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Abstract

Low-dose computed tomography (LDCT) screening has been widely used to
detect lung nodules and reduce early mortality. However, reviewing the LDCT is a
time-consuming process due to hundreds of slices and the small size of the nodule in
each scan. For lightening the burden of radiologists, the computer-aided detection
(CADe) system is proposed as the second review tool to accelerate the procedure. In
recent years, the convolutional neural network (CNN) based CADe system becomes
popular in medical usage because of the success of deep learning in computer vision.

In this study, a CNN-based CADe system containing the data preprocessing, the
lung nodule detection, and the initial result post-processing is proposed for the
pulmonary nodule detection. In the data preprocessing, the spacing equalization
standardizes the images to a consistent spacing, the lung area regularization removes
the area outside the lungs and normalizes the intensity of the voxels, and the volume of
interest (VOI) extraction divides the LDCT scan into numerous VOIs with consistent
format. Then, the extracted VOIs are fed into the proposed detection model, three-
dimensional (3-D) HD-YOLOv4 modified from the YOLOV4 for the nodule detection.
To increase the representation of the extracted feature in YOLOvV4, the squeeze-and-
excitation (SE) module and the receptive field block (RFB) module are embedded.

Furthermore, the dual head (D-head) module and the cross stage parallel branch
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architecture are adopted to enhance the nodule detection capability of YOLOVA4. Lastly,

the initial result post-processing eliminates the duplicate detections on the same nodule.

Our experiment results show that the SE and RFB modules significantly reduce

the number of false positives (FPs). The D-head module and the cross stage parallel

branch mechanism could dramatically increase the sensitivity. Moreover, the proposed

system obtains the 0.911 competition performance metric (CPM) score on the public

dataset, and the sensitivity at eight false positives per scan is 0.982. Compared with

other state-of-the-art systems, the proposed CADe system shows its outperformance.

These results indicate that the modifications to the detection model can remarkably

improve its nodule detection capability and achieve state-of-the-art performance.

Keywords: Low-dose computed tomography, Computer-aided detection system,

Convolutional neural network, One-stage object detection, You Only Look Once

version 4.

Vi
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Chapter 1 Introduction

Lung cancer is one of the most common cancers, with the highest cancer death rate
(18%) in the world [1]. The primary reason for the high mortality rate is that the lung
cancer symptoms only become apparent after the advanced stage [2]. The best approach
to increasing the survival rate is to detect and diagnose early; after that, the medical
interventions could treat the patients. Computed tomography (CT) screening is a
common approach to detect lung nodules, and the effectiveness of annual low-dose
computed tomography (LDCT) screening for lung cancer has been verified in clinical
trials [3-5]. However, making large volumes of LDCT scans screening accurate and
efficient is a time-consuming process. In this case, the computer-aided detection (CADe)
system is a helpful tool for assisting radiologists in accelerating the LDCT review.

Computer vision has advanced by leaps and bounds in the past few years due to
the great success of deep learning adaptation on convolutional neural networks (CNNs)
[6]. According to the reports [7, 8], developing a CADe system with CNN architecture
in medical images is a trend because of the automatic abilities of feature extraction for
object detection and the outstanding performance. These powerful CNN detection
models are usually categorized into the one-stage and two-stage object detectors. In
general, two-stage detectors are composed of a region proposal stage and a false

positives (FPs) reduction stage. This configuration which needs more parameters and
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training time, leads to both higher accuracy and model latency. On the contrary, the

one-stage object detectors have lower accuracy and faster speed. Recently, a real-time

one-stage object detection model, You Only Look Once version 4 (YOLQOv4) [9], has

been verified that it has the state-of-the-art (SOTA) performance for the task of object

detection on the common objects in context (COCO) dataset. The most distinguishing

features of YOLOV4 are its real-time latency, lightweight network, and high enough

accuracy. Due to the remarkable performance of YOLOv4 on common object detection,

it is chosen as the main network architecture for nodule detection in this study.

However, the original YOLOVA4 is designed and optimized for 2-D common object

detection, which is considerably different from the lung nodule detection in 3-D LDCT.

