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摘要 

低顯影劑量電腦斷層掃描造影 (Low-dose Computed Tomography, LDCT) 技

術被廣泛應用於肺癌初期的結節偵測，以提高病患的存活率。然而，觀察數百張

的 LDCT 影像及每張掃描影像內部的小型結節非常耗時。因此，電腦輔助偵測 

(Computer-aided Detection, CADe) 系統被用於加速檢測流程及減輕放射科醫師的

負擔。由於近年來深度學習技術於電腦視覺領域的成功發展，越來越多以卷積神

經網路 (Convolutional Neural Network, CNN) 為基礎的 CADe系統被應用於醫學

使用上。 

此研究提出了一以 CNN為基礎的肺部結節偵測 CADe系統，該系統包含了

資料前處理、肺部結節偵測及初步結果後處理，共三個階段。在資料前處理的階

段中，影像的間距被標準化為相同，並對去除肺部外區域後的影像進行了正規化

處理，再將影像裁切為具有相同格式的數個部分。接著，經過前處理的影像會作

為偵測模型的輸入，並由模型輸出一序列的候選結節及其位置、直徑大小。所提

出的 CNN偵測模型被取名為 3-D Hyper Receptive Field and Dual Head YOLOv4 

(3-D HD-YOLOv4) ，是修改自 YOLOv4網路的架構。為了提升原 YOLOv4所萃

取特徵的代表性，加入了壓縮激勵 (Squeeze-and-excitation, SE) 模塊和感知域 

(Receptive Field Block, RFB) 模塊。此外，雙頭 (Dual Head, D-head) 模塊和跨階

平行分支 (cross stage parallel branch) 機制也被用於增強原 YOLOv4 的結節偵測

能力。最後，在初步結果後處理的部分，對於相同結節的重複預測將會被去除。 
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根據實驗結果顯示，SE 和 RFB 模塊可以大幅降低誤報 (false positives, FPs) 

的數量，以及 D-head 模塊和跨階平行分支機制可以大幅增加預測靈敏度 

(Sensitivity)。除此之外，所提出的 CADe系統在公開的資料集測試上獲得了 0.911

的競爭績效指標分數 (Competition Performance Metric, CPM)，在誤報率 (FPs per 

Scan) 為 8的靈敏度為 0.982。相較於其他最新技術的系統，所提出的 CADe系統

展現了其優異的表現。整體結果指出，我們針對模型的改進可以大幅提升其對於

結節的偵測能力，並達到目前最先進技術的表現。 

關鍵詞：低顯影劑量電腦斷層掃描，電腦輔助偵測系統，卷積神經網路，單階段

物件偵測，YOLOv4  



doi:10.6342/NTU202102123

 V 

Abstract 

Low-dose computed tomography (LDCT) screening has been widely used to 

detect lung nodules and reduce early mortality. However, reviewing the LDCT is a 

time-consuming process due to hundreds of slices and the small size of the nodule in 

each scan. For lightening the burden of radiologists, the computer-aided detection 

(CADe) system is proposed as the second review tool to accelerate the procedure. In 

recent years, the convolutional neural network (CNN) based CADe system becomes 

popular in medical usage because of the success of deep learning in computer vision. 

In this study, a CNN-based CADe system containing the data preprocessing, the 

lung nodule detection, and the initial result post-processing is proposed for the 

pulmonary nodule detection. In the data preprocessing, the spacing equalization 

standardizes the images to a consistent spacing, the lung area regularization removes 

the area outside the lungs and normalizes the intensity of the voxels, and the volume of 

interest (VOI) extraction divides the LDCT scan into numerous VOIs with consistent 

format. Then, the extracted VOIs are fed into the proposed detection model, three-

dimensional (3-D) HD-YOLOv4 modified from the YOLOv4 for the nodule detection. 

To increase the representation of the extracted feature in YOLOv4, the squeeze-and-

excitation (SE) module and the receptive field block (RFB) module are embedded. 

Furthermore, the dual head (D-head) module and the cross stage parallel branch 



doi:10.6342/NTU202102123

 VI 

architecture are adopted to enhance the nodule detection capability of YOLOv4. Lastly, 

the initial result post-processing eliminates the duplicate detections on the same nodule. 

Our experiment results show that the SE and RFB modules significantly reduce 

the number of false positives (FPs). The D-head module and the cross stage parallel 

branch mechanism could dramatically increase the sensitivity. Moreover, the proposed 

system obtains the 0.911 competition performance metric (CPM) score on the public 

dataset, and the sensitivity at eight false positives per scan is 0.982. Compared with 

other state-of-the-art systems, the proposed CADe system shows its outperformance. 

