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中文摘要 

 
基因型插補(Genotype imputation)，是在進行全基因組關聯研究（Genome wide 

association study ,GWAS）之前的重要步驟。它能透過龐大的參考序列資料庫進行

預測並填補缺失的基因型以增加樣品的 SNP 密度和 GWAS 的分析資料性。然而，

整個基因型插補過程包括一系列複雜的插補前以及插補後步驟，運算過程需要耗

費龐大的運算資源量，並且也需要生物資訊學專業知識。因此，我們建立了一個

對於使用者方便的網頁插補伺服器服務，名為 Multi-racial Imputation System

（MI-system），該服務分別使用生物資訊學家常用的pre-phasing 軟體SHAPEIT 和

imputation 軟體 IMPUTE2 進行運算。對於所使用的參考序列資料庫，該服務首次

包括了 Taiwan biobank（TWB）序列資料庫，並根據使用者需求為其提供 1000 

Genome Phase III 和 TWB 以及 Hapmap3 序列資料庫可進行選擇，也添加了

IMPUTE2 特有的兩種 merge reference imputation 功能來增強插補的結果。該服務

進一步提供了彈性的質量控制選項，並讓使用者能從多個選項中自行選擇所要篩

選的次要等位基因頻率(Minor allele frequency)閾值、需要過濾的基因型及樣本缺失

率以及 Hardy-Weinberg 平衡的閾值。為了增加使用者的便利性，該服務還提供了

一些實用功能，例如（i）分割全基因組 SNP 資料，（ii）基因組座標軸轉換（grch37

和 grch38），以及（iii）透過使用者上傳的基因型資料建立定制建構參考序列資料

庫。使用者只需要簡單的幾個步驟即可執行實用程式功能並快速獲得高通量的

SNP 插補資料。並能夠將結果轉換成與流行的 GWAS 分析工具（例如 PLINK，

SNPTest 或 R）兼容的格式進行下載，以方便進行後續分析。 
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Abstract 
 

Genotype imputation is an important process before genome-wide association 

studies (GWAS). It predicts missing genotypes from reference panels to increase the 

sample SNP density and the power of the GWAS. However, the process encompasses a 

series of extensive pre and post imputation procedures, is computationally expensive, 

and requires expertise in bioinformatics. Therefore, we have developed a user-friendly, 

web-based imputation service, Multi-racial Imputation System (MI-system), that 

utilizes popular pre-phasing and imputation softwares, SHAPEIT2 and IMPUTE2, 

respectively. For the reference panels, the server includes the Taiwan biobank (TWB) 

panel for the first time. It offers users to choose from 1000 Genome phase III, TWB and 

Hapmap3 panels, as reference genomes. Furthermore, the users can choose the 

IMPUTE2 specific function “merge reference”, for merging multiple reference panels to 

conduct imputation. The server, also provides flexible quality control options and 

allows users to choose thresholds for parameters such as minor allele frequency, 

missing (SNP level and individual level) genotyping rates, and Hardy-Weinberg 

equilibrium. For user’s convenience several additional utility functions such as (i) 

splitting whole genome SNP data, (ii) conversion of genome builds (grch37 and grch38), 

and (iii) build customized reference panels from user uploaded genotype data, are 

offered. The users can obtain high-throughput imputed data and access utility functions 

through few easy and simple clicks. The results can also be downloaded in formats that 

are compatible with popular GWAS tools such as PLINK, SNPTest, or R to further 

downstream analysis.  
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Chapter 1 Introduction 

Complex disease association studies have been revolutionized over the last decade 

and a half, with nearly 50,000 genome wide significant loci being reported. However, 

GWAS have had been under controversy, because of the “missing heritability” issue. 

Putative loci that are identified by GWAS explain only a fraction of the heritability of 

complex diseases [1], thereby leading to research endeavors that can account for the 

unexplained heritability. One of the reasons behind this is that SNP arrays are 

constructed from variants that are selected based on linkage disequilibrium (LD). Hence, 

the discovery of putative variants basically rests on the pair-wise LD of common 

variants with causal ones [2]. However, variants with lower frequencies (minor allele 

frequency (MAF)<0.01) in populations (rare variants) have lower LDs with causal ones 

and thereby goes undetected, in spite of them playing a significant part in disease 

etiology [3]. Genotype imputation is one of the popular directions that have been 

employed to address this issue as it utilizes whole genome sequencing reference panels 

from public domains to estimate un-typed variants (single nucleotide polymorphism 

(SNPs)) into a low dense genotype panel [4]. With the increasing coverage of such 

panels, rare variants get successfully detected with increased accuracy, because 

imputation allows better representation of these variants in the study population. 

Imputation is a powerful approach that leads to (i) better identification of causal rare 

variants, (ii) facilitation of fine mapping studies and identification of specific causal loci 

from GWAS susceptible regions [5], (iii) converging multiple study datasets for 

meta-analysis by filling up missing SNPs for each of the datasets [6], and (iv) 

increasing the power of the studies [7]. Genotype imputation has been quite successful 

for common and low-frequency variants, utilizing multi ethnic reference panels such as 
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1000 Genomes (1KG) [8], international Hapmap project [9], Haplotype reference 

consortium (HRC) [10] and TopMED [11]. 

Recently, various studies have reported that ethnically heterogeneous reference 

panels, have failed to provide rare variant imputation with higher accuracy [12]. A prior 

study on cystic fibrosis (CF) pointed out that public datasets such as 1KG or HRC 

panels lack the causal CF specific genomic regions [13]. Hence CF-associated 

haplotypes would eventually be omitted from GWAS as they would fail to get imputed. 

Including matched ethnic specific panels in addition to multi ethnic panels, have been 

shown to provide better imputation accuracy, specifically for rarer variations [14, 15]. 

Therefore, based on the study goal, it is crucial that an appropriate reference panel is 

employed to conduct imputation towards more meaningful and accurate findings. 

Merging reference panels involves multi-step procedures. First, successive forward 

and backward imputations are required between study specific and multi ethnic 

reference panels, before merging them [16]. Once the merged panels are created a series 

of procedures including, quality control, pre-phasing and imputation needs to be 

conducted to finally obtain a suitable GWAS panel. The datasets involved, in the 

process are massive. Conducting, all of the above successfully, requires bioinformatics 

expertise and powerful computation resources. As the processes involves managing 

high dimensional datasets, high end processors with provision for parallel computing is 

a pre-requisite for simultaneous computation towards significant reduction of time for 

imputation and obtaining accurate results. Such requirements pose a bottleneck, 

especially for non- bioinformatics personnel. 

Therefore, in this study we present a public imputation and analysis platform, 

Multi-racial Imputation System (MI-System), to allow users with access to a high speed 
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and efficient platform to seamlessly conduct genotype imputation. Users can further 

create, reference panels using their customized datasets and use that as reference to 

conduct imputation. To ensure convenience, the system also offers utility functions for 

the users to split the whole genome into chromosomes and convert human genome 

builds between hg37 and hg38 with easy clicks. The goal is to eliminate the need for 

bioinformatics expertise, which is otherwise a pre-requisite for obtaining highly 

accurate imputed datasets.  