In this study, we focus on the following three perspectives to modify the architecture

of YOLOVA4. First, there are RGB three channels in the common image while there is

only one grayscale channel in the 3-D LDCT. Therefore, more representative and

informatic features extracted by the CNN model from the LDCT are required to obtain

better nodule detection performance. Second, compared to the common object

detection, the area ratio of the nodule in the whole 3-D LDCT is extremely small. In

this case, the down-sample operations in the YOLOv4 might easily cause subtle

information vanishing during the dimension reduction. Last, the common object

detection is usually a more than hundreds-of-classes classification task, but the lung
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nodule detection is a two-class classification problem. The channel size adjustment is

necessary to lower the memory demand of 3-D LDCT and make the optimization

process more efficient.

In 2017, Hu et al. proposed the squeeze-and-excitation network (SENet)

constructed by the squeeze-and-excitation (SE) module for the image tasks in the

ImageNet large scale visual recognition challenge (ILSVRC) 2017 [10]. The SENet

reduces the top-5 error rate to 2.25% of the 2016 winning entry in the classification task

with the channel-wise attention mechanism. The result shows that the SE module could

enhance the representative of the extracted features and obtain better classification

results. In 2018, the receptive field block (RFB) module was designed by Liu et al., and

the RFB network (RFB Net) delivered a significant performance on the Pascal VOC

and COCO dataset [11]. The RFB module is a lightweight structure that can expand the

receptive field size of the feature map to obtain more informative and discriminative

features. These two modules could significantly improve the quality of the feature

extraction in the CNN model.

In 2020, the dual head (D-head) module, which combined the fully connected head

(FC-head) for the classification task and the convolution head (Conv-head) for the

regression task, was delivered by Wu et al. [12]. The D-head module gains 3.5 average

precision (AP) improvement on the COCO dataset from the feature pyramid network
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(FPN). This result indicates that the D-head module could boost the detection ability

significantly with only a few parameters increased. On the other hand, the down-sample

operation might cause the primitive information to vanish, especially small nodules

with sizes less than five millimeters. To address this issue, the cross stage parallel

branch mechanism is proposed in our detection model. The extra feature map generated

from this mechanism could remarkably increase the sensitivity of the nodule detection

task. These two modules could reinforce the nodule detection ability for the CNN model.

In this study, a CNN-based CADe system, 3-D Hyper Receptive Field and Dual

Head YOLOv4 (3-D HD-YOLOv4) modified from the YOLOv4, is developed for

nodule detection in 3-D LDCT scans. The introduction of the architecture of the

proposed CADe system is in the following chapters. The materials used for the

experiments and evaluations are mentioned in Chapter 2. Next, the details of the

proposed CADe system are elaborated in Chapter 3. In Chapter 4, the experiment

results evaluation, including the ablation study and the comparisons with other SOTA

methods, are presented. Lastly, the conclusions and the future works are stated in

Chapter 5.
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Chapter 2 Materials

The Lung Nodule Analysis 2016 (LUNAL6) [13] is a public online challenge
organized by several researchers from the Netherlands and Italy in 2016. The purpose
of this challenge is to enable participants to test their algorithms or proposed methods
on a common database under a standardized evaluation procedure. The LUNA16
dataset is a subset of the Lung Image Database Consortium image collection (LIDC-
IDRI) [14] which consists of thoracic low-dose computed tomography (LDCT) scans
with lesion annotations determined independently by four experienced radiologists.
The lesions contain nodules and non-nodule, and each nodule is also annotated with
coordinates and diameter.

The LUNA16 dataset comprises the LDCT scans with slice thickness < 2.5 mm
and the nodules with diameter > 3 mm. Besides, each nodule annotation is accepted by
at least three radiologists. Hence, there are 888 LDCT scans, including 1,186 nodules
with a mean size of 8.31+4.76 mm, in the LUNA16 dataset. The distribution of nodule

size is illustrated in Fig. 2-1.
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Chapter 3 Method

This study proposes an end-to-end CADe system based on YOLOvV4 architecture
for lung nodule detection in 3-D LDCT scans. The input of our approach is the 3-D
LDCT scan, and the output is the coordinates and diameter of each detected nodule
candidate. The proposed CADe system is composed of data preprocessing, lung nodule
detection, and initial result post-processing. Firstly, the data preprocessing is performed
to divide each 3-D LDCT scan into volumes of interest (VOIs) with a consistent format.
Then, the VVOIs are fed into the nodule detection model 3-D HD-YOLOV4, to generate
a list of nodule candidates with confidence scores, coordinates, and diameters as an
initial detection result. However, these nodule candidates may contain duplicate
detections of the same nodule, overlapping with each other. Thus, the initial result post-
processing is applied to the initial detection result to eliminate the overlapping
candidates and obtain the final result. The flowchart of the CADe system is illustrated

in Fig. 3-1.
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3.1 Data Preprocessing

