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摘要

作為一種基於碼書架構下的非正交多址接入技術，稀疏碼多址接

入在近年受到研究上的關注。並且因為碼書的選擇高度的影響相關系

統的錯誤率表現，稀疏碼多址接入的碼書設計也已被研究到了某種程

度。在本篇論文中，我們在功率限制底下，制定了一個最大化疊加碼

字的最小歐氏距離的最佳化問題來做稀疏碼多址接入碼書的設計。雖

然擁有較大的最小歐氏距離的稀疏碼多址接入碼書會可以期望會有較

好的錯誤率表現，然而就作者們所知，現在仍未有相關文獻提出擁有

最大的最小歐氏距離的碼書。在本篇論文中，我們提出一種新的、基

於精確懲罰法以及交替最大化的迭代演算法來做最小歐氏距離的最大

化問題。這種演算法在給定適當的起始點時，可以得到比起現今所有

碼書來說最大的最小歐氏距離的碼書。我們還推導了這個最佳化問題

的對偶問題，它可以為所有碼書的最小歐氏距離提供一個理論值的上

限。儘管我們的方法的到的碼書的最小歐氏距離與此上限仍有距離，

模擬結果仍然展現它在錯誤率的表現上，比起現今所有碼書有著顯然

的優勢。此優勢不只在加成性高斯雜訊通道，也存在於一些符合第五

代行動通訊技術/新無線電應用的下行鏈路場景。這使我們的碼書在眾

多碼書之中成為一個很好的競爭者。然而，我們提出的碼書在上行鏈

路的通道或是在使用非連續的正交頻分多址次載波時，並沒有優於其

他的碼書。另外，經由與理論的錯誤率上限與模擬結果的重合，我們

的模擬結果的正確性與精準性也得到更進一步的確認。

關鍵詞：第五代行動通訊技術 (5G)、大規模機器類型通訊

(mMTC)、非正交多址接入 (NOMA)、稀疏碼多址接入 (SCMA)、最佳
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化、最小歐氏距離 (MED)、半正定鬆弛 (SDR)、交替最大化、精確懲

罰法。
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Abstract

Sparse codemultiple access (SCMA), as a codebook­based non­orthogonal

multiple access (NOMA) technique, has received research attention in recent

years. The codebook design problem for SCMAhas also been studied to some

extent since codebook choices are highly related to the system’s error rate per­

formance. In this paper, we approach the SCMA codebook design problem

by formulating an optimization problem to maximize the minimumEuclidean

distance (MED) of superimposed codewords under power constraints. While

SCMA codebooks with a larger MED are expected to obtain a better BER

performance, no optimal SCMA codebook in terms of MED maximization,

to the authors’ best knowledge, has been reported in the SCMA literature

yet. In this paper, a new iterative algorithm based on alternating maximiza­

tion with exact penalty is proposed for the MED maximization problem. The

proposed algorithm, when supplied with appropriate initial points and param­

eters, achieves a set of codebooks of all users whose MED is larger than any

previously reported results. A Lagrange dual problem is derived which pro­

vides an upper bound of MED of any set of codebooks. Even though there is

still a nonzero gap between the achieved MED and the upper bound given by

the dual problem, simulation results demonstrate clear advantages in error rate

performances of the proposed set of codebooks over all existing ones not only

in AWGN channels but also in some downlink scenarios that fit in 5G/NR ap­

plications, making it a good codebook candidate thereof. The proposed set

of SCMA codebooks, however, are not shown to outperform existing ones

v
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in uplink channels or in the case where non­consecutive OFDMA subcarri­

ers are used. The correctness and accuracy of error curves in the simulation

results are further confirmed by the coincidences with the theoretical upper

bounds of error rates derived for any given set of codebooks. Keywords: 5G,

mMTC, non­orthogonal multiple access (NOMA), sparse code multiple ac­

cess (SCMA), optimization, minimum Euclidean distance (MED), semidefi­

nite relaxation (SDR), alternating maximization, exact penalty.
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Chapter 1

Introduction
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In the fifth generation (5G) wireless communications and beyond, to enable the mas­

sive connectivity and high spectral efficiency for the Internet of Things (IoT) and the

Factories of the Future (FoF), non­orthogonal multiple access (NOMA) [1] is considered

an important multiple access scheme due to its extended spatial efficiency as opposed

to the conventional orthogonal multiple access (OMA), such as orthogonal frequency­

division multiplexing (OFDM). Among the many existing schemes in NOMA [2], SCMA

is regarded as a promising multiple access scheme [3–5]. Sparse code multiple access

(SCMA) [6] is one kind of code­domain NOMA, which distinguishes multiple users with

the aid of codewords [7]. Incoming bits are directly mapped to multi­dimensional code­

words of some set of SCMA codebooks, so the codebook design dominates the perfor­

mance of the SCMA­based NOMA system [8].

Codebook design for SCMA has been studied extensively in the past few years [9–27].

The overall design goal is to find a set of codebooks that result in a good performance, in

terms of low error rate or large spectral efficiency, in the scenarios of AWGN, uplink, and

downlink fading channels. One of the major approaches for this goal is to find codebooks

that have a large minimum Euclidean distance (MED) [10–12, 15, 17, 26]. The basic ra­

tionale behind the approaches of maximizing MED is that a codebook with a larger MED

usually results in better error rate performance and we choose the approach of MED max­

imization in this paper. In this regard, pioneering works including Yu et al [25], and many

others [13, 16, 17, 22] considered multi­stage design approaches by first constructing a

mother constellation (MC) and then letting every user apply the mother constellation with

different rotation and permutation operations and occupy different resources. Under this

multi­stage design approach, the maximization of MED of mother constellation has been

considered as an important issue and has been studied to some extents [10,12,15]. While

this approach has rather a simple complexity in the optimization problem, the fact that

codebooks of all users are tied to a fixed mother constellation implicitly impose extra and

probably unnecessary constraints to the choice of codebooks, andmay lead to a suboptimal

codebook design solution.

More recently, the idea of MED maximization is studied with a newer definition of

2
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MED, namely, the MED of superimposed codewords [11, 17, 26]. Many previously re­

ported codebook design methods [11, 13, 17, 25–27] have used MED of superimposed

codewords as one design KPI. However, few of the previous works have directly maxi­

mized the MED of superimposed codewords with only power constraints and the reason

may be the overwhelming complexity while dealing with this non­convex optimization

problem. Although an MEDmaximization problem has been formulated in [11], the algo­

rithm proposed therein does not guarantee to obtain the optimal point. In fact, obtaining

the set of codebooks with the maximal MED is still an open question today, nor has an

upper bound of the maximal MED been known yet. For convenience, hereafter we use

the term “MED” as the MED of superimposed codewords, rather than of the mother con­

stellation, throughout this paper.

In this work, we propose to approach the SCMA codebook design problem by maxi­

mizing the MED of the designed set of codebooks. The major contributions of the paper

are summarized as follows: 1) A new method is proposed to deal with the non­convex

optimization problem based on the exact penalty technique [40] with an alternating max­

imization [39] approach. 2) The aforementioned method achieves a codebook design that

has a largerMED than any previously reported design, which also shows the best error rate

performances among all existing codebooks in some cases, including the one which fits

in the downlink scenario of 5G/NR applications. 3) A theoretical upper bound for MED

of any possible codebook designs, that was not known before, is obtained by deriving a

Lagrange dual problem of the main problem.

The rest of the paper is organized as follows. Section 2 describes the downlink SCMA

system model based on OFDMA. In Section 3, the MED maximization problem is for­

mulated and a corresponding algorithm is proposed. In Section 4, the dual problem of

the MED maximization problem is derived. The numerical results are given in Section 5.

Finally, conclusions are made in Section 6.

