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ABSTRACT

This article provides a perspective review on the use of modified cotton fabrics for
oil-water separation. The principles of surface hydrophobicity of cotton fabrics are
first described, from which the basis for producing superhydrophobic surfaces is
presented. Then the preparation methods to convert hydrophilic cotton fabrics to
hydrophobic fabrics are reviewed and discussed. Based on literature results the way to
design novel preparation methods, the need to summarize testing protocols, and the
comprehensive technoeconomic and sustainability analyses, are proposed. A
demonstrative cotton fabrics test is used to reveal the significant role of conjugated
fluid flows and surface interactions under different application scenarios for
determining the separation efficiency of the oil-water mix.

POSS-modified cotton fabric named as POSS-CT is synthesized through thiol-ene
click reaction showing rough and hydrophobic surface with 142.82+1.17° of water
contact angle. POSS-CT possesses 0.96 g/g of oil absorption capacity for floating oil
cleanup which is almost 3 times higher the pristine cotton fabric.

TA-ODA, TA-HDA and TA-TDA are fabricated by crosslinking tannic acid (TA)
with octadecylamine (ODA), hexadecylamine (HDA) and tetradecylamine (TDA)
through Michael addition/Schiff base reaction in one step, respectively. Moreover, 60
min of the modification with 5mM CuSO, and 19.6mM H,0,; represent 142.87+0.53°,
135.99+1.15° and 133.27+1.15° of water contact angle which are decreased as the
dreceasing length of alkylamine. TA-ODA, TA-HDA and TA-TDA possess 1.01 g/g,
1.00 g/g and 0.96 g/g of oil absorption capacity representing outstanding floating oil

cleanup capability as well as POSS-modified cotton fabric.
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Compared to POSS-modified cotton fabric, tannic acid-modified cotton fabrics are
more suitable for practical application because of their low costs, simple fabrication

process and sustainable solvent medium.

Keywords: Cotton fabrics; hydrophobicity; tannic acid; alkylamine; POSS; oil/water

separation; testing
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Chapter 1
Introduction

Recently, oil spilling from livelihood, industry and accident cause damage to the
environment and ecosystem, which has great influence on wildlife and human health
[1]. The oil skimmer, centrifugation and air flotation have been developed to solve the
oil spilling problem [2-5]. However, these traditional methods have drawback
including low separation efficiency, high energy requirement and time-consuming
procedures [6,7]. Cotton, a promising porous sorbents, is beneficial to deal with oil
pollution because of its absorption capacity, sustainability, and low cost [8]. In this
case, the hydrophobicity modification of cotton fabrics has been adopted to remove

the oil pollution due to its ease operation and low processing cost [9, 10].

Hydrophobic material exhibits excellent water repellent property and consequently
has been used to separate oil from water [11]. Grafting long chain alkyl compound
[12], immobilizing polymer [13] and depositing nanoparticles [14] are performed to
construct hieriarchical structure and reinforce the surface roughness to fabricate
hydrophobic surface with low surface energy [15]. Moreover, the hydrophobicity can

be enhanced by grafting the increased length of hydrocarbon [16].

Numerous modification protocols were proposed for surface modification. The in
situ crosslinking reactions are adopted for surface hydrophobization [17, 18]. The
cotton surface hydrophobized by grating with polyhedral oligomeric silsesquioxane

(POSS) via thiol-ene reactions under UV irradiation has received research attention

1
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[19]. The chemistry involves conversion of the hydroxyl groups on cotton surface to
thiol groups by thiol-containing silane, then adding POSS to react with the so-yielded
thiol groups to form single bond by thiol-ene click reactions [19]. POSS are hybrid
clusters with chemical formula (RSiO1 5), [20], which is highly hydrophobic with poor

affinity to water.

Natural inspired method has extensively been introduced to diverse applications
owing to its post-funtionalization, mild reaction environment and adhesive ability [21,
22]. Hydrophobicity modification of natural inspired protocol is adopted to deal with
oil spilling problem through oil/water separation. For instance, Li et al. [23]
constructed dopamine-based hydrophobic coating on cotton fabric demonstrating
good oil/water separation capability. Yan et al. [24] grafted dopamine hybrid coating
with long chain alkyl amine to fabricate superhydrophobic cotton fabric representing
great absorption capacity for organic solvent. Compared to dopamine (DA), tannic
acid (TA) is a relatively inexpensive natural polyphenols (Tablel) that can also serve
as a satisfactory linker between surface and the grafted molecules [25], with the latter
being achieved by reacting the excess catechol groups with amino-containing silane
through Michael addition/Schiff base reactions [26]. However, the reaction time for
grafting reactions with TA is generally long, 25 h for TA/Fe/ODA composite [27], and
36 hr for the TA/JAPTES/ODA composite [28], which should be significantly reduced

for economy production (Table 2).

This study proposed a novel scheme for cotton surface modification with TA dip
coating followed by long-chain alkylamine grafting via Michael addition/Schiff base
reaction. The modification with TA can have a reduced cost compared with that with
expensive DA. To accelerate the reaction for second reaction with alkylamine, the

catalysts (CuSO4/H,0,) proposed by Sun [30], which used the yielded film as

2
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slow-release carrier for fertilizer, were adopted. The cotton fabrics modified by the

revised, one-pot modification scheme were demonstrated to exhibit superhydrophobic

surfaces with satisfactory oil adsorption capability. To demonstrate the impact of

chain length of alkylamine, tetradecylamine (TDA), hexadecylamine (HDA), and

octadecylamine (ODA) were applied in this study for cotton fabrics modification.

Furthermore, the hydrophobic cotton fabric coated with high cost of POSS is

introduced to make a comparison with tannic acid-modified fabrics to realize the

performance for oil/water separation which is fabricated through thiol-ene click

reaction (Table 3).

Table 1. The comparison of price for dopamine hydrochloride and tannic acid

i Price
Substance Brand Pack size
(NTD/qg)
Dopamine hydrochloride . i
Sigma-Aldrich 100g 198
(98%)
Tannic acid i i
Sigma-Aldrich 100g 18
(ACS reagent grade)
Tannic acid _
) Emperor Chemical 5009 0.34
(Industrial grade, 67.5%)

Data from Sigma-Aldrich and Emperor Chemical
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Table 2. The comparison of reaction conditions for TA grafting modification tests

Substrate Material” Reaction Procedure | Reaction time Method Contact angle (°) Reaction condition Ref.
PVDF membrane/ CA- PEtO, pH-induced . . " »
PES membrane | (CuSO./H;0) reaction/oxidant-triggered rxn One step 0.5 hr Dip coating | 54.5+0.3/73.5£1.9 | Room temp.; pH 8.5 | [29]
PTFE TA-ODA Michael add rxn/Schiff base . .
membrane/ (CuSO4/H,0,) rxn/oxidant-triggered rxn One step 10 min Spray coating 124.5+4 2500 [30]
. . 1* step: pH 8.0, room
st . ’
Cotton fabric TA-Fe-ODA Michael add rxn/Schiff base Two step %d step_. 1 hr Dip coating 14535+ 0.4 temp; 2" step: pH [27]
rxn 2" step: 24 hr
8.5, room temp
. . 1% step: pH 8.5, room
st . . l
Cotton fabric TA-APTES-ODA Michael add rxn/Schiff base Two step 1ndstep._24 hr; Dip coating 152 temp; 2" step: pH [28]
rxn 2" step: 12 hr
8.5, room temp
TA-ODA,;
' . . 139.67+1.07° .
. TA-HDA; Michael add rxn/Schiff base . . . o This
Cotton fabric TA-TDA rxnfoxidant-triggered rxn One step 10 min Dip coating 133.0511.540 Room temp., pH 8.5 work
130.77+1.65
(CUSO4/H202)

