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中文摘要

三維室內場景語意分割在電腦視覺中是一項十分熱門的研究項目，對於許多

應用程序而言，準確了解場景中每個點的類別非常重要，受益於深度學習的發

展，已經有許多基於體素和點的神經網絡被提出來解決語義分割問題。但是，大

多數都沒有充分考慮空間結構的資訊。

本論文的目的是希望能夠提出一個系統，利用帶有顏色資訊的場景點雲對整

個室內場景做語意分割。基於空間資料的稀疏性，我們設計了一個新穎的空間感

知稀疏卷積運算。我們使用物體存在的空間資訊編碼作為額外的特徵，並使用自

我注意力機制有效整合不同資訊；此外，我們引入了補全網路對分割網路的結果

做修正，使場景中每種物體可以得到更加合裡和完整的形狀。透過以上兩點方法，

我們建立準確的場景語意分割網路，獲得整個場景的屬性分類。

在實驗的部分，我們使用兩個公開的資料集進行定量和定性的分析，首先我

們對不同配置的模型進行比較，證明提出方法的有效性；其次將與其他最先進的

方法進行比較，證明提出方法的優越性；最後則是一個實際應用的分析，說明具

體的應用性。我們期望提出的三維場景語意分割系統能夠為實際應用提供準確而

迅速的結果。

關鍵字：場景語意分割、稀疏卷積網路、空間感知卷積、補全網路、擴增實境
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Abstract

3D semantic segmentation of indoor scenes is a popular research topic in the field of

computer vision. For many applications, it is very important to know exactly what cate-

gory each point in the scene belongs to. Benefiting from the development of deep learning,

many neural networks based on voxels and points have been proposed to solve semantic

segmentation problems. However, most of them don’t fully consider the information of

the spatial structure.

In this thesis, we propose a system that uses scene point clouds with color infor-

mation to semantically segment an entire indoor scene. Based on the sparsity of spatial

data, we design a novel spatial-aware sparse convolution operation. We encode the spa-

tial information of the object’s existence as an additional feature and use the self-attention

mechanism to effectively aggregate features. In addition, we introduce a completion net-

work to refine the results from the segmentation network, so that each object in the scene

can get a more reasonable and complete shape. Through the above two methods, we build

an accurate scene semantic segmentation network to obtain the semantic information of

iv
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the entire scene.

In the experimental part, we use two public datasets to perform quantitative and qual-

itative analysis. We compare our results with other state-of-the-art methods to prove the

superiority of the method. Also, we examine our models with different configurations to

assure the effectiveness of the proposed method. Finally, An real application is introduced

to demonstrate our work. We expect that the proposed 3D scene semantic segmentation

system can provide accurate and fast results for practical applications.

Keywords: Scene Semantic Segmentation, Sparse Convolutional Network, Spatial-aware

convolution, Completion Network, Augment Reality
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Chapter 1 Introduction

3D semantic segmentation of indoor scenes is a very popular field in robotics and

augmented reality in recent years. As shown in Fig 1.1, semantic segmentation is a spa-

tially dense prediction task that can basically split the scene and predict different semantic

labels of different parts. Many applications are built on the premise of this technology

in order to understand the environment. In this thesis, we propose a 3D indoor semantic

scene segmentation system given an RGB point cloud. With our proposed modules, the

network can better consider the spatial relationship of sparse point clouds and refine the

inaccurate semantic prediction of the scene to increase the prediction accuracy. We hope

to provide object label information for applications and bring users a better experience.

In this chapter, we will first introduce the motivation and background. Then, we will

explain the challenges followed by a brief survey of the related works. Finally, we will

summarize our contributions and describe the organization of the rest of the thesis.

Figure 1.1: Illustration of 3D semantic segmentation.

1
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1.1 Motivation

In 2020, due to the pandemic of the novel coronavirus, remote work has become a

fairly common business model. As a highly anticipated solution, augmented reality is

expected to effectively eliminate the physical distance between people, so that people in

different regions can work as if they are in the same place. In contrast to virtual reality

(VR), the biggest difficulty in augmented reality (AR) is to establish the relationship be-

tween virtual objects and real space. Unlike virtual objects of which we always know the

property, the real environment is unknown and we need to reconstruct the scene proper-

ties by ourself. Therefore, improving the understanding of the environment in augmented

reality applications becomes an urgent need.

For many years, researchers in robotics are developing a technology called simul-

taneous localization and mapping (SLAM), which is able to build an environment map

based on previously observed information, as shown in Fig 1.2. LIDAR scanners, depth

cameras, and inertial measurement unit (IMU) sensors have become more and more af-

fordable for consumers in recent years. SLAM also utilizes the additional information

to generate a better-reconstructed map. Most AR capable devices on the market provide

SDK such as Google ARCore, Apple ARKit, and Microsoft HoloLens, which help the

users to process the environmental information. With this technology, we can reconstruct

the geometry of a 3D indoor environment and RGB information of reconstructed points

or meshes.

A related technology called environment understanding is widely used in many sce-

narios, including robotics, autonomous navigation, remote sensing, and several other ap-

plications. Knowing the geometry of the scene can already suffice for some simple ap-

2
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Figure 1.2: The procedure of simultaneous localization and mapping.

plications, such as placing a virtual animal on a ground plane. However, for more ma-

ture applications, simply knowing the geometric shape and color information cannot ad-

equately perform more detailed control and operation. In those cases, we prefer to know

the semantic information of each reconstructed point so that we can utilize location and

classification simultaneously for further features. Therefore, a system that can provide

semantic information based on existing 3D scenes is necessary.

In recent years, due to the rapid development of deep learning and the improvement of

graphics processing unit (GPU) technology, Convolutional Neural Networks [1] (CNNs)

have been widely used to solve many tasks in computer vision, such as image classifica-

tion [2, 3, 4], object detection [5, 6, 7], and semantic segmentation [8, 9, 10]. Compared to

hand-crafted features [11, 12], CNNs can learn more appropriate feature extraction strate-

gies for different tasks to obtain representative features. Wewant to use its superior feature

extraction ability to solve 3D semantic segmentation.

1.2 Challenge

Although we can first use mature 2D convolution to segment observed images and

then back project to the 3D scene, this causes concomitant disadvantages of severe occlu-

sion and scale ambiguity of objects. Therefore, it is still a research target with considerable

3
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potential to directly perform convolution in 3D space. 3D scene information is difficult to

process than 2D images. In the most common point cloud data structure, points are spread

irregularly in the space and stored unorderly in the memory. How to process this data is

an open problem.

Many researchers are dedicated to solving semantic segmentation of 3D scenes di-

rectly on the point cloud. These Point-based methods [13, 14, 15, 16] need to define three

operations: feature transformation, feature aggregation, and point set sampling. Although

feature transformation is basically a fast multilayer perceptron (MLP) to transform the

features at each point, the other two operations have high computational complexity when

searching neighbors, like kNN or ball-querying operations. For each point, feature aggre-

gation first needs to iterate over all the other points to find its neighbors. The procedure

calculates the relative distances and decides which candidate points are the top-k neigh-

bors (kNN) or within a certain distance (ball-querying) for the given point. The procedures

basically have O(N2) time complexity. For point set sampling, most of the approaches

adopt Farthest Point Sampling (FPS) strategy to obtain the sub-point set, which also has

O(N2) time complexity. Due to the high computation complexity, these models are lim-

ited for large-scale point clouds. Moreover, many experimental studies have also shown

that the point-based network using MLP can not admit too deep layer structure, leading to

insufficient feature aggregations.

In comparison with point-based methods, voxel-based networks [17, 18], which first

transform unstructured points into a structured grid, can be efficiently designed and trained

for 3D semantic segmentation by extending regular 2D convolutions, whose capabili-

ties for coarse-grain feature learning and sampling have already been demonstrated. Al-

though 3D convolution has many advantages, these approaches rely on the representation

4



doi:10.6342/NTU202100720

of 3D voxels, which require a large array or table to store the information in every posi-

tion. What’s worse, such data structure also consumes a lot of computational resources

in the empty space during convolution. To mitigate the above problems, the pioneering

works [19, 20] started to implement the convolution operation based on the sparse tensor

representation. The sparse convolution only performs matrix multiplication of feature and

kernel weight on the non-empty space so that it can avoid redundant computation. In prac-

tice, they apply a hash table structure to store a sparse tensor and use the position as the

hash key, to save memory and efficiently query the features. Although these works exploit

the sparsity to accelerate computing, the spatial information brought by the sparsity of data

is often neglected. For example, the feature of all empty space in sparse convolution is

implicitly treated as zero regardless of the surrounded spatial structure.

After generating the prediction results, another important question is how to refine

them. Some methods [21, 22] are proposed to improve the segmentation shape. They are

built through statistical models rather than deep neural networks. On the other hand, there

is a task called completion used in a common application scenario of deep learning. Given

an incomplete scan of an object, such as a table with a missing corner, the completion

task hopes to output a more complete object shape, for example a table with legs. The

completion network is a generative model that predicts a confidence value for each space

to determine whether space is occupied by objects or not, thus allowing objects to grow

and eliminate noise. With this method, we can improve the quality of the scene.

