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iii. 中文摘要 

近年來隨著談話型的串流影片越來越普及，直播平台漸漸的成為人們吸收新資訊的另一個管

道。然而，談話型的直播影片通常較為冗長，使得大部分的觀眾無法全程參與直播，為了吸

引觀眾加入直播串留影片甚至進一步成為訂閱者，提供精華片段對直播主和直播平台而言就

變得格外重要。近年來有許多影片精華擷取相關的研究，其中多數研究使用影像上的資訊作

為特徵再進一步擷取影片精華片段，然而這樣的方式並不適用於談話型的直播影片，原因在

於談話型直播影片的精華與影像畫面並沒有直接相關，而是與直播主的言談以及觀眾的反應

有關。在此篇論文中，我們使用了直播主的言談以及觀眾的留言作為模型輸入，提出了針對

談話型直播影片精華擷取的模型，並進一步利用了位置的特徵增強和專注力機制強化特徵向

量。此外，我們也透過自調節權重網路給予兩個文字分流預測分數不同的權重增強模型的表

現。實驗證明我們的方法在現實生活的資料籍上，表現比起近年提出的幾個知名的精華擷取

模型來得更好。 
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iv.  Abstract 

As more and more conversation-oriented streaming videos are available, streaming platforms have 

gradually taken the place of traditional media for people to access information. Nevertheless, 

conversation-oriented streaming videos are often lengthy, which makes people reluctant to attend to 

the whole video. Highlight extraction has thus become necessary for streamers and platform providers 

to attract people and to watch their videos to become subscribers. Previous highlight extraction 

methods analyzed visual features of videos and were unable to deal with conversation-oriented 

streaming videos whose highlights are related to streamer discourses and viewer responses. In this 

research, we investigate highlight extraction on conversation-oriented streaming videos. Instead of 

evaluating visual features, the proposed highlight extraction method simultaneously examines textual 

streams of streamer discourses and viewer messages to conduct highlight extraction. The two 

techniques of position enrichment and message attention are developed to distill meaningful 

embeddings of the two textual streams. Also, a self-adaptive weighting scheme is deployed to 

effectively leverage the embeddings for highlight extraction. Experiments based on real world 

streaming data demonstrate that the two textual streams, self-adaptive weighting scheme, position 

enrichment, and message attention are useful to extract highlights of conversation-oriented streaming 

videos. Moreover, the extraction results are superior to those derived by well-known deep learning-

based highlight extraction methods. 
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1. Introduction 

The popularity of the streaming industry has in recent years skyrocketed due to the swift progress of 

Internet technologies. With more and more streaming platforms like Twitch and YouTube springing 

up, watching streaming videos is not just a trend but has become a daily activity for the younger 

generation. The COVID-19 pandemic has further intensified the surge of online streaming. Lockdowns 

and social distancing measures have transformed the people’s lifestyles and increased the demand for 

stay-at-home entertainment in general and streaming in particular. According to Grand View Research 

surveys1, in March 2020 at the outset of the pandemic, the viewership of Twitch increased by 31%. 

The global market sizes of the streaming industry in 2019 and 2020 were $42.6 billion and $50.1 

billion, respectively, and the market growth rate (compound annual growth rate (CAGR)) from 2021 

to 2028 is estimated to be 21.0%. The promising market size and the huge viewer population have 

stimulated novel business models for benefiting both streamers and platform providers. For platform 

providers, their revenues are normally based on paid advertising such that the more viewers a platform 

has, the more profit the platform gets; for streamers, profit mainly comes from viewer donations and 

product placement, which are also based on the viewer numbers. Since a lot of platforms and streamers 

engage in this competitive business, how to catch and keep the eye of audience has become a practical 

issue. 

Live streaming consists of visual and audio contents, and emphasizes interactions between 

streamers and viewers. To attract viewers, streamers are encouraged to design vivid and engaging 

content. Streaming content can further be archived as videos for public access to help the channel later 

earn subscriptions. However, live streaming recorded videos are often so lengthy that viewers are 

reluctant to watch them. In order to increase channel exposure and attract new subscribers and viewers, 

                                                
* Corresponding author 

1 https://www.grandviewresearch.com/industry-analysis/video-streaming-market  

https://www.grandviewresearch.com/industry-analysis/video-streaming-market
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many streamers have started to provide streaming highlights by using video editing tools or 

cooperating with third-party studios. Twitch officials, for instance, offer streamers streaming markers 

for highlighting content. Even with the help of tools, highlighting and editing are still time-consuming 

because streamers or studios need to review the whole streaming video. To save human labor, there is 

an urgent need for effective highlight extraction methods that automatically compose highlights of 

streaming videos.  

Video highlight extraction is an active multimedia research topic. Essentially, highlights are the 

most attractive video sections that are short enough to capture the gist of a video and its key points 

(Han et al., 2019; Xiong et al., 2019; Zhang et al., 2020). Due to the advance of artificial intelligence 

and the availability of image pre-trained models, many recent deep learning approaches (Yao et al., 

2016; Fu et al., 2017; Han et al., 2019; Xiong et al., 2019) have been developed to extract highlights 

from videos. The approaches normally divide a video into sequential segments from which 

representative features such as image patterns and audio characteristics are derived to discover 

highlights. For instance, Yao et al. (2016) employed the well-know AlexNet pre-trained model 

(Krizhevsky et al., 2012) and a 3D deep convolutional neural network (Tran et al., 2015) to extract 

spatial and temporal image features from fixed-size video segments. The features were evaluated by a 

fully connected network to predict a score indicating the highlight probability of a given segment. 

While these studies are effective to detect video highlights, most of them focus on gaming or out-door 

videos. This is because the highlights of these action-oriented videos generally involve visual or audio 

effects whose features can be successfully distilled by deep neural networks to enhance the highlight 

extraction procedure. It is worth noting that a great portion of live streaming videos is now 

conversation-oriented in that streamers literally share personal experience or introduce the recent buzz 

or trending memes. In fact, the top watched streaming category on Twitch in 2020 was Just Chatting, 

which collected about 1,600k conversation-oriented streamer channels and received more than 19 
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billion watching hours2. For this kind of streaming, streamers entertain their viewers not by producing 

exciting visual effects, but by comprehensively conversing and interacting with viewers. As there are 

few visual and audio effects, existing highlight extraction methods might not be able to identify the 

representative features of highlight sections, and therefore fail to distinguish highlights from this type 

of streaming video. In our work, we proposed our novel highlight extraction model to address 

following questions: 

 RQ1: How to effectively extract highlight from conversation-oreiented streaming videos? 

