Pz B FLPFTRERICIAETFY T
AL

Department of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

P U2 S AR T IFE AT R it B
¥ EHED R WA
On Using Reinforcement Learning to Select
Modulation/Coding Schemes for Non-Orthogonal

Multiple Access in Multi-User Multiple-Input Multiple-
Output Systems with Limited Feedback

15 7e ik
Ya-Han Yang

o Hzm L
Advisor: Hung-Yun Hsieh, Ph.D.

PER R 108 & 2 7
February 2019

doi:10.6342/NTU201900453



RI2BER2 (F) HLE2MmHX
DREBeERE
AREIRZEZAKIFER S ITHERAL TR RILE T EE
ok oy

On Using Reinforcement Learning to Select Modulation/Coding
Schemes for Non-Orthogonal Multiple Access in Multi-User
Multiple-Input Multiple-Output Systems with Limited Feedback

WX A HEEE (R04942076) AR L2 KEEEZ I REH
RAFTRZE () 2%k "ERE 108 =1 A 17 B AT 7|+
REEBEZELTRBROIREA » 4B

i /%$f 2% y% (&%)

: (35 E#3%) &
Ty AL

‘ e o e
e 94 ‘KV%\ (52)




% P

FALpEkr 7 @ 0 fofiRAg i LB A B R e
FALREHAN D B AT ERR e EF R AR Fr A B T
PRl R PR RA RN LT AL RS 0 LE e
T o 7w s 0 pbis g R ASA LB 23 P FTlde ks
TRATHE > A3 - 4 infeff e ¥ by RHERRAG G AR v
FENE 4 i WA e oo
ERORBMAREIPL PR LA PR L > e Y 2 R E
FOpRp o2 e IFE L EF A FHREF AEH » RAF TR A T 0%
BEG BFEMe A FOo R R T NSNS FE M oFason E £ A XK 2T %
AFIA A enfp o RALEF L PR - R R &

G DO RERCRES LR O A R E LR

\\

CAGE - AR OPLEIRE AP ALHRBLRGAB R F DT
i 4 BALR > - B4F Y reinforcement learning &% & o B #R % %
B oakir > v @Bt ARt feB ik TR o LRI B B 5 ki
PP Lo N g MEBKTVenpsk  + R0 g rap AL F AT Pk s o

- =1
>qk
]
bl
|
&l
R
T
=

BB &P g o4 45 0 (RF 4 R T - HAFS
Ao e 3 LAr A - Ao BRI 2 R - E R > B rpFan
s L EE A FE e pE A kanp 3 o 2 REE T pRE o

Bt b PR AR AR E A R A R R T

=

2B B FIHLAPEE 0 WA F A F Sy B R R A AL

She

q’m %0;\1?!7&4 ’;I"_ff_'i\.g\, ’N\;‘Imf‘(ﬁ'» o

Bofs i fs o BBPTRE 3 A P E 0 BT A4 3 5 HR o

doi:10.6342/NTU201900453



i &

PRI LHANEE S AAI Y H it (MU-MIMO) frstit % 51 &P

(NOMA ) i@ 5B Hird 2 in 8 » R g A WA T2 4

ol
&
-
)
B

LTE/LTE-A BT » Wi T v A E G "Uehe a A P ah 47 5 UL T
AR AR L EERT S OTIRARE > T LB LA AT
B hdcim JE F B AL s T st (SINR) 60 j2 o 5 7 @4 sc% P o LTE-
A E v R E 0 A % Outer Loop Link Adaption (OLLA ) » 1 * 2 & #+
few @ (HARQ) k1 fi# A & SINR o $}*> LTE-A i % pF B f2erud 5 > OLLA
drjcatid R § E - B LR ARRAL A HERAD T POLLA 5 F A gl &

it (CQI)> e i d =& 45L? > Mz il (PMI) M2 2 e &+ 3B

SR F R AR A PR BFEY L OLLA I E Y U
ﬁvﬁxﬁﬁjﬁs ,ﬁ$ rl‘;ﬁ]gv;mﬁ Ir-'—-k.l!flﬁjmﬁ\ux o fE g;j_,_f,g,ugas ;@% z

B ATEAE IS PE > $PTE R AR 3 g A T G o B A > Flpt o AR 0

LT E § B OLLA it o 0370 35 24 i 4 5 0 BAREeni % ¥ T3
W v A T R ) s 0E e ASPHAR AN UK £ hi P
# ¥ 3k 3+ (reward shaping) fr#7 % (exploration and exploitation) ##1] > & $3" 3

AR FBGE T EARE o B F RS R HE o &2 OLLA shghsigpt » 3

H—

Pk den 2 A% & NOMA+MU-MIMO P § 7% 5 » & MU-MIMO $ 14%
M F o gt fh s OLLA Joacid BRI E-1 38% - m 22 » Ak - Bag p ik

% OLLA g 0 ¢t F fEi 7 2 4§47 o A R F P A e L B rojeacid & o

doi:10.6342/NTU201900453



ABSTRACT

Much work has been done to improve the overall throughput by jointly consid-
ering MU-MIMO and NOMA, but little has considered the combination of these
techniques under practical environments in LTE/LTE-A, in which the feedback
of CSI is limited. Based on our analysis, a method capable of obtaining accu-
rate SINR is important to reduce the improper resource allocation caused by such
limited CSI feedback. In this work, to avoid changing the current feedback ar-
chitecture in LTE-A, we adopt outer loop link adaption (OLLA) to dynamically
modify the MCS according to HARQ. Convergence plays a crucial role while ap-
plying OLLA in LTE-A due to the characteristics of short connections. For the
convergence issue, only CQI is considered in most existing OLLA, while PMI and
pairing should be taken into account in MU-MIMO. In this work, we adopt the
reinforcement learning to enhance OLLA. Reinforcement learning is a technique
which can explore unknown strategies through interacting with the environment.
When applying reinforcement learning in a new field, domain knowledge is im-
portant for effective training. Therefore, the factors affecting the strategy of
OLLA, including the past assigned MCS of the scheduled users, feedback, de-
sired MCS, and pairing user, are analyzed for state design, reward shaping, and
exploration and exploitation. Our proposed method improves the throughput by
7% in NOMA+MU-MIMO and by 14% in MU-MIMO. Moreover, the convergence
speed is increased by 38%. To conclude, we propose an architecture that can en-
hance OLLA automatically, deal with the interference, improve the throughput,

and accelerate the convergence under different types of feedback.

ii doi:10.6342/NTU201900453



TABLE OF CONTENTS

ABSTRACT . . . . . ii
LIST OF TABLES . . . . . . .. . e \%
LIST OF FIGURES . . . . . .. . . . . o . vi
CHAPTER 1 INTRODUCTION . ... ... ... ... ....... 1
CHAPTER 2 BACKGROUND AND RELATED WORK . . . .. 5
2.1 Background . . ... oL 5
2.1.1 MU-MIMO Overview . . . . ... ... ... ... .... )

2.1.2 NOMA Overview . . . . .. .. . ... 7

2.1.3 Reinforcement Learning . . . . . . .. ... ... ... ... 9

2.2 Related Work . . . . .. ..o 11
221 NOMA+MU-MIMO . . ... ... o 11

2.2.2  Outer Loop Link Adaption . . . . .. ... ... ... ... 12

2.2.3 Machine Learning based Link Adaption . . . . ... .. .. 14

CHAPTER 3 SCENARIO AND PROBLEM FORMULATIONS 15

3.1 Network Model of NOMA+MU-MIMO . . .. ... ........ 15
3.2 Communication System in LTE/ LTE-A . . . . ... ... ... .. 18
3.3 Scenarioin LTE/LTE-A . . . . . ... ... .. ... ....... 20
3.4 Problems Formulation . . . . .. .. ... ... ... ... .. ... 21
3.4.1 Observation of NOMA+MUMIMO and MUMIMO . . . . . 21
3.4.2 The Impact of CSTon SINR . . . . ... ... ... .... 22
3.4.3 Convergence Formulation . . . . . ... ... ... ..... 25

3.5 Analysis of the Convergence Formulation . . . . .. ... .. ... 25
3.5.1 Analysis of the SINR in MU-MIMO . . .. ... ...... 26
3.5.2  Observation of SINR in different CQI and PMI . . . . . . . 28
CHAPTER 4 PROPOSED REINFORCEMENT LEARNING BASED
LINK ADAPTION . . . . . . . e 32
4.1 Motivation of Reinforcement Learning . . . . . . . . . .. .. ... 32
4.2 Train an OLLA Agent based on Reinforcement Learning . . . . . . 35

iii doi:10.6342/NTU201900453



TABLE OF CONTENTS iv

4.3 Proposed Mechanism in Communication System . . . .. .. . .. 37
4.3.1 The Design of State, Reward, and Neural Network . . . . . 37

4.4 Reinforcement Learning Algorithm . . . . . . . ... .. ... .. 46
4.4.1 Asynchronous Advantage Actor-Critic Agents(A3C) . . . . 46

4.4.2 Implementation and Modification of A3C . . . . . . . ... 47

4.5 Proposed Feedback and Scheduler . . . . .. ... ... .. .... 51
CHAPTER 5 PERFORMANCE EVALUATION . ... ... ... 59
5.1 Scenario Setting . . . . . . . ... ... 59

5.2 Simulation Results . . . . . . .. ..o oo 60
5.2.1  Verify the Design of Reinforcement Learning . . . . . . . . 61

5.2.2  Performance in VIENNA . . . .. ... ... ... ... .. 69
CHAPTER 6 CONCLUSION AND FUTURE WORK ... ... 82
REFERENCES . . . . . . . .. e 83

doi:10.6342/NTU201900453



© oo N O Ot k= W N =

—
e}

LIST OF TABLES

Notation Table . . . . . .. .. ... . . 16
Objective Function . . . . . . . .. .. .. .. L. 25
Notation Table for Reinforcement Learning . . . . . . . . . . .. .. 33
Designof s, r,anda . ... ... ... ... ... ... .. ..., 40
PMI Orthogonal Table . . . . . . . .. ... ... ... ... .... 58
CQI Parameters . . . . . . . . . . . ... .. 59
Simulation Setting . . . . . .. ... 60
Training Setting . . . . . . . . . ... 60
List of different Design of State in Fig. 32 . . . . ... .. ... .. 61
List of Convergence Steps for different Number of Neurons . . . . . 64

v doi:10.6342/NTU201900453



(=2 G L "\

10

11
12
13

14

15

16

17
18
19

20

LIST OF FIGURES

Channel Response for MIMO . . . . . .. .. ... .. .. ..... 5
Demonstration of NOMA . . . . . . ... ... ... ... ... .. 8
Decoding Process of SIC . . . . . ... ... ... ... ... .. .. 9
Architecture of Reinforcement Learning . . . . . . .. ... ... .. 10
Overall System in NOMA+MU-MIMO . . ... ... ... ..... 17

Operate NOMA+MU-MIMO in N; x N, MIMO. Inter-interference
indicates the interference caused by the other beams. Intra-interference
indicates the interference caused by the other user in the same beam. 19

Operation Diagram in Downlink . . . . . .. ... ... .. ... .. 19
Deployment of NOMA+MU-MIMO . . . . ... ... ... ..... 20
Comparison between MU-MIMO and NOMA+MU-MIMO with cor-

rect Estimation of SINR ornot . . . . . . ... .. ... ... ... 21

Comparison between estimated SINR and real SINR in terms of
Throughput. Estimated SINR is the SINR estimated by limited

CSI. Real SINR is SINR that UE actually suffers. . . . . . ... .. 22
Relationship of f; and h; under perfect CSI. . . . . .. . .. .. .. 23
Relationship of f; and h; under limited CSI. . . . . . . ... .. .. 23
Condition that the receivers of far and near user fail or success to

decode the signal . . . . . . . .. ... L 26
Real CQI and estimated CQI. Real CQI is calculated by h, the

estimated CQI is the CQI returned by UE. . . . . . . . ... .. .. 28

Real SINR in different Quantization Error(cosy) and Interference
for different CQI. The dots in the same quantization error are rep-
resented as different interferences. . . . . . . . ... ... 30

Real CQI and estimated CQI. Real CQI is calculated with channel
vector h, the estimated CQI is the CQI return by UE. The estimated
CQI is calculated following Eq. (3.12), which is a lower-bound in

MU-MIMO cases. . . . . . . . . . o vt 31
Training Procedure for the proposed Algorithm . . . . .. ... .. 36
Diagram of proposed Mechanism in Communication System . . . . 38

Block of Modify the estimated CQI with Trained Agent’ in Fig. 18
inDetail . . . .. . ... 41

Comparison of Convergence Steps between different Methods in dif-
ferent Types of Feedbacks . . . . . .. ... .. ... ... ... .. 43

vi doi:10.6342/NTU201900453



LIST OF FIGURES vii

21  Difference between traditional Mapping and proposed Method with

good initial Value . . . . . . . ... L 43
22 Architecture of the Neural Network . . . . . . ... ... ... ... 44
23 Fully-connected Network . . . . . . .. ... .. ... ... ... . 45
24 Architecture of Neural Network of s, 7(s) and v.(s). The block

'Neural Network’ in this thesis is the same as Fig. 22. . . . . . . .. 48
25 Implementation of A3C in training Neural Network . . . . . . . .. 50

26  Process of updating a Neural Network. The gradient descent opti-
mization algorithms in ’Optimizer’ in this thesis is RMSprop. The
backpropagation needs to compute the derivative of each activate

function and the error generated in each layers. . . . . . .. .. .. 52
27 Diagram in VIENNA . . . . . ... ... o 54
28 Modified Diagram in VIENNA . . . . . . ... ... ... ... ... 55

29 Real CQI and estimated CQI. Real CQI is calculated with channel
h, the estimated CQI is the CQI return by UE. The estimated CQI
is calculated following Eq. (4.15), which consider merely the SU-

MIMO. . . . . . 56
30  Converge-first Scheduler . . . . . . .. ... ... ... ... ... . 57
31  With orthogonal Constraint or not . . . . . .. .. ... ... ... o8
32  Comparison of States . . . . . . .. ... oL 61
33  Comparison for each PMI with Sl and S3 . . . ... ... ... .. 62
34  Training Speed for one fully-connected Network and multiple fully-

connected Network for each PMI . . . . . .. .. ... ... ... . 63
35  Training speed of different Neurons and Layers . . . . . . . . .. .. 64
36  Comparison of Exploration Rules . . . . . .. ... ... ... ... 66
37  Training speed with different Nand R . . . .. ... ... ... .. 66
38 Convergence Steps with different Parameters . . . . . . . . . .. .. 67
39 Training Speed with different N and R with Rule2 . . . . . . . .. 68

40  Training Speed with different N and R without e-greedy Algorithm 68

41 Relationship between Step Size, Convergence Steps, and Ratio of

Nack . . . . . 70
42  Performance in Traditional Method . . . . . . . .. ... ... ... 71
43  Comparison of different Parameters of the Baseline . . . . . . . .. 72

44 Demonstrate how the chosen MCS changes while Ayt = 1, gamma =
L,and Aoiset =2« o v o 0 o e 72

doi:10.6342/NTU201900453



LIST OF FIGURES viii

45  Comparison of Convergence Steps between different Methods in dif-

ferent types of Feedbacks . . . . . . . . ... ... ... oL 73
46  Performance in different Types of Feedbacks . . . . . . . . . . ... 74
47  Throughput in different Method . . . . . . . . . .. . ... .. ... 75
48  Performance in different Methods . . . . . . .. .. ... .. .. 76
49  Demonstration for each OLLA Method . . . . . . . . ... ... .. 7

50  Relationship between Ry..., Convergence Steps, and Ratio of Nack 77

51 Demonstration of Ryger =0 and Ryge, =6 . . . . . . . . . . . . .. 78
52  Impact of Ryger on Performance . . . . . . . .. ... ... .. ... 78
53  Impact of Ryuer on Performance in converge-first Scheduler . . . . . 79

54  The trend of each metrics varies with the number of retransmissions. 79

55  Comparison between original Method and proposed Method with
Constraint of Retransmission=0 in NOMA+MU-MIMO . . . . . .. 80

doi:10.6342/NTU201900453



CHAPTER 1

INTRODUCTION

With the growth of wireless mobile devices, the increasing demands of wireless
mobile connections became an important issue. Thus, multiple access technolo-
gies have received a great deal of interest over past years. This technique allows
multiple users to share the same wireless medium so the spectral efficiency can be
higher.