These results indicate that the modifications to the detection model can remarkably 

improve its nodule detection capability and achieve state-of-the-art performance. 

Keywords: Low-dose computed tomography, Computer-aided detection system, 

Convolutional neural network, One-stage object detection, You Only Look Once 

version 4. 
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Chapter 1 Introduction 

Lung cancer is one of the most common cancers, with the highest cancer death rate 

(18%) in the world [1]. The primary reason for the high mortality rate is that the lung 

cancer symptoms only become apparent after the advanced stage [2]. The best approach 

to increasing the survival rate is to detect and diagnose early; after that, the medical 

interventions could treat the patients. Computed tomography (CT) screening is a 

common approach to detect lung nodules, and the effectiveness of annual low-dose 

computed tomography (LDCT) screening for lung cancer has been verified in clinical 

trials [3-5]. However, making large volumes of LDCT scans screening accurate and 

efficient is a time-consuming process. In this case, the computer-aided detection (CADe) 

system is a helpful tool for assisting radiologists in accelerating the LDCT review. 

Computer vision has advanced by leaps and bounds in the past few years due to 

the great success of deep learning adaptation on convolutional neural networks (CNNs) 

[6]. According to the reports [7, 8], developing a CADe system with CNN architecture 

in medical images is a trend because of the automatic abilities of feature extraction for 

object detection and the outstanding performance. These powerful CNN detection 

models are usually categorized into the one-stage and two-stage object detectors. In 

general, two-stage detectors are composed of a region proposal stage and a false 

positives (FPs) reduction stage. This configuration which needs more parameters and 
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training time, leads to both higher accuracy and model latency. On the contrary, the 

one-stage object detectors have lower accuracy and faster speed. Recently, a real-time 

one-stage object detection model, You Only Look Once version 4 (YOLOv4) [9], has 

been verified that it has the state-of-the-art (SOTA) performance for the task of object 

detection on the common objects in context (COCO) dataset. The most distinguishing 

features of YOLOv4 are its real-time latency, lightweight network, and high enough 

accuracy. Due to the remarkable performance of YOLOv4 on common object detection, 

it is chosen as the main network architecture for nodule detection in this study. 

However, the original YOLOv4 is designed and optimized for 2-D common object 

detection, which is considerably different from the lung nodule detection in 3-D LDCT. 

In this study, we focus on the following three perspectives to modify the architecture 

of YOLOv4. First, there are RGB three channels in the common image while there is 

only one grayscale channel in the 3-D LDCT. Therefore, more representative and 

informatic features extracted by the CNN model from the LDCT are required to obtain 

better nodule detection performance. Second, compared to the common object 

detection, the area ratio of the nodule in the whole 3-D LDCT is extremely small. In 

this case, the down-sample operations in the YOLOv4 might easily cause subtle 

information vanishing during the dimension reduction. Last, the common object 

detection is usually a more than hundreds-of-classes classification task, but the lung 
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nodule detection is a two-class classification problem. The channel size adjustment is 

necessary to lower the memory demand of 3-D LDCT and make the optimization 

process more efficient. 

In 2017, Hu et al. proposed the squeeze-and-excitation network (SENet) 

constructed by the squeeze-and-excitation (SE) module for the image tasks in the 

ImageNet large scale visual recognition challenge (ILSVRC) 2017 [10]. The SENet 

reduces the top-5 error rate to 2.25% of the 2016 winning entry in the classification task 

with the channel-wise attention mechanism. The result shows that the SE module could 

enhance the representative of the extracted features and obtain better classification 

results. In 2018, the receptive field block (RFB) module was designed by Liu et al., and 

the RFB network (RFB Net) delivered a significant performance on the Pascal VOC 

and COCO dataset [11]. The RFB module is a lightweight structure that can expand the 

receptive field size of the feature map to obtain more informative and discriminative 

features. These two modules could significantly improve the quality of the feature 

extraction in the CNN model. 

In 2020, the dual head (D-head) module, which combined the fully connected head 

(FC-head) for the classification task and the convolution head (Conv-head) for the 

regression task, was delivered by Wu et al. [12]. The D-head module gains 3.5 average 

precision (AP) improvement on the COCO dataset from the feature pyramid network 
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(FPN). This result indicates that the D-head module could boost the detection ability 

significantly with only a few parameters increased. On the other hand, the down-sample 

operation might cause the primitive information to vanish, especially small nodules 

with sizes less than five millimeters. To address this issue, the cross stage parallel 

branch mechanism is proposed in our detection model. The extra feature map generated 

from this mechanism could remarkably increase the sensitivity of the nodule detection 

task. These two modules could reinforce the nodule detection ability for the CNN model. 