Before executing the lung nodule detection, two problems need to be addressed.
One is the slice spacing inconsistency of the used LDCT scans, and the other is the
memory demand of the lung nodule detection model with 3-D input. Therefore, the data
preprocessing, including the spacing equalization and the image modulation, is
performed to overcome the problems. The slice spacing problem is addressed in the
spacing equalization by adopting the nearest neighbor interpolation method [15]. The
memory demand problem is subdued in image modulation by performing the lung area
regularization and the VOI extraction in each 3-D LDCT scan sequentially. The lung
area regularization is composed of noise area elimination and voxel intensity
normalization. The noise area elimination is to remove the useless areas where is
outside the lungs. Then, the voxel intensity normalization is applied to convert the
intensity of each voxel into the range of 0 to 255. After the lung area regularization, the
VOI extraction is adopted to divide the regularized LDCT scan into several VOIs with
a fixed size of 80x80x80 pixels. The flowchart of the data preprocessing is illustrated

in Fig. 3-2.
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3.2 Lung Nodule Detection

After performing the data preprocessing, the VOIs are fed to our nodule detection

model, 3-D HD-YOLOv4, to generate nodule candidates. The 3-D HD-YOLOV4 is

modified from the YOLOv4 [9] architecture by integrating hyper receptive field and

dual head structure to enhance the nodule detection capability of YOLOvVA4. The details

of the 3-D HD-YOLOv4 model are described in the following sections.

3.2.1 3-D YOLOv4

YOLOV4 is a one-stage anchor-based detection method that predicts the location

and category of the detected object simultaneously with the pre-defined anchors. The

framework of YOLOV4 is composed of the backbone, the neck, and the head units.

First, the input image is encoded as the different level representative feature maps in

the backbone unit by the cross stage partial (CSP) Darknet [9], constructed based on

10
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five CSP stage blocks. Then, the different level feature maps are fused in the neck unit

to generate more informative feature maps. Finally, the combined features and the pre-

defined anchors are utilized to predict objects in the head unit.

The CSP stage block, responsible for reducing the computation cost by down-

sample operation and enhancing the model capability in learning, is the critical feature

map generator in the backbone unit. As shown in Fig. 3-3(a), a CSP stage block includes

N CSP blocks (CSPBlock) and four convolution blocks (ConvBlock). The CSPBlock

illustrated in Fig. 3-3(b) is made up of two ConvBlocks and the skip connection, and

the ConvBlock presented in Fig. 3-3(c) is composed of a convolution layer, a batch

normalization layer [16], and a Mish activation function [17].

11
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Fig. 3-3 The fundamental operation units: (a) CSP stage block, (b) CSPBIlock, and (c)
ConvBlock.

For detecting nodule in the LDCT image, the primitive YOLOV4 is reconstructed

and modified by using the 3-D convolution and declining the channel size of the CSP

stage blocks from [64, 128, 256, 512, 1024] to [64, 64, 64, 64, 64] in the backbone unit.

However, the capability of 3-D YOLOv4 might be insufficient if adopting 3-D

YOLOvV4 directly to observe suspicious nodules in the 3-D LDCT image only through

the above modifications. Hence, in this study, two approaches are employed to

reinforce the detection ability. The additional modules are embedded in the backbone

unit and the neck unit to highlight and absorb more discriminative information while

performing feature extraction and feature fusion. The other is that partial routes of the

12
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framework are split into parallel branches to retain the subtle information that easily

vanished during the process. The details are introduced in the following section.

3.2.2 3-D HD-YOLOv4

In this study, a 3-D HD-YOLOV4 integrates with the SE module [10], the hyper
receptive field module [11], and the (D-head structure [12] in the different units of 3-D
YOLOV4 is proposed for nodule detection. The SE-CSP stage block replaces the
CSPBIlock with the SE module in the backbone unit, which replaces the CSP stage
block to highlight the critical features. The hyper receptive field module [11] is utilized
in the neck unit to broaden the receptive field [18] of convolution to absorb more
information. The dual head and the cross stage parallel branch are adopted in the head
unit to improve nodule localization and determination capability. The architecture of

the proposed 3-D HD-YOLOWV4 is illustrated in Fig. 3-4.