This thesis mainly aims to solve the previously discussed lack of sparse convolution

and the refinement of existingmethods. Based on our proposed spatial-aware convolution,

we propose a novel 3D semantic segmentation system, called SegComple Net, to predict

accurate 3D semantic labels based on the RGB point cloud. Space-aware convolution uses

5
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a spatial coding module to enhance the features of structural information in space, which is

brought about by the sparsity of data. In addition, the aggregation module is used to better

aggregate enhanced functions. On the other hand, the prediction results from the segmen-

tation network are usually not absolutely correct. There may be many missing or noisy

segments. We consider using generative completion neural network to compensate for the

deficiencies of segmentation. After obtaining the prediction result through the proposed

segmentation net, we introduce a completion net to modify the shape of each category in

the scene to improve the prediction. In our knowledge, this is the first combination of

learnable segmentation and completion which achieves better semantic results on given

RGB point clouds. In order to verify our system, we conduct some experiments on two

indoor environment data sets ScanNet v2 and S3DIS. Experimental results show that our

system can better extract representative features and refine predictions, thereby improving

the performance of these semantic segmentation benchmarks.

1.3 Related Work

3D semantic segmentation can be viewed as an extension of 2D semantic segmenta-

tion. However, unlike from 2D images, the 3D point cloud data is sparse and unstructured.

How to efficiently store and perform an operation on this kind of data remains an open

problem. There are three main trends to tackle the 3D point cloud data, including point-

based methods, projection-based methods, and voxel-based methods.

Point-based Methods: For directly solving the 3D semantic segmentation from an

unordered point cloud, PointNet [13] is the first pioneering work that introduces the con-

cept of an asymmetric function which makes a model invariant to the input permutation

order. Practically, it extracts the global information by using a point-wise shared multi-

6
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layer perceptron (MLP) followed by the max-pooling operation. PointNet++ [14] extends

the PointNet and applies a hierarchical point set structure to learn regional features from

the local to global field gradually. Since it simply chooses the largest activation from

multiple candidate sub-regions, some information is not fully utilized. RandLA-Net [23]

encodes the relative point position and uses attentive pooling to let the model better cap-

ture the spatial relations. Motivated by the success of convolution on structured data,

Wu et al. and Hugues et al. came up with the idea of performing convolutions directly

on irregular points. These works learn the approximate weight function by interpolating

convolutional weights on the receptive area. PointConv [15] learns the weight functions

and density functions for aggregating the neighboring points. KPConv [16] defines a point

convolution that uses a set of kernel points and calculates the kernel response of each input

feature. Due to the essence of searching on irregular data, all the above methods have high

time complexity O(N2) for querying the neighboring points, thus limiting these methods

to small-scale data.

Projection-based Methods: In addition to 3D operations, several works also want

to utilize mature 2D convolutions to improve or directly solve the semantic segmenta-

tion problem. 2D-to-3D methods like 3DMV [24] and MVPNet [25] try to utilize a set

of 2D images at different viewpoints. They conduct 2D convolutions first to extract the

high-level image features and then project them to the corresponding voxels. For 3D-to-

2D methods, Tangent Convolution [26] projects local neighborhoods on a local tangent

plane, while TextureNet [27] projects on geodesic mesh surfaces. Compared to the above

methods using a pre-defined surface, FPConv [28] proposed a more simple and robust

projection strategy , which is learning projection weights along the local surface. How-

ever, due to the projection process, all of them will unavoidably lose the 3D geometry
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details. These methods also suffer from density variations and redundant representation

for overlapping parts. The recent Virtual MVFusion [29] sampled a lot of different virtual

views of the 3D mesh and only applied a 2D semantic segmentation model for training on

rendered images. All features predicted by 2D models are then projected and aggregated

on a 3D scene to get the final results. Although this method achieves good results, the

computation overhead of projection is very expensive and not fast enough.

Voxel-based Methods: The 3D convolution methods [18, 17] extended from 2D are

able to capture spatial features quite well while having a fast neighbor querying speed.

However, these kinds of methods using dense representation suffer from heavy computa-

tion cost and memory consumption. Since most space is empty and its associated feature

is represented as a zero vector, the computation operated on those positions is very re-

dundant. In practice, they always need to crop the subspace and use the sliding window

method to jointly process the whole scene due to memory limitation. Therefore, Some

subsequent improvement methods have been proposed. OctNet [30] tried to utilize the

octree structure to efficiently store the 3D space. The novel SparseConvNet [19] is an

outstanding work that uses a hash-table to directly store the points and defines a novel

sparse convolution that directly operates on the sparse point data to avoid redundant cal-

culation. MinkowskiNet [20] further proposed a generalized sparse convolution oper-

ation. With sparse convolution, the voxel-based method can handle larger scale points

than point-methods and fully utilize the advantages of 3D convolution. Many advanced

works based on sparse convolution achieve SOTA and became the current mainstream.

JSENet [31] took additional edge information into consideration and improved the se-

mantic segmented results. FusionNet [32] utilized voxel-based operation and point-based

operation simultaneously which are complementing each other. Our work is also built
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on this sparse convolution, but in comparison with our baseline version that only uses

the sparsity of space to save computation, we further use this property as a representative

feature to indicate the spatial structure.

1.4 Contribution

In this thesis, we propose a system for 3D semantic segmentation from a point cloud

with added RGB texture, which improves the performance of the previous works. In

summary, the major contributions of this thesis are as follows:

I. We propose a novel convolution called spatial-aware convolution, which explicitly

considers the spatial information on voxels. The proposed spatial encoding module

is first used to enhance neighboring visual features by encoding the occupancy infor-

mation in the space. Then, the self-attention aggregationmodule uses these enhanced

features to calculate the importance score of each grid and performs a weighted sum-

mation of all the neighboring features to obtain representative features.

II. We propose a novel refinement strategy based on the completion task. We first dis-

sociate each category in the entire scene according to the prediction result of our

semantic segmentation and then take as input each sample in the network separately.

In our proposed completion net, we will continue to expand and trim the point cloud

to generate more complete shapes of the objects.

III. Based on the proposed spatial-aware convolution and refinement strategy, we build

a complete 3D semantic segmentation network that can accurately predict semantic

labels. The experiments show that our network surpasses the previous methods on

S3DIS dataset. We also build a simple augmented reality application for a practical

9
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demonstration.

1.5 Thesis Organization

In the previous parts, we have presented the background of 3D semantic segmenta-

tion, the motivation of this research, and the challenging problems we would like to solve.

Additionally, we also have described the history of this literature and introduced related

works of this thesis followed by a summary of our contributions. The remaining chapters

of this thesis are listed below:

Chapter 2–Preliminaries: In this chapter, some background knowledge of the con-

volutional neural network (CNN) and the semantic segmentation framework will be in-

troduced. We will first talk about the basic concept of common CNN. Then, we will

introduce the advanced architectures like 3D CNN and sparse convolutional neural net-

work (SCNN)which are proposed to efficiently process high-dimensional data. Moreover,

we will overview some well known and outstanding semantic segmentation frameworks

which are applied in many real world applications.

Chapter 3 –Methodology: In this chapter, we will detail our proposed SegCom-

pleteNet. Starting from an overview of the model’s architecture, we first go into details

about the proposed spatial-aware convolution, which includes a spatial encoding mod-

ule and a self-attention aggregation module. Based on the operation, we construct two

networks, segmentation Net and completion Net, to predict and refine the 3D semantic

prediction of the scene. In the last part, the training procedure is introduced to give a full

description, including the loss function and other implementation details.

Chapter 4–Experimental results: In this chapter, we will first introduce two common

public datasets, ScanNet v2 [17] and S3DIS [33], which are used for evaluating our pro-
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posed method and the corresponding evaluation metrics for examining how accurate our

semantic segmentation results are. Then, a series of experimental results will be presented

to show the superiority of our methods compared to other state-of-the-art methods. Ad-

ditionally, we will also demonstrate a practical application to visualize the semantically

segmented scene through an augmented reality device.

Chapter 5–Conclusion. In this chapter, we will summarize our contributions and

experimental results of the proposed system. Moreover, we will discuss some further

issues of the proposed system and the potential future work to improve the performance.

11
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Chapter 2 Preliminaries

In this chapter, we will introduce the preliminary knowledge which is related to our

system of this thesis. We will first describe a common deep learning framework called

convolutional neural network (CNN), including its key concepts and notable architectures.

Then, a novel sparse convolutional neural network (SCNN) which is proposed to handle

the high-dimensional Euclidean-structure data while having acceptable computation speed

will be introduced. The backbone of our system is composed of a 3D SCNN.

2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) is a very well-known deep learning method

that was first proposed by LeNet [1] in 1998. Inspired by the way how an animal learns

to recognize a visual pattern, CNNs use a shared spatial kernel to detect any pattern inside

images, thus having a strong ability to extract features from images efficiently. Unlike

traditional approaches that use hand-craft features, like HOG [12], deep learning-based

CNNs are able to learn the feature extraction strategy by adjusting the parameters of the

kernels when provided with a large amount of training data. Fig 2.1 shows a simple CNN

architecture.

Generally speaking, a CNN is constructed by stacking several different layers that

provide different operation layers on top of each other to increase the expressive ability of

12
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Figure 2.1: LeNet-5 archictecture [1]. Given an input image, the model will use several
layers to extract the features and get the final predictions.

the networks. During the forward pass procedure, an input image will flow through these

layers and jointly process the transformed features, finally generating the model prediction

results. During the backward pass procedure, the learnable parameters are updated through

the backpropagation process. Starting from Alexnet [2], CNNs have demonstrated their

powerful capabilities in the field of computer vision and image processing. They achieved

very excellent results in many challenging tasks, such as image classification, object de-

tection, and semantic segmentation.

A Problem for deeper neural network is that more parameters needed to be calculated,

so it costs a lot of computation resources. Recently, Due to the high parallel computation

ability of the Computer Graphic Unit (GPU), we can move the calculation process into

the GPU and greatly reduce the computation time, making CNNs be more practical in the

real world. We will introduce some important components of CNNs in the following sub

chapters.

