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ABSTRACT 
 

This article provides a perspective review on the use of modified cotton fabrics for 

oil-water separation. The principles of surface hydrophobicity of cotton fabrics are 

first described, from which the basis for producing superhydrophobic surfaces is 

presented. Then the preparation methods to convert hydrophilic cotton fabrics to 

hydrophobic fabrics are reviewed and discussed. Based on literature results the way to 

design novel preparation methods, the need to summarize testing protocols, and the 

comprehensive technoeconomic and sustainability analyses, are proposed. A 

demonstrative cotton fabrics test is used to reveal the significant role of conjugated 

fluid flows and surface interactions under different application scenarios for 

determining the separation efficiency of the oil-water mix. 

POSS-modified cotton fabric named as POSS-CT is synthesized through thiol-ene 

click reaction showing rough and hydrophobic surface with 142.82±1.17° of water 

contact angle. POSS-CT possesses 0.96 g/g of oil absorption capacity for floating oil 

cleanup which is almost 3 times higher the pristine cotton fabric. 

TA-ODA, TA-HDA and TA-TDA are fabricated by crosslinking tannic acid (TA) 

with octadecylamine (ODA), hexadecylamine (HDA) and tetradecylamine (TDA) 

through Michael addition/Schiff base reaction in one step, respectively. Moreover, 60 

min of the modification with 5mM CuSO4 and 19.6mM H2O2 represent 142.87±0.53°, 

135.99±1.15° and 133.27±1.15° of water contact angle which are decreased as the 

dreceasing length of alkylamine. TA-ODA, TA-HDA and TA-TDA possess 1.01 g/g, 

1.00 g/g and 0.96 g/g of oil absorption capacity representing outstanding floating oil 

cleanup capability as well as POSS-modified cotton fabric. 
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Compared to POSS-modified cotton fabric, tannic acid-modified cotton fabrics are 

more suitable for practical application because of their low costs, simple fabrication 

process and sustainable solvent medium. 

  

Keywords: Cotton fabrics; hydrophobicity; tannic acid; alkylamine; POSS; oil/water 

separation; testing  
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摘要 

本文對改質棉布應用在油水分離提供了觀點回顧。 首先描述了棉布表面疏

水性的原理並介紹了產生超疏水表面的基礎理論。 然後對親水性棉布改質為疏

水性棉布的製備方法進行了回顧和討論。本文提出了根據文獻結論設計出的新製

備方法、總結測試方法、全面技術經濟以及永續性分析的必要性。棉布測試展示

了流體和表面相互作用在不同應用場景下對確定油水混合物分離效率的重要關

鍵。 

POSS 改質棉布又稱為 POSS-CT 是通過硫醇-烯加成反應合成，表現出粗糙

與水接觸角為 142.82±1.17°的疏水表面。POSS-CT 用於清除浮油具有�0.96 g/g 的

吸油能力幾乎是純棉布的 3 倍。 

單步驟製備的�TA-ODA、TA-HDA 和 TA-TDA 是用單寧酸 (TA) 與十八烷

基胺 (ODA)、十六烷基胺 (HDA) 和十四烷基胺 (TDA)透過麥可加成/希夫鹼反

應分別鍵結。 此外，用 5mM CuSO4 和 19.6mM H2O2 改質 60 分鐘表現出

142.87±0.53°、135.99±1.15°和�133.27±1.15°的水接觸角，水接觸角隨著烷基胺長

度的減少而降低。 TA-ODA、TA-HDA 和�TA-TDA 擁有�1.01 g/g、1.00 g/g 和�0.96 

g/g 吸油量表現出和�POSS 改質棉布一樣出色的浮油清除能力。 

與�POSS-CT 相比，單寧酸改質棉布成本低、製造流程簡單、合成溶劑具永

續性，更適合於實際應用。 

關鍵字: 棉布; 疏水性; 單寧酸; 烷基胺; POSS; 油水分離; 測試 

v 
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Chapter 1 

Introduction 

 
Recently, oil spilling from livelihood, industry and accident cause damage to the 

environment and ecosystem, which has great influence on wildlife and human health 

[1]. The oil skimmer, centrifugation and air flotation have been developed to solve the 

oil spilling problem [2-5]. However, these traditional methods have drawback 

including low separation efficiency, high energy requirement and time-consuming 

procedures [6,7]. Cotton, a promising porous sorbents, is beneficial to deal with oil 

pollution because of its absorption capacity, sustainability, and low cost [8]. In this 

case, the hydrophobicity modification of cotton fabrics has been adopted to remove 

the oil pollution due to its ease operation and low processing cost [9, 10]. 

 

Hydrophobic material exhibits excellent water repellent property and consequently 

has been used to separate oil from water [11]. Grafting long chain alkyl compound 

[12], immobilizing polymer [13] and depositing nanoparticles [14] are performed to 

construct hieriarchical structure and reinforce the surface roughness to fabricate 

hydrophobic surface with low surface energy [15]. Moreover, the hydrophobicity can 

be enhanced by grafting the increased length of hydrocarbon [16]. 

 

Numerous modification protocols were proposed for surface modification. The in 

situ crosslinking reactions are adopted for surface hydrophobization [17, 18]. The 

cotton surface hydrophobized by grating with polyhedral oligomeric silsesquioxane 

(POSS) via thiol-ene reactions under UV irradiation has received research attention 
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[19]. The chemistry involves conversion of the hydroxyl groups on cotton surface to 

thiol groups by thiol-containing silane, then adding POSS to react with the so-yielded 

thiol groups to form single bond by thiol-ene click reactions [19]. POSS are hybrid 

clusters with chemical formula (RSiO1.5)n [20], which is highly hydrophobic with poor 

affinity to water. 

 

Natural inspired method has extensively been introduced to diverse applications 

owing to its post-funtionalization, mild reaction environment and adhesive ability [21, 

22]. Hydrophobicity modification of natural inspired protocol is adopted to deal with 

oil spilling problem through oil/water separation. For instance, Li et al. [23] 

constructed dopamine-based hydrophobic coating on cotton fabric demonstrating 

good oil/water separation capability. Yan et al. [24] grafted dopamine hybrid coating 

with long chain alkyl amine to fabricate superhydrophobic cotton fabric representing 

great absorption capacity for organic solvent. Compared to dopamine (DA), tannic 

acid (TA) is a relatively inexpensive natural polyphenols (Table1) that can also serve 

as a satisfactory linker between surface and the grafted molecules [25], with the latter 

being achieved by reacting the excess catechol groups with amino-containing silane 

through Michael addition/Schiff base reactions [26]. However, the reaction time for 

grafting reactions with TA is generally long, 25 h for TA/Fe/ODA composite [27], and 

36 hr for the TA/APTES/ODA composite [28], which should be significantly reduced 

for economy production (Table 2).  

 

This study proposed a novel scheme for cotton surface modification with TA dip 

coating followed by long-chain alkylamine grafting via Michael addition/Schiff base 

reaction. The modification with TA can have a reduced cost compared with that with 

expensive DA. To accelerate the reaction for second reaction with alkylamine, the 

catalysts (CuSO4/H2O2) proposed by Sun [30], which used the yielded film as 
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slow-release carrier for fertilizer, were adopted. The cotton fabrics modified by the 

revised, one-pot modification scheme were demonstrated to exhibit superhydrophobic 

surfaces with satisfactory oil adsorption capability. To demonstrate the impact of 

chain length of alkylamine, tetradecylamine (TDA), hexadecylamine (HDA), and 

octadecylamine (ODA) were applied in this study for cotton fabrics modification. 

Furthermore, the hydrophobic cotton fabric coated with high cost of POSS is 

introduced to make a comparison with tannic acid-modified fabrics to realize the 

performance for oil/water separation which is fabricated through thiol-ene click 

reaction (Table 3). 

 

 

 

Table 1. The comparison of price for dopamine hydrochloride and tannic acid 

 Data from Sigma-Aldrich and Emperor Chemical  

 

 

 

 

 

 

Substance Brand Pack size 
Price 

(NTD/g) 

Dopamine hydrochloride 

(98%) 
Sigma-Aldrich 100g 198 

Tannic acid 

(ACS reagent grade) 
Sigma-Aldrich 100g 18 

Tannic acid 

 (Industrial grade, 67.5%) 
Emperor Chemical 500g 0.34 
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Table 2. The comparison of reaction conditions for TA grafting modification tests 

Substrate Material
*
 Reaction Procedure Reaction time Method Contact angle (°) Reaction condition Ref. 