/" Lung Nodule Detection

e S B R N e P
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[ PANet )

SE-CSPDarknet \ ;_ ......................... e T — ] D_head

o R et ettt ettt _ » REB . A=~ » D-head

i

(R @ “@
7/
—» %
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Fig. 3-4 The architecture of the proposed 3-D HD-YOLOv4.
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3.2.2.1 SE-CSP Stage Block

An attention mechanism is an approach that distributes the allocation of available
computational resources to the most informative usage [19]. The attention operator can
generally be incorporated with several layers representing higher-level cognition for
adaptation between modalities. The SE module is a lightweight attention operator used
to reweight the features with gate mechanism during extraction by performing dynamic
channel-wise feature recalibration [10]. The critical features contributing to detection
or discrimination could be sieved out for performance improvement with the
reweighting. The structure of the SE module shown in Fig. 3-5(a) is composed of an
adaptive average pooling (AvgPooling) layer, two fully connected (FC) layers, a
rectified linear unit (ReLU) activation function [20], a sigmoid activation function [21],
and a multiplication operation. The AvgPooling layer is used to obtain the global
average value in each channel of the feature map. Then the channel-wise weight is
produced by transforming the average value through the following two FC layers and
two activation functions. After the multiplication operation, the reweighted feature
containing more discriminative information is generated. Therefore, the SE-CSP stage
block constructed with the SE-CSPBIlocks is used to create and highlight the essential
feature maps in this study. The SE-CSPBlock combines the SE module and CSPBlock
and is built by inserting the SE module before performing the addition operation of skip

14
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connection. The structures of the SE-CSP stage block and SE-CSPBIlock are presented

in Fig. 3-5(b) and Fig. 3-5(c), respectively.

AvgPooling l
ConvBlock
v | A
FC v L 4 ConvBlock
ConvBlock ConvBlock
v v
RelLU v ConvBlock
v Nx|SE-CSPBlock
\4
|
FC v SE module
Concatenate i
Sigmoid v
ConvBlock
(a) (b) (c)
Fig. 3-5 The structures of the (a) SE module, the (b) SE-CSP stage block, and the (c)
SE-CSPBIlock.

3.2.2.2 Hyper Receptive Field

The receptive field is the region in the input image that can be perceived by the
model [18]. The greater receptive field size the model receives, the more context
information from the entire image the model can receive. Thus, increasing the receptive

field might improve the model performance [9]. Therefore, the RFB module [11] is

15
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cascaded behind the backbone unit to apply the greater receptive field size into the

detection model. The RFB module is built with the dilated convolution [22], capturing

more context information with different receptive field sizes without increasing the

parameters. As illustrated in Fig. 3-6, the RFB module mainly comprises multi-branch

ConvBlocks with a trailing ConvBlock with different dilated rates and the skip

connection where the dilation rate is the distance between two positions in the

convolution layer. In the RFB module, the dilation rate in each trailing ConvBlock is

set to the number of ConvBlocks in each branch. With the usage of the RFB module,

the receptive field size of the feature map is significantly increased.

16
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Fig. 3-6 The structure of the RFB module.

3.2.2.3 Dual Head and Cross Stage Parallel

Branch

In the CNN detection model, the localization and determination of the Conv-head
module in the head unit and the dimension reduction in the backbone unit are often
adopted. However, the Conv-head module and the dimension reduction will result in

17
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the weaker recognition ability [12] and the information vanishing problem [23].

Therefore, the D-head module and the cross stage parallel branch are employed in the

head unit to overcome the issues.

First, to overcome the weaker recognition ability, the D-head module is developed

for the ability improvement. The notion of D-head is to exploit the features obtained

from the neck unit more properly than Conv-head. The structure of the Conv-head

module, as illustrated in Fig. 3-7(a), is built with a ConvBlock and a convolution layer.

Without the FC layer, the Conv-head is more proper to capture the entire object context

for bounding box regression but weaker for object recognition. Therefore, to improve

the performance of localization and recognition simultaneously, the D-head module,

which includes a Conv-head and an FC-head module, is employed to replace the Conv-

head module in the head unit. Fig. 3-7(b) shows the architecture of the D-head module.

