
doi:10.6342/NTU202003013

國立臺灣大學電機資訊學院電機工程學系

碩士論文
Department of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

形式化驗證零知識證明系統編譯器

From a Dependently Typed Language to ZK-SNARKs
Circuits: A Formally Verified Compiler

許瑞麟

Ruey-Lin Hsu

指導教授：鄭振牟博士

Advisor: Chen-Mou Cheng, Ph.D.

中華民國 109年 7月
July, 2020

doi:10.6342/NTU202003013

ii

doi:10.6342/NTU202003013

謝

首先，我要感謝我的指導教授鄭振牟教授，是他指引了我進入了密

碼學相關的領域，也是他向說我提出了此論文的零知識證明題目。再

來，我要感謝穆信成研究員，是他使我了解了許多與型別理論，程式

推導，和許多與程式語言理論有關的東西。並且，穆老師也對我的論

文提出了很多有幫助的意見。另外，我要感謝我的口試委員：鄭振牟，

楊伯因，穆信成，柯向上，謝謝他們願意撥出時間來當我的口試委員

以及參加我的口試。

iii

doi:10.6342/NTU202003013

iv

doi:10.6342/NTU202003013

Acknowledgements

Above all, I want to thank my advisor Professor Chen-Mou Cheng for

what he did to introduce me to the field of cryptography and proposed the

topic for this dependently typed zkSNARK compiler to me. I also want to

thank Researcher Shin-ChengMu who helped me understand many program-

ming language theory related topics like type theory and program derivation,

and gave a lot of helpful comments regarding my master thesis. Further-

more, I want to thank Chen-Mou Cheng, Bo-Ying Yang, Shin-Cheng Mu,

and Hsiang-Shang Ko for being a part of my oral examination committee and

taking the time to participate in my oral examination.

v

doi:10.6342/NTU202003013

vi

doi:10.6342/NTU202003013

要

本論文提出一個依值型別的可驗證計算編譯器，並證明其可靠性。

此編譯器將一個淺層嵌入於 Agda當中，具有依值型別的領域特定語

言轉換成一階限制條件。可靠性是轉換正確性的一個部份，表示如果

產生出來的限制條件是可被滿足的，那產生出來的限制條件會是正確

的。藉由利用柯里-霍華德對應，我們在互動式定理證明器 Agda當中

建構此編譯器的形式規格以及證明其可靠性。

關 ： 依值型別程式設計,互動式定理證明器,可驗證計算,形式化

驗證, Agda

vii

doi:10.6342/NTU202003013

viii

doi:10.6342/NTU202003013

Abstract

In this thesis, we will construct and prove the soundness of a dependently

typed verifiable computation compiler. The compiler described in this thesis

compiles a user program written in a dependently typed shallowly embedded

domain specific language in Agda into a set of rank 1 constraints. Soundness

is a part of translational correctness that says that if the generated constraints

are satisfiable, then the generated constraints are correct. By utilizing the

Curry-Howard correspondence, the compiler is formally specified and proved

in the interactive theorem prover Agda.

Keywords: dependently typed programming, interactive theorem prover,

verifiable computation, formal verification, Agda

ix

doi:10.6342/NTU202003013

x

doi:10.6342/NTU202003013

Contents

謝 iii

Acknowledgements v

要 vii

Abstract ix

1 Introduction 1

2 Background 5

2.1 Type Theory . 5

2.2 Verifiable Computation . 7

3 Constructing an Embedded Type Universe 13

3.1 Type Code . 14

3.2 List Membership . 15

3.3 Counting Number of Occurrences . 16

3.4 Finite Types . 17

3.5 Field . 17

3.6 List Monad . 19

3.6.1 Properties of List Monad . 19

3.7 Enumerating Elements of Embedded Types 22

3.7.1 Enumerating Elements of Embedded Pi Types 22

3.7.2 Defining Enumeration of Elements of Embedded Types 30

xi

doi:10.6342/NTU202003013

3.7.3 Uniqueness of Elements in enum 31

3.8 Size of Type Codes . 33

4 Source EDSL 37

4.1 Source . 38

4.2 RWS Monad . 38

4.3 S-Monad . 40

4.3.1 S-Monad Utilities . 41

4.3.2 Examples . 45

5 Compiling Programs From Source to R1CS 53

5.1 RWSInvMonad . 54

5.2 SI-Monad . 58

5.3 Basic Utilities . 59

5.4 Basic Logic Functions . 61

5.5 Auxiliary Compilation Functions . 63

5.6 Main Compilation Functions . 65

5.6.1 Generating Type Constraints . 67

5.7 Compiling Source to R1CS . 69

6 Formal Verification of the Compiler 73

6.1 Solution of R1CS Constraints . 76

6.2 Literal Representation . 78

6.3 Semantics Function for Source . 80

6.4 Compilation Soundness . 82

7 Conclusion 89

A Full Definition of enum 91

B Additional Formal Verification Lemmas and Definitions 95

Bibliography 127

xii

doi:10.6342/NTU202003013

List of Figures

1.1 Compilation Pipeline . 1

xiii

doi:10.6342/NTU202003013

xiv

doi:10.6342/NTU202003013

Chapter 1

Introduction

Dependent type theory[11] is a powerful general purpose tool that can be used for both

general purpose programming and theorem proving. One of the most fascinating and

powerful things about interactive proof assistants based on dependent type theories like

Agda[13], Coq[15], and Idris[4] is the abilily to develop programs together with speci-

fications and proofs of their properties in the same language through the Curry-Howard

correspondence.

In this thesis, I will describe the construction and formal verification of a verifiable

computation compiler that compiles a dependently typed EDSL (embedded domain spe-

cific language) in Agda into a set of rank 1 constraints, which is then piped into the zk-

SNARK library libsnark.

Figure 1.1: Compilation Pipeline

This thesis is an attempt at integrating dependently typed programming into verifi-

1

doi:10.6342/NTU202003013

able computation schemes. A verifiable computation scheme can be used to outsource a

computation to a potentially untrusted third party, where one only has to examine a small

cryptographic proof to know that the computation is performed correctly by a third party.

Oneway of thinking about type systems in programming languages is that type systems

are a way of statically eliminating incorrect programs that might go wrong when executed.

Another way to think about type systems in programming languages is that a type tells you

what you can expect from a program. Suppose that a program p has type (Int, Int), then

the programmer might expect a tuple of integers from the execution of p instead of say, a

tuple of strings.

Thework of Steward et al.[14] on verifiable computation lets a personwrite declarative

programs living in a Haskell DSL that compiles to verifiable computation constraints.

Logically one might think that since dependently typed programming has a long history

in interactive theorem proving and functional programming, it would be interesting to see

what it is like to have a DSL with a more expressive type system that can compile to

verifiable computation constraints. This work is an attempt to explore this question with

dependently typed programming.

By using inductive-recursive definitions to encode dependent types à la Tarski[6], it is

possible to embed a dependently typed DSL within a dependently typed language itself.

This type encoding construction is then used to construct a dependently typed Agda DSL

that targets the verifiable computation backend R1CS. One thing that having dependent

type allows us to have is branching. Having dependent types in our language allows us

to express the possibility of executing different programs with distinct types within our

DSL.

The embedded Agda DSL used for composing the source programs is designed to be

used together with a state transformation monad that records an unused variable together

with a list of input variables (natural numbers) and a list of solver hints and equality con-

straints over an inductively defined Source datatype (indexed over the type of type codes

representing permitted types).

Chapter 2 introduces the background knowledge and ideas used in the compiler, such

2

doi:10.6342/NTU202003013

as type theory, zkSNARK, and verifiable computing. Chapter 3 describes the basic con-

structions used in the compiler. Chapter 4 describes the source language and the utilities

that can be used when writing programs in the source language. In Chapter 5, the con-

struction of the verifiable computation compiler is described, and in Chapter 6, the formal

verification of the soundness of the compiler is described.

3

doi:10.6342/NTU202003013

4

doi:10.6342/NTU202003013

Chapter 2

Background

2.1 Type Theory

Dependent type theory a la MLTT is a Gentzen style natural deduction system. A deriva-

tion in such a system can be seen as an annotated proof tree, and a program can be seen as

a microcosm of its corresponding proof tree. Type theory naturally gives rise to the Curry-

Howard correspondence: the propositions as types interpretation tells us that a program

corresponds to a proof and a type corresponds to a proposition.

The Π type represents universal quantification:

Γ ⊢ A : Set Γ ⊢ B : A→ Set
Π-F

Γ ⊢ Πx : A B x : Set

Γ, x : A ⊢ t : B x
Π-I

Γ ⊢ λx : A. t : Πx : AB x

Γ ⊢ t1 : Πx : AB x Γ ⊢ t2 : A
Π-E

Γ ⊢ t1 t2 : B t2

The Σ type represents existential quantification:

5

doi:10.6342/NTU202003013

Γ ⊢ A : Set Γ ⊢ B : A→ Set
Σ-F

Γ ⊢ Σx : A B x : Set

Γ ⊢ t1 : A Γ ⊢ t2 : B t1
Σ-I

Γ ⊢ (t1 , t2) : Σx : A B x

Γ ⊢ p : Σx : A B x
Σ-fst

Γ ⊢ fst p : A

Γ ⊢ p : Σx : A B x
Σ-snd

Γ ⊢ snd p : B (fst p)

Non-dependent logical implication and cartesian product are special cases of Π and Σ

types respectively.

In type theory, there is the notion of definitional equality, which is a meta-theoretic

equality, and which forms the basis of type checking. Terms and types that are definition-

ally equal are indistinguishable on the object level. Definitional equality can be defined

as the equivalence relation generated by a set of structural and equivalence closure rules

stating that equal terms are substitutable everywhere and that terms are definitionally iden-

tified up to β conversion.

There is also the notion of propositional equality (or equality type), which is an object

level equality that expresses the fact that two terms are equal:

Γ ⊢ A : Set
≡-F

Γ ⊢ _≡A_ : A→ A→ Set

Γ ⊢ x : A
≡-I

Γ ⊢ refl x : x ≡A x

6

doi:10.6342/NTU202003013

Γ ⊢ C : (x y : A)→ x ≡A y→ Set

Γ ⊢ C-refl : (x : A)→ C x x (refl x)

Γ ⊢ x : A

Γ ⊢ y : A

Γ ⊢ p : x ≡A y
≡-E(J)

Γ ⊢ ≡-ind C C-refl x y p : C x y p

In Agda, the Σ type and the propositional equality type can be roughly translated into

their corresponding datatype definitions:

record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
fst : A
snd : B fst

data _≡_ {A : Set} : A → A → Set where
refl : (x : A) → x ≡ x

and a Π type corresponds to a function definition in Agda.

Proofs in Agda are written with dependent pattern matching, which was shown to be

equivalent to traditional type theory with inductive families plus the addition of axiom

K[9][12]. Recent work [5] has also shown that by placing certain restrictions on depen-

dent pattern matching, it’s possible to translate programs written with restricted pattern

matching rules into traditional type theory with inductive families without the use of ax-

iom K. However, in this thesis, we will be using axiom K to construct the compiler and

prove its soundness.

2.2 Verifiable Computation

Verifiable computation can be used to delegate computations to potentially untrusted ma-

chines. In this thesis we will focus on a particular approach of verifiable computation –

7

doi:10.6342/NTU202003013

zkSNARKs. Currently, there are a couple of potential applications for zkSNARKs, like

private transactions or smart contracts in cryptocurrencies and verifiable computation. In

a zkSNARK, there are two parties, a prover and a verifier. The prover is the party per-

forming the computation, and the one producing a cryptographic proof π that the verifier

can use to determine with high probability whether or not the computation is performed

correctly.

A zkSNARK consists of a set of probabilistic algorithms: KeyGen (K), Prove (P),

and Verify (V). Given a security parameter λ and a program C, a zkSNARK protocol

goes as follows:

(kp, kv)← K(λ, C)

π ← P(C, kp, public, witness)

{true, false} ← V(C, kv, public, π)

where kp is the proving key, kv is the verifcation key, public is the public variables,

witness is the non-public (private) variables, and C is the program.

In this thesis, the program C fed to the keygen, the prover and the verifier will be the

R1CS constraints (defined below) generated by our compiler. The variables in C include

the input and output variables of the program together with all the intermediate values.

And public together with witness constitute the variables in C (the purpose of witness

will be discussed later in this section).

Definition 2.2.1. A rank 1 constraint system[2] (R1CS) S over a field F with Ng con-

straints is a set of vectors

{(ai, bi, ci)|i ∈ [1, Ng], ai ∈ F1+Nv , bi ∈ F1+Nv , ci ∈ F1+Nv}.

and a non-negative integer Ni,

where

• F is a field

8

doi:10.6342/NTU202003013

• Nv is the number of variables

• Ni ≤ Nv is the number of public variables.

If there is some public values x ∈ FNi and private values (witness) w ∈ FNv−Ni such

that

⟨ai, (1, x, w)⟩⟨bi, (1, x, w)⟩ = ⟨ci, (1, x, w)⟩

for all i ∈ [1, Ng] (where ⟨m,n⟩ denotes the dot product ofm and n, and the left hand side

of the equation multiplies the two dot products together), then S is said to be satisfiable

with public values x and witness w.

The definition of R1CS can be seen as a charaterization ofNP problems asNP-complete

problems like SAT can be reduced to R1CS satisfaction problems in polynomial time, and

this is used to define what it means to “know” something in the zkSNARK proof of knowl-

edge definition.

Suppose that a programmer A has written a program Prog(a, b) = (a + b) ∗ b where

a, b ∈ F are the inputs to Prog and A wants to outsource this computation Prog to an

untrusted cloud serverCS. A can choose to encode Prog as R1CS constraints (which can

then be further processed into a quadratic arithmetic program (QAP)[8]).

In this example, Prog can be encoded with a single R1CS constraint with three R1CS

variables. Besides a and b, we need another variable out to represent the output of the

program, that is, out = (a + b) ∗ b. So if we fix the order of the variables (including the

constant 1) to be [1, a, b, out], the R1CS constraint would be a singleton set consisting of

the element ([0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 0, 1]). What if we require a to be a boolean?

This can be accomplised by adding another constraint ([0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0,

0]) (which says that a2 = a) to the set of constraints. If a is equal to 0, this constraint

is satisfied. Otherwise, if a ̸= 0, we multiple both sides of the equation by a−1, and we

get that it must be the case that a = 1, and thus, a is a boolean. In this scenario, A wants

to know the result out, and the three variables a, b, and out are all public variable in the

zkSNARK.

After the program is encoded into R1CS, the resulting constraints are then sent to CS,

9

doi:10.6342/NTU202003013

where a key pair is first generated by A and then the programmer has to decide the input

to be fed into Prog (say, fixing a = 2 and b = 3).

Then the transformed arithmetic constraints along with the fixed inputs 2 and 3 are

then sent toCS (which will then try to solve the variable out in the transformed constraints

and execute the prover algorithm P with a, b, and out to generate the proof π). CS then

gives π and the variables that are considered to be public to A (which plays the role of the

verifier). A then checks if the combination of the public variables and π is valid, and if

it is valid, then A can have a high confidence that CS has indeed performed the required

computations, and that the output is correct provided that the transformation of Prog is

correct.

In some variants of the above scenario, the prover might want to hide some information

from the verifier, and this is where the privatewitness in S comes into play. For example,

the prover might want to hide the intermediate values resulting from the execution of a

program from the verifier (and only the input and output of the program is made public),

and from the zero knowledge guarantee from the zk-SNARK backend, we can know that

apart from the public variables, the proof π doesn’t tell us additional information about

the private witness in V C. The properties that a zkSNARK system has to satisfy is made

more precise in the following paragraph.

A zkSNARK[2][3] (which stands for zero knowledge succinct non-interactive argu-

ment of knowledge) satisfies the following properties:

• completeness: If public together with witness constitutes a solution to a program

C, and

(kp, kv)← K(λ, C)

π ← P(C, kp, public, witness)

then

V(C, kv, public, π) = true.

10

doi:10.6342/NTU202003013

• succintness: the size of the proof π generated by P is Oλ(1) (independent of the

size of C).

• proof of knowledge: For any probabilistic polynomial time (PPT) adversaryA, there

is a PPT extractor E such that for every constant c > 0, large enough λ, auxiliary

input z (where |z| = poly(λ)) and every program C of size λc,

Pr

 V(C, kv, public, π) = true

(public, witness) not a solution of C

(kp, kv) ← K(λ, C)

(public, π) ← A(z, pk, pv)

witness ← E(z, pk, pv, rA)

≤ negl(λ)

where rA is the random tape of A.

• zero knowledge: meaning that the proof π does not leak any information about

witness.

Completeness says that someone with a solution (public, witness) to a programC can

always produce a proof π that convinces a verifier who follows the zkSNARK protocol.

Sunccinctness says that the proof π is small. Proof of knowledge says that if a PPT ad-

versary produces public and a proof π that V checks to be valid, then with a large enough

λ, there is a high probability that there is a PPT knowledge extractor E that can “extract”

the knowledge witness from A so that (public, witness) is a solution to C.

Since we will be building the constraints in Agda, following the work of Stewart et

al[14], we define the target compilation type R1CS as follows (parameterized over a type

f):

data R1CS : Set where
IAdd : f → List (f × Var) → R1CS

-- sums to zero
IMul : (a : f) → (b : Var) → (c : Var)

→ (d : f) → (e : Var) → R1CS

11

doi:10.6342/NTU202003013

-- a * b * c = d * e
Hint : (Map Var ℕ → Map Var ℕ) → R1CS
Log : String → R1CS

where IAdd f1 ((f2, i2) ∷ (f3, i3) ... ∷ []) expresses an additive constraint f1 + f2vi2 +

f3vi3 ... = 0, fi ∈ F, vik ∈ F, and IMul fa b c fd e expresses a multiplicative constraint

favbvc = fdve where fa, vb, bc, fd, ve ∈ F. The vectors in an R1CS constraint system are

usually sparse and this is why the R1CS datatype is not defined as a tuple of vectors. A

list of constraints of type [R1CS] in Agda can be easily transformed into the regular tuple

of vectors representation. Since a set of R1CS constraints represents an NP-complete

problem in general, the definition of R1CS includes hints to help the solver solve these

R1CS constraints (and also Log to help with debugging).

To date, there have been numerous attempts at compiling existing programming lan-

guages like C, or specially designed domain specific languages into zkSNARK systems.

ZoKrates[16], SNARKs for C[2], Snårkl[14], and the formally verified compiler made by

Fournet et al[7] are all examples of this. However, the source languages of these existing

compilers lack an expressive type system. Inspired by the work of Snårkl, we attempt to

construct and integrate a dependently typed embedded domain specific language into a

verifiable computation system.

12

doi:10.6342/NTU202003013

Chapter 3

Constructing an Embedded Type

Universe

In this chapter, we are going to construct a dependently typed embedded type universe and

determine R1CS variable allocation for an element in our embedded type universe. First

we are going to describe how the embedded type universe is constructed for our EDSL.

The constructed type universe will have the property that each type in the type universe

will only have finitely many inhabitants (when instantiated with a finite base type). For

such instantiations of our type universe, we can construct an enumeration function enum

that enumerates elements for any embedded type u such that every element in enum u only

appears once.

Given a function occ that counts the number of occurrences of a given element in a

list and a comparison function dec that tells us whether or not two elements with type u

are equal, the fact that every element in enum u is unique can be expressed as follows: for

any element val with type u, occ dec val (enum u) ≡ 1.

Towards the end of this chapter, we will prove that this proposition indeed holds for all

type code u, and we will show how enum can be used to determine the number of R1CS

variables that will be allocated in the compilation process for an element of type u.

13

doi:10.6342/NTU202003013

3.1 Type Code

In this section, we are going to define the main datatype for the embedded type codes.

Type codes are used to define the types that are allowed in the embedded DSL and is

defined as an inductive-recursive definition[6] in Agda. Given any type f, the type codes

are defined in an Agda module parameterized over f as follows:

Definition 3.1.1 (Type Code).

data U : Set
⟦_⟧ : U → Set

data U where
`One : U
`Two : U
`Base : U
`Vec : (S : U) → ℕ → U
`Σ `Π : (S : U) → (⟦ S ⟧ → U) → U

⟦ `One ⟧ = ⊤
⟦ `Two ⟧ = Bool
⟦ `Base ⟧ = f
⟦ `Vec ty x ⟧ = Vec ⟦ ty ⟧ x
⟦ `Σ fst snd ⟧ = Σ ⟦ fst ⟧ (λ f → ⟦ snd f ⟧)
⟦ `Π fst snd ⟧ = (x : ⟦ fst ⟧) → ⟦ snd x ⟧

By interpreting the type codes in U through ⟦_⟧, a subset of Agda types that are allowed
in our EDSL can be obtained. In this thesis, we will instantiate f with types that represent

finite fields since we will be compiling the EDSL into finite field constraints. Later on in

this section we are going to define what it means for a type together with a set of operators

to be a finite field.

14

doi:10.6342/NTU202003013

For example, suppose that we have an Agda function fromBits : {n : ℕ} → Vec Bool

n→ ℕ that transforms an n bit-encoded number into ℕ, then the type code ‘Σ ‘Two (λ x₁
→ ‘Σ ‘Two (λ x₂→ ... ‘Σ ‘Two (λ xₙ→ ‘Vec ‘Base (fromBits (x₁ ∷ x₂ ∷ ... ∷ xₙ ∷ [])))))
expresses the type of vectors with their lengths encoded in n bits. Similarly, we can have

matrices with the number of rows and columns encoded in m + n bits respectively.

