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摘要 

隨著網際網路和無線網路的普及以及物聯網（IoT）的快速發展，遠端應用程

式逐漸融入我們的日常生活。遠端身分認證與金鑰交換或金鑰協議(AKE/AKA)是

一種能讓使用者和伺服器相互認證並建立共同會議密鑰的機制，以達到能在開放

式網路中安全地進行通訊。認證機制從簡單的單因子密碼認證發展到較複雜的雙

因子和三因子(多因子)認證，來保護資訊不被未經授權者存取。與雙因子身分認證

機制相比，三因子(多因子)認證機制能抵抗重送攻擊及智慧卡遺失攻擊。近年來，

由於隱私意識的抬頭，為了保護個人隱私，使用者會有以匿名方式進行身分認證

的需求，許多滿足使用者匿名性的身份認證與金鑰交換或金鑰協議(AAKE/AAKA)

已陸續被提出，以防止使用者的真實身份被洩露。在傳統的匿名身份認證機制中，

即使使用者使用匿名身份登入，由於使用者每次登入皆使用相同的匿名身份，故

可藉由登入與相互認證時所傳輸的訊息來追蹤使用者，使用者不可追蹤性的概念

因此被提出來討論，以避免使用者因洩漏傳輸資訊而被追蹤。 

本論文研究了現今具使用者隱私保護的三因子認證機制，根據對這些機制的

觀察與討論，我們提出了「具隱私保護且適用於多重伺服器環境的身分認證及金

鑰協定」的設計方針。依據設計方針，我們設計了三個遠端身分認證及金鑰協定，

分別適用於一般多重伺服器環境、遠距醫療系統（TMIS）、及物聯網(IoT)，它們

因應不同情境的需求而具有不同的特性。傳統的遠端身分認證及金鑰交換協定僅

提供使用者與伺服器之間的認證或使用者和使用者之間的認證。我們創先提出「兼

容的身分認證與金鑰交換(CAKE)」的概念以提供跨類別的身分認證以及金鑰交換，

並且就具有第五代行動通訊技術的智慧城市為例提出一個具體實現， 並且將其擴
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展為具有使用者隱私保護的兼容身分認證與金鑰交換(ACAKE)協定。此協定是史

上第一個兼具兼容身分認證、多因子認證、適用於多重伺服器環境、使用者匿名

性、使用者不可追蹤性、完全向前保密性、會員可撤銷、獨立認證、無須儲存表

單、無須分配公開金鑰、及正規證明… 等特性的遠端身分認證及金鑰交換協定，

它不僅適用於智慧城市，也適用於其他單一類別、雙重類別、及多角色類別的應

用情境。對於所提出的四個協定，我們皆提供了完整的正規安全性證明，並將其

與現今相關協定進行比較，以顯示我們的協定的優點與貢獻。 

關鍵字：生物特徵、物聯網、金鑰協議、隱私、物理不可複製函數、智慧城市、

遠距醫療系統、第五代行動通訊技術。 
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Abstract 
With the popularity of Internet and wireless networks and the rapid growth of 

Internet of Things (IoT), remote applications gradually participate in our daily lives. A 

remote authentication and key exchange (AKE) or key agreement (AKA) protocol is a 

mechanism for letting authorized users and servers authenticate mutually and establish a 

session key to communicate securely through open networks. Numerous AKE/AKA 

protocols have been developed from a simple password based authentication to 

two-factor and three-factor (multi-factor) authentication for protecting information or 

resources from the unauthorized users. In comparison with the password based and the 

two-factor AKE/AKA protocols, a three-factor (multi-factor) AKE protocol can 

withstand replay attacks and prevent stolen smart card attacks. With the rapidly 

development of the sense of privacy, users want to access remote servers anonymously; 

hence, many anonymous AKE/AKA (AAKE/AAKA) protocols are proposed to prevent 

the leakage of user’s identity. In an ordinary AAKE/AAKA protocol, a user logs in to 

the servers by a duplicate anonymous identity in each session which causes the 

relationship between each login is exposed; hence, the concept of user untraceability has 

been proposed recently to prevent users being tracked by the transmitted messages. 

In this dissertation, we survey relevant three-factor AAKE/AAKA protocols. 

According to the observation and discussion of these relevant protocols, we propose the 

guidelines for designing a secure AAKE/AAKE protocol. We then obey the guidelines 

to propose three AKE protocols, which are designed for general multi-server 

environments, Telecare Medical Information Systems (TMIS), and Internet of Things 

(IoT), respectively. All of the existing AKE/AKA protocols are designed for either 

client-server or client-client authentication. We bring up the concept of a compatible 
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authentication and key exchange (CAKE) protocol, which provides cross-species 

authentication that any two valid entities can authenticate with each other and create a 

secure session key for secure communications. We take a smart city in 5G networks for 

example to propose a three-factor CAKE protocol, and extend it to an anonymous 

CAKE (ACAKE). This protocol is the first AAKE protocol that simultaneously 

achieves compatible authentication, three-factor authentication, applicability of 

multi-server environments, user anonymity, user untraceability/unlinkability, perfect 

forward secrecy, member revocation, independent authentication, table free, public key 

announcement free, and formal security proof. The proposed CAKE/ACAKE protocol 

is not only applicable to smart cities but also applicable to other present systems. We 

give formal security proofs of the four proposed protocols, analyze their performances, 

and compare them to the relevant protocols to show the advantages and contributions. 

Keywords: biometric, IoT, key agreement, privacy, PUF, smart city, TMIS, 5G. 
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Chapter 1  

Introduction 

1.1 Research Motivation 

A remote mutual authentication and key exchange (AKE) scheme enables a user to 

remotely log in to a server through an unreliable channel to mutually authenticate with 

each other and establish a secure session key, which can be used for secret 

communication for exchanging data over a public network. An AKE protocol is usually 

called authentication and key agreement (AKA) protocol when two parties both 

contribute to the establishment of the session key during authentication. 

With the rapid development of the wireless networks, a lot of AKE/AKA protocols 

have been proposed. All of the existing AKE/AKA protocols are designed for either 

client-server or client-client authentication. We brought up the concept of compatible 

authentication and key exchange (CAKE) protocol, which provides cross-species 

authentication that any two valid entities in the system can authenticate with each other 

and create a secure session key through open networks. A CAKE protocol not only 

provides client-server authentication, but also client-client and server-server 
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authentication. No CAKE protocol is proposed up to date.  

AKE/AKA protocols designed for different purposes have different properties. In 

the following, we introduce the general properties of an AKE/AKA protocol: 

three-factor authentication, applicability for multi-server environments, user anonymity, 

user untraceability, independent authentication, perfect forward secrecy, member 

revocation, table free, public key management free, and formal security proof. 

 (P1) Three-factor authentication: the first remote user authentication protocol was 

proposed by Lamport [1] in 1981 that users are verified by their username and the 

password. Since password authentication protocols need password tables and 

cannot withstand the replay attack that an intruder may replay a previously 

intercepted password, the first two-factor remote user authentication protocol was 

proposed by Hwang [2] in 1990 to overcome these problems. To enhance the 

security, many three-factor authentication protocols have been recently proposed. 

In general, two-factor authentication [3][4][5] adopts smartcard as the additional 

second factor to avoid replay attacks, and three-factor authentication usually 

employs biometric or physical unclonable function (PUF) as the additional third 

factor to avoid the smart-card-loss-attack.  
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 (P2) Applicability of multi-server environments: more and more commercial 

services nowadays are based on the multi-server architectures, in which mobile 

users remotely access resources distributed in several servers through open 

networks. Many AKE/AKA protocols have been developed for multi-server 

environments and low-power mobile devices, which the servers are regarded as 

independent entities that have distinct secret keys. 

 (P3) User anonymity: traditional remote user authentication protocols only protect 

the user password and do not provide user privacy. For personal privacy, users 

want to access remote servers anonymously; hence, many anonymous AKE/AKA 

(AAKE/AAKA) protocols have been proposed to prevent the leakage of user’s 

identity. In an AAKE/AAKA protocol, the real identity of a user would not be 

revealed to others when he/she logs into a server through a public channel. In 

some AAKE/AAKA protocol, which is designed for special purpose, even the 

server cannot get the user’s real identity when the user logs into the server; this 

kind of property is called strong user anonymity. We do not focus on strong user 

anonymity in this dissertation, since it is only applicable to limited application 

circumstances.  
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 (P4) User untraceability (unlinkability): in ordinary AAKE/AAKA protocols, 

even though a user uses an anonymous identity to login, the relationship between 

each login is exposed to third party since the user uses identical anonymous 

identity in each login. Some AAKE/AAKA protocols not only achieve user 

anonymity, but also achieve user untraceability (unlinkability), where a user 

cannot be traced by the login transmissions, i.e. no third party can derive the 

relation between any two login transmissions. Without loss of generality, to avoid 

the physical location tracking in an AKE/AKA protocol, users either can simply 

forge their location or use physical layer signatures [6] to simultaneously achieve 

privacy-preserving location authentication and user untraceability. 

 (P5) Perfect forward secrecy: the session keys will not be compromised even if 

long-term secrets (private keys) used in the session key establishment are 

compromised. It is also called full forward secrecy. 

 (P6) Member revocation: most AKE/AKA protocols did not deal with member 

revocation problem when a member is disabled or leaving. In comparison with 

traditional revocable AKE/AKA protocols using Certificate Revocation List 

(CRL), the advanced ones adopt time period to deal with revocation problem, 
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namely that a revoked or disabled member would not be able to get their newest 

secret key in the next time period. 