PVDF membrane/ 

PES membrane 

CA- PEtOx 

(CuSO4/H2O2) 

pH-induced 

reaction/oxidant-triggered rxn 
One step 0.5 hr Dip coating 54.5±0.3/73.5±1.9 Room temp.; pH 8.5 [29] 

PTFE 

membrane/ 

TA-ODA 

(CuSO4/H2O2) 

Michael add rxn/Schiff base 

rxn/oxidant-triggered rxn 
One step 10 min Spray coating 124.5±4 55 ◦C [30] 

Cotton fabric TA-Fe-ODA 
Michael add rxn/Schiff base 

rxn 
Two step 

1
st
 step: 1 hr 

2
nd

 step: 24 hr 
Dip coating 145.35 ± 0.4 

1
st
 step: pH 8.0, room 

temp; 2
nd

 step: pH 

8.5, room temp 

[27] 

Cotton fabric TA-APTES-ODA 
Michael add rxn/Schiff base 

rxn 
Two step 

1
st
 step: 24 hr; 

2
nd

 step: 12 hr 
Dip coating 152 

1
st
 step: pH 8.5, room 

temp; 2
nd

 step: pH 

8.5, room temp 

[28] 

Cotton fabric 

TA-ODA; 

TA-HDA; 

TA-TDA 

(CuSO4/H2O2) 

Michael add rxn/Schiff base 

rxn/oxidant-triggered rxn 
One step 10 min Dip coating 

139.67±1.07° 

133.05±1.54°  

130.77±1.65° 

Room temp., pH 8.5 
This 

work 

*
CA: caffeic acid; PEtOx: poly(2-ethyl-2-oxazoline); PTFE: polytetrafluoroethylene; TA: tannic acid; ODA: octadecylamine; APTES: 

(3-aminopropyl)triethoxysilane; GA: gallic acid 

 

Table 3. The comparison of price for long chain alkyl compound, POSS, and MPTES 

 

 

 

 

 

 

Data from ACROS Organics, Tokyo Chemical Industry (TCI) and Sigma-Aldrich

Substance Brand Price  

Octadecylamine (90%) ACROS Organics 0.093 ($/g) 

Hexadecylamine (90%) ACROS Organics 0.100 ($/g) 

Tetradecylamine (98%) ACROS Organics 3.622 ($/g) 

Octavinyloctasilasesquioxane (POSS) TCI 51 ($/g) 

(3-Mercaptopropyl)triethoxysilane (MPTES) Sigma-Aldrich 4.86 ($/ml) 
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Chapter 2 

Literature review 
 

 

2.1  Hydrophobicity 

 

In nature, the phenomena of the lotus leaf effect [31], rose petal effect [32] and 

butterfly wing effect [33] (Figure 2-1) have inspired people due to the promising 

application involving self-cleaning property [34], anti-adhesion ability [35] and 

hydrophobicity [36]. The hydrophobicity of lotus leaf is attributed to the hierarchical 

structure [37] which the air will be trapped into the rough structure to minimize the 

contact area between air and water droplet [38]. Consequently, the re-entrant 

structures of modified surface are performed to repel water out of the surface owing to 

the enhancement of hydrophobization [39, 40]  
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Figure 2-1. The image (a) of the lotus leaf effect [31]. SEM image of lotus-leaf-like 

structures (b) from carbon nanotubes [31] and rose-petal-like structure 

(c) of modified surface [32]. 

 

2.2  The evaluation of surface energy of hydrophobicity 

 

The hydrophobicity is contributed to the surface energy of the substrate and can be 

evaluated by measuring the contact angle [41]. When the droplet attaches on the solid 

material with a smooth surface, we can estimate the surface energy at three phase 

contact line through the Young equation (1) [42]. 

 

γ 𝐿cos θ =  γ𝑠  −  γ𝑠𝐿               (1) 

 

where γL, γS, and γSL refers to the interfacial interaction between liquid and vapor 

(surface energy of liquid), the surface energy of solid material and the interfacial 

interaction between solid and liquid respectively. The contact angle (θ) is evaluated by 

the angle between solid and a liquid droplet on the surface (Figure 2-2) 

 

Figure 2-2. Schematic of three phase contact line 
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When the static contact angle θ is higher than 90°, it can be normally called a 

hydrophobic surface by definition [43]. According to the equation, low γS can lead to 

high θ which indicates the low surface energy material is not readily to be attached by 

the high surface tension liquid [44]. Moreover, low γS represent the low polar and 

dispersive component of surface energy. The surface energy is ascribed to the sum of 

polar component and the dispersive component of surface energy (2) through Fowkes 

theory [45]  

 

𝛾𝑠=𝛾𝑠
𝑝
+𝛾𝑠

𝑑            (2) 

 

𝛾𝑠 = the surface energy of solid 

𝛾𝑠
𝑝 = the polar component surface energy of solid 

𝛾𝑠
𝑑 = the dispersive component surface energy of solid 

 

In Fowkes method, the interfacial interaction γSL is expressed as a geometric mean 

of polar (non-dispersive) and dispersive component [46]. The Fowkes method is 

shown in the following equation (3). 

 

𝛾𝑠𝐿 = 𝛾𝑆 + 𝛾𝐿 − 2 (√𝛾𝐿
𝑑 . 𝛾𝑠

𝑑 + √𝛾𝐿
𝑝. 𝛾𝑠

𝑝)          (3) 

 

𝛾𝐿
𝑑 = the dispersive component surface energy of liquid 

𝛾𝑠
𝑑 = the dispersive component surface energy of solid 

𝛾𝐿
𝑝 = the polar component surface energy of liquid 

𝛾𝑠
𝑝 = the polar component surface energy of solid 
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Combining the Young equation with the Fowkes method [47], we can get the equation 

(4).  

 

𝜸𝑳(𝟏+𝐜𝐨𝐬 𝜽)

𝟐√𝜸𝑳
𝒅

= √𝜸𝒔
𝒑

(
𝜸𝑳

𝒑

𝜸𝑳
𝒅) + √𝜸𝒔

𝒅        (4) 

 

Based on the above equation, the estimation of γs
d
 and γs

p
 can be determined by 

measuring the contact angle with two different liquids [48]. After that, the surface 

energy is subsequently obtained from the sum of the dispersion component and the 

polar component of surface energy. 

 

2.3  The characteristic of cotton 

 

Cotton is composed of cellulose (Figure 2-3) [49] which is cost-effective to be used 

as an oil adsorbent and biodegradable to the environment [50]. Moreover, it is 

beneficial to be modified by the functional group because of numerous hydroxyl 

groups on the pristine cellulose [51]. Overall, cotton has been considered as a 

promising substrate to solve oil spilling due to its absorption capacity, sustainability, 

and low cost [52]. 

 

 

 

Figure 2-3. The chemical structure of cotton 
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2.4  Hydrophobicity modification of cotton fabric for oil/water separation 

 

Hydrophobicity modifications are introduced to impact the wettability of cotton 

fabric to deal with the oil spilling problem [53, 54]. The hydrophobization of the 

surface can be modified by various protocols including dip coating [55], in situ 

crosslinking reaction [56], UV-triggered reaction [57] and natural inspired method 

[58]. For instance, Liu et al. [59] deposited SiO2 nanoparticles via dip coating to 

fabricate superhydrophobic cotton which could easily collect the floating oil. Zhang et 

al. [60] immobilized modified-ZnO/polystyrene on cotton fabric through dip coating 

to synthesize superhydrophobic cotton fabric possessing high oil/water separation 

efficiency (Figure 2-4). Deposition of nanoparticles, such as SiO2 [61], ZnO [62] and 

TiO2 [63], are introduced to hydrophobization owing to the reinforcement of surface 

roughness [64]. In addition, the doping of polymers is also utilized to the formation of 

hydrophobization [65]. Cao et al. [66] synthesized PDMS-ormosil-based 

superhydrophobic fabric for oil removal from the emulsion solution. Guo et al. [67] 

modified cotton fabric with the polymerization of PDMS, FAS15 and PVP to separate 

water-in-oil emulsion driven by gravity. The key of hydrophobicity is ascribed to the 

low surface energy of polymer compounds [68]. Furthermore, grafting long chain 

alkyl substances, such as alkylamine [69], alkylsilane [70] and fluoroalkylsilanes [71], 

has been extensively adopted to develope the hierarchical structure [72] (Figure2-5). 