Intuitively, one can see that if the type f has only finitely many inhabitants, then for

any u : U, ⟦ u ⟧ also only has finitely many inhabitants, and as such, it is possible to obtain
an enumeration of the elements in ⟦ u ⟧. Formally, we define a type A to be finite or have
finitely many inhabitants if there is an enumeration l : List A of elements in A such that

for any x : A, x ∈ l and that any x in l only occurs once in l. We now define the pieces (list

membership and element counting) that will be put together to form the definition of our

finite type in Agda.

3.2 List Membership

Definition 3.2.1 (Any).

data Any {A : Set} (P : A → Set)
: List A → Set where

here : ∀ {x xs} (px : P x) → Any P (x ∷ xs)
there : ∀ {x xs} (pxs : Any P xs) → Any P (x ∷ xs)

Given a predicate P : A → Set and a list l : List A, Any P l holds if there is at least one

element m : A in l such that P m holds.

With the Any datatype defined, we now proceed to define the membership relation.

Given a type A together with an equivalence relation _≈_, the membership relation is

defined as follows:

Definition 3.2.2 (_∈_).

∈ : A → List A → Set
x ∈ xs = Any (x ≈_) xs

Unless otherwise explicitly stated, _∈_ will be used with propositional equality.

15

doi:10.6342/NTU202003013

3.3 Counting Number of Occurrences

When proving the soundness of the compiler, some of the steps require us to prove that

elements in enum u are unique. To facilitate the development of such proofs (and to

define what it means for a type to have finitely many inhabitants), we define a function

occ that counts the number of occurrences of an element in a list.

Defining occ requires us to have the ability to determine whether or not propositional

equality holds between two inhabitants of a specific type. This is captured with the fol-

lowing definitions:

Definition 3.3.1 (Dec). Decidability of a proposition P

data Dec (P : Set) : Set where
yes : (p : P) → Dec P
no : (¬p : ¬ P) → Dec P

Dec P holds if either P is true or ¬ P is true.

Definition 3.3.2 (Decidable).

Decidable : {A B : Set} → (A → B → Set) → Set
Decidable _∼_ = ∀ x y → Dec (x ∼ y)

If Decidable holds for some equality _~_ : A → A → Set, this means that for any

elements x y : A, we can decide whether or not x and y are propositionally equal.

Equipped with the definition of Decidable, occ is defined as follows.

Definition 3.3.3 (occ). Number of times an element appears in a list (up to propositional

equality).

occ : ∀ {A : Set}
→ (Decidable {A = A} _≡_) → A → List A → ℕ

occ dec a [] = 0
occ dec a (x ∷ l) with dec a x
... | yes p = suc (occ dec a l)
... | no ¬p = occ dec a l

16

doi:10.6342/NTU202003013

With list membership and element counting defined, we now define Finite in the fol-

lowing section.

3.4 Finite Types

Given a type f : Set, the predicate Finite is defined as an enumeration of all elements of

f such that any inhabitant of f only appears in the enumeration once (up to propositional

equality).

Definition 3.4.1 (Finite).

record Finite (f : Set) : Set where
field
elems : List f
size : ℕ
a∈elems : (a : f) → a ∈ elems
occ-1 : (a : f) (dec : Decidable _≡_)

→ occ dec a elems ≡ 1
size≡len-elems : size ≡ length elems

Note that given an arbitrary type f and a b : Finite f, it is not necessarily the case that

a ≡Finite f b since the enumeration in a can be a permutation of the enumeration in b.

Our target compilation type R1CS comprises prime field elements and variables. After

Finite is defined, we now define what it means for a type to be an algebraic field.

3.5 Field

Definition 3.5.1 (Field). Field f is defined as a record consisting of an addition operator

+, a multiplication operator _*_, an additive unit zero, a multiplicative unit one, an

additive inverse operation -_, and a multiplicative inverse 1/_.

record Field (f : Set) : Set where
field

17

doi:10.6342/NTU202003013

+ _*_ : f → f → f
-_ : f → f
1/_ : f → f
zero : f
one : f

(Note: _+_, _*_, -_, 1/_, zero, one are renamed to be _+F_, _*F_, -F_, 1F/_, zerof, onef

respectively in the later chapters of this thesis)

Definition 3.5.2 (IsField). Field axioms.

record IsField (f : Set) (field' : Field f)
: Set where

open Field field'
field

+-identityˡ : ∀ x → zero + x ≡ x
+-identityʳ : ∀ x → x + zero ≡ x
+-comm : ∀ x y → x + y ≡ y + x
*-comm : ∀ x y → x * y ≡ y * x
*-identityˡ : ∀ x → one * x ≡ x
*-identityʳ : ∀ x → x * one ≡ x
+-assoc : ∀ x y z → ((x + y) + z)

≡ (x + (y + z))
*-assoc : ∀ x y z → ((x * y) * z)

≡ (x * (y * z))
+-invˡ : ∀ x → ((- x) + x) ≡ zero
+-invʳ : ∀ x → (x + (- x)) ≡ zero
*-invˡ : ∀ x → ¬ x ≡ zero → (1/ x) * x ≡ one
*-invʳ : ∀ x → ¬ x ≡ zero → x * (1/ x) ≡ one
*-distr-+ˡ : ∀ x y z → (x * (y + z))

≡ ((x * y) + (x * z))

18

doi:10.6342/NTU202003013

*-distr-+ʳ : ∀ x y z → ((y + z) * x)
≡ ((y * x) + (z * x))

IsField f ops describes the conditions for a type fwith the field operations ops to be a field.

With our embedded type universe and the definition of finite field defined, we now

proceed to define list monad before we construct the enumeration function enum that enu-

merates elements of ⟦ u ⟧.

3.6 List Monad

Definition 3.6.1 (return). (List)

return : ∀ {A : Set} → A → List A
return a = [a]

where [a] denotes the singleton list with only one element a in it.

Definition 3.6.2 (_>>=_). (List)

>>= : {A B : Set}
→ List A → (A → List B) → List B

[] >>= f = []
(x ∷ ma) >>= f = f x ++ (ma >>= f)

where ++ denotes list concatenation.

In order to reason about monadic programs written in list monad later on, we prove a

couple of lemmas to fascilitate these proofs.

3.6.1 Properties of List Monad

Suppose that we have l >>= f : List A for some A. What is a necessary and sufficient

condition for us to know that a particular element y falls inside of l >>= f ? If there is an

element x ∈ l such that y ∈ f x, then we know that it must also fall inside of l >>= f :

19

doi:10.6342/NTU202003013

Lemma 3.6.1 (∈->>=).

∈->>= : ∀ {A B : Set} (l : List A)
(f : A → List B) → ∀ x → x ∈ l

→ ∀ y → y ∈ f x → y ∈ l >>= f

Proof. By straightforward induction on the derivation of x ∈ l.

Conversely, we have:

Lemma 3.6.2 (∈->>=⁻).

∈->>=⁻ : {A B : Set} (l : List A)
(f : A → List B) → ∀ y → y ∈ l >>= f
→ ∃ (λ x → x ∈ l × y ∈ f x)

Proof. By straightforward induction on l.

Now suppose that we’ve written the following Agda program to help with enumerating

elements of some finite types A and B:

makeProducts : {A B : Set}
→ List A → List B → List (A × B)

makeProducts l₁ l₂ = do
a ← l₁
b ← l₂
return (a , b)

where _×_ denotes the usual cartesian product type. It’s obvious that an element (x, y) :

A × B falls inside of makeProducts l₁ l₂ when x ∈ l₁ and y ∈ l₂. The following lemma
proves a generalized version of the above statement where B is dependent on A and the

domain of _+_ ranges over arbitrary (m : A) and (n : B m).

Lemma 3.6.3 (∈l-∈l’-∈r).

20

doi:10.6342/NTU202003013

∈l-∈l'-∈r : ∀ {A : Set} {B : A → Set} {C : Set}
(l : List A) (_+_ : (x : A) → B x → C)
→ ∀ x y → x ∈ l → (l' : (x : A) → List (B x))
→ y ∈ l' x → x + y ∈ (l >>= λ r →

l' r >>= λ rs →
return (r + rs))

Proof. Corollary of ∈->>=.

In the later sections of this chapter, we are going to prove that elements in the enu-

meration produced by enum (which will be introduced later in this chapter) are unique.

The following lemma is going to help with decomposing the number of occurrences of an

element in the subparts of enum into simpler parts. Take the program makeProducts in

Section 3.6.1 for example again, if every element of l₁ in makeProducts is unique, then

the proposition ∀ x₁→ ¬ x ≡ x₁→ ¬ y ∈ f x₁ (a premise of occ->>=) is satisfied for any x
∈ l₁ : List A and k : B such that y = (x, k) and f = λ a→ l₂ >>= λ b→ (a , b) (because the

first projections of the tuples are distinct). And the following lemma is going to be applied

when we are counting occurrences of elements that appear in the subparts of enum, which

are constructed in a way that is similar to the above makeProducts example.

Lemma 3.6.4 (occ->>=).

occ->>= : ∀ {A B : Set}
(decA : Decidable {A = A} _≡_)
(decB : Decidable {B = B} _≡_)
(l : List A) (f : A → List B) → ∀ x y →
(prf : ∀ x₁ → ¬ x ≡ x₁ → ¬ y ∈ f x₁) →
occ decB y (l >>= f) ≡ (occ decA x l * occ decB y (f x))

Proof. By straightforward induction on l.

As the embedded DSL is compiled into R1CS, it is necessary to determine the R1CS

representation of an element e : ⟦ u ⟧. To achieve this, the number of variables that has

21

doi:10.6342/NTU202003013

to be allocated for e has to be determined. Before we define the function tySize that de-

termines how many variables are allocated for an element of some ⟦ u ⟧, the enumeration
function enum that enumerates elements of embedded types is defined first as we rely on

enum to determine R1CS variable allocation.

3.7 Enumerating Elements of Embedded Types

For any finite type f, it is possible to define an enumeration function enum : (u : U) →

List ⟦ u ⟧ that enumerates all elements of ⟦ u ⟧ exactly once for all u since the base cases
are finite. Most cases of enum are quite trivial. The only non-trivial case is the case of Π

types.

3.7.1 Enumerating Elements of Embedded Pi Types

In order to enumerate elements of embeddedΠ types, a couple of auxiliary definitions are

needed. Observe that when pattern matching is done on u, in the case of Π types (let u =

‘Π v x), it is easy to generate a list of pairs of type List (Σ ⟦ v ⟧ (λ k→ List ⟦ x k ⟧)) with
the usual list monad by structural recursion that pairs possible inputs to the Π type with

the possible outputs together:

pairs = enum v >>= \r -> return (r , enum (x r))

With these pairs defined, we now define a function genFunc that transforms these pairs

into List (List (Σ ⟦ u ⟧ (λ v→ ⟦ x v ⟧))) (which represents a list of functions) that can then
be further transformed into a list of functions:

Definition 3.7.1 (genFunc).

genFunc : ∀ (u : U) (x : ⟦ u ⟧ → U)
→ List (Σ ⟦ u ⟧ (λ v → List ⟦ x v ⟧))
→ List (List (Σ ⟦ u ⟧ (λ v → ⟦ x v ⟧)))

genFunc u x [] = [[]]
genFunc u x (x₁ ∷ l) with genFunc u x l

22

doi:10.6342/NTU202003013

... | rec = do
r ← rec
choice ← proj₂ x₁
return ((proj₁ x₁ , choice) ∷ r)

To give a sense of what genFunc is doing, suppose that we are given a constant type

family fam over ‘Two that maps false and true to ‘Base1, and the list l = [(false , [2, 3]),

(true , [5, 6])] of type List (Σ ⟦ ‘Two ⟧ (λ v→ List ⟦ fam v ⟧)). This input list says that the
functions that we are building can map false to either 2 or 3, and map true to either 5 or 6.

By feeding these arguments into genFunc, we get the list of all possible input output pairs

[[(false, 2), (true, 5)], [(false, 3), (true, 5)], [(false, 2), (true, 6)], [(false, 3), (true, 6)]].

The relationship between the elements in the output of genFunc and the input list of

genFunc is captured by the following relation:

Definition 3.7.2 (FuncInst).

data FuncInst (A : Set) (B : A → Set)
: List (Σ A B) → List (Σ A (λ v → List (B v)))

→ Set where
InstNil : FuncInst A B [] []
InstCons : ∀ l l' → (a : A) (b : B a) (ls : List (B a))

→ b ∈ ls → (ins : FuncInst A B l l')
→ FuncInst A B ((a , b) ∷ l) ((a , ls) ∷ l')

An instance of FuncInst A B xs ys says that if x and y are the i-th elements of xs and ys

respectively, then proj1 x and proj1 y are equal, and proj2 x ∈ proj2 y.

We show that FuncInst ⟦ u ⟧ (λ z→ ⟦ x z ⟧) f l if and only if f ∈ genFunc u x l with
the following two lemmas.

Lemma 3.7.1 (FuncInst→genFunc).
1where ‘Base maps to say a prime field or natural numbers

23

doi:10.6342/NTU202003013

FuncInst→genFunc : ∀ (u : U) (x : ⟦ u ⟧ → U)
(l : List (Σ ⟦ u ⟧ (λ v → List ⟦ x v ⟧)))
(f : List (Σ ⟦ u ⟧ (λ v → ⟦ x v ⟧)))
→ FuncInst ⟦ u ⟧ (λ z → ⟦ x z ⟧) f l
→ f ∈ genFunc u x l

Proof. By induction on the derivation of FuncInst. The base case is trivial, and the induc-

tive case is proved by straightforward application of ∈->>=.

Lemma 3.7.2 (genFunc→FuncInst).

genFunc→FuncInst : ∀ (u : U) (x : ⟦ u ⟧ → U)
(l : List (Σ ⟦ u ⟧ (λ v → List ⟦ x v ⟧)))
(f : List (Σ ⟦ u ⟧ (λ v → ⟦ x v ⟧)))
→ f ∈ genFunc u x l
→ FuncInst ⟦ u ⟧ (λ z → ⟦ x z ⟧) f l

Proof. By induction on l.

genFunc also satisfies this property (which is captured by FuncInst):

Lemma 3.7.3 (genFuncProj₁).

genFuncProj₁ : ∀ (u : U) (x : ⟦ u ⟧ → U)
→ (l : List (Σ ⟦ u ⟧ (λ v → List ⟦ x v ⟧)))
→ (x₁ : List (Σ ⟦ u ⟧ (λ v → ⟦ x v ⟧)))
→ x₁ ∈ genFunc u x l
→ map proj₁ x₁ ≡ map proj₁ l

Proof. By induction on l. The base case is trivial, and the inductive case can be proved

with ∈->>=⁻ and IH.

After genFunc is defined, we need to construct a function that transforms the output

of genFunc into a list of actual functions. To do this, we first construct the following

piFromList function that transforms a list of input output pairs into a partial function (from

(dom : ⟦ u ⟧) to ⟦ x dom ⟧) by induction on the derivation of dom ∈ enough:

24

doi:10.6342/NTU202003013

Definition 3.7.3 (piFromList).

piFromList : ∀ (u : U) (x : ⟦ u ⟧ → U)
→ (enough : List ⟦ u ⟧)
→ (l : List (Σ ⟦ u ⟧ (λ v → ⟦ x v ⟧)))
→ (map proj₁ l ≡ enough)
→ (dom : ⟦ u ⟧)
→ dom ∈ enough → ⟦ x dom ⟧

piFromList u x .(d ∷ _) ((d , v) ∷ l) refl dom
(here refl) = v

piFromList u x (._ ∷ rest) (x₁ ∷ l) refl dom
(there dom∈enough)

= piFromList u x rest l refl dom dom∈enough

and provided with a proof ∀ x→ x ∈ eu that the enumeration of u is complete, we can get
total functions out of piFromList as demonstrated in the following listFuncToPi function

when the inputs are in sync. When listFuncToPi is given a list l : List (List (Σ ⟦ u ⟧ (λ v

→ ⟦ x v ⟧))) representing a list of Π functions, we can get a list of actual functions as its

output (given that l is good enough):

Definition 3.7.4 (listFuncToPi).

listFuncToPi : ∀ (u : U) (x : ⟦ u ⟧ → U)
→ (eu : List ⟦ u ⟧)
→ (∀ elem → elem ∈ eu)
→ (l : List (List (Σ ⟦ u ⟧ (λ v → ⟦ x v ⟧))))
→ (∀ elem → elem ∈ l → map proj₁ elem ≡ eu)
→ List ⟦ `Π u x ⟧

listFuncToPi u x eu ∈eu [] proj₁l≡eu = []
listFuncToPi u x eu ∈eu (l ∷ l₁) proj₁l≡eu

= (λ dom → piFromList u x eu l (proj₁l≡eu l (here refl))
dom (∈eu dom))

25

doi:10.6342/NTU202003013

∷ listFuncToPi u x eu ∈eu l₁
(λ m m∈l → proj₁l≡eu m (there m∈l))

From the construction of listFuncToP i, we can see that the following lemma holds:

Lemma 3.7.4 (f∈listFuncToPi).

f∈listFuncToPi :
∀ (u : U) (x : ⟦ u ⟧ → U)
(eu : List ⟦ u ⟧)
(∈eu : ∀ (elem : ⟦ u ⟧) → elem ∈ eu)
(funcs : List (List (Σ ⟦ u ⟧ (λ v → ⟦ x v ⟧))))
(func : List (Σ ⟦ u ⟧ (λ v → ⟦ x v ⟧)))
(eq : (x₁ : List (Σ ⟦ u ⟧ (λ v → ⟦ x v ⟧))) →

x₁ ∈ funcs → map proj₁ x₁ ≡ eu)
(f : ⟦ `Π u x ⟧)
→ (mem : func ∈ funcs)
→ f ≡ (λ d → piFromList u x eu func

(eq func mem) d (∈eu d))
→ f ∈ listFuncToPi u x eu ∈eu funcs eq

Proof. By straightforward induction on the derivation of func ∈ funcs.

Similarly, we can define a function piToList that transforms an element of an embedded

Π type back into a list of input/output pairs:

Definition 3.7.5 (piToList).

piToList : ∀ (u : U) (x : ⟦ u ⟧ → U)
→ (eu : List ⟦ u ⟧) → (f : ⟦ `Π u x ⟧)
→ List (Σ ⟦ u ⟧ λ v → ⟦ x v ⟧)

piToList u x [] f = []
piToList u x (x₁ ∷ eu) f = (x₁ , f x₁) ∷ piToList u x eu f

26

doi:10.6342/NTU202003013

Having both piFromList and piToList defined, now we prove that piFromList is both

a left inverse and a right inverse of piToList (under good enough conditions).

In order to prove piFromList∘piToList≗id, we first prove an auxilliary lemma
piFromList∘piToList≗idAux (since if we directly prove piFromList∘piToList≗id by induc-
tion on eu, the premise ∀ elem→ elem ∈ eu no longer holds, and the induction fails).

Lemma 3.7.5 (piFromList∘piToList≗idAux).

piFromList∘piToList≗idAux : ∀ (u : U) (x : ⟦ u ⟧ → U)
(eu : List ⟦ u ⟧)
(f : ⟦ `Π u x ⟧)
(p : map proj₁ (piToList u x eu f) ≡ eu)
(t : ⟦ u ⟧) (t∈eu : t ∈ eu)
→ f t ≡ piFromList u x eu (piToList u x eu f) p t t∈eu

Proof. By induction on the derivation of t ∈ eu.

Corollary 3.7.6 (piFromList∘piToList≗id).

piFromList∘piToList≗id : ∀ (u : U) (x : ⟦ u ⟧ → U)
(eu : List ⟦ u ⟧)
(∈eu : ∀ elem → elem ∈ eu) (f : ⟦ `Π u x ⟧)
(p : map proj₁ (piToList u x eu f) ≡ eu)
→ ∀ (t : ⟦ u ⟧)
→ f t ≡ piFromList u x eu (piToList u x eu f)

p t (∈eu t)

piFromList∘piToList≗id says that piFromList is a left inverse of piToList.

Proof. Corollary of piFromList∘piToList≗idAux.

In order to prove that piFromList is a right inverse of piToList (under good enough

conditions), we need the following lemma:

Lemma 3.7.7 (piFromListLem).

27

doi:10.6342/NTU202003013

piFromListLem : ∀ (u : U) (x : ⟦ u ⟧ → U)
(dec : ∀ {u} → Decidable {A = ⟦ u ⟧} _≡_)
(x₁ : ⟦ u ⟧) (x₂ : Σ ⟦ u ⟧ (λ v → ⟦ x v ⟧))
(px : proj₁ x₂ ≡ x₁)
(eu : List ⟦ u ⟧)
(l : List (Σ ⟦ u ⟧ (λ v → ⟦ x v ⟧)))
(uniq : occ dec x₁ eu ≡ 1) (p : map proj₁ l ≡ eu)
→ (prf : x₁ ∈ eu) (prf' : x₂ ∈ l)
→ (x₁ , piFromList u x eu l p x₁ prf) ≡ x₂}

piFromListLem says that the function that we get from piFromList actually corresponds

to the input output pairs l when all elements of eu are unique and the first components of

the elements in l correspond to eu.

Proof. By straightforward induction on the derivation of x₁ ∈ eu followed by a case anal-
ysis on the derivation of x₂ ∈ l.