 (P7) Independent authentication: a user and a server can independently 

authenticate with each other without the help of any third party. 

 (P8) Table free: no table or list needs to be stored or maintained. 

 (P9) Public key announcement free: no public key needs to be announced; either 

no public key or letting the identity be the public key. 

 (P10) Formal security proof: it is formally proved that the security of the protocol 

is based on a well-known hard problem. 

Many present authentication protocols are not secure on account of the lack of 

the formal proof and the poor design of the shared secrets. Once the sensitive secret 

has been leaked to the one who shouldn’t get the secret, then some attacks may occur. 

We introduce some general security defects for a three-factor based AAKE/AAKA 

protocol in the following.  

 (A1) Replay attack: This is a kind of man-in-the-middle attacks. The attacker 

maliciously repeats or delays a valid data transmission. 

 (A2) Privileged-insider attack  user/server impersonation attack: A legal user or 
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a legal server has ability to impersonate another user/server. 

 (A3) Smartcard-loss-attacks offline password/identity guessing attacks: When 

an attacker steals the smart card of a user, the attacker can offline guess the 

password/identity of the user. 

 (A4) Failure to forward secrecy: The session keys will be compromised if 

long-term secrets used in the session key exchange are compromised. 

 (A5) Failure to user anonymity: The real identity of an anonymous user would be 

disclosed to the third party. 

With the growing need of user privacy preserving, a provably secure and efficient 

three-factor AAKE/AAKA protocol for multi-server environments is urgently required. 

We will survey relevant protocols in Chapter 2 to show that no present AKE/AKA 

protocol has all the properties mentioned above (P1~P10). It inspires us to design a 

novel AKE/AKA protocol, which have most of the properties. We will propose an 

independent three-factor AAKA protocol for multi-server environments and a PUF 

based AKA protocol for IoT without verifiers and explicit CRPs in this dissertation. 

The demand for telemedicine services grows rapidly with the rise of health 

consciousness, the development of Internet of Things (IoT), and the dramatic growth of 
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the world’s older population. Telecare medical information systems (TMIS) allow 

patients remotely login medical service providers to acquire their medical information 

and track their health status through unsecured public networks. Hence, the privacy of 

patients is vulnerable to various types of security threats and attacks, such as the leakage 

of medical records or login footprints and the forgery attacks. In TMIS with single 

server, a patient usually communicates to the same medical service provider (server) 

through unreliable channels. In TMIS with multiple servers, a patient communicates to 

various servers through unreliable channels, and the various servers can be doctors, case 

managers, health centers, clinics, hospitals, etc. These servers should be regarded as 

independent entities with distinct private keys. Otherwise, the malicious server would 

masquerade as a patient or another medical server. Many three-factor AAKA protocols 

have been proposed for TMIS with single server, but none of them is applicable to 

TMIS with multiple servers. It inspires us to design a biometric-based three-factor 

AAKA protocol to protect user anonymity and untraceability in TMIS with multiple 

servers. 

We bring up the concept of a compatible AKE (CAKE) protocol, which allows any 

two entities to mutually authenticate with each other through public channels, for 
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example, not only for client-server but also for client-client and server-server 

authentication. However, up to date, no CAKE protocol for a smart city is proposed; 

hence, we design a CAKE protocol for a smart city. 

1.2 Objectives and Contribution 

We review forty-nine three-factor based AAKE/AAKA protocols from 2013 to 

2019 to show that none of them simultaneously achieves all the properties (P1~P10) 

introduced. According to the observation and discussion of the relevant protocols, we 

propose guidelines for designing a secure AKE/AKA protocol.  

We obey the guidelines to design three novel three-factor AKA/AKE protocols for 

multi-server environments. One is for general situation, another is for TMIS, and the 

other is for IoT. 

The benefits of the fifth generation (5G) of mobile technologies make the ideal of 

smart cities come true. We propose the first CAKE protocol for a smart city in 5G 

networks, which provides cross-species authentication and has all the properties 

(P1~P10). Any two valid entities can authenticate with each other and create a secure 

session key without the help of any third party while no password table and no public 

key management. The entity can be a natural person having biometric, an IoT device 
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embedded physical unclonable function (PUF), or a service provider. Moreover, we 

extend the CAKE protocol to propose an ACAKE protocol, which provides natural 

persons an anonymous option to protect their privacy. In addition, both the CAKE and 

ACAKE protocols also deal with entity revocation problem. 

We construct an adversary model of three-factor AKE protocol with user 

anonymity in multi-server environments, and we give the formal security proofs of each 

proposed protocol in the random oracle model [7]. Our protocols are secure on 

mathematical assumptions: the elliptic curve decision Diffie-Hellman (ECDDH) 

problem, the elliptic curve computational Diffie-Hellman (ECCDH) problem, decisional 

bilinear Diffie- Hellman (DBDH) problem, and hash function assumptions.  

We compare our protocols to relevant protocols to show the advantages and 

contributions and also show that our protocols are efficient enough for low-power 

mobile devices. 

1.3 Dissertation Organization 

We introduce the preliminaries in Chapter 2, survey the related work in Chapter 3, 

and construct an adversarial model for a three-factor (anonymous) AKE/AKA/CAKE 

protocol in multi-server environments in Chapter 4. The proposed independent 
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three-factor AAKA protocol for multi-server environments (Protocol 1), privacy 

protection for TMIS with multiple servers using a biometric-based AAKA Protocol 

(Protocol 2), PUF based AKA protocol for IoT without verifiers and explicit CRPs 

(Protocol 3), and CAKE/ACAKE protocol for a smart city in 5G networks (Protocol 4) 

are presented in Chapter 5, 6, 7, and 8, respectively. We analyze the performance of the 

proposed protocols and compare our protocols to relevant protocols in Chapter 9, and 

draw the conclusion and future work in Chapter 10. 
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Chapter 2  

Preliminaries 

The third factor in a three-factor authentication is usually an inherence factor, such 

as the biometric data of a user and the physical unclonable function (PUF) embedded in 

a physical device. However, the biometric data and the response of the PUF are noisy 

and non-uniformly distributed, which are not stable. A fuzzy extractor [8] is usually 

adopted to generate stable cryptographic keys with appropriate entropy from noisy and 

non-uniformly distributed data. In this chapter, we will introduce the PUF, the biometric, 

the fuzzy extractor, the elliptic curve cryptography, the bilinear pairing, the 

mathematical problems and assumptions, and the notations used in this dissertation.  

2.1 Biometric 

Biometric of a user can be the fingerprint, the iris scan, the face recognition, the 

voice, etc. We assume that there are trusted scan devices to capture and generate the 

biometrics of users.  

2.2 Physical Unclonable Function 

Physical unclonable function (PUF) is a physical entity embedded in a physical 
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device that provides a physically-defined output (response) for a given input (challenge), 

and the challenge and the corresponding response is called the Challenge Response Pair 

(CRP). Since the outputs of different physical entities for a same given input is nearly 

all distinct, the physically-defined output can be regards as a digital fingerprint that 

serves as a unique identifier for a physical device such as a microprocessor. PUFs 

provide alternate hardware fingerprints which can be used for lightweight authentication 

[9]. During semiconductor manufacturing, some unique physical variations would 

unintended occur to form a PUF. There are many implements of PUFs [10], and the 

most well-known ones are Coating PUFs, Silicon PUFs, Optical PUFs, and Acoustic 

PUFs. Silicon PUF has a sufficient amount of inter-chip variation to enable each IC to 

have unique output, such that the IC can be identified reliably and securely over a 

practical range of environmental variations [11]. Therefore, it can be adopted to 

uniquely identify each device in the IoT framework.  

PUFs can be classified into strong PUFs and weak PUFs according to the number 

of possible CRPs [12]. A weak PUF can only support a small number of CRPs; hence, 

an attacker may get all the responses when he/she gets temporary accesses to the device. 

Weak PUFs are typically used for key storage, since the responses are stable that a 
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challenge always yields the same response in various environments and conditions. A 

strong PUF can support a large number of CRPs; hence, it is generally used for 

authentication. 

2.3 Fuzzy Extractor 

A fuzzy extractor [8] or helper data algorithm can generate stable cryptographic 

keys with appropriate entropy from noisy and non-uniformly distributed biometric data 

and random PUF responses [13][14][15].  

Definition 1 Let M be a metric space on N points with distance function dis, and Ul 

denote the uniform distribution on l-bit binary strings. The statistical distance between 

two probability distributions A and B is SD (A, B) = ∑ |Pr(𝐴 = 𝑣) − Pr(𝐵 = 𝑣)|. A 

(M, , l, d, ) fuzzy extractor is a pair of procedures (Gen, Rep) [8][14] with the 

following properties: 

(1) Gen is a probabilistic generation procedure, which takes an input wM, and 

outputs an extracted string SS{0, 1}l and a helper string HLP{0, 1}*. For any 

distribution W on M of min-entropy , the extracted string SS is nearly uniform 

even for those who observe the helper string HLP: if (SS, HLP) ←Gen(W), then 

SD ((SS, HLP), (Ul, HLP)) ≤ . 
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Figure 1. Implementation diagram for an efficient fuzzy extractor 

 

(2) Rep is a deterministic reproduction procedure that can recover SS from the 

corresponding helper string HLP and any vector w’ close to w. Namely, for all w’, 

wM satisfying dis (w’, w) ≤ d, if (SS, HLP) ← Gen(w), then Rep (w’, HLP) = 

SS. 

