmodel’s invalid object-dependent

behavior. Furthermore, we propose a novel model-agnostic approach, Adversarial Object

Synthesis Training (AdvOST), to reduce the models’ FOR score by increasing the object

diversity of the training dataset with an object synthesizer. Experiments on the EPIC-

KITCHEN and HMDB51 datasets suggest that our method could effectively improve the

accuracy of SOTA action recognition models including TSN, I3D, and SlowFast.
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