3
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1.1 Notations

Boldfaced lower case letters such as x represent column vectors, boldfaced upper case

letters such as X represent matrices, and italic letters such as x,X represent scalars. Su­

perscripts as in XT , XH , and X−1 denote the transpose, transpose­conjugate, and inverse

operators, respectively, of a matrix. The binary set {0, 1} is denoted by B. Given any pos­

itive integer n, Zn stands for the set {1, 2, . . . , n}. The n­dimensional complex, binary,

and integer vector spaces are expressed as Cn, Bn, and Zn, respectively. The (n × ν)­

dimensional complex, binary, and integer matrix spaces are expressed asCn×ν , Bn×ν , and

Zn×ν , respectively. The set of all n × n Hermitian matrices is denoted by Hn and the

set of all positive semidefinite matrices is denoted by Hn
+. The notation A ⪯ B means

B−A ∈ Hn
+. Let 1n, 0n, e

(n)
ν be the all­one vector, all­zero vector, and ν­th standard unit

vector, respectively, of dimension n. Let On×ν and In be the n × ν all­zero matrix and

n × n identity matrix, respectively. Operators ∥·∥p, tr(·), vec(·), ◦, ⊗, and × denote ℓp­

norm, trace, vectorization, Hadamard product, Kronecker product, and Cartesian product,

respectively. For some events A,B, the probability of A and the conditional probability

of A given B are denoted by Pr{A} and Pr{A|B}, respectively. Throughout the paper,

we adopt one­based indexing. For some vector x and matrix X, the i­th entry of x and the

(i, j)­th entry of X are denoted by [x]i and [X]i,j , respectively.

4
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Chapter 2

System Model and Background

2.1 Downlink SCMA System Based on OFDMA

5
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Figure 2.1: Downlink SCMA system model based on OFDMA.

We consider downlink SCMA transmission on top of an underlying orthogonal fre­

quency division multiple access (OFDMA) system since SCMA multiplexed symbols

need to be transmitted over orthogonal resource elements [28]. The block diagram of

such a downlink SCMA system is shown in Figure 2.1 where J ,K, and NB represent the

number of users, the number of resources, and the FFT size in the underlying OFDMA sys­

tems, respectively. The message carrying the data bits of the b­th block transmission (i.e.,

the b­th OFDM symbol) for the j­th user is encoded and mapped intoK­dimensional sym­

bols sj[b] by the j­th specific SCMA encoder, and then the sum of these codewords, s[b],

is transmitted overK orthogonal resources, which areK consecutive subcarriers starting

from the isub­th subcarrier of the b­th OFDM block. Other subcarriers of the OFDM block

may contain data from other users. The result of the IFFT operation, xNB
[b], is further

added a cyclic prefix of length NCP to obtain x[b] before being sent to the channel with

a finite impulse response (FIR), characterized by h[n], whose order is upper bounded by

L − 1. Following the standard OFDMA receiver, at the output of the FFT operation, ex­

cluding subcarriers containing data from other users, the receiver observes the signal of

the b­th block transmission as

r[b] = diag(hfsub)s[b] + n[b] (2.1)

wherehfsub =
[
[hf ]isub [hf ]isub+1 · · · [hf ]isub+K−1

]T ∈ CK is the subvector of the frequency­

domain channel gain vector hf ∈ CNB , s[b] =
∑J

j=1 sj[b] ∈ CK is the transmitted super­

imposed codeword of the b­th block transmission, and n[b] ∼ CN (0K , N0IK) is the addi­

tive white Gaussian noise. The channel gain vector hf is the discrete Fourier transform of

6
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vector
[
hT 0TNB−L

]T ∈ CNB , where h = [h[0] h[1] · · · h[L− 1]]T ∈ CL is the channel

vector which represents the channel impulse response as FIR filter of length L.

In 5G/NR applications, multipath channels are extensively considered [29, 31] and

therefore the orthogonality of resources in SCMA systems needs to be ensured by an OMA

technique, usually as OFDMA [28, 30]. When the popular OMA technique, OFDMA, is

considered for provision of orthogonal resources, consecutive subcarriers are usually cho­

sen to form a resource block rather than separate subcarriers. (The interested readers can

refer to Section 4.4.4 in [31].) Based on these facts, in order to fit the scenario of 5G/NR

applications where SCMA is widely discussed [30], we therefore consider the SCMA

system based on OFDMA with consecutive subcarriers chosen as orthogonal resources as

what we set in the last paragraph.

2.2 SCMA Encoder

An SCMA encoder for the j­th user can be regarded as a function defined as

fj : Blog2M → Sj (2.2)

where Sj ⊂ CK is the codebook of the j­th user with cardinality |Sj| = M , i.e., Sj

contains M codewords. We require M to be a power of two so that each codeword in

Sj represents log2M bits of information. For notational convenience, we say thatm(j) ∈

ZM is an SCMA symbol according to the vector of data bits bj ∈ Blog2 M from the j­th

user: m(j) = 1 +
∑log2 M

i=1 2i−1[bj]i. Each SCMA symbol m(j) maps to a K­dimensional

complex codeword sj ∈ Sj , which is a sparse vector withN non­zero entries, andK > N .

Following [11,33], the j­th user’s codebook is chosen as

Sj = {VjCje(M)
m |m ∈ ZM} (2.3)

where Cj ∈ CN×M and Vj ∈ BK×N are the constellation matrix and the mapping matrix

of the j­th user, respectively. The mapping matrix Vj is obtained by removing K − N

7
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columns from IK . Now, the codeword in Sj selected by the j­th user for the b­th block

transmission can be expressed as

sj[b] = fj(bj[b]) = VjCje(M)

m(j)[b]
∈ CK (2.4)

where bj[b] ∈ Blog2M is the vector of the given data bits and m(j)[b] ∈ ZM is the cor­

responding SCMA symbol. All codewords chosen by the J users will be summed up

together to form a superimposed codeword before being assigned to orthogonal resources:

s[b] =
J∑

j=1

sj[b].

A superimposed codeword is determined by all SCMA symbols from J users, collectively

a vector in ZJ
M which we refer to as the multiplexed symbol. There are in total MJ mul­

tiplexed symbols, and we denote the k­th multiplexed symbol, k ∈ ZMJ , by mk defined

by

mk = [k1, k2, ..., kJ ] ∈ ZJ
M

where k1, ..., kJ ∈ ZM are the unique integers that satisfy

k = 1 +
J∑

j=1

(kj − 1)M j−1 ∈ ZMJ . (2.5)

Note that the set ZJ
M ⊂ ZJ stands for the Cartesian product of J identical sets, ZM . The

set of all SCMA superimposed codewords can be expressed as

S =

{
J∑

j=1

VjCje(M)
kj

∣∣∣∣ k ∈ ZMJ

}
, (2.6)

where k ∈ ZMJ and kj ∈ ZM follow the relationship defined in (2.5).

Since each of the J users has a distinct mapping matrix Vj , it is obvious that J ≤
(
K
N

)
must hold for any given K and N . Furthermore, a loading factor is defined as λ = J/K

[13] that directly determines the spectral efficiency of SCMA. It must satisfy λ > 1 for

SCMA to be more spectral efficient than conventional OMA, and it is well known that

8
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this impliesK ≥ 4, 2 ≤ N ≤ K − 2, and J > K [13]. In order to achieve the maximum

sparsity, N = 2 is often chosen. In this paper, we choose to study the simplest case by

taking K = 4, N = 2, and M = 4, which is also the most studied case in the literature.

Since J ≤
(
K
N

)
, we take J = 6 and set the mapping matrices V1,V2, . . . ,VJ as follows:

V1 =



1 0

0 1

0 0

0 0


V2 =



0 0

0 0

1 0

0 1


V3 =



1 0

0 0

0 1

0 0



V4 =



0 0

1 0

0 0

0 1


V5 =



1 0

0 0

0 0

0 1


V6 =



0 0

1 0

0 1

0 0


. (2.7)

Moreover, we refer to {Sj}Jj=1, the set of all codebooks, by the collection of codebooks

[18], or simply the codebook collection throughout the paper. A codebook collection is

completely determined by the J constellation matrices Cj, j = 1, ..., J since the mapping

matrices Vj are fixed as in (2.7).