One of the most popular public imputation platforms is the Michigan Imputation 

Server, which has been making great contributions into the field of population genetics 

research [17]. However, their primary focus has been the European and Caucasian 

populations. The latest version of the Michigan server uses Eagle2 – Minimac4 [18, 19] 

to conduct pre-phasing and imputation, respectively. To the best of our knowledge, a 

large section of the imputation community, uses SHAPEIT2-IMPUTE2 [20, 21] as their 

choice of software for pre-phasing and imputation. For users such as these and more, 

MI-System, opens up the opportunity to expand their research boundaries by enabling 

them to conduct imputation, create and merge reference panels, using any target 

population of any ancestry, with SHAPEIT2-IMPUTE2. Furthermore, MI-system 

provides the users with a customized Taiwan Biobank (TWB) reference panel which is 

specifically created for people of Taiwanese-Chinese ancestry. We believe that 

MI-System would potentially have a significant contribution to the field of population 

genetics research, and take it few notches further, by working hand in hand with the 

existing servers. 
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1.1 Single Nucleotide Polymorphism (SNP) 

Single nucleotide polymorphism (SNP), is the alteration of a single nucleotide (A, 

T, C, G) at a specific position in a DNA sequence. SNPs are the most common type of 

genetic variation that are observed among individuals. A genetic mutation is defined as 

any change in a DNA sequence away from normal, where a normal allele that is 

prevalent in the population is changed to a rare and abnormal variant. In contrast, a 

polymorphism is a DNA sequence variation in the population that is commonly 

observed. SNPs are detectable in >1% of the population whereas DNA mutations found 

in <1 % of the population [22]. In the human genome, one SNP appears every 100 to 

300 bases, and 90% of the differences in genes expression had been found to be related 

to SNPs [23]. They may be responsible for the diversity among different ethnic 

populations in the most common familial traits such as eye color and differences in 

height. Other traits such as differences in drug response between individuals, diseases 

such as, obesity, diabetes, autoimmune diseases, psychiatric disorders, and cancer 

susceptibility [24-32], have been reported to be associated with SNPs 

The occurrence frequency of a specific nucleotide at an SNP site is called allele 

frequency (AF). AF is calculated by dividing the number of times the allele of interest is 

observed in a population by the total number of copies of all the alleles at that particular 

genetic locus in the population. The reference allele simply refers to whether an allele 

matches an SNP-specific region in the reference genome (for humans: human reference 

genome: GRCh37 or GRCh38) and the alternate allele in contrast, refers to any base, 

other than the reference, that is found at that locus. The more frequently occurring allele 

is called the major allele, and the other is called the minor allele. The alternative allele 

is not necessarily the minor allele and it may, or may not, be linked to a phenotype. 
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There can be more than one alternative allele per variant. For example, at a specific 

SNP site in the human genome, the T nucleotide may appear in most individuals, but in 

a minority of individuals, the nucleotide in the site is a C. Therefore, T will be the major 

allele and C will be the minor allele. If T is present in the human reference genome then 

T will be the reference allele, otherwise the alternate allele. The frequency of the minor 

allele in the study population is called the minor allele frequency (MAF). According to 

the minor allele frequency of nucleotides at the SNP site, the SNP can be classified into 

common variant (MAF >= 5%), less common variant (0.01 < MAF < 0.05) and rare 

genetic variant (MAF <=0.01) [33].  

 

1.2 Genome Wide Association Studies 

Genome-wide association studies (GWAS) [34] are used to analyze and screen the 

relationship between SNPs and phenotypes in the human genome. It tests hundreds of 

thousands to millions of genetic variants across the individual genomes to identify 

genotype–phenotype associations. The analysis of GWAS requires the population to be 

divided into experimental group and control group according to the phenotype that they 

want to observe. Then, obtain the SNP data from the two populations and compare 

which SNPs are significantly associated with the experimental group. Further, study of 

the relationship between these SNP-related genes can provide more clues to the 

pathogenesis of complex diseases or the phenotype [35]. This allows pinpointing gene 

markers in addition to the traditional factors such as age, sex, family history, that may 

be associated with the disease of interest, through large-scale whole-genome analysis. 

Furthermore, the interplay of genetic markers and environmental factors can be 

considered to calculate the incidence of some diseases including cancer [36]. 
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1.3 SNP genotyping: Microarrays and Next generation sequencing  

SNP genotyping is mainly conducted using technologies such as microarrays and 

next generation sequencing (NGS) [37, 38]. SNP microarray protocol consists of 

coating primers with complementary nucleotides of the known SNP nucleotide as 

probes to a surface such as that of a silicon chip, glass beads or magnetic beads to build 

up a microarray chip. Once done, polymerase chain reaction (PCR) is used to amplify 

the individual DNA and break it into small sequences by enzyme. Finally, the sample 

DNA sequences are hybridized on the microarray, where the complementary 

nucleotides of the DNA get attached to each of the microarray probes on the chip. The 

fluorescence probes are then utilized to detect the signal and get the SNP sequences [39]. 

For NGS technology, the sample DNA is first broken down into small sequences using 

ultrasonic technologies and an adapter used to mark each sequence. Then, again PCR is 

used to amplify the small sequences, after which the dNTPs are added and the 

fluorescence tags are marked as start points of sequencing. The sequences are obtained 

by real-time detection of the fluorescent signals. Finally, software like SAMTOOLS are 

utilized to conduct variant calling [40]. Both methods have their respective advantages, 

SNP array is cheaper and more accurate, NGS can get more sequence information [41, 

42]. On the other hand, SNP arrays from different manufacturers such as Illumina or 

Affymetrix cover different sets of SNP sites, which may lead to loss of information in 

further analysis. Depending on the sample quality, machine error rate, and sequencing 

coverage, SNP data obtained through NGS technology will also tend to lose SNP data. 

Such missing data renders incorrect inferences when GWAS is conducted [43, 44]. 

Therefore, genotype imputation is a cost-effective way that researchers often use to fill 
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out missing SNP data towards the improvement of the power of further analysis. 

 

1.4 Genotype imputation 

1.4.1. The introduction of genotype imputation  

With the progression of precision medicine, variants (SNPs) have been proved to 

be more and more important. SNPs have been characterized in terms of their 

co-dominance, reproducibility, locus-specificity, and random genome-wide distribution, 

and a detailed analysis of SNPs can identify pathogenic ones in individual patients. This 

is partly because SNPs have considerable effects on protein function in coding 

sequences and gene expression in regulatory regions [45]. Hence, SNPs are the ideal 

candidates for genetics research, leading to functional characterization and 

identification of associated traits. However, current genotyping methods for SNP data 

often result in many missing data due to cost issues and the machine error, and the 

missing data prevents further analysis such as genome-wide association studies (GWAS) 

to obtain comprehensive information [46 ,47]. This is where genotype imputation comes 

in useful. Genotype imputation refers to the statistical inference of unobserved 

genotypes, using a denser reference panel, to fill out the missing SNP data and improve 

the power of association studies. The principle of genotype imputation is based on 

linkage disequilibrium (LD) that exists between the SNPs in close proximity. Genotypes 

are imputed using LD of flanking SNPs to the target SNP using the reference genome. 

LD is the non-random association of neighboring SNPs meaning they have a lower 

chance of crossing over, thus causing two SNPs to be in genetic linkage [48, 49]. By 

using the genotype imputation, the original 105~106 sites of SNP data can be filled up to 

the 107~108 high density SNP data and thus can improve the power of the GWAS. 
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1.4.2 Genotype imputation of Rare variants 

Rare variants constitute the bulk of genetic variation in the human genome and are 

predicted to have larger phenotypic effects than common variants; however, it has been 

challenging to analyze such variants with adequate power in population-based studies 

due to their poor representation in the genotyping arrays that are typically used in 

GWASs [50]. The total number of loci that may contribute to a disease’s prevalence is 

dependent on the disease incidence, the frequency of rare variants per locus, and their 

effect size (the genotype relative risk). For a disease with high heritability, with the 

increase of the number of contributing rare alleles in an individual, the relative risk rises 

steeply under a multiplicative model. However, if each of these variants explains most 

of the risk in just a few people, their effects will not explain enough of the variance in a 

total population. Therefore standard GWAS procedures would fail to detect them. 

Furthermore, they are scarcely tagged as single-nucleotide polymorphisms (SNPs) in 

genome-wide arrays, with the exception of family-based studies and studies with very 

large sample sizes. Moreover, most common disease common variant based GWASs 

exclude rare variants from their analysis in the early quality control steps. Some studies 

have shown that combining reference panels may increase the number and accuracy of 

imputed rare variants in comparison to when they are imputed using single reference 

panels [51]. Hence, a customized SNP panel along with other reference panels, such as 

1000 Genomes Phase 3, could be combined to identify additional rare SNPs by 

imputation. Using a reference panel from multiple ethnic groups for SNPs that are not 

population-specific may still be inappropriate to provide accurate imputation. However, 

combining a global reference genome, such as 1000 Genomes [using only population 

specific samples, such as only East Asian (EAS) or only European (EUR)], with that of 
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a respective ethnically specific one, to conduct imputation, could lead to about 40% 

more imputed variants than when using 1000 Genomes only (using all ethnicities). The 

improvement of imputation accuracy is attributed to the fact that such a strategy 

successfully captures the linkage disequilibrium patterns of the ethnic specific variants 

which other ethnic groups with different ancestral genetic backgrounds, might fail to 

capture. The ethnic composition is an important predictor of imputation accuracy. Many 

studies have validated the accuracy and reliability of imputation of rare variants, but the 

focus of most of these studies has been on populations of European descent [52]. Little 

research has been conducted in the area of rare variant imputation across asian 

populations, and none in Taiwanese populations. Therefore, utilizing population-based 

resources of Taiwanese ancestry, to construct reference panels would enable successful 

rare variant imputation for the Taiwanese population.  