We first prove an auxiliary lemma piToList∘piFromList≡idAux in order to do induction
on the list eu given to piToList.

Lemma 3.7.8 (piToList∘piFromList≡idAux).

piToList∘piFromList≡idAux : ∀ (u : U) (x : ⟦ u ⟧ → U)
(dec : ∀ {u} → Decidable {A = ⟦ u ⟧} _≡_)
(eu : List ⟦ u ⟧)
(∈eu : ∀ elem → elem ∈ eu)
(eu' eu'' : List ⟦ u ⟧)
(eq : eu'' ++ eu' ≡ eu)
(l l' l'' : List (Σ ⟦ u ⟧ (λ v → ⟦ x v ⟧)))
(lenEq : length eu' ≡ length l')
(eq' : l'' ++ l' ≡ l)
(uniq : ∀ v → occ dec v eu ≡ 1)

28

doi:10.6342/NTU202003013

(p : map proj₁ l ≡ eu)
→ piToList u x eu'

(λ dom → piFromList u x eu l p dom (∈eu dom)) ≡ l'

Proof. By induction on eu’ followed by case analysis on l’. The inductive case can be

proved by applying IH and piFromListLem.

After proving the auxiliary lemma piToList∘piFromList≡idAux, we can recover

piToList∘piFromList≡id as a corollary of the auxiliary lemma.

Lemma 3.7.9 (piToList∘piFromList≡id).

piToList∘piFromList≡id : ∀ (u : U) (x : ⟦ u ⟧ → U)
(dec : ∀ {u : U} → Decidable {A = ⟦ u ⟧} _≡_)
(eu : List ⟦ u ⟧)
(∈eu : ∀ elem → elem ∈ eu)
(l : List (Σ ⟦ u ⟧ (λ v → ⟦ x v ⟧)))
(uniq : ∀ v → occ dec v eu ≡ 1)
(p : map proj₁ l ≡ eu)
→ piToList u x eu

(λ dom → piFromList u x eu l p dom (∈eu dom)) ≡ l

piToList∘piFromList≡id says that piFromList is a right inverse of piToList.

Proof. Corollary of piToList∘piFromList≡idAux.

After defining piToList and piFromList, we also need the following lemmamap-proj₁->>=
when defining enum to prove that the inputs to listFuncToPi are consistent.

Lemma 3.7.10 (map-proj₁->>=).

map-proj₁->>= : ∀ {A : Set} {B : A → Set}
→ (l : List A) (f : (x : A) → B x)
→ map proj₁ (l >>= (λ r → (r , f r) ∷ [])) ≡ l

29

doi:10.6342/NTU202003013

Proof. By straightforward induction on l.

In order to obtain an enumeration of the embedded Π types through listFuncToPi,

we need a proof that the enumeration of u is complete, and this indicates that pattern

matching/induction has to be done on a slightly altered goal: (u : U) → Σ (List ⟦ u ⟧) (λ en
→ ∀ x→ x ∈ en). Alternatively, this kind of definitions in Agda can be defined as mutually
recursive definitions (which is what is done in the Agda development). Here we will

only show the definition of enum without the accompanying proof that the enumerations

generated by enum are complete. Readers interested in the full definition of enum together

with the completeness proof can check out Appendix A.

3.7.2 Defining Enumeration of Elements of Embedded Types

Most cases of enum are trivial, and in the case of Π types, enum is defined through the

function listFuncToPi.

Definition 3.7.6 (enum).

enum : (u : U) → List ⟦ u ⟧
enumComplete : ∀ (u : U) → (x : ⟦ u ⟧) → x ∈ enum u

enum `One = [tt]
enum `Two = false ∷ true ∷ []
enum `Base = Finite.elems finite
enum (`Vec u zero) = [[]]
enum (`Vec u (suc x)) = do

r ← enum u
rs ← enum (`Vec u x)
return (r ∷ rs)

enum (`Σ u x) = do
r ← enum u
rs ← enum (x r)

30

doi:10.6342/NTU202003013

return (r , rs)
enum (`Π u x) =

let pairs = do
r ← enum u
return (r , enum (x r))

funcs = genFunc _ _ pairs
in listFuncToPi u x (enum u) (enumComplete u) funcs

(λ x₁ x₁∈genFunc →
trans (genFuncProj₁ u x pairs x₁ x₁∈genFunc)

(map-proj₁->>= (enum u) (enum ∘ x)))
enumComplete = {- definition omitted -}

3.7.3 Uniqueness of Elements in enum

Lemma 3.7.11 (enumUnique).

enumUnique : ∀ (u : U) → (val : ⟦ u ⟧)
→ (dec : ∀ {u} → Decidable {A = ⟦ u ⟧} _≡_)
→ occ dec val (enum u) ≡ 1

Proof. By induction on u. Most cases are trivial and can be solved by applying occ->>=

and induction hypothesis. The more interesting case is the case of Π types.

In order to prove the case of Π types of enumUnique, we need some auxiliary lemmas.

The following lemma genFuncUnique says that if

• the list l : List (Σ ⟦ u ⟧ (λ v→ List ⟦ x v ⟧)) given to genFunc has the property that
for all elem ∈ l, every element in proj₂ elem is unique

• the first projections of l is equal to eu

• and that piToList u x eu f is in genFunc u x l

then piToList u x eu f only occurs once in genFunc u x l.

31

doi:10.6342/NTU202003013

Lemma 3.7.12 (genFuncUnique).

genFuncUnique : ∀ (u : U) (x : ⟦ u ⟧ → U)
(dec : Decidable {A = List (Σ ⟦ u ⟧ (λ v → ⟦ x v ⟧))} _≡_)
(dec' : ∀ v → Decidable {A = ⟦ x v ⟧} _≡_)
(eu : List ⟦ u ⟧)
(f : ⟦ `Π u x ⟧)
→ (l : List (Σ ⟦ u ⟧ (λ v → List ⟦ x v ⟧)))
→ map proj₁ l ≡ eu
→ (∀ elem → elem ∈ l → ∀ (t : ⟦ x (proj₁ elem) ⟧)

→ t ∈ proj₂ elem
→ occ (dec' (proj₁ elem)) t (proj₂ elem) ≡ 1)

→ FuncInst ⟦ u ⟧ (λ v → ⟦ x v ⟧) (piToList u x eu f) l
→ occ dec (piToList u x eu f) (genFunc u x l) ≡ 1

Proof. By straightforward induction on eu.

occ-listFuncToPi says that the number of occurrences of a function f in listFuncToPi u x

eu ∈eu l eq is equal to the number of occurrences of piToList u x eu f in l if every element
in eu is unique.

Lemma 3.7.13 (occ-listFuncToPi).

occ-listFuncToPi : ∀ (u : U) (x : ⟦ u ⟧ → U)
(eu : List ⟦ u ⟧)
(∈eu : ∀ elem → elem ∈ eu)
(l : List (List (Σ ⟦ u ⟧ (λ v → ⟦ x v ⟧))))
(eq : (elem : List (Σ ⟦ u ⟧ (λ v → ⟦ x v ⟧))) →

elem ∈ l → map proj₁ elem ≡ eu)
(dec : Decidable {A = ⟦ `Π u x ⟧} _≡_)
(dec' : Decidable {A = List (Σ ⟦ u ⟧ (λ v → ⟦ x v ⟧))} _≡_)
(dec'' : ∀ {u} → Decidable {A = ⟦ u ⟧} _≡_)

32

doi:10.6342/NTU202003013

(uniq : (v : ⟦ u ⟧) → occ dec'' v eu ≡ 1)
(f : ⟦ `Π u x ⟧)
→ occ dec f (listFuncToPi u x eu ∈eu l eq)

≡ occ dec' (piToList u x eu f) l

Proof. By induction on l followed by case analysis of the following terms:

• dec val (λ dom→ piFromList u x eu l (eq l (here refl)) dom (∈eu dom))

• dec’ (piToList u x eu val) l

Impossible cases can be refuted by applying piToList∘piFromList.

Lemma 3.7.14 (enumUnique).

enumUnique : ∀ (u : U) → (val : ⟦ u ⟧)
→ (dec : ∀ {u : U} → Decidable {A = ⟦ u ⟧} _≡_)
→ occ dec val (enum u) ≡ 1

Proof. By induction on u. Most cases are trivial. The ‘Vec and ‘Σ cases are proved with

occ->>=, and the ‘Π case is proved with occ-listFuncToPi and genFuncUnique.

3.8 Size of Type Codes

With the enumeration function of the type codes and its correctness defined and proved,

the size of a type code representing how “large” the type corresponding to the type code

is can now be defined. The size of a type code u : U represents how much “storage” (i.e.

variables in R1CS) is needed to store an element of type ⟦ u ⟧ (and not in the sense that

the size of Seti is too large to fit inside Seti).

The following tySize function defines the size of a type code. tySize is used to specify

the representation for the R1CS variable vector of some (elem : ⟦ u ⟧), and an R1CS
representation of elem would be a vector of length tySize u.

33

doi:10.6342/NTU202003013

maxTySizeOver : ∀ {u : U} → List ⟦ u ⟧ → (⟦ u ⟧ → U) → ℕ
tySumOver : ∀ {u : U} → List ⟦ u ⟧ → (⟦ u ⟧ → U) → ℕ
tySize : U → ℕ

tySize `One = 1
tySize `Two = 1
tySize `Base = 1
tySize (`Vec u x) = x * tySize u
tySize (`Σ u x) = tySize u + maxTySizeOver (enum u) x
tySize (`Π u x) = tySumOver (enum u) x

maxTySizeOver [] fam = 0
maxTySizeOver (x ∷ l) fam

= max (tySize (fam x)) (maxTySizeOver l fam)

tySumOver [] x = 0
tySumOver (x₁ ∷ l) x = tySize (x x₁) + tySumOver l x

The size of ‘Σ u x is defined as the size of the first component plus the maximum size

of x over all elements of ⟦ u ⟧. The size of ‘Π u x is defined as the sum of the size of x

elem over all possible elem : ⟦ u ⟧. For example, given the following family of types fam
over ‘Two.

fam : ⟦ `Two ⟧ → U
fam false = `Vec `Base 5
fam true = `Vec `Two 2

The size of the type ‘Σ ‘Two fam is calculated by summing together the size of the domain

‘Two (which is 1) and the size of the largest type in the image of fam (which is the size of

the type ‘Vec ‘Base 5). And tySize (‘Σ ‘Two fam) = tySize ‘Two + tySize (‘Vec ‘Base 5) = 1

34

doi:10.6342/NTU202003013

+ 5 = 6. The size of the type ‘Π ‘Two fam is calculated by summing together the sizes of

fam false and fam true, and tySize (‘Π ‘Two fam) = tySize (fam false) + tySize (fam true) =

5 + 2 = 7.

35

doi:10.6342/NTU202003013

36

doi:10.6342/NTU202003013

Chapter 4

Source EDSL

We want to define a dependently typed domain specific language that targets R1CS. What

should the language be like? Since R1CS allows us to express additive and multiplicative

constraints, we also want to allow these in the source expression. By allowing these pos-

sibilities, we get the following datatype (parameterized over a type f representing a prime

field):

data Arith : Set where
Ind : ℕ -> Arith
Lit : f → Arith
Add Mul : Arith → Arith → Arith

where Ind accepts an R1CS variable, Lit accepts a literal. Add andMul represent additive

and multiplicative expressions respectively. Later on, we will allow users to add equality

constraints, and so the user equipped with this construction will be able to do things like

equal(Ind 10, Add (Lit 5) (Mul (Var 8) (Lit 9))) to express a constraint saying that v10 =

5 + 9v8. Since we want dependent types in our language, we proceed to embed the type

universe that we built in Chapter 3 into our Arith language.

37

doi:10.6342/NTU202003013

4.1 Source

data Source : U → Set where
Ind : ∀ {u} {m} → m ≡ tySize u → Vec ℕ m → Source u
Lit : ∀ {u} → ⟦ u ⟧ → Source u
Add Mul : Source `Base → Source `Base → Source `Base

The Ind and Lit cases are now expanded to allow dependent types. Ind is now a vector

of variables (of length tySize u determined by how many R1CS variables an element of ⟦
u ⟧ is compiled into) representing an element of some type u, and Lit can now represent

elements that are allowed by our embedded type universe. The Add and Mul cases now

represent additive and multiplicative expressions over Source ‘Base, meaning that they

are Source expressions over the prime field type of the R1CS constraints.

The Source datatype is designed to be used with the RWS monad, which is defined in

the following section.

4.2 RWS Monad

An RWSmonad consists of a read-only reader component, a write-only writer component,

and a read-write state component. Given a reader type R, writer type W, state type S, an

RWS monad type is defined as follows:

Definition 4.2.1 (RWSMonad).

RWSMonad : Set → Set
RWSMonad A = R × S → (S × W × A)

andwith a unit elementmempty : W togetherwith a binary operationmappend : W→ W→ W,

the monadic operations on RWSMonad A are defined as follows:

Definition 4.2.2 (_>>=_). (RWSMonad) monadic bind

>>= : ∀ {A B : Set}
→ RWSMonad A

38

doi:10.6342/NTU202003013

→ (A → RWSMonad B)
→ RWSMonad B

m >>= f = λ { (r , s) → let s' , w , a = m (r , s)
s'' , w' , b = f a (r , s')

in s'' , mappend w w' , b }

Definition 4.2.3 (return). (RWSMonad) Wrap a value into RWSMonad.

return : ∀ {A : Set}
→ A → RWSMonad A

return a = λ { (r , s) → s , mempty , a }

get and put are used for reading/writing the state component:

Definition 4.2.4 (get). (RWSMonad) Copy the current state to the result.

get : RWSMonad S
get = λ { (r , s) → s , mempty , s }

Definition 4.2.5 (put). (RWSMonad) Override the current state.

put : S → RWSMonad ⊤
put s = λ _ → s , mempty , tt

where ⊤ is the unit type.
tell is used for writing stuff into the writer.

Definition 4.2.6 (tell). (RWSMonad) Write w to the writer component.

tell : W → RWSMonad ⊤
tell w = λ { (r , s) → s , w , tt }

ask is used for accessing the reader:

Definition 4.2.7 (ask). (RWSMonad) Copy the reader value to the result.

39

doi:10.6342/NTU202003013

ask : RWSMonad R
ask = λ { (r , s) → s , mempty , r }

Definition 4.2.8 (local). (RWSMonad) Override the reader value of a monadic action with

a user provided reader value.

local : {A : Set} → R → RWSMonad A → RWSMonad A
local r p (r' , s) = p (r , s)

The following toy program demonstrates what using RWSMonad is like with R = ℕ,
W = List (ℕ × ℕ), S = ℕ where mempty is [] and mappend is _++_:

{-# TERMINATING #-}
example : RWSMonad ℕ
example = do

num ← ask
case num of
λ { 0 → get

; (suc n) → do
acc ← get
put (acc * num)
tell ((num , acc) ∷ [])
local n example

}

In this example, the accumulating value is stored in the state parameter, the “current”

number is stored in the reader component, and the writer component is used to store an

execution log of the program. When supplied with an initial reader value of 5 and an initial

state value of 1, the program produces the final state 120, the log (5 , 1) ∷ (4 , 5) ∷ (3 , 20)
∷ (2 , 60) ∷ (1 , 120) ∷ [] , and the result 120.

4.3 S-Monad

S-Monad is the main monad in which the user composes their source program. S-Monad

40

doi:10.6342/NTU202003013

is defined as an instance of RWSMonad where the reader component is instantiated with

⊤, the writer component with List (∃ (λ u→ Source u × Source u) ⊎ (Map Var ℕ→ Map

Var ℕ)) × List ℕ (where A ⊎ B is the disjoint union of A and B and Map A B is the type

of partial maps from A to B used in the solver to solve the generated R1CS constraints),

the state component with ℕ, mempty with ([], []), and mappend with (λ a b→ proj₁ a ++
proj₁ b , proj₂ a ++ proj₂ b) where the first component of the writer component stores a
list of equality constraints and solver hints, and the second component stores a list of input

variables.1

Definition 4.3.1 (S-Monad).

S-Monad : Set → Set
S-Monad A = ⊤ × ℕ
→ (ℕ × (List ((∃ (λ u → Source u × Source u))

⊎ (Map Var ℕ → Map Var ℕ)) × List ℕ) × A)

4.3.1 S-Monad Utilities

In order to allow the user to allocate one or more variables, we create the functions newVar

and newVars as follows:

Definition 4.3.2 (newVar).

newVar : S-Monad Var
newVar = do

v ← get
put (1 + v)
return v

Definition 4.3.3 (newVars).

newVars : ∀ (n : ℕ) → S-Monad (Vec Var n)
newVars zero = return []

1In the actual implementation, we used the method described in Hughes[10] to implement linear time
list concatenation.

41

doi:10.6342/NTU202003013

newVars (suc n) = do
v ← newVar
rest ← newVars n
return (v ∷ rest)

assertEq writes a contraint that says that s1 is equal to s2 to the first component of the

writer monad.

Definition 4.3.4 (assertEq).

assertEq : ∀ {u} → Source u → Source u → S-Monad ⊤
assertEq {u} s₁ s₂

= tell (inj₁ (u , s₁ , s₂) ∷ [] , [])

addHint writes a solver hint to the first component of the writer monad.

Definition 4.3.5 (addHint).

addHint : (Map Var ℕ → Map Var ℕ) → S-Monad ⊤
addHint h = tell (inj₂ h ∷ [] , [])

new e allocates tySize e fresh variables.

Definition 4.3.6 (new). (S-Monad)

new : ∀ (u : U) → S-Monad (Source u)
new e = do

vec ← newVars (tySize e)
return (Ind refl vec)

For example, if a programmerAwants to allocate two new boolean variables and assert

them to be equal, A can write the following program to do so:

test : S-Monad (Source `Two)
test = do

42

doi:10.6342/NTU202003013

a ← new `Two
b ← new `Two
assertEq a b
return a

newI e allocates tySize e fresh variables as well as adding these variables to the list of

inputs.

newI : ∀ (u : U) → S-Monad (Source u)
newI e = do

vec ← newVars (tySize e)
tell ([] , toList vec)
return (Ind refl vec)

Given a source program with type Source (‘Vec u x) and an index i : Fin x where Fin

is an inductive family defined as the type of natural numbers less than x, we can get the

i-th element of the vector:

getV : ∀ {u : U} {x : ⟦ u ⟧ → U}
→ Source (`Vec u x) → Fin x → Source u

getV {u} {suc x} (Ind refl x₁) f with splitAt (tySize u) x₁
getV {u} {suc x} (Ind refl x₁) 0F | fst , snd = Ind refl fst
getV {u} {suc x} (Ind refl x₁) (suc f) | fst , snd

= getV (Ind refl snd) f
getV (Lit (x ∷ x₁)) 0F = Lit x
getV (Lit (x ∷ x₁)) (suc f) = getV (Lit x₁) f

where splitAt (which splits an Agda vector into two) defined as follows splits a vector into

two:

splitAt : ∀ {A : Set} → ∀ (m : ℕ){n : ℕ}
→ Vec A (m + n) → Vec A m × Vec A n

splitAt zero vec = [] , vec

43

doi:10.6342/NTU202003013

splitAt (suc m) (x ∷ vec)
with splitAt m vec

... | fst , snd = x ∷ fst , snd

Given a function #_ that transforms N into Fin, it’s also possible to define an iteration

function iterM (some type casts omitted):

iterM : ∀ {A : Set} (n : ℕ)
→ (Fin n → S-Monad A) → S-Monad (Vec A n)

iterM 0 act = return []
iterM (suc n) act = do

r ← act (# n)
rs ← iterM n act
return (r ∷ rs)

It is also possible to apply a source expression over Π types. Given an expression of

type ‘Π u x, in the case of Lit, we directly apply the argument to the function literal, and in

the case of Ind, we return the segment of the R1CS variable vector corresponding to x val

(the vector vec can be seen as the result of concatenating vectors representing elements of

type ⟦ x e1 ⟧, ⟦ x e2 ⟧, ... ⟦ x en ⟧ where [e1, .. ,en] = enum u). For example, suppose that
we have a type family fam over ‘Two that maps false to ‘Vec ‘Base 2 and true to ‘Two, and

we have a Source expression exp = Ind refl (2 ∷ 3 ∷ 4 ∷ []) of type Source (‘Π ‘Two fam).
By “applying” false to exp, we get Ind refl (2 ∷ 3 ∷ []), the portion of exp corresponding
to an element of type ‘Vec ‘Base 2, and by “applying” true to exp, we get Ind refl (4 ∷ []),
the portion of exp corresponding to an element of type ‘Two.

appAux : ∀ {u : U} {x : ⟦ u ⟧ → U} → (eu : List ⟦ u ⟧)
→ (val : ⟦ u ⟧)
→ (mem : val ∈ eu) → Vec ℕ (tySumOver eu x)
→ S-Monad (Source (x val))

appAux {_} {x} .(val ∷ _) val (here refl) vec
with splitAt (tySize (x val)) vec

44

doi:10.6342/NTU202003013

... | fst , _ = return (Ind refl fst)
appAux {_} {x} (x₁ ∷ _) val (there mem) vec

with splitAt (tySize (x x₁)) vec
... | _ , rest = appAux _ val mem rest

app : ∀ {u : U} {x : ⟦ u ⟧ → U} → Source (`Π u x)
→ (val : ⟦ u ⟧) → S-Monad (Source (x val))

app {u} (Ind refl x₁) val
= appAux (enum u) val (enumComplete u val) x₁

app (Lit x) val = return (Lit (x val))

4.3.2 Examples

In this subsection, numerous examples of programs written in the embedded DSL will be

shown.