In this study, a CNN-based CADe system, 3-D Hyper Receptive Field and Dual 

Head YOLOv4 (3-D HD-YOLOv4) modified from the YOLOv4, is developed for 

nodule detection in 3-D LDCT scans. The introduction of the architecture of the 

proposed CADe system is in the following chapters. The materials used for the 

experiments and evaluations are mentioned in Chapter 2. Next, the details of the 

proposed CADe system are elaborated in Chapter 3. In Chapter 4, the experiment 

results evaluation, including the ablation study and the comparisons with other SOTA 

methods, are presented. Lastly, the conclusions and the future works are stated in 

Chapter 5. 
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Chapter 2 Materials 

The Lung Nodule Analysis 2016 (LUNA16) [13] is a public online challenge 

organized by several researchers from the Netherlands and Italy in 2016. The purpose 

of this challenge is to enable participants to test their algorithms or proposed methods 

on a common database under a standardized evaluation procedure. The LUNA16 

dataset is a subset of the Lung Image Database Consortium image collection (LIDC-

IDRI) [14] which consists of thoracic low-dose computed tomography (LDCT) scans 

with lesion annotations determined independently by four experienced radiologists. 

The lesions contain nodules and non-nodule, and each nodule is also annotated with 

coordinates and diameter. 

The LUNA16 dataset comprises the LDCT scans with slice thickness  2.5 mm 

and the nodules with diameter  3 mm. Besides, each nodule annotation is accepted by 

at least three radiologists. Hence, there are 888 LDCT scans, including 1,186 nodules 

with a mean size of 8.31±4.76 mm, in the LUNA16 dataset. The distribution of nodule 

size is illustrated in Fig. 2-1. 
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Fig. 2-1 The distribution of nodule size (mm). 
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Chapter 3 Method 

This study proposes an end-to-end CADe system based on YOLOv4 architecture 

for lung nodule detection in 3-D LDCT scans. The input of our approach is the 3-D 

LDCT scan, and the output is the coordinates and diameter of each detected nodule 

candidate. The proposed CADe system is composed of data preprocessing, lung nodule 

detection, and initial result post-processing. Firstly, the data preprocessing is performed 

to divide each 3-D LDCT scan into volumes of interest (VOIs) with a consistent format. 

Then, the VOIs are fed into the nodule detection model 3-D HD-YOLOv4, to generate 

a list of nodule candidates with confidence scores, coordinates, and diameters as an 

initial detection result. However, these nodule candidates may contain duplicate 

detections of the same nodule, overlapping with each other. Thus, the initial result post-

processing is applied to the initial detection result to eliminate the overlapping 

candidates and obtain the final result. The flowchart of the CADe system is illustrated 

in Fig. 3-1. 

 



doi:10.6342/NTU202102123

 8 

 

Fig. 3-1 The flowchart of the proposed CADe system. 
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3.1 Data Preprocessing 

Before executing the lung nodule detection, two problems need to be addressed. 

One is the slice spacing inconsistency of the used LDCT scans, and the other is the 

memory demand of the lung nodule detection model with 3-D input. Therefore, the data 

preprocessing, including the spacing equalization and the image modulation, is 

performed to overcome the problems. The slice spacing problem is addressed in the 

spacing equalization by adopting the nearest neighbor interpolation method [15]. The 

memory demand problem is subdued in image modulation by performing the lung area 

regularization and the VOI extraction in each 3-D LDCT scan sequentially. The lung 

area regularization is composed of noise area elimination and voxel intensity 

normalization. The noise area elimination is to remove the useless areas where is 

outside the lungs. Then, the voxel intensity normalization is applied to convert the 

intensity of each voxel into the range of 0 to 255. After the lung area regularization, the 

VOI extraction is adopted to divide the regularized LDCT scan into several VOIs with 

a fixed size of 80×80×80 pixels. The flowchart of the data preprocessing is illustrated 

in Fig. 3-2. 
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Fig. 3-2 The flowchart of the data preprocessing. 
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five CSP stage blocks. Then, the different level feature maps are fused in the neck unit 

to generate more informative feature maps. Finally, the combined features and the pre-

defined anchors are utilized to predict objects in the head unit. 