The FC-head module is constructed only with two FC layers and a ReLU activation

function. Each head of D-head will generate a set of coordinates, diameter, and a

confidence score for a detection result, respectively. Because the purpose of the D-head

is to improve the recognition capability, the coordinates and diameter are determined

only by Conv-head, but the confidence score is determined by the following definition:

S = Skc + (1 — Skc) % Sconv 1)
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where S, Skc, and Sconv, are the final confidence score, the FC-head confidence score,

and the Conv-head confidence score, respectively. With the D-head module, the

performance of localization and recognition could be raised in the meanwhile.

v v

i ConvBlock FC

ConvBlock ¢ ¢
I Convolution ReLU

Convolution v

L FC

(@) (b)

Fig. 3-7 The structures of the (a) Conv-head module and the (b) D-head module.

Second, our proposed detection model uses cross stage parallel branch splitting to

address the information vanishing problem. The notion of cross stage parallel branch

splitting is that an additional route which is the branch of the outputs of the first two

SE-CSP stage blocks in the backbone unit is outstretched to deliver more primitive

information to a D-head module in the head unit. As shown in Fig. 3-8, the output route

from the second SE-CSP stage block in the backbone unit obtains cross stage attention

information by two SE modules and passes a CSP stage block, an RFB module, and a

ConvBlock. The cross stage parallel branch mechanism has neither part nor lot in the

feature fusion to conquer information vanishing. With the cross stage parallel branch,

the nodule detection performance, smaller nodules especially, will be advanced.
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Fig. 3-8 The architecture of the cross stage parallel branch.

3.3 Initial Result Post-processing

The initial results with confidence scores, coordinates, and diameters are
generated after the lung nodule detection. However, these results may contain duplicate
predictions on the same nodule, overlapping with each other. The non-maximum
suppression (NMS) method [24] is used to combine them to deal with this problem.
Suppose the intersection over union (loU) of any two predicted bounding boxes is
greater than 0.1. In that case, the NMS will only preserve the one with the greater
confidence score until no loU conforms to the criterion. The flowchart of the initial

result post-processing is illustrated in Fig. 3-9.
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Fig. 3-9 The flowchart of the initial result post-processing.

3.4 Loss Function

The loss function is a critical criterion for training a model. Therefore, in this study,

a loss function which is the sum of the two losses calculated from Conv-head and FC-

head is proposed to train out the 3-D HD-YOLOV4 detection model. The proposed loss

function is defined as:

Ltotal = Lrc + Lconv

)

which Lyotal, Lrc, and Lconv are the losses of the total loss, FC-head, and Conv-head,

respectively. The loss of each head is composed of a classification term for confidence

score prediction and a regression term for bounding box localization. The definitions

of the Lrc and Lcony are in the following:

Lic = Apc X LEE + (1 - Jpc) % Lll:{ég

Reg

_ Cls
LConv - (1 - j-Conv) X LConv + j-Conv x LConv
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R . . . .
where LSS and Lpc® are the classification loss and the regression loss in Lrc, and

LEE  and Lgffw are the classification term and the regression term in Lconv. AFc and
Aconv are the weights that control the balance between two different terms in each loss,
and they are set to 0.7 and 0.8, respectively. Moreover, the binary cross entropy loss is

used to compute the classification loss, and the Smooth-L1 loss [25] is employed to

calculate the regression loss.

3.5 Model Training

Before training the proposed detection model, two issues are addressed to avoid
biased training and ensure the effectiveness of the detection model. One is the
distribution imbalance in the nodule size and sample, and the other is the overfitting
problem [26]. Firstly, the distribution imbalance problems are overcome by increasing
the large nodules whose diameters are greater than 10 mm, and applying the hard
negative mining [27] method during the training process, respectively. With the larger
nodules increase, the detection ability on larger targets could be enhanced. On the other
hand, the number of negative samples could be controlled by applying the hard negative
mining method. The model could focus more on the hard negative samples rather than
the easier ones. With the hard negative mining method, the false positives (FPs) are
reduced significantly. Secondly, the overfitting problem is conquered by applying the
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flipping data augmentation and the random crop [28] method during training. If the loU

of the cropped volume and the ground truth bounding box is greater than 0.5, the

cropped volume is regarded as a positive sample in the random crop implementation.

On the other hand, if the loU is less than 0.02, it will be considered a negative sample.

The other cases that the IoU is in the range of 0.02 and 0.5 are ignored. Furthermore,

during the model training, the batch size is set to 8, the training epoch is set to 400, and

the optimizer, AdaBelief [29], with weight decay 0.0001. The initial learning rate of

the optimizer is set to 0.001, updated by the cosine annealing mechanism [30], and will

be decreased by a factor of 10 for every 200 epochs.
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Chapter 4 Results and Discussion

4.1 Experiment Environment

The proposed CADe system is implemented using the Pytorch 1.8.0 framework
and the programming language Python 3.6.12. The entire experiment is run on a PC
equipped with an Intel i7-10700 2.9GHz CPU (NVIDIA, Santa Clara, CA, USA) with
16 GB RAM and an NVIDIA GeForce RTX 3090 GPU with 24 GB memory (NVIDIA,

Santa Clara, CA, USA).