A fuzzy extractor is efficient if Gen and Rep run in expected polynomial time. 

Using the Bose–Chaudhuri–Hocquenghem (BCH) codes and hash function can 

guarantee the elimination of noise from the collected noisy data and the uniform 

distribution of the derived key bits [8][13][14][15]. Figure 1 illustrates the 

implementation diagram for the efficient fuzzy extractor using the BCH code and 

syndrome concept (N=255), which is proposed by Kang et al. [14]. The helper data 
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along with a BCH decoder can be used to re-generate the correct response from the 

actual response of a PUF for a specific challenge. 

2.4 Elliptic Curve Cryptography 

Let p be a prime number, and let Fp denotes the field of integers modulo p. An 

elliptic curve E over Fp is defined by an equation of the form y2 = x3 + ax + b, where a, 

bFp satisfy 4a3 + 27b2  0 (mod p). A pair (x, y), where x, yFp, is a point on the curve 

if (x, y) satisfies y2 = x3 + ax+b. The set of all the points on E is denoted by E(Fp). Let P 

be a point in E(Fp), and suppose that P has prime order n. Then the cyclic subgroup of 

E(Fp) generated by P is G = {∞, P, 2P, 3P,..., (n −1)P}. [16] 

2.5 Bilinear Pairing 

Definition 2 Let E be an elliptic curve over a finite field Fq, which is a field of integers 

modulo a large prime number q, and E(Fq) denotes the set of all the points on E. Let G1 

be an additive cyclic subgroup of points on E(Fq), a point P be a generator of G1, and G2 

be a multiplicative group with the same order q. A bilinear pairing [17][18][19] is a 

map ê: G1×G1→G2 which satisfies the following properties: 

(1) Bilinear: ê (aQ, bR) = ê (Q, R)ab for all a, bZq
* and all Q, RG1.  

(2) Non-degenerate: there are two points Q, R G1 such that ê (Q, R) ≠1. 



doi:10.6342/NTU202004337

 

16 

 

(3) Computability: there exists an efficient algorithm to compute ê (Q, R) for all Q, R 

G1. 

2.6 Mathematical Problems and Assumptions 

Given an elliptic curve E defined over a finite field Fq, four hard mathematical 

problems [16][17][18][19] that related to the dissertation are described as follows: 

(1) Elliptic Curve Discrete logarithm (ECDL) Problem: Given a point Q = dPG1, 

to determine the integer d. 

(2) Elliptic Curve Decision Diffie-Hellman (ECDDH) Problem: Given P, aP, bP, 

cPG1 for random a, b, cZq
*, to determine whether cP=abP. Note that DDH 

problem in bilinear pairing is easy: it is easy to verify if ê (aP, bP) = ê (P, cP).  

(3) Elliptic Curve Computational Diffie-Hellman (ECCDH) Problem: Given P, aP, 

bPG1 for random a, bZq
*, to find abPG1. 

(4) Decisional Bilinear Diffie-Hellman (DBDH) problem in [G1, G2, ê]: Given P, 

aP, bP, cPG1 and ê(P, P)d G2 for random a, b, c, dZq
*, to determine 

whether ê (P, P)d= ê (P, P)abc. 

The security of our protocols is based on the following assumptions: 

Assumption 1 ECDL assumption: No probabilistic polynomial time algorithm can 
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solve ECDL problem with non‐negligible advantage. 

Assumption 2 ECDDH assumption: No probabilistic polynomial time algorithm can 

solve ECDDH problem with non‐negligible advantage. 

Assumption 3 ECCDH assumption: No probabilistic polynomial time algorithm can 

solve ECCDH problem with non‐negligible advantage. 

Assumption 4 DBDH assumption: No probabilistic polynomial time algorithm can 

solve DBDH problem with non‐negligible advantage. 

Assumption 5 Hash function assumption: There exists a secure one-way hash function 

H:X→Y, which satisfies the following requirements: 

(1) Preimage Resistance: Given any yY, it is hard to find xX such that H(x)=y. 

(2) Second Preimage Resistance: Given any xX, it is hard to find x’X such that 

x’≠x and H(x’)=H(x). 

(3) Collision Resistance: It is hard to find x, x’ X such that x’≠x and H(x’)=H(x). 

2.7 Notations 

We summarize the notations used in this dissertation in Table 1.
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Table 1. Notations 

Notation Meaning 
RC trusted registration center 

SCG trusted security credential generator 
DP data provider 

Ui  /NPi i-th user/ i-th natural person 
Sj  j-th server 
Dl l-th IoT device 

IDα  identity of the participant α 
PWi  password of Ui  
Bi biometric of Ui  

PUF physical unclonable function 
SK session key 
Kα  private key of participant α 

K_t secret key of member  in t-time-period 
x /MSK master secret key of RC 
MRK master private key 

X/ MPK master public key of RC 
t index of time period 

T maximum transmission delay 
Gen/Rep generation/ reproduction procedure of fuzzy extractor 
SSi /HLPi extracted/helper string of fuzzy extractor 

CA/ RA challenge/ response string of PUF function 
ê a bilinear map on ECC 
|| string concatenation operation 

⊕ exclusive-or operation 

h( ) one way hash function mapping string to string 
H( ) one way hash function mapping string to point on ECC 
TGê time of executing a bilinear map on ECC 

TGmul time of executing a multiplication of points on ECC 
TGadd time of executing a addition of points on ECC 
Texp time of executing a exponential operation 
Tinv time of executing an inversion of scalars 
Tmul time of executing an multiplication of scalars 
Th time of executing a one-way hash function 

Tsym time of executing a symmetric encryption/decryption 
TC time of executing a Chebyshev chaotic map operation 
Tkdf time of executing a one-way key derivation function 
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Chapter 3  

Related Work 

3.1 Three-Factor AAKA 

We review relevant three-factor AAKA protocols in this subsection. Traditional 

authentication protocols are designed for single server environments; however, many 

commercial services nowadays are based on multi-server architectures. There are two 

kinds of authentication protocols designed for multi-server architecture. 

 Multi-server environment: there is more than one server in the system, and the 

servers are regarded as distinct entities that have distinct secret keys. An 

authentication protocol for multi-server environment may suffer a malicious server 

attack, i.e. any server can impersonate another server or a legal user, if it is not 

well-designed.  

 Pseudo multi-server environment: it either a user have to register for each server 

or servers share the identical secret keys in some authentication protocols for 

multi-server environment; hence, all of these protocols are vulnerable to a 

malicious server attack, i.e. any server can impersonate another server. We classify 

this kind of authentication protocols pseudo multi-server environment in this 
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paper. 

3.1.1 Single Server Environments 

In 2013, Khan and Kumari [20] proposed a biometrics-based remote user 

authentication protocol with user anonymity, and Chaturvedi et al. [21] modified two 

biometrics-based remote user authentication protocols [22][23] to achieve user 

anonymity. In 2014, Islam [24] proposed a dynamic identity-based three-factor 

password authentication protocol using extended chaotic maps. In 2015, Cao and Ge 

[25] modified An’s [26] three-factor authentication protocol to enhance the security and 

achieve user anonymity. In 2017, Choi et al. [27] showed that Cao-Ge protocol [25] 

may suffer various attacks, such as DoS attacks, off-line password attacks, user 

impersonation attacks, ID guessing attacks, etc; they further proposed an improvement. 

In the same year, Park et al. [28] also pointed out that Cao-Ge protocol [25] is 

vulnerable to server impersonation and offline identity guessing attacks; they also 

proposed an improvement. In 2019, Zhao et al. [29] pointed out that Park et al.’s 

protocol [28] may suffer offline password guessing attacks, and does not achieve user 

untraceability and perfect forward secrecy; they proposed a security-enhanced protocol 

using the extended Chebyshev chaotic maps. In 2019, Reddy et al. [30] modified two 
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two-factor anonymous AKA protocols [31][32] to three-factor anonymous AKA 

protocols. 

3.1.2 Pseudo Multi-Server Environments 

Chuang and Chen [33] proposed a multi-server AAKA protocol based on trust 

computing using smart cards and biometrics in 2014. However, the secret key of each 

server is the same in Chuang-Chen protocol. Later on, Maitra and Giri [34] and Choi et 

al. [35] both demonstrated that Chuang-Chen protocol [33] cannot withstand user 

impersonation attacks, masquerade attacks, smart card attacks, and DoS attacks, and 

fails in perfect forward secrecy. They both proposed improvements, but Maitra-Giri 

protocol [34] does not provide user anonymity.  

Mishra et al. [36] also showed that Chuang-Chen protocol [33] is vulnerable to 

impersonation attacks, server spoofing attacks, and DoS attacks; they further proposed 

an improvement. However, Wang et al. [37] found that Mishra et al.’s protocol [36] 

may suffer masquerade attacks, replay attacks, and denial-of-service attacks, and 

proposed an improvement in 2016. In 2018, Yang and Zheng [38] claimed that Wang et 

al.’s protocol [37] cannot withstand privileged insider attacks, user impersonation 

attacks, and server spoofing attacks; they also proposed an improvement. 
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In 2015, Lu et al. [39] showed that Mishra et al.’s protocol [36] may suffer replay 

attacks and the password change phase is incorrect, and Lu et al. [40] showed that 

Mishra et al.’s protocol [36] is vulnerable to user impersonation attacks and server 

spoofing attacks, and does not achieve perfect forward secrecy, and they both proposed 

improvements. Later on, Moon et al. [41] demonstrated that Lu et al.’s protocol [39] 

cannot withstand user impersonation attacks and outsider attacks, and proposed an 

improvement. However, Guo et al. [42] found that Moon et al.’s protocol [41] does not 

resist insider, server spoofing, user impersonation and guessing attacks, and proposed 

an improvement. In 2018, Chaudhry et al.’s [43] demonstrated that Lu et al. protocol 

[40] is susceptible to user impersonation attacks, and proposed an improvement. 