The CSP stage block, responsible for reducing the computation cost by down-

sample operation and enhancing the model capability in learning, is the critical feature 

map generator in the backbone unit. As shown in Fig. 3-3(a), a CSP stage block includes 

N CSP blocks (CSPBlock) and four convolution blocks (ConvBlock). The CSPBlock 

illustrated in Fig. 3-3(b) is made up of two ConvBlocks and the skip connection, and 

the ConvBlock presented in Fig. 3-3(c) is composed of a convolution layer, a batch 

normalization layer [16], and a Mish activation function [17]. 

 

 



doi:10.6342/NTU202102123

 12 

 

  

(a) (b) (c) 
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framework are split into parallel branches to retain the subtle information that easily 

vanished during the process. The details are introduced in the following section. 

 

3.2.2 3-D HD-YOLOv4 

In this study, a 3-D HD-YOLOv4 integrates with the SE module [10], the hyper 

receptive field module [11], and the (D-head structure [12] in the different units of 3-D 

YOLOv4 is proposed for nodule detection. The SE-CSP stage block replaces the 

CSPBlock with the SE module in the backbone unit, which replaces the CSP stage 

block to highlight the critical features. The hyper receptive field module [11] is utilized 

in the neck unit to broaden the receptive field [18] of convolution to absorb more 

information. The dual head and the cross stage parallel branch are adopted in the head 

unit to improve nodule localization and determination capability. The architecture of 

the proposed 3-D HD-YOLOv4 is illustrated in Fig. 3-4. 

 

Fig. 3-4 The architecture of the proposed 3-D HD-YOLOv4. 
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 SE-CSP Stage Block 

An attention mechanism is an approach that distributes the allocation of available 

computational resources to the most informative usage [19]. The attention operator can 

generally be incorporated with several layers representing higher-level cognition for 

adaptation between modalities. The SE module is a lightweight attention operator used 

to reweight the features with gate mechanism during extraction by performing dynamic 

channel-wise feature recalibration [10]. The critical features contributing to detection 

or discrimination could be sieved out for performance improvement with the 

reweighting. The structure of the SE module shown in Fig. 3-5(a) is composed of an 

adaptive average pooling (AvgPooling) layer, two fully connected (FC) layers, a 

rectified linear unit (ReLU) activation function [20], a sigmoid activation function [21], 

and a multiplication operation. The AvgPooling layer is used to obtain the global 

average value in each channel of the feature map. Then the channel-wise weight is 

produced by transforming the average value through the following two FC layers and 

two activation functions. After the multiplication operation, the reweighted feature 

containing more discriminative information is generated. Therefore, the SE-CSP stage 

block constructed with the SE-CSPBlocks is used to create and highlight the essential 

feature maps in this study. The SE-CSPBlock combines the SE module and CSPBlock 

and is built by inserting the SE module before performing the addition operation of skip 
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connection. The structures of the SE-CSP stage block and SE-CSPBlock are presented 

in Fig. 3-5(b) and Fig. 3-5(c), respectively.  

 

 

 

(a) (b) (c) 

Fig. 3-5 The structures of the (a) SE module, the (b) SE-CSP stage block, and the (c) 

SE-CSPBlock. 

 

 Hyper Receptive Field 

The receptive field is the region in the input image that can be perceived by the 

model [18]. The greater receptive field size the model receives, the more context 

information from the entire image the model can receive. Thus, increasing the receptive 

field might improve the model performance [9]. Therefore, the RFB module [11] is 
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cascaded behind the backbone unit to apply the greater receptive field size into the 

detection model. The RFB module is built with the dilated convolution [22], capturing 

more context information with different receptive field sizes without increasing the 

parameters. As illustrated in Fig. 3-6, the RFB module mainly comprises multi-branch 

ConvBlocks with a trailing ConvBlock with different dilated rates and the skip 

connection where the dilation rate is the distance between two positions in the 

convolution layer. In the RFB module, the dilation rate in each trailing ConvBlock is 

set to the number of ConvBlocks in each branch. With the usage of the RFB module, 

the receptive field size of the feature map is significantly increased. 



doi:10.6342/NTU202102123

 17 

 

Fig. 3-6 The structure of the RFB module. 

 

 Dual Head and Cross Stage Parallel 

Branch 

In the CNN detection model, the localization and determination of the Conv-head 

module in the head unit and the dimension reduction in the backbone unit are often 

adopted. However, the Conv-head module and the dimension reduction will result in 
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the weaker recognition ability [12] and the information vanishing problem [23]. 

Therefore, the D-head module and the cross stage parallel branch are employed in the 

head unit to overcome the issues. 

First, to overcome the weaker recognition ability, the D-head module is developed 

for the ability improvement. The notion of D-head is to exploit the features obtained 

from the neck unit more properly than Conv-head. The structure of the Conv-head 

module, as illustrated in Fig. 3-7(a), is built with a ConvBlock and a convolution layer. 