A superhydrophobic cotton fabric coated with trimethoxy(octadecyl)silane exhibited 

high oil absorption performance under the water [73]. The decreasing surface energy 

can be synergistically modified with the increased alkyl chain length to construct a 

re-entrant structure [74]. 
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Figure 2-4. Schematic of fabrication of superhydrophobic cotton fabric via dip 

coating [60] 

 

 

 

 

 

Figure 2-5. Schematic of formation of hierarchical structure by grafting long chain 

alkyl compound 

 

 

2.5  Natural inspired method 

 

Nature-inspired method has received great attention due to its sustainability, 

flexibility, and versatile application[58]. Scientists found dopamine from mussel 

possessing adhesive ability [75] and can polymerize spontaneously into polydopamine 

(pDA) in the mild environment [76] without using UV-induced reaction [77] and 

plasma-induced reaction [78] required expensive equipment. Dopamine (DA) is 

promising for surface modification due to multifunctional group (catechol and amino 
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groups) [79] and also act as a binder for further modification [80]. Zhao et al. [81] 

constructed dopamine-modified antifouling membrane for water purification. Zeng et 

al. [82] utilized dopamine to fabricate hydrophilic surface to prevent membrane 

blocking. Since the modification of membrane by dopamine perform hydrophilicity 

[83], these approaches are applied to prevent the membrane fouling attributed to the 

interaction between membrane and foulant [84]. In contrast with the hydrophilicity 

modification, hydrophobization of surface is also developed by the application of 

dopamine. For instance, dopamine-based hydrophobic film was built on the copper 

surfaces to enhance the corrosion resistance [85]. Yan et al. [24] adopted 

Fe/pDA/ODA-modified cotton fabric for oil/water separation. Dan et al. [86] 

fabricated dopamine-assisted superhydrophobic cotton through Schiff base reaction. 

The secondary reaction of polydopamine (pDA) coating can be modified via grafting 

of macromolecules [87], deposition of long-chain molecules [85, 86], and reduction of 

metal ions [76]. However, the high cost of dopamine is hard to find practical 

applications [88,89]. (Table 1) Compared to dopamine, tannic acid also shows 

excellent adhesion on various substrates [90] and is a cost-effective compound [91]. 

 

Tannic acid (TA) is a kind of natural polyphenols which possess abundant catechol 

functional groups [92] (Figure 2-6). Since tannic acid exhibit outstanding antibacterial 

[93] antioxidant performance [94], versatile applications such as food packaging [95], 

biomedical material [96] and antibacterial membrane [97] have been widely used. 

Furthermore, tannic acid is acted as a crosslinker [98, 99]. Xu et al. [100] utilized 

tannic acid to react with polyamine via co-deposition on nanofiltration membrane. Li 

et al. [101] constructed antifouling layer on membranes attributed to the co-deposition 

of tannic acid and polyethyleneime. Lin et al. [102] crosslinked tannic acid with 

piperazine via interfacial polymerization for dye/salt separation application. Tannic 
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acid is enable to co-deposit with amine [103, 104] via Michael addition/Schiff base 

reaction and coordinate with metal ions (Figure 2-7) [105]. For instance, Xu et al. 

[106] developed tannic acid-modified coating via Michael addition/Schiff base 

reaction to prevent biofouling. The catechol groups of tannic acid will oxidize into 

reactive quinone structures and further react with amine through Michael 

addition/Schiff base reaction [30] (Figure 2-8). Tannic acid is also introduced to 

construct hydrophobic surface because of the hierarchical structure which is essential 

to the hydrophobization [107] (Figure 2-9). Sun et al. [30] adopted tannic acid-based 

hydrophobic film reacting with octadecylamine via co-deposition. Bu et al. [108] 

grafting fluorinated thiol on tannic acid-modified textile to form the superhydrophobic 

surface. Shang et al. [109] introduced polyhedral oligomeric silsesquioxane to 

crosslink with tannic acid to fabricate superhydrophobic cotton fabric for oil/water 

separation. Secondary modification of grafting of long chain alkyl compound [28], 

fluorine-containing substance [108] and polyhedral oligomeric silsesquioxane [109] 

are used for hydrophobization of tannic acid-derived substrate (Figure 2-10). 

 

 

Figure 2-6. The structure of tannic acid 
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Figure 2-7. Schematic of complexation and Michael addition/Schiff base reaction for 

tannic acid 

 

 

 

 

 

 

Figure 2-8. Mechanism of Michael addition/Schiff base reaction between tannic acid 

and amine 
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Figure 2-9. Schematic of hierarchical structure for tannic acid hybrid coating 

 

 

 

 

 

 

 

 

Figure 2-10. Schematic of secondary reaction for tannic acid-modified hydrophobic 

cotton fabrics [28, 108, 109] 
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2.6. Michael addition reaction 

  

Michael addition reaction, which is widely applied for click reaction, has attracted 

attention owing to the mild reaction condition [110], high yield production [111] and 

selectivity of reaction [112]. The Michael addition reaction is a reaction which the 

nucleophilic (Michael donor) will react with activated olefins and alkynes (Michael 

acceptor) [113], as shown in Figure 2-11. Numerous thiols [114], amines [115] and 

phosphine[116] can serve as Michael donor to react with Michael acceptor including 

ketones[117], α,β-unsaturated aldehydes[118] and azo compounds[119]. The 

application of Michael addition reaction is introduced to formation of polymer[120], 

immobilization of post-modification[121] and design for drug delivery system [122]. 

 

 

 
 

Figure 2-11. Schematic of Michael addition reaction [113] 

 

 

2.7. Schiff base reaction 

 

Schiff base reaction is adopted for biological application [123] as a result of the 

mild reaction condition [124], high reaction rate [125] and covalent bonding 

interaction [126]. Schiff base reaction refers to the reaction which the aldehydes (or 

ketones) will covalent with amino-containing compounds to form the imine groups 

[127] (Figure 2-12). Lui et al. [123] fabricated amino carboxymethyl chitosan-assisted 

hydrogel with biocompatibility property via Schiff base reaction. Xiang et al. [128] 

anchored tannic acid-based film on membrane via Schiff base reaction to prevent the 
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fouling problem. Crosslinked biological materials based on Schiff base reaction has 

been widely adopted in the biomedical field [129]. 

 

 

 

 

Figure 2-12. Schematic of Schiff base reaction [127] 

 
2.8. CuSO4/H2O2-triggered reaction 

 

Nature inspired method is applied for surface modification owing to its 

post-functionalization [130], biocompatibility [131] and adhesion capacity[132]. 

Nevertheless, the reaction time of natural inspired method is time-consuming [133] 

compared to the UV- triggered protocol [134], in situ crosslinking method [135] and 

plasma-induced approach[136]. To overcome the drawback, numerous protocols have 

been developed. Xu et al. [137] utilized UV irradiation to produce the reactive oxygen 

species which promoted the polymerization of dopamine. Cai et al. [138] deposited 

the dopamine on TiO2 nanotubes via electropolymerization to prevent the combination 

of electron-hole pairs. Lee et al. [139] introduced microwave irradiation to accelerate 

the rate of polymerization of dopamine. However, these instrument-required 

procedures are complicated and energy-consuming [140] which indicates the reaction 

consequently can not be utilized in large-scale production. In 2016, Zhang et al. [141] 

found that CuSO4/H2O2 can act as a trigger to improve the deposition rate and 

homogeneity of polydopamine coating which required ten hours up to a few days to 
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synthesize. Cu
2+

 and H2O2 are introduced to produce reactive oxygen species which 

act as the oxidant to accelerate the reaction rate of catechol groups of dopamine to 

reactive quinone structures [140] (Figure 2-13). Oxidant plays an important role to the 

oxidation reaction. Therefore, oxidant-assisted protocols are also introduced to 

enhance the copolymerization rate of polyphenol. For instance, tannic acid-assisted 

hydrophobization was induced by CuSO4/H2O2 to enhance the polymerization rate 

[30]. He et al. [29] fabricated poly(caffeic acid)-derived hydrophilic coating with fast 

deposition rate through CuSO4/H2O2-assisted reaction. Similar to the mechanism of 

oxidation of dopamine, the catechol structures of polyphenol are induced into quinone 

groups [29, 142] which applied CuSO4/H2O2 to promote the rate of polymerization 

(Figure 2-14) [30]. The addition of CuSO4/H2O2 reagent is adopted to optimize the 

deposition rate of polyphenol and reinforce the uniformity of coating [142, 29]. 