"CA: caffeic acid; PEtO,: poly(2-ethyl-2-oxazoline); PTFE: polytetrafluoroethylene; TA: tannic acid; ODA: octadecylamine; APTES:
(3-aminopropytriethoxysilane; GA: gallic acid

Table 3. The comparison of price for long chain alkyl compound, POSS, and MPTES

Substance Brand Price
Octadecylamine (90%) ACROS Organics 0.093 (%/9)
Hexadecylamine (90%) ACROS Organics 0.100 (%/g)
Tetradecylamine (98%) ACROS Organics 3.622 (%/9)

Octavinyloctasilasesquioxane (POSS) TCI 51 ($/9)
(3-Mercaptopropyl)triethoxysilane (MPTES) Sigma-Aldrich 4.86 ($/ml)

Data from ACROS Organics, Tokyo Chemical Industry (TCI) and Sigma-Aldrich
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Chapter 2
Literature review

2.1 Hydrophobicity

In nature, the phenomena of the lotus leaf effect [31], rose petal effect [32] and
butterfly wing effect [33] (Figure 2-1) have inspired people due to the promising
application involving self-cleaning property [34], anti-adhesion ability [35] and
hydrophobicity [36]. The hydrophobicity of lotus leaf is attributed to the hierarchical
structure [37] which the air will be trapped into the rough structure to minimize the
contact area between air and water droplet [38]. Consequently, the re-entrant
structures of modified surface are performed to repel water out of the surface owing to

the enhancement of hydrophobization [39, 40]
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Figure 2-1. The image (a) of the lotus leaf effect [31]. SEM image of lotus-leaf-like
structures (b) from carbon nanotubes [31] and rose-petal-like structure

(c) of modified surface [32].

2.2 The evaluation of surface energy of hydrophobicity

The hydrophobicity is contributed to the surface energy of the substrate and can be
evaluated by measuring the contact angle [41]. When the droplet attaches on the solid
material with a smooth surface, we can estimate the surface energy at three phase

contact line through the Young equation (1) [42].

Y LCOSO = ys — Vg (1)

where vy vs,and ys,_ refers to the interfacial interaction between liquid and vapor
(surface energy of liquid), the surface energy of solid material and the interfacial
interaction between solid and liquid respectively. The contact angle (6) is evaluated by

the angle between solid and a liquid droplet on the surface (Figure 2-2)

Gas

¥s YsL

Solid

Figure 2-2. Schematic of three phase contact line
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When the static contact angle 0 is higher than 90°, it can be normally called a
hydrophobic surface by definition [43]. According to the equation, low ys can lead to
high 6 which indicates the low surface energy material is not readily to be attached by
the high surface tension liquid [44]. Moreover, low vys represent the low polar and
dispersive component of surface energy. The surface energy is ascribed to the sum of
polar component and the dispersive component of surface energy (2) through Fowkes

theory [45]

Ys=Ve +yd )

¥s = the surface energy of solid
¥? = the polar component surface energy of solid

¥& = the dispersive component surface energy of solid

In Fowkes method, the interfacial interaction ys_is expressed as a geometric mean
of polar (non-dispersive) and dispersive component [46]. The Fowkes method is

shown in the following equation (3).

ysL=Vs+VL—2<JVE-Vsd+JVf-Vf> @A)

v = the dispersive component surface energy of liquid
¥& = the dispersive component surface energy of solid
y? = the polar component surface energy of liquid

¥¥? = the polar component surface energy of solid

doi:10.6342/NTU202101615



Combining the Young equation with the Fowkes method [47], we can get the equation

(4).

1+cos 0 Yy
WD = VG +d (4)

2 /yf

Based on the above equation, the estimation of ys" and ys” can be determined by
measuring the contact angle with two different liquids [48]. After that, the surface
energy is subsequently obtained from the sum of the dispersion component and the

polar component of surface energy.

2.3 The characteristic of cotton

Cotton is composed of cellulose (Figure 2-3) [49] which is cost-effective to be used
as an oil adsorbent and biodegradable to the environment [50]. Moreover, it is
beneficial to be modified by the functional group because of numerous hydroxyl
groups on the pristine cellulose [51]. Overall, cotton has been considered as a
promising substrate to solve oil spilling due to its absorption capacity, sustainability,

and low cost [52].

OH
OH
. o HO

/{/ ° 0%

HO 0

OH
OH
Figure 2-3. The chemical structure of cotton
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2.4 Hydrophobicity modification of cotton fabric for oil/water separation

Hydrophobicity modifications are introduced to impact the wettability of cotton
fabric to deal with the oil spilling problem [53, 54]. The hydrophobization of the
surface can be modified by various protocols including dip coating [55], in situ
crosslinking reaction [56], UV-triggered reaction [57] and natural inspired method
[58]. For instance, Liu et al. [59] deposited SiO, nanoparticles via dip coating to
fabricate superhydrophobic cotton which could easily collect the floating oil. Zhang et
al. [60] immobilized modified-ZnO/polystyrene on cotton fabric through dip coating
to synthesize superhydrophobic cotton fabric possessing high oil/water separation
efficiency (Figure 2-4). Deposition of nanoparticles, such as SiO; [61], ZnO [62] and
TiO, [63] are introduced to hydrophobization owing to the reinforcement of surface
roughness [64]. In addition, the doping of polymers is also utilized to the formation of
hydrophobization [65]. Cao et al. [66] synthesized PDMS-ormosil-based
superhydrophobic fabric for oil removal from the emulsion solution. Guo et al. [67]
modified cotton fabric with the polymerization of PDMS, FAS15 and PVP to separate
water-in-oil emulsion driven by gravity. The key of hydrophobicity is ascribed to the
low surface energy of polymer compounds [68]. Furthermore, grafting long chain
alkyl substances, such as alkylamine [69], alkylsilane [70] and fluoroalkylsilanes [71],
has been extensively adopted to develope the hierarchical structure [72] (Figure2-5).
A superhydrophobic cotton fabric coated with trimethoxy(octadecyl)silane exhibited
high oil absorption performance under the water [73]. The decreasing surface energy
can be synergistically modified with the increased alkyl chain length to construct a

re-entrant structure [74].
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ZnO particles
Modified ZnO particles

Modified \\/ ’
—_— &

~ N

Long-chain fatty acid

Superhydrophobic cotton fabric

Dip coating

Figure 2-4. Schematic of fabrication of superhydrophobic cotton fabric via dip
coating [60]

Long chain Hieriarchical structure Droplet
alkyl compound Grafting Hydrophobic

g iiii////////// -iiii 000007

Figure 2-5. Schematic of formation of hierarchical structure by grafting long chain
alkyl compound

2.5 Natural inspired method

Nature-inspired method has received great attention due to its sustainability,
flexibility, and versatile application[58]. Scientists found dopamine from mussel
possessing adhesive ability [75] and can polymerize spontaneously into polydopamine
(pDA) in the mild environment [76] without using UV-induced reaction [77] and
plasma-induced reaction [78] required expensive equipment. Dopamine (DA) is

promising for surface modification due to multifunctional group (catechol and amino

10
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groups) [79] and also act as a binder for further modification [80]. Zhao et al. [81]
constructed dopamine-modified antifouling membrane for water purification. Zeng et
al. [82] utilized dopamine to fabricate hydrophilic surface to prevent membrane
blocking. Since the modification of membrane by dopamine perform hydrophilicity
[83], these approaches are applied to prevent the membrane fouling attributed to the
interaction between membrane and foulant [84]. In contrast with the hydrophilicity
modification, hydrophobization of surface is also developed by the application of
dopamine. For instance, dopamine-based hydrophobic film was built on the copper
surfaces to enhance the corrosion resistance [85]. Yan et al. [24] adopted
Fe/pDA/ODA-modified cotton fabric for oil/water separation. Dan et al. [86]
fabricated dopamine-assisted superhydrophobic cotton through Schiff base reaction.
The secondary reaction of polydopamine (pDA) coating can be modified via grafting
of macromolecules [87], deposition of long-chain molecules [85, 86], and reduction of
metal ions [76]. However, the high cost of dopamine is hard to find practical
applications [88,89]. (Table 1) Compared to dopamine, tannic acid also shows

excellent adhesion on various substrates [90] and is a cost-effective compound [91].