Without the FC layer, the Conv-head is more proper to capture the entire object context 

for bounding box regression but weaker for object recognition. Therefore, to improve 

the performance of localization and recognition simultaneously, the D-head module, 

which includes a Conv-head and an FC-head module, is employed to replace the Conv-

head module in the head unit. Fig. 3-7(b) shows the architecture of the D-head module. 

The FC-head module is constructed only with two FC layers and a ReLU activation 

function. Each head of D-head will generate a set of coordinates, diameter, and a 

confidence score for a detection result, respectively. Because the purpose of the D-head 

is to improve the recognition capability, the coordinates and diameter are determined 

only by Conv-head, but the confidence score is determined by the following definition: 

 S = SFC + (1 – SFC)  SConv (1) 
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where S, SFC, and SConv, are the final confidence score, the FC-head confidence score, 

and the Conv-head confidence score, respectively. With the D-head module, the 

performance of localization and recognition could be raised in the meanwhile. 

 
 

(a) (b) 

Fig. 3-7 The structures of the (a) Conv-head module and the (b) D-head module. 

Second, our proposed detection model uses cross stage parallel branch splitting to 

address the information vanishing problem. The notion of cross stage parallel branch 

splitting is that an additional route which is the branch of the outputs of the first two 

SE-CSP stage blocks in the backbone unit is outstretched to deliver more primitive 

information to a D-head module in the head unit. As shown in Fig. 3-8, the output route 

from the second SE-CSP stage block in the backbone unit obtains cross stage attention 

information by two SE modules and passes a CSP stage block, an RFB module, and a 

ConvBlock. The cross stage parallel branch mechanism has neither part nor lot in the 

feature fusion to conquer information vanishing. With the cross stage parallel branch, 

the nodule detection performance, smaller nodules especially, will be advanced. 
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Fig. 3-8 The architecture of the cross stage parallel branch. 

 

3.3 Initial Result Post-processing 

The initial results with confidence scores, coordinates, and diameters are 

generated after the lung nodule detection. However, these results may contain duplicate 

predictions on the same nodule, overlapping with each other. The non-maximum 

suppression (NMS) method [24] is used to combine them to deal with this problem. 

Suppose the intersection over union (IoU) of any two predicted bounding boxes is 

greater than 0.1. In that case, the NMS will only preserve the one with the greater 

confidence score until no IoU conforms to the criterion. The flowchart of the initial 

result post-processing is illustrated in Fig. 3-9. 
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Fig. 3-9 The flowchart of the initial result post-processing. 

 

3.4 Loss Function 

The loss function is a critical criterion for training a model. Therefore, in this study, 

a loss function which is the sum of the two losses calculated from Conv-head and FC-

head is proposed to train out the 3-D HD-YOLOv4 detection model. The proposed loss 

function is defined as: 

 LTotal = LFC + LConv (2) 

which LTotal, LFC, and LConv are the losses of the total loss, FC-head, and Conv-head, 

respectively. The loss of each head is composed of a classification term for confidence 

score prediction and a regression term for bounding box localization. The definitions 

of the LFC and LConv are in the following: 

 LFC =  λFC  LFC
Cls + (1 - λFC)  LFC

Reg
 (3) 

 LConv =  (1 - λConv)  LConv
Cls  + λConv  LConv

Reg
 (4) 
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where LFC
Cls and LFC

Reg
 are the classification loss and the regression loss in LFC, and 

LConv
Cls  and LConv

Reg
 are the classification term and the regression term in LConv. FC and 

Conv are the weights that control the balance between two different terms in each loss, 

and they are set to 0.7 and 0.8, respectively. Moreover, the binary cross entropy loss is 

used to compute the classification loss, and the Smooth-L1 loss [25] is employed to 

calculate the regression loss. 

 

3.5 Model Training 

Before training the proposed detection model, two issues are addressed to avoid 

biased training and ensure the effectiveness of the detection model. One is the 

distribution imbalance in the nodule size and sample, and the other is the overfitting 

problem [26]. Firstly, the distribution imbalance problems are overcome by increasing 

the large nodules whose diameters are greater than 10 mm, and applying the hard 

negative mining [27] method during the training process, respectively. With the larger 

nodules increase, the detection ability on larger targets could be enhanced. On the other 

hand, the number of negative samples could be controlled by applying the hard negative 

mining method. The model could focus more on the hard negative samples rather than 

the easier ones. With the hard negative mining method, the false positives (FPs) are 

reduced significantly. Secondly, the overfitting problem is conquered by applying the 
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flipping data augmentation and the random crop [28] method during training. If the IoU 

of the cropped volume and the ground truth bounding box is greater than 0.5, the 

cropped volume is regarded as a positive sample in the random crop implementation. 