MatrixMult

This example multiplies a 2 by 4 input matrix by a 4 by 3 input matrix and returns a 2 by 3

matrix where each element of the input matrices is a ‘Base element [14]. The matrix type

is simply a vector of vectors in the embedded type universe.

`Matrix : U → ℕ → ℕ → U
`Matrix u m n = `Vec (`Vec u n) m

test : S-Monad (Source (`Matrix `Base 2 3))
test = do

m₁ ← newI (`Matrix `Base 2 4)
m₂ ← newI (`Matrix `Base 4 3)
m₃ ← new (`Matrix `Base 2 3)
iterM 2 (λ m → do

iterM 3 (λ n → do

45

doi:10.6342/NTU202003013

vec ← iterM 4 (λ o → do
let fstElem = getMatrix m₁ m o

sndElem = getMatrix m₂ o n
return (Mul fstElem sndElem))

let setElem = getMatrix m₃ m n
let r = foldl (const (Source `Base)) Add

(Lit (fieldElem nPrime 0)) vec
assertEq r setElem))

return m₃

where fieldElem nPrime 0 constructs a field element 0 with the proof nPrime that the size

of the field is prime, and getMatrix m a b gives us the element at the a-th row and the b-th

column of m.

DependentProdSimple

In this example, we allocate a new vector of R1CS variables m₁ representing an element
of type ‘Π ‘Two f, and assert m₁ to be equal to the Agda function func. We then return the

result of “applying” true to m₁ as the result of test.

N = {- a big prime number -}

postulate
nPrime : Prime N

f : ⟦ `Two ⟧ → U
f t with t ≟B false
f t | yes p = `Two
f t | no ¬p = `Base

func : ⟦ `Π `Two f ⟧
func false = true

46

doi:10.6342/NTU202003013

func true = fieldElem nPrime 12345

test : S-Monad (Source `Base)
test = do

m₁ ← new (`Π `Two f)
assertEq m₁ (Lit func)
app m₁ true

DependentSumSimple

In this example, we allocate a new vector of R1CS variables m₁ representing an element
of type ‘Σ ‘Two f, and then assert m₁ to be equal to the literal (false , true). Finally, we

return m₁ as the result of test.

f : ⟦ `Two ⟧ → U
f t with t ≟B false
f t | yes p = `Two
f t | no ¬p = `Vec `One 2

test : S-Monad (Source (`Σ `Two f))
test = do

m₁ ← new (`Σ `Two f)
assertEq m₁ (Lit (false , true))
return m₁

Choice

Suppose that we have two possible computations with different inputs and outputs, and

we wish to express the possibility that one of the computations is performed. It is possible

to encode such a task with Σ types. For example, given a task A that computes the sum

of two vectors with the same length and a task B that computes the sum of two ‘Base

47

doi:10.6342/NTU202003013

elements, we can define two family of types that tell us what the input and result types

look like:

inputF : ⟦ `Two ⟧ → U
inputF false = `Vec `Base 2
inputF true = `Vec (`Vec `Base 2) 2

resultF : ⟦ `Two ⟧ → U
resultF false = `Base
resultF true = `Vec `Base 2

With these two family of types, we can define the input type to be ‘Σ ‘Two inputF and

the output type to be ‘Σ ‘Two resultF, and assert the first components of the input and the

output type to be equal to make sure that the input and output formats are consistent with

the computation we chose.

In the false branch, we compute the addition of the two elements in the input vector

(and fill the rest of the sigma type with zero):

computeFalse : Vec Var (maxTySizeOver (enum `Two) inputF)
→ S-Monad (Vec Var (maxTySizeOver (enum `Two) resultF))

computeFalse vec
with maxTySplit `Two false inputF vec

... | Σ₂₁ ∷ Σ₂₂ ∷ [] , blank = do
r ← newVar
filler ← newVar
assertEq (Lit zerof) (var filler)
assertEq (var r) (Add (var Σ₂₁) (var Σ₂₂))
return (r ∷ filler ∷ [])

In the true branch, we compute the pairwise addition of the elements of the two input

vectors:

computeTrue : Vec Var (maxTySizeOver (enum `Two) inputF)
→ S-Monad (Vec Var (maxTySizeOver (enum `Two) resultF))

48

doi:10.6342/NTU202003013

computeTrue vec with maxTySplit `Two true inputF vec
... | Σ₂₁ ∷ Σ₂₂ ∷ Σ₂₃ ∷ Σ₂₄ ∷ [] , [] = do

r₁ ← newVar
r₂ ← newVar
assertEq (var r₁) (Add (var Σ₂₁) (var Σ₂₃))
assertEq (var r₂) (Add (var Σ₂₂) (var Σ₂₄))
return (r₁ ∷ r₂ ∷ [])

We then define the following assertEqWithCond that conditionally asserts equality

given a variable cond that always solves to 1 or 0.

assertEqWithCond :
∀ {n} → Var → Vec Var n → Vec Var n → S-Monad ⊤

assertEqWithCond cond [] [] = return tt
assertEqWithCond cond (x₁ ∷ vec₁) (x₂ ∷ vec₂) = do

assertEq (Mul (var cond) (var x₁)) (Mul (var cond) (var x₂))
assertEqWithCond cond vec₁ vec₂

Then we assert the conditional constraints for the false branch and the true branch in

the Ind case, and directly compute the result in the Lit case:

compute : Source (`Σ `Two inputF)
→ S-Monad (Source (`Σ `Two resultF))

compute (Ind refl x₁) with splitAt (tySize `Two) x₁
compute (Ind refl x₁) | fst ∷ [] , snd = do

result ← newVars (maxTySizeOver (enum `Two) resultF)
addHint {- solver hint omitted -}
r₁ ← computeFalse snd
r₂ ← computeTrue snd
fst=0 ← lnot fst
assertEqWithCond fst r₂ result
assertEqWithCond fst=0 r₁ result

49

doi:10.6342/NTU202003013

return (Ind refl (fst ∷ result))
compute (Lit (false , x₁ ∷ x₂ ∷ []))

= return (Lit (false , (x₁ + x₂)))
compute (Lit (true , ((x₁₁ ∷ x₁₂ ∷ [])

∷ (x₂₁ ∷ x₂₂ ∷ []) ∷ []))) =
return (Lit (true , ((x₁₁ + x₂₁) ∷ (x₁₂ + x₂₂) ∷ [])))

where lnot is defined as the logical negation function:

lnot : Var → S-Monad Var
lnot n = do

v ← S-Monad.newVar
assertEq (Add (Lit onef) (Mul (Lit (- onef)) (var n))) (var v)
return v

Finally, we put the above pieces together and get a program that depending on the

input choice, computes either task A or task B (where Σ-proj₁ : ∀ {u : U} {x : ⟦ u ⟧→

U} → Source (‘Σ u x) → Source u computes the first projection of a Source (‘Σ u x)):

test : S-Monad (Source (`Σ `Two resultF))
test = do

choice ← newI `Two -- v₁
input ← newI (`Σ `Two inputF)
result ← new (`Σ `Two resultF)
assertEq (Σ-proj₁ result) choice
assertEq (Σ-proj₁ input) choice
r ← compute input
assertEq result r
return result

DynamicLengthMatrixMult

In addition to matrix multiplication with fixed lengths, it is also possible to have matrices

with dynamic lengths. By stacking m + n layers of ‘Σ, we can get the type of matrices

50

doi:10.6342/NTU202003013

where m bits are used to encode the number of rows and n bits are used to encode the

number of columns (where fromBits : {k : ℕ}→ Vec Bool k→ ℕ and fromBits (false ∷
true ∷ []) = 01₂ = 1, fromBits (true ∷ true ∷ []) = 11₂ = 3 et cetera):

`DynMatrix : ℕ → ℕ → U
`DynMatrix m n =

`Σ `Two (λ r₁ → ... `Σ `Two (λ rₘ →
`Σ `Two (λ c₁ → ... `Σ `Two (λ rₙ →

`Vec (`Vec `Base (fromBits (c₁ ∷ ... ∷ cₙ ∷ [])))
(fromBits (r₁ ∷ ... rₘ ∷ []))))))

Suppose that we were given two vectors of R1CS variables that represent dynamically

sized matrices a₁ : Vec ℕ (tySize (‘DynMatrix m n)) and a₂ : Vec ℕ (tySize (‘DynMatrix
n o)). In order to multiply these matrices together, we iterate over all possible sizes of a₁
and a₂. For example, suppose that m = n = o = 2, meaning that the number of rows and

columns of a₁ and a₂ are encoded with 2 bits. We range over all of these possibilities and

add conditional equality constraints (with assertEqWithCond in the Choice example) that

assert the resulting matrix to be the product of the two input matrices for all possible sizes

that can be encoded with the specified bits. In order to assert these conditional constraints,

we added solver hints for the result of the dynamic matrix multiplication for the solver to

successfully solve the conditional constraints.

51

doi:10.6342/NTU202003013

52

doi:10.6342/NTU202003013

Chapter 5

Compiling Programs From Source to

R1CS

Recall fromChapter 4 that when a user writes a program in S-Monad, the user is essentially

building equality constraints over Source programs. Our task here is to transform these

equality constraints into R1CS constraints.

In this chapter, I will first introduce the basic constructs used for writing the compiler,

including the main compiler monad instance, and the basic logic functions. Then we will

introduce the main compilation functions.

Since we will be using list builders[10] for linear time list concatenation in the ac-

tual implementation of the compiler monad, in order to reason about program properties

abstractly on the level of the monadic interface, we chose to impose additional invari-

ants[7][1] on the writer component in the compiler monad as lists are represented as en-

domorphisms between lists and without additional invariants, arbitrary endomorphisms

between lists (and not just list builders) will be allowed (which is undesirable).

Because of the aforementioned problems, we choose to implement a new monad that

incorporates this additional invariant in our implementation which will be described in the

next section. Readers not interested in the details of how the invariant is embedded in the

compiler can choose to skip the next section and proceed to the rest of the chapter.

53

doi:10.6342/NTU202003013

5.1 RWSInvMonad

Given a reader type R, a writer type W, a state type S, a predicate P : W→ Prop, a unit

element mempty : W, and a binary operation mappend : W→ W→ W such that

• P-mempty : P mempty

• P-mappend : ∀ {a b : W} → P a→ P b→ P (mappend a b)

the RWSInvMonad is defined as follows (Σ* are variants of Σ where some of the compo-

nents of Σ are inhabitants of types that live in Prop instead of Set):

Definition 5.1.1 (RWSInvMonad).

RWSInvMonad : Set → Set
RWSInvMonad A

= R × S → Σ′ (S × W × A)
(λ prod → P (proj₁ (proj₂ prod)))

together with the associated operations

Definition 5.1.2 (_>>=_). (RWSInvMonad)

>>= : ∀ {A B : Set}
→ RWSInvMonad A
→ (A → RWSInvMonad B)
→ RWSInvMonad B

m >>= f = λ { (r , s) →
let (s' , w , a) , inv = m (r , s)

(s'' , w' , b) , inv' = f a (r , s')
in (s'' , mappend w w' , b) ,

P-mappend inv inv' }

Definition 5.1.3 (_>>_). (RWSInvMonad)

54

doi:10.6342/NTU202003013

>> : ∀ {A B : Set}
→ RWSInvMonad A
→ RWSInvMonad B
→ RWSInvMonad B

a >> b = a >>= λ _ → b

Definition 5.1.4 (return). (RWSInvMonad)

return : {A : Set}
→ A → RWSInvMonad A

return a = λ { (r , s) → (s , mempty , a) , P-mempty }

Definition 5.1.5 (get). (RWSInvMonad)

get : RWSInvMonad S
get = λ { (r , s) → (s , mempty , s) , P-mempty }

Definition 5.1.6 (gets). (RWSInvMonad)

gets : {A : Set} → (S → A) → RWSInvMonad A
gets f = do

r ← get
return (f r)

Definition 5.1.7 (put). (RWSInvMonad)

put : S → RWSInvMonad ⊤
put s = λ _ → (s , mempty , tt) , P-mempty

Definition 5.1.8 (tell). (RWSInvMonad)

tell : (w : W) → (pw : P w) → RWSInvMonad ⊤
tell w pw = λ { (r , s) → (s , w , tt) , pw }

Definition 5.1.9 (ask). (RWSInvMonad)

55

doi:10.6342/NTU202003013

ask : RWSInvMonad R
ask = λ { (r , s) → (s , mempty , r) , P-mempty }

Definition 5.1.10 (asks). (RWSInvMonad)

asks : {A : Set} → (R → A) → RWSInvMonad A
asks f = do

r ← ask
return (f r)

Definition 5.1.11 (local). (RWSInvMonad)

local : ∀ {A : Set} → R
→ RWSInvMonad A → RWSInvMonad A

local r m (r' , s) = m (r , s)

The writer invariant that we will use for the compiler is as follows (we will be using

two list builders):

Definition 5.1.12 (WriterInvariant).

WriterInvariant : (List R1CS → List R1CS) ×
(List R1CS → List R1CS)

→ Set
WriterInvariant = λ builder → ∀ x →

proj₁ builder x ≡ (proj₁ builder []) ++ x ×
proj₂ builder x ≡ (proj₂ builder []) ++ x

SquashedWriterInvariant = λ b → Squash (WriterInvariant b)

where Squash (WriterInvariant b) is the propositionally squashed type ofWriterInvariant

b in Prop. Squash is defined as the following datatype in Agda:

data Squash (A : Set) : Prop where
sq : A → Squash A

56

doi:10.6342/NTU202003013

The invariant expresses the proposition that when a list x is applied to builder, it is the

same as first applying the empty list to builder, then appending the resulting list with x.

Take the following builder function for example: if build = (λ a → “hello” ++ a) and we

apply a list x to build, we get “hello” ++ x. Which is equal to build [] ++ x.

In order to fascilitate the development of the proofs of the compiler, the following

projection functions are defined:

Definition 5.1.13 (output).

output :
{S W A : Set} {P : W → Prop}
→ Σ′ (S × W × A) (λ prod → P (proj₁ (proj₂ prod)))
→ A

output ((s , w , a) , _) = a

Definition 5.1.14 (writerOutput).

writerOutput :
{S W A : Set} {P : W → Prop}
→ Σ′ (S × W × A) (λ prod → P (proj₁ (proj₂ prod)))
→ W

writerOutput ((s , w , a) , _) = w

Definition 5.1.15 (varOut).

varOut : ∀ {S W A : Set} {P : W → Prop}
→ Σ′ (S × W × A) (λ prod → P (proj₁ (proj₂ prod)))
→ S

varOut ((s , _ , _) , _) = s

Definition 5.1.16 (writerInv).

writerInv : {S W A : Set} {P : W → Prop d}
→ (p : Σ′ (S × W × A)

57

doi:10.6342/NTU202003013

(λ prod → P (proj₁ (proj₂ prod))))
→ P (proj₁ (proj₂ (fst p)))

writerInv ((s , w , a) , inv) = inv

In the rest of this chapter, we will proceed as if we are using RWSMonad to avoid

unnecessary clutter.

5.2 SI-Monad

SI-Monad is the main monad that is used for writing the compiler. Since the generated

R1CS constraints have to be solved by the solver, the constraints are ordered in a way

that our solver can work with. This is done by postponing all type constraints, and adding

hints that help the solver solve the contraints. The generated constraints are grouped into

two groups: normal constraints and postponed constraints, and the solver tries to solve the

constraints generated in normal mode first before trying to solve the constraints generated

in postponed mode.

Definition 5.2.1 (WriterMode).

data WriterMode : Set where
NormalMode : WriterMode
PostponedMode : WriterMode

Given a type f : Set and functions fToℕ : f→ ℕ, ℕtoF : ℕ→ f such that (field’ : Field

f) and (finite : Finite f), SI-Monad is defined as an instance of RWSMonad where

• WriterMode is the first reader component of SI-Monad, and is used to choose be-

tween adding contraints in normal mode and adding constraints in postponed mode.

The second reader component is the prime number chosen for the size of the prime

field.

• The writer type used in SI-Monad is List R1CS × List R1CS, the first component

of which is used to store the normal mode constraints and the second component

58

doi:10.6342/NTU202003013

is used to store the postponed mode constraints. mempty is defined to be a pair of

empty lists, and mappend is defined to be pairwise list concatenation.

• The state type used in SI-Monad is a natural number that indicates the lowest unused

variable.

Definition 5.2.2 (SI-Monad).

SI-Monad : Set → Set
SI-Monad A =

(WriterMode × ℕ) × ℕ →
(ℕ × (List R1CS × List R1CS) × A)

With SI-Monad defined, the basic utilities used for writing the compiler can now be

defined:

5.3 Basic Utilities

Definition 5.3.1 (addWithMode). (SI-Monad) Produce either a normal mode constraint

or a postponed mode constraint.

addWithMode : R1CS → WriterMode → SI-Monad ⊤
addWithMode w NormalMode =

tell ((λ x → [w] ++ x) , id) (sq (λ x → refl , refl))
addWithMode w PostponedMode =

tell (id , λ x → [w] ++ x) (sq (λ x → refl , refl))

For example, addWithMode (IAdd 0 ((5 , 1) ∷ (6 , 2) ∷ [])) NormalMode1 adds a constraint
in normal mode that says that 5v1 + 5v2 = 0.

Definition 5.3.2 (withMode). (SI-Monad) Override the execution of an SI-Monad action

with a given WriterMode.
1Field elements are constructed with fieldElem, but for simplicity’s sake, we are using numeric literals

to denote field elements here.

59

doi:10.6342/NTU202003013

withMode : ∀ {A : Set} → WriterMode
→ SI-Monad A → SI-Monad A

withMode m act = do
prime ← asks proj₂
local (m , prime) act

Definition 5.3.3 (add). (SI-Monad) Produce a constraint with the current WriterMode.

add : R1CS → SI-Monad ⊤
add w' = do

m ← asks proj₁
addWithMode w' m

Similar to the newVar definitions in S-Monad, we create simple wrapper functions new

and newVarVec that are used to allocate variables:

Definition 5.3.4 (new). (SI-Monad) Allocate a new variable.

new : SI-Monad Var
new = do

v ← get
put (1 +ℕ v)
return v

where Var is defined as ℕ.

Definition 5.3.5 (newVarVec). Allocate n new variables.

newVarVec : ∀ (n : ℕ) → SI-Monad (Vec Var n)
newVarVec nzero = return []
newVarVec (suc n) = do

v ← new
vs ← newVarVec n
return (v ∷ vs)

60

doi:10.6342/NTU202003013

We define a function that asserts a given R1CS variable to solve to 1.

Definition 5.3.6 (assertTrue). Assert that the solution of the variable is 1.

assertTrue : Var → SI-Monad ⊤
assertTrue v = add (IAdd one ((- one , v) ∷ []))

Our target libsnark sets the value of variable 0 to 1. We follow this convention and

always solve the variable 0 to 1 in our solver.

Definition 5.3.7 (trivial). A trivial utility that returns a variable that solves to 1.

trivial : SI-Monad Var
trivial = do

return 0

With the basic utility functions defined, the basic logic functions are defined as follows:

5.4 Basic Logic Functions

Definition 5.4.1 (neqz). not equal to zero

neqz : Var → SI-Monad Var
neqz n = do

v ← new
v' ← new
prime ← asks proj₂
add (Hint (neqzHint prime n v v'))
add (IMul one v n one v')
add (IMul one v' n one n)
return v'

neqz checks if the solution of the variable n is not equal to zero. Given a solution map sol

that satisfies the constraints generated by neqz, if the solution of the variable n is zero in

61

doi:10.6342/NTU202003013

sol, neqz returns a variable that corresponds to 0 in sol. Otherwise, it returns a variable

that corresponds to 1 in sol.

When no confusion arises, phrases like “a variable v solves to l” are used under the

assumption that there is a solution S (sometimes also requiring that the variable 0 maps to

1 in S) to the generated constraints in the given context, and that in S, v corresponds to l.

neqzHint is a hint that helps the solver solve the generated neqz constraints. The first

constraint says that the variable v times the variable n is equal to the variable v′. The

second constraint says that the variable v′ times n is equal to the variable n. Why is this

definition correct? Given a solution sol, there are two cases to consider:

• If the solution of n is equal to zero, the solution of v′ would also be zero by the first

constraint, and the second constraint is vacuously satisfied.

• If the solution of n is not equal to zero, then the second constraint says that the

solution of v′ must be 1 (whereas the first constraint can be satisfied by picking the

solution of v to be the multiplicative inverse of the solution of n.

The following logical operators lor, land, lnot, limp assume that the solutions of their

respective input variables are boolean.

Given two boolean field elements a and b, a and b is defined as ab. The following

definition land performs the logical and operation on R1CS variables.

Definition 5.4.2 (land). logical and

land : Var → Var → SI-Monad Var
land n₁ n₂ = do

v ← new
add (IMul one n₁ n₂ one v)
return v

Given two boolean field elements a and b, a or b is defined as a + b - ab. The following

definition lor performs the logical or operation on R1CS variables.

Definition 5.4.3 (lor). logical or

62

doi:10.6342/NTU202003013

lor : Var → Var → SI-Monad Var
lor n₁ n₂ = do

v ← new
v' ← new
add (IMul one n₁ n₂ one v)
add (IAdd zero ((one , n₁) ∷ (one , n₂) ∷

(- one , v) ∷ (- one , v') ∷ []))
return v'

Given a field element a, not a is defined as 1 - a.