4.2 Evaluation

In this study, the LUNAL6 dataset is randomly divided into five equal-sized parts,
and the 5-fold cross-validation [31] experiment is performed. The main criteria for
evaluating the CADe system are the sensitivity and the corresponding FP per scan. The
predicted nodule candidate from the CADe system is regarded as a true positive (TP) if
the candidate is located within the radius of the ground truth nodule center. Otherwise,
it is considered an FP. The performance of the CADe system is evaluated by calculating
the competition performance metric (CPM) [32]. CPM is the average sensitivity at

seven pre-defined false positives per scan: 1/8, 1/4, 1/2, 1, 2, 4, 8 on the free-response
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receiver operating characteristic (FROC) curve [33]. A higher CPM score means better

performance.

4.3 Experiment Results

In this study, two experiments are conducted to verify the proposed 3-D HD-
YOLOv4 model's effectiveness. One is the ablation study of the integrated modules in
the proposed model, and the other is the comparison between the proposed model and
other state-of-the-art (SOTA) models. The details are described in the following

sections.

4.3.1 Ablation Study

The proposed 3-D HD-YOLOv4 detection model is modified from the YOLOv4
[9] by integrating the SE module [10], the RFB module [11], the D-head module [12],
and the cross stage parallel branch mechanism. To verify the enhancement of these
modifications gradually, two ablation studies are executed. One is the CPM scores
comparison between different methods, and the other compares the number of false
negatives (FN) between them. Table 4-1 lists the results of the first ablation study. The
CPM score of 3-D YOLOvV4 is 0.887. Then, by applying the SE-CSP stage block, the
RFB module, the D-head module, and the cross stage parallel branch mechanism to the
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3-D YOLOv4 sequentially, the performance is raised to 0.896, 0.898, 0.899, and 0.911,

respectively. The proposed modifications could improve the detection capability. The

FROC of different models is illustrated in Fig. 4-1.

Table 4-1 The CPM scores comparison of the different models.

Model Param. 1/8 1/4 1/2 1 2 4 8 CPM

3-D YOLOV4 1.83M 0.768 0.821 0.874 0.910 0.935 0945 0.959 0.887

3-D YOLOV4+SE 212M 0.777 0.829 0.877 0.927 0.947 0.957 0.959 0.896

3-D YOLOV4+SE+RFB 225M 0.782 0.845 0.886 0.922 0.944 0954 0.959 0.898

3-D YOLOV4+SE+RFB +D-head 2.26 M 0.785 0.843 0.895 0.917 0.937 0.957 0.962 0.899
3-D HD-YOLOv4 271M 0791 0.847 0.890 0.936 0960 0970 0.982 0.911

FROC Performance - LUNA16

0.95 1

0.90

Sensitivity

0.85

0.804 _

—— 3-D HD-YOLOv4, CPM = 0.9109
3-D YOLOv4+SE+RFB+D-head, CPM = 0.8994
3-D YOLOv4+SE+RFB, CPM = 0.8988
3-D YOLOv4+SE, CPM = 0.8960
—— 3-DYOLOv4, CPM = 0.8874

0.75 T
0.125 0.25

Fig. 4-1 The FROC performance comparison of different models.

0.5

1

Average number of false positives per scan

Next, the comparison of the number of FNs is illustrated in Fig. 4-2. The FNs are

divided into small, medium, and large groups according to the diameter d (mm). The
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small, medium, and large groups are with d <5, 5 <d < 10, and 10 < d, respectively. In

comparing the small group, the number of FNs of the proposed model is eight while

the other models are nearby 25. For the medium and large groups, the FNs omitted by

the proposed model are 7 and 6, respectively, and those excluded by the other methods

are greater or equal to 10. The number of the FNs by the proposed detection model is

only 21, while those by the other models are more than 45.

60
50 4749 49
40
LL
20
I I 1213 ol , 1 10t I
10 I I
. l - II
d< 5<d<10 10<d Total
(mm)

®3-D YOLOV4 w 3-D YOLOV4+SE

3-D YOLOV4+SE+RFB 3-D YOLOvV4+SE+RFB+D-head

= 3-D HD-YOLOv4

Fig. 4-2 The comparison of different models with the number of false negatives grouped

by the diameter d (mm).