 

 

 

 

Figure 2-13. Schematic of CuSO4/H2O2-triggered oxidation of dopamine 
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Figure 2-14. Schematic of CuSO4/H2O2-triggered oxidation of tannic acid 

 
2.9.  Thiol-ene click reaction 

 

Thiol-ene click reaction, a radical-mediated reaction, was capable of synthesizing 

functional materials rapidly with no by-products under mild reaction condition [143, 

144]. Ke et al. [145] coordinated thiol-terminated polymer with BaTiO3 nanoparticles 

through thiol-ene click reaction to prepare high energy storage material. Di et al. [146] 

adopted vinyl-POSS to react with thiol-modified cotton fabrics via thiol-ene click 

reaction to construct hydrophobic surface. Thiol groups are able to crosslink with ene 

induced by radical through thermo-initiated or photoinitiated thiol-ene click reaction 

(Figure 2-15) [147]. Photo-and thermal initiator, including 

2,2-dimethoxy-2-phenylacetophenone (DMPA), 2-hydroxy-2-methylpropiophenone 

(HMPF) and 2,2’-azobis(isobutyronitrile) (AIBN), are frequently introduced to create 

the radical to induce the reaction [147, 148]. Lei et al. [149] applied DMPA as 

photoinitiator to trigger the polymerization between 

polymercaptopropylmethylsiloxane and vinyl-polydimethylsiloxane though thiol-ene 

click reaction. Amanda et al. [150] fabricated hexadecene-assisted superhydrophobic 

cotton fabric utilizing AIBA as initiator to derive the thermally initiated thiol-ene click 

reaction. Thiol-ene click reaction has been extensively conducted to surface 
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modification [151], conjugation of polymer [152] and biofunctionalization of 

biomedical material [153]. 

 

 

Figure 2-15. Schematic of thiol-ene click reaction 

 

 
2.10.  Polyhedral oligomeric silsesquioxane (POSS) 

 

Polyhedral oligomeric silsesquioxane (POSS) possesses organic–inorganic hybrid 

cage-like nanostructure which are demonstrated the formula of (RSiO1.5)n (Figure 

2-16) [154]. R can be composed of non-reactive groups such as methyl, isobutyl and 

phenyl [155]. On the contrary, R can be substituted by numerous reactive groups 

including vinyl, amine, styrene and thiol which are beneficial for further modification 

[155, 156]. Siyu et al. [157] fabricated POSS-assisted superhydrophobic cotton fabric 

which represented self-healing and outstanding anti-abrasion ability. Warintorn et al. 

[158] reinforced the strength and toughness of epoxy with rubber-derived POSS 

nanoparticles representing the impact resistance was enhanced 80％. POSS was 

conducted to improve the mechanism strength and chemical stability such as abrasion 

resistance, impact strength, corrosion resistance and UV resistance [159-161]. In 

addition, hydrophobicity modification is developed with application of POSS owing 

to the low surface energy [162, 57]. Choa et al. [163] developed superhydrophobic 

cotton fabric with POSS-constructed polymer exhibiting excellent durability and 
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self-cleaning ability. POSS has functionalized the advanced material for widespread 

applications. 

 

 

 

Figure 2-16. The chemical structure of POSS 
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Chapter 3 

Material and Experiment Methods 

 
3.1. Materials 

 

The cotton fabric was purchased from local cotton fabric store in Taipei, Taiwan. 

The long chain alkyl amine octadecylamine (ODA) (90%), hexadecylamine (HDA) 

(90%), tetradecylamine (TDA) (98%), copper sulfate (98+%), potassium bromide 

(KBr), n-hexane and diiodomethane were obtained from Fisher Scientific Int. Inc. 

(Pittsburg, PA, USA). Tannic acid, 2,2-Dimethoxy-2-phenylacetophenone (DMPA) 

and (3-Mercaptopropyl)triethoxysilane (MPTES), Dimethyl sulfoxide-d6 (DMSO-d6) 

and chloroform-d were purchased from MilliporeSigma (Burlington, MA, USA). Tris 

(Base) was obtained from J.T. Baker (Radnor, PA, USA). The hydrogen peroxide was 

purchased from Honeywell (Charlotte, NC, USA). Octavinyloctasilasesquioxane 

(POSS) was obtained from Tokyo Chemical Industry (TCI). Hydrochloric acid was 

obtained from Scharlau (Sentmenat, Spain). Ethanol (95%) was obtained from the 

Dinhaw Enterprise Co., Ltd. (Taipei, Taiwan). Dichloromethane was purchased from 

Shimakyu's Pure Chemicals Co., Ltd..  
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3.2.  Preparation of as-prepared cotton fabric 

The as-prepared cotton fabrics were prepared by washing with deionized water and 

ethanol for three time, respectively. Then, immerse the cotton fabrics in the deionized 

water to do the ultrasonic treatment for about 30 minutes. After that, the cotton fabrics 

were dried in the oven at 60℃. 

 

3.3.  Fabrication of POSS-modified cotton fabric 

 

The cotton fabrics were first immersed in the 0.15 mol/L MPTES of ethanolic 

solution for 2 hrs at ambient temperature. The modified fabrics were washed with 

ethanol and then dried at 60°C to get the SH-CT. Afterward, SH-CT was immersed 

into the dichloromethane with 1.6 weighting percent of POSS and 0.16 weighting 

percent of DMPA under the 360 nm UV lamp reacting for 1 hour. Finally, wash the 

POSS-modified fabric with ethanol and dry the fabric at 60°C to obtain the POSS-CT. 

(Figure 3-1) 

 

3.4.  Fabrication of tannic acid-modified cotton fabrics 

 

Tannic acid (2 mg/ml) and CuSO4 (5 mM)/H2O2 (19.6 mM) was added into the 

deionized water with strong stirring. At identical molar concentrations, ODA (3.33 

mg/ml), HDA (2.97 mg/ml) or TDA (2.42 mg/ml) were individually dissolved in 

ethanol assisted with ultrasound. Then mix tannic acid/CuSO4/ H2O2 solutions with 

the alkylamine/ethanol solution at room temperature, using CuSO4/H2O2 to accelerate 

the oxidization of catechol groups. Subsequently, Tris and HCl were applied to adjust 

the solution pH to 8.5 to promote the Michael addition/Schiff base reactions. Finally, 

the cotton fabrics were dipped into the solution for 60 min at ambient temperature. 

After dipping the cotton fabrics were washed with water and ethanol and then dried at 

60 ℃ to yield the products TA-ODA, TA-HDA or TA-TDA cotton fabrics. (Figure 

3-2) 
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Figure 3-1. Schematic of two stage fabrication process of POSS-CT. 

 

 

 

 

 

Figure 3-2. Schematic of the adopted reactions in this work. The two step reactions 

were performed in the same reactor to establish one-pot modification 
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3.5. Characterization and instrumentation 

 

3.5.1  Fourier Transform Infrared Spectroscopy (FTIR) 

The functional groups of cotton fabric, tannic acid-modifed cotton fabric and 

POSS-modified cotton fabric were measured for 4 times by (Perkin Elmer, Waltham, 

MA, USA) from wavenumber 4000 to 450 cm
-1

. Before measurement, the samples 

were dried in 40℃ vacuum oven overnight.Then the samples were mixed with 

potassium bromide (KBr) for measurement. 

 

3.5.2   Nuclear Magnetic Resonance (NMR) 

The 
1
H NMR spectra was tested by AVIII-500 (Bruker, Billerica, MA, USA). 

Tannic acid was dissolved in DMSO-d6 and ODA, HDA, TDA, POSS, MPTES were 

dissolved in CDCl3. The sample preparation of TA-ODA, TA-HDA and TA-TDA were 

prepared by immersing them individually into the DMSO-d6 and POSS-CT was 

immersed in CDCl3 then do the ultrasonication for 30 minutes to dissolve the 

substance into d-solvent. 