Tannic acid (TA) is a kind of natural polyphenols which possess abundant catechol
functional groups [92] (Figure 2-6). Since tannic acid exhibit outstanding antibacterial
[93] antioxidant performance [94], versatile applications such as food packaging [95],
biomedical material [96] and antibacterial membrane [97] have been widely used.
Furthermore, tannic acid is acted as a crosslinker [98, 99]. Xu et al. [100] utilized
tannic acid to react with polyamine via co-deposition on nanofiltration membrane. Li
et al. [101] constructed antifouling layer on membranes attributed to the co-deposition
of tannic acid and polyethyleneime. Lin et al. [102] crosslinked tannic acid with

piperazine via interfacial polymerization for dye/salt separation application. Tannic
11
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acid is enable to co-deposit with amine [103, 104] via Michael addition/Schiff base
reaction and coordinate with metal ions (Figure 2-7) [105]. For instance, Xu et al.
[106] developed tannic acid-modified coating via Michael addition/Schiff base
reaction to prevent biofouling. The catechol groups of tannic acid will oxidize into
reactive quinone structures and further react with amine through Michael
addition/Schiff base reaction [30] (Figure 2-8). Tannic acid is also introduced to
construct hydrophobic surface because of the hierarchical structure which is essential
to the hydrophobization [107] (Figure 2-9). Sun et al. [30] adopted tannic acid-based
hydrophobic film reacting with octadecylamine via co-deposition. Bu et al. [108]
grafting fluorinated thiol on tannic acid-modified textile to form the superhydrophobic
surface. Shang et al. [109] introduced polyhedral oligomeric silsesquioxane to
crosslink with tannic acid to fabricate superhydrophobic cotton fabric for oil/water
separation. Secondary modification of grafting of long chain alkyl compound [28],
fluorine-containing substance [108] and polyhedral oligomeric silsesquioxane [109]

are used for hydrophobization of tannic acid-derived substrate (Figure 2-10).

OH
HO.
HO
"rtEii::jJ\\~( ; iii

HO

HO.

OH
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Figure 2-6. The structure of tannic acid

12

doi:10.6342/NTU202101615



OH

—— 5]
OH

o
o )
0 0 dd'\“o“ ©
HO 9 OH o
Ow o [o] wae

4] [o} R

HO Q OH

[o]
H0—<: Hmo o b—OH HO OH Meta] io o

HO o OH

Q\ ’ C
o Om ().‘ 2
pIeXa t] o Fe— Q
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Figure 2-8. Mechanism of Michael addition/Schiff base reaction between tannic acid
and amine
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Tannic acid hybrid coating

Hierarchical structure

Figure 2-9. Schematic of hierarchical structure for tannic acid hybrid coating

cotton fabric Tannic-acid modified cotton fabric

Figure 2-10. Schematic of secondary reaction for tannic acid-modified hydrophobic
cotton fabrics [28, 108, 109]
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2.6. Michael addition reaction

Michael addition reaction, which is widely applied for click reaction, has attracted
attention owing to the mild reaction condition [110], high yield production [111] and
selectivity of reaction [112]. The Michael addition reaction is a reaction which the
nucleophilic (Michael donor) will react with activated olefins and alkynes (Michael
acceptor) [113], as shown in Figure 2-11. Numerous thiols [114], amines_[115] and
phosphine[116] can serve as Michael donor to react with Michael acceptor including
ketones[117], a,B-unsaturated aldehydes[118] and azo compounds[119]. The
application of Michael addition reaction is introduced to formation of polymer[120],

immobilization of post-modification[121] and design for drug delivery system [122].

Nu

EWG H EWG

Figure 2-11. Schematic of Michael addition reaction [113]

2.7. Schiff base reaction

Schiff base reaction is adopted for biological application [123] as a result of the
mild reaction condition [124], high reaction rate [125] and covalent bonding
interaction [126]. Schiff base reaction refers to the reaction which the aldehydes (or
ketones) will covalent with amino-containing compounds to form the imine groups
[127] (Figure 2-12). Lui et al. [123] fabricated amino carboxymethyl chitosan-assisted
hydrogel with biocompatibility property via Schiff base reaction. Xiang et al. [128]

anchored tannic acid-based film on membrane via Schiff base reaction to prevent the
15
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fouling problem. Crosslinked biological materials based on Schiff base reaction has

been widely adopted in the biomedical field [129].

RII

NH,

(@t ]
2

+
PN

R R'(H) R R'(H)

Figure 2-12. Schematic of Schiff base reaction [127]

2.8. CuSO4/H,0,.triggered reaction

Nature inspired method is applied for surface modification owing to its
post-functionalization_[130], biocompatibility [131] and adhesion capacity[132].
Nevertheless, the reaction time of natural inspired method is time-consuming [133]
compared to the UV- triggered protocol [134], in situ crosslinking method [135] and
plasma-induced approach[136]. To overcome the drawback, numerous protocols have
been developed. Xu et al. [137] utilized UV irradiation to produce the reactive oxygen
species which promoted the polymerization of dopamine. Cai et al. [138] deposited
the dopamine on TiO, nanotubes via electropolymerization to prevent the combination
of electron-hole pairs. Lee et al. [139] introduced microwave irradiation to accelerate
the rate of polymerization of dopamine. However, these instrument-required
procedures are complicated and energy-consuming [140] which indicates the reaction
consequently can not be utilized in large-scale production. In 2016, Zhang et al. [141]
found that CuSO4/H,0; can act as a trigger to improve the deposition rate and

homogeneity of polydopamine coating which required ten hours up to a few days to
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synthesize. Cu?* and H,0, are introduced to produce reactive oxygen species which
act as the oxidant to accelerate the reaction rate of catechol groups of dopamine to
reactive quinone structures [140] (Figure 2-13). Oxidant plays an important role to the
oxidation reaction. Therefore, oxidant-assisted protocols are also introduced to
enhance the copolymerization rate of polyphenol. For instance, tannic acid-assisted
hydrophobization was induced by CuSO4/H,0, to enhance the polymerization rate
[30]. He et al. [29] fabricated poly(caffeic acid)-derived hydrophilic coating with fast
deposition rate through CuSO4/H,0,-assisted reaction. Similar to the mechanism of
oxidation of dopamine, the catechol structures of polyphenol are induced into quinone
groups [29, 142] which applied CuSO4/H,0;to promote the rate of polymerization
(Figure 2-14) [30]. The addition of CuSO4/H,0, reagent is adopted to optimize the

deposition rate of polyphenol and reinforce the uniformity of coating [142, 29].