 RQ2: How to improve model performance by utilizing streaming video properties based on 

textual information? 

In this paper, we study the highlight extraction of conversation-oriented streaming videos. To the 

best of our knowledge, this is the first work that explores properties of conversation-oriented streaming 

videos for effective highlight extractions. Instead of investigating visual and audio effects, we examine 

streamer conversation and viewer feedback. The proposed method considers two textual streams for 

automatic highlight extraction. One is the streamer conversation, and the other is the viewer messages 

posted in the chat rooms that reflect viewer feedback in streamer-viewer interactions. The method first 

decomposes a streaming video into a sequence of discourse segments and encodes the streamer 

conversation within a segment into a streamer discourse embedding. As the relative position of a 

segment to a streaming video can be a hint for highlight extraction, position embeddings are developed 

to enrich the streamer discourse embedding. At the same time, the viewer messages posted within a 

segment are encoded to form a viewer message embedding. We noticed that viewer messages are 

sometimes distracted and not every message is informative. Hence, an attention mechanism is designed 

to weight viewer messages when aggregating the viewer message embedding. Finally, the attentional 

message embedding together with the streamer discourse embedding enriched by the position 

                                                
2 https://sullygnome.com/game/Just_Chatting 
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information are fed into multilayer perceptrons to predict a highlight score. Segments with a high score 

are selected to construct the video highlight.This paper makes following contribution: 

1. To the best of our knowledge, this is the first study that extracting highlight from streaming 

videos by simultaneously using streamer discourses and audience messages. 

2. By further taking natural properties of streaming video into account, we further improve model 

performance by using position enrichment and attention mechanism. 

3. Our method outperforms many well-known highlight extraction methods based on real world 

streaming videos. 

The remainder of this paper is organized as follows. Section 3 provides a review of related works. 

In Section 4, we detail the proposed highlight extraction method, and then in Section 5 we evaluate the 

system’s performance. Section 6 summarizes our conclusions. 
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2. Related Work 

In the past, methods of video highlight extraction would focus on a specific domain (e.g., sports) and 

relied on extraction rules or heuristics defined by domain experts (Nepal et al., 2001; Tjondronegoro 

et al., 2004). For instance, Nepal et al. (2001) investigated basketball game highlight extraction. The 

authors compiled a set of extraction rules that simultaneously scan image and acoustic patterns such 

as the appearance of scoreboards or the loudness of crowd cheer to detect highlights of basketball 

scoring. While expert-defined rules and heuristics are effective, creating them is not easy. Therefore, 

in order to facilitate video highlight extraction, many studies started using machine learning techniques 

to automatically learn associations between visual-audio features and video highlights (Rui et al., 2000; 

Otsuka et al., 2005; Zhang et al., 2006; Lee et al., 2012; Sun et al., 2014;). In (Rui et al., 2000), the 

authors studied highlight extraction in TV baseball games and decomposed a baseball game video into 

a set of candidate clips. The authors employed various supervised machine learning algorithms (e.g., 

support vector machines (Hearst, 1998)) to classify excited commentator speeches which are then 

probabilistically fused with detected ball-hitting sounds to calculate the highlight probability of a 

candidate clip. Lee et al. (2012) presented a highlight extraction method for egocentric videos which 

recorded activities from the first-person view through a wearable camera. Instead of directly analyzing 

video frames and visual features, the authors measured the importance of recorded objects and people 

whom the camera wearer interacted with. Labeled highlights were provided to train a regression 

function that estimates a highlight score of a video segment by considering object importance features 

such as the distance of an object to the hands of the camera wearer and the frequency of the object 

occurrence. More recently, deep learning has become the major methodology for video highlight 

extraction due to advances in deep convolution networks and long-short term memory (Hochreiter & 

Schmidhuber, 1997) architectures. These improvements have enhanced image feature engineering and 

therefore have strengthened highlight extraction results. Below, we categorize recent deep learning 
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studies as supervised and unsupervised, and then review research works using textual information of 

live streaming videos for highlight extraction. 

2.1 Supervised Highlight Extraction 

Yao et al. (2016) employed techniques of pairwise learning to detect highlights of first-person 

videos and developed a ranking-based highlight extraction method named TS-DCNN. Differing from 

traditional methods that analyze individual video segments, the method learns a highlight scoring 

function according to pairs of video segments. Each pair consists of one highlight segment and one 

non-highlight segment, and the scoring function aims to maximize the score difference between the 

segment pair, thereby effectively differentiating the highlight segment from the non-highlight one. 

Two convolutional neural networks based on AlexNet and the C3D neural network respectively 

capture the significant features of a video frame and the temporal dynamics of the features across 

frames. The networks enable the learning of vital image features related to highlights and their 

transformation in continuous frames. Finally, videos are summarized by skimming the non-highlight 

segments at a high-speed rate. Jiao et al. (2018) further improve the model by utilizing mechanism on 

both temporal and spatial stream. In temporal stream, the attention mechanism let model focus on 

frames that are worth watching. Similar in the spatial stream, the attention mechanism guides the 

highlight extraction model to generate useful feature from specific regions from a frame and neglects 

some unimportant regions. Although video contexts can be meaningful as a way to identify important 

video segments, most highlight extraction methods neglect context information and evaluate video 

segments independently. Wei et al. (2018) addressed this segment-independent problem by means of 

a sequence-to-sequence highlight extraction model. The designed encoder sequentially receives the 

feature vectors of video frames and generates a list of hidden states. The segment detection unit 

functions as a decoder that considers both the encoder hidden states and the previous decoder state to 

output three highlight indicators: the starting position of a highlight segment, the ending position of 
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the highlight segment, and the segment’s highlight confidence score. The recurrent encoder-decoder 

mechanism enables the method to capture not only local segment features but also global context 

information. In (Zhang et al., 2020), the authors developed an object-aware neural graph model called 

VH-GNN that detects video objects to determine whether a clip of continuous frames is a part of a 

video highlight. This method first applies two pre-trained models, namely Region Proposal Network 

(RPN) (Ren et al., 2016) and RoIAlign (He et al., 2017), to a video frame to detect object box 

boundaries and then generates features for video objects. The objects subsequently form the nodes of 

a spatial graph that distills object features through an attention and message passing mechanism. The 

distilled object features of all frames in a clip are leveraged by a temporal graph to predict a highlight 

score for the clip. And in order to enhance the highlight extraction results, a multi-stage loss function 

including a highlight classification loss and a ranking loss was implemented to optimize the two graph 

networks.  Rather than only seize important feature from continuous frame, Rochan et al., (2020) 

address the highlight extraction problem with side information – user history. The proposed model 

consists of two sub-networks, a highlight detection network and a history encoder network. The 

highlight detection network is utilized to give each segment a score to show how possible it should be 

categorized as highlight. The history encoder network is responsible for generate user preference style 

based on user history information. In the testing phase, the segment will be first fed into highlight 

detection model and produce representative features from segment visual pattern. These representative 

features are following interacted with the user history information in temporal-adaptive instance 

normalization layer. In temporal-adaptive normalization layer, they will alter the previous encoding 

frame features based on user history and thus finally generate user-specific video highlight.  