On the other hand, if the IoU is less than 0.02, it will be considered a negative sample. 

The other cases that the IoU is in the range of 0.02 and 0.5 are ignored. Furthermore, 

during the model training, the batch size is set to 8, the training epoch is set to 400, and 

the optimizer, AdaBelief [29], with weight decay 0.0001. The initial learning rate of 

the optimizer is set to 0.001, updated by the cosine annealing mechanism [30], and will 

be decreased by a factor of 10 for every 200 epochs. 
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Chapter 4 Results and Discussion 

 

4.1 Experiment Environment 

The proposed CADe system is implemented using the Pytorch 1.8.0 framework 

and the programming language Python 3.6.12. The entire experiment is run on a PC 

equipped with an Intel i7-10700 2.9GHz CPU (NVIDIA, Santa Clara, CA, USA) with 

16 GB RAM and an NVIDIA GeForce RTX 3090 GPU with 24 GB memory (NVIDIA, 

Santa Clara, CA, USA). 

 

4.2 Evaluation 

In this study, the LUNA16 dataset is randomly divided into five equal-sized parts, 

and the 5-fold cross-validation [31] experiment is performed. The main criteria for 

evaluating the CADe system are the sensitivity and the corresponding FP per scan. The 

predicted nodule candidate from the CADe system is regarded as a true positive (TP) if 

the candidate is located within the radius of the ground truth nodule center. Otherwise, 

it is considered an FP. The performance of the CADe system is evaluated by calculating 

the competition performance metric (CPM) [32]. CPM is the average sensitivity at 

seven pre-defined false positives per scan: 1/8, 1/4, 1/2, 1, 2, 4, 8 on the free-response 
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receiver operating characteristic (FROC) curve [33]. A higher CPM score means better 

performance. 

 

4.3 Experiment Results 

In this study, two experiments are conducted to verify the proposed 3-D HD-

YOLOv4 model's effectiveness. One is the ablation study of the integrated modules in 

the proposed model, and the other is the comparison between the proposed model and 

other state-of-the-art (SOTA) models. The details are described in the following 

sections. 

 

4.3.1 Ablation Study 

The proposed 3-D HD-YOLOv4 detection model is modified from the YOLOv4 

[9] by integrating the SE module [10], the RFB module [11], the D-head module [12], 

and the cross stage parallel branch mechanism. To verify the enhancement of these 

modifications gradually, two ablation studies are executed. One is the CPM scores 

comparison between different methods, and the other compares the number of false 

negatives (FN) between them. Table 4-1 lists the results of the first ablation study. The 

CPM score of 3-D YOLOv4 is 0.887. Then, by applying the SE-CSP stage block, the 

RFB module, the D-head module, and the cross stage parallel branch mechanism to the 
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3-D YOLOv4 sequentially, the performance is raised to 0.896, 0.898, 0.899, and 0.911, 

respectively. The proposed modifications could improve the detection capability. The 

FROC of different models is illustrated in Fig. 4-1. 

Table 4-1 The CPM scores comparison of the different models. 

Model Param. 1/8 1/4 1/2 1 2 4 8 CPM 

3-D YOLOv4 1.83 M 0.768 0.821 0.874 0.910 0.935 0.945 0.959 0.887 

3-D YOLOv4+SE 2.12 M 0.777 0.829 0.877 0.927 0.947 0.957 0.959 0.896 

3-D YOLOv4+SE+RFB 2.25 M 0.782 0.845 0.886 0.922 0.944 0.954 0.959 0.898 

3-D YOLOv4+SE+RFB +D-head 2.26 M 0.785 0.843 0.895 0.917 0.937 0.957 0.962 0.899 

3-D HD-YOLOv4 2.71 M 0.791 0.847 0.890 0.936 0.960 0.970 0.982 0.911 

 

Fig. 4-1 The FROC performance comparison of different models. 

Next, the comparison of the number of FNs is illustrated in Fig. 4-2. The FNs are 

divided into small, medium, and large groups according to the diameter d (mm). The 
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small, medium, and large groups are with d  5, 5 < d  10, and 10 < d, respectively. In 

comparing the small group, the number of FNs of the proposed model is eight while 

the other models are nearby 25. For the medium and large groups, the FNs omitted by 

the proposed model are 7 and 6, respectively, and those excluded by the other methods 

are greater or equal to 10. The number of the FNs by the proposed detection model is 

only 21, while those by the other models are more than 45. 