NHz NH;
CuSO,/H,0,
>
HO OH (0] o}
Dopamine Dopamine quinone

Figure 2-13. Schematic of CuSO,/H,0,-triggered oxidation of dopamine
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Figure 2-14. Schematic of CuSO,/H,0,-triggered oxidation of tannic acid

2.9. Thiol-ene click reaction

Thiol-ene click reaction, a radical-mediated reaction, was capable of synthesizing
functional materials rapidly with no by-products under mild reaction condition [143,
144]. Ke et al. [145] coordinated thiol-terminated polymer with BaTiO3 nanoparticles
through thiol-ene click reaction to prepare high energy storage material. Di et al. [146]
adopted vinyl-POSS to react with thiol-modified cotton fabrics via thiol-ene click
reaction to construct hydrophobic surface. Thiol groups are able to crosslink with ene
induced by radical through thermo-initiated or photoinitiated thiol-ene click reaction
(Figure 2-15) [147]. Photo-and thermal initiator, including
2,2-dimethoxy-2-phenylacetophenone (DMPA), 2-hydroxy-2-methylpropiophenone
(HMPF) and 2,2’-azobis(isobutyronitrile) (AIBN), are frequently introduced to create
the radical to induce the reaction [147, 148]. Lei et al. [149] applied DMPA as
photoinitiator to trigger the polymerization between
polymercaptopropylmethylsiloxane and vinyl-polydimethylsiloxane though thiol-ene
click reaction. Amanda et al. [150] fabricated hexadecene-assisted superhydrophobic
cotton fabric utilizing AIBA as initiator to derive the thermally initiated thiol-ene click

reaction. Thiol-ene click reaction has been extensively conducted to surface
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modification [151], conjugation of polymer [152] and biofunctionalization of

biomedical material [153].

hvor A
R—sH + 22 Sg —— R~g w

1

Figure 2-15. Schematic of thiol-ene click reaction

2.10. Polyhedral oligomeric silsesquioxane (POSS)

Polyhedral oligomeric silsesquioxane (POSS) possesses organic—inorganic hybrid
cage-like nanostructure which are demonstrated the formula of (RSiO15), (Figure
2-16) [154]. R can be composed of non-reactive groups such as methyl, isobutyl and
phenyl [155]. On the contrary, R can be substituted by numerous reactive groups
including vinyl, amine, styrene and thiol which are beneficial for further modification
[155, 156]. Siyu et al. [157] fabricated POSS-assisted superhydrophobic cotton fabric
which represented self-healing and outstanding anti-abrasion ability. Warintorn et al.
[158] reinforced the strength and toughness of epoxy with rubber-derived POSS
nanoparticles representing the impact resistance was enhanced 809%;. POSS was
conducted to improve the mechanism strength and chemical stability such as abrasion
resistance, impact strength, corrosion resistance and UV resistance [159-161]. In
addition, hydrophobicity modification is developed with application of POSS owing
to the low surface energy [162, 57]. Choa et al. [163] developed superhydrophobic

cotton fabric with POSS-constructed polymer exhibiting excellent durability and
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self-cleaning ability. POSS has functionalized the advanced material for widespread

applications.

R\S|/O\ _R
e Si
R\S// \ /‘ R
|
/ o \ o
S
R- \/S'\o// '"~Rr

Si Si
R~ o0~ = R

Figure 2-16. The chemical structure of POSS
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Chapter 3
Material and Experiment Methods

3.1. Materials

The cotton fabric was purchased from local cotton fabric store in Taipei, Taiwan.
The long chain alkyl amine octadecylamine (ODA) (90%), hexadecylamine (HDA)
(90%), tetradecylamine (TDA) (98%), copper sulfate (98+%), potassium bromide
(KBr), n-hexane and diiodomethane were obtained from Fisher Scientific Int. Inc.
(Pittsburg, PA, USA). Tannic acid, 2,2-Dimethoxy-2-phenylacetophenone (DMPA)
and (3-Mercaptopropyl)triethoxysilane (MPTES), Dimethyl sulfoxide-ds (DMSO-ds)
and chloroform-d were purchased from MilliporeSigma (Burlington, MA, USA). Tris
(Base) was obtained from J.T. Baker (Radnor, PA, USA). The hydrogen peroxide was
purchased from Honeywell (Charlotte, NC, USA). Octavinyloctasilasesquioxane
(POSS) was obtained from Tokyo Chemical Industry (TCI). Hydrochloric acid was
obtained from Scharlau (Sentmenat, Spain). Ethanol (95%) was obtained from the
Dinhaw Enterprise Co., Ltd. (Taipei, Taiwan). Dichloromethane was purchased from

Shimakyu's Pure Chemicals Co., Ltd..
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3.2. Preparation of as-prepared cotton fabric

The as-prepared cotton fabrics were prepared by washing with deionized water and
ethanol for three time, respectively. Then, immerse the cotton fabrics in the deionized
water to do the ultrasonic treatment for about 30 minutes. After that, the cotton fabrics

were dried in the oven at 60°C.

3.3. Fabrication of POSS-modified cotton fabric

The cotton fabrics were first immersed in the 0.15 mol/L MPTES of ethanolic
solution for 2 hrs at ambient temperature. The modified fabrics were washed with
ethanol and then dried at 60°C to get the SH-CT. Afterward, SH-CT was immersed
into the dichloromethane with 1.6 weighting percent of POSS and 0.16 weighting
percent of DMPA under the 360 nm UV lamp reacting for 1 hour. Finally, wash the
POSS-modified fabric with ethanol and dry the fabric at 60°C to obtain the POSS-CT.

(Figure 3-1)

3.4. Fabrication of tannic acid-modified cotton fabrics

Tannic acid (2 mg/ml) and CuSO4 (5 mM)/H,0, (19.6 mM) was added into the
deionized water with strong stirring. At identical molar concentrations, ODA (3.33
mg/ml), HDA (2.97 mg/ml) or TDA (2.42 mg/ml) were individually dissolved in
ethanol assisted with ultrasound. Then mix tannic acid/CuSO,4/ H,0, solutions with
the alkylamine/ethanol solution at room temperature, using CuSO,4/H,0, to accelerate
the oxidization of catechol groups. Subsequently, Tris and HCI were applied to adjust
the solution pH to 8.5 to promote the Michael addition/Schiff base reactions. Finally,
the cotton fabrics were dipped into the solution for 60 min at ambient temperature.
After dipping the cotton fabrics were washed with water and ethanol and then dried at
60 °C to yield the products TA-ODA, TA-HDA or TA-TDA cotton fabrics. (Figure
3-2)
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Figure 3-1. Schematic of two stage fabrication process of POSS-CT.
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Figure 3-2. Schematic of the adopted reactions in this work. The two step reactions
were performed in the same reactor to establish one-pot modification
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3.5. Characterization and instrumentation

3.5.1 Fourier Transform Infrared Spectroscopy (FTIR)

The functional groups of cotton fabric, tannic acid-modifed cotton fabric and
POSS-modified cotton fabric were measured for 4 times by (Perkin Elmer, Waltham,
MA, USA) from wavenumber 4000 to 450 cm™. Before measurement, the samples
were dried in 40°C vacuum oven overnight. Then the samples were mixed with

potassium bromide (KBr) for measurement.

3.5.2 Nuclear Magnetic Resonance (NMR)
The *H NMR spectra was tested by AVI11-500 (Bruker, Billerica, MA, USA).

Tannic acid was dissolved in DMSO-ds and ODA, HDA, TDA, POSS, MPTES were
dissolved in CDClI;. The sample preparation of TA-ODA, TA-HDA and TA-TDA were
prepared by immersing them individually into the DMSO-dg and POSS-CT was
immersed in CDClI; then do the ultrasonication for 30 minutes to dissolve the

substance into d-solvent.

3.5.3  X-ray Photoelectron Spectroscopy (XPS)

The X-ray photoelectron spectroscopy (XPS) analysis of samples were measured
by X-ray Photoelectron Spectroscopy (ThermoFisher Scientific, Waltham, MA, ISA)

with Argon to clean up the surface for 5 s before analysis.

3.5.4 Field-emission Scanning Electron Microscope (FE-SEM)
The FE-SEM images were obtained using Nova NanoSEM 230 (ThermoFisher

Scientific, Waltham, MA, USA) The samples were dried at 40°C in vacuum overnight

before FE-SEM measurement.
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3.5.5 Static Contact angle measurement

The static contact angles of samples were measured by Contact Angle System
(FTA125). 5 uL of water or diiodomethane droplet was dipped onto the sample

surface for contact angle measurement.