2.2 Unsupervised Highlight Extraction 

One challenge of the above supervised highlight extraction methods is the preparation of training 

highlights because highlight labeling is usually labor-intensive. To remove this time-consuming task, 
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the unsupervised approach makes use of logical assumptions to implicitly derive highlight extraction 

models. Yang et al. (2015) constructed a domain-specific (e.g., surfing) highlight extraction system by 

assuming that videos less than four minutes long are highlights. This is because short-form videos are 

likely to be edited by the video owners and are the most exciting and engaging parts of the original 

videos. In the training phase, domain-specific keywords are submitted to crawl short-form videos from 

the web. The videos will be segmented into snippets which are fed into the 3D convolutional neural 

network to extract representative visual features. Finally, a recurrent autoencoder with LSTM cells 

was trained to implicitly identify highlight segments. Segments with a low reconstruction loss are 

regarded as highlights because their features are consistent with those of the short-form videos. Note 

that the above assumption brings noises (i.e., non-highlight short-form videos) into the model training. 

To lessen the impact of noisy data, the authors enhanced the autoencoder with the shrinking 

exponential loss. Ringer and Nicolaou (2018) also employed autoencoders to identify video highlights 

in an unsupervised manner. In contrast to the last method, the authors treated video frames with a high 

reconstruction loss as highlights. This is because the authors focused on video game streaming whose 

game videos are normally lengthy and share similar backgrounds. The authors thus assumed highlights 

are anomalies in videos and are associated with a high reconstruction loss. In addition to applying 

autoencoders to the video frames of streamers and games, the authors also evaluated game audio whose 

reconstruction loss is based on the short-term Fourier transform and principal component analysis. The 

reconstruction losses of these three components are summed together such that frames whose losses 

are above a pre-defined threshold are considered as an anomaly and are thus categorized as highlights. 

Contrary to the above methods that identify highlights by means of frame or segment losses, Xiong et 

al. (2019) developed a model that explicitly predicts a highlight score for a video segment. To save the 

effort of preparing training data, the authors also assumed that short-form videos are highlights and 

adopted techniques of pairwise learning to train a prediction model. Each training pair consists of one 

short-form video and one long-form video, and the objective of the model is to maximize the highlight 
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scores for the short videos while minimizing the scores for long videos. To overcome training noises, 

e.g., a long-form video might be classified as a highlight, a group of latent variables were introduced 

to induce whether the pairwise score ranking is valid.  Rani & Kumar (2020) addressed this problem 

with an unsupervised model framework which focused on selecting representative frame in social 

media videos. First, they utilized different measurement for visual feature such as correlation between 

two frame and a colour histogram difference measurement to generate overall feature fusion score for 

each frame. Frames with higher cumulative feature value means that there will be a significant 

difference between current frame and previous frame. Also, a defined threshold was utilized to validate 

whether this frame was useful. Next, they clustered these useful candidates’ key frames by using 

Kohonen Self Organization Map. In clustering phase, they first extract HSV histogram as input for 

Kohonen SOM model for each frame. The Kohonen SOM model will learn the distribution of input 

key frames and output clusters containing similar key frames. Finally, the author calculated the 

Euclidean distance between each pair of frames in the same cluster and select the pair with maximum 

Euclidean distance to be most representative frames in each cluster. 

2.3 Video Highlight Extraction using Textual Information 

In addition to visual features, some recent studies have started using textual information for video 

highlight extraction. Fu et al. (2017) focused on online game streaming highlight extraction and 

developed Joint-lv-LSTM, which is based on their CNN-RNN method called V-CNN-LSTM. Joint-

lv-LSTM examines both video frames, which are the only input of V-CNN-LSTM, and viewer 

messages. In the preprocessing phase, streaming videos are first sliced into frames which are 

concatenated as segments with a sliding window approach. Next, the ResNet-34 model (He et al., 2016) 

was employed to the segment frames to extract important visual features. At the same time, the viewer 

messages posted within the segment were concatenated and fed into a character-level LSTM to produce 

an embedding that represents the viewer intention in that segment. Finally, the visual features of the 
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segment frames in combination with the message embeddings are fed into a multi-layer perceptron to 

predict a highlight score for that segment. The evaluations show that viewer messages are helpful side 

information to enhance streaming video highlight extraction. Han et al. (2019) also investigated viewer 

messages for online game streaming highlight extraction. The authors noticed that viewer messages 

for live streaming normally contain a lot of Internet slang and emoticons. To better comprehend the 

view messages, the designed highlight extraction model biGRU-DNN builds a language model which 

produces word embeddings for messages. Also, a bidirectional Gated-Recurrent Unit (biGRU) 

architecture that sequentially processes viewer messages is implemented to encode viewer messages 

with context information. In (Wang et al., 2020), they proposed a time-sync comments-based 

popularity prediction model to discover attractive segment in videos. The model was designed to solve 

two main task which are predicting segment popularity and audience emotion. The video pattern and 

audience messages are utilized as features to solve two main tasks. To extract useful pattern from video, 

they propose a long-short term memory-based encoder model to generate useful embedding to every 

segment. However, in the other hand, for a newly released video, there will not be any comments 

before the videos was published and thus cannot use message information as input. To address this 

problem, they utilized language transfer model to generate representative comment from video 

segment. While training the language transfer model, a video segment embedding will be paired with 

true comment and an uncorrelated comment and the model will update parameters based on the 

similarity of comment text embedding and video feature embedding. The language transfer model thus 

can generate correlated messages embedding given video segment after training. Later, they combined 

two output embeddings from the last layer of pretrained language transfer model and video encoder 

model as final embedding. This final embedding will be fed into fully connected layer and make 

classification or regression.  