 

3.5.3  X-ray Photoelectron Spectroscopy (XPS) 

The X-ray photoelectron spectroscopy (XPS) analysis of samples were measured 

by X-ray Photoelectron Spectroscopy (ThermoFisher Scientific, Waltham, MA, ISA) 

with Argon to clean up the surface for 5 s before analysis. 

 

 

3.5.4  Field-emission Scanning Electron Microscope (FE-SEM) 

The FE-SEM images were obtained using Nova NanoSEM 230 (ThermoFisher 

Scientific, Waltham, MA, USA) The samples were dried at 40℃ in vacuum overnight 

before FE-SEM measurement. 
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3.5.5  Static Contact angle measurement 

The static contact angles of samples were measured by Contact Angle System 

(FTA125). 5 μL of water or diiodomethane droplet was dipped onto the sample 

surface for contact angle measurement. 

 

 

3.5.6  Ultraviolet-visible spectroscopy (UV-vis) 

The UV-vis spectra was measured by UV/VIS Spectrophotometer Cary 300 (Varian, 

Midland, Canada) from wavelength 800 nm to 200 nm. The floating hexane were 

mixed well then do the UV-vis measurement to evaluate the content of hexane.  

 

 

3.5.7  Absorption capacity 

The absorption capacity was evaluated by measuring the weight of absorbed liquid 

divided by the weight of fabric. The equation was shown in the following 

 

𝐀𝐛𝐬𝐨𝐫𝐩𝐭𝐢𝐨𝐧 𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲 

 

=
𝑾𝒆𝒊𝒈𝒉𝒕 𝒈𝒂𝒊𝒏 𝒐𝒇 𝒂𝒃𝒔𝒐𝒓𝒃𝒆𝒅 𝒇𝒂𝒃𝒓𝒊𝒄 − 𝑾𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 𝒇𝒂𝒃𝒓𝒊𝒄

𝑾𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 
 

𝒇𝒂𝒃𝒓𝒊𝒄

 

3.5.8  Oil absorption capacity 

The absorption test is shown in Figure 3-3 (a) Test I with fabric is placed 

horizontally to hexane layer floating on 5 cm water layer for 30 s. (b) Test II for the 

cotton fabric composing of step I with fabric immersed horizontally into 5 cm water 

for 30 s then the fabric is immersed horizontally into another 5 cm hexane layer for 

another 30 s. 
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(a) 

 

 

 

 

 

 

 

 

 

 

(b) 

 

Figure 3-3. The absorption test (a) Test I (b) Test II 
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Chapter 4 

Result and Discussion 
4.1.  POSS-modified cotton fabric 

 

4.1.1  The functional groups of cotton fabric, SH-CT and POSS-CT 

Figure 4-1 shows the FTIR spectra of the cotton fabric samples. The broad FTIR 

peaks of pristine cotton fabric around 3450 cm
-1

, and the peaks at 2902 and 1704 cm
-1

 

correspond to -OH stretching, CH2 stretching [59,69], and C=O stretching vibration 

[27], respectively. After modification, the peak of –SH group for SH-CT was not 

significant owing to the limited content of MPTES [146, 164]. After modification of 

POSS, the peak at 1111 cm
-1

 and 790 cm
-1

 were reinforced because of the stretching 

vibration of Si-O linkage [146, 165] and stretching vibration of Si-C [20, 165], 

attributed to the presence of POSS. 

 

 

Figure 4-1. The FTIR spectra of cotton fabric, SH-CT and POSS-CT 
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4.1.2  The structure of POSS, MPTES and POSS-CT 

 

Figure 4-2 shows the 
1
H NMR spectra of the POSS, MPTES and POSS-CT. The 

signals of 5.87-6.10 ppm is assigned to the vinyl group of POSS [166, 167]. The 

signals at 1.26 and 1.14 ppm are contributed by the thiol group and -CH2 of MPTES 

[168]. After the POSS is anchored on the MPTES, the signals for vinyl groups of 

POSS is observed at 8.87-6.10 ppm. Furthermore, the new signals appeared at 2.0-2.3 

ppm ascribing to the occurrence of the thiol-ene click reaction [147]. 

 

 

Figure 4-2. The 
1
H NMR spectra of POSS, MPTES and POSS-CT 
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4.1.3 The binding energy of cotton fabric, SH-CT and POSS-CT 

 

Figure 4-3a shows the XPS spectra of the cotton fabrics samples. With MPTES 

anchored on the cotton surface, the peaks of S2s, S2p, Si2s and Si2p are detected in the 

spectra for SH-CT. After SH-CT is further incorporated with POSS, the intensities of 

Si2s and Si2p are reinforced which proves the cotton fabric is successfully modified. 

 

As shown in Fig. 4-3b, the peak for C-Si bond is ascribed to the linkage of POSS 

[169]. The peak of C-O/C-S and C=O are detected at 286.4 eV and 288 eV, 

respectively. The peak at 288.6 eV of C=C is attributed to the vinyl structure of POSS 

that represent POSS is significantly anchored on the fabric [20]. Table 4 lists the areal 

fractions of C1s peaks. 
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Figure 4-3. The XPS spectra of POSS-CT. (a) wide scanning; (b) binding energy 

for C1s 
  

(a) 

(b) 
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4.1.4  The morphology of surface for cotton fabric, SH-CT and POSS-CT 

 

Figure 4-4 shows the SEM images of cotton fabric, SH-CT and POSS-CT. Small 

particles are deposited on the fabric surface after being coordinated with MPTES (Fig. 

4-4b). After MPTES modification, 1.06% w/w silicon and 1.53% w/w sulfur are 

detected on the fabric, corresponding to the thiol-containing silane (Fig. 4-4e). 

 

Rough surfaces were noted for parts of the POSS-CT surface (Fig. 4-4c). The 

EDS spectra of POSS-CT shows enriched silicon to 6.39% w/w owing to presence of 

POSS (Fig. 4-4f). 

 

 

 

Figure 4-4. FE-SEM images (a-c) and EDS spectra (d-f) of cotton fabrics. (a, d) 

cotton fabric; (b, e) SH-CT; (c, f) POSS-CT 
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4.1.5 Contact angle measurements 

Table 4 shows the contact angles for water and diiodomethane droplets on the 

POSS-CT fabric surface, for the former being 142.82±1.17° and the latter, 0°. 

Restated, the POSS-CT is highly hydrophobic in nature and has high affinity to alkyl 

groups. The components of surface energy of a smooth surface could be described by 

the equation (4). The terms with superscripts p denote that they are polar components, 

and those with d denote that they are dispersive components of the surface energy. 

Based on eq. (4), the polar component and dispersive component of surface energy 

were estimated as 13.1 mJ/m
2
 and 50.8 mJ/m

2
, giving total surface energy of 63.9 

mJ/m
2
 as listed in Table 4. Based on estimated polar component and dispersive 

component and eq. (4), the wetting envelope can be depicted (Fig. 4-5). The liquid 

with components locating outside the envelope cannot wet the solid surface with the 

wetting envelope. Based on Fig. 4-5, the POSS-CT can not be wet by water droplet 

but can be wet by common oil products. Conversely, the PTFE cannot be wet by 

either water or oil droplet. 

 
Figure 4-5. The wetting envelope of POSS-CT, PTFE, and those for water, gasoline, 

diesel, and kerosene  
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4.1.6  Water contact angle for POSS-CT 

 

Figure 4-6 shows the effects of reaction parameters on the water contact angle on 

the POSS-CT surface. For POSS reacted with SH-CT for 1 hr, the water contact angle 

would increase with concentration of POSS, maximizes to 142.82±1.17° at 1.6% w/w, 

then slowly declines when POSS concentration is increased further. The impact of 

POSS concentration on water contact angle is mild. 

 

With 1.6% w/w POSS concentration, the reaction time increases the water contact 

angle, reaching 143.28±0.40° with reaction time of 70 min. It is noticeable that the 

increase in water contact angle for reaction time is increased from 60 to 70 min is not 

significant. 