Toward the trend, the 3rd Generation Partnership Project (3GPP) standard-
ized the radio interface specifications of LTE/LTE-A to enhance the performance
for Multiuser Superposition Transmission (MUST). Considerable attention has
been paid on Multiple Input Multiple Output (MIMO) and Non-Orthogonal Mul-
tiple Access (NOMA). The receiver and the transmitter with multiple anten-
nas, which are called Multiple Input Multiple Output (MIMO), exploit spatial
multiplexing, transmit diversity, and beamforming to achieve higher peak rate.
Multiuser-MIMO (MU-MIMO) is one of the MIMO techniques allowing multiple
users to share the same resource block through beamforming. The term Non-
Orthogonal Multiple Access (NOMA) in the thesis indicates the power-domain
non-orthogonal multiple access (PD-NOMA), which is also a promising MA tech-
nique. It sends multiple messages through different power allocation. The signals
transmitted with NOMA can be decoded by the special receiver, which is the
so-called successive interference cancellation (SIC). The characteristics of NOMA
improve the performance in terms of peak rate as well as fairness. Since both of
the techniques have shown their own advantages, and exploit different domains, it
is expected naturally that better performance should be seen if combining these
two techniques. As a result, we investigate the problems and challenges while
combining MU-MIMO with NOMA in the practical LTE/LTE-A environment in
this thesis.

Although MU-MIMO can increase the data transmission rate through proper
precoding and scheduling, the further improvement is limited in the practical
environment due to the limited channel state information (CSI). The quantization
error caused by the limited feedback leads to the inaccurate estimation [1], which is
one of the major factors of performance loss. [2] discussed the impact of the limited
feedback on MU-MIMO. [3] proposed the lower bound of the expectation value
of CQI under limited feedback to avoid the overestimation of MCS. This method

ensures the reliability but sacrifices the chance of fully utilizing the capacity of

1 doi: 10.6342/NT U201900453



the channel. [4] pointed out that NOMA is capable of increasing both the cell
average throughput and fairness. Nevertheless; NONA with SIC also raises the
new problem which has never seen in the conventional communication system,
such as the pairing of users and the power allocation [5,6].

It is not until recently that the researches concerning the combination of
NOMA and MU-MIMO under perfect CSI are published [7,8]. The combination of
the techniques utilizing the power and spatial domain in the same resource block
can further improve the spectral efficiency. However, to the best of our knowledge,
little investigations have been done in the combination of NOMA and MU-MIMO
under practical communication environment. Many studies assumed that the base
station can obtain the full knowledge of the channel, while this assumption is im-
possible in the real world; thus, we would like to further study on the combining
NOMA and MU-MIMO in the practical communication environment.

According to our investigation, the quantization error induced by limited feed-
back is the major factor that the performance in terms of throughput below our
expectation in NOMA+MU-MIMO. The quantization error results in the inac-
curate estimation of signal to interference plus noise ratio (SINR), so the MCS
selection and the power allocation are unable to be decided correctly. Indeed, the
approaches to address the scheduling performance loss caused by the CSI impair-
ments have been widely studied. Some paper proposed to dynamically change
the link adaption based on the acknowledgment (ACK) and negative acknowledg-
ment (NACK) feedback, known as outer loop link adaption [9,10]. OLLA aims
to deal with the CQI reporting inaccuracy, and compensates for the performance
loss to some extent [1]. [11] pointed out that the convergence is a crucial issue for
performance when applying OLLA due to the characteristics of short connections
in LTE; thus, several studies concerning OLLA focused on increasing the conver-
gence speed. [12,13] improved the convergence through the analysis of SINR to
BLER model. [14] changes the step size based on sequential hypothesis testing
and proposed BLER estimator. [15] proposed a method that the step size is based
on the elapsed time. Nevertheless, none of these methods are feasible to be ap-
plied in differenent scenarios because the performance is highly dependent on the
characteristics of the channel model. As the setting of channel model changed,
the mathematical model has to be chosen and analyzed again. This will be ex-
hausting work. With the growing complexity of communication environments, it
is difficult to find the relationship between the huge number of parameters, and
tune the coefficients to handle various communication environments. Thus, the
need for a more flexible way to find the relationship between the more compli-

cate parameters is growing. Under these circumstances, the attention on machine
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learning based link adaption are rising. Machine learning is known for the capa-
bility of capturing the complicated relationship between parameters. [16,17] have
shown that machine learning techniques can capture the complicated effects of the
environment to improve performance. In addition, the previous researches regard-
ing convergence in OLLA do not take the convergece speed as objective function,
the methods they proposed is based on the observation. Reinforcement learning,
which is one of the machine learning techniques, is known for the exploring the
unknown strategy through the interaction with the environment while the target
is clear. [18-20] using the reinforcement learning to select the MCS.

Although several existing approaches for dynamic link adaption have shown
positive results for inaccurate estimation, none of them have suffered from such a
severe reporting inaccuracy in the conventional network as much as in NOMA+MU-
MIMO due to multiple sources of interferences. There are two interferences in this
scenario: one of the interferences is inter-beam interference, which is caused by
the MU-MIMO, the projections from the precoding matrix of the other beams can
deteriorate the transmission quality. The other is intra-beam interference, which
is caused by NOMA, the users with the same precoding matrix but different power
allocation induce failed decoding if the paring of users or power allocation is not
appropriate. Thus, the deterioration of interference caused by the inaccurate esti-
mation of SINR in the scenario that combining NOMA and MU-MIMO becomes
more significant than ever before.

In short, in order to explore the potential of the combination of NOMA and
MU-MIMO without ignoring the practical situation in LTE/LTE-A environment
and modification of the LTE standard, it is necessary to improve the accuracy
of estimated SINR without additional feedback, and to handle the complexity in
NOMA-+MU-MIMO scenario. In this thesis, we propose the reinforcement learn-
ing based dynamic link adaption. In this approach, the selection of MCS is modi-
fied based on the acknowledgment (ACK) and negative acknowledgment (NACK)
feedback. The optimal strategy of modifying MCS as fast as possible is a crucial
problem in the thesis. The optimal strategy is related to the channel response
and the past assignment of the MCS of the scheduled users. However, current
papers lack discussing the optimal strategy of the MCS selection and exploiting
the past knowledge. Thus, we aim to take all these factors into consideration to
achieve further performance. As for simulator, we use Vienna [21] as a simula-
tor to simulate the practical LTE-A environments. And, we design the proper
reinforcement model to accelerate the training time and improve the convergence
speed of finding appropriate SINR estimation. Furthermore, we suggested using
SU-MIMO feedback with OLLA according to our investigation. The impact of the

doi:10.6342/NTU201900453



constraint of the retransmissions of the scheduler is also presented in this thesis.

The remainder of the paper is organized as follows: Chapter 2 introduce the
background of the current NOMA, MU-MIMO, reinforcement learning, and related
work of dynamic link adaption. Chapter 3 describes the system and problem
formulation. Chapter 3 analyses the problem. Chapter 4 elaborates the motivation
of using reinforcement learning and proposed the reinforcement learning based link
adaption. The results are presented in chapter 5. The conclusion is reported in
Chapter 6.

doi:10.6342/NTU201900453



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Background
2.1.1 MU-MIMO Overview

MU-MIMO is one of the applications of MIMO. The technique exploits the
spatial multiplexing to transmit multiple data streams to multiple users.

As illustrated in Fig. 1, with multiple antennas, the channel responses are
various. The transmitted signal, y, after passing the channel response matrix, H,

the signal the receiver receives is

r=H xuy.

Transmitter Receiver

Figure 1: Channel Response for MIMO

It can be seen that the received signal is dependent on the channel response.
Thus, many techniques are proposed to utilize to characteristics of the channel for
increasing the data rate or the robustness of data transmission.

Beamforming is a signal processing technique utilizing the characteristics of the
MIMO. This technique enhances the desired signals and suppresses the interference
under a suitable condition. With this technique, the transmitter encodes the signal

before transmission. Let S = [sq,...,sk] is the messages that the transmitter

5 doi: 10.6342/NTU201900453



2.1. BACKGROUND 6

intends to transmit. With beamforming, the transmitted signals are
y=F xS,

where F' is the precoding matrix.

The mechanism for choosing a precoding matrix is widely researched [22-25].
In general, the assignment of the precoding vector is highly related to the regula-
tion of communication system, such as the capability of the control signal.

In this thesis, we adopt Zero-Forcing beamforming. Let hj is the channel
response of UEy. H = [hq, ..., hx]. With Zero-Forcing precoding, the precoding
matrix is

F=HY(HH")™ (2.1)

Let F' = [f1, fa, ..., fx], fr is the UE}’s precoding vector. Eq. (2.1) implies
fix by =0, ifi#j. (2.2)

That is, if (2.2) holds, the UFE}, receives only the signal encoded with wy, the
others will be suppressed.

Based on the standard of the 3GPP E-UTRA long-term evolution (LTE), re-
ceivers can get the precoding information from DM-RS (demodulation reference
signal) so receivers dont need the explicit precoding information from the transmit-
ter. The method improves the performance while operating MU-MIMO because
BS has more freedom in choosing a precoding matrix. Theoretically, as long as
the feedback is perfect and the precoding matrix can be chosen arbitrarily, the
zero-forcing is able to mitigate the interference. However, in practice, the feed-
back is limited. In LTE/LTE, the UE returns PMI to indicate the direction of the
channel from a codebook C,

C= [Cl, ...,Cc],

where c¢ is uniform vector. The UFE chooses the vector closest to its channel

response as its PMI, denoted by h.
h =arg glgé{ | Hocjl. (2.3)
Under limited feedback, the Zero-Forcing based precoding vector is
F=HYHH"™, (2.4)
where H = V/L\l,...,ﬁ[\(], F=1[f1,... k]
Therefore, (2.2) cannot be hold anymore. Let hy = hi + e, where hy is
normalized hy, hy, = hi/ || by |-
w; x By =0, ifi#j.

doi:10.6342/NTU201900453



2.1. BACKGROUND 7

Ji x E} = fi x (hy —ex) = fi X ey (2:5)

It is clear that the message, s;, encoded with ¢; may not be able to mitigate
perfectly after passing h;. As a result, the U F; may receive the message to others,
which are unexpected interference for U E;. Furthermore, it raises new problems
about estimating the accurate SINR for both UEs and base stations.

In this thesis, the method in [3] is adopted. The UEs return the lower bound
of SINR based on the assumptions. According to [3], the mean of inner product
léfi| is 1/(M — 1) based on beta-distribution. |egfi| is approximated as 0 due
to the assumption that the scheduled UEs are near orthogonal. Following these

assumptions, the expectation of STN Ry, is

2

E e l® | (D) (i) + e fi

E[SINR;] >

Lt P sinE | T e

’2

Ll | (rachf?) (e fi) + e f

Lt o= 1 sin26,

(2.6)

pi |l cos?6

1+ BB g sin20;,

The base station uses the lower bound of SINR for scheduling to prevent over-

estimation, which may cause failed transmissions. In practice, the UE return

L\ h||? cos®0

et 5 - .
1+ I_Jlljfl ||| sin26y,

g(hk)

(2.7)

The formulation of total lower bound estimated by the base station based on the

returned G(hy) is expressed as

G (hs) (ht)- (2.8)

M
= — .29
S| fell?
2.1.2 NOMA Overview

NOMA is one of the promising techniques in next communication generation.
It meets the increasing demands of wireless mobile connections. Moreover, it
improves both overall system throughput and fairness at the same time. The
cell-edge user can benefit from NOMA due to the characteristics of NOMA. It is
noticing that the gain of cell-edge throughput is improved significantly [6] with
NOMA. NOMA is a technique to allocate multiple data on the same resource
block(RB), as illustrated in Fig. 2.

doi:10.6342/NTU201900453



2.1. BACKGROUND 8

Power

RB(Frequency/Time)

Figure 2: Demonstration of NOMA

The base station use superposition coding to transmit multiple data. The

transmitted signal with superposition is,

Yy =ai8 + ... + axsk, (2.9)

where a, is the power factor of K, P = }°, .- ps; si is the signal attempt to

transmit to U Ey. The received signal for U E}, is represented as
x = hg(ar1s1 + ... + agSk). (2.10)

The receivers can use DPC or SIC to decode the signals. In this thesis, we
focus on the NOMA with SIC receiver. Assuming there are two users, the de-
coding process is shown in Fig. 3. The receiver with SIC decodes the stronger
but undesired signal iteratively and then substrate the original signal by decoded
signal. The procedure does not stop until it can decode its own messages.

Basically, assuming |hy| > ... > |hk|, the base station allocate power following
the criteria [26],

a < ... < hg.

The UE}’s throughput is represented as

hi.pr
Ry = Wlogs(1 + 2.11
' Z 9 Do (hwprr) + WNk) ( )
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hy(y1 +y2) +n Demodulation and S1
decoding of x,

h
_ ®1 Modulation and coding of

S2

/4
N

hiy,+n

Demodulation of s, — 52

Figure 3: Decoding Process of SIC

In this thesis, we discuss the NOMA with K = 2. The user with smaller gain is
called far-user while the user with the stronger signal is called near-user. The SIC
process only activates in near-user. For far-user, the signal from the other user is
too weak to be regarded as interference. Noticing that the success of the decoding
of NOMA is highly dependent on the degrading of the signal, it is no surprise
the gain difference between users is an important issue while operating NOMA.
The impact of the difference between users on overall throughput has been shown
in [4]. Assuming that the total power is P, the power of far user is P, while the

power of near user is (1 — «)P. Therefore, Rcqr(v) and Ry, () are,

aP
near Wl near
=) Wiogs(1 N,

hfar(l — Oé)P
ar Wi
Ryar() = 3 Wiogs(1+ 2 PRI

Intuitively, the expected total rate Ry, () = > Wlogg(l—i—h"e”ap)—l—Rfar( )=
> Wlogg(l—k%). The power allocation is an important issue to maximize

the throughput [4,6].