However, the users have to register for each distinct server in Lu et al.’s [40] and 

Chaudhry et al.’s protocols [43]; otherwise, any server can impersonate a user to login 

another server since the registration center shares the identical secret keys with distinct 

servers. Therefore, their protocols are not applicable to a real multi-server environment. 

Also in 2015, Wazid et al. [44] proposed a biometric-based AAKA protocol in cloud 

computing, in which the user has to register at the service provider for each distinct 

cloud server. 
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3.1.3 Multi-Server Environments 

In 2015, Lin et al. [45] also demonstrated that Chuang-Chen protocol [33] is 

defenseless against servers spoofing attacks and fails to protect the session key and the 

user’s anonymity, and proposed an improvement. Note that the servers in Lin et al.’s 

[45] protocols have distinct secret keys; the servers in Chuang-Chen protocol [33] share 

the same secret key. 

In the same year, Amin and Biswas [46] proposed a bilinear pairing based AAKA 

protocol for multi-server environments; they analyzed Hsieh and Leu’s two-factor 

authentication protocol [47] and modified it to a three-factor authentication protocol. 

However, Chandrakar and Om [48] found that Amin-Biswas protocol [46] lacks user 

untraceability, and cannot withstand identity and password guessing attacks, user-server 

impersonation attacks, and privileged insider attacks; they further proposed an 

improvement in 2017. We [49] found that Chandrakar-Om protocol [48] may suffer 

from malignant server attacks; when a user logs into a server, the server may obtain the 

user’s secrets to impersonate the user. Also in 2017, Chandrakar and Om [50] proposed 

another anonymous three-factor remote authentication protocol for multi-server 

environments using an elliptic curve cryptosystem (ECC). However, we [49] still found 
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that Chandrakar-Om protocol [50] may suffer insider attacks; any user can impersonate 

another user.  

Also in 2015, Jiang et al. [51] and He and Wang [52] both proposed anonymous 

remote biometrics AKA protocols in a multi-server environment. Odelu et al. [53] 

showed that He-Wang protocol [52] is vulnerable to a known session specific temporary 

information attacks and impersonation attacks. Odelu et al. [53] proposed an enhanced 

protocol with strong anonymity, i.e. user untraceability. In Odelu et al.’s protocol [53], 

the registration center (Gateway node) needs to store and manage users’ temporal 

identity table.  

In 2016, Park and Park [54] indicated that Chang et al.’s [55] two-factor 

authentication protocol may suffer off-line password guessing attacks, and further 

proposed a three-factor authentication using ECC. However, the registration center (or 

Gateway node) has to manage and store user’s temporal identity table in Park-Park 

protocol [54]. In the same year, Choi et al.’s [56] modified Yoon and Kim’s 

biometric-based user authentication protocol for wireless sensor networks [57] to 

provide user anonymity. However, we [49] showed that Choi et al.’s protocol [56] does 

not achieve user anonymity, because every legal user can compromise another user’s 
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identity. Also in 2016, Irshad et al. [58] proposed a multi-server AAKA based on 

chaotic map without engaging registration center; however, the servers have to store the 

public keys of all the users.  

In 2017, Reddy et al. [59] proposed a mutually authenticated key agreement 

protocol for multi-server environments. Xu et al. [60] demonstrated that Reddy et al.’s 

protocol [59] does not achieve user untraceability and cannot withstand privileged 

insider attacks, and proposed an improvement in 2019. 

In 2018, Qi et al. [61] proposed a biometrics-based authentication key exchange 

protocol for multi-server TMIS using ECC. However, how to public the public keys of 

servers is an issue in Qi et al.’s protocol. Later on, Ali and Pal [62] proposed a 

three-factor based authentication protocol in multi-server environments using ECC. 

However, we [49] indicated that Ali-Pal protocol [62] is susceptible to a malignant 

server attack that the server would get the user’s secrets to impersonate the user, who 

has ever login a server.  

3.2 Three-Factor AAKA for TMIS 

Many three-factor AAKA protocols have been proposed for TMIS with single 

server. In 2013, Das and Goswami [63] proposed a remote user authentication protocol 
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for connected health care with anonymity preserving. Later on, Wen [64] demonstrated 

that Das-Goswami protocol [63] has many security defects, such as user impersonation 

attacks, failure in forward security, and off-line password guessing attacks; they further 

proposed an improvement. In the next year, Xie et al. [65] pointed out that Wen’s 

protocol [64] is insecure against the offline password guessing attacks and does not 

achieve user anonymity and forward security, and proposed an improvement. In 2015, 

Xu and Wu [66] found that Xie et al.’s protocol [65] does not resist de-synchronization 

attacks, and proposed an improvement.  

In 2014, Tan [67] proposed a three-factor authentication protocol which provides 

user anonymity for TMIS with single server. Arshad and Nikooghadam [68] 

demonstrated that Tan’s protocol [67] cannot withstand replay attacks, and proposed an 

improvement. In the next year, Das [69] and Lu et al. [70] simultaneously demonstrated 

that Arshad-Nikooghadam protocol [68] may suffer user impersonation attacks and 

off-line password guessing, and both proposed improvements. After then, Amin et al. 

[71], and Jiang et al. [72] showed that Lu et al.’s protocol [70] is insecure against user 

anonymity, new smart card issue, patient impersonation, and medical server 

impersonation attacks; they all proposed improvements.  
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In 2014, Mishra et al. [73] improved an un-anonymous biometrics based AKA 

protocol [74] to achieve user anonymity. In 2015, Amin and Biswas [75] showed that 

the Mishra et al.’s protocol [73] cannot withstand server impersonation, session key 

computation, and smart card stolen attacks, and proposed an improvement.  

In 2016, Wazid et al. [76] showed that Amin et al.’s protocol [71] is vulnerable to 

privileged insider attacks through both smart card stolen and offline password guessing 

attacks, and also showed that Amin-Biswas protocol [75] is vulnerable to 

privileged-insider, stolen smart card, and offline password guessing, user impersonation 

as well as strong replay attacks; they further proposed an improvement. In the same year, 

Jiang et al. [77] proposed a three-factor authentication protocol with privacy preserving 

for e-Health clouds. However, Irshad and Chaudhry [78] identified a flaw in the mutual 

authentication phase of Jiang et al.’s protocol [77] that an adversary may launch a 

denial-of-service attack (DoS) against the server. In 2017, Zhang et al. [79] proposed a 

privacy protection for TMIS using a chaotic map-based three-factor authenticated key 

agreement protocol. In 2018, Wei et al. [80] demonstrated that Zhang et al.’s protocol 

[79] cannot withstand offline password/identity guessing attacks and user/server 

impersonation attacks, and proposed an improvement. 
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Table 2. A survey of three-factor AAKA protocols 

Single-server environment Pseudo multi-server environment 

Protocol Security defect Protocol Security defect 

Generalized Chuang-Chen [33] 

Choi et al. [35] 

Mishra et al. [36] 

Wang et al. [37] 

Yang-Zheng [38] 

Lu et al. [39] 

Moon et al. [41] 

Guo et al. [42] 

Lu et al. [40] 

Chaudhry et al.[43] 

Wazid et al. [44] 

(A2, A3, A4) [34][35][36][45] 

- 

(A1, A2) [37][39][40] 

 (A2, A3) [38] 

- 

(A2) [41] 

(A2, A3) [42] 

- 

(A2) [43] 

- 

- 

Khan-Kumari [20] 

Chaturvedi et al. [21] 

Islam [24] 

Cao [25] 

Choi et al. [27] 

Park et al. [28] 

Zhao et al. [29] 

Reddy et al. [30] 

- 

- 

- 

(A2, A3) [27][28] 

- 

(A3, A4) [29] 

- 

- 

For TMIS 

Das-Goswami [63]  

Wen [64] 

Xie et al. [65] 

Xu and Wu [66] 

Tan [67]  

Arshad et al. [68] 

Das [69] 

Lu et al.[70] 

Amin et al. [71] 

Jiang et al. [72] 

Mishra et al. [73] 

Amin-Biswas [75] 

Wazid et al. [76] 

Jiang et al. [77] 

Zhang et al. [79] 

Wei et al. [80] 

(A2, A3, A4) [64] 

(A3, A4, A5) [65] 

(A1) [66] 

- 

(A1) [68] 

(A2, A3) [69][70] 

- 

(A2, A5) [71] [72] 

(A2) [76] 

- 

(A2) [75] 

(A2) [76] 

- 

- 

(A2, A3) [80] 

- 

Multi-server environment 

Protocol Security defect 

Lin et al. [45] 

Amin-Biswas [46] 

Chandrakar-Om[48] 

Chandrakar-Om [50] 

Jiang et al. [51] 

He-Wang [52] 

Odelu et al. [53] 

Park-Park [54] 

Choi et al. [56] 

Irshad et al. [58] 

Reddy et al. [59] 

Xu et al. [60] 

Qi et al. [61] 

Ali-Pal [62] 

- 

(A2, A3) [48] 

(A2) [49] 

(A2) [49] 

- 

(A2) [53] 

- 

- 

(A5) [49] 

- 

(A2) [60] 

- 

- 

(A2) [49] 
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To the best of our knowledge, no three-factor AAKA protocol proposed for TMIS 

with multiple servers. We summarize the three-factor AAKE protocols, which are 

discussed in Section 2.1 and 2.2, in Table 2. 