Definition 5.4.4 (lnot). logical not

lnot : Var → SI-Monad Var
lnot n₁ = do

v ← new
add (IAdd one ((- one , n₁) ∷ (- one , v) ∷ []))
return v

Given two field elements a and b, a→ b is defined as (not a) or b.

Definition 5.4.5 (limp). logical implication

limp : Var → Var → SI-Monad Var
limp n₁ n₂ = do

notN₁ ← lnot n₁
lor notN₁ n₂

Besides the logical functions, we also need a couple of auxiliary compilation functions,

which are defined in the following section.

5.5 Auxiliary Compilation Functions

varEqBaseLit checks if a variable is “equal” to a field element.

63

doi:10.6342/NTU202003013

Definition 5.5.1 (varEqBaseLit).

varEqBaseLit : Var → f → SI-Monad Var
varEqBaseLit n l = do

n-l ← new
add (IAdd (- l) ((one , n) ∷ (- one , n-l) ∷ []))
¬r ← neqz n-l
r ← lnot ¬r
return r

The variable that varEqBaseLit returns solves to 1 if the solution of n is equal to l and

solves to 0 otherwise.

anyNeqz checks if any variable in the given vector solves to a non-zero entry.

Definition 5.5.2 (anyNeqz).

anyNeqz : ∀ {n : ℕ} → Vec Var n → SI-Monad Var
anyNeqz [] = do

v ← new
add (IAdd zero ((one , v) ∷ []))
return v

anyNeqz (x ∷ vec) = do
r ← neqz x
rs ← anyNeqz vec
lor r rs

The variable that anyNeqz returns solves to 1 if the solution of the vector given to

anyNeqz contains a nonzero entry and solves to 0 otherwise.

allEqz checks if all variables in the given vector solve to 0.

Definition 5.5.3 (allEqz).

allEqz : ∀ {n : ℕ} → Vec Var n → SI-Monad Var
allEqz vec = do

64

doi:10.6342/NTU202003013

¬r ← anyNeqz vec
r ← lnot ¬r
return r

The variable that allEqz returns solves to 1 if the solution of the input vector variables

to allEqz solves to a 0 vector.

Now the main compilation functions can be defined:

5.6 Main Compilation Functions

The following functions piVarEqLit and varEqLit define the comparison operations of a

vector of variables to a literal. If the given vector solves to a low level representation of

the given literal, the returned variable solves to 1. Otherwise, it solves to 0.

Definition 5.6.1 (piVarEqLit, varEqLit).

piVarEqLit : ∀ (u : U) (x : ⟦ u ⟧ → U) (eu : List ⟦ u ⟧)
→ Vec Var (tySumOver eu x) → ⟦ `Π u x ⟧ → SI-Monad Var

varEqLit : ∀ (u : U) → Vec Var (tySize u) → ⟦ u ⟧ → SI-Monad Var

piVarEqLit u x [] vec f = trivial
piVarEqLit u x (x₁ ∷ eu) vec f

with splitAt (tySize (x x₁)) vec
... | fst , snd = do

r ← varEqLit (x x₁) fst (f x₁)
s ← piVarEqLit u x eu snd f
land r s

varEqLit `One vec lit = allEqz vec
varEqLit `Two vec false = allEqz vec
varEqLit `Two (x ∷ vec) true = varEqBaseLit x one

65

doi:10.6342/NTU202003013

varEqLit `Base (x ∷ vec) lit = varEqBaseLit x lit
varEqLit (`Vec u nzero) vec lit = trivial
varEqLit (`Vec u (suc x)) vec (l ∷ lit)

with splitAt (tySize u) vec
... | fst , snd = do

r ← varEqLit u fst l
s ← varEqLit (`Vec u x) snd lit
land r s

varEqLit (`Σ u x) vec (fstₗ , sndₗ)
with splitAt (tySize u) vec

... | fst , snd with maxTySplit u fstₗ x snd

... | vecₜ₁ , vecₜ₂ = do
r ← varEqLit u fst fstₗ
s ← varEqLit (x fstₗ) vecₜ₁ sndₗ
s' ← allEqz vecₜ₂
and₁ ← land r s
land and₁ s'

varEqLit (`Π u x) vec f = piVarEqLit u x (enum u) vec f

where maxTySplit is defined with splitAt (type cast omitted):

maxTySplit : ∀ (u : U) (val : ⟦ u ⟧) (x : ⟦ u ⟧ → U)
→ Vec Var (maxTySizeOver (enum u) x)
→ Vec Var (tySize (x val)) ×

Vec Var (maxTySizeOver (enum u) x - tySize (x val))
maxTySplit u val x vec = splitAt (tySize (x val)) vec

In the Σ case of varEqLit, the input vector vec can be split into three parts: the first

part represents the first component of the Σ type, the second part represents the second

component of the Σ type, and the third part should be a vector that solves to the 0 vector.

In the Π case of varEqLit, given a function f : ⟦ ‘Π u x ⟧, varEqLit (‘Π u x) vec f is

66

doi:10.6342/NTU202003013

logically equivalent to varEqLit (x u1) vec1 (fu1) && ... && varEqLit (x uk) veck (fuk)

where vec = vec1 ++ ... ++ veck, enum u = [u1, u2, ... , uk].

We will describe functions that generate type constraints in the next subsection.

5.6.1 Generating Type Constraints

In this subsection, we implement the main functions that generate type constraints for a

type u.

Given a type u and vec : Vec Var (tySize u), tyCond u vec generates the constraints that

tell us whether or not vec can be considered as a representation of some elem : ⟦ u ⟧.

Definition 5.6.2 (enumSigmaCond, enumPiCond, tyCond).

enumSigmaCond : ∀ {u : U} → List ⟦ u ⟧ → (x : ⟦ u ⟧ → U)
→ Vec Var (tySize u)
→ Vec Var (maxTySizeOver (enum u) x) → SI-Monad Var

enumPiCond : ∀ {u : U} → (eu : List ⟦ u ⟧) → (x : ⟦ u ⟧ → U)
→ Vec Var (tySumOver eu x) → SI-Monad Var

tyCond : ∀ (u : U) → Vec Var (tySize u) → SI-Monad Var

enumSigmaCond [] x v₁ v₂ = trivial
enumSigmaCond {u} (elem₁ ∷ enum₁) x v₁ v₂

with maxTySplit u elem₁ x v₂
... | fst , snd = do

eqElem₁ ← varEqLit u v₁ elem₁
tyCons ← tyCond (x elem₁) fst
restZ ← allEqz snd
tyCons&restZ ← land tyCons restZ
sat ← limp eqElem₁ tyCons&restZ
rest ← enumSigmaCond enum₁ x v₁ v₂
land sat rest

67

doi:10.6342/NTU202003013

enumPiCond [] x vec = trivial
enumPiCond (x₁ ∷ eu) x vec

with splitAt (tySize (x x₁)) vec
... | fst , rest = do

r ← tyCond (x x₁) fst
s ← enumPiCond eu x rest
land r s

tyCond `One vec = allEqz vec
tyCond `Two vec = do

isZero ← varEqLit `Two vec false
isOne ← varEqLit `Two vec true
lor isZero isOne

tyCond `Base vec = trivial
tyCond (`Vec u nzero) vec = trivial
tyCond (`Vec u (suc x)) vec

with splitAt (tySize u) vec
... | fst , snd = do

r ← tyCond u fst
s ← tyCond (`Vec u x) snd
land r s

tyCond (`Σ u x) vec
with splitAt (tySize u) vec

... | fst , snd = do
r ← tyCond u fst
s ← enumSigmaCond (enum u) x fst snd
land r s

tyCond (`Π u x) vec = enumPiCond (enum u) x vec

The variable that tyCond u vec returns solves to 1 if vec solves to a low level repre-

68

doi:10.6342/NTU202003013

sentation of some elem : ⟦ u ⟧, and solves to 0 otherwise.

With tyCond defined, indToIR can now be defined as a function that asserts that the

solution of a given vector satisfies the type constraints of some type u.

Definition 5.6.3 (indToIR).

indToIR : ∀ (u : U) → Vec Var (tySize u)
→ SI-Monad (Vec Var (tySize u))

indToIR u vec = do
t ← tyCond u vec
assertTrue t
return vec

5.7 Compiling Source to R1CS

Our strategy for compiling equality constraints is to first transform the two source expres-

sions in an equality constraint into their corresponding R1CS constraints (including the

type constraints), then assert the two resulting vector of variables to solve to the same

values.

Suppose that we have an equality constraint between the two Source expressions Ind

refl (3 ∷ []) and Add (Lit 5) (Mul (Lit 6) (Ind refl (7 ∷ []))) of type Source ‘Base. We

would transform the literals into Inds by applying varEqLit recursively, and the resulting

Inds would then be pieced together with additive constraints for the additive expressions,

multiplicative constraints for the multiplicative expressions, and finally the equality con-

straint for the equality of the two Source expressions. In the cases other than equality

constraints over ‘Base, we would add the corresponding type constraints for Inds with

indToIR and assert that the resulting variable of indToIR solves to 1 to make sure that the

vector of variables in the Inds are representations of a literal of the same type.

First we define the function sourceToR1CS that transforms source expressions into

R1CS. In the case of literals, we transform them into R1CS variables with litToInd by first

69

doi:10.6342/NTU202003013

allocating a new R1CS variable vector, and then asserting that the literal and the vector of

R1CS variables are “equal” (with varEqLit).

Definition 5.7.1 (litToInd).

litToInd : ∀ (u : U) → ⟦ u ⟧ → SI-Monad (Vec Var (tySize u))
litToInd u l = do

vec ← newVarVec (tySize u)
add (Hint (litEqVecHint u l vec))
r ← varEqLit u vec l
assertTrue r
return vec

The main compilation function sourceToR1CS is then defined as follows:

Definition 5.7.2 (sourceToR1CS).

sourceToR1CS : ∀ (u : U) → Source u
→ SI-Monad (Vec Var (tySize u))

sourceToR1CS u (Ind refl x)
= withMode PostponedMode (indToIR u x)

sourceToR1CS u (Lit x) = litToInd u x
sourceToR1CS `Base (Add source source₁) = do

r₁ ← sourceToR1CS `Base source
r₂ ← sourceToR1CS `Base source₁
v ← new
add (IAdd zero ((one , head r₁) ∷

(one , head r₂) ∷ (- one , v) ∷ []))
return (v ∷ [])

sourceToR1CS `Base (Mul source source₁) = do
r₁ ← sourceToR1CS `Base source
r₂ ← sourceToR1CS `Base source₁

70

doi:10.6342/NTU202003013

v ← new
add (IMul one (head r₁) (head r₂) one v)
return (v ∷ [])

With the sourceToR1CS function defined, what is left is of compiling equality con-

straints is to assert the two components of the equality constraints to solve to the same

values. We define the following function assertVarEqVar to do so.

Definition 5.7.3 (assertVarEqVar).

assertVarEqVar : ∀ (n : ℕ) → Vec Var n → Vec Var n → SI-Monad ⊤
assertVarEqVar .0 [] [] = return tt
assertVarEqVar .(suc _) (x ∷ v₁) (x₁ ∷ v₂) = do

add (IAdd zero ((one , x) ∷ (- one , x₁) ∷ []))
assertVarEqVar _ v₁ v₂

These components are then composed together into compAssert and compAssertsHints.

Definition 5.7.4 (compAssert).

compAssert : (∃ (λ u → Source u × Source u)) → SI-Monad ⊤
compAssert (u , s₁ , s₂) = do

r₁ ← sourceToR1CS u s₁
r₂ ← sourceToR1CS u s₂
assertVarEqVar _ r₁ r₂

Definition 5.7.5 (compAssertsHints).

compAssertsHints :
List (∃ (λ u → Source u × Source u)

⊎ (M.Map Var ℕ → M.Map Var ℕ))
→ SI-Monad ⊤

compAssertsHints [] = return tt
compAssertsHints (inj₁ x ∷ ls) = do

71

doi:10.6342/NTU202003013

compAssert x
compAssertsHints ls

compAssertsHints (inj₂ y ∷ ls) = do
add (Hint y)
compAssertsHints ls

The whole compilation process is then combined together with compileSource.

Definition 5.7.6 (compileSource).

compileSource : ∀ (n : ℕ) (u : U) → (S-Monad (Source u))
→ Var × List R1CS × (Vec Var (tySize u) × List ℕ)

compileSource n u source =
let v , (asserts , input) , output = source (tt , 1)

((v' , (cs₁ , cs₂) , outputVars) , inv) = (do
compAssertsHints (asserts [])
sourceToR1CS _ output) ((NormalMode , n) , v)

in v' , cs₁ ++ cs₂ , outputVars , input []

72

doi:10.6342/NTU202003013

Chapter 6

Formal Verification of the Compiler

In this chapter, we will describe how the translational soundness of the compiler is proved.

There are two parts to the translational correctness of a compiler: soundness and complete-

ness. Soundness is the property that if the generated constraints are satisfiable, then the

solution must be correct, and completeness is the property that the generated constraints

are satisfiable. We will only be proving the soundness of the compiler in this thesis.

Recall that in the compilation pipeline, we first execute a program written in S-Monad

with some initial states, then the result is piped into assertVarEqVar and sourceToR1CS to

generate the corresponding R1CS constraints. In this chapter, we will describe the formal

verification of the soundness of the main compilation functions in detail.

Given functions ℕtoF : ℕ→ f and fToℕ : f→ ℕ, the soundness of the compiler is proved
under the following conditions:

1. _≟F_ : Decidable {A = f} _≡_

2. _≟U_ : ∀ {u} → Decidable {A = ⟦ u ⟧} _≡_

3. field’ : Field f

4. isField : IsField f field’

5. finite : Finite f

6. ℕtoF-1≡1 : ℕtoF 1 ≡ onef

73

doi:10.6342/NTU202003013

7. ℕtoF-0≡0 : ℕtoF 0 ≡ zerof

8. ℕtoF∘fToℕ≡ : ∀ x → ℕtoF (fToℕ x) ≡ x

9. prime : ℕ

10. isPrime : Prime prime

11. onef≠zerof : ¬ onef ≡ zerof

12. The function ℕtoF is additively and multiplicatively homomorphic. i.e.

(a) ℕtoF-+hom : ∀ x y → ℕtoF (x + y) ≡ (ℕtoF x) + (ℕtoF y)

(b) ℕtoF-*hom : ∀ x y → ℕtoF (x * y) ≡ (ℕtoF x) * (ℕtoF y)

where isPrime is a proof that prime is indeed a prime number, onef is the multiplicative

identity in field’, and zerof is the additive identity in field’.

A solution to a set of R1CS constraints is defined as a partial map List (Var × ℕ) that
maps variables to their corresponding values. Because the variables are mapped to natural

numbers, it is necessary to have conversion functions (fToℕ : f → ℕ) (ℕtoF : ℕ → f) in

order to define what it means to say that a List (Var × ℕ) is a solution to an R1CS constraint.
Before we define the soundness of sourceToR1CS, we need a couple of auxiliary defi-

nitions, including a semantic function on Source expressions, a lookup relation for R1CS

variables in a partial map, and a value representation relation between a literal and a vec-

tor of natural numbers representing prime field elements. Our sourceToR1CS soundness

lemma says that given a solution sol to the constraints generated by sourceToR1CS, then

under good enough conditions, the result of the semantic function coincides (meaning

that they are related by the value representation relation) with the solution of the vector of

variables generated by sourceToR1CS in sol.

Since we are using natural numbers to represent prime field elements, we first define

the following equivalence relation _≈_ that “quotients” elements that are mapped to the

same values by the function ℕtoF. This relation will then be used to define the solution
relation for a partial map of type List (Var × ℕ) to be considered a solution of an R1CS
constraint.

74

doi:10.6342/NTU202003013

Definition 6.0.1 (_≈_). _≈_ is the equivalence relation naturally induced by the function

ℕtoF.

≈ : ℕ → ℕ → Prop
x ≈ y = Squash (ℕtoF x ≡ ℕtoF y)

≈ is an equivalence relation since the underlying propositional equality is an equiv-

alence relation:

≈-refl : ∀ {n} → n ≈ n
≈-sym : ∀ {m n} → m ≈ n → n ≈ m
≈-trans : ∀ {m n o} → m ≈ n → n ≈ o → m ≈ o

With _≈_ defined, next we define the lookup relation of one or more variables for a

partial map of type List (Var × ℕ).

Definition 6.0.2 (ListLookup).

data ListLookup : Var → List (Var × ℕ) → ℕ → Prop where
LookupHere : ∀ v l n n' → n ≈ n'
→ ListLookup v ((v , n) ∷ l) n'

LookupThere : ∀ v l n t
→ ListLookup v l n → ¬ v ≡ proj₁ t
→ ListLookup v (t ∷ l) n

Given a variable v : Var, a partial map sol : List (Var × ℕ), and a value n : ℕ,
ListLookup v sol n holds if the first occurrence of v in sol maps to n. We generalize the

above relation from a single variable to a vector of variables with the following relation

BatchListLookup.

Definition 6.0.3 (BatchListLookup).

data BatchListLookup : {n : ℕ} → Vec Var n → List (Var × ℕ)
→ Vec ℕ n → Prop where

75

doi:10.6342/NTU202003013

BatchLookupNil : ∀ l → BatchListLookup [] l []
BatchLookupCons : ∀ {len} v n (vec₁ : Vec Var len) vec₂ l

→ ListLookup v l n
→ BatchListLookup vec₁ l vec₂
→ BatchListLookup (v ∷ vec₁) l (n ∷ vec₂)

Recall from the definition of R1CS in Chapter 2 that an R1CS constraint is either an

additive constraint (IAdd), a multiplicative constraint (IMul), a Hint, or a Log. We define

a partial map sol : List (Var × ℕ) to be a solution to an additive constraint IAdd f1 ((f2, i2)
∷ (f3, i3) ... ∷ []) if after looking up the variables i2, i3, ... in sol, the linear combination

sums to zero (in the finite field). The solution of a multiplicative constraint is defined

similarly. For the cases Hint and Log, we define any partial map sol : List (Var × ℕ) to be
a solution of a Hint or a Log since they are not actual constraints. This is formally defined

with the Agda definitions in the following section.

6.1 Solution of R1CS Constraints

Given a partial map sol : List (Var × ℕ) and a linear combination of variables List (f × Var),
the value of the linear combination is defined with the following relation LinearCombVal.

Definition 6.1.1 (LinearCombVal).

data LinearCombVal (sol : List (Var × ℕ)) :
List (f × Var) → f → Prop where

LinearCombValBase : LinearCombVal solution [] zerof
LinearCombValCons : ∀ coeff var varVal {l} {acc}

→ ListLookup var solution varVal
→ LinearCombVal solution l acc
→ LinearCombVal solution ((coeff , var) ∷ l)

((coeff *F ℕtoF varVal) +F acc)

(where +F, *F are the additive and multiplicative field operations)

76

doi:10.6342/NTU202003013

A List (Var × ℕ) is a solution to an R1CS constraint if the following relation holds.

Definition 6.1.2 (R1CSSolution).

data R1CSSolution (solution : List (Var × ℕ))
: R1CS → Prop where

addSol : ∀ {coeff} {linComb} {linCombVal}
→ LinearCombVal solution linComb linCombVal
→ linCombVal +F coeff ≡ zerof
→ R1CSSolution solution (IAdd coeff linComb)

multSol : ∀ a b bval c cval d e eval
→ ListLookup b solution bval
→ ListLookup c solution cval
→ ListLookup e solution eval
→ ((a *F (ℕtoF bval)) *F (ℕtoF cval))

≡ (d *F (ℕtoF eval))
→ R1CSSolution solution (IMul a b c d e)

hintSol : ∀ f → R1CSSolution solution (Hint f)
logSol : ∀ s → R1CSSolution solution (Log s)

Since the writer component of SI-Monad is defined as a pair of List R1CS, in order

to facilitate the development of lemmas and proofs related to SI-Monad, we define the

following relation ConstraintsSol that expresses the proposition that every constraint in xs

++ ys is satisfied by sol.

Definition 6.1.3 (ConstraintsSol).

ConstraintsSol :
List R1CS × List R1CS → List (Var × ℕ) → Prop

ConstraintsSol (xs , ys) sol
= ∀ x → x ∈ (xs ++ ys) → R1CSSolution sol x

77

doi:10.6342/NTU202003013

Next we define the low level representation of a literal in Source expressions. This rep-

resentation relation is used in themain soundness lemma to relate the output of sourceToR1CS

to the semantics function on Source (which will be defined later).