2.1.3 Reinforcement Learning

Reinforcement learning is a learning technique to learn a sequence of actions
to achieve better performance. The agent in reinforcement learning learns how to
act through the interaction with the environment, as illustrated in Fig. 4. The
environment sends observable information, which is called state, to agents. And

the agent makes actions in response to the last state and rewards it received.
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State

Reward

Agent Environment

A

Action

Figure 4: Architecture of Reinforcement Learning

In general, the agent is able to change the state through the interaction with
environment.

Unlike supervised learning, which needs the labeled example to learn the cor-
rect behaviors, reinforcement learning trains the agent by implicit reward. The
agent can learn how good is the action it took instead of the correctness of the ac-
tions [27]. The aim of reinforcement learning is to maximize the rewards function
in long run. Gy = Ryy1 + Ryyo + ... + Rp. Moreover, even the correct behavior is
unknown, the agent still can learn the appropriate actions through reinforcement
learning. This characteristic of reinforcement learning allows agents to learn with-
out the full knowledge of the problem. It is very useful in many fields since if the
agent only learns from the existed knowledge, the agent might never explore the
other better behaviors due to the limitation of the known knowledge. Take the
game of Go for example [28], machine learning recently makes significant progress
in this game, the computer defeats the best player of Go. The contribution of
state-of-the-art reinforcement learning plays an important role.

Markov decision process is a crucial elements of the theory and algorithm of
reinforcement learning. If a problem can be formulated as a Markov decision
process, the method solving such a problem can be regarded as an reinforcement
learning methods. Markov decision process satisfies the Markov property. If an
environment has the Markov property, the agent is able to make decision based

on current state. The property can be represented mathematically as

p(S/7T|S7G) = Pr(St-i-l = SlaRt-‘rl =r | SOaA07R1a "'Rt75taAt>

(2.12)
= PT(SH_l = S/, Rt+1 =T | St == S,At).
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There are four basic elements in Markov decision process listed in the following,
1. § = {s1, $2, ..., Sn} denotes the set of n possible states.
2. A denotes the set of possible actions.

3. P=8 x A xS denotes the transition possibility, p(s,a, s’), of s to s’ while

taking the action a

4. R =S x AxS is areward function. r(s,a,s’) express the rewards from s to
s'. The expected rewards for the state-action-next-state triples is expressed

as

r(s,a,8) =E[Ry1 | Sy =5, Ay = a, Syy1 = 5]
~ entp(sr | 5,0)) (2.13)
N p(s'| s, a)

Value function v,(s) is a expected return under a policy 7 in state s. 7 is a
mapping from s, s € S, to a, a € A.
Solving a reinforcement learning task is to find a policy that achieves maximal

reward in long run. Let v,(s) = max,v,(s)1. v.(s) can be written as

0.(8) = max,E, [G¢]S; = s]

= mar;E, Z 'Yth+k+1|St =S

Lk=0

= max K | Rip1 + Z’YthJrkm | S =s
L k=0

= max, Z 7r(a|s) Zp(s’7 r’S, (Z)[T + 7”71‘(5’)]7

a s'r

] . (2.14)

The last equation in (4.2) is the Bellman optimality equation for v,. Re-
searchers developed many algorithms and methods to solve reinforcement learn-
ing tasks. Carefully choosing the proper algorithms and paying attention on the

design issue of the algorithm is important to train a agent well.

2.2 Related Work
2.2.1 NOMA-+MU-MIMO

NOMA and MU-MIMO techniques can improve the spectral technique. Based
on previous works, beamforming, user paring, and power allocation are crucial in
order to reach the potential of the techniques. [2] consider the practical feedback

system. The cause of the interference in MU-MIMO was well studied. Moreover,
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the impact of the limited feedback on MU-MIMO was discussed. It suggests
that the CQI should consider interference. [3] proposed the lower bound of the
expectation value of CQI under limited feedback to avoid the overestimation of
MCS. This way guarantees the reliability but sacrifices the chance of fully utilizing
the capacity of the channel. Also, it proposes a scheduler for MU-MIMO. The
method in [3] is adopted in VIENNA. [4-6] pointed out that NOMA is capable of
increasing both the cell average throughput and fairness. Scheduling constraints
and fairness metric can affect the performance.

8] suggested that the two users can share one precoding matrix. It inves-
tigated the impact of the threshold of the correlation between the users on the
performance. [7] proposed two precoding technique in order to eliminate the inter-
interference. It is noticing that both papers have perfect CSIT assumptions. To
the best of our knowledge, little investigations have been done in the combina-
tion of NOMA and MU-MIMO under practical communication environment; thus,
we would like to further study on the combining NOMA and MU-MIMO in the

practical communication environment.

2.2.2 Outer Loop Link Adaption

Outer loop link adaption (OLLA) is a well-known technique to compensate
for the inaccuracy of the mapping, CQI imperfection, and the variance of the
channel. OLLA solves these problems by modifying the mapping from SINR to
MCS dynamically, in contrast to traditional static mapping. OLLA can improve
the accuracy of the impractical static mapping for SINR to MCS due to the CQI
reporting inaccuracy and the inconsistent channel condition. These inconsistent
channel conditions occur because the propagation error condition might be dif-
ferent from the time when constructing the map. The CQI imperfection includes
estimation error, which might be caused by the differently calibrated user equip-
ment or hardware inaccuracies and quantization error. The variance of channel
condition includes delay of channel reporting(ex: transmission time and decoding
time), different numbers of resolvable multi-paths and mobile speeds, and propa-
gation error varies with users.

The concept of OLLA is firstly proposed in [9]. A simple model has developed
and analyzed. The method of [9] increases the estimated SNR by a certain fixed
step size when receiving an ACK, while the estimated SNR is decreased when
receiving NACK. It is noticing that there is a relationship between the step size
of increasing SNR and decreasing SNR in order to ensure the BLER. According
to the analytical results, it suggested that the step size has a direct impact on the

performance and further work have to be done in order to investigate the trade-off
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between convergence and power excess.

[29] implemented OLLA in LTE. Although the performance loss is more sig-
nificant when CQI inaccuracy increasing, it is observed that OLLA is capable of
compensating for the performance loss while CQI is inaccurate. [11] showed that
the convergence is a crucial issue in LTE due to the characteristics of short connec-
tions. Thus, there are several researchers aiming to improve the OLLA mechanism
in order to deal with the convergence issue. The approach proposed in [30] im-
proves the convergence by adjusting the initial offset. It showed that the proper
initial value can accelerate the convergence speed. The algorithm consists of three
stages: filtering, aggregation, and statistical computation. The obvious drawback
of the method in this paper is that it has to collect large connection data initially
to find a medium value. It may result in performance loss in the beginning.

[12,13] not only proposed methods to solve the convergence problem but also
presented a comprehensive analysis and BLER model. The detailed procedure
for analyzing the BLER elaborated how to find a proper mathematical model.
Also, with the more detailed model in comparison with the model in [9], the
proposed OLLA mechanism is more complicated. They took the average BLER
and instantaneous BLER into account. In this way, they had more freedom to
adjust the change of steps in response to ACK/ NACK. It is shown that the
performance can be improved. However, the mathematical model is specific to a
certain channel condition. That is, if the complexity of the communication system
increases, the analysis of the mathematical model requires exhausting work.

[14] aims to faster convergence to the target BLER region. It defined three
different operating modes to decide the step size. Basically, the closer to the
BLER region the estimated BLER is, the larger the step size is. The operating
mode is decided by the sequential tests of statistical hypothesis(SHT), which can
determine which hypothesis(H) is true with a minimum number of observations
and BLER estimator. Although the concept of the dynamically changing the step
based on the operating mode is attractive, the proposed BLER estimator might
fail to choose the proper operating mode while the selected MCS changes too
rapidly. [15] proposed a mechanism to recover fast from the idle to active. The
magnitude of compensation is decreased when time passing.

In short, although the convergences issue has been received much attention,
how to modify the convergence strategy according to the different channels still

remains unknown.
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2.2.3 Machine Learning based Link Adaption

Recently, there has been a growing interest in the applications of machine
learning. In the communication field, the capability of machine learning to deal
with the complicated parameters catch many researchers’ eyes.

[16] implemented online AMC with support vector machines to capture the
channel effect in real time and found out the proper mapping from SNR to MCS.
Unfortunately, this method is not suitable while the mapping is not one-to-one.
Also, the training set is still too large to converge fast. [17] proposed a low dimen-
sional feature set to increase the AMC accuracy while operating in MIMO. This
research simply adopted k-NN. The method showed good performance. However,
this method may suffer from excessive training memory and processing time.

Reinforcement learning is one of the machine learning techniques. It is suitable
for a goal-oriented game, training the agent to learn how to act to achieve a higher
cumulative reward. Several researches paid attention to this method because one
of the advantages of reinforcement learning is that it can train online and save
memory in comparison to supervised learning. Reinforcement learning can collect
the data in a more efficient way because exploration and exploitation is a widely
studied issue in this field [27]. [18,19] adopted Q-learning and showed better per-
formance in comparison with a supervised learning based method. Although the
researches have shown the positive results and the potential, the applied reinforce-
ment learning techniques are not efficient enough. Moreover, these methods did
not focus on optimizing the convergence strategy, which is an important issue in

a practical environment.
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CHAPTER 3

SCENARIO AND PROBLEM
FORMULATIONS

In this section, we first introduce the system model in LTE/LTE-A. And
then, the encountered problems when implementing NOMA-+MU-MIMO in cur-
rent LTE/LTE-A are presented clearly. In the end, we introduce the problem
formulation.

Notations: We use upper-case boldface letters for matrices and lower-case
boldface for vectors. The operation (-)7, () and (-)¥ denote the inverse, the
transpose and the conjugate transpose of matrix respectively. E(-) stands for the
expectation operator, and C represent the complex value. |S| denote the size of
set S.

3.1 Network Model of NOMA+MU-MIMO

When the base station uses NOMA technique to transmit signal, they allocate
the users with the different power to utilize the power-domain. The receivers adopt
SIC to eliminate the interference from the other users. When it comes to MU-
MIMO, the based station uses the precoding technique to encode the transmitted
signal, exploiting the spatial-domain to superpose multiple users’ messages in the
same resource block. With the combination of NOMA and MU-MIMO, the base
stations transmit the signals with different power allocation and precoders for
different receivers. In this thesis, different precoder means different beam. The

transmitted signal, which is denoted as y, can be written as

Np
y = Jo Z b, uSb,us (3.1)
b=1  uek,
where Ny is the maximum number of beams. s, is the desired data which receiver
UE, in beam b desires to receive. Also, to apply the NOMA, the users have to be
in the same beam.

In order to retrieve the desired signal, the receiver have to decode the received
signal successfully. In the communication environment, the channel responses for

different users are various so the received signal for each users are different. The
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Table 1: Notation Table
Type Symbols Definition

The maximal number of beams

The number of antenna transmitter

Parameters The number of antenna receiver
The number of vectors in the codebook
Power constraint on the transmitted signals
Set of UEs
Sets Set of scheduled UEs

Set of shceduled UEs served in beam b
Set of RBs
Set of MCSs

Ty The signal received by UE,,.

Np
M
N,
N,
P
C Set of codebook
U
S
Ky
T
M

Th b The signal received by UEj in beam b.

Y The transmitted signal
Shou The desired signal of UE, in beam b.
Hyy The channel matrix of UE, in beam b.
P p The channel vector of UE; in beam b.
Ek,b The quantized channel vector returned by

UE, in beam b.

The normalized channel response of UE; in
beam b.

Variables ?Lk,b

c; The codebook vector j in codebook.
fo The precoding vetor of beam b.

@b The power of UE, in beam b.

e The error vector for UE,.

€k The normalized error vector for UE,.
UE,;r  The UEj in beams b.

Vet f The effective SINR estimated by BS based
on the mapping.

Vesf The effective SINR modified by BS.
0 The angle betweenhy, , and ﬁk,b.
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scheduler TX
S8.1 582 l l 51,1, 51,2
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Figure 5: Overall System in NOMA+MU-MIMO

received signal for UFE,’s in beam b is denoted by 4,,. ¥y, is represented as

Np
Tub = Hu,b Z Fb Z Qb Shu + n. (32)
b=1

ueKy
Also, the user implements spatial filter to enhance the desired signal and sup-

press the interference including undesired signals.

Thus, the received signal can be rewritten as

Ny
T = vy pHyp E Fy E Ay Shu + 1, (3.3)
b=1 UEKb

where v,,;, is denoted by equalization of receiver.

The effective channel response denoted as g, can be represented as

Gup = vu,bHu,b- (34)
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Zero-forcing beamforming is a useful technique to mitigate the interference
from the other beam so we implement is as the precoding mechanism. We choose
the f, orthogonal to the other beams. Theoretically, if the channel information can
be fully obtained, the received signal with zero-forcing precoding can be rewritten

as

xr = Uu,bHu,be Z Ap 1, Sbu + n. (35)

ueKb

The overall system in NOMA+MU-MIMO is illustrated in Fig. 5.

3.2 Communication System in LTE/ LTE-A

In a practical communication system, the channel information returned by UE
is limited. It includes CQI, PMI, and RI. CQI implies the magnitude of the chan-
nel. PMI indicates the direction of the channel. RI indicates the number of layers
the UE preferred. In LTE/LTE-A, the PMI is chosen from the LTE codebook.
Assuming that the number of layers is 1, and the LTE codebook composed of the

quantized vector is given by

C=A{cy,...cn.}, (3.6)

where C denotes the set of the codebook. N, denotes the number of vectors in the
codebook.

The chosen PMI is the best choice among the code book to represent the
channel. The chosen PMI, which is denoted by h, , can be represented as

—

hy = argrc?géi|Hucj|, (3.7)

where ?L; is best chosen PMI among the codebook.

With zero-forcing beamforming, f, satisfies

fuﬁ; = 0,if user i is not allocated in the same beam as user j. (3.8)

The received signal of UE u in beam b is

Ny
Loy = Uu,bGu,bfb § ApuShou + Uu,bHu,b E fj E QjuSju + n. (39)
ueK, j=1,j¢b uekK;

The term § = vy, H,.p Z;\Zl,jgzb 1 ZueKj @45 is regarded as undesired signal
for UE uw. While the perfect CSI is available, § would be 0. Otherwise, § would

be larger than zero.
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Figure 6: Operate NOMA+MU-MIMO in N; x N, MIMO. Inter-interference
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Figure 7: Operation Diagram in Downlink
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In Fig. 7, the link adaption scheme is separated into two part: one is the
inner loop link adaption (ILLA), the other is outer loop link adaption(OLLA).
ILLA is designed to assign the most suitable MCS based on the estimation of link
quality. The purpose of OLLA is to correct the reporting inaccuracies. Thus,
it modifies the estimated link quality based on the ACK and NACK instead of
merely depending on reporting CQI.

3.3 Scenario in LTE/LTE-A

2\ @
() o
A

Figure 8: Deployment of NOMA+MU-MIMO

Fig. 8 illustrates the deployment of NOMA+MU-MIMO. The number of trans-
mitters’ antenna N; = 4, the number of receivers’ antenna N, = 1. The assump-

tions are shown as following:

1. The number of transmit beams is fixed over all RBs.

2. The power allocated among beams is equal.

3. The number of multiplexed users within a beam is smaller than 2.

4. The maximal number of data streams each user received do not exceed.
5

. The PMI is chosen from the LTE codebook.