 

1.4.3 The steps of genotype imputation  

The steps of the genotype imputation can be divided into three parts, quality 

control, pre-phasing and imputation. Each of the steps has a different function and 

special settings are required to be conducted for each of the steps using different 

softwares.  

Quality control: 

The first step is quality control, in which the primary purpose is to remove datathat 

are of poor quality in the DNA genotype sample. It is of extreme importance to remove 

poor quality SNPs before proceeding for further analysis, as lesser data quality can lead 

to inaccurate imputations which can later produce false positives and false negatives 

from genome wide association analysis [53]. SNPs with low call rate and individuals 



doi:10.6342/NTU202102930

10 

 

with high missing rate should be excluded before further analysis. More than the 

allowable missing-ness, leads to removal of many SNPs therefore, leading to scarce or 

no SNPs in the genotype data. Hence, there would be insufficient SNPs to compare with 

the reference, resulting in inaccurate imputation. Ideally, SNPs with call-rates 

>90%-95% in study subjects, and individuals with < 5-10% missing genotypes are 

retained for further analysis. Minor allele frequency (MAF) also affects the imputation 

accuracy [54]. Furthermore, when the minor allele frequency of a specific SNP site is 

too low, it means that the SNP is quite rare in the population, which makes it difficult to 

find the corresponding haplotype when comparing it with the reference panels, thus 

affecting the imputation accuracy. Studies have shown that higher GWAS chip density 

does have a positive effect on imputation quality. However, it is also argued that rarer 

SNPs are usually excluded as they may have a negative effect on the accuracy, due to 

poor genotype calling, and lack of linkage disequilibrium (LD) [55]. Hence careful 

thought is required in choosing thresholds for exclusion and inclusion of SNPs. 

However, the past decade has witnessed that these rare MAF SNPs are often associated 

with specific diseases [56], hence current research focus is to conduct GWAS using rare 

SNPs. Thus imputation strategies are undergoing modifications and improvisations to 

enhance the representation of rarer variants in populations, so that they can get included 

in GWAS studies and are found to have a greater effect size than what it was in the past. 

Besides that, the DNA genotype samples also are checked for Hardy-Weinberg 

Equilibrium (HWE). Suppose genotype or allele frequencies deviate significantly from 

HWE. In that case, it can indicate systematic errors in genotyping, unexpected 

population structure, presence of homologous regions in the genome, association with 

trait in case-control studies [57]. Since the last of those is least likely, so deviation from 
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HWE is an indicator that a marker should be discarded, and avoid deviations in 

subsequent imputation. Plink [58] is a popular tool that is often used to conduct quality 

control steps on genotype data. 

Pre-phasing: 

Pre-phasing is conducted on the study genotype data in concordance with the 

reference genome. Homo-sapiens (humans) have two copies of each chromosome 

(diploid), one of which is inherited from the father and the other from the mother. The 

technologies used for sequencing, generate short read sequences for individuals which 

are assembled into a single sequence. Phasing is a process that constitutes of 

distinguishing the paternal and maternally obtained chromosomal strands into 

homologous chromosomal pairs [59]. This requires complicated statistical computations, 

that uses the LD structure of the SNPs in the genotype and the reference genome to 

reconstruct haplotypes. This step is critical as it restores the functional consequences 

that was originally to be, in context to shared ancestry. While performing imputation, 

pre-phasing allows a one-time phasing where a phased genotype data can match to a 

selected strand of the reference panel, instead of matching two un-phased genotypes, 

therefore speeding up the consecutive imputation steps while reducing the cost of 

computation. The pre-phasing step is divided into three steps, alignment, strand check 

and phasing. The commonly used phasing tools are SHAPEIT and Eagle. For the 

alignment step, the study genotype data will be checked for its alignment with the 

reference panel, while marking the SNPs that are misaligned or are not aligned to the 

forward strand of the reference genome. The second step constitutes of removing SNPs 

from the study genotype data that failed the alignment and strand check step and hence 

marked in the first step. Finally, the third step consists of phasing the genotype data in 
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accordance with the reference panel.  

Imputation: 

For the imputation step, IMPUTE2 and minimac4 are the tools that are popularly 

employed. The step here will use the data from the pre-phasing result, and divide the 

imputed chromosome into several chunks, and start to calculate the probability of the 

nucleotides in each SNP site. Each of the above tools uses different algorithms to 

conduct imputation. In general, IMPUTE2's algorithm is more accurate, while the 

algorithm used in minimac4 is suitable for the improvement of the imputation speed. 

Based on the SNPs from user uploaded genotype data, the corresponding matched 

haplotype(s) get selected from the reference panel and the alleles from the haplotype 

region are utilized to infer the missing genotypes into the user panel. Absence of SNPs 

in each of the base-pair region of the study genotype data, fails to impute SNPs in 

missing sites. Therefore, each imputation chunk is flanked at either side by an internal 

250kb buffer region, by IMPUTE2, to enhance the probability of type-2 SNPs in each 

chunk.   

 

1.5 Reference panel in genotype imputation 

Genotypes that are not directly assayed on GWAS arrays can be reconstructed by 

comparing each sample to a reference panel of sequenced genomes, in genotype 

imputation. In prior studies, the imputation accuracy has been found to benefit from the 

increase in panel size. Since the international HapMap3 project was completed in 2010 

[60], more and more whole-genome sequencing (WGS) data are available to the public. 

The ability to impute a variant accurately is dependent both on the choice of the array 

and the total number of individuals genotyped in the reference panel carrying that 
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variant. Simulation studies have found that increasing sample size in the reference panel 

may improve imputation accuracy, especially for SNPs with relatively low MAFs. A 

large reference panel may capture many less common and rare variants, which should 

provide a better resolution to establish the haplotype background for observed variants 

[61]. At present, there exist many public reference databases. The most widely known is 

the 1000 Genome project, which collects the sequence data of 26 ethnic groups in the 

world, and divides these 26 ethnic groups into five main groups according to regions, 

AFR (Africa) AMR (American ethnic group) Ad Mixed American) EAS (East Asia) 

EUR (Europe) SAS (South Asia), a total of more than 80 million SNPs sites and 5008 

haplotypes were obtained. Because of the huge amount of data and the number of ethnic 

groups, 1000 Genome project is now the most commonly used database of imputation 

reference panel. With the development of sequencing and whole genome sequence 

technology, there are gradually more and more large-scale reference databases, such as 

Haplotype Reference Consortium (HRC) and Trans-Omics for Precision Medicine 

(TOPMed).  

Publicly available reference genomes as mentioned above were constructed using 

multi-ethnic populations. However, using such multi-ethnic panels to conduct 

imputation, it was found that Europeans displayed the highest accuracy and Africans the 

lowest. Due to the fact that Asian populations possess some unique genetic 

characteristics, it is neither possible nor appropriate to directly adapt genetic 

information from studies that have been conducted for Caucasian populations). In 

addition, current research has also found that there are many population-specific rare 

SNPs [62], these SNP sites only exist in specific ethnic groups, and are often found to 

be related to diseases and cancers, etc. Therefore, population specific databases are 
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becoming more and more important. Such as the UK 10K [63] and Genome of the 

Netherlands [64] are emerging and used to do the local population studies. Large 

reference panels such as HRC have been shown to display limitations for Han Chinese 

populations, suggesting the necessity of building population-specific reference panels. 