3.5.6 Ultraviolet-visible spectroscopy (UV-vis)
The UV-vis spectra was measured by UV/VIS Spectrophotometer Cary 300 (Varian,

Midland, Canada) from wavelength 800 nm to 200 nm. The floating hexane were

mixed well then do the UV-vis measurement to evaluate the content of hexane.

3.5.7 Absorption capacity

The absorption capacity was evaluated by measuring the weight of absorbed liquid

divided by the weight of fabric. The equation was shown in the following

Absorption capacity

_ Weight gain of absorbed fabric — Weight of original fabric
B Weight of fabric

3.5.8 Oil absorption capacity

The absorption test is shown in Figure 3-3 (a) Test | with fabric is placed
horizontally to hexane layer floating on 5 cm water layer for 30 s. (b) Test Il for the
cotton fabric composing of step | with fabric immersed horizontally into 5 cm water
for 30 s then the fabric is immersed horizontally into another 5 cm hexane layer for

another 30 s.
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Figure 3-3. The absorption test (a) Test | (b) Test Il
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Chapter 4
Result and Discussion

4.1. POSS-modified cotton fabric

4.1.1 The functional groups of cotton fabric, SH-CT and POSS-CT
Figure 4-1 shows the FTIR spectra of the cotton fabric samples. The broad FTIR

peaks of pristine cotton fabric around 3450 cm™, and the peaks at 2902 and 1704 cm™
correspond to -OH stretching, CH, stretching [59,69], and C=0 stretching vibration
[27], respectively. After modification, the peak of —SH group for SH-CT was not
significant owing to the limited content of MPTES [146, 164]. After modification of
POSS, the peak at 1111 cm™ and 790 cm™ were reinforced because of the stretching
vibration of Si-O linkage [146, 165] and stretching vibration of Si-C [20, 165],

attributed to the presence of POSS.

Cotton
LN fabric
2067 2902 J
1704

< SH-CT
2 W
=
8
E
5
£ POSS-CT
3 /

790

1111
| ! | ! I ' | ! I ! I ! |

T 1
4000 3600 3200 2800 2400 2000 1600 1200 800

Wavenumber (cm")
Figure 4-1. The FTIR spectra of cotton fabric, SH-CT and POSS-CT
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4.1.2 The structure of POSS, MPTES and POSS-CT

Figure 4-2 shows the "H NMR spectra of the POSS, MPTES and POSS-CT. The
signals of 5.87-6.10 ppm is assigned to the vinyl group of POSS [166, 167]. The
signals at 1.26 and 1.14 ppm are contributed by the thiol group and -CH, of MPTES
[168]. After the POSS is anchored on the MPTES, the signals for vinyl groups of
POSS is observed at 8.87-6.10 ppm. Furthermore, the new signals appeared at 2.0-2.3

ppm ascribing to the occurrence of the thiol-ene click reaction [147].
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Figure 4-2. The 'H NMR spectra of POSS, MPTES and POSS-CT
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4.1.3 The binding energy of cotton fabric, SH-CT and POSS-CT

Figure 4-3a shows the XPS spectra of the cotton fabrics samples. With MPTES
anchored on the cotton surface, the peaks of Sy, Sap, Sizs and Siy, are detected in the
spectra for SH-CT. After SH-CT is further incorporated with POSS, the intensities of
Siys and Siyp are reinforced which proves the cotton fabric is successfully modified.

As shown in Fig. 4-3b, the peak for C-Si bond is ascribed to the linkage of POSS
[169]. The peak of C-O/C-S and C=0 are detected at 286.4 eV and 288 eV,
respectively. The peak at 288.6 eV of C=C is attributed to the vinyl structure of POSS
that represent POSS is significantly anchored on the fabric [20]. Table 4 lists the areal

fractions of Cys peaks.
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Figure 4-3. The XPS spectra of POSS-CT. (a) wide scanning; (b) binding energy
fOf Cls
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4.1.4 The morphology of surface for cotton fabric, SH-CT and POSS-CT

Figure 4-4 shows the SEM images of cotton fabric, SH-CT and POSS-CT. Small
particles are deposited on the fabric surface after being coordinated with MPTES (Fig.
4-4b). After MPTES maodification, 1.06% w/w silicon and 1.53% w/w sulfur are

detected on the fabric, corresponding to the thiol-containing silane (Fig. 4-4e).

Rough surfaces were noted for parts of the POSS-CT surface (Fig. 4-4c). The
EDS spectra of POSS-CT shows enriched silicon to 6.39% w/w owing to presence of
POSS (Fig. 4-4f).

Spectrum 1

Weight%  Atomic%
I
50.58 57.69
| OK [Briry) 4231
]

100.00
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EES 153
I
100.00

Spectrum 17

Atomic%

60.72
35.94
3.18

ull Scale 1721 cts Cursor: 0.000

Figure 4-4. FE-SEM images (a-c) and EDS spectra (d-f) of cotton fabrics. (a, d)
cotton fabric; (b, €) SH-CT; (c, f) POSS-CT
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4.15 Contact angle measurements

Table 4 shows the contact angles for water and diiodomethane droplets on the
POSS-CT fabric surface, for the former being 142.82+1.17° and the latter, 0°.
Restated, the POSS-CT is highly hydrophobic in nature and has high affinity to alkyl
groups. The components of surface energy of a smooth surface could be described by
the equation (4). The terms with superscripts p denote that they are polar components,
and those with d denote that they are dispersive components of the surface energy.
Based on eqg. (4), the polar component and dispersive component of surface energy
were estimated as 13.1 mJ/m? and 50.8 mJ/m?, giving total surface energy of 63.9
mJ/m? as listed in Table 4. Based on estimated polar component and dispersive
component and eq. (4), the wetting envelope can be depicted (Fig. 4-5). The liquid
with components locating outside the envelope cannot wet the solid surface with the
wetting envelope. Based on Fig. 4-5, the POSS-CT can not be wet by water droplet
but can be wet by common oil products. Conversely, the PTFE cannot be wet by

either water or oil droplet.

50 m ——POSS-CT
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E A Kerosene
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0 /\ rtA—4 ’ T ¥ T Y T
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Dispersive component (mJ/m’)
Figure 4-5. The wetting envelope of POSS-CT, PTFE, and those for water, gasoline,
diesel, and kerosene
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4.1.6 Water contact angle for POSS-CT

Figure 4-6 shows the effects of reaction parameters on the water contact angle on
the POSS-CT surface. For POSS reacted with SH-CT for 1 hr, the water contact angle
would increase with concentration of POSS, maximizes to 142.82+1.17° at 1.6% w/w,
then slowly declines when POSS concentration is increased further. The impact of

POSS concentration on water contact angle is mild.

With 1.6% w/w POSS concentration, the reaction time increases the water contact
angle, reaching 143.28+0.40° with reaction time of 70 min. It is noticeable that the
increase in water contact angle for reaction time is increased from 60 to 70 min is not

significant.

As Fig.4-6 shows, the water contact angle would decrease when the contact time is
increased, reducing to 138.20+0.83° after nine min contact time. This observation
suggests that certain deterioration of surface hydrophobicity occurs on POSS-CT
surface, which may be attributable to fiber swelling for absorbing certain quantity of
water, relaxation of polymer chains to water invasion, or POSS detachment from the
surface. Nonetheless, the POSS-CT remains highly hydrophobic over the testing

period for oil/water separation.
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Figure 4-6. Effects of reaction parameters on water contact angles for POSS-CT. (a)
Effects of POSS concentration on water contact angles for 1 hr reaction time; (b)
effects of reaction time to water contact angle with 1.6% w/w POSS concentration; (c)
effects of contact time on water contact angle. POSS-CT modified by 1.6% w/w

POSS for 1 hr.
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4.1.7. Oil absorption capacity

The results of test | shown in Table 4 revealed that POSS-CT adsorbed 0.17 g/g
water and 0.96 g/g hexane when immersed into the water+oil layers. The POSS-CT
can adsorb more oil than water when contacting these two fluids simultaneously. This
observation correlates with the hydrophobic characteristics of the POSS-CT surfaces
noted in Sec. 4.1.5.