These assumptions allow us to optimize the system performance without losing

generality.
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3.4 Problems Formulation

3.4.1 Observation of NOMA+MUMIMO and MUMIMO

Firstly, we ran simulations with different the setting of estimation of SINR
in order to analyze the the difference between perfect CSI and limited CSI. If
the base station can obtain full feedback, it can estimate SINR correctly. By
contrast, if the feedback is limited, the base station can only approximate the
SINR. The format of limited follows the standard of the LTE\LTE-A. The results
are shown in Fig. 9. From Fig. 9, there is almost no throughput gain between
NOMA+MUMIMO and MUMIMO. In addition, NOMA+MUMIMO is supposed
to be better than MU-MIMO in terms of cell-edge due to the characteristic of
NOMA. Unfortunately, the expected results can not be seen from Fig. 9. That is,
Fig. 9 indicates that the performance fails to be further improved as long as the

estimation is not accurate enough.

T T
I U-MIMO 004l I U-MIMO [l
a5l I NOMA+MUMIMO I NOMA+MUMIMO

0035}

o
Q
@
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o
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(a) Throughput. (b) Cell-edge Throughput.

Figure 9: Comparison between MU-MIMO and NOMA+MU-MIMO with correct
Estimation of SINR or not

The previous observations imply that CSI integrity is crucial to the improve-
ment. The feedback adopted in VIENNA is the lower bound of the expectation of
SINR, but the inaccuracy of the estimated SINR and real SINR have not analyzed
well in [3]. The feedback has an impact on the estimation of SINR so we analyze
the variation of real SINR for estimation of SINR based on limited feedback [3].

It is noticing in Fig. 10 that the variation of real SINR for a returned CQI
is extremely large. It implies that the returned CQI from UE is very inaccurate.
The loss of accuracy of SINR might be acceptable while operating in MU-MIMO.
Nevertheless, in the case that taking NOMA into account, the inaccuracy becomes
an important issue. Additionally, lots of researches [5,6] have shown that the power
allocation and paring is a key problem as operating in NOMA. And the paring

mainly depends on the difference of channel gain between the UEs, which receive
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Figure 10: Comparison between estimated SINR and real SINR in terms of
Throughput. Estimated SINR is the SINR estimated by limited CSI. Real SINR
is SINR that UE actually suffers.

the data encoded with NOMA. The wrong estimation of channel gain difference
leads to the wrong power allocation, causing the loss of performance.
Furthermore, the wrong paring and power allocation cause the UE to decode
the signal unsuccessfully since the degradation of the signal is more than expected.
In other words, the SIC receiver may fail to decode the signal due to the unexpected

interference.

3.4.2 The Impact of CSI on SINR

The impact of the inaccurate CSI on SINR will be further discussed.

Assuming that the number of beams is 2, 4x1 MIMO, beamforming is zero-
forcing, and the receiver is perfect SIC receiver, which implies that the near user
can successfully eliminate the intra-interference. Therefore, the intra-interference
can be neglected, the inter-interference is the major topic to be discussed in the
following. These assumptions allow us to analyze the problem without losing
generality.

If the perfect CSI is available, the relationship between precoder f; and channel
h; is demonstrated in Fig. 11. After passing the channel, the signal that UE
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fi

B f2

Figure 11: Relationship of f; and h; under perfect CSI

h2=c2 \/

€2

Figure 12: Relationship of f; and h; under limited CSI
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received is
Z1 = hy

= h(fir1 +wy) +n
= hyfizy + hyfozo + 1 (3.10)
=hifiz1+n

(. zero-forcing .. hy fo = 0).

Eq. (3.10) shows that the interference from the other beam can be eliminated
perfectly with the precoding. However, the situation under the limited feedback
is changed.

The relationship of precoder f; and channel h; is demonstrated in Fig. 12. The
channel vector is hy, = ||hg]] (]@@\Hﬁ; + ex). e is denoted by the error vector.
hAk and l?k are denoted by the quantized channel vector and normalized channel

vector, respectively. The received signal of UE is expressed as
Zy = hy
— [l (|Paha [T hy + 1) (fizy + foa) + 1
= Il (AR (i + faa) + e1(fis + foa) ) +n
(- zevo-forcing - [y ["F fi = 0)
=l (i) frs + ex(frs + foa) )+

= Ihl (1Al By + e2) i + e1fos ) + .

(3.11)

It can be seen that the interference, § = e; foxo, cannot be eliminated. The
limited feedback causes precoding, fs, to be chosen wrongly because the real chan-
nel vector, hy, is unknown. In this situation, the base station could only choose
the precoding orthogonal to hAl instead of hy. As a result, the messages encoded
by the precoding of the other beams cannot be eliminated naturally after going
through h;.

Thus, the SINR of UE}, under limited feedback is

~ ~ ~ |2
& el® )hkkaOSQk + ekfk‘

SIN Ry, ear = . (3.12)

2 . s
Lo 5 el im0y e e

The interference, § = > .. S\ ‘ekﬁ‘z, is unknown for UE, since f; is deter-
mined by base station and the co-scheduled UE. Different co-scheduled UEs lead
to different §, which could even range from 0 to 1. On the other hand, the e
is unknown at the base station due to the quantized PMI. As a result, the base

station and UE can not get the accurate estimation of SINR, if the information
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Table 2: Objective Function

Objective function:

max, E [ZZ:O Tevk | el (3.13)

7 is the strategy of selecting MCS.

s; is the observable information for base station.
0, if the base station knows that
Iy = it has assigned the suitable MCS .

-1, otherwise

between the base stations and UE can not be exchanged completely. The base

station may fail to estimate SINR for proper scheduling.

3.4.3 Convergence Formulation

Estimation of SINR is highly dependent on the CQI and PMI returned by UE
in LTE. On the condition that reporting CSI is unable to represent the real SINR
accurate enough due to the quantization error and limited feedback, changing the
MCS based on the HARQ information have to be taken into consideration. Chang-
ing MCS dynamically based on HARQ is so-called OLLA mechanisim. The preva-
lence of short connection in LTE network [11] enforces the conventional OLLA
to take convergence into consideration. As a result, convergence speed issue is
our major goal in the thesis. Mathematically, the objective function is shown in
Table 3.4.3.

Eq. (3.13) depicts the convergence problem mathematically.

The larger the Eq. (3.13) is, the quicker the base stations are able to assign the
suitable MCS within a period time 7. In other words, optimizing the objective
function is to fulfill the requirement of the short connections in LTE. The base
station can respond to the inaccurate reporting SINR more quickly, achieving
better performance in scheduling with the corrected suitable estimation of SINR.
Thus, our aim is to design a strategy of modifying the MCS so the base stations

can obtain the suitable estimation of SINR as quick as possible.

3.5 Analysis of the Convergence Formulation

To solve the optimization problem, the first step is to analyze the parameters
associated with the r,. r; is an indicator that whether the base station finds the

proper estimated SINR or not. The proper SINR indicates that the base station
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Figure 13: Condition that the receivers of far and near user fail or success to
decode the signal

is able to find maximal available MCS for the specified UEs. The base station can
judge whether the MCS is maximal available MCS or not by the ACK\NACK.
Intuitively, the historical data about the success and failure of the assigned MCS
is associated the outcome of the r;. In addition, we have known the base station
chooses the MCS according to the estimated SINR. It decides the MCS based
on a map, which suggests the appropriate MCS so the UE can receive the data
efficiently, to transform the estimated SINR to MCS. We observed from Fig. 13
that the assigned MCSs only fail on the condition that the estimated SINR is
larger than real SINR. That is to say, the probability of the outcome of r; is
associated with not only historical data but also the distribution of SINR. Also,
as shown in the previous chapter, the variation of the distribution of SINR is
mostly caused by inter-interference. Eq. (3.12) shows all the parameters related
to SINR. Therefore, we focus on analyzing the parameters of SINR in terms of
PMI, CQI, and co-scheduled PMI.

3.5.1 Analysis of the SINR in MU-MIMO

Assuming the number of the beam is 2, 4x1 MIMO and zero-forcing beam-

forming. SINR can be written as

~ ~ ~ |2
& IPell® P frcosOr + ex fi

SIN Ry reas = (3.14)

—z
2 .
1+ |—§| 17l sin20k 3 e s\ ‘ekfi

Assuming that the co-scheduled UEs are orthogonal, the term ekﬁ will be 0
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with zero-forcing; thus, the real SINR of UE} can be represented as
2\l [ Frcosty|
7S] [ Anll” |k frcosOy,

SINRk,real -

—. el

1+ |_1S3| [ he||? 5im226; D ics\k |enfi

Since the base station can only estimate the SINR by PMI and CQI, we replace

the parameters in Eq. (3.15) with PMI and CQI. Through the replacement, the

relationship between CSI and SINR is more clear. The distribution of SINR can

be observed in a easier way. Knowing that SINR? = |hy,&|%, cos®0 = 1 — sin20),
the SINR can be rewritten as

o~ ~ 2
% Hth2 )hkkaOSQk‘

S[NRk,real =

2 P
1+ % [hel|” s5in20 3 e 01 ’ekfi
2

~ ~H

- —12
2 .
1+ % [hel|™ sin20k 3 e 0 ’ekfi

(. cos*0 = 1 — sin’0)

g Rl @ = Te?) (3.16)
- —~ ~ 2
1 o [l o> s [er i

(- sin®0 = |hyéil?)

ENCQLI* (1 — [PMIyer|?)
a ~
1+ % |ICQIL|” |PMI,ér|? D ics\k lex PMI;|?
(- CQI; x CQIy, letting PM I, indicate hAk)

We can conclude from Eq. (3.16) that the e is a random variable, which is
related to PM I, and CQI,. The inner product of e, and PMI; can affect the
SINRy. Also, it can be observed that the interference is caused by frer and
exfi- The f; and fi are precoding vectors for UF; and U E}, respectively. That
is to say, if the UE knows its co-scheduled user in advance, it could return the
perfect estimation of CQI; or, if the base station is able to get the information of
er, the perfect estimation of SINR can be achieved. Nevertheless, the additional
feedback would bring more burden on the channel because the channel has to give

more space for transmitting control signal instead of the data. It is a trade-off
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between the bits of feedback and the accuracy of the estimation. Furthermore, the
additional feedback has to change the current LTE feedback standard. The target
of this thesis is to assign a suitable MCS in order to achieve a better performance
following the LTE feedback standard. Thus, the target of analyzing the SINR is
to improve the design of the mechanism to find the proper MCS dynamically. As
a result, we focus on the analysis of random variable in Eq. (3.16) for the reason
that the probability of whether the transmission is failed or successful is highly

associated with these parameters.

3.5.2 Observation of SINR in different CQI and PMI

In the previous subsection, we learned that the distribution of SINR is asso-
ciated with the PMI, CQI, and co-scheduled CQI mathematically, but the actual
distributions are still unknown. As a result, we run the simulations for different
CQI and PMI to observe the pattern of the distribution.
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16 16 20
14+ 14
12} 12 18
= 10} = 10
g 8 16
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6 6 L g
4t 4
ol 2 - q12
5 10 15 5 10 15
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Figure 14: Real CQI and estimated CQI. Real CQI is calculated by h, the esti-
mated CQI is the CQI returned by UE.
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In Fig. 14, only four different PMI cases are presented for the convenience of
observation. The x-axis is the real CQI value calculated based on real channel
response. The y-axis is the estimated CQI value calculated based on limited
feedback. The color represents the number of the pair of certain estimated CQI
and real CQI out of the overall cases. Basically, if the point tends to be red, it
implies such a pair appears more frequently. This figure indicates that what is
the possible real value of CQI corresponding to the estimated value. Thus, the
pattern of the distribution of estimated CQI and real CQI are able to be observed
in Fig. 14. It can be seen that the distribution for different PMI is various.
That is, for a certain estimated CQI, the possibility of the corresponding CQI is
various with PMI. In fact, the variation is large. Therefore, when designing the
mechanism, we pay more attention to the difference of each PMI. The rest of the
other CQI distribution for different PMI is shown in Fig. 16.

We also investigate the impact of the cos; and CQL.

In Fig. 15, the distributions for different CQI, which is calculated as M(|h|),

are distinguished in terms of estimated CQI and cos? as well. Real CQI is denoted

%lhkfkﬁ

by M (1+§| Zieswlhkfilg)‘ It is noticing in Fig. 15 that the variation of CQI is

associated with to quantization error, coss. These observations can be further

exploited for the design of the model in the chapter 4. In short, the relationship

between the estimated CQI and real CQI is more complicated than ever before.
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Figure 15: Real SINR in different Quantization Error(cosg) and Interference for
different CQI. The dots in the same quantization error are represented as different

interferences.
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Figure 16: Real CQI and estimated CQI. Real CQI is calculated with channel
vector h, the estimated CQI is the CQI return by UE. The estimated CQI is
calculated following Eq. (3.12), which is a lower-bound in MU-MIMO cases.
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CHAPTER 4

PROPOSED REINFORCEMENT LEARNING
BASED LINK ADAPTION

In this chapter, we would like to demonstrate how the reinforcement learning
based link adaption work in the LTE communication system. Also, the implemen-

tation and design of the reinforcement learning technique will be further explained.

4.1 Motivation of Reinforcement Learning

We found that current studies regarding convergence are limited to the partial
observations of problems. To be further explained, [12] said that dynamically
change the step size can improve the performance. Larger step size can increase
the convergence speed. It proposed a method to give a larger compensation step
size while estimated BLER is large. [14] says that step size need to be large not
only when the BLER is large, but also when BLER is far away for the target BLER
region. And then, they will analyze the estimated BLER model or design certain
decision maker based on their simulation environment. [30] said that the initial
value is important, so it gathered large data in the beginning to get a proper
initial value. However, gathering large data in the beginning is not always the
possible in practice. It can be seen that all of these method are limited to their
partial observations on the environment. And it looks like an endless work, there
are always a new observation. However, reinforcement learning provide us the
possibility to explore the strategy with less dependence on humans’ intuition. Also,
it is known for the capability of capturing the complicate relationship between the
large parameters. In this case, we think that applying the RL technique properly
can allow us to explore more strategy without humans’ blind spot. What is proper
initial value? When the step size have to be large? Except for the factors that
previous research mentioned, is there any factors in the environment affecting
the performance OLLA mechanism. What is the relationship between the initial
value, step size, and information base station can get? Is there A well-designed
reinforcement learning can explore the strategy in a more flexible and efficient way

to improve the OLLA mechanism if the requirement is clear.

32 doi: 10.6342/NT U201900453



4.1. MOTIVATION OF REINFORCEMENT LEARNING 33

Table 3: Notation Table for Reinforcement Learning

Symbols  Definition
s, s states
a action
r reward
Al(s) set of all possible actions in state s
A set of all possible actions
R set of all possible rewards
St state at time t
ag action at time t
Ty reward at time t
Gy return (cumulative discounted reward) fol-
lowing t
s policy, decision-making rule
7(s) action taken in state s
m(als) probability of taking action a in state s
p(s',r|s,a) probability of transition to state s’ with re-
ward r, from state s taking action a
p(s’|s,a)  probability of transition to state s’, from
state s taking action a
V(s value of state s under policy m
V(s value of state s under optimal policy
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Taking a look into Eq. (3.13). We attempt to formulate all the relevant prob-
ability in Eq. (3.13). Thus, it can be rewritten into

T
maXEﬂ. E (rt+k | St)
™
k=0
T
=maxE, || r + E E Terk | St
™
k=1 r,eR

= max Z P(MCS; | st) Z P(si,r; | s, MCS;)r; + Ex

MCS;eM SQGS,TZ'ER k=1

Z (resn | St)] .