Many research focuses on improving the efficiency of extracting the features. For

example, VGG16 [3], ResNet-50 [34], Inception v3 [4], ResNext-50 [35] are all examples

of common structure to efficiently learn the image features.
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2.1.1 Basic Components

Convolutional Layer. Convolutional Layer acts as a key component in Convolu-

tional Neural Networks. It mainly performs the convolution operation over the input

feature and extracts the representative output features. Each layer consists of a set of

convolutional kernels which have their own learnable weights and optional bias. Users

need to predefine the shape and the number of convolutional kernels. A single convo-

lution proceeds as follows: given a pixel, we first find its neighborhood patch, then the

convolutional kernel will calculate the dot product between each point feature on the patch

and the spatial-corresponding weight, summing them up to serve as new features of the

pixel. We match one patch to apply one convolution at a time and then slide the kernel to

another patch until finish looping over the whole space to form a complete output feature

map. Since each layer has its own set of kernels, they can learn different feature extraction

strategies. Generally speaking, the convolutional layers which are positioned at an early

stage of the CNN tend to extract low-level features, such as edges, corners, and small

color blocks. The convolutional layers at a later stage of the CNN will extract high-level

features like human faces, street scenes, and other complicated semantic contexts. Fig 2.2

illustrates the procedure of a convolutional operation.

To denote the convolution in a formula, we first define xin
c ∈ RFin as an Fin-channel

input feature located at the D-dimensional coordinate c ∈ RD. We also define the kernel

weight as W ∈ RKD×Fin×Fout . A single convolution forward pass performed at position

c is formulated as follows:

xout
c =

∑
i∈V D(K)

Wi · xin
c+i (2.1)
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Figure 2.2: Illustration of a convolution operation. The convolutional kernel matches a
patch in order to to calculate the sum of the products of its features and weights and then
slide to the next patch until it has looped over the whole feature map.
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where V D(K) is the reception field of the convolutional kernel centered at the origin,

e.g., V 1(3) = {−1, 0, 1}, andWi represents the specific slice ofW at the first dimension

responsible to perform matrix multiplication of xin
c+i. In Sec. 2.3, we will further modify

the equation to match our case.

Activation Layer. The activation function is an approach to increase the learning

capability of the neural network. The original neural network only contains linear dot

product operations, which is not sufficient for many complicated tasks that need non-

linear mapping. Therefore, other approaches are adding an additional function that can

provide the nonlinear properties during the computation of the neural network. One of the

most widely used activation functions is Rectified Linear Unit (ReLU). Inspired by the

biological nervous system, the neural signal will propagate to the next neuron only when

it exceeds a certain threshold. The function of the ReLU is defined as follows:

f(x) = max(x, 0) (2.2)

The function activates the positive value but filters the negative values and sets them

to 0 in the feature map. It provides a simple but effective non-linear operation, which has

been proved to help CNNs to converge more quickly. Some deformation of ReLU was

proposed to improve the effect while maintaining its on-linear property, e.g. the Leaky

ReLU approach preserves the negative value, and the ReLU6 approach prunes all large

values. Fig 2.3 illustrates these different ReLU functions.

Downsampling Layer. In the architecture of the neural network, a downsampling

layer is used to reduce the size of feature maps while simultaneously keeping the important

features. Since the learnable kernels consume a lot of memory storage and computation

power, it is easily running out of those resources when the network depth increases. Vari-
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Figure 2.3: The functionality of ReLU, Leaky ReLU, and ReLU6. For the Leaky ReLU
approach, λ is a hyperparemter to control the slope. These functions increase nonlinearity
of CNNs.

Figure 2.4: Calculation of max-pooling.

ous pooling operations have been proposed to downsample the feature maps which reduce

the cost of computer resources. The most well-known one is max-pooling, which uses a

parameter-free kernel to match a patch and extracts the maximum value in the pooling

region as its output features. This design has no trainable parameters and only retains the

strongest features and ignores others. The calculation process of max-pooling is shown in

Fig 2.4.

In contrast to the parameter-free pooling operation, there’s also an alternative called

stride convolutionwhich has learnable parameters to perform downsampling. Considering

the standard convolution operation, both the convolution operation and the pooling opera-

tion have their own kernels to calculate the outputs and use a sliding strategy to loop over

the whole picture. The only difference compared to max-pooling is their sliding strides.
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Figure 2.5: Calculation of strided convolution. In this case, the kernel size and the stride
are 2.

Figure 2.6: Calculation of unpooling convolution.

In the pooling operation, the stride is the same as the kernel size, causing each patch to

be non-overlapping. Following this approach, we can modify the standard convolution

to create the stride convolution. Fig 2.5 shows an example of the convolution process.

Since this operation has trainable parameters, its learning ability is stronger compared to

the pooling approach.

Upsampling Layer. After downsampling the data and applying a series of oper-

ations, some kinds of CNNs require to reconstruct and upsample the data to restore its

original size. Therefore, we use an unpooling layer, which is the counter-part to the max-

pooling operation and enlarges the feature maps. Normally, the table records the locations

of the maximum value during the max-pooling operation, and then sets the values to those

positions accordingly. The process of unpooling layer is shown in Fig 2.6.

Identical to the previous section, the unpooling layer also has a learnable version

called transposed convolution layer, which is the reverse process of convolution. The

layer swaps the input size with the output size and then performs the same operations as

a standard convolution. In this way, the mapping relation between input map and output
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Figure 2.7: Illustration of transposed convolution operation. It is the inverse operation of
strided convolution shown in Fig 2.5. Notice that the mapping relation remains the same,
that is, only the regions with same colors affect each others.

map remains the same. A transposed convolution can learn the spatial information better

than a conventional normal unpooling operation. Fig 2.7 shows the idea.

Normalization Layer. During the training process, CNNs easily suffer from an in-

ternal covariate shift, a phenomenon that occurs when the gradients of features are ex-

pressed in different scales, making the model training very inefficient. Fig 2.8 demon-

strates this phenomenon. Therefore, many normalizing methods are applied to fit the

features into a fixed range which avoids internal covariate shift. Exemplary methods ex-

plained in Fig 2.9 are Batch Norm, Layer Norm, Instance Norm, and Group Norm. With

this technique, the training becomes more stable, allowing to set a higher learning rate to
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Figure 2.8: Internal covariate shift phenomenon. In left picture, without normalization,
the gradient of w1 is much smaller than w2, so the model needs more steps to converge;
in the right picture, with normalization, the scaling of w1 and w2 are balanced so that the
model converge quickly.

Figure 2.9: Four different normalization skills. N is the batch axis. H,W are the width
and height in the spatial axes. C is the channel axis. Teh data in blue cubes are normalized
by their mean and variance.

accelerate the training process and also achieve higher accuracy.

Loss Function Layer. Loss functions have a key role in modern deep learning meth-

ods. After we get the model output, we need to judge whether the result is good or not

and calculate the gradient in order to update the model parameters. Loss functions are

designed to evaluate the model output performance. An appropriate loss function should

reflect the goodness of the task efficiently while providing stable gradients. There are

several loss functions designed for tackling different problems, such as the mean-squared

error for solving the regression problem and the cross-entropy for solving the classification

problem which are defined in Equation 2.3 and Equation 2.4.

L(y, y∗) =
1

n

n∑
i=1

(yi − y∗i )
2 (2.3)
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where y, y∗ are the prediction and the ground-truth of the labels, and n is the number of

data.

L(p, q) = −
∑
x∈X

p(x) log q(x) (2.4)

where p, q are the prediction and the ground-truth probability of the class labels and X is

the set of the classes.

Gradient DescentOptimization Since CNNs have a large number of parameters, the

strategy to find optimal parameters is very important. After we calculate the loss, the next

step is to update the parameters of each layer via backpropagation according to the gradient

provided from the loss. The process is called gradient descent optimization. In this stage,

we use an optimizer to decide the learning rate of each step. A common optimizer is the

stochastic gradient descent (SGD) method, which replaces the actual gradient calculated

from the entire data set by an approximation from the sample batch data. Additionally,

the momentum is introduced to control the learning rate. We derive the SGD Momentum

as follows:

Vt = βVt−1 − ηgt−1 (2.5)

Wt = Wt−1 + Vt (2.6)

Where gt−1 is the gradient of last time step t−1, η is the learning rate hyperparameter

for a single step, Vt−1 is the velocity of last time step t − 1, and β is the momentum to

control the change of velocity.
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2.1.2 ResNet

In recent years, neural networks are using increasingly deeper network architectures

because deeper models have better feature expression capabilities. However, a large num-

ber of experiments have shown that blindly deepening the model will lead to the degrada-

tion problem, indicating that a deep model is not easy to optimize. To address the above

problem, K. He et al. [34] proposed the concept of a deep residual learning framework,

which uses a shortcut connection to provide plain identity mapping for different layers of

the network. He claims that it is easier to optimize the residual mapping than to optimize

the original unreferenced mapping. A building residual block is defined as follows:

y = F (x, {Wi}) + x (2.7)

where x and y are the input and output feature vectors of the layer. F (x, {Wi})

represents the residual mapping layer i to be learned. The output of layer F is then added

element-wise with a shortcut connection to obtain y. With this identical mapping, a deeper

model can exhibit a higher training error than its shallower counterpart and gain better

performance. Also, This operation is very effective without extra parameters and complex

computation. The basic residual block is composed of two convolution layers followed

by the ReLU, which is shown in Fig 2.10. With the help of a residual block, we can easily

build and optimize a deep neural network.