2.3 SCMA Decoder

2.3.1 MAP Detection

Supposing that the channel estimation is perfect and the codebook collection are available

for the receiver, the detection of SCMA can be regarded as a problem of traditional multi­

user detection, which can be solved by joint maximum a posteriori (MAP) [34]. Then,

given some received signal r of some block transmission (i.e., r[b] = r for some b), the

detected multiplexed symbol, denoted by m̂, will be

m̂ = arg max
m∈ZJ

M

Pr{m | r}. (2.8)
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The j­th user’s detected symbol is the j­th component of m̂: [11, 24]

m̂(j) = [m̂]j, (2.9)

and the vector of the corresponding detected data bits is denoted by b̂j . An equivalent way

to express the j­th user’s symbol is [34, 45]:

m̂(j) = arg max
m∈ZM

∑
m∈ZJ

M , [m]j=m

Pr{m | r} (2.10)

= arg max
m∈ZM

∑
m∈ZJ

M , [m]j=m

Pr{m}
K∏
k=1

Pr{[r]k | m}. (2.11)

A proof for the equivalence of (2.9) and (2.10) is given in Appendix A. The forms in

(2.10) or (2.11) are more favorable in some works because it is easier to apply a message

passing algorithm based on (2.11) than on (2.9) [35].

Given the result of the detection above, we have m̂(j)[b] = m̂(j) and b̂j[b] = b̂j for all

j ∈ ZJ in Figure 2.1 if r[b] = r.

2.3.2 Message Passing Algorithm

Solving problems (2.8), (2.10), or (2.11) with brute­force has exponential complexity.

Thanks to the sparsity of the codewords, the solution of this problem can be approximated

by an iterative decoding algorithm, message passing algorithm (MPA), which updates the

extrinsic information of function nodes (FNs) and variable nodes (VNs) along the edges

in the factor graph and has moderate complexity [34, 35].

10
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Chapter 3

Maximization of Minimum Euclidean

Distance

11
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A codebook collection with a large MED tends to have a smaller detection error when

an MAP detector (2.10) is applied [11, 27]. And since the popular MPA detector usually

performs very close to MAP detectors, it makes sense to choose a codebook collection

with an MED that is as large as possible.

In this section, we formulate the SCMA codebook design problem as an optimization

problem that maximizes the minimum Euclidean distance (MED) under some power con­

straints. We follow the definitions of MED from [11, 26], that is, the MED of any two

superimposed codewords of a codebook collection.

Note that in some references, MED is taken as a reasonable KPI only for the AWGN

channel [17]. However, in the scenario of 5G/NR applications [31], the considered sys­

tem uses consecutive OFDM subcarriers as orthogonal resources. It is believed that the

adjacent OFDM tones tend to be nearly identical over fading channels [28] and thus the

received signal over some fading channel will be similar to the one over AWGN channel

because putting identical gain on each resource is playing the same role as amplifying the

noise on each resource by the reciprocal of the gain. Therefore we believe that MED can

be a reasonable design criterion even when frequency­selective Rayleigh fading channel

is considered.

3.1 Problem Formulation

3.1.1 Minimum Euclidean Distance

For any given codebook collection determined by the matrices Vj,Cj, j ∈ ZJ , we first

define the square of Euclidean distance of the k­th and l­th possible superimposed code­

words as

dkl =

∥∥∥∥∥
J∑

j=1

VjCj

(
e(M)
kj
− e(M)

lj

)∥∥∥∥∥
2

2

(3.1)

12
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where k, l ∈ ZMJ and kj, lj ∈ ZM ,∀j ∈ ZJ are defined according to the same convention

as in (2.5). Then the minimum Euclidean distance (MED) dmin is defined as

dmin = min
k,l∈Z

MJ

k ̸=l

√
dkl. (3.2)

Note that there are totally
(
MJ

2

)
possible pairs of superimposed codewords.

3.1.2 MED Maximization Problem

We aim tomaximize theMED (3.2) subject to the power constraint. Therefore the problem

is formulated as [11]

maximize
C∈CN×MJ ,t∈R

t (3.3a)

subject to dkl ≥ t, ∀k, l ∈ ZMJ , k ̸= l (3.3b)
1

M
tr(CH

j Cj) = P, ∀j ∈ ZJ (3.3c)

where C ≜ [C1C2 · · ·CJ ] contains the constellation matrices for all users, t is an extra

real­valued variable representing the square of MED, and P is the limit of each user’s

average power of transmitted codewords. Here we choose equality power constraints so

that each user is ensured to achieve the same power limit. For convenience, and without

loss of generality, we set P = 1 throughout the paper.

Problem (3.3) can be transformed into an equivalent problem in a QCQP form. Specif­

ically, we define x = vec(C) ∈ Cnx with nx = NMJ , and reformulate Problem (3.3)

as [11]

maximize
x∈Cnx ,t∈R

t (3.4a)

subject to xHAix ≥ t, ∀i ∈ Z(MJ

2
) (3.4b)

xHBjx = MP, ∀j ∈ ZJ (3.4c)

13
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where Ai and Bj are distance constraint and power constraint matrix, respectively. The

matrices Ai and Bj have closed­form expressions as below. Note that they are real, sym­

metric, very sparse, and with nonzero entries limited to only values−1 and 1. The matrix

Ai is

Ai = Ak,l

=
J∑

j=1

J∑
q=1

(
(e(J)q )T ⊗ IMN

)T K(q,j)
k,l

(
(e(J)j )T ⊗ IMN

)
(3.5)

where

K(q,j)
k,l =

(
(e(M)

kq
− e(M)

lq
)(e(M)

kj
− e(M)

lj
)T
)
⊗

(
VT

q Vj

)
,

and the matrix Bj is

Bj = diag(e(J)j )⊗ INM . (3.6)

The derivation of (3.5) is provided in Appendix B.

Problem (3.4) is not convex, so we apply the technique of semidefinite relaxation: let

X = xxH ∈ Hnx
+ and reformulate the problem as

maximize
X∈Hnx

+ ,t∈R
t (3.7a)

subject to tr(AiX) ≥ t , ∀i ∈ Z(MJ

2
) (3.7b)

tr(BjX) = MP, ∀j ∈ ZJ (3.7c)

rank(X) = 1 (3.7d)

Note that problems (3.4) and (3.7) are equivalent since for any X ∈ Hnx
+ that satisfies the

rank constraint (3.7d), there always exists some x ∈ Cnx (subject to a unit­norm complex

ambiguity) such that X = xxH .

14
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3.2 Exact Penalty Approach and Biconvex Problem For­

mulation

Since the rank constraint (3.7d) is not a convex constraint, we can not solve it directly

by the tools for solving convex optimization problems. Therefore, we propose a method

based on the concept of alternating maximization and exact penalty approach mentioned

in [39,40] to obtain a rank­one solution of Problem (3.7). We first formulate a new problem

based on Problem (3.7) as follows

maximize
X1,X2∈Hnx

+ ,
t1,t2∈R

t1 + t2 (3.8a)

subject to tr(AiX1) ≥ t1, ∀i ∈ Z(MJ

2
) (3.8b)

tr(AiX2) ≥ t2, ∀i ∈ Z(MJ

2
) (3.8c)

tr(BjX1) = MP, ∀j ∈ ZJ (3.8d)

tr(BjX2) = MP, ∀j ∈ ZJ (3.8e)

tr(X1X2) = tr(X1)tr(X2). (3.8f)

The following theorem shows that Problem (3.8) is equivalent to Problem (3.7).