(4.1)
Eq. (4.1) looks like a Markov decision process. However, the conventional
methods, such as dynamic programming, are unable to solve the optimal function
because the model is unknown to the agent. Thus, the transition probabilities are
unknown. Nevertheless, if we take a look at the concept of reinforcement learning,
we can see that the problems, which reinforcement learning aims to deal with,
are similar to the problem in the thesis. Reinforcement learning is used to find
a policy that achieves maximal reward over a long run. A bunch of researchers
has focused on the decision-making issues with reinforcement learning. Thus,
we can adopt suitable decision-making techniques among these researches. And
then, we make some modifications to optimize the performance while adopting
reinforcement learning.
Following the basic concept of reinforment learning [27], the framework of
problem formulation, which is suitable for reinforcement learning, is defined as

below,
v«(s) = maz,E; [Gi|S; = 5]

= maz,Br | Y7 Rippa| S = 51
L k=0
= mar K, | Ryy1 + Z V' Rtk | S = S]

L k=0

= max, Z 7(als) Zp(s', rls, a)[r + yv.(s")],

a s'r

where 7 is denoted by the policy of selecting the action, a, based on the state, s,
which is denoted by the observation from the environment. m(a|s) is the proba-
bility of the policy selecting a in s. Gy is the cumulative return function, which
could be defined according to the situation. Basically, if any problems can be
transformed into this form, it is proper to adopt reinforcement learning methods

to solve the problem.
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In comparison with Eq. (4.1), these two formulas looks similar. We can eas-
ily transform Eq. (4.1) into the form of problem in the reinforcement learning,

Eq. (4.2). Gy, w(a | s), p(s',r|s,a) and can be expressed as,

T

Gy = Z T't+k

k=0
m(a|s)=P(MCS; | s)
p(s',r|s,a) = P(s',r; | sy, MCS;)

(4.3)

From the above equations, we can see that the problem formulation is able to
be easily transformed into the form of a reinforcement learning problem.

In our case, s is the information about the environment, which is observable
to the base station, as well as the historical information. The design of s will be
further explained in the next chapter. a is the actions the base station can make.
In this case, a € M.

4.2 Train an OLLA Agent based on Reinforcement Learn-
ing

In this section, we will elaborate how do we train a agent to to assigned MCS
based on the observation of the environment, realizing the OLLA mechanism.

In this work, tensor flow [31] and keras [32], which are developed based on
python, are adopted to train the agent. As a result, we have to duplicate the crucial
part of the communication environment in VIENNA for the Python platform
in order to train the agent. Although our environments are simulated through
VIENNA [21], there are advantages of duplicating the communication environment
in python instead of applying the machine learning algorithm in VIENNA. One is
that it can save our plenty of time to implement the machine learning algorithm,
which is a really complicate and delicate work. Our major work is to train a
agent, which is suitable for the problem in the this, rather than implement the
machine learning algorithm. For another reason, training agent in VIENNA could
cost much more time, because a communication simulator has lots of works, such
as scheduling, calculating channel response, waiting for the response of UE or
the base station, and so on. With carefully duplicating the essential part of the
environment into the Python platform could save us plenty of time. The details of
how we duplicate the environment in VIENNA will be elaborated in the following.

We have known that the success of the transmission can be decided by the
mismatch gap between real SINR and the tolerable SINR of certain MCS. If the
mismatch is large, it means that the assigned is either too aggressive or conserva-

tive. That is to say, once the real channel is known, we can predict if the feedback
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Figure 17: Training Procedure for the proposed Algorithm

is NACK or ACK without waiting for response UE, which is a time-consuming
process. As a result, we can gather all the necessary data from the simulator be-
fore training. The simulator used in the thesis is VIENNA. The simulator is able
to generate the channel response based on the setting. Although the base station
is unable to know the perfect channel information, we still can find the informa-
tion of the perfect channel information in the simulator. Thus, channel responses
can be stored and utilized afterward. Fig. 17 demonstrate the components we
implemented in VIENNA and Python, respectively. The training process is listed

in the following:

1. Simulator generates all the necessary data, including the real channel re-
sponse hy, PMI, and CQI (the feedback estimated by the UE), for training.

2. Duplicate the essential part of the communication system, built the environ-

ment in python.
3. Train the agent in python based on reinforcement learning algorithm.

4. Implement the trained agent as mentioned in Fig. 18.
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While exploiting the machine learning technique, the data have to be carefully
obtained. Otherwise, the trained agent could be biased due to the improper
database. This criterion also applies to reinforcement learning because it is also
one of the machine learning technique. Thus, we run the simulation with the
random assignment of PMI. The assignment of SNR for each UE is based on the
distribution of SNR given by MTK.

It is noticing that when training the agent, the agent will do exploration and
exploitation and update is policy through interactions. By contrast, trained agent
will on exploit current policy and do not update the policy. The relationship
between the trained agent and the other components in communication system is

shown in the next section.

4.3 Proposed Mechanism in Communication System

Fig. 18 shows how we implement the trained agent in the communication sys-
tem. Firstly, the UEs return their channel information(CSI) following the standard
of LTE including PMI and CQI. The diagram block, which says "Modify the es-
timated CQI with Trained Agent’, is where the proposed method activates. In
this diagram, it considers not only CQI but also the historical data and HARQ
information returned by UE. And then, it will produce the modified CQI’. The
scheduler applies the CQI” to estimate the channel capacity of the UEs. Then,
the scheduler uses the information to calculate the efficiency of the different com-
bination, and choose the best combination based on following its policy.

Our mission is to train a agent, which is capable to choose MCS in response to
their knowledge of the environment. Thus, we focus on the diagram block, which
says 'Modify the estimated CQI with Trained Agent’. In the case, the information
of the base station is the feedback of CSI, ACK/NACK and the historical data
preserved in the base station. Every time the base stations assign a selected MCS
to the scheduled UE, the base stations record that the scheduled UE. And then,
the scheduled UEs return ACK or NACK for the MCS assigned to them.

The next section demonstrated how we train the agent.

4.3.1 The Design of State, Reward, and Neural Network

4.3.1.1 State and Reward

The basic components in reinforcement learning are s(state), r(rewarding),
and a(action) as we have introduced in the chapter 2. s includes the observable

parameters for the agent only. a is the decision made by the agent according

to the observable s. That is, a = 7(s). In the communication system, s is the
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Figure 18: Diagram of proposed Mechanism in Communication System

information that the base station can obtain. We define a as the MCS selected in
next T'TT according to s.

The designing process of s is very similar to the feature extraction since the
output a is highly dependent on the s. It is known that the feature extraction has a
significant impact on the performance of the system. Thus, we will discuss how we
design s. The features have to include the relevant factors and exclude irrelevant
factors as much as possible. In addition, the normalization of the feature is also
an important issue. In practical, it is hard to know which feature is irrelevant
or relevant. Nevertheless, having the knowledge of the problem is very helpful
for overall performance. In this work, our target function is defined as Eq. (4.1).
That is, we want to find the target MCS as fast as possible. Intuitively, the
historical data, which indicating the record of the assigned MCSs and the response
(ACK/NACK) of the assigned MCSs, have an impact on the next selection of MCS.
Thus, s should take the historical data into consideration. In this work, the form
of historical data is designed carefully. To the best of our knowledge, we have
known that the next selected MCS should be larger the maximal known MCS,
which can be transmitted successfully. Likewise, the next selected MCS should be
smaller than the minimal MCS, which leads to failed transmission. As a result,
instead of recording all transmission results, we attempt to simplify the form of
recording historical data. Without simplification, the features are

NeombXNumcs

ACK NACK Not used

The base station maintains the matrix for each user to record the result for
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each MCS while co-scheduling with different users. The result could be ACK
or NACK. For the MCSs have not been assigned can be recorded as Not used.

With simplification, the matrix for each user becomes

Neomb
maxAckMCS minNackMCS )
which records only the maximal MCS receiving ACK and minimal MCS receiving
NACK within assigned MCSs. In theory, eliminating irrelevant feature should
improve the performance and prevent it from overfitting. The simplified matrix is
chosen in the thesis because it shows better capability. The results are verified in
chapter 5 in Fig. 32.

Based on our analysis, the combination of the other beams has an influence on
the desired MCS. Furthermore, it can be observed in Fig. 15 that if the cos6 is
known, the range of possible MCSs will be narrowed down. For example, assuming
there are five possible co-scheduled PMI for a certain UE. If we can get suitable
MCS corresponding to the UE scheduled with different PMI. The more accurate
MCSs can we get, the narrower the range of cos# is. As a result, the possible
range of MCS for the rest unknown combination can be smaller. That is to say,
knowing the correct MCSs of UE scheduled with distinct PMIs might accelerate
the speed of finding MCS.

Also, since it can be observed in Fig. 16 that different PMI has distinct char-
acteristics, we consider PMI as one of the features.

In short, we put the historical data, the PMI and CQI of the user, and the
PMI of the co-scheduled user into s. Also, how to transform the feature is a
crucial issue. PMI and CQI are treated as category features, we transform them
by hot-encoder, which is a well-known encoder for category features. After several
comparison and experiments, our final choice of s is shown as Eq. (4.4). The
comparison of different design of features is shown in chapter 5 in Fig. 32.

Fig. 19 demonstrates how the proposed OLLA actually works according to the
proposed feature.

The rewarding function indicates the score from s; to s; while applying a.
Since our aims are to train a agent able to be applied to the base stations, the
rewarding rule has to take the practical environment into consideration.

The base station is unable to make sure about if the assigned ACK is correct or
not until it finds the lower bound of unavailable MCS and upper bound of the avail-
able MCS. Thus, we take else if |ma:pAckMCS£am’j - mmNack;MC’S:tam‘j <1
as a stop criteria. Also, the last assigned MCS should be available so the last

assigned MCS should be available. It can be seen that the punishment score is
different according to the condition. Since it is obvious that the MCS, which

is higher than current unavailable MCS and lower than current available MCS,
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Table 4: Design of s, r, and a

State:

Sit = [ [maxAck:MC’S mmNack;MCS]

Pair;; CQIL, PMI;,| .(4.4)

Ncomb
it

Reward:
—0, if a;; < maxAckM C’Sftmi’j or a;; > minNackM CSftam’j
0, else if |[mazAckMCSE™" — minNackMCS, "] < 1
it = and a;; == maxAckMC’Sﬁairi’j | (4:5)
-1, otherwise
Action:
a;; is the selected MCS in next TTT according to s;; for UE;. a;+ € M.
Parameters Description
maxAckMCS  The maximal MCS is able to get ACK within MCSs,
which have been allocated previously.
minNackMCS The minimal MCS is able to get NACK within MCSs,
which have been allocated previously.
Neomb The maximal possible number of co-scheduled PMI.
Nucs The number of the MCSs
M Set of MCSs
CQIL, The CQI of the scheduled UFE;.
PMI;, The PMI of the scheduled UFE;.
PMI;, The PMI of the co-scheduled U E;.
Pair; ; The index of the Pair while the scheduled UE; is co-scheduled with UE}.
;4 The selected MCS for UFE; .
realSINR; The real SINR of UE; while it is co-scheduled with UE;.
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CQr'y;

Y

Update the CQI’;
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Figure 19: Block of '"Modify the estimated CQI with Trained Agent’ in Fig. 18 in

Detail

should never been tried, the punishment is given more. The rewarding function

can be represented as

-R, if a;; < ma:z:AckMC’Sﬁ“i”vj

0 else if [mazAckMCS; " — minNackMCS;,"""
e and a;; == mavAckM CS;;“"”J

—1, otherwise

. Pair; ;
or a;; > minNackMCS;, "’

<1

(4.6)

The improper magnitude the rewarding might lead to failed converge of the

agent. We find the proper magnitude of the rewarding throughput experiments.
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The experiment result is shown in Fig. 37 and Fig. 38 . Furthermore, we in-
vestigate the effectiveness of the rule, —R, if a < maxAckM C’Sfj ?m’j ora >
minNack M C’Si ?i”’j . It seems that it has a positive impact on the performance.

In addition, although our major goal is to minimize the converge steps, it might
turn out that the strategy of minimizing converge step will lead to higher BLER
in the condition that the optimal strategy tends to select the MCS higher than
the maximal available MCS. To avoid this condition, we can modify the rewarding
function to control the BLER. The transmissions fail under the condition that the
that the assigned MCS is higher than the real SINR. Thus, we can control the
BLER by changing the punishment of the condition the MCS is higher than the
real SINR. The overall design of rewarding can be represented as

(

—6, if a;; < maxAckMCSftam’j or a;; > mz‘nNackMCSftam’j
0, else if |maxAckM CSZW” — minNackM CSZ»];W“ | <1
Tit = and a;; == maxAckMC’Sftam’j
—1, else if a;,; < realSINR,; ;
\ —Ryack, else if a;; > real SINR, ;

(4.7)
The effectiveness of the modification is presented in Fig. 52. The overall design

of the s, r ,and a are shown in Table. 4.

4.3.1.2  Neural Network

In this work, we apply a neural network as the approximate function.

In comparison with previous OLLA methods, although applying neural net-
work shows better performance, it requires more arithmetic units. Hence, several
researches aimed to improve the energy and computation speed through the design
of the hardware [33-36]. Parallel computing [33] can improve the computing speed
considerably. Due to the limitation of the communication devices, [35] provided
an overview of trends in designing machine learning architecture Thanks for these
efforts and the trend, we can expect that the cost of applying neural network in
communication will be reduced.

Secondly, neural network has stronger flexibility of representing complicate
relationship between parameters. Training it properly can reduce human resources
costs. For example, Fig. 20 shows that no matter what kind of the feedbacks the
UE adopted, the proposed method can find the strategy automatically.

Furthermore, due to the characteristics of representing complicate relationship
between parameters, it provides the potential of multiple to multiple map as shown

in Fig. 21. With the increasing complexity of communication environment, such
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Figure 20: Comparison of Convergence Steps between different Methods in dif-
ferent Types of Feedbacks

as multiple antennas and increasing devices, the requirement of making good use

of the increasing parameters for base station is growing.

€QI; (MUMIMO) — . .
rmd/r/b”"/ Mappip, | |
. |

— Vi

€QI; (SUMIMO)
PMII} .

PMI;

2 Opos,
e 4
Historical data dMel‘/rod

Figure 21: Difference between traditional Mapping and proposed Method with
good initial Value

When it comes to applying neural network, properly determining the param-
eters and architecture is crucial for good training. Fortunately, there have exited
several useful thumbs of rules about the setting. Although some of the issues are
still under discussion, this discussion shows a path to train a agent in an efficient
way.

In this thesis, we try two types of the architecture of the neural network as
shown in Fig. 22. The PMIs have distinct characteristics, so we separate the neural
network as shown in Fig. 22. The the architecture of fully-connected network is
the same as Fig. 23 but without PMI;. We hypothesis this architecture should

have a stronger capability of capturing the characteristics PMI more carefully and

doi:10.6342/NTU201900453



4.3. PROPOSED MECHANISM IN COMMUNICATION SYSTEM 44

efficiently. The result is shown in Fig. 34.