To sum up, video highlight extraction is an active and challenging research topic. Previous studies 

used to focus on action-oriented videos (e.g., sports and video games) and they rely on visual features 
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distilled through deep convolutional neural networks. While these studies demonstrate remarkable 

highlight extraction performance, they might not be effective for conversation-oriented streaming 

videos because visual features or patterns do not constitute the main video highlights. In this work, 

rather using convolutional networks and visual features, we propose a two-stream neural network 

architecture that examines streamer discourses and viewer messages. The two types of textual 

information can reflect the intentions of both streamers and viewers, and are therefore helpful for 

extracting meaningful highlights from conversation-oriented streaming videos. 
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3. Proposed System 

In this section, we present the system which extracts highlights from conversation-oriented streaming 

videos by simultaneously examining the two textual streams of streamer conversation and viewer 

messages. Figure 1 shows our system architecture. For a streaming video, the preprocessing stage first 

partitions it into a series of segments in accordance with the discourses of streamer conversation. Then, 

the state-of-the-art language model BERT (Devlin et al., 2019) is applied to the spoken sentences of 

the streamer within a discourse segment to derive the semantic embedding of the streamer discourse. 

In addition, to enhance the highlight extraction results, we present a position enrichment mechanism 

that enriches the streamer discourse embedding by considering the position of a discourse segment in 

the video. Because streaming highlights are supposed to resonate with viewers from not only the 

streamer conversation but also the interactivity between viewers and streamers (Duprez et al., 2015), 

our proposed method also evaluates viewer messages posted during a live streaming to represent the 

response and engagement of viewers to the streamer-viewer interactions. We collected all the viewer 

messages posted within a discourse segment and an attention mechanism was designed to aggregate 

Fig. 1. The system architecture of our proposed model. 
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the intention of the messages as a message embedding. Lastly, the embeddings of the streamer 

discourse and the viewer messages are respectively fed into a multi-layer perceptron and are leveraged 

by a self-adaptive weighting scheme to predict a highlight score of the segment. Segments with a high 

score are selected to construct the video highlight. We detail the highlight extraction method in the 

following sections.  

3.1 Video Preprocessing and Discourse Segmentation 

As mentioned in the related work section, methods of highlight extraction normally divide a video into 

a sequence of segments. Since our highlight extraction is based on the textual information of streaming 

videos, instead of decomposing a video into image frames, we examine streamer conversation to 

discover discourse segments, each of which consists of a list of spoken sentences that stand for a 

coherent dialogue. Given a streaming video, we first measure the variation of acoustic intensity to 

partition the video into a series of raw segments {r1, r2, …, rK}. In other words, acoustic silence forms 

Fig. 2. The process of discourse segmentation. 
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the delimiter of two consecutive raw segments. Next, the Google speech-to-text cloud service3 is 

employed to convert the audio conversation of the streamer in a raw segment into spoken sentences. 

We observed that the silence-based segmentation is so error-prone that the resultant raw segments 

hardly comprise meaningful dialogue. This is because live streaming involves streamer-viewer 

interactions: when streaming, streamers often stop to digest the feedback (i.e., messages) from the 

viewers which fragments the discourse with unexpected silences. To have our method process coherent 

segments, we merge adjacent raw segments if they share the same discourse. Merging adjacent raw 

segments is closely related to the next sentence prediction task (Devlin et al., 2019) of BERT that 

guides BERT to distill the semantics of words and sentences by differentiating the relation of two 

given sentences. In the next sentence prediction task, BERT is asked to conduct a binary classification 

that judges whether one given sentence is narratively following the other sentence. Because a discourse 

segment is constituted of pairs of adjacent raw segments belonging to the same dialogue, the same 

classification approach is implemented to form the discourse segments of a streaming video. As shown 

in Figure 2, given the spoken sentences of two adjacent raw segments rk and rk+1, we first derive their 

CLS embedding through BERT. The CLS embedding is a special contextual embedding that BERT 

uses to represent the given text. The embedding is then fed into a multi-layer perceptron attached by a 

softmax function to output the probability that the two raw segments are part of the same dialogue. We 

sequentially apply the classification to all pairs of adjacent raw segments and produce a sequence of 

discourse segments {d1, d2, ..., dN} by merging the adjacent raw segments that belong to the same 

discourse.  

                                                
3 https://cloud.google.com/speech-to-text 
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3.2 Streamer Discourse Embedding and Position Enrichment 

Having created discourse segments, BERT again is applied to the spoken contents of the segments to 

obtain a series of streamer discourse embeddings {s1, s2, ..., sN}. Note that in the segmentation step, 

the input to BERT is a pair of adjacent raw segments because the segmentation task is for detecting 

discourse boundaries. Here, all the spoken sentences of a discourse segment are fed into BERT to 

obtain the CLS embedding that represents the semantics of streamer discourse in a discourse segment. 

Intuitively, we could integrate BERT with a downstream classification task that receives the streamer 

discourse embedding of a segment and calculates the probability that the segment is a part of video 

highlights. However, we noticed that the relative position of a segment to a streaming video is a clue 

for highlight extraction. In particular, the first-half segments are better indicators than the ending 

segments. This is because a live streaming is normally too lengthy for most viewers to finish watching. 

Streamers are thus motivated to show their best content early in order to impress viewers and retain 

them for the whole streaming. In a sense, the task of extracting highlights from streaming videos in 

terms of streamer discourses is similar to the extraction-based text summarization (Tas & Kiyani, 2007) 

Fig. 3. The position enrichment mechanism. 
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that selects representative text units (e.g., sentences) from the original text to construct a summary. To 

identify representative text units for summaries, many features, such as text similarities (Erkan & 

Radev, 2004) and latent topics (Ozsoy et al., 2011), have been explored. Notably, position-related 

features, such as the order of a sentence in a document, have been validated as playing key roles in 

effective text summarization because the beginning and ending text units tend to capture the gist of a 

text (Shen et al., 2007; Tas & Kiyani, 2007; Yeh et al., 2005). Based on these findings, the proposed 

position enrichment mechanism incorporates position information of segments into our highlight 

extraction process.  

Specifically, position embeddings are developed to enrich the streamer discourse embeddings of a 

video. We partition a video into P positions, and a discourse segment dn is aligned with a position 

number posn by using the following equation:  

 𝑝𝑜𝑠𝑛 = ⌈𝑛
(𝑁 𝑃⁄ )⁄ ⌉, (1) 

where N is the number of discourse segments and posn is a positive integer within [1, P]. To derive 

position embeddings, our position enrichment mechanism first represents each position by the one-hot 

encoding. As shown in Figure 3, the one-hot vector of position posn is passed through a linear 

embedding layer having 768 outputs. This output size is identical the length of a streamer discourse 

embedding based on the BERT-based pre-trained model. The outputs as a whole, denoted as 𝑝𝑝𝑜𝑠𝑛
, are 

regarded as the position embedding of position posn, which is combined with the streamer discourse 

embedding to obtain the position-enriched streamer discourse embedding  𝑠̌𝑛 and 𝑠̌𝑛 = sn + 𝑝𝑝𝑜𝑠𝑛
.  