4.3.2 Comparison with SOTA
To analyze the performance of the proposed model, we further compare it with
several SOTA methods on the LUNA16 dataset by using the CPM score shown in Table

4-2. The CPM scores obtained by the SOTA methods are in the range of 0.862 and
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0.897, and that by the proposed model is 0.911, which surpasses the top two models by

0.014 and 0.020, respectively. Furthermore, the sensitivities of our detection model in

FPs per scan 1/8, 2, 4, and 8 are 0.791, 0.960, 0.970, and 0.982, which are all in the first

place.

Table 4-2 The comparison with state-of-the-art methods on the LUNA16 dataset.

Methods Param. 1/8 1/4 1/2 1 2 4 8 CPM

Li et al. [34] - 0.739 0803 0.858 0.888 0.907 0916 0920 0.862
Song et al. [35] - - - - 0911 0.928 - 0.948 -

Mei et al. [36] - 0.712 0802 0865 0901 0937 0946 0.955 0.874

Wang et al. [37] - 0.676 0776 0879 0949 0958 0958 0.958 0.878

Ding et al. [38] 11.72M 0.748 0.853 0.887 0.922 0938 0944 0946 0.891
Khosravanetal. [39] 457M 0709 0836 0921 0953 0.953 0.953 0.953 0.897
Proposed 271M 0.791 0847 0890 0936 0960 0970 0982 0.911

4.4 Discussion

The proposed method is integrated with four modifications in this study, including
the SE module, RFB module, D-head module, and cross stage parallel branch. The first
two modifications are the major factors of the predicted confidence score, and the
remaining two are that of the detection capability. With the enhancements of predicted
confidence score and detection capability, the CPM score boosts by 0.011 and 0.013,
respectively. Furthermore, the number of FNs is significantly reduced from about 50 to
21 by adopting four modifications simultaneously, and all the sensitivities at the pre-

defined FPs per scan are improved by about 0.025. With the comparison of other SOTA
28
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methods, the sensitivities of the proposed method at FPs per scan 1/8, 2, 4, and 8 are

the highest. These results show the improvement of each module applied to 3-D

YOLOV4 and the outperformance of 3-D HD-YOLOVA4 related to other SOTA methods

on the same dataset.

In this study, the SE and RFB modules are employed in the backbone and neck

units to improve the predicted confidence score. Hence, the experiments by integrating

the SE module and the RFB module are performed to verify the effectiveness. In the

experiments, each module is applied to the 3-D YOLOv4 sequentially. With the

attention mechanism provided by the SE module, all the sensitivities at the pre-defined

FPs per scan are improved. The SE module is used to advance the quality of the feature

representation by the self-gating mechanism [10]. Through the self-gating mechanism,

the weight obtained from the SE module highlights the feature more representative. As

shown in Fig. 4-1 and Fig. 4-2, the number of detected nodules decreases while the

FROC performance rises. This result indicates that the detected nodules have higher

confidence scores, and the attention mechanism suppresses the number of FPs. Next,

the integration of the RFB module endues the feature larger receptive field size, and

this modification slightly improves the CPM score and the sensitivities at FPs per scan

less or equal to 1/2.
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Additionally, the effectiveness of enhancement of detection ability by the D-head

and the cross stage parallel branch is verified and listed in Table 4-1. The results

indicate that with the D-head module and the slight increase in parameters, the CPM

score is boosted by 0.001, and the sensitivity at 8 FPs per scan is increased to 0.962.

The D-head module is constructed by integrating an FC-head module with a Conv-head

module. The Conv-head is a local operation that can only obtain information from a

restricted kernel size, while the FC-head constructed by fully connected architectures

is without this constrain. Thus, the D-head module can make more exhaustive usage of

the feature while keeping the localization ability of Conv-head. Furthermore, by

performing the cross stage parallel branch, the proposed 3-D HD-YOLOvV4 improves

all the sensitivities at the FPs per scan > one and detects more nodules, especially small

ones. The cross stage parallel branch delivers the more primitive information to the

head unit to avoid losing information while performing more dimension reduction

operations. The increasing number of detected nodules shows that the cross stage

parallel branch can significantly retain the subtle information that easily vanishes

during the process.