The results of test 11 are also listed in Table 4. When the POSS-CT contacts water
layer first, it can absorb 0.86 g/g water, much higher that for test I. When the
water-absorbed POSS-CT contacts the hexane layer, it can absorb 1.12 g/g hexane,
about 16.7% higher than that in Test I. The POSS-CT can intake water by its main
pores while possesses remaining pore space to accommodate sufficiently high
capacity for hexane. The POSS-CT is an efficient absorbent for oil/water separation

from oil-water mix.
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Table 4. Measurement results and calculations for POSS-CT fabrics

XPS Cy; spectra
Bond C-Si C-C C-0/C-S C=0 Cc=C
Binding energy (eV) 283.8 284.8 286.4 288.0 288.6
Area 338.3 351.6 479.0 222.1 177.2
Avreal fraction (%) 21.6 22.4 30.5 14.2 11.3

Contact angle measurement

Image

Contact angle

Water

142.82+1.17°

Diiodomethane

OO

Estimation of surface energy

Polar component

Dispersive component

Surface energy

13.13+0.13 mJ/m?

50.8+0.02 mJ/m?

63.93+0.13 mJ/m?

The absorption capacity of fabric for water and hexane in Test | and Test II.

Test |

Absorption capacity (g water/g cotton)

Absorption capacity (g hexane/g cotton)

0.17+0.02

0.96+0.03

Test 11

Absorption capacity (g water/g cotton)

Absorption capacity (g hexane/g cotton)

0.86+0.12

1.12+0.04
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4.2 Tannic acid-modified cotton fabrics

4.2.1 The functional groups of cotton fabric and tannic acid-modified

cotton fabrics

After modification, the intensities of 2967 and 2902 cm™ peaks were increased

contributed by the long alkyl chains of ODA, HDA and TDA [28]. The broadened

peaks of -OH stretching (around 3350 cm™) and C=0 stretching vibration (1704 cm™)

are ascribed to the catechol structures and quinone groups of tannic acid [173]. The

intensity of peak intensity at 1505 cm™ is increased by the added of -CN for the

modified cotton fabrics [28]. The formation of -C=N leads to 1637 cm™ in the result

of Schiff base reaction [69].

Cotton
fabric
_ by TA-TDA
5 2967 2902 *
5 1704 ﬁ 1505
< o 91637
g
p=1 / | TA-HDA
E 2967 \ 505
= 2902 150
ﬁ 1704 1637
ot
2967 2902 *
¥ 16371505
1704
T v T v T T T T T T
4000 3600 3200 2800 2400 2000 1600 1200 800

Wavenumber (cm'l)

Figure 4-7. The FTIR spectra of cotton fabric, TA-TDA, TA-HDA, TA-ODA
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4.2.2 The structure of tannic acid, long chain alkyl amine and tannic
acid-modified cotton fabrics

Figure 4-9 shows the *H NMR spectra of the tannic acid-alkylamine coatings
samples. The signal at 1.22 ppm corresponds to the long chain alkyl groups of TDA,
HDA and ODA [174,175]. The signals at 9.5-9 ppm and 7.5-6.7 ppm are ascribed to
the phenolic hydroxyls and aromatic proton of tannic acid, respectively [176,177].
After reaction between tannic acid and alkylamines, new signals appear at 1.43 and
3.24 ppm, which represent the consequence of Schiff base reaction [30, 174] and
Michael addition reaction [176, 178] respectively. The peak at 1.22 ppm remains
unchanged after reaction, representing the tannic acid-based coating that consist of the
long chain alkyl structure. The *H NMR spectra of the modified cotton fabric support

the successful modification of cotton surface with tannic acid-alkylamine coatings.
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Figure 4-8. The *H NMR spectra of TDA, HDA, ODA and tannic acid
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Figure 4-9. The 'H NMR spectra of TA-TDA, TA-HDA and TA-ODA
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4.2.3 The binding energy of cotton fabric, TA-TDA, TA-HDA and TA-ODA

Figure 4-10 shows the XPS spectra of the cotton fabrics samples with the areal
fractions of Cys peaks listed in Table 5. The pristine cotton surface has Cys peaks at
284.8 eV, 286.3 eV, and 288.3 eV, corresponding to C-C, C-O and C=0 bonds,
respectively, with the former two being the major bonds for C atoms [22, 23]. With
TA-TDA, TA-HDA and TA-ODA coatings, the surface of cotton surface has excess
C-0O and C=0 bonds, characteristics of TA [173, 179]. The enriched -C=N and C-N
bonds signal the presence of amide groups in the modified surfaces. The areal ratio
for C-C is increasing with increased chain length of the alkyl groups, suggesting that
the increased contribution of Michael addition reaction and the Schiff base reactions

with longer alkylamines with TA (Table 5).
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Figure 4-10. The XPS spectra of C; for cotton fabric (a), TA-TDA (b), TA-HDA (c)
and TA-ODA (d)

Table 5. The binding energy value of C; for pristine and modified cotton fabrics

C-C C-0 C=0
Binding energy 284.8 286.3 288.3
Pristine (eV) ' ' '
cotton area 894.0 1344.5 223.8
Area fraction (%) 36.3 54.6 9.1
C-C C-O/C-N C=0/C=N 0-C=0
Binding energy
TA-ODA (&) 284.8 286.4 288.6 290.5
fabric area 104.6 262.7.5 844.1 232.2
Area fraction (%) 9.5 17.7 57.1 15.7
C-C C-O/C-N C=0/C=N 0-C=0
Binding energy
TA-HDA (&V) 284.8 286.4 288.6 290.5
fabric area 127.6 189.4 971.3 2175
Avrea fraction (%) 8.5 12.6 64.5 14.4
C-C C-0O/C-N C=0/C=N 0-C=0
Binding energy
TA-TDA (&V) 284.8 286.4 288.6 290.5
fabric area 104.7 216.5 991.1 128.2
Avrea fraction (%) 7.3 15.0 68.8 8.9
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4.2.4 The morphology of surface for fabrics

The surfaces of pristine cotton fabric appear smooth (Figure 4-11a), while the
surface possessed mainly C and O atoms as characterized by EDS (Figure 4-11€). The
surfaces of TA-TDA, TA-HDA and TA-ODA modified cotton fabrics with catalysts 5
mM CuSQO,and 19.6 mM H,0; and reaction time 60 min are roughened (Figures
4-11b-d). As Figures 4-11f-h show, the cotton fabrics have incorporated N atoms,

suggesting the appearance of amide groups on the modified surface.
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Figure 4-11. FE-SEM images (a-d) and EDS spectra (e-h) of cotton fabrics. (a,e)
Pristine; (b,f) TA-TDA,; (c,g) TA-HDA; (d,h) TA-ODA.
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4.25 Contact angle measurements

Table 6 shows the static contact angles for droplets of water or dilodomethane on
the cotton fabric surfaces with catalysts 5 mM CuSO,4and 19.6 mM H,0O, and reaction
time 60 min. The contact angles of water droplets on pristine cotton fabrics is close to
zero, correlating with the hydrophilic surface composed of cellulose. After
modification, the contact angles for water droplets on the modified surface are 133.3°,
136.0° and 142.9° for TA-TDA, TA-HDA, and TA-ODA cotton fabrics, respectively.
Restated, all modified surfaces are hydrophobic that reject water. The corresponding
contact angles for diiodomethane droplets are 56.0°, 58.8° and 59.3°, respectively.
Restated, these surfaces are affine to oil compounds. Overall, the modified surfaces
have contact angles of water larger than PFTE, and lower contact angles of
diiodomethane droplet than PTFE (Table 6).