3.3 Viewer Message Embedding and Attention 

One unique trait of live streaming is the streamer-viewer interaction in that the messages posted by 

viewers in chat rooms reveal their responses regarding streamer discourses. As highlights are supposed 

to interest viewers, we consider viewer messages as an important source of highlight extraction. Like 
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streamer discourse embeddings, it might be assumed that we can simply apply a pre-trained language 

model to viewer messages and encode the intention of viewers as an embedding vector. However, two 

obstacles make this approach impossible: (i) casual language usage, and (ii) diverse viewer opinions. 

Viewer messages often contain Internet slang, emoticons, or acronyms, which normally express the 

emotion of viewers and hence are meaningful; unfortunately, most pre-trained language models, e.g., 

BERT, are built against formal text like wiki pages or books. They therefore cannot recognize these 

casual tokens and fail to discover the intention of viewers. To resolve this difficulty, we derive 

embedding vectors of viewer messages by means of the skip-gram of Word2Vec (Mikolov et al., 2013), 

a well-known word embedding model that exhibits an extraordinary ability to model word semantics 

by producing similar embedding vectors for close words. Given a series of textual tokens 

{𝑤1,  𝑤2, … , 𝑤𝑇}, the skip-gram approach estimates the embedding vector of each unique token by 

maximizing the following sum of log probabilities:  

 1

𝑇
∑ ∑ log 𝑝(𝑤𝑡+ℎ|𝑤𝑡)

−𝐻≤ℎ≤𝐻,𝑗≠0

,

𝑇

𝑡=1

 (2) 

where T is the number of the textual tokens, and H is the window size of surrounding tokens used to 

estimate word embeddings. Basically, the model aims at predicting the surrounding tokens (i.e., wt+h’s) 

based on a given token wt. The prediction probability is calculated as follows: 

 𝑝(𝑤𝑡+ℎ|𝑤𝑡)

=  
𝑒𝑥𝑝 (𝑒𝑤𝑡

∙ 𝑒𝑤𝑡+ℎ
)

∑ 𝑒𝑥𝑝 (𝑒𝑤𝑡
∙ 𝑒𝑣)𝑣∈𝑉

 , 
(3) 

where 𝑒𝑤𝑡
 is the embedding vector of token wt and V is the set of unique tokens. The function exp 

returns the exponential of the vector inner product. By using the skip-gram approach, we derive 

embeddings of both normal message tokens (i.e., words) and casual message tokens. Then, for each 
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message posted by a viewer msgi = {w1, w2, …, wl} which contains a series of tokens, we average the 

embedding vectors of the tokens to obtain the message embedding vector mi as follows: 

 
𝑚𝑖 =

1

𝑙
∑ 𝑒𝑤𝑡

𝑙

𝑡=1
. (4) 

Regarding the diversity of viewer opinions, popular streaming always attracts a lot of viewers and 

thus attracts a huge number of viewer messages. For instance, in our experiment dataset, each evaluated 

streaming video contains around 17,000 messages. The message contents are so diverse that not every 

message is crucial to highlight extraction, so in order to effectively utilize viewer messages, we 

designed an attention mechanism that weights viewer messages in terms of streamer discourses and 

the highlight extraction task.  

Bahdanau et al. (2015) exhibited the bottleneck problem of machine translation. Methods of 

machine translation are normally based on the encoder-decoder architecture (Bahdanau et al., 2015) 

such that the encoder aggregates all coding information (called hidden states) of the input tokens to 

Fig. 4. The viewer message attention mechanism. 
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construct one context vector used by the decoder to emit output tokens. However, when dealing with 

a long input, the single context vector is unable to carry all the hidden states, which leads to the 

bottleneck of machine translation. To solve this problem, the authors suggested using attention 

techniques to customize the weights of hidden states when emitting each output token. To tackle the 

huge amount of diverse viewer messages, our attention mechanism shown in Figure 4 captures the 

intention of the viewers in a discourse segment by means of the following equation:  

 

𝑣𝑛 =  ∑ (𝑊𝑚𝑠𝑔 ∙ [𝑠𝑛 ⊕  𝑚𝑖])

𝑚𝑖∈𝑀𝑛

𝑚𝑖, (5) 

where 𝑣𝑛 is the attentional message embedding under discourse segment dn, Mn denotes the set of 

Word2Vec message embeddings within discourse dn, and Wmsg is a vector standing for the learning 

parameter of our attention mechanism. To weight the individual viewer messages, our attention 

mechanism first concatenates the embeddings of sn and mi. The concatenated vector then passes 

through the attention layer parameterized by Wmsg, which correlates sn and mi with the highlight 

extraction task in order to calculate the weight of mi. Finally, the attentional message embedding 𝑣𝑛 is 

the sum of all message embeddings calibrated by their attention weights.  

3.4 Highlight Extraction and Self-Adaptive Weighting Scheme 

For each discourse segment dn, we consider both its position-enriched streamer discourse embedding 

𝑠̌𝑛 and the attentional message embedding 𝑣𝑛 to estimate the probability that the segment is a part of 

highlight. A baseline approach to integrate the two embeddings for the probability prediction is to 

respectively feed the embeddings into a multi-layer perceptron that outputs a highlight score between 

0 and 1, and averages the two prediction scores by means of a weighting scale 𝜆 whose range is [0, 1]. 

The scale 𝜆 calibrates the contribution of the two textual embeddings when constructing highlights. 

For instance, by setting 𝜆 = 0.75, we fix the influence of streamer discourses to be three times larger 
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than viewer messages. Rather than setting a fixed 𝜆 for all segments, we develop a self-adaptive 

weighting scheme that customizes 𝜆 in accordance with the given 𝑠̌𝑛 and 𝑣𝑛. As shown in Figure 1, the 

weighting scheme first concatenates the two embeddings and feeds the aggregated embeddings into a 

self-adaptive weighting layer that learns to leverage the two embeddings. By doing so, the scale 𝜆 is 

adaptive to the content of the two embeddings, i.e., the intentions of the streamer and the viewers. In 

the experiment section, we examine the effect of our self-adaptive weighting scheme. 