 

Fig. 4-2 The comparison of different models with the number of false negatives grouped 

by the diameter d (mm). 

 

4.3.2 Comparison with SOTA 

To analyze the performance of the proposed model, we further compare it with 

several SOTA methods on the LUNA16 dataset by using the CPM score shown in Table 

4-2. The CPM scores obtained by the SOTA methods are in the range of 0.862 and 
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0.897, and that by the proposed model is 0.911, which surpasses the top two models by 

0.014 and 0.020, respectively. Furthermore, the sensitivities of our detection model in 

FPs per scan 1/8, 2, 4, and 8 are 0.791, 0.960, 0.970, and 0.982, which are all in the first 

place. 

Table 4-2 The comparison with state-of-the-art methods on the LUNA16 dataset. 

Methods Param. 1/8 1/4 1/2 1 2 4 8 CPM 

Li et al. [34] - 0.739 0.803 0.858 0.888 0.907 0.916 0.920 0.862 

Song et al. [35] - - - - 0.911 0.928 - 0.948 - 

Mei et al. [36] - 0.712 0.802 0.865 0.901 0.937 0.946 0.955 0.874 

Wang et al. [37] - 0.676 0.776 0.879 0.949 0.958 0.958 0.958 0.878 

Ding et al. [38] 11.72 M 0.748 0.853 0.887 0.922 0.938 0.944 0.946 0.891 

Khosravan et al. [39] 4.57 M 0.709 0.836 0.921 0.953 0.953 0.953 0.953 0.897 

Proposed 2.71 M 0.791 0.847 0.890 0.936 0.960 0.970 0.982 0.911 

 

4.4 Discussion 

The proposed method is integrated with four modifications in this study, including 

the SE module, RFB module, D-head module, and cross stage parallel branch. The first 

two modifications are the major factors of the predicted confidence score, and the 

remaining two are that of the detection capability. With the enhancements of predicted 

confidence score and detection capability, the CPM score boosts by 0.011 and 0.013, 

respectively. Furthermore, the number of FNs is significantly reduced from about 50 to 

21 by adopting four modifications simultaneously, and all the sensitivities at the pre-

defined FPs per scan are improved by about 0.025. With the comparison of other SOTA 
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methods, the sensitivities of the proposed method at FPs per scan 1/8, 2, 4, and 8 are 

the highest. These results show the improvement of each module applied to 3-D 

YOLOv4 and the outperformance of 3-D HD-YOLOv4 related to other SOTA methods 

on the same dataset. 

In this study, the SE and RFB modules are employed in the backbone and neck 

units to improve the predicted confidence score. Hence, the experiments by integrating 

the SE module and the RFB module are performed to verify the effectiveness. In the 

experiments, each module is applied to the 3-D YOLOv4 sequentially. With the 

attention mechanism provided by the SE module, all the sensitivities at the pre-defined 

FPs per scan are improved. The SE module is used to advance the quality of the feature 

representation by the self-gating mechanism [10]. Through the self-gating mechanism, 

the weight obtained from the SE module highlights the feature more representative. As 

shown in Fig. 4-1 and Fig. 4-2, the number of detected nodules decreases while the 

FROC performance rises. This result indicates that the detected nodules have higher 

confidence scores, and the attention mechanism suppresses the number of FPs. Next, 

the integration of the RFB module endues the feature larger receptive field size, and 

this modification slightly improves the CPM score and the sensitivities at FPs per scan 

less or equal to 1/2.  
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Additionally, the effectiveness of enhancement of detection ability by the D-head 

and the cross stage parallel branch is verified and listed in Table 4-1. The results 

indicate that with the D-head module and the slight increase in parameters, the CPM 

score is boosted by 0.001, and the sensitivity at 8 FPs per scan is increased to 0.962. 

The D-head module is constructed by integrating an FC-head module with a Conv-head 

module. The Conv-head is a local operation that can only obtain information from a 

restricted kernel size, while the FC-head constructed by fully connected architectures 

is without this constrain. Thus, the D-head module can make more exhaustive usage of 

the feature while keeping the localization ability of Conv-head. Furthermore, by 

performing the cross stage parallel branch, the proposed 3-D HD-YOLOv4 improves 

all the sensitivities at the FPs per scan  one and detects more nodules, especially small 

ones. The cross stage parallel branch delivers the more primitive information to the 

head unit to avoid losing information while performing more dimension reduction 

operations. The increasing number of detected nodules shows that the cross stage 

parallel branch can significantly retain the subtle information that easily vanishes 

during the process. 