Theorem 1. If {X⋆
1,X⋆

2, t
⋆
1, t

⋆
2} is an optimal point for (3.8), then X⋆

1 = X⋆
2 and t⋆1 = t⋆2 and

{X, t} = {X⋆
1, t

⋆
1} is an optimal point of (3.7). Conversely, if {X⋆, t⋆} is an optimal point

of (3.7), then, {X1,X2, t1, t2} = {X⋆,X⋆, t⋆, t⋆} is an optimal point of (3.8).

Proof: By Theorem 1 in [41], if there are any X1,X2 ∈ Hnx
+ satisfying constraint

(3.8f), the necessary and sufficient conditions will be both of rank one and X1 = αX2

where α is a positive scalar. Suppose {X⋆
1,X⋆

2, t
⋆
1, t

⋆
2} is an optimal point of Problem (3.8).

Then, (3.8f) impliesX⋆
1 = αX⋆

2 for some α > 0. SinceX⋆
1 andX⋆

2 satisfy constraints (3.8d)

and (3.8e), we have

MP = tr(BjX⋆
1) = tr(BjαX⋆

2) = α · tr(BjX⋆
2) = αMP,

15
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which implies α = 1 and X⋆
1 = X⋆

2. It can also be shown that t
⋆
1 = t⋆2 = min

i
tr(AiX⋆

1)

using (3.8b), (3.8c), and (3.8a). Then, we can show that {X⋆
1, t

⋆
1} is an optimal point of

(3.7) by contradiction: if {X̃, t̃} is some optimal point for (3.7) with t̃ > t∗1, then setting

{X1,X2, t1, t2} = {X̃, X̃, t̃, t̃} in (3.8) will result in a larger value in (3.8a) (t1+ t2 = 2t̃ >

2t⋆1 = t⋆1 + t⋆2).

Conversely, if {X⋆, t⋆} is an optimal point of Problem (3.7), then {X1,X2, t1, t2} =

{X⋆,X⋆, t⋆, t⋆} can be shown to be an optimal point in (3.8) by contradiction as follows. If

there is any other feasible point of Problem (3.8), say, {X′
1,X′

2, t
′
1, t

′
2}, such that t′1 + t′2 >

t1+t2, then the point {X′, t′} = {X′
1, t

′
1} = {X′

2, t
′
2}, will results in a larger value in (3.7a)

(t′ = (t′1 + t′2)/2 > (t1 + t2)/2 = t⋆).

To deal with constraint (3.8f), we apply the exact penalty approach and introduce the

non­positive penalty function

tr(X1X2)− tr(X1)tr(X2)

whose value is zero if and only if (3.8f) holds [41,44]. By the equality constraints (3.8d),

(3.8e) and using (3.6), we have tr(X1) = tr(X2) = JMP , implying that tr(X1)tr(X2) is a

constant. Therefore, the penalty function can be further simplified as tr(X1X2) and then

we formulate another problem as

maximize
X1,X2∈Hnx

+ ,
t1,t2∈R

t1 + t2 + w · tr(X1X2) (3.9a)

subject to tr(AiX1) ≥ t1, ∀i ∈ Z(MJ

2
) (3.9b)

tr(AiX2) ≥ t2, ∀i ∈ Z(MJ

2
) (3.9c)

tr(BjX1) = MP, ∀j ∈ ZJ (3.9d)

tr(BjX2) = MP, ∀j ∈ ZJ . (3.9e)

wherew > 0 is a positive weight of the simplified penalty function tr(X1X2), whichmakes

the optimization problem tend to meet constraint (3.8f).

Problem (3.9) is a biconvex optimization problem [40], meaning that it is a convex

16



doi:10.6342/NTU202102029

Algorithm 1 Proposed Algorithm based on Alternating Maximization and Exact Penalty
Approach
Input: J , C1,C2, · · · ,CJ , V1,V2, · · · ,VJ , φmax, {w1,φ}φmax

φ=1, {w2,φ}φmax
φ=1.

Output: x̃
1: Initialization: Create Ai,∀i ∈ Z(MJ

2
) and Bj, ∀j ∈ ZJ according to (3.5) and (3.6).

2: Initialize X(0)
2 = xxH , where x = vec([C1C2 · · ·CJ ]).

3: Set t(0)2 = min
i

tr (AiX2) and φ = 0.
4: repeat
5: Solve Problem (3.9) for {X(φ+1)

1 , t
(φ+1)
1 }while fixing {X2, t2} as {X(φ)

2 , t
(φ)
2 }with

the weight being chosen as w = w1,φ.
6: Solve Problem (3.9) for {X(φ+1)

2 , t
(φ+1)
2 } while fixing {X1, t1} as {X(φ+1)

1 , t
(φ+1)
1 }

with the weight being chosen as w = w2,φ.
7: φ← φ+ 1
8: until |tr(X(φ)

1 )tr(X(φ)
2 )− tr(X(φ)

1 X(φ)
2 )| < 10−3 or φ > φmax

9: Perform singular value decomposition (SVD) onX(φ)
2 : X(φ)

2 = UΣVH , with the singu­
lar values along the main diagonal ofΣ in non­ascending order, i.e., [Σ]1,1 ≥ [Σ]2,2 ≥
· · · ≥ [Σ]nx,nx ≥ 0.

10: Set σ1 =
[
Σ
]
1,1

and σ2 =
[
Σ
]
2,2
.

11: if σ2/σ1 ≤ 10−4 then
12: Obtain x̃ =

√
σ1 · Ue(nx)

1 .
13: else
14: Declare failure of convergence.
15: end if

problem in X1 and t1 when X2 and t2 are given constants, and vice versa. An iterative

algorithm exploiting alternative maximization is presented in Algorithm 1, where φmax

is the maximum allowable number of iterations, and, noting that the weighting w can be

chosen different among various iterations, w1,φ andw2,φ represent the positive weights for

the φ­th iteration.

Unfortunately, Algorithm 1 is not guaranteed to always converge within a satisfactory

number of iterations. As will be elaborated in Section 5, we observe that if the weight

is kept constant during all iterations, the algorithm is more prone not to converge. A

possible solution to this problem, accordingly to our empirical experiments, is to manually

change the weights {w1,φ}, {w2,φ}. We found that if the weights are set as a sequence that

gradually increases, the algorithm tends to converge to a solution with a large MED.
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Chapter 4

Dual problem of MED Maximization

Problem
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In this section, we derive the Lagrange dual problem associated with the primal prob­

lem (3.4). Unlike the primal problem, which is non­convex, the dual problem is always a

convex problem that is easier to solve. And the optimal value of a dual problem serves as

an upper bound of the optimal value of the primal problem. Noting that Problems (3.3) and

(3.4) are the two equivalent forms of the primal problem, one can derive the dual problem

for each of the forms. Here, we choose to derive the Lagrange dual of Problem (3.4) since

its QCQP form makes the dual problem derivation much easier than Problem (3.3). First

of all, the Lagrangian of Problem (3.4) is

L({λi}, {µj}, x, t)

= t+

(M
J

2
)∑

i=1

λi(xHAix− t) +
J∑

j=1

µj(MP − xHBjx)

= xH

(M
J

2
)∑

i=1

λiAi −
J∑

j=1

µjBj

 x+

1−
(M

J

2
)∑

i=1

λi

 t

+
J∑

j=1

µjMP, (4.1)

where we introduced Lagrange dual variables λi and µj associated with constraints (3.4b)

and (3.4c), respectively. Then, the Lagrange dual function g({λi}, {µj}), defined as

g({λi}, {µj}) = sup
x,t
L({λi}, {µj}, x, t), (4.2)

is unbounded above if any eigenvalue of
∑(M

J

2
)

i=1 λiAi −
∑J

j=1 µjBj is greater than zero

or
∑(M

J

2
)

i=1 λi ̸= 1. Otherwise, the dual function is

g({λi}, {µj}) =
J∑

j=1

µjMP. (4.3)