6.2 Literal Representation

Definition 6.2.1 (PiRepr, ValRepr). ValRepr defines the representation of an element of ⟦
u ⟧ for a type code u while PiRepr defines the representation of a Π type element.

data PiRepr (u : U) (x : ⟦ u ⟧ → U)
(f : (v : ⟦ u ⟧) → ⟦ x v ⟧)

: (eu : List ⟦ u ⟧) → Vec ℕ (tySumOver eu x) → Set

data ValRepr : ∀ u → ⟦ u ⟧ → Vec ℕ (tySize u) → Set where
`OneValRepr : ∀ n → n ≈ 0 → ValRepr `One tt (n ∷ [])
`TwoValFalseRepr :

∀ n → n ≈ 0 → ValRepr `Two false (n ∷ [])
`TwoValTrueRepr :

∀ n → n ≈ 1 → ValRepr `Two true (n ∷ [])
`BaseValRepr : ∀ {v : f} {v' : ℕ} → (fToℕ v) ≈ v'

→ ValRepr `Base v (v' ∷ [])
`VecValBaseRepr : ∀ {u} → ValRepr (`Vec u 0) [] []
`VecValConsRepr :

∀ {u} {n} {v₁} {vec₂} {val₁} {val₂} {val₃}
→ ValRepr u v₁ val₁
→ ValRepr (`Vec u n) vec₂ val₂
→ val₁ V++ val₂ ≡ val₃
→ ValRepr (`Vec u (suc n)) (v₁ ∷ vec₂) val₃

`ΣValRepr :
∀ {u} {⟦u⟧} (x : ⟦ u ⟧ → U) {⟦xu⟧} {val⟦u⟧} {val⟦xu⟧}

78

doi:10.6342/NTU202003013

val⟦xu⟧+z {val⟦u⟧+val⟦xu⟧+z}
{allZ : Vec ℕ (maxTySizeOver (enum u) x

- tySize (x ⟦u⟧))}
→ ValRepr u ⟦u⟧ val⟦u⟧
→ ValRepr (x ⟦u⟧) ⟦xu⟧ val⟦xu⟧
→ All (_≈_ 0) allZ
→ val⟦xu⟧+z ≅ val⟦xu⟧ V++ allZ
→ val⟦u⟧ V++ val⟦xu⟧+z ≡ val⟦u⟧+val⟦xu⟧+z
→ ValRepr (`Σ u x) (⟦u⟧ , ⟦xu⟧) val⟦u⟧+val⟦xu⟧+z

`ΠValRepr :
∀ {u} (x : ⟦ u ⟧ → U) {f : (v : ⟦ u ⟧) → ⟦ x v ⟧ } val
→ PiRepr u x f (enum u) val → ValRepr (`Π u x) f val

data PiRepr u x f where
PiRepNil : PiRepr u x f [] []
PiRepCons : ∀ {el} {⟦u⟧} {val⟦xu⟧} {vec} {val⟦xu⟧+vec}

→ ValRepr (x ⟦u⟧) (f ⟦u⟧) val⟦xu⟧
→ PiRepr u x f el vec
→ val⟦xu⟧+vec ≡ val⟦xu⟧ V++ vec
→ PiRepr u x f (⟦u⟧ ∷ el) val⟦xu⟧+vec

where _≅_ is the usual heterogeneous equality.
The definition of ValRepr says that the representation of (up to _≅_)

• tt : ⟦ ‘One ⟧ is (0 ∷ [])

• false : ⟦ ‘Two ⟧ is (0 ∷ [])

• true : ⟦ ‘Two ⟧ is (1 ∷ [])

• v : ⟦ ‘Two ⟧ is (fToℕ v ∷ [])

• vec : ⟦ ‘Vec u n ⟧ is the concatenation of the representations of the elements in vec

79

doi:10.6342/NTU202003013

• (a , b) : ⟦ ‘Σ u x ⟧ is the concatenation of the representations of a, b, and a zero

vector that fills up the remaining space

• f : ⟦ ‘Π u x ⟧ is the concatenation of the representations of f u1, f u2, ... f un

where [u1, ... , un] = enum u.

With ValRepr defined, next we define the semantics function for Source expressions.

6.3 Semantics Function for Source

Since Source expressions can contain R1CS variables, the semantics of a Source expres-

sion is intrinsically tied to a partial map store : List (Var × ℕ). When evaluating a Source

expression exp together with store, we require store to map the R1CS variables in a way

so that the Inds in exp when solved with store, give us a representation of some element

of the correct type. This is captured with the following definition.

Definition 6.3.1 (SourceStoreRepr). SourceStoreRepr store u s says that all Inds in s are

defined in store and that they point to elements of the correct type.

data SourceStoreRepr (store : List (Var × ℕ))
: ∀ u → Source u → Set where

IndStore′ : ∀ {u} {m}
(vec : Vec Var m) (val : Vec ℕ m) elem
→ (p : m ≡ tySize u)
→ BatchListLookup vec store val
→ ValRepr u elem (subst (Vec ℕ) p val)
→ SourceStoreRepr store u (Ind p vec)

LitStore′ : ∀ {u} (v : ⟦ u ⟧)
→ SourceStoreRepr store u (Lit v)

AddStore′ : ∀ (s₁ s₂ : Source `Base)
→ SourceStoreRepr store `Base s₁
→ SourceStoreRepr store `Base s₂

80

doi:10.6342/NTU202003013

→ SourceStoreRepr store `Base (Add s₁ s₂)
MulStore′ : ∀ (s₁ s₂ : Source `Base)

→ SourceStoreRepr store `Base s₁
→ SourceStoreRepr store `Base s₂
→ SourceStoreRepr store `Base (Mul s₁ s₂)

Now we are ready to define the semantics function for Source.

Definition 6.3.2 (sourceSem). Semantics function for Source. Under the condition that

SourceStoreRepr store u s holds, the semantics function is defined as follows:

sourceSem : ∀ u → (s : Source u) → (store : List (Var × ℕ))
→ SourceStoreRepr store u s → ⟦ u ⟧

sourceSem `One s st ss = tt
sourceSem `Two .(Ind refl vec) st

(IndStore′ vec val elem refl x x₁) = elem
sourceSem `Two .(Lit v) st (LitStore′ v) = v
sourceSem `Base .(Ind p vec) st

(IndStore′ vec val elem p x x₁) = elem
sourceSem `Base .(Lit v) st (LitStore′ v) = v
sourceSem `Base .(Add s₁ s₂) st (AddStore′ s₁ s₂ ss ss₁)

= sourceSem `Base s₁ st ss +F sourceSem `Base s₂ st ss₁
sourceSem `Base .(Mul s₁ s₂) st (MulStore′ s₁ s₂ ss ss₁)

= sourceSem `Base s₁ st ss *F sourceSem `Base s₂ st ss₁
sourceSem (`Vec u x) .(Ind p vec) st

(IndStore′ vec val elem p x₁ x₂) = elem
sourceSem (`Vec u x) .(Lit v) st (LitStore′ v) = v
sourceSem (`Σ u x) .(Ind p vec) st

(IndStore′ vec val elem p x₁ x₂) = elem
sourceSem (`Σ u x) .(Lit v) st (LitStore′ v) = v
sourceSem (`Π u x) .(Ind p vec) st

81

doi:10.6342/NTU202003013

(IndStore′ vec val elem p x₁ x₂) = elem
sourceSem (`Π u x) .(Lit v) st (LitStore′ v) = v

Before we define the soundness of sourceToR1CS, we first define a weakened notion

of SourceStoreRepr that says that every R1CS variable in a given source expression points

to some value in store.

Definition 6.3.3 (SourceStore). SourceStore store u s says that all Inds in s point to some-

thing in store.

data SourceStore (store : List (Var × ℕ))
: ∀ (u : U) → Source u → Set where

IndStore : ∀ {u} {m} (vec : Vec Var m) (val : Vec ℕ m)
→ (p : m ≡ tySize u)
→ BatchListLookup vec store val
→ SourceStore store u (Ind p vec)

LitStore : ∀ {u} (v : ⟦ u ⟧)
→ SourceStore store u (Lit v)

AddStore : ∀ (s₁ s₂ : Source `Base)
→ SourceStore store `Base s₁
→ SourceStore store `Base s₂
→ SourceStore store `Base (Add s₁ s₂)

MulStore : ∀ (s₁ s₂ : Source `Base)
→ SourceStore store `Base s₁
→ SourceStore store `Base s₂
→ SourceStore store `Base (Mul s₁ s₂)

6.4 Compilation Soundness

Theorem 6.4.1 (sourceToR1CSSound). Soundness of sourceToR1CS.

sourceToR1CSSound :
∀ (r : WriterMode) (u : U)

82

doi:10.6342/NTU202003013

→ (s : Source u)
→ (sol : List (Var × ℕ))
→ ListLookup 0 sol 1
→ SourceStore sol u s
→ ∀ init →
let result = sourceToR1CS u s ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ Squash (∃ (λ ⟦u⟧ → ∃ (λ val →

ValRepr u ⟦u⟧ val × ∃ (λ ss →
Σ′ (sourceSem u s sol ss ≡ ⟦u⟧)

(λ _ → BatchListLookup
(output result) sol val)))))

This lemma says that given a Source expression s : Source u and a partial map sol : List

(Var × N) such that

1. sol is a solution of the generated constraints from sourceToR1CS

2. The variable 0 maps to 1 in sol

3. SourceStore sol u s holds

then there is

⟦u⟧ : ⟦ u ⟧
val : Vec ℕ (tySize u)
ss : SourceStoreRepr store u s

such that the following diagram holds

83

doi:10.6342/NTU202003013

s ⟦u⟧

out val

sourceSemss,sol

primary output (sourceToR1CS) V alRepr

BatchListLookupsol

for any initial state init.

The proof of sourceToR1CSSound follows the definition of sourceToR1CS. Recall the

definition of sourceToR1CS from Chapter 5:

sourceToR1CS : ∀ (u : U) → Source u
→ SI-Monad (Vec Var (tySize u))

sourceToR1CS u (Ind refl x)
= withMode PostponedMode (indToIR u x)

sourceToR1CS u (Lit x) = litToInd u x
sourceToR1CS `Base (Add source source₁) = do

r₁ ← sourceToR1CS `Base source
r₂ ← sourceToR1CS `Base source₁
v ← new
add (IAdd zero ((one , head r₁) ∷

(one , head r₂) ∷ (- one , v) ∷ []))
return (v ∷ [])

sourceToR1CS `Base (Mul source source₁) = do
r₁ ← sourceToR1CS `Base source
r₂ ← sourceToR1CS `Base source₁
v ← new
add (IMul one (head r₁) (head r₂) one v)

84

doi:10.6342/NTU202003013

return (v ∷ [])

In the Ind case of sourceToR1CS, we want indToIR to generate the correct type con-

straints for the R1CS variables, and in the Lit case of sourceToR1CS, we want litToInd to

return R1CS variables that solve to the representation of the given literal. In the Add and

Mul cases, sourceToR1CS is proved by straightforward induction on the Source expres-

sion.

What does it mean to say that indToIR generates the correct type constraints? The type

of indToIR is:

indToIR : ∀ (u : U)
→ Vec Var (tySize u)
→ SI-Monad (Vec Var (tySize u))

Given a type code u and a vector of variables vec, we want indToIR to generate enough

constraints so that given a good enough solution sol : List (Var × ℕ) to the constraints
generated by indToIR u vec, vec solves to a representation of some elem : ⟦ u ⟧ in sol.

This is expressed as the following lemma:

Lemma 6.4.2 (indToIRSound). Soundness of indToIR.

indToIRSound :
∀ (r : WriterMode) (u : U)
→ (vec : Vec Var (tySize u))
→ (val : Vec ℕ (tySize u))
→ (sol : List (Var × ℕ))
→ BatchListLookup vec sol val
→ ListLookup 0 sol 1
→ ∀ init →
let result = indToIR u vec ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ Squash (∃ (λ elem → ValRepr u elem val))

85

doi:10.6342/NTU202003013

For litToInd, we want the constraints generated by litToInd u l to ensure that the vector

of variables returned by litToInd u l solves to a representation of the literal l for any good

enough solution sol : List (Var × ℕ) to the generated constraints. This is expressed as the
following lemma:

Lemma 6.4.3 (litToIndSound). Soundness of litToInd.

litToIndSound :
∀ (r : WriterMode) (u : U)
→ (elem : ⟦ u ⟧)
→ (sol : List (Var × ℕ))
→ ListLookup 0 sol 1
→ ∀ init →
let result = litToInd u elem ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ Squash (∃ (λ val → Σ′ (ValRepr u elem val)

(λ _ → BatchListLookup (output result) sol val)))

In order to prove indToIRSound and litToIndSound, we proved that similar soundness

properties hold for tyCond, varEqLit, and assertTrue, and to do so, we proved that similar

soundness properties hold for the components (including land, lor, limp et cetera) used

in the definition of tyCond, varEqLit, and assertTrue. Here we will give an example on

what proving these soundness lemmas are like. Readers interested in the details on the

lemmas used to prove indToIRSound and litToIndSound should check out Appendix B

for a comprehensive view of the soundness lemmas and the auxiliary definitions used to

define and prove these soundness lemmas.

Take the following definition of limp from Chapter 5 for example:

limp : Var → Var → SI-Monad Var
limp n₁ n₂ = do

notN₁ ← lnot n₁
lor notN₁ n₂

86

doi:10.6342/NTU202003013

Given a solution sol to the constraints generated by limp n₁ n₂ such that n₁maps to v₁
and n₂ maps to v₂ in sol and that v₁, v₂ ∈ {0, 1}, the variable that limp returns solves to
1 if v₁→ v₂ (material implication) holds. This is captured with the following definition:

limpSound : ∀ (r : WriterMode)
→ (n₁ n₂ : Var) → (v₁ v₂ : ℕ)
→ (sol : List (Var × ℕ))
→ ListLookup n₁ sol v₁
→ ListLookup n₂ sol v₂
→ isBool v₁ → isBool v₂
→ ∀ (init : ℕ) →
let result = limp n₁ n₂ ((r , prime) , init)
in BuilderProdSol (writerOutput result) sol
→ ListLookup (output result) sol (limpFunc v₁ v₂)

where limpFunc a b evaluates to 0 if and only if a ≈ 1 and b ≈ 0 and isBool a holds if a ≈

0 or a ≈ 1.

Since the inputs of limp solve to 0 or 1 in sol, the input condition for lnot is satisfied,

and notN₁ must also solve to 0 or 1 in sol. Therefore, the input condition for lor (both

input variables solve to 0 or 1 in sol) is satisfied, and the output variable solves to the result

calculated by limpFunc (up to _≈_) in sol.

87

doi:10.6342/NTU202003013

88

doi:10.6342/NTU202003013

Chapter 7

Conclusion

In this thesis, I constructed and formally proved the soundness of a dependently typed

verifiable computation compiler. By using a tarski style universe in the domain specific

language, users are able to write dependently typed domain specific programs that can be

directly type checked by the dependently typed language Agda. The result from the Agda

programs can then be subsequently piped into the zkSNARK library libsnark to generate

the corresponding cryptographic proof. Overall, this was an attempt that I undertook to

construct and formally verify a compiler that compiles to rank 1 constraints.

89

doi:10.6342/NTU202003013

90

doi:10.6342/NTU202003013

Appendix A

Full Definition of enum

Definition A.0.1 (enum, enumComplete, FuncInstLem).

enum : (u : U) → List ⟦ u ⟧
enumComplete : ∀ (u : U) → (x : ⟦ u ⟧) → x ∈ enum u

enum `One = [tt]
enum `Two = false ∷ true ∷ []
enum `Base = Finite.elems finite
enum (`Vec u zero) = [[]]
enum (`Vec u (suc x)) = do

r ← enum u
rs ← enum (`Vec u x)
return (r ∷ rs)

enum (`Σ u x) = do
r ← enum u
rs ← enum (x r)
return (r , rs)

enum (`Π u x) =
let pairs = do

r ← enum u

91

doi:10.6342/NTU202003013

return (r , enum (x r))
funcs = genFunc _ _ pairs

in listFuncToPi u x (enum u) (enumComplete u) funcs
(λ x₁ x₁∈genFunc →

trans (genFuncProj₁ u x pairs x₁ x₁∈genFunc)
(map-proj₁->>= (enum u) (enum ∘ x)))

FuncInstLem : ∀ u x (f : ⟦ `Π u x ⟧) (l : List ⟦ u ⟧)
→ FuncInst ⟦ u ⟧ (λ v → ⟦ x v ⟧) (piToList u x l f)

(l >>= (λ r → (r , enum (x r)) ∷ []))
FuncInstLem u x f [] = InstNil
FuncInstLem u x f (x₁ ∷ l)

= InstCons (piToList u x l f)
(l >>= (λ r → (r , enum (x r)) ∷ []))
x₁ (f x₁) (enum (x x₁)) (enumComplete (x x₁) (f x₁))
(FuncInstLem u x f l)

enumComplete `One tt = here refl
enumComplete `Two false = here refl
enumComplete `Two true = there (here refl)
enumComplete `Base x = Finite.a∈elems finite x
enumComplete (`Vec u zero) [] = here refl
enumComplete (`Vec u (suc x₁)) (x ∷ x₂) =

∈l-∈l'-∈r (enum u) _∷_ x x₂ (enumComplete u x)
(λ _ → enum (`Vec u x₁)) (enumComplete (`Vec u x₁) x₂)

enumComplete (`Σ u x₁) (fst , snd) =
∈l-∈l'-∈r (enum u) _,_ fst snd (enumComplete u fst)
(λ r → enum (x₁ r)) (enumComplete (x₁ fst) snd)

enumComplete (`Π u x₁) f =

92

doi:10.6342/NTU202003013

let pairs = do
r ← enum u
return (r , enum (x₁ r))

genFuncs = genFunc u x₁ pairs
fToList = piToList u x₁ (enum u) f
fToListFuncInstPairs

= FuncInstLem u x₁ f (enum u)
fToList∈genFuncs

= FuncInst→genFunc u x₁ pairs
fToList fToListFuncInstPairs

prf = trans
(genFuncProj₁ u x₁ pairs

fToList fToList∈genFuncs)
(map-proj₁->>= (enum u)

(λ x₂ → enum (x₁ x₂)))
f≗piFromList∘piToList

= piFromList∘piToList≗id u x₁
(enum u) (enumComplete u) f prf

in f∈listFuncToPi u x₁ _ _ genFuncs fToList _
f fToList∈genFuncs
(ext f≗piFromList∘piToList)

where ext is the principle of function extensionality, and trans is transitivity for proposi-

tional equality.

The reasoning for the Π case of enumComplete is that since enum (‘Π u x) is defined

with listFuncToPi, we show that f : ⟦ ‘Π u x ⟧when transformed into fToListwith piToList,
must be a member of genFuncs, and that piFromList∘piToList is the identity function.

93

doi:10.6342/NTU202003013

94

doi:10.6342/NTU202003013

Appendix B

Additional Formal Verification Lemmas

and Definitions

Definition B.0.1 (Vec-≈).

data Vec-≈ : ∀ {n} → Vec ℕ n → Vec ℕ n → Prop where
≈-Nil : Vec-≈ [] []
≈-Cons : ∀ {n} x y {l : Vec ℕ n} {l'} → x ≈ y

→ Vec-≈ l l'
→ Vec-≈ (x ∷ l) (y ∷ l')

Definition B.0.2 (isBool).

data isBool : ℕ → Set where
isZero : ∀ n → ℕtoF n ≡ zerof → isBool n
isOne : ∀ n → ℕtoF n ≡ onef → isBool n

isBool n says that ℕtoF n is either 1 or 0. If isBool n holds for some (n : ℕ), then n is said
to be boolean.

Definition B.0.3 (isBoolStrict).

data isBoolStrict : ℕ → Set where
isZeroS : ∀ {n} → n ≡ 0 → isBoolStrict n
isOneS : ∀ {n} → n ≡ 1 → isBoolStrict n

95

doi:10.6342/NTU202003013

isBoolStrict n says that n is either 1 or 0. If isBoolStrict n holds for some (n : ℕ), then n is
said to be strictly boolean.

The following lemma says that if a natural number n is strictly boolean, then n is

boolean:

Lemma B.0.1 (isBoolStrict→isBool).

isBoolStrict→isBool : ∀ {n} → isBoolStrict n → isBool n

Proof. Immediate from definition of isBoolStrict.

Lemma B.0.2 (addSound). addSound says that if there is a solution sol to the constraints

generated by add ir, then sol must be a solution to ir.

addSound : ∀ (r : WriterMode)
→ (ir : R1CS)
→ (sol : List (Var × ℕ))
→ ∀ (init : ℕ) →
let result = add ir ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ R1CSSolution sol ir

Proof. Since add ir adds ir to the resulting contraints, any solution to the constraints gen-

erated by add ir must satisfy ir.

Lemma B.0.3 (assertTrueSound). assertTrueSound says that if there is a solution sol to

the constraints generated by assertTrue v, then v is mapped to 1 in sol.

assertTrueSound : ∀ (r : WriterMode)
→ ∀ (v : Var) → (sol : List (Var × ℕ))
→ ∀ (init : ℕ) →
let result = assertTrue v ((r , prime) , init)
in

ConstraintsSol (writerOutput result) sol
→ ListLookup v sol 1

96

doi:10.6342/NTU202003013

Proof. By addSound.

In order to give specifications to the logical functions, functions like the following

neqzFunc are defined:

Definition B.0.4 (neqzFunc). Specification of neqz.

neqzFunc : ℕ → ℕ
neqzFunc n with ℕtoF n ≟F zerof
neqzFunc n | yes p = 0
neqzFunc n | no ¬p = 1

The following two lemmas are immediate from the definition of neqzFunc:

neqzFuncIsBoolStrict says that neqzFunc n is strictly boolean for all n : ℕ.

Lemma B.0.4 (neqzFuncIsBoolStrict).

neqzFuncIsBoolStrict : ∀ n → isBoolStrict (neqzFunc n)

neqzFuncIsBool says that neqzFunc n is boolean for all n : ℕ.