S

'

Fully Connected
Neural Network

a

(a) One fully-connected Network.

S
Fully Connected Neural Fully Connected Neural | Fully Connected Neural
Network of PMI 1 Network of PMI 2 Network of PMI 16
PMI
v
| Choose action generated by Neural Network of PMI

(b) Multiple fully-connected Network for each PMI.

Figure 22: Architecture of the Neural Network

The fully-connected network in this thesis is demonstrated in Fig. 23. ; is
the weight between layer (i-1) and layer i. X; represents the set of the output of
neurons in layer i. X;; represents the output of neuron j in layer i. Z; represents
the set of input of neurons in layer i. b; is the bias in the layer i.

hi(Z;) is activate function. The relationship between X; and Z; is X; = h;(Z;).
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Zy =WiXo+bo Xy =hi(Z)) Zp=WyXy+Dby Xo=hy(Z3)

maxAckMCS?

minNackMCS*

Select
B TL’(S)—> action —a

maxAckMCSNcomb
minNackMCSNcomb
Pair

ol

PMI

Ve (s)

Input layer Hidden layer Output layer

Figure 23: Fully-connected Network

We adopt RELU as the activate function in the hidden layer. RELU function is
RELU(Z) = max(0, Z).

The RELU is popular in recent years. It can accelerate the convergence of
stochastic gradient descent compared to the sigmoid/tanh functions. Further-
more, while considering multiple layers, vanishing gradient problem will lead to
the failure of deep learning. It is shown that substituting the activation function
with RELU can solve this issue. Due to these benefits, we choose RELU.

In the output layers, we adopt softmax layer for m(s), which outputs the prob-
ability of choosing actions. The neuron j in output layer can be written as

e

- Dy €
where K is the number of the actions. In this work, K = |M].

The sum of the value of the neurons in the layer is equal to 1, the values are

softmax(z),;

always between [0, 1]. Thus, each output can be treated as probability easily. It
is common for action selection based on the stochastic policy. As for v, (s), the

activate function is linear function, which is
linear(Z) = Z.

Let input layer as layer 0. X is the input directly. Also, We treat all the input
as category feature, so we encoded the features with one hot encoder. Take PMI for
example, if PM I = 16, after encoded, it becomes [0, 0,0, 0,0,0,0,0,0,0,0,0,0,0,0, 1].
That is, if PM I = k, only the kth value in the array will be 1, the others will be
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zeros. Since the category feature has no numerical meaning, thus proper transform
is needed. Although some machine learning technique can make a good prediction
with numerical form, the neural network is sensitive to the numerical value. Thus,
it may be better to apply the one hot encoder in this case.

The effectiveness of the feature can be seen in Fig. 32.

4.4 Reinforcement Learning Algorithm

There are many categories of reinforcement learning. It can be simply sepa-
rated into a value-based method, policy-based method, and actor-critic method.
The detailed explanation can be found in [27]. After our investigation, we fo-
cus on exploring methods adopt actor-critic because it has the advantage of both
value-based and policy-based methods. Apart from the learning algorithm, the
approximate function is also an issue. We choose the neural network to learn
the approximate function. We firstly introduce the actor-critic method applied in
the thesis. And then, the details of the neural network and the exploration-and-

exploitation policy are elaborated.

4.4.1 Asynchronous Advantage Actor-Critic Agents(A3C)

We adopt A3C [37] as the training algorithm. A3C recently receives consid-
erable attention. This algorithm has better performance in comparison with the
current state of art reinforcement learning algorithms in many aspects. In order
to have a basic understanding of the algorithm, we will explain why it is called
A3C.

Asynchronous indicates that the whole updates of the network do not operate
immediately as long as the reward is received. Instead, in A3C, there are many
agents with corresponding environment operating in parallel. In this way, the
algorithms are able to explore more strategies since each agent is independent
with of the experience of others. It keeps a good trade-off between exploration
and exploitation, which is an important issue for reinforcement learning.

Actor-Critic is a combination of the policy-based and value-based method.
The method utilizes the benefits of traditional value-based and policy-based method,
improving their weakness. Thus, Actor-Critic uses the parameterized value func-
tion, v,, and parameterized policy function, 7, to learn the approximate function
in a more efficient way. In spite of the benefits of combining value-based and
policy-based method, updating v, and 7 is not feasible in practice; because they
can affect each other, that is why the new algorithms, such as A3C and A2C, are
appeared.

In a conventional policy-based method, it is general to use a rewarding function,
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which simply is an indicator of how good the action is, for updating gradients.
However, A3C adopt Advantage function as an indication. Advantage function
indicates how much better is this update rather than how good the actions are.
It is generously written as, A = R — v.(s). Thus, it makes the algorithm more
robust to the biased issue and tunes the network in a more efficient way as well.
Nevertheless, it enlarges the impact of the variance of the reward on learning.

Thus, the design of the reward still remains an important issue.

4.4.2 Implementation and Modification of A3C

In this section, the details of the implementation of A3C will be further ex-

plained. The overall algorithm is shown in Algorithm 1.

Algorithm 1 N-step A3C with shared neural network and e-greedy policy in the
thesis.

\\ Assume global shared parameter vectors 6 global shared counter 7' = 0
\\ Assume thread-specific parameter vector 8’ \\ ¢, and ¢,., are constants.
Initialize thread step counter ¢ <— 1 Reset loss: L < 0 Synchronize thread-
specific parameters: @ = 0 ty,+ = t Get state s; Perform a; according to
e-greedy algorithm, as depicted in Algorithm 2. Receive reward r;, which is
calculated based on Eq. (4.5), and new state sy g t < t+ 17T < T +1
terminal s; t —tgar =—— N R = 0 for terminal fgt 1 €

V(s,0),  for non-terminal s,

t—1,...,tsare R < r;+7R Advantage function: A = R—V (s;,0) L,; = (4;)*
Li = —log(m(ails;)A; H(m(s:)) = = S50, w(si)i - logm(si)i Lyegi = H(m(s:))
Li=Lr;+cyLy;+ Creglyeg; Accumulate loss : L <— L+ L; Calculate gradient
: df < 7¢ L Perform asynchronous update of 6 using df T' > T4,

Although the A3C offers a robust structure for reinforcement learning, there
are still some important components has to be further discussed as applying it in
a new field.

Firstly, the approximation functions, v,(s) and 7(s), are the important com-
ponents. The approximation function has to be parameterized and differentiable
since A3C apply policy gradient theorem. We adopt the neural network as ap-
proximation functions v,(s) and 7(s). Neural networks are good at extracting
the feature from complicated inputs. Also, the gradient theorem for the neural
network has been well studied. Nevertheless, the activation layers and architec-
ture of neural networks still remain issues because they highly depend on the type
of tasks. The neural network is picked in this thesis as approximation functions,
v.(s) and 7(s). The performance of different structure will be demonstrated in
the next chapter.

It is noticing that v,(s) and m(s) share same neural network in our work, as
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m(s)

S Neural Network :

T ()

Figure 24: Architecture of Neural Network of s, 7(s) and v, (s). The block 'Neural
Network’ in this thesis is the same as Fig. 22.

shown in Fig. 24. This design provides some benefits. Optimizing the neural
network together act as a regularization, and result in a more stable network.
Plus, optimizing both goals together will learn faster [37].

Secondly, the task of taking action is the exploration and exploitation issue.
Exploiting the current network or exploration the other possible policy is always
a question. Instead of only relying on softmax action selection, we adopt e-greedy
to keep a balance in this problem. In the exploitation stage, the agent still acts
based on softmax action selection. The overall procedure for deciding to explore

or exploit is shown in Algorithm.2.

Algorithm 2 Peseudo code of Selecting Actions in Agents
\\ € is the initial value of €; €.,q is the end value of €; ¢ is the value of €
at step ¢ \\ ¢ is current number of training step; ¢y will reach €., after T" steps
t <T €11 =6—(€0—€end)/T €141 = €ena @ =random number picked from [0,1]
i < €41 a1 picked randomly from [(maxAckMCS+1),(minNackMCS-1)]
a1 selected according to the current policy.

It can be seen in the Algorithm 2 that it is a e-greedy. Although it is general
to use stochastic policy based on the softmax layer for exploration and exploita-
tion, the action space can not be easily constrained and well explored as shown in
Fig. 36; thus, we adopt e-greedy. In addition, even if it is an exploration stage, we
still give constraints for the action space. We found that in this way, the explo-
ration will be more efficient. Since the action spaces are extremely large, providing
the reasonable selection space of MCS based on the known knowledge can encour-

age the optimizer to train the neural network along with a desirable direction.
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Otherwise, without the constraints, it may receive a bunch of discouragement, the
direction of gradients could be hard to predict. As a result, the convergence speed
will be slow down. Still, the neural network has to learn what kind of actions
is discouraged. Thus, we put no constraints on the exploiting policy. Although
the neural network may return an undesirable action, these undesirable actions
may teach the training agent in which actions are bad for the state. Besides, if
the discouraged actions are never outputted by the neural network, the agent is
unnecessary to worry about it. In short, this design explores the policy more ef-
ficiently and allows the updating algorithm to specifically deal with the weakness
of the neural network The comparison is shown in Fig. 36.

Moreover, the loss function is a crucial element in neural network. The neural
network applies backpropagation to update the parameters in the network based
on the loss function. The design of the loss function has impact on the conver-
gence speed, exploration, and the way the neural network converging. The loss
function can be separated into three parts: policy loss(L,), value loss(L,) and

regularization(Lye,). The loss function L is
Li = L7r,i + Cva,i + CregLreg,i7 (48)

where ¢, and ¢, are coefficients. It can be modified to tune the impact of L, and
Lyeg.
L, depicts the loss of the policy, thus, it can be written as

L.; = —log(m(a;|s;)A, (4.9)

where 4; is the advantage function. A; = 7+ 1+ 4+ v 1+ Ve (sin ) —
Vz(s;). n is number of samples.
Value loss function depict how accurate is the prediction of the value function.

It can be simply represented as the advantage function:
Ly; = (A)* (4.10)

It is found that adding the entropy of policym can improve the objective func-
tion because it discourages m to choose the premature action. As a result, the
exploration is improved.

In this work, we adopt cross entropy as entropy function. Entropy function is

defined as
Al

H(r(s;)) = = > _ m(si) - logm(si)k,

k=1

where 7(s)y is the probability of choosing action k.
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Figure 25: Implementation of A3C in training Neural Network

Also we can use this term,
Lyeya = H(x(s.). (4.11)

for regularization.

The neural network will update the parameters in the network based on the
L; we have discussed.

We also investigate the impact the parameter, N, mentioned in Algorithm 1
- N-step A3c algorithm. We compare the performance in terms of the objective
function, Eq. (3.13). N-step return is the combination of temperal difference(TD)
and Monte Carlo(MC). With n-step return, the V, is updated according to this
formulation, Vi(s;) = 7 + et + oo YV vt + YV Vi (sen).

Reward function in Fig. 25 is defined as R, = 7 + yrepq + ... =Y rpn_1, so
the advantage function is Ay = 7y +y7rei1 4+ + YV " trie v 1 Y Vi (Sen) — Vi (82),

where vV, (s;4n) is for bootstrapping, and V,(s;) is served as baseline.
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Research has shown that while considering a sequence of actions, N-step re-
turns may accelerate the learning speed. In n-step return, the function can be
updated with cumulative n-step rewards in each iteration, benefitting from the
unexpected magnitude of rewards. The 1-step return has an only 1-step reward,
so it changes the functions much slower. Nevertheless, it is not always the case
that n-step returns will accelerate the convergence speed. The variance of n-step
rewards highly depends on the chain of actions, which may lead to lots of dif-
ferent combinations of states. If the size of the possible state is too large, it
might endanger the convergence. Thus, the proper chosen of N have to take into
consideration [27]. The comparison of N is shown in Fig. 37.

The details of the functions in the algorithm have been discussed. Now, each
block in Fig. 25 will be introduced.

The task of the environment is to emulate the behavior of the communication
network. Moreover, it has to generate appropriate reward and state in response
to the action of the agent. For the reason that we focus on solving the strategy
of assigning MCS, the environment is used to generate NACK and ACK for the
assigned MCS. It estimates the real SINR with the collected database and decides
whether the selected MCS would lead to NACK or ACK by comparing the real
SINR and the tolerable SINR for the MCS according to map.

The task of the agent is to make an action. Generally, each agent calculates
their own local gradients, and transmit these gradients to global optimizer after
N steps. And then, the global optimizer will update all the parameters in the
network based on the gradients from each agent in A3C.

In this thesis, we made a little adjustment without losing the benefits of the
A3C algorithm. Except for making an action, the agents store all states, rewards,
and taken actions. And then, the agents transmit sg, Sn/||Sterminai, and R for each
N steps to global optimizer. The difference is that the agents no longer compute
the gradients on their own. Nevertheless, the global optimizer is still able to receive
the experience from different agents, so the explorations remain effective. Besides,
due to the optimizer happening only in the global optimizer, it can save the time
of computing gradient, which is a heavy burden for computers. The details of

updating neural network is shown in Fig 26.

4.5 Proposed Feedback and Scheduler

In the framework of OLLA, we have two suggestions. Firstly, we suggest that
using the feedback considering only a single beam instead of multiple beams in
order to improve the overall performance. This type of feedback is called SU-
MIMO feedback.
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Figure 26: Process of updating a Neural Network. The gradient descent optimiza-
tion algorithms in ’Optimizer’ in this thesis is RMSprop. The backpropagation
needs to compute the derivative of each activate function and the error generated

in each layers.

To deal with the feedback problem in MU-MIMO, VIENNA adopts the feed-
back method in [3]. The approximation SINR in [3] is expressed as
p 2\ 7 2
17 |17 ‘hkfkws@k’

E[SIN Ry real] =

2

2 . T
1+ ‘—I;l [k ll™ sin6k D 5o ‘ekfi
~ ~ 2
hkkaOSQk

2
2

T Al sin26,

(4.12)

!
P 2| 7 2

A Il |Ridicost

IS 1+ Ll sin26;,

The approximation is based on the assumption that the scheduled UEs are
almost orthogonal. The |eg f;| is Beta-distribution.

Based on the approximation function, the UE returns
P 2|7 2
Al ‘hkkaOSOk‘

. 4.13

g()MY =

And then, the base stations calculate the SINR based on the quantized g(k).
M is a mapping function to transfer the SINR to CQI; M~! is a mapping function
to transfer the CQI to SINR. The CQIMY is denoted by CQI of k user while
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considering multiple beams. It can be formulated as,
CQIMY = M(g(k)MY).
The SIN R}V is denoted by SINR of k user while considering multiple beams.
It can be formulated as

M
SINRYV = ———M 1 (CQIMY). (4.14)
S]] fll

The overall diagram is shown in Fig. 27.