 

As Fig.4-6 shows, the water contact angle would decrease when the contact time is 

increased, reducing to 138.20±0.83° after nine min contact time. This observation 

suggests that certain deterioration of surface hydrophobicity occurs on POSS-CT 

surface, which may be attributable to fiber swelling for absorbing certain quantity of 

water, relaxation of polymer chains to water invasion, or POSS detachment from the 

surface. Nonetheless, the POSS-CT remains highly hydrophobic over the testing 

period for oil/water separation.  
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  (a) 

 
  (b) 

 
   (c) 

 

Figure 4-6. Effects of reaction parameters on water contact angles for POSS-CT. (a) 

Effects of POSS concentration on water contact angles for 1 hr reaction time; (b) 

effects of reaction time to water contact angle with 1.6% w/w POSS concentration; (c) 

effects of contact time on water contact angle. POSS-CT modified by 1.6% w/w 

POSS for 1 hr. 
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4.1.7. Oil absorption capacity 

 

 

The results of test I shown in Table 4 revealed that POSS-CT adsorbed 0.17 g/g 

water and 0.96 g/g hexane when immersed into the water+oil layers. The POSS-CT 

can adsorb more oil than water when contacting these two fluids simultaneously. This 

observation correlates with the hydrophobic characteristics of the POSS-CT surfaces 

noted in Sec. 4.1.5. 

 

The results of test II are also listed in Table 4. When the POSS-CT contacts water 

layer first, it can absorb 0.86 g/g water, much higher that for test I. When the 

water-absorbed POSS-CT contacts the hexane layer, it can absorb 1.12 g/g hexane, 

about 16.7% higher than that in Test I. The POSS-CT can intake water by its main 

pores while possesses remaining pore space to accommodate sufficiently high 

capacity for hexane. The POSS-CT is an efficient absorbent for oil/water separation 

from oil-water mix. 
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Table 4. Measurement results and calculations for POSS-CT fabrics 

 

 

  

XPS C1s spectra 

Bond C-Si C-C C-O/C-S C=O C=C 

Binding energy (eV) 283.8 284.8 286.4 288.0 288.6 

Area 338.3 351.6 479.0 222.1 177.2 

Areal fraction (%) 21.6 22.4 30.5 14.2 11.3 

Contact angle measurement 

 Image Contact angle 

Water 

 

142.82±1.17° 

Diiodomethane 

 

0° 

Estimation of surface energy 

Polar component Dispersive component Surface energy 

13.13±0.13 mJ/m
2
 50.8±0.02 mJ/m

2
 63.93±0.13 mJ/m

2
 

The absorption capacity of fabric for water and hexane in Test I and Test II. 

Test I 

Absorption capacity (g water/g cotton) Absorption capacity (g hexane/g cotton) 

0.17±0.02 0.96±0.03 

Test II 

Absorption capacity (g water/g cotton) Absorption capacity (g hexane/g cotton) 

0.86±0.12 1.12±0.04 
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4.2 Tannic acid-modified cotton fabrics 

 

4.2.1 The functional groups of cotton fabric and tannic acid-modified 

cotton fabrics  

 

After modification, the intensities of 2967 and 2902 cm
-1

 peaks were increased 

contributed by the long alkyl chains of ODA, HDA and TDA [28]. The broadened 

peaks of -OH stretching (around 3350 cm
-1

) and C=O stretching vibration (1704 cm
-1

) 

are ascribed to the catechol structures and quinone groups of tannic acid [173]. The 

intensity of peak intensity at 1505 cm
-1

 is increased by the added of -CN for the 

modified cotton fabrics [28]. The formation of -C=N leads to 1637 cm
-1

 in the result 

of Schiff base reaction [69]. 

 

 
 

Figure 4-7. The FTIR spectra of cotton fabric, TA-TDA, TA-HDA, TA-ODA 
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4.2.2  The structure of tannic acid, long chain alkyl amine and tannic 

acid-modified cotton fabrics 

 

Figure 4-9 shows the 
1
H NMR spectra of the tannic acid-alkylamine coatings 

samples. The signal at 1.22 ppm corresponds to the long chain alkyl groups of TDA, 

HDA and ODA  [174,175]. The signals at 9.5-9 ppm and 7.5-6.7 ppm are ascribed to 

the phenolic hydroxyls and aromatic proton of tannic acid, respectively [176,177]. 

After reaction between tannic acid and alkylamines, new signals appear at 1.43 and 

3.24 ppm, which represent the consequence of Schiff base reaction [30, 174] and 

Michael addition reaction [176, 178] respectively. The peak at 1.22 ppm remains 

unchanged after reaction, representing the tannic acid-based coating that consist of the 

long chain alkyl structure. The 
1
H NMR spectra of the modified cotton fabric support 

the successful modification of cotton surface with tannic acid-alkylamine coatings. 



doi:10.6342/NTU202101615

39 

 

 
 

Figure 4-8. The 
1
H NMR spectra of TDA, HDA, ODA and tannic acid 
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Figure 4-9. The 
1
H NMR spectra of TA-TDA, TA-HDA and TA-ODA 
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4.2.3  The binding energy of cotton fabric, TA-TDA, TA-HDA and TA-ODA 

 

Figure 4-10 shows the XPS spectra of the cotton fabrics samples with the areal 

fractions of C1s peaks listed in Table 5. The pristine cotton surface has C1s peaks at 

284.8 eV, 286.3 eV, and 288.3 eV, corresponding to C-C, C-O and C=O bonds, 

respectively, with the former two being the major bonds for C atoms [22, 23]. With 

TA-TDA, TA-HDA and TA-ODA coatings, the surface of cotton surface has excess 

C-O and C=O bonds, characteristics of TA [173, 179]. The enriched -C=N and C-N 

bonds signal the presence of amide groups in the modified surfaces. The areal ratio 

for C-C is increasing with increased chain length of the alkyl groups, suggesting that 

the increased contribution of Michael addition reaction and the Schiff base reactions 

with longer alkylamines with TA (Table 5). 
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Figure 4-10. The XPS spectra of C1s for cotton fabric (a), TA-TDA (b), TA-HDA (c) 

and TA-ODA (d) 

 

Table 5. The binding energy value of C1s for pristine and modified cotton fabrics 
 C-C C-O C=O 

Pristine 

cotton 

Binding energy 

(eV) 
284.8 286.3 288.3 

area 894.0 1344.5 223.8 

Area fraction (%) 36.3 54.6 9.1 

 C-C C-O/C-N C=O/C=N O-C=O 

TA-ODA 

fabric 

Binding energy 

(eV) 
284.8 286.4 288.6 290.5 

area 104.6 262.7.5 844.1 232.2 

Area fraction (%) 9.5 17.7 57.1 15.7 

 C-C C-O/C-N C=O/C=N O-C=O 

TA-HDA 

fabric 

Binding energy 

(eV) 
284.8 286.4 288.6 290.5 

area 127.6 189.4 971.3 217.5 

Area fraction (%) 8.5 12.6 64.5 14.4 

 C-C C-O/C-N C=O/C=N O-C=O 

TA-TDA 

fabric 

Binding energy 

(eV) 
284.8 286.4 288.6 290.5 

area 104.7 216.5 991.1 128.2 

Area fraction (%) 7.3 15.0 68.8 8.9 
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4.2.4  The morphology of surface for fabrics 

 

The surfaces of pristine cotton fabric appear smooth (Figure 4-11a), while the 

surface possessed mainly C and O atoms as characterized by EDS (Figure 4-11e). The 

surfaces of TA-TDA, TA-HDA and TA-ODA modified cotton fabrics with catalysts 5 

mM CuSO4 and 19.6 mM H2O2 and reaction time 60 min are roughened (Figures 

4-11b-d). As Figures 4-11f-h show, the cotton fabrics have incorporated N atoms, 

suggesting the appearance of amide groups on the modified surface. 
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Figure 4-11. FE-SEM images (a-d) and EDS spectra (e-h) of cotton fabrics. (a,e) 

Pristine; (b,f) TA-TDA; (c,g) TA-HDA; (d,h) TA-ODA. 
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4.2.5  Contact angle measurements 

 

Table 6 shows the static contact angles for droplets of water or diiodomethane on 

the cotton fabric surfaces with catalysts 5 mM CuSO4 and 19.6 mM H2O2 and reaction 

time 60 min. The contact angles of water droplets on pristine cotton fabrics is close to 

zero, correlating with the hydrophilic surface composed of cellulose. After 

modification, the contact angles for water droplets on the modified surface are 133.3
o
, 

136.0
o
 and 142.9

o
 for TA-TDA, TA-HDA, and TA-ODA cotton fabrics, respectively. 