Lemma B.0.5 (neqzFuncIsBool).

neqzFuncIsBool : ∀ n → isBool (neqzFunc n)

Since neqz is constructed with add, we prove the soundness of neqz with respect to

neqzFunc by first applying addSound, then we apply the reasoning in Section 5.4 on neqz:

Lemma B.0.6 (neqzSound).

neqzSound : ∀ (r : WriterMode)
→ ∀ (v : Var) → (val : ℕ) → (sol : List (Var × ℕ))
→ ListLookup v sol val
→ ∀ (init : ℕ) →
let result = neqz v ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol (neqzFunc val)

97

doi:10.6342/NTU202003013

Similarly, we proved that neqzIsBool solves to zero or one given a solution map that

satisfies the constraints generated by neqz v by applying addSound and some simple field

arithmetic:

Lemma B.0.7 (neqzIsBool).

neqzIsBool : ∀ (r : WriterMode)
→ (v : Var)
→ (sol : List (Var × ℕ))
→ ∀ init →
let result = neqz v ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ Squash (∃ (λ val → Σ′ (isBool val)

(λ _ → ListLookup (output result) sol val)))

This is the leitmotif of the proofs of these lemmas: first we try to obtain the soundness

proofs of the underlying components, then we apply a higher level reasoning that uses the

subcomponents as basic building blocks.

The following lemma says that given a solution sol to the constraints generated by

neqz v such that neqz outputs a variable that solves to 0 in sol, the input variable must

solve to 0 in sol:

Lemma B.0.8 (neqzSound₀).

neqzSound₀ : ∀ (r : WriterMode)
→ (v : Var)
→ (sol : List (Var × ℕ))
→ ListLookup 0 sol 1
→ ∀ init →
let result = neqz v ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol 0

98

doi:10.6342/NTU202003013

→ Squash (∃ (λ val → (Σ′′ (ListLookup v sol val)
(λ _ → 0 ≈ val))))

By applying similar techniques, we can prove that other basic components used in the

construction of the compiler are well-behaved when the generated constraints are satisfi-

able.

Definition B.0.5 (lorFunc). Specification of lor.

lorFunc : ℕ → ℕ → ℕ
lorFunc a b with ℕtoF a ≟F zerof
lorFunc a b | yes p with ℕtoF b ≟F zerof
lorFunc a b | yes p | yes p₁ = 0
lorFunc a b | yes p | no ¬p = 1
lorFunc a b | no ¬p = 1

Lemma B.0.9 (lorFuncIsBoolStrict).

lorFuncIsBoolStrict : ∀ a b → isBoolStrict (lorFunc a b)

Lemma B.0.10 (lorFuncIsBool).

lorFuncIsBool : ∀ a b → isBool (lorFunc a b)

With the specification defined, we proved that lor is sound with respect to lorFunc

when the input variables are mapped to boolean values in the solution.

Lemma B.0.11 (lorSound).

lorSound : ∀ (r : WriterMode)
→ (v v' : Var) → (val val' : ℕ)
→ (sol : List (Var × ℕ))
→ ListLookup v sol val
→ ListLookup v' sol val'
→ isBool val → isBool val'

99

doi:10.6342/NTU202003013

→ ∀ (init : ℕ) →
let result = lor v v' ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol (lorFunc val val')

Given a solution sol to the constraints generated by lor v v’, if the output variable of

lorFunc solves to 0, and both inputs to lor solve to boolean values, then it must be the case

that both input variables solve to 0:

Lemma B.0.12 (lorSound₀).

lorSound₀ : ∀ (r : WriterMode)
→ (v v' : Var) (val val' : ℕ)
→ (sol : List (Var × ℕ))
→ ∀ init
→ ListLookup v sol val
→ ListLookup v' sol val'
→ isBool val
→ isBool val' →
let result = lor v v' ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol 0
→ Squash (Σ′′ (ListLookup v sol 0)

(λ _ → ListLookup v' sol 0))

Similarly, for the logical and gate, we can define the following specification:

Definition B.0.6 (landFunc). Specification of land.

landFunc : ℕ → ℕ → ℕ
landFunc a b with ℕtoF a ≟F zerof
landFunc a b | yes p = 0
landFunc a b | no ¬p with ℕtoF b ≟F zerof

100

doi:10.6342/NTU202003013

landFunc a b | no ¬p | yes p = 0
landFunc a b | no ¬p | no ¬p₁ = 1

Suppose that landFunc a b outputs 1, and that isBoolStrict a holds, then a must be

propositionally equal to 1.

Lemma B.0.13 (landFunc⁻₁).

landFunc⁻₁ : ∀ {a} {b}
→ isBoolStrict a → landFunc a b ≡ 1 → a ≡ 1

Suppose that landFunc a b outputs 1, and that isBoolStrict b holds, then b must be

propositionally equal to 1.

Lemma B.0.14 (landFunc⁻₂).

landFunc⁻₂ : ∀ {a} {b}
→ isBoolStrict b → landFunc a b ≡ 1 → b ≡ 1

For arbitrary (a b : ℕ), landFunc a b is strictly boolean.

Lemma B.0.15 (landFuncIsBoolStrict).

landFuncIsBoolStrict : ∀ a b → isBoolStrict (landFunc a b)

For arbitrary (a b : ℕ), landFunc a b is boolean.

Lemma B.0.16 (landFuncIsBool).

landFuncIsBool : ∀ a b → isBool (landFunc a b)

We proved that given a solution sol to the constraints generated by land v v’ such that

the variable 0 maps to 1, and that both inputs to land solve to boolean values, then the

output of land also solves to a boolean value.

Lemma B.0.17 (landIsBool).

101

doi:10.6342/NTU202003013

landIsBool : ∀ r v v' sol val val'
→ ListLookup v sol val
→ ListLookup v' sol val'
→ isBool val
→ isBool val'
→ ListLookup 0 sol 1
→ ∀ init →
let result = land v v' ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ Squash (∃ (λ val'' → Σ′ (isBool val'')

(λ _ → ListLookup (output result) sol val'')))

The following lemma says that land is sound with respect to its specification landFunc

when the input variables map to boolean values in the solution:

Lemma B.0.18 (landSound).

landSound : ∀ (r : WriterMode)
→ (v v' : Var) → (val val' : ℕ)
→ (sol : List (Var × ℕ))
→ ListLookup v sol val
→ ListLookup v' sol val'
→ isBool val → isBool val'
→ ∀ (init : ℕ) →
let result = land v v' ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol (landFunc val val')

landSound₁, proved with landSound and addSound, says that given a solution sol to
the constraints generated by land v v’ such that the output variable of land solves to 1, and

that both input variables are boolean in sol, then it must be the case that both inputs solve

to 1 in sol.

102

doi:10.6342/NTU202003013

Lemma B.0.19 (landSound₁).

landSound₁ : ∀ (r : WriterMode)
→ (v v' : Var) (val val' : ℕ)
→ (sol : List (Var × ℕ))
→ ∀ init
→ ListLookup v sol val
→ ListLookup v' sol val'
→ isBool val
→ isBool val' →
let result = land v v' ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol 1
→ Squash (Σ′′ (ListLookup v sol 1)

(λ _ → ListLookup v' sol 1))

Similar to the case of lor and land, we define and prove similar lemmas for the other

components used in the compiler:

Definition B.0.7 (lnotFunc). Specification of lnot.

lnotFunc : ℕ → ℕ
lnotFunc a with ℕtoF a ≟F zerof
lnotFunc a | yes p = 1
lnotFunc a | no ¬p = 0

lnotFuncIsBoolStrict says that for any (n : ℕ), lnotFunc n is strictly boolean.

Lemma B.0.20 (lnotFuncIsBoolStrict).

lnotFuncIsBoolStrict : ∀ n → isBoolStrict (lnotFunc n)

For any (n : ℕ), lnotFunc n is boolean:

Lemma B.0.21 (lnotFuncIsBool).

103

doi:10.6342/NTU202003013

lnotFuncIsBool : ∀ n → isBool (lnotFunc n)

lnotSound says that lnot is sound with respect to the specification lnotFunc when the

input variable to lnot maps to a boolean in the solution.

Lemma B.0.22 (lnotSound).

lnotSound : ∀ (r : WriterMode)
→ (v : Var) → (val : ℕ)
→ (sol : List (Var × ℕ))
→ ListLookup v sol val
→ isBool val
→ ∀ (init : ℕ) →
let result = lnot v ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol (lnotFunc val)

lnotSound₁ says that given a solution sol to the constraints generated by lnot v, if the
output variable of lnot solves to 1 in sol, then the input variable solves to 0 in sol.

Lemma B.0.23 (lnotSound₁).

lnotSound₁ : ∀ (r : WriterMode) v val sol init
→ ListLookup v sol val
→ isBool val →
let result = lnot v ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol 1
→ ListLookup v sol 0

Definition B.0.8 (limpFunc). Specification of limp.

limpFunc : ℕ → ℕ → ℕ
limpFunc a b = lorFunc (lnotFunc a) b

104

doi:10.6342/NTU202003013

Lemma B.0.24 (limpFuncImp).

limpFuncImp : ∀ {a} {b} → a ≡ 1
→ isBoolStrict b → limpFunc a b ≡ 1 → b ≡ 1

limpFuncIsBool says that for any (a b : ℕ), limpFunc a b must be boolean.

Lemma B.0.25 (limpFuncIsBool).

limpFuncIsBool : ∀ a b → isBool (limpFunc a b)

limpFuncIsBoolStrict says that for any (a b : ℕ), limpFunc a bmust be strictly boolean.

Lemma B.0.26 (limpFuncIsBoolStrict).

limpFuncIsBoolStrict : ∀ a b → isBoolStrict (limpFunc a b)

Soundness of the logical implication gate given a solution sol to the constraints generated

by limp v v’ that maps input variables to boolean:

Lemma B.0.27 (limpSound).

limpSound : ∀ (r : WriterMode)
→ (v v' : Var) → (val val' : ℕ)
→ (sol : List (Var × ℕ))
→ ListLookup v sol val
→ ListLookup v' sol val'
→ isBool val → isBool val'
→ ∀ (init : ℕ) →
let result = limp v v' ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol (limpFunc val val')

anyNeqzIsBool says that given a solution sol to the constraints generated by anyNeqz

vec, it must be the case that the output variable is boolean.

105

doi:10.6342/NTU202003013

Lemma B.0.28 (anyNeqzIsBool).

anyNeqzIsBool : ∀ r {n} (vec : Vec Var n) sol init
→ let result = anyNeqz vec ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ Squash (∃ (λ val → Σ′ (isBool val)

(λ _ → ListLookup (output result) sol val)))

anyNeqzSound₀ says that given a solution sol to the constraints generated by anyNeqz
vec such that 0 maps to 1 in sol, and that the output variable solves to 0, then it must be

the case that the input variables all solve to 0.

Lemma B.0.29 (anyNeqzSound₀).

anyNeqzSound₀ : ∀ (r : WriterMode)
→ ∀ {n} → (vec : Vec Var n)
→ (sol : List (Var × ℕ))
→ ListLookup 0 sol 1
→ ∀ init →
let result = anyNeqz vec ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol 0
→ Squash (∃ (λ val → (Σ′′ (BatchListLookup vec sol val)

(λ _ → All (_≈_ 0) val))))

where All is the usual inductively defined predicate that says that all elements in the given

vector satisfies the given predicate:

data All {A : Set} (P : A → Prop)
: ∀ {n} → Vec A n → Prop where

[] : All P []
∷ : ∀ {n x} {xs : Vec A n} (px : P x)

(pxs : All P xs) → All P (x ∷ xs)

106

doi:10.6342/NTU202003013

Definition B.0.9 (varEqBaseLitFunc). Specification of varEqBaseLit

varEqBaseLitFunc : ℕ → f → ℕ
varEqBaseLitFunc v l with ℕtoF v ≟F l
varEqBaseLitFunc v l | yes p = 1
varEqBaseLitFunc v l | no ¬p = 0

varEqBaseLitSound says that varEqBaseLit is sound with respect to the specification

varEqBaseLitFunc if the input variable to varEqBaseLit is mapped to something in the

solution.

Lemma B.0.30 (varEqBaseLitSound).

varEqBaseLitSound : ∀ (r : WriterMode)
→ (v : Var) → (val : ℕ) → (l : f)
→ (sol : List (Var × ℕ))
→ ListLookup v sol val
→ ∀ (init : ℕ) →
let result = varEqBaseLit v l ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol (varEqBaseLitFunc val l)

varEqBaseLitSound₁ says that given a solution sol to the constraints generated by

varEqBaseLit v l that maps 0 to 1, and that the output variable of varEqBaseLit solves to

1, then it must be the case that the input variable to varEqBaseLit maps to l:

Lemma B.0.31 (varEqBaseLitSound₁).

varEqBaseLitSound₁ : ∀ (r : WriterMode)
→ (v : Var) (l : f)
→ (sol : List (Var × ℕ))
→ ListLookup 0 sol 1
→ ∀ init →

107

doi:10.6342/NTU202003013

let result = varEqBaseLit v l ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol 1
→ Squash (∃ (λ val → Σ′ (ℕtoF val ≡ l)

(λ _ → ListLookup v sol val)))
varEqBaseLitSound₁ r v l sol tri init isSol look

Proof. Recall the definition of varEqBaseList:

varEqBaseLit : Var → f → SI-Monad Var
varEqBaseLit n l = do

n-l ← new
add (IAdd (- l) ((one , n) ∷ (- one , n-l) ∷ []))
¬r ← neqz n-l
r ← lnot ¬r
return r

Given a solution sol to the constraints generated by varEqBaseLit v l such that 0 maps to 1

in sol, by neqzIsBool, lnotSound₁, and neqzSound₀, n-l solves to 0 in sol. By addSound,
n solves to l in sol.

varEqBaseLitIsBool says that given a solution sol to the constraints generated by varE-

qBaseLit v l, it must be the case that the output variable of varEqBaseLitmaps to a boolean

value.

Lemma B.0.32 (varEqBaseLitIsBool).

varEqBaseLitIsBool : ∀ r (v : Var) (l : f)
→ ∀ sol init →
let result = varEqBaseLit v l ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ Squash (∃ (λ val → Σ′ (isBool val)

(λ _ → ListLookup (output result) sol val)))

108

doi:10.6342/NTU202003013

Proof. By neqzIsBool, lnotFuncIsBool, and lnotSound.

Definition B.0.10 (anyNeqzFunc). Specification of anyNeqz.

anyNeqzFunc : ∀ {n} → Vec ℕ n → ℕ
anyNeqzFunc [] = 0
anyNeqzFunc (x ∷ vec) with ℕtoF x ≟F zerof
anyNeqzFunc (x ∷ vec) | yes p = anyNeqzFunc vec
anyNeqzFunc (x ∷ vec) | no ¬p = 1

anyNeqzFuncIsBool says that anyNeqzFunc vec is boolean for any vector vec.

Lemma B.0.33 (anyNeqzFuncIsBool).

anyNeqzFuncIsBool : ∀ {n} (vec : Vec ℕ n)
→ isBool (anyNeqzFunc vec)

anyNeqzFuncIsBoolStrict says that anyNeqzFunc vec is strictly boolean for any vector

vec.

Lemma B.0.34 (anyNeqzFuncIsBoolStrict).

anyNeqzFuncIsBoolStrict : ∀ {n} (vec : Vec ℕ n)
→ isBoolStrict (anyNeqzFunc vec)

anyNeqzSound says that given a solution sol to the constraints generated by anyNeqz

vec, and that the input vector vec solves to valVec in sol, then it must be the case that the

output variable solves to anyNeqzFunc valVec in sol.

Lemma B.0.35 (anyNeqzSound).

anyNeqzSound : ∀ (r : WriterMode)
→ ∀ {n}
→ (vec : Vec Var n) → (valVec : Vec ℕ n)
→ (sol : List (Var × ℕ))

109

doi:10.6342/NTU202003013

→ BatchListLookup vec sol valVec
→ ∀ (init : ℕ) →
let result = anyNeqz vec ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol (anyNeqzFunc valVec)

Definition B.0.11 (allEqzFunc).

allEqzFunc : ∀ {n} → Vec ℕ n → ℕ
allEqzFunc [] = 1
allEqzFunc (x ∷ vec) with ℕtoF x ≟F zerof
allEqzFunc (x ∷ vec) | yes p = allEqzFunc vec
allEqzFunc (x ∷ vec) | no ¬p = 0

allEqzFuncIsBool says that allEqzFunc vec is boolean for all vec : Vec ℕ n.

Lemma B.0.36 (allEqzFuncIsBool).

allEqzFuncIsBool : ∀ {n} (vec : Vec ℕ n)
→ isBool (allEqzFunc vec)

allEqzFuncIsBoolStrict says that allEqzFunc vec is strictly boolean for all vec : Vec ℕ n.

Lemma B.0.37 (allEqzFuncIsBoolStrict).

allEqzFuncIsBoolStrict : ∀ {n} (vec : Vec ℕ n)
→ isBoolStrict (allEqzFunc vec)

allEqzIsBool says that given a solution sol to the constraints generated by allEqz vec

that maps 0 to 1, the output variable of allEqz solves to a booelan value.

Lemma B.0.38 (allEqzIsBool).

allEqzIsBool : ∀ (r : WriterMode)
→ ∀ {n} → (vec : Vec Var n)

110

doi:10.6342/NTU202003013

→ (sol : List (Var × ℕ))
→ ListLookup 0 sol 1
→ ∀ init →
let result = allEqz vec ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ Squash (∃ (λ val → Σ′ (isBool val)

(λ _ → ListLookup (output result) sol val)))

Proof. Recall the definition of allEqz:

allEqz : ∀ {n} → Vec Var n → SI-Monad Var
allEqz vec = do

¬r ← anyNeqz vec
r ← lnot ¬r
return r

Given a solution sol to the constraints generated by allEqz vec such that 0 is mapped to

1 in sol, by anyNeqzIsBool and lnotSound, r solves to the result specified by lnotFunc in

sol. The desired result can then be obtained by applying lnotFuncIsBool.

allEqzSound says that given a solution sol to the constraints generated by allEqz vec

such that the input variables map to valVec, then it must be the case that the output variable

solves to allEqzFunc valVec.

Lemma B.0.39 (allEqzSound).

allEqzSound : ∀ (r : WriterMode)
→ ∀ {n}
→ (vec : Vec Var n) → (valVec : Vec ℕ n)
→ (sol : List (Var × ℕ))
→ BatchListLookup vec sol valVec
→ ∀ (init : ℕ) →
let result = allEqz vec ((r , prime) , init)

111

doi:10.6342/NTU202003013

in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol (allEqzFunc valVec)

allEqzSound₁ says that given a solution sol to the constraints generated by allEqz vec
such that 0 maps to 1 in sol, and that the output variable solves to 1, then it must be the

case that the entries in the input vector all solve to 0.

Lemma B.0.40 (allEqzSound₁).

allEqzSound₁ : ∀ (r : WriterMode)
→ ∀ {n} → (vec : Vec Var n)
→ (sol : List (Var × ℕ))
→ ListLookup 0 sol 1
→ ∀ init →
let result = allEqz vec ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol 1
→ Squash (∃ (λ val → (Σ′′ (BatchListLookup vec sol val)

(λ _ → All (_≈_ 0) val))))

Proof. Recall the definition of allEqz:

allEqz : ∀ {n} → Vec Var n → SI-Monad Var
allEqz vec = do

¬r ← anyNeqz vec
r ← lnot ¬r
return r

Given a solution sol to the constraints generated by allEqz vec such that 0 maps to 1 in sol,

by anyNeqzIsBool and lnotSound₁, we get that ¬r solves to 0. Then by anyNeqzSound₀,
vec solves to the 0 vector.

DefinitionB.0.12 (piVarEqLitFunc, varEqLitFunc). Specification of piVarEqLit and varE-

qLit.

112

doi:10.6342/NTU202003013

piVarEqLitFunc : ∀ {u} (x : ⟦ u ⟧ → U) → (eu : List ⟦ u ⟧)
→ (vec : Vec ℕ (tySumOver eu x))
→ ⟦ `Π u x ⟧ → ℕ

varEqLitFunc : ∀ u → Vec ℕ (tySize u) → ⟦ u ⟧ → ℕ
varEqLitFunc `One (x ∷ vec) lit with ℕtoF x ≟F zerof
varEqLitFunc `One (x ∷ vec) lit | yes p = 1
varEqLitFunc `One (x ∷ vec) lit | no ¬p = 0
varEqLitFunc `Two (x ∷ vec) false with ℕtoF x ≟F zerof
varEqLitFunc `Two (x ∷ vec) false | yes p = 1
varEqLitFunc `Two (x ∷ vec) false | no ¬p = 0
varEqLitFunc `Two (x ∷ vec) true with ℕtoF x ≟F onef
varEqLitFunc `Two (x ∷ vec) true | yes p = 1
varEqLitFunc `Two (x ∷ vec) true | no ¬p = 0
varEqLitFunc `Base (x ∷ vec) lit with ℕtoF x ≟F lit
varEqLitFunc `Base (x ∷ vec) lit | yes p = 1
varEqLitFunc `Base (x ∷ vec) lit | no ¬p = 0
varEqLitFunc (`Vec u zero) vec lit = 1
varEqLitFunc (`Vec u (suc x)) vec (l ∷ lit)

with splitAt (tySize u) vec
... | fst , snd = landFunc (varEqLitFunc u fst l)

(varEqLitFunc (`Vec u x) snd lit)
varEqLitFunc (`Σ u x) vec (fstₗ , sndₗ)

with splitAt (tySize u) vec
... | fst , snd with maxTySplit u fstₗ x snd
... | vecₜ₁ , vecₜ₂

= landFunc (landFunc
(varEqLitFunc u fst fstₗ)
(varEqLitFunc (x fstₗ) vecₜ₁ sndₗ))

(allEqzFunc vecₜ₂)

113

doi:10.6342/NTU202003013

varEqLitFunc (`Π u x) vec lit
= piVarEqLitFunc x (enum u) vec lit

piVarEqLitFunc x [] vec pi = 1
piVarEqLitFunc x (x₁ ∷ eu) vec pi

with splitAt (tySize (x x₁)) vec
... | fst , snd

= landFunc (varEqLitFunc (x x₁) fst (pi x₁))
(piVarEqLitFunc x eu snd pi)

varEqLitFuncIsBoolStrict and piVarEqLitFuncIsBoolStrict say that varEqLitFunc and

piVarEqLitFunc produce values that are strictly boolean.