Next, the proposed system is compared with other SOTA methods on the same

dataset. The results exhibited the Table 4-2 present that the performance of our

proposed model outperforms that of SOTA methods. In the SOTA methods, excluding

30

doi:10.6342/NTU202102123



the multi-scale with the two-stage model proposed by Wang et al. [37], the remaining

detection models are designed with the single-scale and one-stage architecture [34-36,

39]. Compared to the single-scale and one-stage detection models, the multi-scale and

two-stage models could achieve higher accuracy but have more detection time [40]. To

pursue a faster algorithm and higher accuracy, the S4AND [39] proposed by Khosravan

et al. adopted the dense block module [41] to extremely extract the feature. In contrast,

this dense architecture made a significant increase in parameters. Relative to the dense

block system, our model surpasses its CPM score by 0.014 and only uses about half the

parameters of their proposed model. The proposed 3-D HD-YOLOv4, which adopts

multi-scale detection, one-stage procedure, and lightweight architecture, outperforms

the other SOTA methods.

Observations from the CT scan with the proposed system show that the proposed

3-D HD-YOLOvV4 performs well in general cases. The detected cases from the small

group, medium group, and large group are presented in Fig. 4-3. As illustrated in Fig.

4-3(a) and Fig. 4-3(b), the small nodule and the medium nodule with size 3.83 mm and

6.27 mm are both well detected, and the large nodule with size 25.87 mm shown in Fig.

4-3(c) is also observed as expected. Our method can adaptively choose the most proper

size anchor to detect nodules with different sizes with multi-scale detection.
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(a) (b) (b)

Fig. 4-3 The detected cases: (a) small nodule with size 3.83 mm, (b) medium nodule

with size 6.27 mm surrounded by lung tissues, and (c) large nodule with size
25.87 mm. (The ground truth is the bounding box in red, and the predicted

bounding box is in blue.)

However, the proposed method still has three shortcomings. First, despite the

lightweight framework and the remarkable detection capability of the proposed method,

the memory demand during the training process is enormous. This result might be

attributed to the architecture design without optimization. Second, compared to the 3-

D YOLOV4, the proposed model spends more time in the model training and inference

process due to the extra gradient calculation of the integrated modules and the

additional feature map prediction from the cross stage parallel branch mechanism.

Third, there are still some hard cases for our model to detect. As presented in Fig. 4-4(a)

and Fig. 4-4(b), the suspicious region near the trachea and the unclear edge small nodule

with size 4.70 mm are treated as FP and FN, respectively. These misjudgments may
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occur because of their misleading pathological features. In future works, some model

compression techniques, such as network pruning [42], knowledge distillation [43], and

network architecture search (NAS) [44], could be applied to reduce the redundant

settings of the proposed model to deal with both memory demand and time-consuming

issues. To improve the detection of hard cases, novel data augmentation and pre-train

techniques are worth employing.

s

(a) (b)
Fig. 4-4 The misjudgment detections: (a) suspicious region near the trachea and (b)
unclear edge small nodule with size 4.70 mm. (The ground truth is the

bounding box in red, and the predicted bounding box is in blue.)
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Chapter 5 Conclusions and Future Works

In this study, an end-to-end CNN-based CADe system, 3-D HD-YOLOV4, is
developed for pulmonary nodule detection in LDCT. The 3-D HD-YOLOV4 is
modified from the YOLOv4 by integrating the SE module, RFB module, D-head
module, and cross stage parallel branch mechanism to enhance the nodule detection
ability. The performance of the proposed CADe system is evaluated on the LUNAL6
dataset and compared with the current SOTA methods. The result shows that our
proposed system obtains a 0.911 CPM score which surpasses all the other SOTA
methods more than 0.014. For the sensitivities at 1/8, 2, 4, and 8 FPs per scan, the
performances of the proposed detection system are the highest than other methods. This
result indicates that our approach with fewer parameters has lower FPs and higher
sensitivities.

However, there is still room for the improvement of the CADe system. First, the
framework of the CNN model is without optimization, which leads to a great amount
of memory demand and time consumption during model training. Second, there are still
some hard cases for our system to detect. Therefore, some network compression
techniques, network pruning, knowledge distillation, NAS, etc., could be adopted to
decrease the memory and time demand during the process in future works. Furthermore,
experimenting with other methods, such as self-supervised pre-training with other
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datasets, backbone switching, or different hyperparameter settings, might be necessary

to improve the detection capability of the proposed system.
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