2.1.3 3D convolution

Inspired by the success of 2D convolution, many pioneering researches wanted to

solve the higher dimension problem using the same idea. They expanded the 2D image
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Figure 2.10: Basic residual block [34]

Figure 2.11: Illustration of 3D convolution operation

problem to the 3D space problem and tried to convert the 2D convolution neural network

into a 3D convolution neural network (3D CNN). The basic idea of the 3D CNN is similar

to the 2D CNN. It also defines learnable kernels, a convolution operation, and a sliding

strategy to compute the output, while operating in 3-dimensions. Fig 2.11 shows the basic

concept of a 3D convolution. We can easily confirm the similarity compared to the 2D

version. Many papers have shown that the 3D convolution is able to process 3D spatial

features for many 3D vision tasks very well, just like 2D vision tasks.

2.2 Semantic Segmentation Framework

Since the first time convolutional neural networks demonstrate their abilities, peo-

ple have been working on simple regression and classification tasks. For these tasks, the
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output of a neural network from an image only contains a single prediction result. How-

ever, these kinds of networks have been unsuccessful when applied to complicated tasks

that need highly linear mapping. In these kinds of visual tasks, the desired output should

include the localization along with classification, i.e., including a class label which is as-

signed to each pixel. Thus researchers came up with the idea of generating an output that

is the same size as the input. This task is called semantic segmentation. The first experi-

ment using deep learning on this task is proposed by [36], who trained a network for one

local patch to predict a fixed pixel output and used a sliding-window to iterate through

the whole image. However, the drawback of this approach is that the network has too

many overlapping patches, making the inference slow. Many amazing architectures are

proposed in recent years to improve the performance, including the FCN [8] and U-Net [9]

architectures.

2.2.1 FCN

In most of the previous methods, neural networks always use fully connected layers

for the last few layers, which throw away spatial coordinates and restrict the network to

only allow fixed dimensions. A fully convolutional neural network [8] is the first deep

learning architecture that takes an input of arbitrary size and produces a correspondingly-

sized output for semantic segmentation. The key idea of FCNs is to replace the pooling

layer with the upsampling layer to jointly increase the resolution from latent low-resolution

features. It enables pixels-to-pixels semantic segmentation and makes the input size more

flexible. The upsampling layer uses a new operation called deconvolution to achieve the

purpose, which behaves like the reversion of a normal stride convolution. Given a con-

voluted feature map, the corresponding deconvolution will generate the feature map with

the same size as the unconvoluted feature map. Since the deconvolution is also differen-
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Figure 2.12: Fully convolutional network architecture [8]

tiable, the whole process can be trained end-to-end. Referring to Fig 2.12, FCN includes

a skip architecture to combine layers of the feature hierarchy and refine the spatial preci-

sion of the output. In this way, the model can fuse coarse semantic information and fine

appearance one, and generate different stride predictions.

2.2.2 U-Net

Similar to FCN [8], U-Net [9] also adopts a fully convolutional neural network to

semantically segment the image. The whole architecture can be viewed as a combina-

tion of an encoder and a decoder. The contracting encoder path extracts high dimensional

visual features with a larger receptive field while the decoder path is responsible for de-

coding those features to generate the pixel-wise prediction output. In FCN, the decoder

uses a large stride deconvolution with a few feature channels to directly expand the reso-

lution to the original image, making it inaccurate for localization. In order to generate a

more precise localization, U-Net makes modifications on the expanding path that adopts

many small stride deconvolution layers with a large number of feature channels to gradu-

ally propagate context information to higher resolution layers. As a result, the expansive

decoder path is symmetric to the contracting encoder path, and yields a u-shaped archi-
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Figure 2.13: The architecture of U-Net [9]

tecture, as shown in Fig 2.13. On the other hand, a skip connection is used to combine

features from the contracting path with the upsampled output to generate more representa-

tive features. Due to its simplicity and effectiveness, this symmetric architecture with skip

connection is becoming a standard design pattern in the field of semantic segmentation.

2.3 Sparse Convolutional Neural Networks

Although 3D CNN has been successfully applied to many kinds of issues in the area

of computer vision such as 3D object recognition or 2D image recognition with time in-

formation, there are two critical problems restricting the 3D CNNs to only small scenes.

The first being the unaffordable memory consumption of storing data. Compared to 2D

approaches, the space to store data densely in an array grows by x3, making it easy to run

out of memory. Moreover, the dense representation is inefficient when used on sparse

data because most of the space is empty. The second problem is the high computational
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Figure 2.14: Illustration of a sparse convolution operation. In sparse data, some space is
empty, thus the computation on those grid squares can be avoided. The gray block in the
kernel represents the avoided computing weights.

cost of performing convolutions. A traditional convolution first defines the kernel with a

certain shape, i.e., 3 × 3 × 3 or 5 × 5 × 5, and then slides the kernel through the whole

space. Due to the nature of sparse data, some sub-space of the kernel inevitably covers

the empty space, causing a redundant computation.

Based on the observation of the above problems, sparse convolution proposed by [20]

use two new strategies. First, in order to reduce the memory consumption when extending

the low-dimension convolution to the high-dimension convolution, we adopt a sparse rep-

resentation instead of a dense representation which only stores non-empty space. Second,

to avoid executing convolutions on empty locations, we treat the kernel from another point

of view. The kernel of conventional convolutions can be viewed as a set of sub-kernels,

in which each sub-kernel only takes one volume and performs a feature transformation on

the specific position of the receptive field and then adds it to the output position. There-

fore, the core idea of sparse convolution is to build in-out kernel maps for each sub-kernel

in order to record which outputs are influenced by which inputs in the whole space. These

mappings only record the pairs in which both input space and output space are valid. In

this way, we can save a lot of computation steps. Fig 2.14 illustrates the concept of sparse

convolution using a 2D convolution operation from Fig 2.2 as example.
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Recalling the Eq. (2.1) we introduced in Sec. 2.1.1, since some of the coordinates of

xout
c and xin

c+i are empty in sparse data, we avoid processing on this position and rewrite

the equation. The convolution operation for sparse version is defined as follows,

xout
c =

∑
i∈V D(K)

∩
{i|c+i∈Cin}

Wix
in
c+i for c ∈ Cout (2.8)

where Cout and Cout are the non-empty input coordinate set and output coordinate set. In

following subchapters, we will derive the algorithm of sparse convolution step by step.

2.3.1 Sparse Tensor Representation

To build the whole sparse convolution pipeline, we first introduce the sparse repre-

sentation. Instead of storing the data densely, we only store the sparse data which has

N points as a D-dimensional coordinate set C and F in-dimensional associated features

X . Although we can set the dimension as any arbitrary number, here, we take a 3D point

cloud as an example in order to match our cases in practice with the data structure. A

complete sparse tensor of the 3D point cloud can be stored in two 2-dimensional arrays as

shown below:

Carr =


c1
...

cN

 =


x1 y1 z1

... ... ...

xN yN zN

 , Xarr =


f1
...

fN

 =


f 1
1 f 2

1 . . . fA
1

... ... . . . ...

f 1
N f 2

N . . . fA
N

 (2.9)

whereCarr andXarr are the hash tables that use the point coordinate as a hash key to store

the information of C and X , and cj = (xj, yj, zj) indicates the x, y, z coordinate of j-th

element of Carr and fj = (f 1
j , f

2
j , . . . , f

A
j ) is the j-th feature vector of Xarr. This kind of
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presentation only stores the non-empty points with their information, so it is very memory

efficient.

2.3.2 Spatial Hashing

Neighbor searching is a very important operation for both the aggregation stage and

down-sampling stage. Compared to point-based methods whose coordinates are unstruc-

tured and unaligned, voxel-based methods apply a quantization process to get structured

voxels, thus we can easily query the feature at a specific position using its coordinates.

In dense representation, the x, y, z coordinates represent just the index of the 3D array.

Since sparse data is stored continuously and unorderly, we convert the coordinates into

hash keys and build a hash map to store indices of sparse data. With the help of a hash

table, we can easily query and confirm whether the specific position is valid or not with

O(1) time complexity.

2.3.3 Output Coordinate Generation

The first step of the sparse convolution pipeline is to generate the output coordinate

setCout based on the input coordinate setCin. AsAlgorithm 1 shows, the algorithm takes

input coordinates, input coordinate stride (the minimum distance between coordinates),

and kernel stride as input parameters to generate the new coordinates. For each input

coordinate c, we compute the aligned coordinate based on the new output stride sout and

add it to the output coordinates. In the case of a normal convolution, the kernel stride is

equal to 1, therefore the spatial output size will remain unchanged, i.e.,Cout is the same as

Cin. Only for the stride convolution used in the down-sampling stage, the algorithm needs

to calculate the output coordinates. The number of coordinates will gradually decrease

with a larger coordinate stride (larger voxel). For transposed convolutions used in the
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Algorithm 1 Output Coordinate Generation
Require: input coordinate set Cin, input stride sin, kernel stride skernel
1: if sc > 1 then
2: sout ← sin × skernel
3: Cout = {}
4: for all c ∈ Cin do
5: c← ⌊c/sout⌋ × sout
6: if c /∈ Cout then
7: Add c to Cout

8: end if
9: end for
10: return Cout

11: else
12: return Cin

13: end if

up-sampling stage, the output coordinates that are already computed during the down-

sampling stage will be re-used to ensure the same order of the coordinates is maintained.