3.3 AKE for IoT 

Internet of Things (IoT) is believed to play an important role of our daily life and is 

becoming a major part of smart home and smart city infrastructures in the near future. 

There are currently around 30 billion IoT connected devices, and will increase to around 

75 billion connected devices [81] in 2025. They can communicate and interact with 

others over networks or worldwide internet and they can be remotely monitored and 

controlled. An authentication and key exchange (AKE) protocol for IoT framework 

provides IoT devices to authenticate mutually and establish a secure session key to 

communicate with each other through an open network. 

Many PUF based AKE protocols have been proposed for the authentication 

between IoT device and server [82][83][84][85][86][87]. Two IoT devices need to 

authenticate mutually in some situations, such as wireless ad hoc network (WANET), 

mobile ad hoc network (MANET), vehicular ad hoc network (VANET). For the AKE 

between two IoT devices, Chatterjee et al. [88] proposed a PUF-based secure 
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communication protocol for IoT in 2017. In the next year, Braeken [89] showed that 

Chatterjee et al.’s protocol [88] is vulnerable to man-in-the-middle, impersonation, and 

replay attacks. Braeken proposed an alternative protocol [89] to solve these problems. 

However, in Braeken’s protocol [89], servers need to be involved when two IoT devices 

want to authenticate each other. In 2019, Chatterjee et al. [13] proposed a PUF based 

AKE protocol for IoT without explicit CRPs in verifier database. Their protocol 

employs a hierarchical architecture that the verifier helps the subordinate IoT nodes to 

authenticate mutually and exchange their public keys; hence, the IoT nodes cannot 

establish a new session if they belong to different verifiers. Therefore, we propose a 

PUF based AKE protocol for IoT without verifier in this paper to resolve this issue; 

moreover, no explicit CRPs need to be maintained in our protocol. IoT nodes in the 

proposed protocol can freely authenticate mutually and establish a secure session key on 

their own without the help of any verifier. 

3.4 AKE for a Smart City 

Smart technologies play an important role in our daily life, such as smart cities, 

smart grids, smart homes, autonomous vehicles, drone, telemedicine, teleportation, 

remote educations, etc. With the development of smart technologies, the number of 
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Internet of Things (IoT) connected devices is currently around 30 billion, and will 

increase to around 75 billion in 2025 [81]. 

The fifth generation (5G) technology standard for cellular networks [90] provides 

high speed, high capacity, extremely low latency, and significant improvement on users’ 

perceived quality of service (QoS), as compared to current 4G LTE networks. 5G 

networks are expected to be the panacea of the network issues of IoT [91][92][93]. 

5G-Based IoT middleware systems have several security challenges [94], in which 

authentication and key exchange (AKE) protocol is the most significant security issue, 

since the entities communicate to each other in untrustworthy networks (i.e. the 

Internet). An AKE protocol allows two parties to authenticate mutually and create a 

secure common session key to communicate with each other. 

To the best of our knowledge, no AKE protocol simultaneously achieves all the 

properties (P1~P10) mentioned in Section 1.1. Indeed, several AKE protocols for a 

smart city are proposed [95][96][97][98][99], and some existing anonymous AKE 

protocols [3][4][5][53][54][61][100][101] are applicable to IoT devices in a smart city. 

Most AKE protocols provide specific entities to remotely authenticate with each other, 

such as only for client-server or only for client-client authentication.  



doi:10.6342/NTU202004337

 

32 

 

We propose the concept of a compatible AKE (CAKE) protocol that allows any 

two entities to mutually authenticate with each other through public channel, for 

example, not only for client-server but also for client-client and server-server 

authentication. However, up to date, no CAKE protocol for a smart city is proposed.  

3.5 Design Guideline 

We are going to discuss and analysis the relevant three-factor AAKA protocols 

[46][48][50][52][56][59][62][45][51][53][54][58][60][61], which are designed for 

multi-server environments and surveyed in Section 2.1. The comparisons of the 

unsecure ones [46][48][50][52][56][59][62] and secure ones [45][51][53][54][58][60] 

[61] are listed in Table 3 and Table 4, respectively.  

All the relevant unsecure protocols [46][48][50][52][56][59][62] do not have the 

proper formal proofs. Many present AKE protocols are not secure on account of the 

lack of formal proofs and the poor design of the shared secrets (G1). Once the sensitive 

secret has been leaked to the one who shouldn’t get the secret, then some attacks may 

occur. Choi et al. [56] did not provide the formal proof of their protocol. Amin and 

Biswas [46] and He and Wang [52] used Burrows–Abadi–Needham logic (BAN logic) 

[102] to prove the security of their protocol. Reddy et al.’s [59] used BAN logic and 
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Automated Validation of Internet Security Protocols and Applications (AVISPA) [103] 

simulation tool to prove the security of their protocols. Chandrakar and Om [48][50] 

and Ali-Pal [62] claimed that they gave formal security analysis using random oracle 

and the security of their protocols is based on BAN logic. Indeed, a random oracle is not 

a security model, and the security of their protocol is not based on existing difficult 

problems. A random oracle is just an oracle that responds to every query with a random 

response, which is uniformly chosen from its output domain, and it responds the same 

response for the same query (G2).  

We summarized the types of the proofs of relevant unsecure protocols in a 

multi-server environment in Table 3. The results shown in Table 3 indicate that even 

though BAN logic [102] ensures the correctness of a protocol, it may fail to ensure the 

security of a protocol when the applied circumstance is out of the security assumptioms 

(G3); even though AVISPA simulation tool [103] ensures that a protocol prevents 

outsider attacks, it cannot ensures that a protocol prevents insider attacks (G4).  

The results shown in Table 3 also indicate that even though BAN logic [102] 

ensures the correctness of a protocol, it may fail to ensure the security of a protocol 

when the applied circumstance is out of the security assumptioms (G3); even though 
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AVISPA simulation tool [103] ensures that a protocol prevents outsider attacks, it 

cannot ensures that a protocol prevents insider attacks. (G4).  

The server can get the user’s secret keys in Ali-Pal protocol [62]; hence, it is 

vulnerable to the insider (malignant server) attack in a multi-server environment. In 

Chandrakar-Om protocol 1 [48], RC verifies the validity of users by their Ai and these Ai 

are all identical; hence, their protocol is vulnerable to insider (malignant user) attacks 

(G5). In Chandrakar-Om protocol 2 [50], the server can compute the user’s secret keys 

after the user login; hence, it may suffer insider (malignant server) attacks (G6). Hence, 

in order to avoid insider attacks, including malignant users and malignant servers, the 

validity of the participant cannot be verified by the identical parameter, and each 

participant cannot obtain any secret key of another participant.  

In Choi et al.’s protocol [56], the secret h(x||y) of each user are identical, and it is 

used to mask the real identity of the user; hence, their protocol does not achieve user 

anonymity. Thus, in order to achieve user anonymity, the user’s real identity cannot be 

masked by a fixed value, which is identical to other user’s value (G7).  
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Table 3. Types of the proofs of relevant unsecure AAKA protocols 

Protocol Type of proof Security defect 

Amin-Biswas [46] 

Chandrakar-Om[48] 

Chandrakar-Om [50] 

He-Wang [52] 

Choi et al. [56] 

Reddy et al. [59] 

Ali-Pal [62] 

BAN 

BAN+random oracle 

BAN+random oracle 

BAN 

N/A 

BAN+AVISPA 

BAN+random oracle 

 (A2, A3) [48] 

(A2) [49] 

(A2) [49] 

 (A2) [53] 

 (A5) [49] 

 (A2) [60] 

 (A2) [49] 

 

Table 4. Properties of relevant secure AAKA protocols 

 
Lin  
[45] 

Jiang  
et al. 
[51] 

Odelu  
et al.  
[53] 

Park- 
Park 
[54] 

Irshad  
et al. 
[58] 

Xu et 
al. 

[60] 

Qi et 
al.  

[61] 

(P3) User Anonymity  Y Y Y Y Y Y Y 

(P4) User Untraceability  N N Y Y Y Y Y 

(P7) Independent AKA  Y N N N Y Y N 

(P8) Table free Nab Y Na Na Y Nab Y 

(P9) Public-key 

announcement free  
Y Y Y Y Nbc Nc Nc 

aRC, busers, cservers. 
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Lin [45] and Jiang et al.’s [51] schemes achieve user anonymity; however, their 

schemes do not achieve user untraceability since the login message includes a duplicate 

value that the user may be traced by this duplicate value. Because the transmitted 

messages include duplicate parameter DIDnew in adjacent sessions, Ali-Pal scheme [62] 

does not achieve user untraceability. Therefore, in order to achieve user untraceability, 

the transmitted messages can not include any duplicate parameter in different session; 

otherwise the user’s login may be traced by the duplicate parameter (G8). 