Table 6 also lists the calculated surface energies for the modified cotton fabrics.
The surface energies of the modified surfaces have very low polar component (4.2-6.2
mJ/m?) and intermediate dispersive component (29.0-31.2 mJ/m?). Restated, these
surfaces should have low affinity to water and intermediate attraction to hydrophobic
compound. Compared with PTFE, the current modified surfaces have higher polar

components and dispersive components.

The three modified surfaces are grafting with TA and long chain alkylamines,
with TA-TDA, TA-HDA and TA-ODA differing with two methyl groups each (14, 16,
and 18, respectively). The increase in every two methyl groups, though with limited
magnitudes, is noted to increase the polar component but decrease the dispersive
component of surface energies. This observation contradicts to the interpretations that
longer alkyl chain length would lead to higher dispersive component and lower polar
component. Such an observation may be owing to the possible packing of alkyl
groups in the grafted layer so their volume is reduced, yielding reduced dispersive
component. The more aligned alkyl top layer can yield more aligned bottom TA
molecules on surface, which would possibly lead to more polar interactions such as
hydrogen bonding between TA molecules, so generating increased polar component.

Regardless of the interpretation, the increase or decrease in components are limited.
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Based on figure 4-12, the modified cotton fabrics can be wet by common oil
compounds but not by water. Therefore, the modified surfaces have been properly

designed and synthesized so they can be used as adsorbents for spilled oil from
water-oil mix.
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Figure 4-12. The wetting envelope of TA-ODA, TA-HDA and TA-TDA cotton fabrics,
PTFE, and those for water, gasoline, diesel, and kerosene
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Table 6. The contact angles of modified cotton fabrics with water and diiodomethane droplets.

Water Image Diiodomethane Image Dispersive component | Polar component
(degree) g (degree) g (mJ/m?) (mJ/m?)
TA-TDA | 133.27+1.15 56.011+5.11 31.2 4.2
TA-HDA | 135.99+1.15 58.751+4.13 29.3 4.4
TA-ODA | 142.87+0.53 59.3014.10 29.0 6.2
PTFE | 108.0¢+15 NA 73.0£3.2 21.2 0.27

* Data from Milne and Ritchie (2007) and Al-Maliki (2018).
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4.2.6 Anti-wetting ability

Figure 4-13 demonstrates the anti-wetting ability of TA-ODA, TA-HDA and
TA-TDA cotton fabrics farbicated with 60 minutes of reaction time. TA-ODA and
TA-HDA remain high contact angle after ten minutes which show excellent water
resistance. The great water repellency is attributed to hydorphobicity property of long
chain hydrocarbon compound grafted on the surface . Compared to TA-HDA,
TA-TDA shows poor water resistance because of the shorter chain length of

alkyamine.
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Figure 4-13. The wetting resistance of TA-ODA, TA-HDA and TA-TDA
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4.2.7 Effects of reaction parameters for alkylamine grafting

To observe whether the adopted catalysts are needful for reaching satisfactory
modification of cotton fabrics, Figure 4-14 shows the reaction parameters on the
measured contact angle using water droplets. The reaction time of 10-70 min for
TA-TDA, TA-HDA, TA-ODA cotton fabrics at 5 mM CuSQy,, 19.6 mM H,0, at pH
8.5 has mild effects on contact angles of water droplets on these modified cotton
fabrics (Fig. 4-14a). For instance, the contact angle of water droplets on TA-ODA,
TA-HDA and TA-TDA cotton fabrics are 139.67+1.07°, 133.05£1.54° and
130.77+1.65° for 10 min reaction, and are increased to 142.87+0.53° 135.99+1.15°
and 133.27+1.15° respectively at 60 min reaction.

Figure 4-14b shows the reaction of 10-70 min for TA-ODA, TA-HDA and
TA-TDA with no CuSO4/H,0; at pH 8.5. The contact angle of water droplet on
TA-ODA, TA-HDA, TA-TDA are 134.19°+1.12° 132.06°+1.02° and 128.74°+1.25°
for 10 min reaction. As the reaction time is increased to 60 min, the contact angle of
TA-ODA, TA-HDA and TA-TDA are enhanced to 135.29°+1.49°, 133.65°£0.88° and
129.55°+1.13°. The contact angle of TA-HDA increases more obviously during 0-30
min reaction time.

Figure 4-14c shows the effects of H,O, concentration with 0 mM CuSO, at pH 8.5
for TA-ODA cotton fabrics. As reaction time exceeds 30 min, the contact angles of
water droplet on TA-ODA cotton fabric surface reaches a plateau, whole value is
increasing with concentration of H,0..

Figure- 4-14d shows the effects of CuSO,4 concentration with 19.6 mM H,0, at pH
8.5 for TA-ODA cotton fabrics. The contact angle of water droplets on TA-ODA
cotton fabric surface increases with increasing reaction time, with the increasing trend
more obvious during 0-30 min reaction time for modification without CuSO, than
those with 5 or 10 mM CuSO,.

Figure 4-14e shows the effects of pH values with 5 mM CuSO,4 and 19.6 mM H,0,
for TA-ODA cotton fabrics. The contact angle of water droplets on TA-ODA cotton
fabric surface increases with increasing reaction time and reach plateau at > 30 min

reaction time. At the same reaction time, the contact angle of water droplet on

49

doi:10.6342/NTU202101615



TA-ODA cotton fabric surface is increasing as pH is raised from 5.5, maximizing at
pH 8.5, and then declines as pH is increased further to 9.5.

The above tests reveal that the currently adopted recipe with catalyst 5 mM
CuS04/19.6 mM H,0, is appropriate for modification of the TA-ODA cotton fabrics.
The reaction time can be reduced to 10 min if the pH value can be maintained at 8.5
to enhance formation rate of quinones groups for crosslinking reaction, which is
adjusted in this work by Tris base and HCI. Therefore, the tests with no CuSO,4 or
H,0, addition, or using inexpensive base for pH adjustment can indicate the
potentials to reduction of chemical costs; conversely, the reaction time acquired may
increase to reach satisfactorily high contact angles that would increase the operation
cost. Further studies are needed to find the optimal modification coditions with

satisfactory performance for oil/water separation at minimum total costs.
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Figure 4-14. Effects of reaction parameters on contact angles water droplets on the
modified cotton fabrics. (a) 5 mM CuSQOy, 19.6 mM H,0,, pH 8.5; (b) no CuSQy4, no
H,O,, pH 8.5 (c) TA-ODA, no CuSO,, pH 8.5; (d) TA-ODA, 19.6mM H,0,, pH 8.5;

(e) TA-ODA, 5 mM CuSQy, 19.6 mM H,0,
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4.2.8 Oil absorption capacity

As Lin and Lee [15] commented, the testing protocols commonly applied in
cotton absorbent literature for oil absorption capability from water-oil mix need
revision. We adopted two different tests herein to simulate the scenario in field
applications. When an oil compound is poured into a water pool, it can float [8] or
sink [170] depending on its relative density to water. The pool tests applied in
literature with passing a water layer with one or two immiscible oil layers to over the
cotton fabric should be able to reveal the affinity of the cotton fabric to oil than water
[19]. However, since the two liquids are immiscible the first liquid, water or oil, that
contacts the fabric tends to block the main internal pores of fabrics to hinder
subsequent flow of another immiscible liquid, the validity of the pool test is

questioned [15].