Restated, all modified surfaces are hydrophobic that reject water. The corresponding 

contact angles for diiodomethane droplets are 56.0
o
, 58.8

o
 and 59.3

o
, respectively. 

Restated, these surfaces are affine to oil compounds. Overall, the modified surfaces 

have contact angles of water larger than PFTE, and lower contact angles of 

diiodomethane droplet than PTFE (Table 6). 

 

Table 6 also lists the calculated surface energies for the modified cotton fabrics. 

The surface energies of the modified surfaces have very low polar component (4.2-6.2 

mJ/m
2
) and intermediate dispersive component (29.0-31.2 mJ/m

2
). Restated, these 

surfaces should have low affinity to water and intermediate attraction to hydrophobic 

compound. Compared with PTFE, the current modified surfaces have higher polar 

components and dispersive components. 

 
The three modified surfaces are grafting with TA and long chain alkylamines, 

with TA-TDA, TA-HDA and TA-ODA differing with two methyl groups each (14, 16, 

and 18, respectively). The increase in every two methyl groups, though with limited 

magnitudes, is noted to increase the polar component but decrease the dispersive 

component of surface energies. This observation contradicts to the interpretations that 

longer alkyl chain length would lead to higher dispersive component and lower polar 

component. Such an observation may be owing to the possible packing of alkyl 

groups in the grafted layer so their volume is reduced, yielding reduced dispersive 

component. The more aligned alkyl top layer can yield more aligned bottom TA 

molecules on surface, which would possibly lead to more polar interactions such as 

hydrogen bonding between TA molecules, so generating increased polar component. 

Regardless of the interpretation, the increase or decrease in components are limited. 
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Based on figure 4-12, the modified cotton fabrics can be wet by common oil 

compounds but not by water. Therefore, the modified surfaces have been properly 

designed and synthesized so they can be used as adsorbents for spilled oil from 

water-oil mix. 

 

 
 

Figure 4-12. The wetting envelope of TA-ODA, TA-HDA and TA-TDA cotton fabrics, 

PTFE, and those for water, gasoline, diesel, and kerosene 
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Table 6. The contact angles of modified cotton fabrics with water and diiodomethane droplets. 

 
Water 

(degree) 
Image 

Diiodomethane 

(degree) 
Image 

Dispersive component 

(mJ/m
2
) 

Polar component 

(mJ/m
2
) 

TA-TDA 133.27±1.15 

 

56.01±5.11 

 

31.2 4.2 

TA-HDA 135.99±1.15 

 

58.75±4.13 

 

29.3 4.4 

TA-ODA 142.87±0.53 

 

59.30±4.10 

 

29.0 6.2 

PTFE
*
 108.0±1.5 NA 73.0±3.2 NA 21.2 0.27 

* Data from Milne and Ritchie (2007) and Al-Maliki (2018). 
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4.2.6  Anti-wetting ability 

 

Figure 4-13 demonstrates the anti-wetting ability of TA-ODA, TA-HDA and 

TA-TDA cotton fabrics farbicated with 60 minutes of reaction time. TA-ODA and 

TA-HDA remain high contact angle after ten minutes which show excellent water 

resistance. The great water repellency is attributed to hydorphobicity property of long 

chain hydrocarbon compound grafted on the surface . Compared to TA-HDA, 

TA-TDA shows poor water resistance because of the shorter chain length of 

alkyamine. 

 

 

 

Figure 4-13. The wetting resistance of TA-ODA, TA-HDA and TA-TDA 
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4.2.7  Effects of reaction parameters for alkylamine grafting 

 

 

To observe whether the adopted catalysts are needful for reaching satisfactory 

modification of cotton fabrics, Figure 4-14 shows the reaction parameters on the 

measured contact angle using water droplets. The reaction time of 10-70 min for 

TA-TDA, TA-HDA, TA-ODA cotton fabrics at 5 mM CuSO4, 19.6 mM H2O2 at pH 

8.5 has mild effects on contact angles of water droplets on these modified cotton 

fabrics (Fig. 4-14a). For instance, the contact angle of water droplets on TA-ODA, 

TA-HDA and TA-TDA cotton fabrics are 139.67±1.07°, 133.05±1.54° and 

130.77±1.65° for 10 min reaction, and are increased to 142.87±0.53°, 135.99±1.15° 

and 133.27±1.15° respectively at 60 min reaction. 

Figure 4-14b shows the reaction of 10-70 min for TA-ODA, TA-HDA and 

TA-TDA with no CuSO4/H2O2 at pH 8.5. The contact angle of water droplet on  

TA-ODA, TA-HDA, TA-TDA are 134.19°±1.12°, 132.06°±1.02° and 128.74°±1.25° 

for 10 min reaction. As the reaction time is increased to 60 min, the contact angle of 

TA-ODA, TA-HDA and TA-TDA are enhanced to 135.29°±1.49°, 133.65°±0.88° and 

129.55°±1.13°. The contact angle of TA-HDA increases more obviously during 0-30 

min reaction time. 

Figure 4-14c shows the effects of H2O2 concentration with 0 mM CuSO4 at pH 8.5 

for TA-ODA cotton fabrics. As reaction time exceeds 30 min, the contact angles of 

water droplet on TA-ODA cotton fabric surface reaches a plateau, whole value is 

increasing with concentration of H2O2. 

Figure- 4-14d shows the effects of CuSO4 concentration with 19.6 mM H2O2 at pH 

8.5 for TA-ODA cotton fabrics. The contact angle of water droplets on TA-ODA 

cotton fabric surface increases with increasing reaction time, with the increasing trend 

more obvious during 0-30 min reaction time for modification without CuSO4 than 

those with 5 or 10 mM CuSO4. 

Figure 4-14e shows the effects of pH values with 5 mM CuSO4 and 19.6 mM H2O2 

for TA-ODA cotton fabrics. The contact angle of water droplets on TA-ODA cotton 

fabric surface increases with increasing reaction time and reach plateau at > 30 min 

reaction time. At the same reaction time, the contact angle of water droplet on 
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TA-ODA cotton fabric surface is increasing as pH is raised from 5.5, maximizing at 

pH 8.5, and then declines as pH is increased further to 9.5. 
The above tests reveal that the currently adopted recipe with catalyst 5 mM 

CuSO4/19.6 mM H2O2 is appropriate for modification of the TA-ODA cotton fabrics. 

The reaction time can be reduced to 10 min if the pH value can be maintained at 8.5 

to enhance formation rate of quinones groups for crosslinking reaction, which is 

adjusted in this work by Tris base and HCl. Therefore, the tests with no CuSO4 or 

H2O2 addition, or using inexpensive base for pH adjustment can indicate the 

potentials to reduction of chemical costs; conversely, the reaction time acquired may 

increase to reach satisfactorily high contact angles that would increase the operation 

cost. Further studies are needed to find the optimal modification coditions with 

satisfactory performance for oil/water separation at minimum total costs. 
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Figure 4-14. Effects of reaction parameters on contact angles water droplets on the 

modified cotton fabrics. (a) 5 mM CuSO4, 19.6 mM H2O2, pH 8.5; (b) no CuSO4, no 

H2O2, pH 8.5 (c) TA-ODA, no CuSO4, pH 8.5; (d) TA-ODA, 19.6mM H2O2, pH 8.5; 

(e) TA-ODA, 5 mM CuSO4, 19.6 mM H2O2 
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4.2.8  Oil absorption capacity 

 

As Lin and Lee [15] commented, the testing protocols commonly applied in 

cotton absorbent literature for oil absorption capability from water-oil mix need 

revision. We adopted two different tests herein to simulate the scenario in field 

applications. When an oil compound is poured into a water pool, it can float [8] or 

sink [170] depending on its relative density to water. The pool tests applied in 

literature with passing a water layer with one or two immiscible oil layers to over the 

cotton fabric should be able to reveal the affinity of the cotton fabric to oil than water 

[19]. However, since the two liquids are immiscible the first liquid, water or oil, that 

contacts the fabric tends to block the main internal pores of fabrics to hinder 

subsequent flow of another immiscible liquid, the validity of the pool test is 

questioned [15]. 