3.5 Model Training and Highlight Extraction Loss 

Here, we introduce the loss function that allows us to minimize the error of highlight extraction in 

order to acquire appropriate model parameters during the training stage. To train our highlight 

extraction method, we collected a number of streaming videos. Let Q = [<d1, y1>, <d2, y2>, ..., <dL, 

yL>] be a set of training instances in which dl is a discourse segment decomposed from the training 

videos. Symbol yl is dl’s label, and it is 1 if the segment is a part of a highlight; otherwise, it is 0. Our 

highlight extraction loss HELoss is defined as follows: 

          𝐻𝐸𝐿𝑜𝑠𝑠(𝑄) =
1

𝐿
∑(𝜆𝑙 ∗ 𝑆𝐿𝑜𝑠𝑠(< 𝑑𝑙 , 𝑦𝑙 >) + (1 − 𝜆𝑙) ∗ 𝑀𝐿𝑜𝑠𝑠(< 𝑑𝑙, 𝑦𝑙 >))

𝐿

𝑙=1

, (6) 

where SLoss and MLoss denote the extraction losses caused by using position-enriched streamer discourse 

embeddings and attentional message embeddings, respectively; and 𝜆𝑙 is the self-adaptive weight of 

training segment dl. In this study, we measure SLoss and MLoss in terms of the binary cross entropy 

(Brink et al., 1996 ).  

            𝑆𝐿𝑜𝑠𝑠(< 𝑑𝑙 , 𝑦𝑙 >) =  −[𝑦𝑙 · log 𝑦̂𝑙
𝑠 + (1 − 𝑦𝑙) · log (1 − 𝑦̂𝑙

𝑠)] (7) 

              𝑀𝐿𝑜𝑠𝑠(< 𝑑𝑙, 𝑦𝑙 >) =  −[𝑦𝑙 · log 𝑦̂𝑙
𝑚 + (1 − 𝑦𝑙) · log(1 − 𝑦̂𝑙

𝑚)], (8) 
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where 𝑦̂𝑙
𝑠 and 𝑦̂𝑙

𝑚 are the highlight probabilities of segment dl estimated by using the position-enriched 

streamer discourse embedding and the attentional message embedding, respectively. By minimizing 

HELoss, our model parameters are guided to distill intentions of streamer and viewers to extract 

meaningful streaming highlights.  
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4. Experiment 

In this section, we first introduce the evaluation dataset, performance metrics, and evaluation procedure. 

Then, we verify the effects of the two textual embeddings and system parameters on the highlight 

extraction performance. Finally, we compare the proposed method with well-known highlight 

extraction methods. 

4.1 Evaluation Dataset and Metrics 

Table 1 

The statistics of the evaluated videos. 

Number of testing videos 44 

Length of testing videos (sec.) 379,546 

Number of streamer discourse segments  8,269 

Number of viewer messages 777,379 

Number of message tokens 2,693,026 

Length of the labeled highlights (sec.) 52,861 

 

Video highlight extraction is an active research topic, and hence several studies have released video 

datasets with labeled highlights. However, as mentioned in the introduction section, most of the studies 

focus on action-oriented videos whose datasets are related to gaming or out-door activities. Since we 

were unable to find any public datasets for conversation-oriented streaming videos, we compiled a 

dataset to evaluate the proposed method. We collected streaming videos from Twitch, one of the largest 

streaming platforms that provides a diverse range of categories of streaming channels and videos. Here, 

we selected 44 streaming videos categorized in TALK SHOWS & PODCASTS from two famous 

streamers for evaluations. Streamer @HealthyGamer_GG is an addiction psychiatrist. His streaming 
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videos were designed to help gamers overcome their game addiction by discussing mental issues. 

According to the official statistics of Twitch4, this streamer now has around 500K subscriptions and 

has accumulated around 5M views of his channel. The other streamer @Markiplier is a famous gamer 

and influencer with more than 2M subscriptions. This streamer shares life moments and provides 

thought-provoking perspectives in his streaming and the total views of his channel is 12.8M. We 

crawled all the viewer messages of the testing videos from chat rooms to evaluate the effect of viewer 

intentions on highlight extraction. The total length of the evaluated videos is 379,546 seconds (105.4 

hours) with each streaming video being about 2.4 hours long and having around 17,600 messages. To 

compile the ground truth of the videos, we invited five experts who are heavy streaming users and are 

familiar with Twitch. Before they labeled the highlights of the videos, an orientation was held to ensure 

the quality and usability of the labeled data. In short, the experts were asked to first watch the videos 

thoroughly. Then, they had to think about the video content for a while before labeling highlight 

sections. Also, in order to ensure that the labeled highlights were concise and solid, the highlights were 

restricted to no longer than 15% of the video length. The labeling was time-consuming, resulting in 

the highlight editing hours for each video taking around 3 times the video length. Detailed statistics of 

the evaluated videos are listed in Table 1. 

We adopted the conventional 5-fold cross validation (Wong, 2015) to obtain performance results. 

Specifically, we evenly divided the streaming videos into 5 disjoint subsets and evaluated our highlight 

extraction performance in 5 runs. Each run selected one subset of the videos for testing and trained the 

extraction model by using the remaining 4 subsets. For each testing video, we ranked all its discourse 

segments in accordance with their highlight probability scores. The top segments whose length reached 

K% of the video length were predicted as the video highlight. The predicted highlights of all five runs 

                                                
4 https://twitchtracker.com/healthygamer_gg/statistics, the statistics of @HealthyGamer_GG 

https://twitchtracker.com/markiplier/statistics, the statistics of @Markiplier 

https://twitchtracker.com/healthygamer_gg/statistics,tth
https://twitchtracker.com/markiplier/statistics
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were compared with the ground truth to report the precision@K, recall@K, and F1@K defined as 

follows: 

     precision@𝐾 =  
|ℎ𝑖𝑔ℎ𝑙𝑖𝑔ℎ𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  ∩ ℎ𝑖𝑔ℎ𝑙𝑖𝑔ℎ𝑡𝑔𝑟𝑜𝑢𝑛𝑑_𝑡𝑟𝑢𝑡ℎ|

|ℎ𝑖𝑔ℎ𝑙𝑖𝑔ℎ𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|
      (9) 

recall@𝐾 =  
|ℎ𝑖𝑔ℎ𝑙𝑖𝑔ℎ𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  ∩ ℎ𝑖𝑔ℎ𝑙𝑖𝑔ℎ𝑡𝑔𝑟𝑜𝑢𝑛𝑑_𝑡𝑟𝑢𝑡ℎ|

|ℎ𝑖𝑔ℎ𝑙𝑖𝑔ℎ𝑡𝑔𝑟𝑜𝑢𝑛𝑑_𝑡𝑟𝑢𝑡ℎ|
 

(10) 