Factors such as genetic alterations and/or mutations coupled with family history and 

race have been thought to play important roles in the heritability of genetically complex 

diseases [65]. Moreover, a higher false positive rate has been observed in imputation 

from global reference panels compared to imputation performed using a local panel. 

There is no representation of the Taiwanese population in large reference panels such as 

1000 Genomes and HRC. The pan-Asian SNP genotyping database (PanSNPdb) [66], 

which collected SNPs and copy number variations from 1,719 samples in 71 

populations including mainland China, India, Indonesia, Japan, Malaysia, the 

Philippines, Singapore, South Korea, Taiwan, and Thailand, also has a low Taiwanese 

representation. Therefore, constructing reference panels’ specific for the Taiwanese 

population is an immediate requirement for conducting rare variant association studies 

in Taiwanese patients.  

 

1.6 Imputation Server 

Researchers nowadays use genotype imputation as a basic step before GWAS 

analysis. However, imputation requires huge computational resources and is a complex 

process. In addition, the usage of these imputation software requires bioinformatics 

expertise. Therefore, such requirements pose a bottleneck, especially for 

non-bioinformatics researchers. To help to solve the problem, there exist several 

imputation servers. One of the most popular public imputation platforms, is the 



doi:10.6342/NTU202102930

15 

 

Michigan Imputation Server, which has been making great contributions into the field 

of population genetics research, houses reference genomes, such as the 1000 genome 

phase3, Haplotype Reference Consortium (HRC), Trans-Omics for Precision Medicine 

(TOPMed) and the Consortium on Asthma among African-ancestry Populations in the 

Americas (CAAPA) [67]. The latest version of the Michigan server uses Eagle2 – 

Minimac4 to conduct pre-phasing and imputation, respectively, which can provide a 

faster speed for imputation. Another commonly used imputation server is Sanger 

Imputation Service, which utilizes SHAPEIT-PBWT, to let the researcher impute the 

data with the population specific databases UK 10K and the common reference panel 

1000 Genome phase3 online. However, the primary focus of the two servers has been 

the European and Caucasian populations, and there are some restrictions on their use, 

such as the amount of data uploaded and the number of jobs used in a day. With a 

virtual collaboration platform, where physicians, researchers worldwide can upload 

their genotype data and get the required imputation done, without requiring 

computational resources or bioinformatics knowledge.  

 

1.7 Specific aim 

In this study, we aim to build a new public imputation and analysis platform, 

Multi-racial Imputation System (MI-System), to allow users access to a high speed and 

efficient platform to seamlessly conduct genotype imputation. The server uses the 

popular imputation tools SHAPEIT2-IMPUTE2 as the choice of software for 

pre-phasing and imputation and provides flexible quality control options for the 

customized imputation analysis. Moreover, we also provide a population-specific 

reference panel from the Taiwan biobank data (TWB), to help researchers with ethnic 
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specific reference panel. MI-System will further allow users to create reference panels 

using their customized datasets and use that as reference to conduct imputation. To 

ensure user convenience, the system also offers utility functions such as split 

chromosome and Liftover (function to convert genome builds). The goal is to eliminate 

the need for bioinformatics expertise, which is otherwise a pre-requisite for obtaining 

highly accurate imputed datasets. 
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Chapter 2 Materials and methods 

2.1 System implementation 

The architectural design of the MI-System is displayed in Figure 1. MI-System 

utilizes web-based Python Django to develop its back-end framework while the 

front-end is designed and established using HTML, CSS, and JavaScript. It divides the 

website functions into several python scripts that connect the website front-end to the 

server back-end. Django Q and Python were implemented to schedule and multi-process 

user uploaded jobs and output results in a first out fashion. Furthermore, to enhance 

computation speed of imputation and other analysis, parallel virtual machines have been 

designed and implemented into the server so that the program can simultaneously run 

on multiple regions of the chromosome for efficient processing of user uploaded data. 

Users can upload the DNA genotype data in plink format (.bed .bim .fam) or in vcf 

format (.vcf.gz) using either the browser function directly, or by uploading their data in 

google drive and pasting the link in the allotted box in the system. For larger datasets, 

pasting the link to upload files is recommended, to avoid, upload breaks. The Variant 

Call Format (.vcf ) format files will be converted to plink binary format using plink 1.9 

software, for conducting all analysis. Once all analysis is accomplished GEN2VCF [68] 

(https://bitbucket.org/4shin/division-of-genome-research/src/master/GEN2VCF), a 

conversion software, is employed in our back-end, to convert all analyzed data from the 

impute2 output(.gen) format into (VCF) format, post which the -concat function of the 

BCFTools [69] is used to merge each vcf file (for each imputed chunk) into one .vcf file 

for a chromosome. Summary plots are drawn using Python. All output files are packed 

into a compressed .zip folder, for the users to download with easy clicks. 

 

https://bitbucket.org/4shin/division-of-genome-research/src/master/GEN2VCF
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2.2 MI-System Reference Panels 

Mi-system includes (i) for the first time, a Taiwan Biobank (TWB) reference panel, 

that is created with samples of Han-Chinese origin residing in Taiwan [70], (ii) 1000 

genomes Phase III reference panel, and (iii) Hapmap 3 reference panel. Users can either 

choose, any one panel to conduct pre-phasing and imputation or both panels and 

conduct imputation using the “merge reference panel” option. Furthermore, the users 

can customize reference panels, using the MI-System’s ‘create reference panel’ function 

(described later), and choose to use it as a reference, or may combine their customized 

panels with TWB or 1KG and use it as a combined reference, for conducting 

pre-phasing and imputation. 

Taiwan Biobank Reference panel:  

The panel is constructed using whole genome sequencing data from 997 unrelated, 

relatively healthy individuals randomly selected from among 20,117 Han Chinese 

participating in the Taiwan Biobank (TWB). The majority of the Taiwan population are 

of Han-Chinese ancestry and have immigrated from southeast China over the past 4 

centuries, while about ~2% are of aboriginal ancestry (Austronesian). Out of the total of 

997 individuals that are included in this panel, the whole genomes of 499 were 

sequenced using Illumina Hi-Seq 2500 and the remaining 498 were sequenced using Ion 

Torrent-Proton technology. A total of 26,051,907 SNVs and 3,592,314 indels with at 

least 30X coverage were identified where, 32.7% of total SNVs and 43.7% of total 

indels were found to be novel when compared to gnomAD [71]. The mean number of 

total and novel SNVs per individual were 1,894,528.7 (range 585,773-2,740,034), and 

52,394.1 (16,037-91,629), respectively, whereas that of indels were 133,869 

(31,182-306,432) and 8,746.7 (3,403-51233), respectively. 
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1000 Genome Reference Panel: 

A reference panel created with sequenced data of 2504 individuals from across 26 

global populations, that are clustered into 5 major sub-populations: Africa (AFR), 

America (AMR), Europe (EUR), East Asia (EAS), and South Asia (SAS). 5,008 

haplotypes at over 88M variants. 

HapMap3: 

The HapMap3 reference set contains genomic data from >1,000 individuals of 11 

different ancestries (https://www.sanger.ac.uk/resources/downloads/human/hapmap3. 

html): African Americans (ASW), North Europeans (CEU), Chinese Americans (CHD), 

Gujarati (GIH), Japanese and Chinese (JPT+CHB), Luhya (LWK), Mexicans (MEX), 

Maasai (MKK), Toscani (TSI), and Yoruba (YRI). The panel contains approximately 

1.5 million variants that are genotyped. This reference panel was included to provide 

users with a genotyped panel (not sequenced) as a reference. This is the only reference 

panel in MI-System that conforms to human genome version 18 (hg18). Therefore, 

HapMap3 is designated as the reference genome, and users must upload their genotype 

data in hg18 format to obtain the best results. 

 

2.3 MI-System: Services 

All functions and workflows of the MI-System webserver are displayed 

sequentially in Figure 2, and the imputation workflow shows in the Figure 3. MI-system 

broadly offers four different services: (i) imputation, (ii) create reference panel, (iii) 

split chromosome and (iv) Liftover (Figure 2a). “Imputation” and “create reference 

panels” are the two primary functions that allow users with an access to the inbuilt 

analysis pipeline for conducting imputation, and convert user uploaded datasets to 
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reference genome formats, respectively. The system ensures no third-party data 

breaches. Moreover, once the assigned jobs are done and the results are downloaded, 

users can choose to delete their results files in any time. 