2.3.4 In-out Kernel Mapping

After getting Cout which has N out point coordinates, the next step is building the

kernel mapping to decide which inputs affect which outputs. LetKD be the kernel volume

of the kernel whose length isK in each dimension, themapping can be defined asKD pairs

of lists consisting of input indices and output indicesM = {(Ii,Oi)}i for each i ∈ V D(K)

as shown in Algorithm 2. V D(K) is the kernel offset list that records the offset of all sub

kernels in the receptive field of convolutional kernel centered at the origin. For each sub-

kernel, we iterate through all the input coordinates, and add the offset i to it, and then check

if the new coordinate also exists in the input coordinate. If it does, that means that both

input and output coordinates are valid, thus the sub-kernel should be applied to compute

the transformed features. Each Entry (Iji ,O
j
i ) inMi indicates that the feature of the point

located in the Iji coordinate should be multiplied by the sub-kernel with offset i centered

at the origin and then added to the feature of the point located at the Oj
i coordinate.
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Algorithm 2 Kernel Mapping
Require: input coordinate set Cin, output coordinate set Cout, kernel offset list V D(K)
1: M← empty
2: for all i ∈ V D(K) do
3: for all c ∈ Cout do
4: if c+ i ∈ Cin then
5: Append (c+ i, c) toMi // (I,O)
6: end if
7: end for
8: end for
9: return M

Algorithm 3 Spatially Sparse Convolution
Require: Kernel weights W , input features X in, output feature placeholder Xout, con-

volution mappingM, kernel offset list V D(K)
1: Xo ← 0
2: for all i ∈ V D(K) do
3: for all (Iji ,O

j
i ) ∈Mi do

4: Xout
Oj
i
← Xout

Oj
i
+Wi ∗X in

Iji
// add bias optionally

5: end for
6: end for

2.3.5 Sparse Convolution

With the kernel mapping, we can finally calculate the sparse convolution. With

W ∈ RKD×Fin×Fout representing the kernel weights, where the Fin defines the number

of input feature channel and Fout the number of output feature channel. The decomposed

Wi, where i ∈ V D(K) is the specific slice of W which is used to perform the feature

transformation at the i offset of the kernel reception field. We compute the the sparse con-

volution asAlgorithm 3, whereX in
Iji
andXout

Oj
i
represent the associated input feature of the

point located at Iji and output feature of the point located at O
j
i . With sparse convolution,

we can efficiently utilize the computation and storage resources.
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Chapter 3 Methodology

In this chapter, we propose a novel semantic segmentation network for 3D indoor

scenes called SegCompleteNet, which includes the proposed spatial-aware convolutional

layer and refinement module to help segment the scene. We will first give a brief overview

of our system. Next, we are going to elaborate on the proposed modules of our network

architecture. The last part describes the implementation details, revealing howwe actually

build the system and explaining our design choices.

3.1 Model Overview

The main idea behind our system architecture is to segment the scene first and then

refine the prediction results. Our SegCompleteNet consists of the corresponding two net-

works, Segmentation Net and Completion Net, to achieve these goals. Inspired by U-

Net [9] and ResNet [34], we designed our Segmentation Net as a 7-hierarchical encoder-

decoder architecture. We adopt a novel Spatial-Aware convolution layer to replace the

conventional convolution. The spatial-aware convolution layer is composed of a spatial

encoding module and self-attention aggregation module to better capture the 3D spatial re-

lationships between points. Given the input point cloud, the segmentation net will process

these point clouds and obtain an intermediate semantic result for each point. After that,

we dissociate the points of different prediction classes and then use the completion net to
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Figure 3.1: Overview of proposed SegCompleteNet.

further refine the points belonging to each class. As depicted in Fig 3.1, the completion

net is very similar to the segmentation net. It is responsible for adding or deleting points

belonging to a specific category. The final semantic segmentation result is generated by

combining the intermediate results and the refinement results.

3.2 Spatial-aware Convolution Layer

In a traditional 3D convolutional layer operation, the sparsity of the data is often not

considered. Feature transformation will be applied to the whole grid regardless of whether

the space is occupied or not. For an empty grid with no points, the most common practice

is to assume that the feature in the empty space is zero. Although the proposal of sparse

convolution [20, 19] obviously considers the sparsity of point clouds, it only uses this

property to reduce the redundancy of computation on the empty space, and still treats the

features of empty space as zero just like other methods.

We argue that sparsity itself will generate the structural information of the point cloud,
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Figure 3.2: Illustration of spatial-aware convolution.

which should be regarded as a kind of feature that helps themodel to improve performance.

Spatial-aware convolution aims to expand upon sparse convolution by explicitly encoding

spatial features. As shown in Fig 3.2, a spatial-aware convolutional layer is composed of

a spatial encoding module and a self-attention aggregation module. The former calculates

enhanced features with spatial information based on neighborhood relations, and the lat-

ter uses an additional weighting strategy to perform a feature aggregation process in the

convolution kernels.

In order to facilitate the following explanation, let us review the conventional sparse

convolution on 3D space. We consider the convolution with stride 1, whose input coordi-

nate and output coordinate are the same, for the explanation. Given an input point feature

xc ∈ RFin with Fin channels located in a 3-dimensional coordinate c ∈ C, where C is the

input coordinate set, the output point feature of sparse convolution is defined as follows:

yc =
∑

i∈V 3(K)
∩
{i|c+i∈C}

Wi · xc+i (3.1)

where V 3(K) is the list of offsets in a 3D cube with kernel size K centered at the origin

and i is the offset element of V 3(K). For example, V 3(3) contains 27 elements and the
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corresponding i is from (−1,−1,−1) to (1, 1, 1). Wi ∈ RFin×Fout is the slice of learnable

kernel weights of offset i, which is responsible for performing matrix multiplication at a

specific grid. The computation is only performed at a valid coordinate, thus accelerating

the computation speed.

3.2.1 Spatial Occupancy Encoding

Inspired by RandLA [23], our spatial encoding module aims at explicitly encoding

spatial information as an additional feature for sparse convolution. In point-based [23], it

uses 3d point coordinates and the relative distance between points as extra features. How-

ever, this strategy can not be applied to our voxel-based approach because of the fact that

structured voxel data has a fixed grid position and a fixed distance between neighboring

grids. In order to capture the spatial architecture of these structured data, we consider

using a one-hot vector called occupancy embedding to indicates whether the surrounding

grid is occupied or not.

We encode the occupancy embedding based on the in-out kernel map already built in

the conventional sparse convolution operation. The in-out kernel map is the core for sparse

convolution that records the coordinate relationship needed for Eq. (3.1). We denote

the in-out kernel map as pairs of lists of input coordinates and output coordinates, M =

{(Ii,Oi)}i for i ∈ V 3(K). Each corresponding entry in Ii and Oi indicates that the grid at

an input coordinate is the neighbor of the grid at an output coordinate with offset i. This

kernel mapping provides spatial evidence of the surrounding structure. In practice, the

kernel maps for all offsets are stored in a 1D list. We define i as the index of kernel map

list with specific topological order in V 3(K) to distinguish it from bold notation i offset.
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Figure 3.3: Occupancy Embedding. (a) In-out kernel map stored in memory. (b) A ex-
ample of simple point set in the space.

We calculate an associated occupancy code oc located at c as follows:

oc[i] =


1 if c ∈ Oi

0 otherwise

(3.2)

where oc[i] is the i-th element of oc, indicating whether i-th neighboring grid of c is oc-

cupied or not. It is set to 1 if the grid is valid, and 0 otherwise. Fig 3.3 illustrates the

generation of occupancy embedding. Notice that for dense data, it is unreasonable to en-

code spatial information as extra features. Since every space is occupied, the occupancy

embedding will always be the same.

To increase the expressiveness of this code, we further use an MLP layer followed

by ReLU, g(·), to transform the spatial features and increase the nonlinearity. The trans-

formed occupancy embedding õc is computed as:

õc = g(oc, θo) (3.3)
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where θo is the learnable weight of an MLP. The output dimensions are the same as the

visual features.

After obtaining the transformed occupancy embedding, the module is going to collect

neighboring visual features. The visual features of neighboring grids are denoted asXc =

{xc+i|i ∈ V (K), c+ i ∈ C} which follows the same rule as defined in the Eq. (3.1). It

is a set with arbitrary number of elements according to the in-out kernel map. In the rest

of this section, we denote xivalc as the xc+i with the valid i ∈ V 3(K)
⋂
{i|c + i ∈ C}.

To obtain the enhanced features, we first stack the transformed occupancy embedding õc

and then concatenate it toXc. Eventually, the output of our spatial encoding module for a

given grid at c is:

x̃ivalc = xivalc ⊕ oc (3.4)

where⊕ is the ”concatenate” operation. Although the visual features are enhanced by the

same occupancy feature, the same occupancy feature will have different calculations since

each grid has its own learnable kernel. With the spatial encoding module, we explicitly

embed the space structure around the grid.

3.2.2 Self-attention Aggregation

To obtain the aggregated features, the most intuitive method is to use the enhanced

features obtained in the spatial coding module and directly perform matrix multiplication

with corresponding kernels, and finally sum up all the results. However, as we mentioned

in the previous chapter, since the sparse point cloud is structurally descriptive, the same

grid should have different effects in different structures.

The self-attention aggregation module aims to aggregate neighboring features based
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on different structures. In order to take full advantage of this sparse property, we use an

additional branch to calculate the importance score of each grid, so that the network can

learn different weights of the same grid in different structures. We take input enhanced

features from the spatial encoding module and transform them through a two-layer MLP

function, h(·), to obtain a scalar value as shown below:

sivalc = h(xivalc , θs) (3.5)

where θs is the learnable weight of an MLP, sivalc is a scalar representing the importance

score of the corresponding grid. The hyperbolic tan(·), namely, tanh(·), is further applied

to limit the value range between -1 and 1 to facilitate linear combination. We also add a

constant value 1 to stabilize the results. Thereby, the importance score can be viewed as

the adjustment to add or subtract the weights in the original aggregation. The transformed

importance score is computed as follows:

s̃ivalc = 1 + tanh(sivalc ) (3.6)

Finally, we modify the Eq. (3.1) and propose a spatial-aware version as follows:

yc =
∑

i∈V 3(K)
∩
{i|c+i∈C}

s̃c+i(Wi · x̃c+i) (3.7)

To summarize, given an input grid feature xc, our Spatial Encoding module enhances

features according to the occupancy embedding, and then uses a self-attention aggregation

module to aggregate the patterns at the neighboring grid to generate a final output grid

feature yc ∈ RFout , which has Fout output channels. Our spatial-aware convolution can

easily replace the original convolution, which is convenient for direct use on the existing
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Figure 3.4: Architecture of Segmentation Net.

network architecture.