19



doi:10.6342/NTU202102029

Therefore, the Lagrange dual problem is found to be

minimize
{λi},{µj}

J∑
j=1

µjMP (4.4a)

subject to
(M

J

2
)∑

i=1

λiAi ⪯
J∑

j=1

µjBj (4.4b)

(M
J

2
)∑

i=1

λi = 1 (4.4c)

λi ≥ 0, ∀i ∈ Z(MJ

2
). (4.4d)

It is well known that weak duality [36] dictates that the optimal value of the dual

problem (4.4) is an upper bound of the optimal value of the primal problem (3.4), as also

that of (3.3) since problems (3.3) and (3.4) are equivalent. In fact, as we will find later in

Section 5, the optimal values of primal problem (3.4) and dual problem (4.4) will coincide,

at least for the case of J = 3, suggesting that strong duality holds for this case.
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Chapter 5

Simulation Result

21



doi:10.6342/NTU202102029

In this section, we conduct numerical simulations to verify the proposed methods pre­

sented in Section 3 and compare their performances with existing methods [9,10,16–18],

and also the MED upper bound derived in Section 4. Throughout all simulations, we set

the number of resources asK = 4, the cardinality of codebooks asM = 4, the constella­

tion sizes asN = 2, and 15 times message passing iterations. The definitions of SER and

BER are shown as follows.

Definition. The symbol error rate (SER) is defined as

Pe,s =
1

J

J∑
j=1

M∑
m=1

Pr{m(j) = m}Pr{m̂(j) ̸= m | m(j) = m} (5.1)

where m̂(j) was defined in (2.9) , and Pr{m(j) = m} is assumed to be 1/M for all m ∈

ZM .

Definition. The bit error rate (BER) is defined as

Pe,b =
1

J log2M

J∑
j=1

log2M∑
i=1

(
Pr{[bj]i = 0}Pr{[b̂j]i = 1 | [bj]i = 0} (5.2)

+ Pr{[bj]i = 1}Pr{[b̂j]i = 0 | [bj]i = 1}
)

(5.3)

where, for all j ∈ ZJ , bj , b̂j follow the definitions in Section 2, and Pr{[bj]i = 0} and

Pr{[bj]i = 1} are assumed to be 1/2 for all i ∈ Zlog2M .

Notations Es and Eb, representing the average energy of all users’ symbols and data

bits, respectively, are defined as

Es =
1

JM

J∑
j=1

M∑
m=1

∥∥VjCje(M)
m

∥∥2

2
=

1

JM

J∑
j=1

tr(CH
j Cj) (5.4)

and

Eb =
1

log2M
Es. (5.5)
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The normalized minimum Euclidean distance is defined as

d̂min =
dmin√
Es

(5.6)

where Es is also the average power of each codeword of each user by the definition in

(5.4).

5.1 The Case with Three Users (J = 3)

We first consider the simple case where only three users are allowed to share the K = 4

orthogonal resources, i.e., J = 3. Mapping matrices V1, V2, V3 in (2.7) are chosen and

this choice makes sure the number of collisions is as small as 2 [11]. Algorithm 1 is

applied to solve Problem (3.9) with the initial point X2 = xxH where all elements of x

(i.e., all entries of {Cj}3j=1) are independently generated by a random variable uniformly

distributed between 0 and 1. In this relatively simple case, Algorithm 1 is found to be

converging and leading to an optimal codebook collection whose optimal value coincides

with that of the dual problem (4.4). We usedCVX, aMATLAB­basedmodeling system for

convex optimization [37], for Steps 5 and 6 of Algorithm 1 in each iteration. As a result,

we observed that, in about 10 iterations, the algorithm converged. We also used CVX to

solve the dual problem (4.4) to get the upper bound of optimal value. Note that the dual

problem (4.4) is always convex, so it can be solved with just a single CVX instance.

Figure 5.1 shows the MED comparison of the proposed algorithms and various previ­

ously reported methods in terms of MED, along with the bound given by the dual problem

(4.4). As indicated in the figure, the proposed method achieves the largest value among

all methods, including the randomization method [11] with Lrand = 106 1, the starQAM

codebook collection [10], and the Top­Down codebook collection [15]. We notice that the

MED of the proposed method is the same as the optimal value of the dual problem (4.4).

As stated in Section 4, it is sufficient to show that the codebook collection we proposed is

1The codebook collection obtained here do not necessarily coincide with the one reported in [11], due to
the random nature of Gaussian randomization algorithm.
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a set of optimal codebooks that achieve the maximum MED.

0.90

1.32
1.41

1.63 1.63

StarQAM [10]

Randomization [11]

Top-Down [15]

Proposed

Dual P
roblem

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 5.1: Minimum Euclidean distance comparison for J = 3.

5.2 The Case with Six Users (J = 6)

We now consider the case when the number of users is J = 6. As mentioned in Section

3, a large number of distance constraints greatly increase the consumption of memory

and computational complexity. It is extremely inefficient for the CVX tool to handle

a large number of more than 8 million constraints in constructing the problem settings

alone, not to mention solving it. As an alternative approach, we resort to directly using

SDPT3 [38], the default solver of the CVX tool. We observed that the SDPT3 solver,

without the extra burden caused by the problem­constructing routines of CVX, is capable

of returning correct results within an acceptable time duration. Moreover, it is worthy to

note that the sparse properties of the matrices Ai,Bj with nonzero entries being ±1, may

have also expedited the computation of the SDPT3 solver [38]. We used this new approach
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to execute Algorithm 1 and tried to solve Problem (3.4). Although it may not always

converge within φmax iterations, we usually can obtain an X with the largest eigenvalue

dominating all the other eigenvalues (i.e., the ratio of the second largest eigenvalue to the

largest one σ2

σ1
≤ 10−4) and thus it is fair enough to consider X as xxH for retrieving x by

Step 12 in Algorithm 1.

Since Algorithm 1 needs the constellation matrices {Cj}6j=1 of some codebook collec­

tion for initialization, we chose two codebook collections for AWGN channel proposed

in [17] and [18] since they have relatively good error rate performances comparing to other

codebook collections over AWGN channels. We first test Algorithm 1 using the codebook

collection for AWGN channel proposed in [17] (referred to as ”Chen’s AWGN codebook

collection”) for initialization, and we chose weight w = 0.1. The algorithm converged

in 18 iterations with a total computation time of 26 hours. The MED of the resultant

codebook collection is 1.17, which is already greater than the MEDs of all previously re­

ported codebook collections (The detailed codebook collection is shown in Appendix C).

Then, we tried Algorithm 1 using the codebook collection for AWGN channel proposed

in [18] (referred to as ”Deka’s AWGN codebook collection”)2. We at first tried the fixed

weight w = 0.3 but it ran for over 80 iterations, which takes almost a whole week of

computing with the CPU being AMD Ryzen™ 9 3900X, and did not converge. Hoping

for the convergence of Algorithm 1, we manually chose weight w between 0.1 and 0.35 in

the process of the iterations in Algorithm 1 and it converged with MED being 1.30 (The

detailed codebook collection is shown in Appendix D). More specifically, we chose:

w1,φ =



0.1 1 ≤ φ ≤ 6

0.15 7 ≤ φ ≤ 27

0.2 28 ≤ φ ≤ 35

0.25 36 ≤ φ ≤ 59

0.3 60 ≤ φ ≤ 71

0.35 72

, w2,φ =



0.1 1 ≤ φ ≤ 6

0.15 7 ≤ φ ≤ 26

0.2 27 ≤ φ ≤ 34

0.25 35 ≤ φ ≤ 58

0.3 59 ≤ φ ≤ 71

0.35 72

.