 

2.3.1 Service 1: Imputation 

Data upload:  

Users should begin by assigning a name for their project, which will be referred to, 

later, when the job is accomplished, for the purpose of downloading the results. To take 

advantage of the resources, users must upload data, one chromosome at a time, and 

confirm that their data adheres to human genome build 37 as all public reference panels 

are from hg37. The users can also determine a specific region, using the system, based 

on their requirement (Figure 2b). The files are required to be uploaded in either. plink 

binary format or .vcf files into the system. 

Quality control options:  

The quality control steps are conducted using Plink v1.9. It is of extreme 

importance to remove poor quality SNPs before proceeding for further analysis, as 

lesser data quality can lead to inaccurate imputations which can later produce false 

positives and false negatives from genome wide association analysis.  For the quality 

control step, users can use easy clicks to choose from drop down menus, allowable 

thresholds, for removing poor quality SNPs (single SNP missing rate) and poorly 

genotyped individuals (individual SNP missing rate) from further analysis (Figure 2c). 

Ideally, SNPs with call-rates >90%-95% in study subjects, and individuals with <5-10% 

missing genotypes are retained for further analysis. A Hardy-Weinberg equilibrium 

(HWE) check is also required to remove SNPs that deviate from HWE. Lastly the 
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system also allows the users to choose their minor allele frequency (MAF) thresholds 

(0.05, 0.01, 0.001 or none). Users can filter out SNPs based on whether they want to 

include only common variants, common + less common, common + less common + rare 

variants, or all variants in their genotype data. For example, if users choose the MAF 

threshold as 0.05, all SNPs with MAF <0.05 will be excluded from further analysis. 

Studies have shown that higher GWAS chip density does have a positive effect on 

imputation quality, however, it is also argued that rarer SNPs are usually excluded as 

they may have a negative effect on the accuracy, due to poor genotype calling, and lack 

of linkage disequilibrium (LD). Hence, the users should contemplate the pros and cons 

of the MAF threshold and choose it wisely with respect to their study goals.  

Select study specific Reference Panel:  

Once quality control steps are done, users need to select a reference panel, relevant 

to their study goal (Figure 2d), for accomplishing pre-phasing and imputation. The users 

can choose any one panel from a drop-down menu provided by Mi-System : (1) TWB 

reference panel, (2) 1000 genome phase III reference panel or (3) HapMap3 Reference 

panel, (4) a custom reference panel or (5) combine reference panel. For “custom 

reference panel” the users need to upload their data in the IMPUTE2 reference format 

which will be used solely as the reference for the rest of the pipeline. For “combine 

reference panel”, users can either select multiple panels provided by the system which 

will be merged to create a merged or improved panel, or can upload their customized 

data files (to create a new reference panel) and merge it with either 1000G or TWB, to 

be used as the combined panel.  

Pre-phasing:  

MI-System uses SHAPEIT2 for pre-phasing the user input genotype data in 
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concordance with the reference genome. Homo-sapiens (humans) have two copies of 

each chromosome (diploid), one of which is inherited from the father and the other from 

the mother. The technologies used for sequencing, generate short read sequences for 

individuals and post-assembly a single sequence is produced. Phasing is a process that 

constitutes of distinguishing the paternal and maternally obtained chromosomal strands 

into homologous chromosomal pairs. This requires complicated statistical computations, 

that uses the LD structure of the SNPs in the genotype and the reference genome to 

reconstruct haplotypes. This step is critical as it restores the functional consequences 

that was originally to be, in context to shared ancestry. From imputation’s point of view, 

pre-phasing allows a one-time phasing where a phased genotype data can match to a 

selected strand of the reference panel, instead of matching two un-phased genotypes 

while doing imputation step, therefore speeding up the consecutive imputation steps 

while reducing the cost of computation. SHAPEIT2 operates in 3 steps where it first 

checks the alignment of the SNPs from the user uploaded data with the forward strand 

of the reference genome and removes the misaligned ones in the second step and finally 

pre-phases the user uploaded genotype data.   

Imputation:  

IMPUTEv2.0 software is employed in this web server to conduct imputation. Once 

the pre-phasing steps are done imputation commences, where each chromosome is 

chunked into 5 Mb regions to conduct analysis. Impute2 attaches labels to SNPs based 

on the panel they belong to (user uploaded genotype panel (label = 2) or reference panel 

(label = 0 if phased, label =1 if un-phased). Based on the SNPs from user uploaded 

genotype data, corresponding matched haplotypes get selected from the reference panel 

and the alleles from the haplotype region are utilized to infer the missing SNP 
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genotypes into the user panel. The absence of observed type-2 SNPs in each of the 

base-pair region, fails to impute SNPs in missing sites. Therefore, each imputation 

chunk is flanked at either side by an internal 250kb buffer region, by IMPUTE2, to 

enhance the probability of type-2 SNPs in each chunk.     

Combine Imputation Panels: 

MI-System additionally provides the combine imputation panel function which is 

the unique function in IMPUTE2. The merge imputation will use the two different 

reference panels to improve the imputation result. There are two merge functions use in 

the server, “merge imputation” and “improve imputation”. The “merge imputation” use 

the command “-merge_ref_panels” which called “Imputation with two phased reference 

panels (Merge reference panels)” in IMPUTE2. In this function, the two reference 

panels will first imputed with each other to generate the large reference panels, then 

impute the sample with the big reference panels to get the high coverage result. Another 

function call “improve imputation”, which called “Imputation with two phased 

reference panels” in IMPUTE2. In this function, the sample will first impute the SNP 

variants that only present in the first reference panels. Then, use the second reference 

panels to improve the imputation accuracy of the result. 

Data Output: 

Once all steps are accomplished, users will be notified by the system, through an 

email with links to download all results (Figure 2e). The imputed data is made available 

to the users through compressed zip files (Figure 2f), which can be downloaded using a 

few simple clicks. The .zip file will contain all imputed chunks concatenated into files 

in .vcf format or plink format, along with summary plots, in .jpg/.png formats, for the 

imputed data. The figures will consist of (i) an accuracy plot, where the info-score will 
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be plotted across all imputed SNPs and (ii) a distribution plot, plotting the frequency 

against MAF for all imputed SNPs (Figure 2f). Python module, Pandas v. 1.1.1 is used 

to import and analyze info score files from all imputed chunks of each chromosome, 

and Python module Matplotlib 3.3.2 is utilized to plot and save the results to be 

downloaded by the user. 

Validate imputation accuracy: 

 To verify that the imputation can correctly fill out the missing SNP sites, we 

conducted a simulation study by which we masked known SNP sites and imputed them 

and verified them. 5 variants were delected randomly from a dataset of 188 individuals 

on Taiwanese origin. These 5 variants were separately masked and the imputation 

pipeline was used to impute them back. Finally, the imputed ones were compared with 

the original SNPs, to determine the accuracy and correctness of imputation. 

 

2.3.2 Service 2: Create reference panel 

This service in the MI-System offers users with easy clicks to convert 

self-customized data into IMPUTE2–SHAPEIT2 reference panel formats. MI-System 

use the perl scipt from IMPUTE2, “vcf2impute_legend_haps.pl”, to convert the user 

uploaded data to the reference format. Users need to click on the, “Create Reference 

Panel” service from the main function menu (Figure 2a), which will redirect them to a 

page where they are required to assign e project name, specify the chromosome number 

from a drop-down menu, and upload the relevant data files either in .vcf format or Plink 

binary format. Once the results are ready, the user can go to result page and all 

reference files will be available through a .zip file for download. The .zip folder will 

contain 4 files pertaining to SHAPEIT2-IMPUTE2 format: all_data.sample (list of all 

user1
What is this? Where did you get this number?
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samples, chromosome_file.legend.gz (chromosome specific legend file), 

chromosome_file.hap.gz (chromosome specific haplotype file), 

chromosome_file_map.txt (chromosome specific map file). Users can further upload 

these files to customize their reference genome, or create merged reference panels for 

conducting pre-phasing and imputation using SHAPEIT2-IMPUTE2. 