3.3 Segmentation Net

Segmentation Net is a fully convolutional neural network, which contains a series

of convolutional layers to transform features and finally obtain semantic predictions. As

shown in Fig 3.4, we build a deep seven-layer network using the proposed spatial-aware

sparse convolution. With it, the model can better capture the spatial relationship. Fol-

lowing the idea proposed in [9], our network is composed of seven encoding layers and

decoding layers with skip connection to efficiently learn the feature with a larger receptive

field. Generally, sparse convolution requires a considerable amount of memory to record

in-out kernel maps. Due to this memory consumption, it is not suitable to choose a larger

kernel size. Therefore, all the convolution operation in our network only uses 3 × 3 × 3

kernels to avoid depletion of memory.

For the encoding part, seven encoding layers are applied to progressively reduce the
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size of the point cloud while increasing the feature channel. In each encoding layer, the

point features are first fed into a spatial-aware residual block, and then downsampled by

the stride convolution. A spatial-aware residual block consists of a residual block [34] by

using our spatial-aware convolutions. It consists of two spatial-aware convolution with

residual connection (element-wise addition) to carry the identity features. We apply a

sparse convolution with the stride of 2 × 2 × 2 to downsample the point set and expand

the receptive field. Meanwhile, the feature channel increases to allow higher dimension

features to represent the sub-point cloud and preserve information. For layer i, the number

of feature channel is 32 × i (32 → 64 → 96 → 128 → 160 → 192 → 224). Unlike

dense stride convolution, the number of reserved points in sparse data is arbitrary. In our

case, it can retain about 1/3 to 1/4 of the points from the original point set. With this thin

and lightweight design, the encoding layer can quickly and effectively extract features and

reduce the number of points.

For the decoding part, seven symmetric decoding layers are used to gradually in-

crease the size of the point cloud while reducing the feature channels, and finally output

a prediction. Each decoding layer also contains a spatially-aware residual block identical

to the above section. After the transformation, we upsample the point set using a sparse

transposed convolution with a stride of 2× 2× 2. Sparse transposed convolution utilizes

the inverse mapping built into the stride convolution to reconstruct the original point set.

Next, the upsampled features are enhanced through skip connections. Instead of simply

performing element-wise addition [9], our skip connections concatenate the output fea-

tures of the i-th encoding layer to the input features of the corresponding decoding layers

to serve as the new input features. With skip connections, the model is able to convey

information from deep to shallow layers and capture precise localization.
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The predicted final semantic probability of P points is generated through a 1× 1×

1 convolution with Nclass channel followed by a softmax layer. The output probability

matrix, denoted as S ∈ RP×Nclass , will be used further in the next section.

3.4 Completion Net

After the model predicts the semantic label of each point, Some post-processing

methods [21] that can be applied to optimize the result, like correcting the fragments that

are incorrectly predicted and improving the fineness of the segmentation boundary. How-

ever, most of them are unlearnable. Inspired by the completion task [37, 38] which can

take partial objects with noise and output the complete shape, we build a completion net as

the refinement module to improve corrections to similar objects in the scene. We take the

predicted points of each category from the segmentation net as independent input scenes

and feed them into the completion net to refine the prediction. In this way, the prediction

that belongs to a specific class can learn more complete and reasonable shapes. Please

note that unlike traditional completion tasks, we do not predict each voxel in the grid, but

predict the voxel that originally exists in the scene to save computing power and memory

consumption through sparse convolution.

To independently process different objects in the scene, we first use a process called

dissociation to segment the objects. Dissociation is essentially what the segmentation has

already done. In the sparse convolution algorithm, a hash table is used to quickly find any

element at a specified position. Every point uses its three-dimensional coordinate as the

unique hash key. In order to facilitate batch processing, a dimension is usually added to

represent different samples. Therefore, each point has a unique key (b, x, y, z) in the hash

table, where b is the batch index and (x, y, z) is the 3D coordinate. In the process of finding
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Figure 3.5: Dissociation procedure.

neighbors, different batches are always independent. We make use of this feature to im-

plement dissociation. First, according to the predicted probability matrix S ∈ RP×Nclass

outputted by the segmentation net, we find the index of the maximum value along the

column dimension of S to find the most probable category for each point. We then add

the class index to the batch dimension to get a new hash key (b+ class, x, y, z). Thereby,

we can treat the subset of each predicted class as an independent sample to facilitate sub-

sequent operations, as shown in Fig 3.5.

The network architecture of the completion net is very similar to the segmentation

net. It adopts a 7-hierarchical encoder-decoder architecture to efficiently extract features

and process the point cloud. The difference is that in each decoding layer, we use gener-

ative transpose sparse convolution [39] to expand the sub-point cloud of each class. This

operation will increase the number of points in each sub-point cloud. Unlike generative

sparse network [39] which generates the whole cubic space, we only generate the grid ex-

isting in the original point cloud. In the next step, the additional classifier using 1× 1× 1

kernels is used to predict the confidence of the existence of each grid in the generated point
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set and trim the points accordingly. For skip connections, we connect the features of the

encoder to the features of the decoder. Because the point sets in each layer of encoder and

decoder are inconsistent, we map the encoder’s features to the decoder’s features based

on their coordinates. Features that are not mapped are set to zero. To summarize, points

belonging to a specific class will be continuously added and trimmed in each layer, finally

outputting the refined results.

Fig 3.6 illustrates the whole pipeline. Taking a table object as an example, the dark

blue part in the figure represents the prediction results from our segmentation net, and

the light blue part represents other prediction categories. For the points belonging to the

table, we first use a series of convolutional layers to extract the features and then use a

generative transpose convolution to generate the corresponding features of every existing

scene geometry in the receptive field. After that, we use the classifier to predict the existing

confidence scores for all grids and trim them off. Dotted grids represent the space that is

generated in a typical generative network. In our work, however, only the grids originally

occupied by points are generated, and dotted grids are not generated. The gray grids

represent the places that are trimmed. During the decoding process, it can be observed that

the network will generate grids on the space of the table foot and table lamp at the same

time, but then filter out the table lamp part. After going through a continuous generation

and pruning process, the final output results in a more complete table shape.

After we receive each type of completion result, the next step is to re-associate all

point sets together. Since the completion net is a generative network, there will be some

overlapping points between the final output of different objects. It is necessary to resolve

the conflicts of different predictions for identical points. The output of completion is a

binary value, which represents the confidence value of the existence of the object at that
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Figure 3.6: Completion procedure.

point. Here, we directly use the matrix J ∈ RP×Nclass whose shape is the same as that

of S generated from the segmentation net to resolve the overlapping problem. P denotes

the number of points in the point cloud and Nclass is the number of the class. First, we

re-associate all point sets by restoring the batch index before the dissociation process, and

then we calculate the mapping relationship from the generated point set to the original

point set. For all points in each category, we map all existing confidence values to the

corresponding columns of the category (column index). After that, the matrix is calculated

via a softmax function along column dimension to generate the probability matrix. Finally,

We add two probability matrices from the segmentation net and the completion net to

obtain the merged probability matrix.

Some points are trimmed and not generated by any category scene in the completion

net. In this case, the merged probability matrix is all contributed from the segmentation

network. Although we can directly apply the argmax function to find the index with the

greatest probability for the final semantic prediction, if a point is trimmed in the comple-

tion process, that means the prediction should be wrong. If only the probability in the

44



doi:10.6342/NTU202100720

segmentation network is used, the prediction result will still be in the wrong category.

To avoid this situation, we explicitly exclude the maximum value and choose the second

largest value in the probability vector. In our experimental part, this strategy has shown

to be able to eliminate some false predictions.

3.5 Model Training

During training, there are two loss functions, Lseg and Lcom, that are separately ap-

plied to supervise our SegComplet Net. For segmentation net, we use a standard multi-

class cross-entropy loss to supervise the training. The semantic segmentation loss, which

is denoted as Lseg, is computed as:

Lseg(ŝ, s) =
∑
p

∑
k

−ŝk(p)log(sk(p)) (3.8)

where ŝ ∈ RP×K and s ∈ RP×K denote Ground Truth semantic labels of K-class in a

one-hot form and predicted probabilities from the Segmentation Net, respectively, p is the

joint index in the point cloud, and k is the class index. Note that ŝk(p) is 1 for the correct

class, and 0 otherwise.

As for the completion net, the standard binary cross-entropy is applied to supervise

the predicted occupancy in every hierarchy of the network. The completion loss of i-th

hierarchy Li
com is defined as:

Li
com(b̂

i, bi) =
∑
p

−b̂i(p)log(bi(p))− (1− b̂i(p))log(1− bi(p)) (3.9)

where i indicates the layer, b̂i ∈ RP is the ground truth to indicate whether the voxel

contains an object or not, and bi ∈ RP is the prediction. Similar to semantic segmentation
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loss, b̂i(p) is 1 when the prediction is correct, and 0 otherwise. The voxel is considered

correct if any part of target object exists in the voxel.