In Jiang et al. [51], Odelu et al. [53], Park-Park [54], and Qi et al.’s [61] protocol, 

RC has to be involved in each user login and authentication phase, i.e. dependent AKA  

(G9), it will add extra burden on RC and may cause the traffic bottleneck. In Lin [45] 

and Xu et al.’s [60] protocols, RC and users need to store key tables. In Odelu et al. [53] 

and Park-Park [54] protocols, RC needs to store the verification table about the users 

(G9). These protocols [45][53][54][60] are not table free. In Irshad et al. [58], Xu et al. 

[60], and Qi et al.’s [61] protocols, the user encrypts his/her identity by using the 

server’s public key. How to ensure that the users would get the correct public keys of 

the servers becomes a problem. Either the users pre-store the public keys of each server 

(it is not table free) or the users make inquiries online (G9). Verifying 
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the authenticity of public keys is an issue. As shown in Table 4, none of the secure 

AAKA schemes simultaneously achieve independent AKA, table free, and public key 

announcement free. (G9) 

According to above observation and discussion, we propose the guidelines for 

designing a secure AKA protocol in the following. 

 (G1) The security of the AKA protocol must be formally proved in a security 

model, which is also called formal model. The security of an AKA protocol must 

base on a well-known hard problem and mathematical assumptions that if there is 

an attacker, who can successfully attack the protocol, then the administrator can use 

the ability of the attacker breaking the security of the protocol to solve the 

well-known hard problem.  

 (G2) A single random oracle is not a security model. A random oracle model is a 

security model, which uses a random oracle. 

 (G3) BAN logic [102] can ensure the correctness of a protocol, it may fail to ensure 

the security of a protocol when the applied circumstance is out of the security 

assumptioms 

 (G4) AVISPA simulation tool [103] cannot ensure the security for insider attacks. 



doi:10.6342/NTU202004337

 

38 

 

 (G5) To avoid insider (malignant server) attacks in multi-server environments, each 

server needs to have at least one distinct private key and cannot get any user’s 

secret key. 

 (G6) To avoid insider attacks, including malignant users and malignant servers, the 

validity of the participant cannot be verified by the duplicate parameter, and each 

participant cannot obtain any secret key of another participant. 

 (G7) To achieve user anonymity, the user’s real identity cannot be masked by the 

duplicate parameter. 

 (G8) To achieve user untraceability, the transmitted messages can not include any 

duplicate parameter in different session; otherwise the user’s login may be traced 

by the duplicate parameter. 

 (G9) The following are three approaches that a user takes to let the server secrectly 

get the user’s identity to achieve user anonymity in an AAKE protocol. 

Approach 1: The user encrypts his/her identity by using the server’s public key 

[58][60][61].  

Approach 2: The user encrypts his/her identity by the pre-shared key between the 

user and the server. 
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Approach 3: The third party, it usually be RC or helper, has to be involved in each 

AKA phase [51][53][54]. 

A preferable design of an AAKE protocol in multi-server environments is 

adopting Approach 1 and letting the identity be the public key. Then the AAKE 

protocol would simultaneously achieve (P7) independent AKA, (P8) table free, 

and (P9) public-key announcement free. 
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Chapter 4  

Security Model 

In this chapter, we introduce threat assumptions, and construct an adversarial 

model for a three-factor AKE protocol with user anonymity in multi-server 

environments. 

4.1 Threat Assumptions 

Assume that an adversary might have following attack capabilities in an AKE 

protocol. 

(AC1) Be an outsider or any one of the legitimate members [94]. 

(AC2) Eavesdrop, delete, replay, or modify any message transmitted over an 

unreliable channel [94]. 

(AC3) Offline try all the (identity, password) pairs within probabilistic polynomial 

time [104]. 

(AC4) Steal the smart card and analyze the instruction power consumption to extract 

the secret data from the smart card [94][105][106]. 

(AC5) Fake the biometric [107]. 
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(AC6) Correctly predict the PUF’s responses to arbitrary challenges with high 

probability [108]. 

(AC7) Individually get the (identity, password) pair, get the secret data in the smart 

card, and either fake the biometric or correctly predict the PUF’s responses. 

But breaking them all in polynomial time is not feasible. 

4.2 Adversarial Model 

We construct an adversarial model of a three-factor (anonymous) AKE/AKA/ 

CAKE protocol with user anonymity in multi-server environments in this section. The 

adversarial model is defined in a random oracle model [7]. There are a trusted 

Registration Center (RC) and members in the adversarial model, and each member has a 

unique identity. Let Π  denotes the s-th session of participant α.  

Definition 3 Π  and Π  are said partners if  and  authenticate with each other and 

accept a common session key in α’s s-session and’s t-session.  

Let A be a probabilistic polynomial time algorithm that simulates the behavior of 

an adversary, who can potentially control all the communications by asking queries 

described below, and the queries are responded by a Challenger B (oracle). 

• Hash (D): B maintains a hash table, which is initially empty, to ensure the identical 
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responses and avoid the collision. If Hash (D) has been asked before, then B finds 

D in the hash table and returns the same response. Otherwise, B generates a 

random value w, appends (D, w) to the hash table, and returns w. 

• Extract (): This query can be asked for entity, who is not one of the existing 

member. B executes the registration phase of the protocol and responds the 

corresponding results. It models the insider attack. (AC1) 

• Send (Π , M): B simulates the protocol and responds the corresponding results, 

which should be responded by  after  receiving the message M. It models the 

active attack. (AC1) (AC2) 

• Execute (Π ): B returns the complete transcripts of an honest execution between 

entity α and its partner in its s-th session. It models the passive attack. (AC2) 

• Reveal (Π ): There are two kinds of reveal query. 

- RevealSK (Π ): If entity  has accepted a session key, say SK, in its s-th session, 

then B returns SK. Otherwise, B returns “NULL”. This query models the 

known‐session‐key attack that an adversary cannot reveal other session keys 

when it compromises a session key. (AC1) 

- RevealID (Π ): B returns the real identity of α. This query models the anonymity 
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attack that an adversary cannot obtain the identity of the target user when the 

identities of other users are revealed. (AC1) 

• Rot (Ui, TYPE): B returns the secret of Ui according to TYPE, where TYPE 

withstands the type of the factor that is used for authentication. This query can be 

asked for at most two factors, it models three-factor authentication. The goal is 

that A cannot impersonate the user Uα even if A gets any two of the three factors. 

(AC1) (AC3) (AC4) (AC5) (AC6) 

• Corrupt (Π ): B gives A the complete long-term private keys of α, who is one of 

the existing member. This query models perfect forward secrecy that even if an 

adversary knows the private keys of the participant α, it cannot compute any 

previous session key of α. (AC1) 

• Test (Π ): A can make a Test query only once at any time during the game. The 

following are two kinds of test query: 

- TestSK (Π ): When this query is asked for the s-th session of member α, B flips 

an unbiased bit b{0,1}. B returns the session key of α in the s-th session if b=1, 

and returns a random value if b=0.  

- TestID (Π ): When this query is asked for the s-th session of member α, B flips 
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an unbiased bit b{0,1}. B returns the real identity of α if b=1, and returns a 

random value if b=0. 

Definition 4 An oracle  with its partner Π  are said fresh if the common session 

key SKNULL between them is confirmed, both Reveal (Π ) and Reveal (Π ) queries 

have not been asked, and no Corrupt () or Corrupt () query is asked before Send (Π , 

M) or Send (Π , M) query. 

A can ask Test (Π ) query only once at any time during the game, and may ask 

other queries during asking the Test (Π ) query whenever Π  is fresh. A outputs its 

guess b’ for the bit b in Test (Π ) query eventually. The adversarial model is a random 

oracle model that oracles behave hash function as a true random function, which 

produces a random value for each new query. 

Definition 5 The ability of A distinguishing the session key or identity from a random 

value in Test query measures the advantage of A attacking the protocol. Let Succ 

denotes the event that A correctly guesses the unbiased bit b in the Test query, and let 

AdvP (A) = | 2 ⋅ Pr(Succ)− 1| defines the advantage of A attacking the protocol P. Note 

that if A guesses b totally in random, then Pr(Succ) would approaches 1/2 and AdvP (A) 

is negligible.  
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Definition 6 An AKE/AKA/CAKE protocol achieves existential perfect forward 

secrecy, secrecy of session key, unforgeability, and three-factor authentication if no 

probabilistic polynomial time adversary A has a non-negligible advantage in the 

following game played between A and infinite set of oracles. 

1) System is set up according to the initialization and registration phases of the 

protocol.  

2) A may ask the following queries and obtain the corresponding results: Hash, 

Extract, Send, Execute, Reveal, Rot, Corrupt, and TestSK. 

3) No Corrupt () or Reveal (Π ) query is asked before TestSK (Π ) query. 

4) A may ask at most two types of Rot query for the same entity . 

5) A may ask other queries during asking the TestSK (Π ) query whenever Π  is 

fresh, and eventually outputs its guess b’ for the unbiased bit b in TestSK (Π ) 

query. The game is terminated. 

Definition 7 An AAKE/AAKA/ACAKE protocol achieves existential user anonymity 

if no probabilistic polynomial time adversary A has a non-negligible advantage in the 

following game played between A and infinite set of oracles. 

1) System is set up according to the initialization and registration phases of the 
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protocol.  

2) A may ask the following queries and obtain the corresponding results: Hash, 

Extract, Send, Execute, Reveal, Rot, Corrupt, and TestID. 