 

2.3.3 Service 3: Split Chromosome 

This function is added to the system to help users to split their whole genome data 

into chromosomes. Microarray or sequence data is usually available for whole genome, 

and non-bioinformaticians may not be equipped enough to break down the whole 

genome data into chromosomes. Users are required to upload their whole genome data 

in .vcf or plink binary format and download the split data (chr1 – chr22, chrX) in .vcf or 

plink binary format. As MI-system accepts only per-chromosome data, this function 

would make it convenient for users to obtain suitable formats with simple clicks. 

 

2.3.4 Service 4: Liftover 

Another requirement for MI-System is that all data should be uploaded into the 

system in human genome version 37. Most sequencing and microarray technologies, 

align data to the latest release of the human genome version (HG38). However as 

1000G Phase III reference genome, was aligned to human genome version HG37 (hg19), 

therefore for consistency users are required to ensure that all data is uploaded in the 

hg19 version. Thus, for the convenience of the users, the function, ‘Liftover’ (UCSC 

Liftover utility for switching genome assembly versions) [72] is added to the system, 

where users can upload their dataset in either .vcf or plink binary format and all data 
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will be converted from HG38 to Hg19. The Liftover is also is accomplished 

liftoverPlink (https://github.com/sritchie73/liftOverPlink/), a software that can help to 

convert the format between plink and the liftover file. Users can download the 

converted data, and consequently use other functions, offered by the system.  

Computational resources 

MI-system works on 4 parallel virtual machines (VM), to handle computationally 

intensive jobs submitted by users. Two VMs have 120 cores and 450GB memory, each, 

and the other two have 64 cores, and 512GB, memory each. They operate on CentOS 

Linux release 8.2.2004. For enhancing speed, python multi-thread processing is utilized 

to analyze multiple 5Mb regions of chromosomes simultaneously.  For example, 

chromosome 1 can be divided into 50 chunks, of size 5Mb each. Each chunk uses 1 core. 

For a data with 2000 samples, 50 chunks when parallel processed used up 200GB and 

the complete imputation pipeline took 32 minutes. Imputation with merge reference 

panel took, 1 hour 09 minutes. 
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Chapter 3 Results 

3.1 Web-interface: 

Mi-system is a python-base web system. The screenshot of the homepage is shown 

in Figure 4a. This page shows the basic information of the webpage and the functions 

offered by the web server. In order to identify the user, the webpage requires the user to 

enter his/her email as the user id will be used to store the result of the imputation and 

other functions (Figure 4b). The email will only be used for the purpose of identifying 

users and creating user folders. Once the user email is created, the user can select the 

desired function through the drop-down menu link at the top of the page. 

 

3.2 Public reference panels 

Figure 5 displays the number of SNPs that overlap between TWB panel and each 

of the public reference panels, 1KG and HRC. HRC panel was principally constructed 

of populations of European ancestry from 20 different low coverage whole genome 

sequencing data. The HRC contains total 39.1 million SNPs, 1KG contains total 81.7 

million SNPs, and TWB contains total 39.2 million SNPs. A comparison analysis 

displays that approximately 9.9 million SNPs were found to overlap in all 3 panels, 

while, 15.9 million SNPs were common between 1KG and TWB panels, 10.2 million 

between TWB and HRC panels and 30.6 million SNPs between 1KG and HRC panels.  

 

3.3 Service: Imputation 

Imputation is the primary function of MI-System, and the function page is as 

shown in Figure 6. This page is divided into three drop down menus for users to choose 
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the imputation parameters from: upload data format options, quality control options and 

reference panel options. In the file options, the user can input the name of the project, 

upload the DNA genotype file, and select the chromosomes and regions that need to do 

the imputation. In addition to the somatic chromosomes, the sex chromosomes (X) are 

also available for imputation. Notice that the X chromosome will be divide into PAR1, 

NON-PAR and PAR2 regions to conduct the imputation. In order to avoid issues such 

as that the user uploaded file is too large causing the upload time to be too long, 

MI-System consists of a  link upload function. The user is simply required to paste the 

google drive link and MI-System can download the files through the server back-end. In 

the quality control options, users can choose their own filtering thresholds, including 

MAF, single SNP missing rate, individual SNP missing rate, Hardy-Weinberg 

equilibrium check. In the reference options, users can choose the reference panel (1) 

TWB reference panel, (2) 1000 genome phase III reference panel, (3) HapMap3 

reference panel, provided by the system or (4) upload custom reference panel for 

imputation. 

After submitting the data, the project name will show in the result page 

“Imputation region” (Figure 7), and the user can choose the project and move to the 

download page. Figure 8 shows the download page's screenshot, which records the 

imputation project options, progression, and result. For the user convenience, the server 

also provides several plots (1) Info score distribution (Figure 9), (2) Rare SNPs 

distribution (Figure 10), (3) Common SNPs distribution (Figure 11), to help the user 

quickly understand the imputation results. 
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3.3.1 Improve the cost of imputation time  

Although IMPUTE2 is considered to be a highly accurate imputation tool, due to 

its algorithm and the limitation of single CPU computation, it takes more time to 

compute than other software. Table 2 shows the time required for imputation using 

IMPUTE2 on sample size data of about 100 individuals. The time necessary for 

imputation of chromosome 22 takes several hours, and for chromosome 1 it takes nearly 

a day to perform imputation. As it is not the scope of this study to modify the algorithm 

of the IMPUTE2 program, we use python module “threading” to allocate CPUs to 

different chromosomal chunks for imputation, and achieve the parallel computation of 

the imputation. The details of the parallel computation design are displayed in Figure 12. 

In the original imputation process, each chromosome is cut into several chunks of size 5 

Mb, and then imputation is performed on each chunk one after another. After adding 

parallel computation, the complete imputation for chromosome 22 takes 30 minutes, 

while for chromosome 1 only takes nearly 3 hours to perform imputation, resulting in a 

significant improvement in the computational speed of IMPUTE2. 

 

3.3.2 Comparison of MI-System with Michigan Imputation server. 

Several imputation servers exist and each uses a different combination of 

imputation tools thus affecting the accuracy of imputation results. For imputation, 

accuracy is a very important indicator that reflects the probability of calculating the 

correct SNP nucleotide. In order to understand whether the combination of tools used 

by MI-System has a better accuracy or not, we conducted a comparison analysis 

between MI-System and the Michigan Imputation server, to provide users with example 

results for gauging the reliability of MI-System. Michigan Imputation server utilizes 
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Eagle 2 for pre-phasing and Minimac4 for imputation, and MI-System utilizes 

SHAPEIT2 for pre-phasing and IMPUTE2 for imputation. We used an independent 

genotype dataset consisting of 94 patients (90 males, 4 females) of Han Chinese origin, 

living in Taiwan, to conduct a comparison analysis using the Michigan imputation 

server pipeline and MI-System pipeline. The data was uploaded into the Michigan 

imputation server and MI-System and imputation were conducted on all autosomes 

(chromosome 1 – chromosome 22) using 1KG as the reference panel. 1KG is 

particularly selected because it is the common reference panel in both the web servers, 

the major target population for MI-System is Asian population. HRC panel mostly 

works for European population, hence was not suitable to conduct comparisons. EAS 

population from 1KG was the major focus for all comparisons, nevertheless a separate 

analysis on EUR population is also done to establish the wider applicability of 

MI-System. A threshold of 0.01 for both SNP and individual missing-ness was used to 

remove poor quality SNPs and those that did not conform to HWE (threshold of 10-6), 

were excluded from further analysis. Finally, SNPs with MAF < 0.001 were also 

removed from all analyses. We conducted QC steps in MI-System using its readymade 

drop-down menu for QC, MAF and HWE filtering. Before feeding the clean data into 

the Michigan imputation server, we conducted all QC and exclusions (HWE and MAF) 

using a Linux system. All quality control parameters and exclusion thresholds were kept 

identical for both imputation pipelines to maintain data consistency.  