Next, the proposed system is compared with other SOTA methods on the same 

dataset. The results exhibited the Table 4-2 present that the performance of our 

proposed model outperforms that of SOTA methods. In the SOTA methods, excluding 
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the multi-scale with the two-stage model proposed by Wang et al. [37], the remaining 

detection models are designed with the single-scale and one-stage architecture [34-36, 

39]. Compared to the single-scale and one-stage detection models, the multi-scale and 

two-stage models could achieve higher accuracy but have more detection time [40]. To 

pursue a faster algorithm and higher accuracy, the S4ND [39] proposed by Khosravan 

et al. adopted the dense block module [41] to extremely extract the feature. In contrast, 

this dense architecture made a significant increase in parameters. Relative to the dense 

block system, our model surpasses its CPM score by 0.014 and only uses about half the 

parameters of their proposed model. The proposed 3-D HD-YOLOv4, which adopts 

multi-scale detection, one-stage procedure, and lightweight architecture, outperforms 

the other SOTA methods. 

Observations from the CT scan with the proposed system show that the proposed 

3-D HD-YOLOv4 performs well in general cases. The detected cases from the small 

group, medium group, and large group are presented in Fig. 4-3. As illustrated in Fig. 

4-3(a) and Fig. 4-3(b), the small nodule and the medium nodule with size 3.83 mm and 

6.27 mm are both well detected, and the large nodule with size 25.87 mm shown in Fig. 

4-3(c) is also observed as expected. Our method can adaptively choose the most proper 

size anchor to detect nodules with different sizes with multi-scale detection. 
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(a) (b) (b) 

Fig. 4-3 The detected cases: (a) small nodule with size 3.83 mm, (b) medium nodule 

with size 6.27 mm surrounded by lung tissues, and (c) large nodule with size 

25.87 mm. (The ground truth is the bounding box in red, and the predicted 

bounding box is in blue.) 

However, the proposed method still has three shortcomings. First, despite the 

lightweight framework and the remarkable detection capability of the proposed method, 

the memory demand during the training process is enormous. This result might be 

attributed to the architecture design without optimization. Second, compared to the 3-

D YOLOv4, the proposed model spends more time in the model training and inference 

process due to the extra gradient calculation of the integrated modules and the 

additional feature map prediction from the cross stage parallel branch mechanism. 

Third, there are still some hard cases for our model to detect. As presented in Fig. 4-4(a) 

and Fig. 4-4(b), the suspicious region near the trachea and the unclear edge small nodule 

with size 4.70 mm are treated as FP and FN, respectively. These misjudgments may 
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occur because of their misleading pathological features. In future works, some model 

compression techniques, such as network pruning [42], knowledge distillation [43], and 

network architecture search (NAS) [44], could be applied to reduce the redundant 

settings of the proposed model to deal with both memory demand and time-consuming 

issues. To improve the detection of hard cases, novel data augmentation and pre-train 

techniques are worth employing. 

  

(a) (b) 

Fig. 4-4 The misjudgment detections: (a) suspicious region near the trachea and (b) 

unclear edge small nodule with size 4.70 mm. (The ground truth is the 

bounding box in red, and the predicted bounding box is in blue.) 
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Chapter 5 Conclusions and Future Works 

In this study, an end-to-end CNN-based CADe system, 3-D HD-YOLOv4, is 

developed for pulmonary nodule detection in LDCT. The 3-D HD-YOLOv4 is 

modified from the YOLOv4 by integrating the SE module, RFB module, D-head 

module, and cross stage parallel branch mechanism to enhance the nodule detection 

ability. The performance of the proposed CADe system is evaluated on the LUNA16 

dataset and compared with the current SOTA methods. The result shows that our 

proposed system obtains a 0.911 CPM score which surpasses all the other SOTA 

methods more than 0.014. For the sensitivities at 1/8, 2, 4, and 8 FPs per scan, the 

performances of the proposed detection system are the highest than other methods. This 

result indicates that our approach with fewer parameters has lower FPs and higher 

sensitivities. 

However, there is still room for the improvement of the CADe system. First, the 

framework of the CNN model is without optimization, which leads to a great amount 

of memory demand and time consumption during model training. Second, there are still 

some hard cases for our system to detect. Therefore, some network compression 

techniques, network pruning, knowledge distillation, NAS, etc., could be adopted to 

decrease the memory and time demand during the process in future works. Furthermore, 

experimenting with other methods, such as self-supervised pre-training with other 
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datasets, backbone switching, or different hyperparameter settings, might be necessary 

to improve the detection capability of the proposed system. 
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