2Note that the ”Chen’s AWGN codebook collection” [17] and ”Deka’s AWGN codebook collection” [18]
for initialization we used here are scaled to meet power constraint (3.3c).
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It took 72 iterations and 114 hours to obtain this codebook collection.

The dual problem (4.4) is also solved via SDPT3 with J = 6 and the resulting upper

bound is 1.63. The comparison of the normalizedMEDs of different codebook collections

is shown in Figure 5.2 3. Although Deka’s AWGN codebook collection (labeled as “Deka

2020 (AWGN) [18]”) have a smaller MED than Chen’s AWGN codebook collection (la­

beled as “Chen 2020 (AWGN) [17]”), the former results in a codebook collection with an

even larger MED. We found that this may have been due to that only a very small num­

ber of pairs of superimposed codewords achieve the MED for Deka’s AWGN codebook

collection.

As the codebook collection obtained by Algorithm 1 with Deka’s AWGN codebook

collection [18] for initialization has the largest MED, 1.30, it is expected that it will attain

relatively better error rate performances than other codebook collections and therefore we

use it as the proposed codebook collection in the following numerical results.

The parameter setting is shown as follows. The FFT size NB is 256. The channel

length L is 18 and cyclic­prefix length NCP is 17. The subcarrier indices of the K­

dimensional SCMA signal is set to 127, 128, 129, 130 within the 256 subcarriers of an

OFDM symbol (i.e. isub = 127 in (2.1)). The other signals loaded on the remaining

subcarriers are set as independent and identically distributed (i.i.d.) signals with distri­

bution being CN (0, Es/K). We adopted the MPA algorithm described in Section III­B

in reference [34] for the detection. The results, corresponding to the AWGN channel and

Rayleigh fading channel, are discussed in the following parts respectively.

5.2.1 AWGN Channel

For the simulation of the downlink SCMA system based onOFDMAover AWGNchannel,

the results for SCMA systems over the AWGN channel, as shown in Figures 5.3, and 5.4,

demonstrate that the proposed codebook collection obtained by Algorithm 1 with Deka’s

AWGN codebook collection [18] for initialization indeed achieves the best SER and BER

3Note that all codebook collections we used for comparison hereafter are scaled such that the power of
the user with maximum average power meet power constraint (3.3c) (i.e., max

j∈ZJ

1
M tr

(
CH

j Cj

)
= P for all

codebook collections).
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performances since it has the largest MED. Specifically, there are gains of both about

0.7dB at SER = 10−5 and BER = 10−5 over the best existing codebook collection [18].

Moreover, since downlink SCMA system based on OFDMA over AWGN channel

has an all­one channel gain for all subchannels, and the additive noises after the FFT

operation are still uncorrelated Gaussian noises with zero means and N0 variances, this

case is actually the same case with AWGN channel considered in other works [10–18].

5.2.2 Rayleigh Fading Channel

The Rayleigh fading channel here is set to be a frequency­selective channel, which fits in

the scenario with multipath channel in 5G/NR applications (e.g. TDL­A/C, EPA) [29] and

is, for convenience, specifically set as

h ∼ CN (0, diag(σ2
h[0], σ

2
h[1], . . . , σ

2
h[L−1])) (5.7)

where
[
σh[0] σh[1] · · · σh[L−1]

]T
= hσ

∥hσ∥2
, and hσ ∈ RL is the vector whose elements are

linearly spaced between 0 dB and −48 dB. With the setting above, the simulation results

are shown in Figure 5.5. We notice that most of the codebook collections have similar

performances on bit error rate, but the codebook collection proposed by Chen et al. [17]

for downlink Rayleigh fading channel (labeled as “Chen 2020 (downlink) [17]”) has worse

performances.

Although the proposed codebook collection does not outperform other ones in BER

for the case mentioned above, we notice that the SNR needed about 26dB for BER= 10−3,

and thus the SNR is expected to be unrealistically high for a better BER, such as 10−5 or

10−6. The bad performance curves for all methods may have been mostly contributed by

deep fade channels in some Monte Carlo trials. In the 5G/NR applications, however, we

believe it is reasonable to assume all users that share the SCMA resources would pos­

sess sufficiently good channel quality on these subcarriers since the base station, with the

knowledge of channel state information reported from a user (e.g., see Section 5 of [32]),

is likely to assign users to the resources with good channel quality. With this assumption
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in mind, we conduct the performance analysis again by excluding the 40 percent poorest

channels hfsub. The results, as shown in Figure 5.6, demonstrate that the proposed code­

book collection outperforms all the other codebook collections on bit error rate. Specif­

ically, there is a gain of about 0.6 dB at BER = 10−5 over the best existing codebook

collection [18].

5.3 Simulation Results under Other Channel Models

In this section, we conduct simulations under some channel models that have been con­

sidered in [17–19], whose system models are slightly different from the one we described

in Section 2.1. Specifically, they consider the downlink and uplink SCMA systems over

OFDMA with separate subcarriers. Even though the 5G/NR standards have adopted re­

source blocks that are composed of consecutive subcarriers rather than separate ones [31],

we investigate these two cases for a more comprehensive comparison of the proposed

codebook collection obtained in the previous section (as shown in Appendix D) with ex­

isting ones.

5.3.1 Downlink Rayleigh Fading Channel with Non­Consecutive

Subcarriers

In [17], the authors considered this type of channel as an equivalent SISO fast Rayleigh

channel since the statistics of channels of non­adjacent subcarriers separated by a fre­

quency gap greater than the coherence bandwidth could be considered to be uncorrelated.

To simulate this scenario, we slightly modified the system model depicted in Figure 2.1

and make s1[b] to sJ [b] occupy non­consecutive subcarriers, so the received signals at the

corresponding subcarriers can be expressed as

r[b] = diag(hfsub,sep)s[b] + n[b] (5.8)
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where hfsub,sep = [hfi1 h
f
i2
· · · hfiK ]

T ∈ CK is the subvector of the frequency­domain channel

gain vector hf ∈ CNB at subcarriers indices i1 through iK that are non­consecutive or even

separated apart. We choose (i1, i2, i3, i4) = (32, 96, 160, 224) in our simulation and the

results are shown in Figure 5.7. The results match the corresponding results shown in

[17]4, reconfirming the equivalence of the SISO fast Rayleigh channel considered therein

and the Rayleigh fading channel using widely separated subcarriers under OFDMA. We

observe that the proposed codebook collection, compared to others, does not work well

perhaps because the product distance [17] of the codebook collection is not optimized.

5.3.2 Uplink Rayleigh Fading Channel

For the uplink SCMA system based on OFDMA, it can be regarded as that the transmitter

of each user is transmitting the OFDM signals with its SCMA signals, say, sj[b], loaded

on the chosen subcarriers, and the receiver receives the J synchronized signals from the

J transmitters and process the received signal in the same way as in the downlink SCMA

system based on OFDMA. We first consider the case with consecutive subcarriers and the

corresponding received signal can be expressed as

r[b] =
J∑

j=1

diag(hfj,sub)sj[b] + n[b], (5.9)

where hfj,sub =
[
[hfj ]isub [h

f
j ]isub+1 · · · [hfj ]isub+K−1

]T
∈ CK is the subvector of hfj , the

frequency­domain channel gain vector for the j­th user. Vector hfj is the discrete Fourier

transform of vector
[
hTj 0TNB−L

]T ∈ CNB , where hj shares the same distribution as the h

in (5.7). We assume that hfj1 and h
f
j2
are statistically uncorrelated whenever j1 ̸= j2. With

the setting above, the simulation results are shown in Figure 5.85. The proposed codebook

collection does not outperform other ones. For the uplink case with non­consecutive sub­

carriers, as the readers can imagine, the proposed codebook collection will have an even

worse performance. The relatively bad BER performances of the proposed codebook col­
4Note that the shift in SNR between our results and the corresponding ones in [17] is contributed by the

different setting of Es.
5The codebook collections for uplink systems proposed in [17, 18] are labeled as “Chen 2020 (uplink)

[17]”, “Deka 2020 (uplink) [18]”, respectively.