          F1@𝐾 =  
2 ∗ precision@𝐾 ∗ recall@𝐾

precision@𝐾 + recall@𝐾
, 

(11) 

where highlightpredicted and highlightground_truth stand for the predicted highlights and the ground truth, 

respectively. The absolute values measure their lengths in the unit of seconds. The precision@K 

measures the percentage of the predicted highlights that coincide with the ground truth. The recall@K 

reports the percentage of the ground truth that are predicted as highlights. The F1@K is the harmonic 

mean of the precision and recall scores, and is the frequency used to judge the superiority of prediction 

systems. Note that PyTorch5, a well-known deep learning library, was adopted to implement our 

highlight extraction method. The optimizer we used to learn network parameters was AdamW 

(Loshchilov & Hutter, 2019) with a 1e-5 learning rate. At the same time, to prevent overfitting, we 

inserted dropout layers in our networks with a dropout rate of 0.2. The dimension of our streamer 

discourse embeddings was 768 because the embeddings were based on the BERT base pre-trained 

model whose embedding length is 768. The dimension of the Word2Vec-based attentional message 

embeddings was 300, as suggested in (Mikolov et al., 2013). For position embeddings, the parameter 

P was set at 5, which means we divided every video into 5 position parts. In the next section, we 

examine the highlight extraction performance under different settings of P. Table 2 lists the settings of 

the system hyper-parameters. 

                                                
5 https://pytorch.org/ 
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Table 2 

The system hyper-parameter settings. 

 

 

Learning optimizer AdamW 

Learning rate 1e-5 

Batch size 8 

Dropout rate 0.2 

Dim. of streamer discourse embeddings 768 

Dim. of position embeddings 768 

Dim. of viewer message embeddings 300 

P 5 

4.2 Effect of System Components 

Here, we evaluate our system components. We first investigate the influence of streamer discourses 

and viewer messages on highlight extraction. Then, we examine the proposed position and attention 

mechanisms. Finally, we compare the performance with and without using the self-adaptive weighting 

scheme. As shown in Table 3, the performance scores of our method are not very high. The 

precison@10 is only around 0.2. This is because the evaluated streaming videos are very long and the 

expert-labeled highlights are only 14% of the evaluated videos. Identifying these highlight sections is 

thus very challenging. Nevertheless, our method still outperforms many well-known highlight 

extraction methods, as shown in the next section. The highlight extraction results based on viewer 

messages (i.e., the scores of Message Embeddings) are relatively inferior to those on streamer 

discourses (i.e., the scores of Streamer Discourse Embeddings). This is because live streaming 

normally attracts a large number of viewers, and for this reason, there is such a large diversity in viewer 

messages that the extraction model based on viewer messages is likely to be distracted. It is worth 

noting that by using the attention mechanism, both the precision and recall scores improved with the 
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F1 score increasing from 0.1508 to 0.1685. This improvement indicates that the proposed attention 

mechanism successfully distills viewer messages and is helpful for highlight extraction.    

Table 3  

Highlight extraction performance of system components. 

 precision@10 recall@10 F1@10 

Streamer Discourse Embeddings 0.1888 0.1402 0.1609 

Position-Enriched Streamer Discourse 

Embeddings 

0.1996 0.1486 0.1704 

Message Embeddings  0.1782 0.1308 0.1508 

Attentional Message Embeddings 0.1985 0.1463 0.1685 

Our proposed method 0.2080 0.1537 0.1768 

 

The results based on streamer discourses also improved when incorporating the streamer discourse 

embeddings with the position embeddings. Figure 5 shows the distribution of the expert-labeled 

highlights across positions. Differing from the phenomenon mentioned in Section 3.2 of the text 

summary frequently occurring at the beginning or ending of the summarized text, the labeled highlights 

often occur in the middle of a video. This is probably because viewers generally do not join live 

streaming at the very beginning, which forces streamers to postpone showing their best content till 

Fig. 5. The highlight distribution over different positions. 
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later. Also, as viewers do not always stay tuned for the whole duration, the ending part of live streaming 

is not usually very climactic. As a result of this, highlights often occur in the middle of a live streaming. 

The designed position embeddings successfully capture this positional phenomenon that enriches the 

streamer discourse embedding in terms of highlight extraction.  

 

 

 

 

 

 

 

As a further demonstration of position embedding, Figure 6 illustrates the effect of the parameter 

P, which determines the granularity of the position embedding. The figure shows that a large P (i.e., 

P = 12) deteriorates the highlight extraction performance, and this is because a large P partitions a 

video so much that the resultant position embeddings are too specific to discover highlights distributed 

over consecutive positions. Conversely, a small P (i.e., P = 3) cannot distinguish possible highlight 

positions, which also affects highlight extraction performance. As setting P at 5 produces a good 

highlight extraction performance, we used the setting in the following experiments.  

Fig. 6. The effect of the parameter P. 
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By using both the attentional message embeddings and the position-enriched streamer discourse 

embeddings, our method achieves the best results. Considering that the two textual embeddings convey 

intentions of two important roles in information communication, i.e., information delivers and 

information receivers who both generally hold different perspectives regarding the discussed topic due 

to communication noise (Solomon et al., 2008), using the two embeddings together improves the 

highlight extraction results.  

In addition to the two textual embeddings and parameter P, we also investigated the effect of our 

self-adaptive weighting scheme. Figure 7 compares the performances of our method with and without 

self-adaptive weighting. When without the self-adaptive weighting, 𝜆 (i.e., the scale used to average 

the prediction scores) is a fixed value against all the evaluated segments. In Figure 7, the performance 

scores of the fixed-𝜆 approach are fluctuating and there is no obvious tendency of 𝜆 in favor of 

highlight extractions. In other words, for some segments, streamer discourses are valuable because of 

the engaging speech of the streamers. Sometimes, viewer messages are informative since they point 

out a segment is pleasing, and a certain number of highlight segments involve both exciting viewer 

feedback and interesting streamer discourse. As a fixed 𝜆 cannot customize individual weights of 

streamer discourses and viewer messages, the results are inferior. By contrast, the self-adaptive 

weighting is superior because it is capable of calibrating 𝜆 in accordance with the streamer and viewer 

embeddings.  