That is to say, while exploiting MU-MIMO with VIENNA | the users return the
CQI considering the impact of the other beams. This way prevents the scheduler
from overestimating the expected performance when scheduling multi-users in the
same RB. Unfortunately, it may deteriorate the performance under the single-
beam case. With the fixed mapping method, it might have no choice but to accept
this drawback. However, the proposed method in the thesis allows the assigned
MCS to change dynamically. As a result, we adopt the feedback, which neglects
the impact of the other beams, called SU-feedback as our estimated feedback. The

SU-feedback can be written as
. 2
U = ||l | fucosti + exfe| - (4.15)

The CQIZY is denoted by CQI of k user while considering single beams. It
can be formulated as

CQIFY = M(g(k)*").
The estimation of SINR of user k in single-beam case is
SINRY = PMH(CQIY). (4.16)

By contrast, the feedback considering inter-beam interference called MU-feedback,
which is represented as Eq. (4.13).

With the proposed adaption algorithm, the overall diagram is demonstrated
in Fig. 28. Under the single-beam case, the scheduler uses the estimation of SINR
directly.

The distribution of SU-feedback to real CQI, which including MU cases, is
shown in Fig. 29. It is noticing that the pattern is different from Fig. 16. Hence,
it is expected that the strategy of selecting MCS should be different. That is,
the traditional method should be re-designed by researchers while the proposed
method is able to be applied directly to find out a good strategy.

As for the other suggestion, it is about the retransmissions constraints of the
scheduler. The number of retransmissions provides the scheduler with better ca-
pability of controlling the requirements of the communication. The benefit and

impact of the constraints are shown in Fig. 54.
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Figure 27: Diagram in VIENNA
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The original scheduler chooses the user depending on the PF metric. It may
good for the performance, but it results in some unpredictable results in this
framework when applying OLLA mechanism. Thus, we implement the scheduler
called converge-first scheduler. The diagram of the scheduler is shown in Fig. 30.
This scheduler will make sure that each user has found the suitable MCS for its
pairs, and then activates the original scheduler. It helps us to observe the impact of

convergence steps on performance more easier. The performance of implementing

the scheduler in VIENNA is shown in Fig. 53.
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User Selection :
[ User Selection : Choose Choose the users which

the users based on PF have not converge yet
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MCS

/

[ Transmit J

Figure 30: Converge-first Scheduler

Furthermore, there is a constraint that the beams have to be orthogonal to each
others. Previous research has shown that the correlation of the beams has impact
on the performance. The higher correlation usually brings the higher performance.
Fig. 31 shows that adopting the constraint do not deteriorate the performance a
lot. The benefit of using this constraint is that it can saving time for calculating
the metrics for different grouping. Also, the N, can significantly reduced. The
state space can be smaller; it is beneficial for the training. The orthogonal table
is shown in Table 5.If the PMI of the user is in the left column, the PMI of the
other user will be orthogonal under the condition that the PMI of the other user
belong to the right column. It can be seen that the maximal number of possible
paring PMI set for a PMI is 5 with this constraint, without this constraint the

maximal number of the set will be the size of the codebook.
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Figure 31: With orthogonal Constraint or not

Table 5: PMI Orthogonal Table
PMI  Orthogonal PMI set

1 234911
2 1341012
3 124911
4 1231012
3 678
6 578
7 2968
8 567
9 13101112
10 2491112
11 1391112
12 2491012
13 14 1516 10 11
14 13 15 16
15 13 14 16
16 13 14 15
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CHAPTER 5

PERFORMANCE EVALUATION

In this chapter, the evaluation of the proposed methods is presented. Firstly,
the simulation settings are introduced. And then, we demonstrate the performance
of the different structures of the neural networks, features, and exploration rules.
And, we evaluate the performance of the proposed algorithm in comparison with
other methods in VIENNA [21].

5.1 Scenario Setting

In order to simulate the communication as practical as possible, we adopt the
Vienna LTE-A link level simulator. The simulator follows the standard of LTE.
The scheduler in VIENNA follows the SNR mapping to assign proper MCS in
order to prevent the receiver failing to decode the signal due to the awful channel
condition. The mapping used in VIENNA is shown in Table 6. We also extend
the transmitter and receiver to implement NOMA in VIENNA. The other relevant

settings are shown in Table 7.

Table 6: CQI Parameters
CQI MCS (Rate is for every 1024 bits) Efficiency(bit/RE)

1 QPSK-78 0.1523
2 QPSK-120 0.2344
3 QPSK-193 0.3770
4 QPSK-308 0.6016
5 QPSK-449 0.8770
6 QPSK-602 1.1758
7 16QAM-378 1.4766
8 16QAM-490 1.9141
9 16QAM-616 2.4063
10 64QAM-466 2.7305
11 64QAM-567 3.3223
12 64QAM-666 3.9023
13 64QAM-772 4.5236
14 64QAM-873 5.1152
15 64QAM-948 5.5547
0(20) 0QAM-0 -10
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Table 7: Simulation Setting

Parameter Value
Transmitter 1 BS with 4 antennas
Receiver Each with 1 antenna

Carrier frequency
Bandwidth
Subcarriers bandwidth
Number of UE
Channel

Transmission mode
Beamformer
Detection
Feedback granularity of PMI
Feedback granularity of CQI
Simulation time
Scheduler

2.1 GHz

1.4 MHz(6 RBs)
15 kHz

20

Temporally  correlated
Rayleigh block fading

8

Zero forcing (ZF) and LTE codebook
Minimum mean square error (MMSE)
Whole band

1 RB

500 TTIs

PF scheduler

frequency  Flat

5.2 Simulation Results

In this section, we first the design of reinforcement learning, which are il-
lustrated in Chapter 4. And then, we will demonstrate the advantages of the
proposed method. The performance in terms of throughput, BLER, geometric
mean throughput, and cell-edge user throughput in a practical communication
environment with different methods are shown with VIENNA in order to put
practical communication environment into consideration. The advantage of the

proposed feedback and the impact of the constraint of the retransmissions will be

demonstrated.
Table 8: Training Setting
Parameter Value

€end 0.1
€0 0.3

v 0.99

T 2000000

minimal batch size 32

RMSprop learning rate 0.05
Cy 0.5

Creg 0.01
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5.2.1 Verify the Design of Reinforcement Learning

5.2.1.1 Comparison of Features

Table 9: List of different Design of State in Fig. 32

S1:
Ncom
Sit = [ [maycAckMCS minNackMCS] . ' Pair,; CQI;; PMIM}
S2:
NeompXNaics
Sit = [ [ACK NACK not used} Pair;,; CQI;, PMIM}
it
S3:
Ncomb
Sit = [ [maxAck:MC’S mmNackMCS] y Pair; ; C’Q[Lt}
S4:
Ncomb
Sit = { [maxAckMC’S minNack;MCS] y Pair; ; PMIM}
SH5:

Ncomb

Sit = “maxAckMCS minNackMC’S] Pair;; CQI;, PMIM}

2,

(without one hot encoder)

ys do b, ot A et et AR
o ¥

L
T i

- '_'..1;.’-.u;n'1\“1' L by ol Lk oL
A'f'.ﬂ" lf‘\}‘\lf'rt!:‘i{‘ﬁyi}flﬁ]hfw "L"’ ;r ','f'(k "Iqr’*f "i{! ﬁr’h‘fﬂ”rf’\' h’r‘f‘ﬁ”‘%m‘l‘[!' MII}?M,‘J% F}‘v"{

il

Objective Function

0 100 200 300 400 500
Episodes/500

Figure 32: Comparison of States

The effectiveness of each feature and feature simplification is shown in Fig. 32.
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Different features are disabled in a different state in order to verify the effectiveness

of the absent feature.

-0.5 B

Objective function

-251 B

351

Figure 33: Comparison for each PMI with S1 and S3

Taking a look to S3, in spite of the slight improvement, it still can say that
considering PMI of the user does not only benefit the architecture of the neural
network but also the states. It can be seen in Fig. 33 that the objective function
with S1 is better than with S3. S1 shows the capability of capturing the character-
istics of each PMI. As for S2, it can be said that the simplification is very effective
because the training speed is the worst, and the variation in the training process
is large. As for S4, it implies that the CQI is a feature which is more important
than the PMI of the user. S5 demonstrates the importance of one hot encoder. It
seems that without proper transform the performance will be much worse.

Unlike traditional methods usually only consider NACK and ACK, or limited
information. This result shows that the proposed method can handle more pa-
rameters in the environment. Also, if the simplification does not lose the most

important information, it will show a positive result.

5.2.1.2  Separate or Fully-connected

In Chapter 3, we learned that different PMIs have distinct patterns of the
distribution of the estimated SINR. Based on this observation, we separate the
neural network for each PMI, which is demonstrated in Fig. 22. We hypothesize
that the separation can help the neural network to learn the strategy for PMI more

efficiently and to capture the different characteristic for each PMI more easily.
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—— Multiple fully connected neural network for each PMI
One fully connected neural network
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Figure 34: Training Speed for one fully-connected Network and multiple fully-
connected Network for each PMI

Fig. 34 compares the training efficiency between the one fully-connected net-
work and multiple fully-connected networks for each PMI. The multiple fully-
connected networks are trained separately, so the objective function of the mul-
tiple fully-connected networks in Fig. 34 is the sum of the objective function of
each network for each episode. It seems that one fully-connected network have
better performance in the beginning, but the separated network surpasses the one
fully-connected network in the end. It might be that some of the characteristics
of the PMI are not easy to learn, resulting in the performance loss in the begin-
ning. Nevertheless, the separated networks still show higher potential to carefully
catch the characteristics for each PMI, leading to a higher performance in the end.
These results suggest that if multiple computers are available to train the proposed
architecture in parallel, this architecture can save us time and learn better. Still,
we can obtain a decent result with one fully-connected neural network. Due to
the acceptable performance of the one fully-connected network and lacking mul-
tiple hardware, we decide to apply one fully-connected neural network. Still, this
result suggests that the task in this thesis can benefit from the separated design
for distinct PMI.

5.2.1.3 Neurons and Layers

Despite that there are several rules of thumb about the choice of the layers
and neurons in the neural network, a clear theory is still absent. In practical,

validating the choice in the neural network in order to obtain a good-trained neural
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Figure 35: Training speed of different Neurons and Layers

Table 10: List of Convergence Steps for different Number of Neurons

Number of Neurons in | Average Steps
Layer 1

16 4.26

32 4.16

50 4.26

80 4.2

112 4.87

150 4.59

network is necessary. From Fig. 35 there is no significant difference between the

number of neurons with one layer, so we compare the trained agents in the realistic

environment in Table 10. It seems that the number of neurons = 32 is better.

Researches have studied on the benefit of the deep and shallow neural net-

work. The deep neural network may perform better than shallow neural network

while the number of parameters is the same in the neural network because the

deep neural network can perform a hierarchical structure. However, the previous

researches also point out that deep neural learning is very difficult to train well to

achieve the expected result. In most cases, the neural network with one layer is
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already good enough. In Fig. 35, the training time of two layers is three times as
much as of one layer. Since the deep neural network did not surpass the shallow
neural network significantly, we adopt the neural network with one layer due to

the faster training speed.

5.2.1.4 The rules of exploration and exploitation

Algorithm 3 Rule 1: Select Actions with Constraint in e-greedy
\\ €o is the initial value of €; €.,q is the end value of €; ¢, is the value of €
at step ¢ \\ ¢ is current number of training step; ¢y will reach €.,,q after T" steps
t <Ter1=6—(€0—€ena)/T €141 = €eng @ =random number picked from [0,1]
i < €41 a1 picked randomly from [(maxAckMCS+1),(minNackMCS-1)]
a1 selected according to the policy

Algorithm 4 Rule 2: Select Actions without constraint in e-greedy

\\ €o is the initial value of €; €.,q is the end value of €; ¢; is the value of
€ at step t \\ ¢ is current number of training step; €, will reach e.,q after T
steps t < T €41 = € — (€0 — €ena)/T €41 = €eng © =random number picked
from [0,1] ¢ < .1 MCS picked randomly within M @, selected according
to the policy

Algorithm 5 Rule 3: Select Actions based on the policy without e-greedy
a1 selected according to the policy

As Chapter 4 said, Algorithm 3(rule 1) is designed for learning more efficiently
by confining the exploration space in a reasonable way. The Algorithm 5 is the
general algorithm for a policy-based method. We compare these three strategies
of exploration and exploitation in Fig. 36, it can be seen that confining the action
space can accelerate the learning speed. Also, if the exploration and exploitation
only rely on the stochastic policy, the selection of action might be biased by the
beginning value of the policy. That is, the action space cannot be well explored.
Also, it is noticing that the learning process is more stable with Algorithm 3(rule
1) than with Algorithm 4(rule2) and Algorithm 5(rule3).

The result implies that while considering exploration and exploitation, con-
fining the exploration space based on the domain knowledge is useful while the

exploration space is large.

5.2.1.5 N and R

Reward shaping is a crucial issue to guide the training agent to learn the desired

behavior, the reward function is shown as
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Figure 37: Training speed with different N and R
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. Pair; ; . Pair; ;
—R, if a;y < marAckMC'S, taw 7 or a;y > minNackMC'S,; tm ;2

0, else if |maxAckMC’SZam’j — minNackMCSﬁam’jl <1
Tig =

’ P Je . .
and a;; == maxAckMC'S; AT

2,0

-1, otherwise
(5.1)
N-step return may improve the performance due to larger reward in an itera-
tion. According to the previous study, both the magnitude of the N and R have to
be carefully chosen. A large value will cause high variance and divergence, a small
value cannot encourage or discourage the network. Since both magnitudes have an
impact on the performance, we put them together to validate which combination
is better.

6.5 I T

55+ B!

Avg. Convergence Steps
iy
h
T
|

35 B!

25 1 1 1 1 1 1 1 1

out

Figure 38: Convergence Steps with different Parameters

In Fig. 37, it can be observed that as N = 4,6 the variance is larger when
the R is higher. Especially as N = 6, it seems that the policy cannot converge
if R is too large. It can be said that the agent cannot benefit for the R if N is
large. This result is reasonable, if both R and N are large at the same time, the
cumulative reward might be extremely large. And, the policy may suffer from the
higher variance of the reward, which may cause diverge. On the condition that
N =1, the agent learns slower if R = 1. If R > 1, the agent can learn faster. The
difference between R = 2 — 10 is not very obvious. Also, if N = 2, the value of R

has no obvious impact according to Fig. 37.
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Since the best performance is not very clear in Fig. 37 while considering training
speed, we compare the convergence steps. In Fig. 38, the value between N = 1
and N = 2 is close, so it is still hard to tell which NR setting is the best. However,
we choose N = 1, R = 6 in this thesis because it seems slightly better than the
others in these trained agents.

From this result, we can conclude that the optimal R is dependent on the
chosen of N. In this task, the chosen of N is more important. If chosen N is

within a certain range, the R will have a fewer impact.

e N, R, and the rules of exploration and exploitation

Objective function
Objective function
g
=
Objective function
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Figure 39: Training Speed with different N and R with Rule 2
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Figure 40: Training Speed with different N and R without e-greedy Algorithm
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Since both R and Algorithm 3 are designed based on the knowledge of the
effective action range, we would like to observe how the rule affect the performance
while validating N and R.

It can be seen that the variance in Fig. 39 is higher than in Fig. 38. Also, unlike
in Fig. 38, we can conclude that the chosen of NV is less relevant with R when N
is small. It seems that without confining the action space, the encouragement and
discouragement of reward plays a more important rule. Furthermore, the variance
is increased positively with N.