29



doi:10.6342/NTU202102029

0.56

0.83 0.82

1.07

0.94

1.17

1.30

1.63

Huawei 2015 [9]

StarQAM 2015 [10]

Zhang 2016 [16]

Chen 2020 (A
WGN) [1

7]

Deka 2020 (A
WGN) [1

8]

Proposed (C
hen initia

l)

Proposed (D
eka initia

l)

Dual problem
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 5.2: Minimum Euclidean distance comparison for J = 6.

lection indicate the fact that MED may not be a sufficient KPI for the uplink case, which

reconfirms the claim of weak correlation of MED and BER performances in the uplink

case in [17].

5.4 Comparison of Theoretical Results and Simulation

Results

To certify the error rate performances reported in the previous simulation plots, we com­

pare all error rate curves of the cases in AWGN channel with theoretical bounds in this

section. For the SER, an upper bound can be found by simply taking the average over J

users of the upper bound of the SER of each single user derived by Bao et al. (eq. (38)

in [46]).

Pe,s ≤
1

MJ · J
1TMJ (Q ◦ Ds)1MJ (5.10)
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Figure 5.3: SER performance comparison for J = 6 over AWGN channel.

where the matrix Q ∈ RMJ×MJ is defined with [Q]k,l = Q
(√

dkl
2N0

)
, dkl was defined in

(3.1), the matrix Ds ∈ ZMJ×MJ is defined with [Ds]k,l = ds,kl, and ds,kl is the Hamming

distance between the multiplexed symbols mk,ml, i.e., ds,kl =
∑J

j=1 |kj − lj|0 with | · |0

being the indicator function of nonzero values. For the BER, an upper bound is found to

be

Pe,b ≤
1

MJ · J log2M
1TMJ (Q ◦ Db)1MJ (5.11)

where the matrix Db ∈ ZMJ×MJ is defined with [Db]k,l = db,kl, and db,kl is the Hamming

distance between the bit patterns loaded on the multiplexed symbols mk,ml, i.e., db,kl =∑J
j=1

∥∥b[kj ] − b[lj ]
∥∥
0
with ∥·∥0 being the ℓ0 norm in [43], and b[kj ], b[lj ] ∈ Blog2M denote

the bits corresponding to symbol kj , lj , respectively, according to the convention in Section

2.2. The derivation of (5.11) can be done by the definitions of SER, BER, and (5.10).

In the following comparisons shown in Figures 5.9, and 5.10, we will find that all

simulation curves are matching the theoretical upper bounds (5.10), (5.11) in high SNR

31



doi:10.6342/NTU202102029

2 3 4 5 6 7 8 9 10 11 12
10-7

10-6

10-5

10-4

10-3

10-2

10-1

Figure 5.4: BER performance comparison for J = 6 over AWGN channel.

regions within acceptable margins. These results not only double­checked the correctness

of the bounds, but also secured all performance advantages of the proposed codebook

collection that we have seen in Figures 5.3, 5.4, and 5.6. The bounds are rather loose in

low SNR regions, but they go tighter as SNR goes higher. Sometimes it is observed that

simulation results even have slightly larger error rates than the bounds, and we believe

this is because the MPA is still worse than MAP. Specifically, we notice MPA detection

may not always take the closest superimposed codeword to the received signal r[b] as the

detected one as MAP does, and this results in the slightly larger error rates than the bounds

derived based on ML detection [45, 46], which is equivalent to MAP detection due to the

equally likely input symbols.

Based on the tightness of the upper bounds and the simulation results discussed above,

we can further predict the SER, and BER of some codebook collections in the high SNR

region as shown in Figures 5.11. It can be observed that the proposed codebook collection

still has the best error rate performances.
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Figure 5.5: BER performance comparison for J = 6 over Rayleigh fading channel (in­
cluding cases with poor channel).

Moreover, some remarks about the relation of Euclidean distances and error rates are

made. It is observed that the upper bounds, (5.10), (5.11), are both proportional to some

weighted sums of all elements in Q, so it is desirable to minimize the entries of Q, which

depend on the Euclidean distances, for a low error rate. Since the largest entry in Q is

Q
(

dmin√
2N0

)
, which will dominate the contributions to error rate upper bound formulas (i.e.,

Q( dmin√
2N0

) ≫ Q(
√

dkl
2N0

) for most k, l ∈ ZMJ , k ̸= l) when the SNR goes to infinity6 (i.e.,

N0 → 0), our approach of maximizing dmin for the codebook collection design problem is

thus justified based on the tightness of these bounds. At least, it suggests that the codebook

collection designed will have clear advantages in high­SNR regions, as we have shown in

this section.

6This can be seen by the fact that lim
x→∞

Q(ax)/Q(x) = 0 for all a > 1.
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Figure 5.6: BER performance comparison for J = 6 over Rayleigh fading channel (ex­
cluding cases with poor channel).
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Figure 5.7: BER performance comparison for J = 6 over Rayleigh fading channel with
separate subcarriers (downlink).
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Figure 5.8: BER performance comparison for J = 6 over Rayleigh fading channel with
consecutive subcarriers (uplink).
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Figure 5.9: Comparison of theoretical and simulation results of SER over AWGN channel.
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Figure 5.10: Comparison of theoretical and simulation results of BER over AWGN chan­
nel.

38



doi:10.6342/NTU202102029

12 14 16 18 20 22
10-40

10-20

100

10 15 20
10-40

10-20

100

Figure 5.11: Performance prediction comparisons over AWGN channel
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Chapter 6

Conclusions
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In this paper, a new method for downlink SCMA codebook design, based on maxi­

mizing the minimum Euclidean distance (MED) of superimposed codewords, is proposed.

An iterative algorithm based on alternating maximization is applied by reformulating the

MED­maximization problem into a biconvex form with an exact penalty function. With

appropriate choices of the initial codebook collection and weighting coefficients, the pro­

posed algorithm has successfully produced a codebook collection with an MED greater

than any existing codebook collection with a large margin, for the most popular six­user

four­resource case. A Lagrange dual problem of the MED­maximizing problem was de­

rived and solved, resulting in a theoretical MED upper bound of any SCMA codebook

collections that were unknown before. Although the codebook collection reported in this

article has achieved an MED that is much closer to the upper bound than any previously

reported codebook collections, the fact that there is still a nonzero gap between the upper

bound and the largest MED suggests there is still room for codebook improvement in the

future.

Simulation results demonstrate clear advantages of the obtained largest­MED code­

book collection in terms of error­rate performance over all available reported codebook

collections. The performance advantages are not only seen in AWGN channels but also

in frequency­selective fading channels assuming downlink SCMA resources are allocated

from an underlying OFDMA system with resource elements with sufficiently good chan­

nel quality, which fits in the downlink scenario of 5G/NR applications, making it a promis­

ing codebook candidate in such scenarios. The proposed codebook collection, however,

does not show a performance advantage over existing ones in uplink scenarios or scenarios

where non­consecutive subcarriers are used as the underlying orthogonal resources. The

validity of all simulation curves is further verified by comparing them with theoretical

error rate bounds.

In the future, it is still desirable to further reduce the duality gap between the attained

MED and the upper bound obtained from the dual problem: either a codebook collection

with an even larger MED is to be found, or a smaller upper bound of MED is to be derived,

or both. The choices of the initial codebook collection and weighting coefficients appear
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to play important roles in the proposed biconvex algorithm. It is therefore desirable to

try out other possible combinations of these parameters to find even a better codebook

collection.
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Appendix A

Proof of the Equivalence of (2.9) and

(2.10)
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Assume that some multiplexed symbol is transmitted and the received signal is r.