 

The test I results are shown in Table 7. The pristine cotton fabric can adsorb 0.87 

g/g water and 0.35 g/g hexane when immersed into water+oil layers. Restated, the 

hydrophilic cotton can adsorb finite quantity of oil when contacting water-oil layers, 

which should be accomplished by the entrance of main pores by oil regardless of the 

surface hydrophobicity. For the modified cotton fabrics, the quantities of water 

absorbed are decreased to around zero while those of hexane are increased to 

0.96-1.01 g/g. The hydrophobic surfaces of modified fabrics would have high affinity 

to oil and decline the intake of water to the fabrics. 

 

The test II results are also shown in Table 7. For TA-TDA, TA-HDA and TA-ODA 

cotton fabrics with 5mM/19.6mM of CuSO4/H2O2 for 60 min of reaction time, they 

can adsorb less water (1.15-1.80 g/g) and absorb more hexane (0.52-0.97 g/g) in the 

second stage of test compared to pristine cotton fabrics shown in Table 7. 

 

Table 8 shows the water and oil absorption capacity for modified fabrics with  

5mM/19.6mM of CuSO4/H2O2 for 10 min of reaction time. They are enable to absorb 
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water (1.16-1.90 g/g) and hexane (0.57-1.07 g/g) exhibiting great oil absorption as 

well as the modified fabrics with 60 min of reaction time. 

 

Table 9 shows the the water and oil absorption capacity for modified fabrics with 

no CuSO4/H2O2 for 10 min of reaction time. The modified fabrics are able to absorb 

(1.07-1.94 g/g) water and (0.44-0.1.04 g/g) hexane. Without adding CuSO4/H2O2 for 

fabrication, the modified fabrics shows great oil absorption capability as well as the 

modified fabric with CuSO4/H2O2 shown in Table 8. 
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Table 7. The absorption capacity of fabrics for water and hexane in Test I and Test II. 

Test I 

 
Absorption capacity 

(g water/g cotton) 

Absorption capacity 

(g hexane/g cotton) 

Cotton 0.87±0.27 0.35±0.26 

TA-TDA 0.17±0.15 0.96±0.14 

TA-HDA 0.18±0.15 1.00±0.10 

TA-ODA 0.14±0.12 1.01±0.08 

Test II 

 
Absorption capacity 

(g water/g cotton) 

Absorption capacity 

(g hexane/g cotton) 

Cotton 2.12±0.08 0.08±0.02 

TA-TDA 1.80±0.14 0.52±0.07 

TA-HDA 1.27±0.05 0.85±0.04 

TA-ODA 1.15±0.04 0.97±0.04 

 

 

Table 8. The absorption capacity of fabrics modified with 5mM/19.6mM of 

CuSO4/H2O2 in 10 min for water and hexane in Test II 
Test II 

 
Absorption capacity 

(g water/g cotton) 

Absorption capacity 

(g hexane/g cotton) 

TA-TDA 1.90±0.03 0.57±0.08 

TA-HDA 1.32±0.08 0.82±0.06 

TA-ODA 1.16±0.02 1.07±0.06 

 

 

Table 9. The absorption capacity of fabrics modified with no CuSO4/H2O2 in 10 min 

for water and hexane in Test II 
Test II 

 
Absorption capacity 

(g water/g cotton) 

Absorption capacity 

(g hexane/g cotton) 

TA-TDA 1.94±0.03 0.44±0.08 

TA-HDA 1.46±0.10 0.72±0.07 

TA-ODA 1.07±0.07 1.04±0.02 
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4.3 The comparison of reaction conditions and performance for TA-ODA and 

POSS-CT 

Based on the list in Table 1 and Table 3, we can realize that the cost of material for 

TA-ODA is 100 times much less than the compound for POSS-CT. Moreover, the 

industrial grade of tannic acid is much cheaper than the reagent grade used in 

experiment. It is cost-effective and shows great potential for practical application. 

Table 10 shows that the fabrication process of POSS-CT is complicated than TA-ODA 

used one step to carry out in 60 min. And it is energy-consuming to use UV 

equipment for synthesis. The halogenated solvent used for fabrication of POSS-CT is 

harmful to environment and human health. On the contrary, the solvent applied for 

TA-ODA is environmental-friendly for avoiding secondary pollution. For oil 

absorption capability, the performance of POSS-CT is similar with TA-ODA 

exhibiting outstanding oil absorption capability compared to the pristine cotton fabric. 

Consequently, the use of tannic acid-modified fabrics for oil absorption is more 

appropriate for large-scale production and environmental sustainability. 

 
Table 10. The comparison of reaction conditions and performance for TA-ODA and 

POSS-CT 

 TA-ODA POSS-CT 

Procedure One step Two step 

Reaction condition 
Room temperature 

pH 8.5 

Room temperature 

UV irradiation (360 nm) 

Reaction time 60 min 
1

st 
step: 2hr 

2
nd

 step: 60 min 

Solvent Water, Ethanol Ethanol, Dichloromethane 

Contact angle (°) 142.87±0.53 142.82±1.17 

Oil absorption capacity 
Test I : 1.01 

Test Ⅱ : 0.97 

Test I : 0.96 

Test Ⅱ : 1.12 
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Chapter 5 

Conclusion 
 

This study proposed a novel one step protocol to produce TA-TDA, TA-HDA 

and TA-ODA cotton fabrics by dip coating TA onto the surface together with the 

alkylamines onto the TA via Michael addition/Schiff base reactions. Moreover, the 

POSS-CT is introduced to do the comparative study which is fabricated by thiol-ene 

click reaction under the UV irradiation. The FTIR analysis, 
1
H NMR, and XPS 

spectra confirmed the proposed chemical structures for the surface coating. The tannic 

acid-modified cotton fabrics have hydrophobic surfaces with contact angles for water 

droplets on the modified surface as 133.3
o
, 136.0

o
 and 142.9

o
 for TA-TDA, TA-HDA, 

and TA-ODA cotton fabrics, respectively; and diiodomethane droplets on the 

modified surface being 56.0
o
, 58.8

o
 and 59.3

o
, respectively. The modified surfaces 

have low polar component (4.2-6.2 mJ/m
2
) and intermediate dispersive component 

(29.0-31.2 mJ/m
2
), generating a surface that has low affinity to water but high affinity 

to oil. The reaction parameters for Michael addition/Schiff base reactions including 

the reaction time, the concentrations of catalysts, and the solution pH values were 

studied on their effects for water contact angle to the modified surface. The two oil 

absorption tests revealed that the modified cotton fabrics can effectively absorb oil, 

with the adsorption capacity follows TA-ODA>TA-HDA>TA-TDA. Furthermore, the 

tannic acid-modified cotton fabric with no CuSO4/H2O2 and short reaction time 

(10min) for fabrication also shows great oil absorption. The early contact of water 

will reduce the oil capacity since part of main pores have been occupied by water. 

POSS-CT has superhydrophobic surface with contact angles for water droplets 

on the modified surface as 142.82° and diiodomethane droplets on the modified 

surface being 0°. The POSS-modified surfaces have polar component (13.3 mJ/m
2
) 

and dispersive component (50.8 mJ/m
2
) which is preferable to capture the oil 

compound instead of water. The reaction parameter for thiol-ene click reaction 

including the reaction time and concentration of POSS were adopt to realize the effect 

for hydrophobicity modification. The two oil absorption tests exhibited that the 

POSS-CT possessed great oil absorption capacity as well as tannic acid-modified 

cotton fabrics.  
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Tannic acid-modified cotton fabrics show great potential for practical application 

owing to their low cost (Table 11), simple fabrication process and sustainable solvent 

medium compared to POSS-modified cotton fabric. 

 

 

Table 11. The comparison of price for tannic acid, alkylamine, POSS and MPTES 

Data from Sigma-Aldrich, Emperor Chemical, ACROS Organics and TCI 

 

  

Substance Brand Price 

Tannic acid 

(ACS reagent grade) 
Sigma-Aldrich 0.643 ($/g) 

Tannic acid 

(Industrial grade, 67.5%) 

Emperor 

Chemical 
0.012 ($/g) 

Octadecylamine (90%) ACROS Organics 0.093 ($/g) 

Hexadecylamine (90%) ACROS Organics 0.100 ($/g) 

Tetradecylamine (98%) ACROS Organics 3.622 ($/g) 

Octavinyloctasilasesquioxane (POSS) TCI 51 ($/g) 

(3-Mercaptopropyl)triethoxysilane 

(MPTES) 
Sigma-Aldrich 4.86 ($/ml) 
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