The test | results are shown in Table 7. The pristine cotton fabric can adsorb 0.87
g/g water and 0.35 g/g hexane when immersed into water+oil layers. Restated, the
hydrophilic cotton can adsorb finite quantity of oil when contacting water-oil layers,
which should be accomplished by the entrance of main pores by oil regardless of the
surface hydrophobicity. For the modified cotton fabrics, the quantities of water
absorbed are decreased to around zero while those of hexane are increased to
0.96-1.01 g/g. The hydrophobic surfaces of modified fabrics would have high affinity
to oil and decline the intake of water to the fabrics.

The test 11 results are also shown in Table 7. For TA-TDA, TA-HDA and TA-ODA
cotton fabrics with 5mM/19.6mM of CuSO4/H,0, for 60 min of reaction time, they
can adsorb less water (1.15-1.80 g/g) and absorb more hexane (0.52-0.97 g/g) in the

second stage of test compared to pristine cotton fabrics shown in Table 7.

Table 8 shows the water and oil absorption capacity for modified fabrics with

5mM/19.6mM of CuSO,4/H,0, for 10 min of reaction time. They are enable to absorb
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water (1.16-1.90 g/g) and hexane (0.57-1.07 g/g) exhibiting great oil absorption as

well as the modified fabrics with 60 min of reaction time.

Table 9 shows the the water and oil absorption capacity for modified fabrics with
no CuSO4/H,0, for 10 min of reaction time. The modified fabrics are able to absorb
(1.07-1.94 g/g) water and (0.44-0.1.04 g/g) hexane. Without adding CuSO4/H,0, for
fabrication, the modified fabrics shows great oil absorption capability as well as the
modified fabric with CuSO4/H,0O, shown in Table 8.
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Table 7. The absorption capacity of fabrics for water and hexane in Test | and Test I1.

Test |

Absorption capacity
(g water/g cotton)

Absorption capacity
(g hexane/g cotton)

Cotton 0.87+0.27 0.35+0.26
TA-TDA 0.17+0.15 0.96+0.14
TA-HDA 0.18+0.15 1.00£0.10
TA-ODA 0.14+0.12 1.01+0.08

Test 11
Absorption capacity Absorption capacity
(g water/g cotton) (g hexane/g cotton)

Cotton 2.12+0.08 0.08+0.02
TA-TDA 1.80+0.14 0.52+0.07
TA-HDA 1.27+0.05 0.85+0.04
TA-ODA 1.15+0.04 0.97+0.04

Table 8. The absorption capacity of fabrics modified with 5mM/19.6mM of
CuSQO4/H;,0; in 10 min for water and hexane in Test 11

Test 11

Absorption capacity
(g water/g cotton)

Absorption capacity
(g hexane/g cotton)

TA-TDA 1.90+0.03 0.57+0.08
TA-HDA 1.32+0.08 0.82+0.06
TA-ODA 1.16+0.02 1.07+0.06

Table 9. The absorption capacity of fabrics modified with no CuSO4/H,0, in 10 min
for water and hexane in Test 1l

Test 11

Absorption capacity
(g water/g cotton)

Absorption capacity
(g hexane/g cotton)

TA-TDA 1.94+0.03 0.44+0.08

TA-HDA 1.46%0.10 0.72+0.07

TA-ODA 1.07+£0.07 1.04+0.02
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4.3 The comparison of reaction conditions and performance for TA-ODA and
POSS-CT

Based on the list in Table 1 and Table 3, we can realize that the cost of material for
TA-ODA is 100 times much less than the compound for POSS-CT. Moreover, the
industrial grade of tannic acid is much cheaper than the reagent grade used in
experiment. It is cost-effective and shows great potential for practical application.
Table 10 shows that the fabrication process of POSS-CT is complicated than TA-ODA
used one step to carry out in 60 min. And it is energy-consuming to use UV
equipment for synthesis. The halogenated solvent used for fabrication of POSS-CT is
harmful to environment and human health. On the contrary, the solvent applied for
TA-ODA is environmental-friendly for avoiding secondary pollution. For oil
absorption capability, the performance of POSS-CT is similar with TA-ODA
exhibiting outstanding oil absorption capability compared to the pristine cotton fabric.
Consequently, the use of tannic acid-modified fabrics for oil absorption is more

appropriate for large-scale production and environmental sustainability.

Table 10. The comparison of reaction conditions and performance for TA-ODA and

POSS-CT
TA-ODA POSS-CT
Procedure One step Two step
i . Room temperature Room temperature
Reaction condition .
pH 8.5 UV irradiation (360 nm)

1% step: 2hr

Reaction time 60 min nd _
2" step: 60 min
Solvent Water, Ethanol Ethanol, Dichloromethane
Contact angle (°) 142.87+0.53 142.82+1.17
) i i Test1:1.01 Test 1:0.96
Oil absorption capacity
Test 1T : 0.97 TestIl:1.12
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Chapter 5
Conclusion

This study proposed a novel one step protocol to produce TA-TDA, TA-HDA
and TA-ODA cotton fabrics by dip coating TA onto the surface together with the
alkylamines onto the TA via Michael addition/Schiff base reactions. Moreover, the
POSS-CT is introduced to do the comparative study which is fabricated by thiol-ene
click reaction under the UV irradiation. The FTIR analysis, ‘H NMR, and XPS
spectra confirmed the proposed chemical structures for the surface coating. The tannic
acid-modified cotton fabrics have hydrophobic surfaces with contact angles for water
droplets on the modified surface as 133.3° 136.0° and 142.9° for TA-TDA, TA-HDA,
and TA-ODA cotton fabrics, respectively; and diiodomethane droplets on the
modified surface being 56.0°, 58.8° and 59.3° respectively. The modified surfaces
have low polar component (4.2-6.2 mJ/m?) and intermediate dispersive component
(29.0-31.2 mJ/m?), generating a surface that has low affinity to water but high affinity
to oil. The reaction parameters for Michael addition/Schiff base reactions including
the reaction time, the concentrations of catalysts, and the solution pH values were
studied on their effects for water contact angle to the modified surface. The two oil
absorption tests revealed that the modified cotton fabrics can effectively absorb oil,
with the adsorption capacity follows TA-ODA>TA-HDA>TA-TDA. Furthermore, the
tannic acid-modified cotton fabric with no CuSO4/H,0;, and short reaction time
(10min) for fabrication also shows great oil absorption. The early contact of water
will reduce the oil capacity since part of main pores have been occupied by water.

POSS-CT has superhydrophobic surface with contact angles for water droplets
on the modified surface as 142.82° and diiodomethane droplets on the modified
surface being 0°. The POSS-modified surfaces have polar component (13.3 mJ/m?)
and dispersive component (50.8 mJ/m?) which is preferable to capture the oil
compound instead of water. The reaction parameter for thiol-ene click reaction
including the reaction time and concentration of POSS were adopt to realize the effect
for hydrophobicity modification. The two oil absorption tests exhibited that the
POSS-CT possessed great oil absorption capacity as well as tannic acid-modified

cotton fabrics.
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Tannic acid-modified cotton fabrics show great potential for practical application
owing to their low cost (Table 11), simple fabrication process and sustainable solvent
medium compared to POSS-modified cotton fabric.

Table 11. The comparison of price for tannic acid, alkylamine, POSS and MPTES

Substance Brand Price
Tannic acid Sigma-Aldrich 0.643 ($/g)
(ACS reagent grade) g ' 9
Tannic acid Emperor
_ _ 0.012 ($/g)
(Industrial grade, 67.5%) Chemical
Octadecylamine (90%) ACROS Organics 0.093 ($/9)
Hexadecylamine (90%) ACROS Organics 0.100 ($/9)
Tetradecylamine (98%) ACROS Organics 3.622 ($/9)
Octavinyloctasilasesquioxane (POSS) TCI 51 ($/9)
3-Mercaptopropyl)triethoxysilane
( ptopropyl) 4 Sigma-Aldrich 4.86 ($/ml)
(MPTES)

Data from Sigma-Aldrich, Emperor Chemical, ACROS Organics and TCI
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