3) No Corrupt () or Reveal (Π ) query is asked before TestID (Π ) query. 

4) A may ask at most two types of Rot query for the same entity . 

5) A may ask other queries during asking the TestID (Π ) query whenever Π  is 

fresh, and eventually outputs its guess b’ for the unbiased bit b in TestID (Π ) 

query. The game is terminated. 
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Chapter 5  

An Independent Three-Factor AKA Protocol 

with Privacy Preserving for Multi-Server 

Environments 

We will propose a biometric-based three-factor AAKA protocol for general multi- 

server environments (our Protocol 1) [109] in this chapter. This protocol is light weight, 

provably secure, and applicable to both single server and multi-server environments; 

meanwhile, it achieves user anonymity and user untraceability. We will describe the 

framework of an AAKA protocol in a multi-server environment first, and then expatiate 

on Protocol 1 and the characteristic analysis and the security analysis of Protocol 1. The 

security of Protocol 1 is based on the Elliptic Curve Computational Diffie-Hellman 

(ECCDH), the Decisional Bilinear Diffie-Hellman (DBDH), and hash function 

assumptions. In Section 9.1.1, we will show that the proposed Protocol 1 is efficient 

enough for low-power mobile devices. 

5.1 The Framework of an AAKA Protocol in a Multi-server 

Environment 
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Figure 2. The framework of an AAKA protocol in a multi-server environment 

 

The system is established by RC in the initial. When a new user or a new server 

joins the system, he/she has to register on RC through a trusted channel, and RC will 

generate his/her private key and send it back to him/her through a trusted channel.  

After the registration, a user can remotely log in to a server to authenticate 

mutually and establish a session key for the upcoming secure communications in public 

channels. The framework of an AAKA protocol in a multi-server environment is 

illustrated in Figure 2. 

5.2 The Proposed Protocol (Protocol 1: General AAKA) 

Our protocol consists of four phases: initialization, registration, login and AKA, 

and the password and biometric change. The details of these four phases are described 

in the following. 

Registration Center

ServersAnonymous Users

Internet
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5.2.1 Initialization Phase 

RC produces a bilinear map ê: G1×G1→G2, where G1 is a subgroup of the additive 

group of points on an elliptic curve over a finite field E(Fp) with order q, and G2 is a 

multiplicative cyclic subgroup with the same order q over a finite field Fp. The general 

bilinear map ê: G1×G1→G2 is operated under the Gap Diffie-Hellman group. The gap 

Diffie-Hellman (GDH) parameter generators, which satisfy the GDH assumptions, are 

believed to be constructed from the Weil and Tate pairings associated with 

super-singular elliptic curves or abelian varieties [19]. 

RC selects three secure one way collision-resistance hash functions H:{0, 1}*→G1, 

h1:{0, 1}*→{0, 1}l and h2:{0, 1}*→{0, 1}l, where l is an integer that stands for the 

length of the bit-string. RC selects a secret key x in Zq
*, and keeps x as the master key. 

RC then decides the maximum transmission delay T, and the generation function Gen 

and the reproduction function Rep of fuzzy extractor. RC chooses a generator point P in 

G1, and computes the public key Ppub =x·P. Finally, RC publishes the system parameters 

Pub ={G1, G2, P, ê, H, h1, h2,Gen, Rep, q, Ppub, T}. 

5.2.2 Registration Phase  

We are going to describe the server registration and user registration phases, and 
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they are illustrated in Figure 3 and Figure 4, respectively. All the messages are 

transmitted through trusted channels. Then, we describe the member revocation phase. 

[Server registration phase] 

When a new server Sj joins the system, the following steps are performed.  

Step 1. Sj freely generates its identity IDSj, and then sends IDSj to RC.  

Step 2. Upon receiving the identity IDSj from Sj, RC uses its master key x to generate 

Sj’s secret key KSj, i.e. RC computes KSj = x·H(IDSj), and then RC sends the 

secret key KSj and the system parameters Pub to Sj. 

[User registration phase] 

When a new user Ui with a portable device joins the system, he/she has to register 

with RC by executing the following steps.  

Step 1. Ui freely decides his/her identity IDUi and his/her password PWi. Note that IDUi 

can be either the real identity of Ui or just a pseudonym, which enables Ui to 

achieve strong anonymity. Ui imprints his/her biometric impression at the sensor 

to get Bi and the portable device executes the generation function Gen on Bi to 

generate the secret string SSi and the helper string HLPi, i.e. (SSi, HLPi)=Gen(Bi). 

Ui then computes the regenerated password RPWi = h(PWi ||SSi) and sends < IDUi, 
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RPWi > to RC. 

Step 2. Upon receiving < IDUi, RPWi > from Ui, RC uses its master key x to generate 

Ui’s secret key KUi, i.e. KUi = x·H(IDUi). RC then computes Ci = H(IDUi ||RPWi) 

and the validation value di = h1(Ci), and encrypts KUi by Ci, i.e. Ai = KUi +Ci. RC 

then stores {Ai, di, Pub} into a new smart card, and sent the smart card to Ui in a 

trusted environment. 

Step 3. Upon receiving the smart card from RC, Ui inserts the smart card to the portable 

device, and the device records the helper string HLPi to the smart card. 

Eventually, the smart card stores {HLPi, Ai, di, Pub}. 

[Member revocation phase] 

When a legal user or a legal server wants to revoke the previous authorization or 

RC wants withdraw the authorization of a legal user or a legal server, RC adds the 

identity of the revoked member to the certificate revocation list (CRL) and issues the 

updated CRL to each member. 

5.2.3 Login and AKA Phase 

When a user Ui wants to log in to a server Sj, the following steps are performed. 

All the messages are transmitted through untrusted channels. The Login and AKA phase 
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is illustrated in Figure 5. 

Step 1. Ui inputs his/her identity IDUi and his/her password PWi to the portable device, 

and imprints the biometric impression at the sensor to get Bi. The device 

produces the secret parameter SSi
* by executing the reproduction function Rep 

on Bi and the helper string HLPi, which is stored in the smart card, i.e. SSi
* = 

Rep(Bi, HLPi). The device computes Ui’s regenerated password RPWi
* = h1(PWi 

||SSi
*), Ci

* = H(IDUi ||RPWi
*), and the validation value di

* = h1(Ci
*), and then 

checks whether di
* equals di or not. If di

* = di, the validity of Ui is confirmed and 

the device continues the procedure. Otherwise, it terminates the process. 

Step 2. Ui’s device generates a random nonce nU in Zq
* and a timestamp TU, and then 

computes NU = nU·P, and derives the secret key KUi
* by using Ai, which is stored 

in the smart card, and the computed Ci
*, i.e. KUi

* = Ai－Ci
*. The device 

computes y1 = ê(nU ·Ppub, H(IDSj)) and y2 = ê (KUi, H(IDSj)), and mask Ui’s real 

identity IDUi by y1 and the timestamp TU, i.e. AID = IDUi ⊕h1(y1 ||TU), and the 

validation value vU = h1(IDUi ||NU ||y1 ||y2 ||TU). Ui’s device then transmits the 

login request < IDSj, AID, NU, TU, vU > to Sj. 
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Figure 3. Server registration phase of our Protocol 1 (General AAKA) 

 
Figure 4. User registration phase of our Protocol 1 (General AAKA) 

 
Figure 5. Login and AKA phase of our Protocol 1 (General AAKA) 
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Step 3. When Sj receives the login request message from Ui, Sj generates a timestamp TS, 

and verifies (TS－TU). If (TS－TU) > T, Sj rejects the login request. Otherwise, 

Sj continues the process. Sj computes y1= ê(NU, KSj) to decrypt Ui’s real identity 

IDUi
* from AID, i.e. IDUi

*=AID⊕h1(y1||TU). Sj computes y2 = ê(H(IDUi
*), KSj), 

which is the shared secret between Ui and Sj, and computes the validation value 

vU
* = h1(IDUi

* ||NU ||y1 ||y2 ||TU). Sj then checks whether vU
*equals vU or not. If 

vU
* vU, Sj rejects the login request; otherwise, Sj continues the process. Sj 

generates a random nonce nSZp
* and computes NS = nS·P, y3 = ê(H(IDUi

*), 

nS ·Ppub), the co-contributed secret y4 = nS ·NU, the session key SK = h2(IDUi
* 

||IDSj ||NU ||NS ||y1 ||y2 ||y3 ||y4), and the validation value vS = h1(IDUi
* ||h1(SK)). Sj 

then sends < AID, NS, vS > to Ui. 

Step 4. After receiving < AID, NS, vS >, Ui computes y3= ê(KUi, NS), the co-contributed 

secret y4 = nU ·NS, the session key SK = h2(IDUi ||IDSj ||NU ||NS ||y1 ||y2 ||y3 ||y4), and 

the validation value vS
* = h1(IDUi ||h1(SK)). Ui checks if vS

 * = vS. If so, Ui adopts 

SK as the session key. Otherwise, Ui aborts it. 

Correctness: The session keys computed by Ui and Sj are identical, since y1 = 

ê(nU ·Ppub, H(IDSj)) = ê(nU ·xP, H(IDSj))= ê(nU ·P, x·H(IDSj)) = ê(NU, KSj), y2 = ê(KUi, 
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H(IDSj)) = ê(x·H(IDUi
*), H(IDSj)) = ê(H(IDUi

*), x·H(IDSj)) = ê(H(IDUi
*), KSj), y3 = 

ê(H(IDUi
*), nS ·Ppub) = ê(H(IDUi

*), nS ·xP) = ê(x·H(IDUi
*), nS ·P) = ê(KUi, NS), and y4 = 

nS ·NU = nS ·nU ·P = nU · nS ·P = nU ·NS. 