This trend is ever significant in Fig. 39, the performance of very sensitive to the
N and R. The reason that N = 2, R = 6 vanishes in the figure is that the value is
to exceed the range of the y-axis.N = 2, R = 6 is shorter because the agent learns
slow, it spends more time in each episode. Thus, with the same training time, it
can only operate fewer episodes.

In short, restricting the action space is more effective than the rewarding,
leading to a much more smoother learning curve. Furthermore, restricting the
action space allows us to spend less effort for chosen N and R. Still, reward shows
much more benefits when action space is unknown, but the tendency of the desired

behavior is known, such as R . in sec 5.2.2.6. Also, the chosen of N is important.

5.2.2 Performance in VIENNA

In this section, we demonstrates how we choose the parameters in the Pro-
posed OLLA, Traditional OLLA [9], and Baseline OLLA [15]. Also, we com-
pare the performance of the Original, which is a method applying in VIENNA
without OLLA and with limited CSI; Traditional OLLA, which is the first
OLLA; Baseline OLLA, which is enhanced OLLA; Proposed method; Perfect,
which is without and with perfect CSI. Furthermore, the benefit of the proposed
feedback is demonstrated in this section.

We consider 4 metrics: Throughput, BLER, Geometric mean throughput, and
cell-edge user throughput. Throughput is the data that the base station can send
within a certain time. BLER is the ratio of the number of erroneous transport
blocks and the transmitted transport blocks. The geometric mean rate is the

product of the average throughput of all users, written as

n H R_ua
V uelU

where R, is the average throughput of user,. By definition, the cell-edge user
throughput the 5th percentile point of the CDF of user throughput. In the thesis,
it represents the throughput of the last user because the number of UE in the

simulation is 20.
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5.2.2.1 Traditional Method

The traditional method changes the MCS in a fixed step. If the base station
receives a NACK, the next MCS will be decreased by Agyun; if the base station
receives an ACK, the next MCS will be increased by 1. The mechanism can be
written as

MCS; — Agown , if receiving an NACK
MCSH_l == (52)

MCS; +1 ,if receiving an ACK
The ratio of NACK is defined as

Total Nack steps

The ratio of NACK = .
Total convergence steps

The convergence steps and the ratio of NACK both have an impact on the
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Figure 41: Relationship between Step Size, Convergence Steps, and Ratio of Nack

throughput. The convergence steps represent the capability of recovering from
the sudden change in the channel. If the chosen MCS can find the suitable MCS
as fast as possible, the performance could recover faster. However, the searching
process may deteriorate the performance. If the chosen steps are too aggressive,
it may cause failed transmission and sacrifice the throughput. Thus, observing
these two metrics can help us to predict the performance easier.

It can be seen in Fig 41, the larger the Ag,un is, the smaller the ratio of NACK.
For the reason that if the Ay, is larger, the probability of selecting MCS larger
than the real SINR is smaller.

In Fig. 42, it can be observed that while Ay, is increasing, the BLER is
decreasing. The throughput does not decrease with BLER. As mentioned before,
both convergence steps and BLER can affect this metric. Since the throughput
is highest as Agown = 3, we choose this value in this thesis for the traditional
method.

doi:10.6342/NTU201900453



5.2. SIMULATION RESULTS 71

! 7
© MUMIMO © - MUMIMO
—o— NOMA+MUMIMO 161 —8— NOMA+MUMIMO|

181
32k - 13-

Throughput(Mbps)
BLER(%)

L L L
2 3 4 5 2 3 4 5

donum

(a) Throughput. (b) BLER.
Zo— Nowamumvo — Nowsmuiv

3
3

W

O

)
3
5]
3

Geometric Mean Rate(Mbps)
‘Throughput(Mbps)

e

I | I
2 3 4 5 2 3 4 5
Step size

(c¢) Geometric mean rate. (d) Cell-edge throughput.

Figure 42: Performance in Traditional Method

5.2.2.2 Baseline Method

The baseline method changes the Ay and Agown according to elapsed time
[15].

MCS; — Agownyt if receiving an NACK
MCSt+1 = 5 (53)

MCS, + Aypy ,if receiving an ACK
where Agown,t = Aofiset + Amitial - €XP ", Aypy = a(Aofiser + Amitial)-

There are several parameters in the baseline. Aogse; is the offset value, Aoy
will converge to Aopgsey in the end. We compare the parameters of the baseline;
Amitia1 has the impact in the beginning; v determined the rate of Agyyy,, converging
to Aofset; @ is the ratio between Agoyne and Ayp. In Fig. 43, the v has smaller
impact on the performance. If Ay = 0, its behavior is the same as traditional
method. On the condition that A,fsser = 0, the performance looks better. We
choose Apitial = 1, gamma = 1, and Aygset = 2 in the end. The convergence steps
is not the smallest in this setting, but it only sacrifices the convergence steps and
improves the ratio of NACK a lot.

Fig. 44 shows how the baseline works with the chosen setting. The first Agown

is 3 and then become 2. The A, is always 1. The step size is varied with time.
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5.2.2.3 Comparison of Convergence Steps between different Methods in dif-
ferent Types of Feedbacks

The convergences steps is defined as -objective function. The formula of con-

vergences steps can be written as
T
mean g T

t=0

0, if the base station knows that it has reached the suitale MCS.

Tt =
1, otherwise.
(5.4)
9 r
I Proposed
8 [ Traditional |
[Baseline
7 )
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Figure 45: Comparison of Convergence Steps between different Methods in dif-
ferent types of Feedbacks

SU indicates that OLLA exploits SUMIMO feedback; MU indicates that
OLLA exploits MUMIMO feedback, and is not activated in single beam case;
MU, SB indicates that OLLA exploits MUMIMO feedback, and is activated in
single beam case. The reason that SU do not need to consider OLLA in single
beam case is that it can use SUMIMO feedback directly.

Fig. 45 shows the convergence speed in each OLLA methods. All the methods
aim to converge as fast as possible. It can be observed that the proposed method
shows the stronger capability in finding a good strategy of converging fast and

dealing with the different condition in the channel.

5.2.2.4  Performance in different Types of Feedbacks

Fig. 46 explains that why the SU-feedback is adopted in this work. Notice the
throughput of SU and MU, SB; the throughput is higher if we considering the

capacity of single beam case. Also, directly using SU-feedback is better, because
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the base station does not need to spend time on searching for the suitable MCS
while scheduling in single beam. Furthermore, it is noticing that the BLER is
high if we use MU-MIMO feedback to do OLLA in a single beam because the
base station has to spend more effort in searching for the suitable MCS for each
possible grouping.

Overall, SU feedback shows better performance, so we adopt SU feedback in
this thesis.

I MU-MIMO I MU-MIMO
I NOMA+MUMIMO) I NOMA+MUMIMO

ughput(Mbps)

Throt

MU.SB MU, SB

(a) Throughput. (b) BLER.

Figure 46: Performance in different Types of Feedbacks

5.2.2.5 Performance in different Methods

When it comes to throughput, we can observe Fig. 47. Firstly, the throughput
is double with OLLA. The traditional OLLA increases the throughput by 105%
in MU-MIMO and by 137% in NOMA+MUMIMO, respectively. This result im-
plies that increasing the accuracy of the SINR benefits the throughput signifi-
cantly. Moreover, the improvement between MU-MIMO and NOMA-+MUMIMO
is more obvious. The gain between MU-MIMO and NOMA+MUMIMO is almost
can be ignored in the original method, while the gain is 7.4% in the proposed
method. Furthermore, if we compare the throughput of the proposed method with
the baseline method. It increases by 14.3% and by 6.7%, in MU-MIMO and in
NOMA+MUMIMO, respectively. The cell-edge user throughput can be observed
in Fig. 48, it is terribly small with original method, because the MU-MIMO feed-
back is the lower bound of the expectation of SINR. Without OLLA, weak users
can only transmit data with small MCS and have less chance to schedule with PF
scheduler due to the underestimated SINR. In this situation, OLLA can improve
the cell-edge user throughput a lot. Unfortunately, it does not guarantee the cell

edge throughput and BLER. Because our target is to find a strategy to converge
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Figure 48: Performance in different Methods

as fast as possible, this optimal strategy may be very aggressive. Fig. 49 demon-
strates how each OLLA changes the selection of MCS according to the HARQ
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information.

Still, the proposed OLLA performs well in terms of geometric mean rate. In

short, the result indicates that improving the convergence speed has a positive

impact on the throughput and fairness, but do not guarantee the BLER.
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5.2.2.6 Impact of Ryack
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From previous simulations, we learns that if only considering convergence may
cause higher BLER. Thus, we proposed a mechanism to control the BLER. We use

reward shaping to control the bahavior of the trained agent. The reward function
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is defined as
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(5.5)
In theory, Ry depicts how reluctant is the agent to choose the MCS, which has
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Figure 51: Demonstration of Ry, = 0 and Ryger = 6

a higher probability of causing higher BLER.

Fig. 50 indicates that Ryacx can control the how aggressive is the chosen
steps effectively.

From Fig. 51, it seems that while Ryacx = 6, the chosen MCS is very conser-
vative.

In Fig. 52, the BLER tends to be smaller as Ry, is larger. It is noticing that
BLER become higher when Ry, = 6. It may be caused by the characteristics of
the PF scheduler. Because this type of scheduler considers fairness and throughput
at the same time, it might tend to choose the user with aggressive estimated SINR.
To verify this hypothesis, we modify the scheduler and call the new scheduler as a
converge-first scheduler. In this converge-first scheduler, all the users have to find
their own suitable MCS at first. After all the groupings find the suitable MCS,
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Figure 52: Impact of Ry, on Performance

the original PF scheduler starts. This setting can prevent the scheduler from only
choosing the grouping with aggressive estimated SINR. The results are shown in
Fig. 53. It can be observed that the BLER is negatively correlated with Ryqcp-
Despite that this type of the scheduler does not show the advantage in terms of
throughput, it is useful for understanding the influence of the proposed method.
It is noticing in Fig. 52 that the convergence subframes in NOMA+MUMIMO are
less than in MU-MIMO. It implies that if more the users can be scheduled at the

same time, quicker can the base station find the suitable MCS of users.
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Figure 53: Impact of Ry, on Performance in converge-first Scheduler

5.2.2.7  Performance of Proposed Method with Constraints of Retransmissions

We observed that the behavior of the trained agent tends to choose conser-
vative step in the beginning steps if Ry is larger, so we hypothesise that the

performance could be improved even if the base station does not find the most
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Figure 54: The trend of each metrics varies with the number of retransmissions.

suitable MCS. To verify this hypothesis, we constrain the number of the retrans-
missions. The impact of the limitation of the number of retransmissions and the
value of Ry4q on the performance in Fig. 54. The impact of not finding the most
suitable MCS can be observed as well. We compare the performance in two con-
ditions: one is Ryq = 0, the other is Ry, = 6 because these two conditions
have two different tendencies in choosing the MCS in the beginning.

In Fig. 54, it can be seen that the throughput is highest if there is no limit in
retransmissions. Nevertheless, the throughput is not low while the retransmission
is 0.

From the previous simulation, it can be observed that if Ry = 0, the chosen
steps tend to be aggressive, while the chosen steps tend to be more conservative
as Ryqer = 6. Thus, while the number of the retransmission=0, the Ry, = 6
is smaller due to the more conservative choice. The reason that why the BLER
is not highest while the number of retransmissions is unlimited might be is that
if there is limitation, the base station will choose the maximal available assigned
MCS of UE, which might be much smaller than the suitable MCS or the other
UEs” modified MCS according to proposed OLLA, while the limitation of the UE
is reached. Thus, the PF-scheduler has higher possibility to choose the other UE
due to the higher modified but possibly too aggressive MCS and the smaller MCS
of the UE, who has achieved limitation. Besides, the base station has to know
which is minimal MCS within the MCSs received NACK, and the average steps,
which definitely contains a NACK, is usually between 3 and 4. It implies that the
UE might return at least a NACK within 4 retransmissions if it has reached the
suitable MCS. However, if the suitable MCS is not achieved, the NACK might
have never appeared. This is why the BLER is not correlated with the number of

the retransmissions.
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Figure 55: Comparison between original Method and proposed Method with
Constraint of Retransmission=0 in NOMA+MU-MIMO

This constraint also brings another benefit, when the number of the retransmis-
sions is 0. No retransmissions mean that the overhead is the same as the original
feedback, but the performance is better as shown in Fig. 55. The throughput is
doubled; The BLER is below 10%; The cell-edge use throughput increased sig-
nificantly. It implies that the initial value according to the proposed OLLA is
good.

The reason that why the proposed OLLA can be explained in Fig. 21. In MU-
MIMO, if the user paired with a different user, the real SINR, ~, will be different.
Due to the interference, the user can only return the lower bound of the expected
SINR according to the assumption of the distribution of SINR. The traditional
mapping is an only one to one mapping. However, our proposed method can serve
as a multiple dimensional mapping. Due to the multiple outputs, the capacity of
the single user does not have to be limited, the SU-MIMO feedback can be adopted.
The capacity of the multiple beams can be measured through the training process.
It is noticing that the good initial value is not our designed target, but the initial
value is lower could be because of the strong punishment while receiving NACK; so
if the better performance is desired for this type of application, the redesign of the
rewarding function is needed. Still, the design of the framework of reinforcement
learning in this type of problem could remain.

In short, unlike supervised learning, the labelling is necessary, reinforcement
learning may have the higher potential of searching for complicate mapping, which
has higher uncertainty but the goal is clear. Despite that the mapping can not
map to the perfect MCS directly due to the uncertainty from the previous analysis;

still, it is good enough.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

We have investigated the design of reinforcement learning based OLLA mech-
anism in order to be more robust to the various communication environment and
improve the well-known convergence issue in OLLA. The impact of the design of
the reinforcement learning and the communication system are investigated when
applying OLLA. The suggestions and results are listed in the following.

Firstly, PMI of user and paring users, CQI, and historical data of MCS, which
are received ACK/NACK, are effective features. The proposed model is able to
find out the relationship between these features and improve the performance.

Secondly, we verify the design of the training model based on the domain
knowledge of the communication. It is noticing that with the proposed OLLA
mechanism, the convergence steps can be improved by 38% with SU-MIMO feed-
back in comparison with the baseline method. Also, it is more robust to the
different types of feedback. Furthermore, the throughput is increased by 14% in
MU-MIMO and by 7% in NOMA+MUMIMO in comparison with the baseline
method.

Thirdly, utilizing the potential of the capacity of single beam case and applying
SU-MIMO are beneficial while applying OLLA. It can be seen that the throughput
and fairness can be improved considerably with this setting.

Fourthly, we found that the convergence steps is not the only factor, which can
affect the performance. The behavior of the chosen MCS have the influence as well.
Thus, we design the reward shaping and control the number of the retransmissions
to control the performance of the OLLA effectively. Moreover, controlling the
number of the retransmissions have an extra benefit to prevent the transmission
from suffering the overhead issue.

In short, the proposed OLLA can improve the performance significantly. The
training procedure is effective for the convergence speed and the behavior of the
process of converging. SU-MIMO feedback is suggested while operation OLLA.
The constraint of the retransmissions provides the other possibility of the trained

models.
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