The possible superimposed codeword which has the shortest Euclidean distance from r

is
∑J

j=1VjCje(M)
kj

. With the assumption of equal probability of each kind of multiplexed

symbol being sent and the probability distribution of the additive noise, we can viewMAP

detection asMEDdetection. Therefore, the concatenated vector of codewords correspond­

ing to the multiplexed symbol, say,mk, detected by (2.8) will be

ŝ =

[(
V1C1e(M)

k1

)T (
V2C2e(M)

k2

)T

· · ·
(
VJCJe(M)

kJ

)T
]T

Moreover, for any j ∈ ZJ , we also have

Pr



ŝ =



V1C1e(M)
l1

...

Vj−1Cj−1e(M)
lj−1

VjCje(M)
kj

Vj+1Cj+1e(M)
lj+1

...

VJCJe(M)
lJ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r



≥ Pr



ŝ =



V1C1e(M)
l1

...

Vj−1Cj−1e(M)
lj−1

VjCje(M)
i

Vj+1Cj+1e(M)
lj+1

...

VJCJe(M)
lJ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r



,

∀l ∈ ZMJ ,∀i ∈ ZM . (A.1)

Let P (i)
j =

∑
s∈(S1×···×SJ ), sj=VjCje

(M)
i

Pr{ŝ = s|r[b]}, where s = [sT1 sT2 . . . sTJ ]T ∈ CKJ .

Then by (A.1), we have P
(kj)
j ≥ P

(i)
j ,∀i ∈ ZM . Therefore, the j­th user’s codeword

corresponding to the symbol detected by (2.10) will be

ŝj = VjCje(M)
kj

.

Hence, we have ŝj =
(
(e(J)j )T ⊗ IK

)
ŝ, which is exactly the codeword corresponding to

the symbol detected by (2.9).

49



doi:10.6342/NTU202102029

Appendix B

Derivation of the Distance Matrices in

(3.5)
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First note that the difference of some pair of superimposed codewords corresponding

to some two multiplexed symbolsmk,ml is

J∑
j=1

VjCj

(
e(M)
kj
− e(M)

lj

)
=

J∑
j=1

vec
(
VjCj

(
e(M)
kj
− e(M)

lj

))
=

J∑
j=1

[(
e(M)
kj
− e(M)

lj

)T

⊗ Vj

]
xj

where xj = vec(Cj) is actually the j­thMN ­block of x. Therefore,

xj =
(
(e(J)j )T ⊗ IMN

)
x. (B.1)

Then the square of the Euclidean distance of this pair will be

∥∥∥∥∥
J∑

j=1

[(
e(M)
kj
− e(M)

lj

)T

⊗ Vj

]
xj

∥∥∥∥∥
2

2

=
J∑

q=1

xHq
[(
e(M)
kq
− e(M)

lq

)T

⊗ Vq

]H J∑
j=1

[(
e(M)
kj
− e(M)

lj

)T

⊗ Vj

]
xj

=
J∑

q=1

J∑
j=1

xHq
((

e(M)
kq
− e(M)

lq

)
⊗ VT

q

)((
e(M)
kj
− e(M)

lj

)T

⊗ Vj

)
xj

=
J∑

q=1

J∑
j=1

[
xHq

((
e(M)
kq
− e(M)

lq

)(
e(M)
kj
− e(M)

lj

)T
)
⊗
(
VT

q Vj

)
xj
]
.

In the end, by substituting (B.1) for xj for all j ∈ ZJ , we have the expression of xHAix

as shown in Section 3.1.2. Note that the index i ∈ Z(MJ

2
) here can be mapped freely to the(

MJ

2

)
pairs of multiplexed symbols as long as the mapping is confirmed to be one­to­one.
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Appendix C

The Codebook Collection Obtained by

Algorithm 1 with Chen’s AWGN

Codebook Collection [17] for

Initialization
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S1 − S6, shown as follows.

S1 =





−0.9643− 0.0000i

−0.0698− 0.2553i

0

0





−0.2562− 0.0664i

0.4795 + 0.8367i

0

0





0.2562 + 0.0664i

−0.4795− 0.8367i

0

0





0.9643− 0.0000i

0.0698 + 0.2553i

0

0





S2 =





0

0

−0.3519 + 0.8978i

−0.2121− 0.1584i





0

0

−0.0317 + 0.2628i

0.6031 + 0.7525i





0

0

0.0317− 0.2628i

−0.6031− 0.7525i





0

0

0.3519− 0.8978i

0.2121 + 0.1584i





S3 =





−0.2821 + 0.8866i

0

−0.3653 + 0.0320i

0





−0.1631 + 0.3284i

0

0.9284 + 0.0609i

0





0.1631− 0.3284i

0

−0.9284− 0.0609i

0





0.2821− 0.8866i

0

0.3653− 0.0320i

0





S4 =





0

−0.9095 + 0.1960i

0

−0.1543 + 0.3326i





0

−0.3660 + 0.0218i

0

0.5154− 0.7746i





0

0.3660− 0.0218i

0

−0.5154 + 0.7746i





0

0.9095− 0.1960i

0

0.1543− 0.3326i





S5 =





−0.4802− 0.8223i

0

0

−0.2843− 0.1112i





−0.2646− 0.1522i

0

0

0.9420− 0.1395i





0.2646 + 0.1522i

0

0

−0.9420 + 0.1395i





0.4802 + 0.8223i

0

0

0.2843 + 0.1112i





S6 =





0

−0.4747 + 0.8255i

−0.0452− 0.3019i

0





0

−0.0006 + 0.3052i

0.5903 + 0.7472i

0





0

0.0006− 0.3052i

−0.5903− 0.7472i

0





0

0.4747− 0.8255i

0.0452 + 0.3019i

0




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Appendix D

The Proposed Codebook Collection

S1 − S6, shown as follows.
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S1 =





−0.4969− 0.0000i

0.2516 + 0.8044i

0

0





−0.5790− 0.0043i

−0.7819− 0.3102i

0

0





0.5790 + 0.0043i

0.7819 + 0.3102i

0

0





0.4969 + 0.0000i

−0.2516− 0.8044i

0

0





S2 =





0

0

0.3036− 0.2955i

0.6048 + 0.7008i





0

0

0.7086− 0.5300i

−0.3028− 0.2982i





0

0

−0.7086 + 0.5300i

0.3028 + 0.2982i





0

0

−0.3036 + 0.2955i

−0.6048− 0.7008i





S3 =





0.1787− 0.7137i

0

−0.5264− 0.0696i

0





0.8996− 0.3570i

0

0.4898− 0.0103i

0





−0.8996 + 0.3570i

0

−0.4898 + 0.0103i

0





−0.1787 + 0.7137i

0

0.5264 + 0.0696i

0





S4 =





0

−0.5491 + 0.0077i

0

0.3049− 0.8077i





0

0.5034 + 0.0712i

0

0.7996− 0.2351i





0

−0.5034− 0.0712i

0

−0.7996 + 0.2351i





0

0.5491− 0.0077i

0

−0.3049 + 0.8077i





S5 =





0.2927 + 0.8221i

0

0

−0.5292− 0.0245i





−0.7798− 0.2581i

0

0

−0.5316− 0.0226i





0.7798 + 0.2581i

0

0

0.5316 + 0.0226i





−0.2927− 0.8221i

0

0

0.5292 + 0.0245i





S6 =





0

0.4950− 0.4726i

0.4539 + 0.5691i

0





0

0.5690− 0.5140i

−0.4126− 0.4934i

0





0

−0.5690 + 0.5140i

0.4126 + 0.4934i

0





0

−0.4950 + 0.4726i

−0.4539− 0.5691i

0




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