Comparison result 

Pre-phasing and imputation using the imputation pipelines from both MI-System 

and Michigan Imputation server weres conducted. The analyzed data were downloaded 

and examined for data quality, skewness, and accuracy.  
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(i) Uniform Distribution across MAFs  

Figure 13 and Figure 14 display the distribution plots for imputed SNPs from both 

MI-System and Michigan Imputation server, for EAS and EUR populations. For both 

the populations, the SNPs were mostly uniformly distributed across all MAFs. The 

trend of the distributions was similar for data from both the web servers. Although a 

quick glance revealed that the total number of SNPs with MAF <0.05 were marginally 

higher by Minimac4, a closer look (Figure 15 and Figure 16) revealed that more number 

of rare and very rare SNPs (MAF<0.01) were generated by IMPUTE2 and higher 

number of less common SNPs (0.01<MAF<0.05) were imputed by Minimac4. This 

distribution pattern was mostly consistent for all autosomes. We chose to display the 

results from chromosome 1 and chromosome 22. 

(ii) More SNPs with higher accuracy 

Figure 17 provides plots displaying accuracies of imputed SNPs using both 

MI-System and Michigan server, for chromosome 1 and chromosome 22. Again, all 

results are provided for both EAS and EUR populations, to demonstrate the multi-ethnic 

applicability of the imputation system. As widely understood, IMPUTE2 provides a 

metric, called info score as the measure of accuracy for each imputed SNP while 

Minimac4 provides a dosage r2 as the measure of accuracy. Hence for the purpose of 

comparison, we recalculated the r2 values (squared correlation coefficient) between 

imputed allele dosages and masked genotypes, by utilizing an R package 

“BinaryDosage” that utilized the .gen files from the impute2 output to calculate r2 

dosage values. Figure 17 shows the plotted r2 values for both impute2 and Minimac 4, 

and clearly the accuracy for Impute2 was much higher than that of Minimac 4 across all 

MAF values. Results for chromosome1, and chromosome 22, for both EAS and EUR 
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shows similar trends. All other autosomes are included in Figure S1 and Figure S2. 

Higher accuracy for most SNPs implies that irrespective of whether the SNPs are 

common, rare or very rare, the probability of them getting included in the association 

study and consequently getting detected, becomes higher.  

 

3.3.3 Merge reference panels  

Rare variants are believed to contribute to the unexplained heritability of most 

traits and diseases, however, due to their poor representation and low frequency in 

populations it’s been a challenge to analyze them in GWAS studies, with adequate 

power. This section focuses on displaying the users with examples, that merging ethnic 

specific panels with matched sub-population from multi ethnic panels, can enhance the 

representation of rare variants in population genetics studies. We conducted imputation 

by utilizing the “merge reference panel” and “improve reference panel” options, offered 

by MI-System, to combine Taiwan specific reference (TWB) with EAS of 1KG 

reference. We evaluated the findings in comparison to using only TWB and only EAS 

of 1KG based on data quality, skewness, and accuracy.  

(i) Merging panels provide more imputed SNPs 

We conducted imputation using 4 different reference panels, using the MI-system. 

“Merge” reference panel is created when 1KG EAS and TWB were merged using the 

“merge reference” option (Figure 2d), “improve” reference panel is created when EAS 

is used as the main Panel which is merged with a subset of SNPs from TWB panel that 

overlaps with 1KG, using the option improve reference” (Figure 2d). “EAS” is when 

1KG is only used as the reference and “TWB” is when only TWB reference panel is 

used. Figure 16a and 16b display the distribution of SNPs across all MAFs for 
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chromosome 1 and chromosome 12. “Merge” panel consistently imputed the highest 

number of SNPs, uniformly for all MAFs, followed by IKG EAS panel, improve panel 

and TWB panel. For MAF <0.05, the trend was similar with Merge panel providing the 

highest number of SNPs in comparison to the other three panels (Figure 18 , Figure 19).  

(ii) Merging panels improve the accuracy of rare SNPs. 

Choosing an appropriate reference panel for the study data at hand, sample sizes of 

both the genotype data and the reference panels and allele frequencies, are some of the 

factors that have been shown to affect the quality of imputation. Figure 8 shows the 

comparison of info-score for all 4 panels. EAS was found to show the highest accuracy 

for MAFs >= 0.075 (Figure 20 a-b), however for less common variants 

(0.01<MAF<0.05) EAS +TWB improve was shown to have higher accuracy than all 

others (Figure 8c-d), and for rare and very rare variants (MAF <0.01), TWB reference 

panel showed higher accuracy than others (Figure 21 a-b). Even though for this 

particular example the, the enhancement of the accuracy was marginal, we believe it is 

due to the very low sample size of the TWB panel and genotype data. All other 

autosomes are included in Figure S3 and Figure S4 A customized panel created with 

thousands of individuals and the study data having hundreds of individuals, would 

allow users to conveniently merge reference panels using MI-System, which would 

enhance the representation of rare variants in population-based studies, thus increasing 

the chances of them getting detected in GWAS analyses. 

 

3.3.4 Validate the imputation accuracy  

Imputation is now often used as a processing step before analyzing GWAS, and it 

is important to ensure that the missing SNP variants can be estimated correctly. In the 
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past, many studies have compared imputation results with known microarray SNP 

variants data to verify the accuracy of imputation [73, 74], and the results show that 

imputation can estimate the missing SNP data with an accuracy of up to 97%. We also 

performed a similar validation by randomly masking 5 SNP variants from 188 

individuals from Taiwan and then conducted  imputation with 1KG EAS group. The 

imputation results were compared with the original data to calculate the percentage of 

the correctly imputed genotypes. The results show that the mean accuracy rate of the 

imputed data were up to 99% (Table 1), therefore it can be verified that the imputation 

process is able to accurately fill out the missing SNP variants and improve the further 

GWAS analysis. 

 

3.4 Service: Split chromosome 

To optimize the operation of the server, MI-System limits users to imputation of 

only one chromosome at a time. Therefore, we additionally provide split chromosome 

function that allows users to upload their whole genome SNPs data to the server and 

split it into single chromosome data from chr1 to chr22 via the PLINK software. The 

screenshot of this utility is displayed in Figure 22. Users can upload files via browser or 

google drive link, and customize the name of the output file. After the users submit their 

data, the file will be sent to the server back-end to start the program. The results can be 

downloaded by going to the download page “Split chromosome region” selecting either 

plink format or vcf format for download. 

 

user1
Add a table with details of all 5 snps u masked and before and after imputation parameters, like ref allele alternate allele, MAFs, and accuracy of imputation
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3.5 Service: Liftover 

Since the Human Genome Project began in 1990, many versions of the human 

genome assemblies have been released, the most commonly used version is GRCH37 

(hg19), which was released in 2009, and GRCH38 (hg38), which was released in 2013. 

Currently, major genomic databases such as NCBI, UCSC, Ensembl, 1000 Genomes 

Project, and gnomAD can use these two versions for searching and data usage. However, 

there are still some extended tools that have not been fully updated. Therefore, for now, 

using the GRCH37(hg19) can better support the research application. Moreover, the 

genome coordinates and genome annotation are different between the different versions 

of the human genome assemblies. The genome data between two different versions 

cannot be directly used for further analysis. 

To solve these issues, UCSC has published a conversion tool, liftOver 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver), that allows users to convert genome 

coordinates and genome annotation files from one human genome version to another. 

Several of the reference databases that exist today still use data in GRCH37 (hg19) 

version, and the associated analysis software is also compatible with HG37. However, 

depending on the sequencing protocol used, the study SNP data may pertain to human 

genome version 38 GRCH38 (hg38). Also, if users use the online liftover conversion 

tool from UCSC browser, they must create a specific format of input data, as the online 

version of liftover does not support Plink files. MI-System has incorporated 

liftOverPlink to help convert the genome coordinates version using plink format. 

LiftOverPlink first converts the input plink format data to .bed file, which is then 

converted using LiftOver, finally producing the output in the plink format. Figure 23 

displays the screenshot of the liftover page. The page can let the user upload the data in 
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plink format or vcf format through the browser or google drive link. Then user can enter 

the output name and the conversion options, either “Hg19 to Hg38” or “Hg38 to Hg 19” 

based on their requirement. The results can be downloaded from the result page 

“liftover region” by selecting either plink format or vcf format for download. 