Since the numbers of retained voxels in each layer are not with the same magnitude,

we further apply different weights to different completion loss functions to balance them.

we also adopt an additional weight to include the semantic segmentation loss. Thus, the

total loss Ltotal of our network is

Ltotal = λsegLseg +
∑
i

λi
comLi

com (3.10)

With the help of the above loss function, we use an SGD optimizer with a learning

rate of 10−1 to train SegComplete Net end-to-end. Our network takes as input the RGB

information of the point cloud plus the 3D coordinates, which are standardized between 0

to 1. For data augmentation, we follow MinkowskiNet [20] and use various strategies to

enhance the variability of features. For coordinate enhancement, we use the translation,

horizontal flip, distortion, and dropout to deform the spatial shape. For visual enhance-

ment, we modify saturation and contrast of features and then make translation and jitter

in RGB space. In our experiments, it has been shown that data augmentation will sig-

nificantly affect the training results. Voxel-based sparse convolution is very effective in

terms of memory consumption, so we can feed the entire scene fully convolutionally into

the model without cropping. Our batch size is 6, which is enough to use batch normaliza-

tion for training.
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Chapter 4 Experiment Results

In this chapter, we will conduct several experiments on public datasets to validate the

effectiveness of our proposed method. First, We will specify our experiment environment

including both software and hardware. Two datasets, ScanNet [17] and S3DIS [33] and

their corresponding evaluation metric will also be introduced. Next, we have an ablation

study to investigate different components of our approaches. Then, the quantitative results

compared with other state-of-the-arts followed by qualitative results will be shown for

better persuasiveness and visualization. Finally, we build a simple real application.

4.1 Settings of Environment

All the experiments including training and testing of our proposed 3D semantic seg-

mentation are run on our own personal computer. The computer is equipped with an Intel

i5-8400 central processing unit (CPU) and 16 GB random access memory (RAM). The

graphic processing unit (GPU) we attach to our computer is NVIDIA GeForce RTX 2080

Ti. The total system is built on Ubuntu 18.04, a 64-bit operating system. Table 4.1 shows

the details of the equipment specification of this computer.

We use Python as our main programming language and employ PyTorch [40] as our

deep-learning framework to implement our system. PyTorch provides an interface to build

a neural network and supports lots of functions which are introduced in Sec. 2 for training
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Table 4.1: The equipment specification of our experiment environment.

Equipment Specification
Central Processing Unit (CPU) Intel Core i5-8400 @ 2.80GHz
Random Access Memory (RAM) 16.0 GB
Graphic Processing Unit (GPU) NVIDIA GeForce RTX 2080 Ti
GPU Memory 11 GB
Operating System Ubuntu 18.04 64 bit
Learning Framework PyTorch 1.5.1
CUDA Toolkit 10.2

and testing. In addition, we also use Minkowski Engine [20] which provides additional

sparse convolutional operation features to build our work easily.

4.2 Datasets and Evaluation Metrics

4.2.1 ScanNet

The ScanNet [17] Benchmark is the dataset that contains 3D reconstructions of a

wide variety of indoor scenes with corresponding 3D annotations. 706 different rooms are

captured with the internal camera of an IPad and an additionally mounted depth camera,

like bedrooms, offices, and living rooms. Some of the rooms are scanned more than once

under different conditions.

ScanNet Dataset contains 1513 training scenes in a point cloud format. Each scan

includes about 7000 to 550, 000 points and each point is annotated with 1 of the 20 valid

semantic classes. We perform our experiments using the public training and validation

split of 1201 and 312 scans. For the ablation study, we report the results conducted on

the validation set. There are another 100 test scans with hidden ground truth for online

benchmark evaluation. We report our results from an online evaluation server to compare

with other state-of-the-art methods.
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Fig 4.1 illustrates some samples from the ScanNet dataset. Basically, each point

contains x, y, z coordinate information and r, g, b color information. We can observe that

most of these scenes are complicated and fragmented. Also, many objects only have an

incomplete shape, e.g., wall and window. These problems make each class object has a

more unstable geometry property. For the annotations, we draw the ground truth by 20

different colors plus the black which is used to indicate the invalid object. During the

training process, the points annotated as the invalid object will be ignored.

4.2.2 Stanford 3D Large-Scale Indoor Spaces (S3DIS)

S3DIS [33] is another dataset that also provides 3D reconstructions of indoor scenes

with 3D semantic annotations. Similar to the ScanNet, the scenes are also collected by the

RGB-D sensors. The dataset contains 6 large-scale indoor areas with 271 rooms covering

over 6000m2. Totally, it has around 273million points annotatedwith 13 semantic classes.

We follow the common train/test split from previous works [17, 16, 20]. That is, we test

our model on Area 5 and train it on the rest of the areas. For the ablation study, we report

the results conducted on Area 5.

Some examples of S3DIS are shown in Fig 4.2, where each point is also drawn in one

of 13 + 1 colors to represent its class. Compared with ScanNet, the holes and fragments

in the environments almost disappear, making the scene more complete and more consis-

tent with the real world. Overall, these higher-quality reconstructed scenes have stable

geometry properties for each class object.

4.2.3 Mean Accuracy and mean Intersection of Union (mIoU)

Before we go to the experimental part, we need to define the metrics howwe evaluate

the performance of different methods. Since the 3D semantic segmentation problem is
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Figure 4.1: Sample Scenes of ScanNet dataset. Left is input RGB point cloud and Right
is Groud Truth.
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Figure 4.2: Sample Scenes of S3DIS dataset. Left is input RGB point cloud and Right is
Groud Truth.
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Table 4.2: Confusion matrix. Four situations happen in a classification task.

Ground Truth
Positive Negative

Prediction Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

essentially the point-level classification tasks, we first introduce the important concept

called confusion matrix, as shown in Table 4.2. The confusion matrix divides the results

into four categories based on the relationship between the prediction and the ground truth.

Here, true positive (TP) is the number of correctly predicted points. On the other

hand, false-positive (FP) and false-negative (FN) are the numbers of wrongly predicted

points. The former means that the prediction recognizes the point as belonging to the

specific class whereas the ground truth refers to the point as not belonging to the specific

class, and the later is vice versa. With the above knowledge, we are going to introduce two

kinds of metrics, mean accuracy (mAcc), and mean Intersection of Union (mIoU), which

are both widely applied in the area of semantic segmentation.

Accuracy is a basic metric for evaluating classification tasks. Informally, accuracy

is the fraction of predictions our model got right, which is calculated by dividing number

of correct predictions by total number of predictions. Since our tasks is the multi-class se-

mantic segmentation problem, we calculated the mean Accuracy of each class as follows:

mAcc =
1

C

C∑
c=1

TPc

TPc + FPc

(4.1)

where C is the total number of class, TPc and FPc is the true positive and false positive

of class index c, respectively.

Since mean Accuracy neglects the false negative part, it can not fully reflect the

performance. To solve this drawback, mean Intersection of Union is proposed to give
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the more comprehensive comparison, which is literally the number of overlapped point

divided by the number of union points of prediction and ground truth. The formula for 3D

mean intersection of union is defined as:

mIoU =
1

C

C∑
c=1

TPc

TPc + FPc + FNc

(4.2)

where FNc is the false negative of class index c and the rest is the same as mean accuracy.

Both mAcc and mIoU are in the range of [0, 1].

4.3 Experimental Results

4.3.1 Ablation Study

To validate our proposed spatial-aware convolution, we compare the experimental

results using spatial-aware convolution under different configurations, as shown in Ta-

ble 4.3. The empty entry in the table indicates the corresponding component is not ap-

plied. Without using spatial encoding and self-attention aggregation module, it actually

degrades to the conventional sparse convolution, and can be viewed as the baseline. For

the second row that only uses spatial encoding module, the neighboring features are di-

rectly aggregated together with no additional weights. In contrast, only visual features

are collected and used to compute corresponding importance scores in the third row. The

results prove that both of the spatial encoding module and the self-attention aggregation

module can contribute to learn the representative features. By combining both module,

the spatial-aware convolution can achieve the best performance and improve+1.2%mIoU

compared to the baseline.

Each layer contains number of importance scores corresponding to different points.
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Table 4.3: Ablation study on Spatial-aware Convolution.

Spatial Encoding Self-attention Aggregation mean Accuracy mean IoU
73.3 66.4√
73.8 66.7√
74.0 66.9√ √
74.8 67.6

Figure 4.3: The variance of important scores in different layers.

In order to confirm that our self-attention aggregation module learns different importance

scores, we calculate the distribution of each scores from each layer of the segmentation

network and display its variance in the Fig 4.3. It can be observed that the variance will

first increase in the beginning of training and then gradually decrease, showing that the

previous epoch will try a more differentiated scoring strategy for both the encoder or the

decoder. The shallower layer has greater variation and slower convergence, whereas the

deeper layer has less variation and faster convergence. Finally, the deep layer converges

to zero, whereas the shallow layer converges to a certain range, which tends to learn a

more discriminative score.

We conduct some experiments to verify our proposed refinement strategy based on

the completion network. Different merging mechanisms of combining the results from the

segmentation net and the completion net are used, as shown in Table 4.4. The first row

predicts the semantic information completely based on the output of segmentation net,
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Table 4.4: Ablation study on fusion of segmented results.

Method mean Accuracy mean IoU
Only Segmentation 74.8 67.6
Only Completion 75.0 68.0
Segmentation + Completion (only probability sum) 75.1 68.1
Segmentation + Completion 75.3 68.6

which serves as our baseline. As shown in the second row, the prediction fully based on

the completion net achieves 68.0% mIoU and performs better than the baseline, showing

that the completion net can consider the shape of each class and further refine them to

generate the better results. By merging both of them as describe in the Chapter 3, the

mIoU further gets a +0.6% improvement and make our best result .