Fig. 7. Comparisons with and without the self-adaptive weighting scheme. 
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Finally, we examine the quality of the extracted highlights under different settings of K, i.e., the 

percentage of the top-scoring segments selected for constructing highlights. As shown in Figure 8, the 

recall values are positively proportional to K. This is because recall is a non-decreasing metric, so the 

recall value increases as more segments are added into the highlights. However, as the selection of the 

highlight segments is based on the ranking of their highlight scores, a large K includes low-score 

segments that affect the precision of our method. The high precision scores of small K’s (e.g., the 0.26 

precision at K = 2) indicate that the top segments we estimated correspond well with the expert-labeled 

highlights, thus indicating that our method is promising in constructing short streaming highlights.  

4.3 Comparison with Other Highlight Extraction Methods 

The above experiments thoroughly evaluated our system components. Next, we compare our proposed 

method with five well-known video highlight extraction methods introduced in the related work 

section, namely, V-CNN-LSTM (Fu et al., 2017), Joint-lv-LSTM (Fu et al., 2017), TS-DCNN (Yao et 

al., 2016), biGRU-DNN (Han et al., 2019), and VH-GNN (Zhang et al., 2020). We selected the 

methods for comparisons because these recent deep-learning based methods have demonstrated 

extraordinary performance on video highlight extraction. Among these methods, V-CNN-LSTM, 

Fig. 8. The performances of the extracted highlights under different K percentage. 
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Joint-lv-LSTM, and biGRU-DNN are specific to live streaming videos, and the latter two further use 

viewer messages to extract highlights. Strictly speaking, only biGRU-DNN and our method are purely 

text-based approaches insofar they both examine textual information of streaming videos for highlight 

extraction. By contrast, V-CNN-LSTM, Joint-lv-LSTM, TS-DCNN, and VH-GNN employ 

sophisticated models (e.g., AlexNet or ResNet) to extract graphical or visual features from video 

frames to extract highlights. A comparison of these methods reveals the benefit of textual information 

for streaming highlight extraction. To ensure fair comparisons, all the methods were implemented by 

using public packages and the hyper-parameters were set as suggested in the original papers. The same 

5-fold cross validation was conducted to obtain their highlight extraction performances. 

Table 4 

The performance scores of the compared methods under K=10. 

 precision@10 recall@10 F1@10 

V-CNN-LSTM 0.1319 0.0949 0.1104 

Joint-lv-LSTM 0.1399 0.1006 0.1170 

TS-DCNN 0.1204 0.0867 0.1008 

biGRU-DNN 0.1635 0.1176 0.1368 

VH-GNN 0.1530 0.1102 0.1281 

Our proposed method 0.2080 0.1537 0.1768 
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Table 4 lists the performance scores of the compared methods under K = 10 and Figure 9 shows 

the performances under different settings of K. We expected the compared methods would produce 

comparable results owing to their superior performances reported in the respective papers. Contrary to 

our expectation, the compared methods are inferior. As mentioned in the related work section, current 

highlight extraction methods mostly focus on action-oriented videos whose highlights generally 

involve rich visual effects. When dealing with the evaluated streaming videos which are conversation-

oriented, the methods are ineffective since visual effects are not indicative of the video highlights. V-

CNN-LSTM, Joint-lv-LSTM, TD-DCNN, and VH-GNN are inferior because they rely sophisticated 

network architectures to distill visual patterns for highlight extraction. Instead of discovering visual 

patterns, our method examines the textual information of these conversation-oriented videos and 

produces better highlight extraction results.  

The value of the textual information in identifying conversation-oriented streaming highlights can 

also be validated by the experiment results of biGRU-DNN and Joint-lv-LSTM. Under a small K, 

biGRU-DNN performs much better than the other compared methods do. This is because biGRU-DNN 

is also a textual-based method that examines viewer messages to extract streaming video highlights. 

However, as the method neglects streamer discourses, its performance is inferior to ours. It is 

interesting to note that the performance scores of biGRU-DNN are lower than those of the Attentional 

Fig. 9. The performances of the compared methods under different settings of K. 
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Message Embeddings reported in Table 3. Since both the approaches are based on view messages, the 

outperformance of Attentional Message Embeddings again demonstrates the advantage of our attention 

mechanism in distilling viewer messages relevant to highlight extraction. By exploring viewer 

messages, Joint-lv-LSTM enhances V-CNN-LSTM in terms of precision, recall, and F1. Nevertheless, 

Joint-lv-LSTM processes viewer messages character by character which means that the resultant 

message embeddings overlook word meaning. In contrast, biGRU-DNN and our method embed viewer 

messages in terms of word vectors and therefore are superior to Joint-lv-LSTM.  
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5. Conclusion 

The abundance of conversation-oriented streaming videos available on the Internet has made streaming 

platforms a treasure-house of information for people of all walks of life. Nevertheless, the huge amount 

of streaming videos also overwhelm people when searching for their desired information. To lessen 

the information overload problem, and also to increase channel exposure and subscriptions, it is 

important to provide highlights for users. In this paper, we have developed our model which 

automatically extracts highlights from conversation-oriented streaming videos. The results of our 

literature review indicate that our research is the first study investigating conversation-oriented 

streaming video highlight extraction. Differing from previous highlight extraction methods which 

mostly focus on action-oriented videos and heavily rely on visual features, our proposed model 

simultaneously examines streamer discourses and viewer messages, and enhances the embeddings of 

the textual information by means of the designed position embeddings and the message attention 

mechanism. Experiments based on real world streaming data show that our model outperforms several 

state-of-the-art highlight extraction methods.  

Our performance scores show that discovering highlights of conversation-oriented streaming 

videos is challenging and the results have great room for improvement. Since conversation-oriented 

streaming highlight extraction has not yet been well-addressed in the literature and since this type of 

videos is currently the most popular type, our study serves to encourage future research. In the future, 

we will keep enhancing the embeddings distilled from streamer dicourses and viewer messages. Recent 

language models have started investingating BERT enhancement in terms of scalability and training 

efficiency. To better comprehend viewer messages distracted by informal tokens such as social 

buzzwords and slang, and also to process long streamer discourses, we will enhance our embedding 

process with advanced language models. In this study, we encode streamer discourses and viewer 

messages independently. To better capture steamer-viewer interactions, and so as to effectively 
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identify the most attractive part of a video, in the furture, we will also investgate encoding archtectures 

to concurrently process these types of textual information. Finally, to produce better highlight 

extraction results, we will explore more side information such the sentence intensity of viewer 

messages and stream discourse within a segment, which indirectly reflect the emotion of information 

senders and receivers. 
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