 

3.6 Create reference 

Currently, many reference datasets exist, such as 1000 genome and HRC. These 

large reference databases can have high imputation accuracy when utilized for 

imputation analysis. Recently, many studies have shown that conducting imputation 

analysis using ethnically matched reference panels can provide better performance. 

Some rare SNPs exist only in their population-specific databases, and these SNPs have 

been found to be associated with some diseases and traits. However, not every 

population has its own population specific reference database. MI-System offers users 

with a readily available function that can convert user uploaded data to be converted to 

reference format (.legned, .hap) for conducting imputation. MI-System allows users to 

upload SNPs data in vcf or plink formats (.vcf.gz, .bed, .bim, .fam), and help to convert 

them into reference panel format by the IMPUTE2 script “vcf2impute_legend_haps.pl”. 

Figure 24 shows the screenshot of the Create reference page. Here the user can upload 

the data, and select the chromosome number that want to convert to the reference format. 

The result can be confirmed by redirecting to the download page from the result page 

“Reference region” and selecting plink format or vcf format for download. 

Chapter 4 Discussion 

Physicians or biologists, who possess large-scale patient data, lack the expertise 
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and the computational resources required for translating their data into usable genetic 

information for further research. Providing them with a virtual collaboration platform, 

where physicians and researchers worldwide can seamlessly upload their genotype data 

and get the required imputation done, would speed up research and provide an 

unfathomable genetic knowledge base for genetic carriers of complex diseases, 

therefore greatly enhancing patient driven research. We release an easy to operate 

webserver, MI-System, where users can choose QC parameters for conducting data 

cleaning, and flexibly conduct imputation using either public imputation panels or using 

self-customized/self-merge multiple panels, using few easy clicks. Moreover, once the 

user-designed jobs are accomplished, the system provides visual representations of the 

data quality through accuracy distribution plots and minor allele frequency (MAF) 

distribution plots. Users can instantly judge the quality of their imputed data. This 

further saves the user, of complex post-processing steps, such as merging imputation 

chunks, or writing additional codes for data plotting and checking overall imputation 

quality.  

Genotype imputations are becoming increasingly popular as it helps to enhance the 

representation of rare variations in population-based studies. This is of utmost 

importance as rare variants originally explain risks in very few people in 

population-based studies. Therefore, it is challenging to explain their effects in the 

greater population. Furthermore, it is hard to assay them as tagged single-nucleotide 

polymorphisms (SNPs) in genome-wide arrays, unless the sample size is very large. 

Also, assaying rare variants in microarrays is expensive. Due to such bottlenecks, rare 

variants never make it to association studies and get excluded at quality control steps. 

Even if they get included, they hardly show association, because of very low effect size. 
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The demand to conduct imputation has triggered the development of many imputation 

panels and servers. Table 3 gives a detailed comparison of all the features of the 

existing panels. Each online imputation server uses the different software combinations 

and reference panels for the imputation according to their requirements. The Michigan 

imputation server uses Eagle2-minimac4 for pre-phasing and imputation, Sanger 

imputation service uses SHAPEIT-PBWT for pre-phasing and imputation, respectively. 

Although IMPUTE2 is considered to have high imputation accuracy, its single CPU 

computing limitation causes long computation time and is therefore seldom used in 

online servers. About the reference panels that servers use, except for the 1000 Genome 

Phase3 panel, the other panels were mainly for European and Caucasian populations. 

Therefore, MI-System provides the high accuracy software combination 

SHAPEIT-IMPUTE2 to do the pre-phasing and imputation. Further, MI-System has 

added a new Taiwan biobank reference panel and has provided options for customizing 

user specified reference panels. Compared with other online servers, MI-System takes 

more time for imputation, but it can get better imputation accuracy and has the special 

merge reference panel function. Nowadays, there are new versions of 

SHAPEIT-IMPUTE2 used by MI-System, SHAPEIT4-IMPUTE5 [75, 76], which 

update the algorithms and functions used. Not only does it remove the limitations of 

single CPU computing, but it also reduces memory consumption while maintaining high 

accuracy. Therefore, we have also added an imputation page for the 

SHAPEIT4-IMPUTE5 version in the server, allowing users to choose. With the 

addition of new supported reference panels and tools in the future, we believe that the 

MI-System can help more researchers to conduct imputation and further SNP studies. 
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Chapter 5 Conclusions 

MI-System is a new online web-based server that can help users conduct 

imputation. It provides popular and high-accuracy imputation tools 

SHAPEIT-IMPUTE2 for pre-phasing and imputation, respectively. Besides the publicly 

available 1000 genome Phase III reference panel, a new Taiwan biobank reference 

panel is added for the first time in this server. The imputation function can let the user 

flexibility select the quality control parameters and reference panel options. Users can 

also use the combined reference panels function to improve the imputation accuracy. 

Moreover, MI-System provides several useful functions, (1) Split chromosome, (2) 

LiftOver, (3) Create reference, to help users to do the analysis and improve the user 

experience. By using MI-System, we hope that users can get imputation results quickly 

and help with further analysis. 
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Appendix 

Figure: 

 

 

Figure1. The architectural design of the MI-System 
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Figure 2 The overview workflow of the MI-System 
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Figure 3 The workflow of the imputation function in MI-System 
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Figure 4 The homepage and the email entering window of the MI-System 
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Figure 5 The Venn Diagram of the common reference panels and TWB
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Figure 6 The imputation page of the MI-System 
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Figure 7 The result page of the MI-System 
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Figure 8 The download page of the MI-System 
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Figure 9 The info score distribution plot of the imputation result 

 

Figure 10 The rare SNPs distribution plot (rare variant) of the imputation result 

 



doi:10.6342/NTU202102930

62 

 

 

 

Figure 11 The common SNPs distribution plot (common variant) of the imputation 

result 
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Figure 12 The parallel computation design of the imputation 
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Figure 13 The common SNPs distribution plots from MI-System and Michigan 

Imputation server (EAS group) 
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Figure 14 The common SNPs distribution plots from MI-System and Michigan 

Imputation server (EUR group)
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Figure 15 The rare SNPs distribution plots from MI-System and Michigan Imputation server    

(EAS group) 
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Figure 16 The rare SNPs distribution plots from MI-System and Michigan Imputation server    

(EAS group)
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Figure 17. Rsq comparison plots of accuracy between Minimac4 and impute2 
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Figure 18. Comparison of common SNPs imputed for 4 different reference panels 

 

Chromosome12 (b) 

Chromosome1 (a) 
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Figure 19. Comparison of rare SNPs imputed for 4 different reference panels 
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Figure 20. Accuracy comparison between 4 reference panels (Total SNPs) 
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Figure 21. Accuracy comparison between 4 reference panels (Rare SNPs) 
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Figure 22 The split chromosome page of the MI-System 
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Figure 23 The liftover page of the MI-System 
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Figure 24 The Create reference page of the MI-System
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Table: 

 

 

Table 1 The validation of imputation accuracy 
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Table 2 The imputation cost time of the IMPUTE2 

 
CGM server 

(origin) 

CGM server 

(Multi-threading) 

CHR22 – 188 sample 

6404 SNPs (1000G-EAS) 

2hr and 20min 30 min 

CHR22- 304 sample 

7294 SNPs (1000G-EAS) 

3hr and 16hr 44 min 

CHR1 – 455sample 

41592 SNPs(1000G-EAS) 

28 hr 2hr and 40 min 

(20 threads) 
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Table 3 The comparison table between several imputation servers and MI-System 
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Supplementary figure:  
 
 

 
Figure S1. Rsq comparison plots of accuracy between Minimac4 and impute2 in all chromosomes 

(EAS group) 
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Figure S2. Rsq comparison plots of accuracy between Minimac4 and impute2 in all chromosomes 

(EUR group) 
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Figure S3. Accuracy comparison between 4 reference panels in all chromosomes (Total SNPs) 
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Figure S4. Accuracy comparison between 4 reference panels in all chromosomes (Rare SNPs) 
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