Lemma B.0.41 (varEqLitFuncIsBoolStrict, piVarEqLitFuncIsBoolStrict).

varEqLitFuncIsBoolStrict : ∀ u vec v
→ isBoolStrict (varEqLitFunc u vec v)

piVarEqLitFuncIsBoolStrict :
∀ {u} (x : ⟦ u ⟧ → U) eu vec pi
→ isBoolStrict (piVarEqLitFunc x eu vec pi)

varEqLitFuncIsBool and piVarEqLitFuncIsBool say that varEqLitFunc and piVarE-

qLitFunc produce values that are strictly boolean.

Lemma B.0.42 (varEqLitFuncIsBool, piVarEqLitFuncIsBool).

varEqLitFuncIsBool : ∀ u vec v
→ isBool (varEqLitFunc u vec v)

piVarEqLitFuncIsBool : ∀ {u} (x : ⟦ u ⟧ → U) eu vec pi
→ isBool (piVarEqLitFunc x eu vec pi)

varEqLitSound says that given a solution sol to the constraints generated by varEqLit

u vec l such that 0 maps to 1 in sol and that the input variable vector vec maps to val, then

114

doi:10.6342/NTU202003013

the output variable solves to the value specified by varEqLitFunc. piVarEqLitSound says

that given a solution sol to the constraints generated by piVarEqLit that maps 0 to 1 and

vec to val, the output variable solves to the value specified by piVarEqLitFunc.

Lemma B.0.43 (varEqLitSound, piVarEqLitSound).

varEqLitSound : ∀ (r : WriterMode)
→ ∀ u → (vec : Vec Var (tySize u))
→ (val : Vec Var (tySize u))
→ (l : ⟦ u ⟧)
→ (sol : List (Var × ℕ))
→ BatchListLookup vec sol val
→ ListLookup 0 sol 1
→ ∀ (init : ℕ) →
let result

= varEqLit u vec l ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result)

sol (varEqLitFunc u val l)

piVarEqLitSound : ∀ (r : WriterMode)
→ ∀ u (x : ⟦ u ⟧ → U) (eu : List ⟦ u ⟧)
→ (vec : Vec Var (tySumOver eu x))
→ (val : Vec ℕ (tySumOver eu x))
→ (pi : ⟦ `Π u x ⟧)
→ (sol : List (Var × ℕ))
→ BatchListLookup vec sol val
→ ListLookup 0 sol 1
→ ∀ (init : ℕ) →
let result = piVarEqLit u x eu vec pi ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol

115

doi:10.6342/NTU202003013

→ ListLookup (output result)
sol (piVarEqLitFunc x eu val pi)

piVarEqLitIsBool and varEqLitIsBool say that the respective output variables solve to

boolean values given a solution sol satisfying the corresponding generated constraints that

maps 0 to 1.

Lemma B.0.44 (piVarEqLitIsBool, varEqLitIsBool).

piVarEqLitIsBool : ∀ (r : WriterMode)
→ ∀ u x eu vec f sol
→ ListLookup 0 sol 1
→ ∀ init →
let result = piVarEqLit u x eu vec f ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ Squash (∃ (λ val → Σ′ (isBool val)

(λ _ → ListLookup (output result) sol val)))

varEqLitIsBool : ∀ (r : WriterMode)
→ ∀ u → (vec : Vec Var (tySize u))
→ (l : ⟦ u ⟧)
→ (sol : List (Var × ℕ))
→ ListLookup 0 sol 1
→ ∀ init →
let result = varEqLit u vec l ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ Squash (∃ (λ val → Σ′ (isBool val)

(λ _ → ListLookup (output result) sol val)))

Lemma B.0.45 (varEqLitSound₁, piVarEqLitSound₁).

varEqLitSound₁ : ∀ (r : WriterMode)
→ ∀ u → (vec : Vec Var (tySize u))

116

doi:10.6342/NTU202003013

→ (l : ⟦ u ⟧)
→ (sol : List (Var × ℕ))
→ ListLookup 0 sol 1
→ ∀ init →
let result = varEqLit u vec l ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol 1
→ Squash (∃ (λ val → Σ′ (ValRepr u l val)

(λ _ → BatchListLookup vec sol val)))

piVarEqLitSound₁ : ∀ (r : WriterMode)
→ ∀ u x eu vec f sol
→ ListLookup 0 sol 1
→ ∀ init →
let result

= piVarEqLit u x eu vec f ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol 1
→ Squash (∃ (λ val → Σ′ (PiRepr u x f eu val)

(λ _ → BatchListLookup vec sol val)))

Definition B.0.13 (tyCondFunc, enumSigmaCondFunc, enumPiCondFunc). Specifica-

tion of tyCond, enumSigmaCond and enumPiCond.

tyCondFunc : ∀ u → (vec : Vec ℕ (tySize u)) → ℕ
enumSigmaCondFunc : ∀ u → (eu : List ⟦ u ⟧)

→ (x : ⟦ u ⟧ → U)
→ (val₁ : Vec ℕ (tySize u))
→ (val₂ : Vec ℕ (maxTySizeOver (enum u) x))
→ ℕ

enumPiCondFunc : ∀ u → (eu : List ⟦ u ⟧) → (x : ⟦ u ⟧ → U)

117

doi:10.6342/NTU202003013

→ Vec ℕ (tySumOver eu x) → ℕ

tyCondFunc `One (x ∷ vec) with ℕtoF x ≟F zerof
tyCondFunc `One (x ∷ vec) | yes p = 1
tyCondFunc `One (x ∷ vec) | no ¬p = 0
tyCondFunc `Two (x ∷ vec) with ℕtoF x ≟F zerof
tyCondFunc `Two (x ∷ vec) | yes p = 1
tyCondFunc `Two (x ∷ vec) | no ¬p with ℕtoF x ≟F onef
tyCondFunc `Two (x ∷ vec) | no ¬p | yes p = 1
tyCondFunc `Two (x ∷ vec) | no ¬p | no ¬p₁ = 0
tyCondFunc `Base vec = 1
tyCondFunc (`Vec u zero) vec = 1
tyCondFunc (`Vec u (suc x)) vec

with splitAt (tySize u) vec
... | fst , snd

= landFunc (tyCondFunc u fst)
(tyCondFunc (`Vec u x) snd)

tyCondFunc (`Σ u x) vec with splitAt (tySize u) vec
tyCondFunc (`Σ u x) vec | fst₁ , snd₁

= landFunc (tyCondFunc u fst₁)
(enumSigmaCondFunc u (enum u) x fst₁ snd₁)

tyCondFunc (`Π u x) vec = enumPiCondFunc u (enum u) x vec

enumPiCondFunc u [] x vec = 1
enumPiCondFunc u (x₁ ∷ eu) x vec

with splitAt (tySize (x x₁)) vec
... | fst₁ , snd₁

= landFunc (tyCondFunc (x x₁) fst₁)
(enumPiCondFunc u eu x snd₁)

118

doi:10.6342/NTU202003013

enumPiCondFuncIsBool says that the value produced by enumPiCondFunc must be

boolean.

Lemma B.0.46 (enumPiCondFuncIsBool).

enumPiCondFuncIsBool : ∀ u eu x vec
→ isBool (enumPiCondFunc u eu x vec)

enumPiCondFuncIsBoolStrict says that the value produced by enumPiCondFuncmust

be strictly boolean.

Lemma B.0.47 (enumPiCondFuncIsBoolStrict).

enumPiCondFuncIsBoolStrict : ∀ u eu x vec
→ isBoolStrict (enumPiCondFunc u eu x vec)

tyCondFuncIsBool says that the value produced by tyCondFunc must be boolean.

Lemma B.0.48 (tyCondFuncIsBool).

tyCondFuncIsBool : ∀ u vec
→ isBool (tyCondFunc u vec)

tyCondFuncIsBoolStrict says that the value produced by tyCondFunc must be strictly

boolean.

Lemma B.0.49 (tyCondFuncIsBoolStrict).

tyCondFuncIsBoolStrict : ∀ u vec
→ isBoolStrict (tyCondFunc u vec)

enumSigmaCondFuncIsBool says that the value produced by enumCondFuncmust be

boolean.

Lemma B.0.50 (enumSigmaCondFuncIsBool).

enumSigmaCondFuncIsBool : ∀ u eu x val₁ val₂
→ isBool (enumSigmaCondFunc u eu x val₁ val₂)

119

doi:10.6342/NTU202003013

enumSigmaCondFuncIsBoolStrict says that the value produced by enumCondFunc

must be strictly boolean.

Lemma B.0.51 (enumSigmaCondFuncIsBoolStrict).

enumSigmaCondFuncIsBoolStrict : ∀ u eu x val₁ val₂
→ isBoolStrict (enumSigmaCondFunc u eu x val₁ val₂)

enumPiCondSound (tyCondSound) say that given a solution sol to the constraints gen-

erated by enumPiCond eu x vec (tyCond u vec) such that 0 maps to 1 in sol and that the

input vector vec maps to val, then the output variable solves to the value specified by

enumPiCondFunc (tyCondFunc). enumSigmaCondSound says that given a solution sol

of the constraints generated by enumSigmaCond such that the input vectors vec1 and vec2

map to val1 and val2 and that 0 maps to 1, the output variable solves to the value specified

by enumSigmaCondFunc.

Lemma B.0.52 (enumPiCondSound, tyCondSound, enumSigmaCondSound).

enumPiCondSound : ∀ r u → (eu : List ⟦ u ⟧)
→ (x : ⟦ u ⟧ → U)
→ (vec : Vec Var (tySumOver eu x))
→ (val : Vec ℕ (tySumOver eu x))
→ (sol : List (Var × ℕ))
→ BatchListLookup vec sol val
→ ListLookup 0 sol 1
→ ∀ init →
let result = enumPiCond eu x vec ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol

(enumPiCondFunc u eu x val)

tyCondSound : ∀ r u

120

doi:10.6342/NTU202003013

→ (vec : Vec Var (tySize u))
→ (val : Vec ℕ (tySize u))
→ (sol : List (Var × ℕ))
→ BatchListLookup vec sol val
→ ListLookup 0 sol 1
→ ∀ init →
let result = tyCond u vec ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol (tyCondFunc u val)

enumSigmaCondSound : ∀ r u → (eu : List ⟦ u ⟧)
→ (x : ⟦ u ⟧ → U)
→ (vec₁ : Vec Var (tySize u))
→ (vec₂ : Vec Var (maxTySizeOver (enum u) x))
→ (val₁ : Vec ℕ (tySize u))
→ (val₂ : Vec ℕ (maxTySizeOver (enum u) x))
→ (sol : List (Var × ℕ))
→ BatchListLookup vec₁ sol val₁
→ BatchListLookup vec₂ sol val₂
→ ListLookup 0 sol 1
→ ∀ init →
let result

= enumSigmaCond eu x vec₁ vec₂ ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ ListLookup (output result) sol

(enumSigmaCondFunc u eu x val₁ val₂)

ValRepr→varEqLit says that ValRepr implies varEqLitFunc, and PiRepr→piVarEqLit

says that PiRepr implies piVarEqLit.

Lemma B.0.53 (ValRepr→varEqLit, PiRepr→piVarEqLit).

121

doi:10.6342/NTU202003013

ValRepr→varEqLit : ∀ u elem val val' → val ≡ val'
→ ValRepr u elem val'
→ Squash (varEqLitFunc u val elem ≡ 1)

PiRepr→piVarEqLit : ∀ u x eu vec vec' f → vec ≡ vec'
→ PiRepr u x f eu vec'
→ Squash (piVarEqLitFunc x eu vec f ≡ 1)

enumSigmaCondRestZ says that if val : ⟦ u ⟧ falls inside of eu, that fst is the repre-

sentation of val, and that enumSigmaCondFunc u eu x fst snd is propositionally equal to

1, then proj₂ (maxTySplit u val x snd) (which corresponds to the third part of a sigma type
representation) must be a 0 vector.

Lemma B.0.54 (enumSigmaCondRestZ).

enumSigmaCondRestZ : ∀ u eu x fst snd val
→ val ∈ eu → ValRepr u val fst
→ enumSigmaCondFunc u eu x fst snd ≡ 1
→ All (_≈_ 0) (proj₂ (maxTySplit u val x snd))

tyCondFuncRepr says that if the specification of tyCond holds for some u and vec, then

vecmust be a representation of some inhabitant of type ⟦ u ⟧. enumSigmaCondFuncRepr
and piTyCondFuncPartialRepr are the corresponding representation lemmas for Σ and Π

types. These lemmas are proved with mutual recursion in Agda:

LemmaB.0.55 (tyCondFuncRepr, enumSigmaCondFuncRepr. piTyCondFuncPartialRepr).

tyCondFuncRepr : ∀ u → (vec : Vec ℕ (tySize u))
→ tyCondFunc u vec ≡ 1
→ Squash (∃ (λ elem → ValRepr u elem vec))

enumSigmaCondFuncRepr : ∀ u eu x elem val₁ val₂
→ ValRepr u elem val₁

122

doi:10.6342/NTU202003013

→ elem ∈ eu
→ enumSigmaCondFunc u eu x val₁ val₂ ≡ 1
→ Squash (∃ (λ elem₁ → ValRepr (x elem) elem₁

(proj₁ (maxTySplit u elem x val₂))))
piTyCondFuncPartialRepr : ∀ u (x : ⟦ u ⟧ → U) eu

(prf : ∀ v → v ∈ eu → occ _≟U_ v eu ≡ 1)
→ (vec : Vec ℕ (tySumOver eu x))
→ enumPiCondFunc u eu x vec ≡ 1
→ Squash (∃ (λ f → PiRepr u x f eu vec))

indToIRSound says that given a solution sol to the constraints generated by indToIR u

vec such that 0 maps to 1 in sol and that vec maps to val in sol, then there must be a high

level representation elem such that ValRepr u elem val.

Lemma B.0.56 (indToIRSound). Soundness of indToIR.

indToIRSound : ∀ r u
→ (vec : Vec Var (tySize u))
→ (val : Vec ℕ (tySize u))
→ (sol : List (Var × ℕ))
→ BatchListLookup vec sol val
→ ListLookup 0 sol 1
→ ∀ init →
let result = indToIR u vec ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ Squash (∃ (λ elem → ValRepr u elem val))

varEqLitFuncRepr says that varEqLitFunc impliesValRepr. piVarEqLitFuncRepr says

that piVarEqLitFunc implies PiRepr.

Lemma B.0.57 (varEqLitFuncRepr, piVarEqLitFuncRepr).

varEqLitFuncRepr : ∀ u val elem
→ varEqLitFunc u val elem ≡ 1

123

doi:10.6342/NTU202003013

→ Squash (ValRepr u elem val)
piVarEqLitFuncRepr : ∀ u (x : ⟦ u ⟧ → U) eu vec f

→ piVarEqLitFunc x eu vec f ≡ 1
→ Squash (PiRepr u x f eu vec)

litToIndSound says that given a solution sol to the constraints generated by litToInd

u elem such that 0 maps to 1 in sol, then there is a low level representation val such that

ValRepr u elem val and that the output variables map to val in sol.

Lemma B.0.58 (litToIndSound). Soundness of litToInd.

litToIndSound : ∀ r u
→ (elem : ⟦ u ⟧)
→ (sol : List (Var × ℕ))
→ ListLookup 0 sol 1
→ ∀ init →
let result = litToInd u elem ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ Squash (∃ (λ val → Σ′ (ValRepr u elem val)

(λ _ → BatchListLookup (output result) sol val)))

assertVarEqVarSound says that if there is a solution sol to the constraints generated by

assertVarEqVar n v v’ such that 0 maps to 1 in sol, vmaps to val, and v’maps to val’, then

Vec-≈ val val’ holds.

Lemma B.0.59 (assertVarEqVarSound). Soundness of assertVarEqVar.

assertVarEqVarSound : ∀ r n
→ (v v' : Vec Var n)
→ (sol : List (Var × ℕ))
→ (val val' : Vec ℕ n)
→ BatchListLookup v sol val
→ BatchListLookup v' sol val'

124

doi:10.6342/NTU202003013

→ ListLookup 0 sol 1
→ ∀ init →
let result = assertVarEqVar n v v' ((r , prime) , init)
in ConstraintsSol (writerOutput result) sol
→ Vec-≈ val val'

125

doi:10.6342/NTU202003013

126

doi:10.6342/NTU202003013

Bibliography

[1] D. Ahman, C. Fournet, C. Hriţcu, K. Maillard, A. Rastogi, and N. Swamy. Recalling

a witness: Foundations and applications of monotonic state. Proc. ACM Program.

Lang., 2(POPL), Dec. 2017.

[2] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. Snarks for c: Veri-

fying program executions succinctly and in zero knowledge. In R. Canetti and J. A.

Garay, editors, Advances in Cryptology – CRYPTO 2013, pages 90–108, Berlin, Hei-

delberg, 2013. Springer Berlin Heidelberg.

[3] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero

knowledge for a von neumann architecture. In Proceedings of the 23rd USENIX

Conference on Security Symposium, SEC’14, page 781–796, USA, 2014. USENIX

Association.

[4] E. Brady. Idris, a general-purpose dependently typed programming language: De-

sign and implementation. Journal of Functional Programming, 23:552–593, 9 2013.

[5] J. Cockx, D. Devriese, and F. Piessens. Pattern matching without K. In Proceedings

of the 19th ACM SIGPLAN International Conference on Functional Programming,

ICFP ’14, pages 257–268, New York, NY, USA, 2014. Association for Computing

Machinery.

[6] P. Dybjer. A general formulation of simultaneous inductive-recursive definitions in

type theory. The Journal of Symbolic Logic, 65(2):525–549, 2000.

[7] C. Fournet, C. Keller, and V. Laporte. A certified compiler for verifiable computing.

127

doi:10.6342/NTU202003013

In 2016 IEEE 29th Computer Security Foundations Symposium (CSF), pages 268–

280, June 2016.

[8] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and

succinct nizks without pcps. In T. Johansson and P. Q. Nguyen, editors, Advances

in Cryptology – EUROCRYPT 2013, pages 626–645, Berlin, Heidelberg, 2013.

Springer Berlin Heidelberg.

[9] H. Goguen, C. McBride, and J. McKinna. Eliminating Dependent Pattern Matching,

pages 521–540. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[10] R. J. M. Hughes. A novel representation of lists and its application to the function

“reverse”. Inf. Process. Lett., 22(3):141–144, Mar. 1986.

[11] P. Martin-Löf. An intuitionistic theory of types. Technical report, University of

Stockholm, 1972.

[12] C. McBride. Elimination with a motive. In P. Callaghan, Z. Luo, J. McKinna, R. Pol-

lack, and R. Pollack, editors, Types for Proofs and Programs, pages 197–216, Berlin,

Heidelberg, 2002. Springer Berlin Heidelberg.

[13] U. Norell. Towards a practical programming language based on dependent type

theory. PhD thesis, Chalmers University of Technology and Göteborg University,

2007.

[14] G. Stewart, S. Merten, and L. Leland. Snårkl: Somewhat practical, pretty much

declarative verifiable computing in haskell. In F. Calimeri, K. Hamlen, andN. Leone,

editors, Practical Aspects of Declarative Languages, pages 36–52, Cham, 2018.

Springer International Publishing.

[15] The Coq Development Team. The Coq proof assistant, Jan. 2020.

[16] Zokrates Development Team. Zokrates. https://github.com/Zokrates/
ZoKrates.

128

https://github.com/Zokrates/ZoKrates
https://github.com/Zokrates/ZoKrates

	誌謝
	Acknowledgements
	摘要
	Abstract
	Introduction
	Background
	Type Theory
	Verifiable Computation

	Constructing an Embedded Type Universe
	Type Code
	List Membership
	Counting Number of Occurrences
	Finite Types
	Field
	List Monad
	Properties of List Monad

	Enumerating Elements of Embedded Types
	Enumerating Elements of Embedded Pi Types
	Defining Enumeration of Elements of Embedded Types
	Uniqueness of Elements in enum

	Size of Type Codes

	Source EDSL
	Source
	RWS Monad
	S-Monad
	S-Monad Utilities
	Examples

	Compiling Programs From Source to R1CS
	RWSInvMonad
	SI-Monad
	Basic Utilities
	Basic Logic Functions
	Auxiliary Compilation Functions
	Main Compilation Functions
	Generating Type Constraints

	Compiling Source to R1CS

	Formal Verification of the Compiler
	Solution of R1CS Constraints
	Literal Representation
	Semantics Function for Source
	Compilation Soundness

	Conclusion
	Full Definition of enum
	Additional Formal Verification Lemmas and Definitions
	Bibliography