4.3.2 Comparison with State-of-the-art

We compare our method with other methods on both the S3DIS and ScanNet dataset.

As shown in Table 4.5, our method achieves 68.6% mIoU on the S3DIS dataset. In

Comparison with the latest point-based methods like KPConv [16], our method improves

+1.5% mIoU and avoids the shortcomings of find ing neighboring points in these meth-

ods. It also improves by +3.2% as compared to the current projection-based method [29]

and avoids the projection process. Our proposed system outperforms the previous meth-

ods based on voxel-based sparse convolution. Compared with other latest technologies,

it can increase +0.9% mIoU. With our proposed methods, the model can better predict

the semantic segmentation results. Detailed quantitative evaluation of each class for the

S3DIS dataset and the ScanNet benchmark is presented in Table 4.6 and Table 4.7.

For the ScanNet dataset, our works only obtains sub-optimal results. The reason is

that the scanning quality in the ScanNet dataset is not very high, the surface shape of
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Table 4.5: 3D Semantic segmentation results on ScanNet Benchmark. The evaluation
metric is mIoU

Method S3DIS ScanNet
Point-based

PointNet [13] 41.1 -
PointNet++ [14] - 33.9
PointASNL [41] 62.6 66.6
PointCNN [15] 57.3 45.8
PointConv [15] - 66.6
MVPNet [25] 62.4 64.1
KPConv [16] 67.1 68.4

Projection-based
TangentConv [26] 52.6 43.8
3DMV [24] - 48.4
TextureNet [27] - 56.6
FPConv [28] 62.8 63.9
Virtual MVFusion [29] 65.4 74.6

Voxel-based
SegCloud [18] 48.9 -
SparseConvNet [19] - 72.5
MinkowskiNet [20] 65.4 73.6
FusionNet [32] 67.2 68.8
JSENet [31] 67.7 69.9
Ours 68.6 69.4

many indoor scenes is incomplete, and the reconstructed geometry often has holes and

false protrusions. This kind of noise significantly affects the convolutional learning for

the spatial encoding module and the self-attention aggregation module, thereby impairing

the prediction results. Our observation is that the methods which work well for S3DIS

often do not perform well on ScanNet. Although our work also follows this trend, it still

achieves similar mIoU as compared to those methods.

4.3.3 Qualitative Results

We visualize some qualitative results on ScanNet and S3DIS as shown in Fig 4.4 and

Fig 4.5. Our model predicts the layout of the overall space very well, including ceilings,
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Table 4.6: 3D Semantic segmentation results on S3DIS Dataset.

Method mIoU ceil. floor wall beam col. wind. door chair table book. sofa board clut.
PointNet [13] 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2

TangentConv [26] 52.8 90.5 97.7 74.0 0.0 20.7 39.0 31.3 77.5 69.4 57.3 38.5 48.8 39.8
PointASNL [41] 62.6 94.3 98.4 79.1 0.0 26.7 55.2 66.2 83.3 86.8 47.6 68.3 56.4 52.1

MinkowskiNet [20] 65.4 91.8 98.7 86.2 0.0 34.1 48.9 62.4 89.8 81.6 74.9 47.2 74.4 58.6
Virtual MVFusion [29] 65.4 92.9 96.9 85.5 0.8 23.3 65.1 45.7 85.8 76.9 74.6 63.1 82.1 57.0

KPConv [16] 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9
JSENet [31] 67.7 93.8 97.0 83.0 0.0 23.2 61.3 71.6 89.9 79.8 75.6 72.3 72.7 60

Ours 68.6 93.1 96.9 83.8 0.2 28.8 61.8 78.3 88.3 77.6 69.8 81.0 73.1 58.6

Table 4.7: 3D Semantic segmentation results on ScanNet Benchmark.

Method mIoU bath bed bksf cab chair cntr curt desk door floor other pic ref show sink sofa tab toil wall wind
TangentConv [26] 43.8 43.7 64.6 47.4 36.9 64.5 35.3 25.8 28.2 27.9 91.8 29.8 14.7 28.3 29.4 48.7 56.2 42.7 61.9 63.3 35.2
PointASNL [41] 66.6 70.3 78.1 75.1 65.5 83.0 47.1 76.9 47.4 53.7 95.1 47.5 27.9 63.5 69.8 67.5 75.1 55.3 81.6 80.6 70.3

MinkowskiNet [20] 73.6 85.9 81.8 83.2 70.9 84.0 52.1 85.3 66.0 64.3 95.1 54.4 28.6 73.1 89.3 67.5 77.2 68.3 87.4 85.2 72.7
Virtual MVFusion [29] 74.6 77.1 81.9 84.8 70.2 86.5 39.7 89.9 69.9 66.4 94.8 58.8 33.0 74.6 85.1 76.4 79.6 70.4 93.5 86.6 72.8

KPConv [16] 68.4 84.7 75.8 78.4 64.7 81.4 47.3 77.2 60.5 59.4 93.5 45.0 18.1 58.7 80.5 69.0 78.5 61.4 88.2 81.9 63.2
JSENet [31] 69.9 88.1 76.2 82.1 66.7 80.0 55.2 79.2 61.3 60.7 93.5 49.2 20.5 57.6 85.3 69.1 75.8 65.2 87.2 82.8 64.9

Ours 69.4 87.3 74.3 83.7 66.0 80.9 48.4 81.8 63.1 69.7 90.9 50.1 19.0 55.6 84.4 63.5 73.8 67.4 82.9 81.5 63.8

floors and walls. For a messy office, our model can clearly distinguish between desks

and chairs and other clutter, as shown in the second row of ScanNet and the third row

of S3DIS. In the last rows of S3DIS, it can be observed that incomplete scanning has a

considerable influence on the prediction. The prediction in this area often detects different

sets of objects instead of a single object, which means that the model is quite confused

about incomplete areas.

We further visualize some results generated by the completion net. As shown in

Fig 4.6, the third row is the prediction result of segmentation net. It can be observed

that for incomplete scans or geometric shape boundaries, the model generates incorrectly

predicted fragments of small objects. The fourth line is the prediction result of our com-

pletion net. We superimpose the shapes of each class after separate refinement. Indigo

represents the overlapping part, and gray is the part without any class. Our completion net

can eliminate erroneous prediction fragments to a considerable extent. By integrating the

outputs of the two networks as mentioned in Chapter 3, we can generate better semantic
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Figure 4.4: Semantic Segmentation on ScanNet dataset.

Figure 4.5: Semantic Segmentation on S3DIS dataset.
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segmentation results as shown in the last row.

4.4 Real-World AR Application

Based on the proposed semantic segmentation network, we design an augmented

reality application to demonstrate in a real world scenario. The application is the game to

throw a ball to hit a specific target. We use Magic Leap One as our AR device, as shown

in Fig 4.7, to provide sensory information and visualize our segmentation results. We

use socket programming to realize the communication between the client on the Magic

leap and the server connecting to our model. Magic Leap will first package the required

information and send it to the personal computer running our model. After processing the

received information, our system predicts semantic information of the whole scene, and

finally sends the prediction results back to the Magic leap client.

Based on the Spatial Mapper provided by Magic Leap SDK which can capture struc-

tured geometry in space well, we are able to extract the three-dimensional coordinates of

the point cloud. However, this information does not contain color information, making it

impossible to directly use our network. In order to obtain the color information of each

point, we use the front facing RGB-camera on the Magic Leap to capture an additional

photo, and then map the detected points onto the photo according to the camera pose and

intrinsic and extrinsic parameters to obtain the corresponding color information. After

that, we send this information to our network to generate the segmented scene. Finally,

the Magic Leap can visualize this information with different color for each segmented

object. Fig 4.8 shows the whole system. We update the whole scene about 5 seconds

per frame, which includes network communication (1.0s), color mapping (0.5s), model

inference (1.5s), and mesh generation(2.0s), respectively.
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Figure 4.6: Visualization of completion results.
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Figure 4.7: Magic Leap One.

Figure 4.8: Augmented System Communication

Knowing the the different type of objects in environment allows our virtual ball game

to have different score feedback when it collides with different objects, which increases

the interest. In addition, the mechanism that set different physical properties to different

objects are applied. For instance, sofas and beds are soft so that they have lower elasticity

coefficients, while tables and chairs are hard so elasticity coefficients are higher. With this

setting, our virtual balls can be more in line with the laws of physics and act as like it is in

the real world. By using additional semantic segmentation information, we can construct

a more perceptual augmented reality system that allows the use of different objects in the

scene, providing users better immersive experience.
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Chapter 5 Conclusion

In this thesis, we proposed a novel 3D semantic segmentation network called Spatial-

aware SegCompleteNet which predicts semantic information of each point for a given

indoor scene RGB point cloud. The network improves the 3D prediction accuracy via

explicitly encoding the spatial information and adopting a learnable refinement strategy.

The proposed spatial-aware sparse convolution utilizes the structural information in

space. It first enhances neighboring visual features by encoding the occupancy informa-

tion in the space. Then, the neighboring enhanced features are aggregated by the self-

attention mechanism to generate the representative convoluted results. The proposed re-

finement strategy based on the generative completion network is applied to further re-

fine the semantic predicted results. Each object class in the scene is gradually added and

trimmed during the decoding process to get the complete shape. The final prediction of

each point is composed by aggregating the segmentation results and the refinement results.

We conducted some experiments on two indoor environment datasets ScanNet v2

and S3DIS to verify our proposed method. Experimental results show that our system

can better extract representative features and refine predictions, thereby improving the

performance and surpassing other state-of-the-art methods. In the future, we consider

extending our method to more complicated tasks, such as instance semantic segmentation

and panoptic segmentation.
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