5.2.4 Password and Biometric Change Phase 

Users can change their password and biometric on their own by performing the 

following steps.  

Step 1. It is the same as Step 1 in the login and AKA phase. 

Step 2. Ui can change either one, or both of the password and the biometric. 

Case 1. Password change only: Ui inputs the new password PWi
new, and Ui’s device 

computes RPWi
new=h(PWi

new||SSi
*), Ci

new=H(IDi||RPWi
new), Ai

new=Ai－Ci
*+ 

Ci
new, and di

new=h1(Ci
new). Ui’s device then replaces Ai and di with Ai

new and 

di
new, respectively. 

Case 2. Biometric change only: Ui imprints new biometric impression Bi
new, and Ui’s 

device executes the generation function Gen on Bi to generate the secret 

string SSi and the helper string HLPi
new, i.e. (SSi

new, HLPi
new) = Gen(Bi

new). 

The device computes RPWi
new = h(PWi ||SSi

new), Ci
new = H(IDi ||RPWi

new), 

Ai
new= Ai－Ci

* +Ci
new, and di

new=h1(Ci
new), and then replaces Ai, di, and HLPi 
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with Ai
new, di

new, and HLPi
new, respectively. 

Case 3. Change both password and biometric: Ui inputs new password PWi
new, and 

imprints new biometric impression Bi
new. Ui’s device executes the generation 

function Gen on Bi to generate the secret string SSi and the helper string 

HLPi, i.e. (SSi
new, HLPi

new) = Gen(Bi
new). The device then computes RPWi

new 

= h(PWi
new ||SSi

new), Ci
new = H(IDi ||RPWi

new), Ai
new = Ai－Ci

* +Ci
new, and 

di
new = h1(Ci

new), and then replaces Ai, di, and HLPi with Ai
new, di

new, and 

HLPi
new, respectively. 

5.3 Characteristic Analysis 

We analyze the properties of the proposed Protocol 1 point by point in the following. 

 (P1) Three-factor authentication: We use biometric as the third factor in the 

authentication. That is, a server authenticates a user by three user’s factors: user’s 

password, the secrets stored in the smart card, and user’s biometric. Thus the 

proposed Protocol 1 achieves three-factor authentication. 

 (P2) Applicability of multi-server environments: Servers are regarded as 

independent entities and have distinct secret keys KSj = x  H(IDSj) in Protocol 1, 

hence Protocol 1 is applicable to multi-server environments. 
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 (P3) User anonymity and (P4) User untraceability (unlinkability): A user Ui mask 

its identity IDi by h1(y1 ||TU), where y1= ê(nU ·Ppub, H(IDSj)). Since only Sj and Ui 

can compute y1, no third party can obtain y1 to get Ui’s real identity IDi, thus 

Protocol 1 achieves user anonymity. Since the nU are different in each session, no 

third party can derive the relation between any two login transmissions. Moreover, 

we will formal prove that Protocol 1 achieves user anonymity on DBDH 

assumption in Theorem 3. Moreover, a user can log in to a server under a 

pseudonym to achieve strong anonymity if the user chooses the pseudonym to be 

his/her identity in the user registration phase. 

 (P5) Perfect forward secrecy: We will prove that Protocol 1 achieves perfect 

forward secrecy on ECCDH assumption in Theorem 1. 

 (P6) Member revocation: Protocol 1 does not deliberate on the member revocation 

problem, but it can use the certificate revocation list (CRL) to deal with the 

member revocation problem. 

 (P7) Independent authentication: a user and a server in Protocol 1 can 

independently authenticate with each other without the help of any third party. 

 (P8) Table free: no table needs to be stored or maintained in Protocol 1. 
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 (P9) Public key announcement free: Protocol 1 adopts the identities to be the 

public keys, hence no public key needs to be announced. 

 (P10) Formal security proof: We will give the formal proofs of Protocol 1 in 

Section 5.4, and the security of Protocol 1 is based on the Elliptic Curve 

Computational Diffie-Hellman (ECCDH) and the Decisional Bilinear 

Diffie-Hellman (DBDH) problems. 

5.4 Security Analysis 

We analyze the security of the proposed protocol in the random oracle model [7] in 

this section. In the random oracle model, the hash function is assumed to be a true 

random function that produces a random value for each new query. The security of the 

proposed protocol is based on the Elliptic Curve Computational Diffie-Hellman 

(ECCDH), the Decisional Bilinear Diffie-Hellman (DBDH), and hash function 

assumptions. We give formal proofs of the proposed protocol in Theorem 1, Theorem 2, 

and Theorem 3 to demonstrate that the proposed protocol maintains session key secrecy 

and perfect forward secrecy, withstands user and server fogery attacks, and achieves 

user anonymity, respectively.  
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Theorem 1 The proposed Protocol 1 maintains session key secrecy and perfect forward 

secrecy on the Elliptic Curve Computational Diffie-Hellman (ECCDH) assumption and 

hash function assumption. 

Proof: Suppose that A is a probabilistic polynomial time adversary, who can break the 

session key secrecy or the perfect forward secrecy of Protocol 1 (general AAKA) with a 

non‐negligible advantage ε, and given target user’s identity IDU and target server’s 

identity IDS. By using A’s ability of breaking Protocol 1, we can construct an algorithm 

B to solve the Elliptic Curve Computational Diffie-Hellman (ECCDH) problem with a 

non‐negligible advantage. Let qn denotes the number of sessions, and B is given an 

instance (G1, G2, P, ê, q, A = aP, B = bP) of the ECCDH problem. B’s goal is to output 

abP. B runs A as a subroutine and simulates its attack circumstances. B sets up the 

system by generating the private key x in Zq
* and setting the public parameters Pub = 

{G1, G2, P, ê, H, h1, h2, Gen, Rep, q, Ppub, T}, where Ppub = x·P. B permeates the 

ECCDH problem into the Send queries, which are asked by A, in the l-th session. The 

probability of A asking TestSK query in the l-th session is 1/qn. 

Without loss of generality, assume that A does not ask queries for the same 

message more than once, A may ask the following queries and obtain the corresponding 
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results: Hash, Extract, Send, Execute, Reveal, Rot, Corrupt, and TestSK, and no Corrupt 

() or Reveal (Π ) query is asked before TestSK (Π ) query. 

In order to avoid the collision and ensure the identical responses of the hash 

queries, B maintains three Hash lists LH, Lh1, and Lh2, which are initially empty. B 

simulates the oracle queries of A as follows: 

• Hash: The following are the three kinds of hash query in Protocol 1. 

- Hash (H, D): When someone makes an H-query for D, B returns W if (D, W, w) 

LH. Otherwise, B randomly chooses wZq
*, computes W = w·P, adds (D, W, 

w) to LH, and returns W. 

- Hash (h1, D): When someone makes an h1-query for D, B returns w if (D, w) 

Lh1; otherwise, B randomly selects wZq
*, adds (D, w) to Lh1, and returns w. 

- Hash (h2, D): When someone makes an h2-query for D, B returns w if (D, w) 

Lh2. Otherwise, randomly chooses wZq
*, adds (D, w) to Lh2, and returns w. 

• Extract: The following are the two kinds of extract query in Protocol 1. 

- Extractuser (IDα, RPWα): When someone asks a user Extract-query for IDα, B 

simulates Hash(H, ID) query to get H(ID), simulates Hash(H, (ID ||RPWα)) 

query to get C, simulates Hash(h1, C) query to get d, computes K= x·H(ID) 
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and A = K +C, and returns {A, d, Pub}.  

- Extractserver (ID): When someone asks a server Extract-query for an identity ID, 

B simulates Hash(H, ID) query to get H(ID), computes K = x·H(ID), and 

returns {K, Pub}.  

• Send: Assume that user instance Π  and the server instance Π are partners. 

There are the two kinds of send query in Protocol 1. 

- SendUser (Π , Start): B generates a timestamp T. If it is asked in the l-th session, 

then B lets Nα=A; otherwise, B chooses a random nonce n in Zq
*, and computes 

Nα=n·P. B simulates Hash(H, ID) query to get H(ID), and Hash(H, ID) 

query to get H(ID). B computes y1 = ê(x·Nα, H(ID)) and y2 = ê(x·H(ID), 

H(ID)). B simulates Hash(h1, (y1 ||T)) query to get h1(y 1||T), and computes 

AID=ID⊕h1(y1 ||T). B simulates Hash(h1, (ID ||N ||y1 ||y2 ||T)) query to get 

vU, and returns {ID, AID, N, T, v}. 

- SendServer (Π, <ID, AID, Nα, Tα, vα>): B generates a timestamp T, and verifies 

(T －Tα)  T. If (T －Tα) > T, B returns “Reject” to A. Otherwise, B 

continues the process. B computes y1 = ê(Nα, K), and simulates Hash(h1, 

(y1||Tα)) query to get h1(y1 ||Tα). B computes IDα
* = AID⊕h1(y1 ||Tα), simulates 
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Hash(H, IDα
*) query to get H(IDα

*), and simulates Hash(H, ID) query to get 

H(ID). B computes y2 = ê(H(IDα
*), x·H(ID)), and simulates Hash(h1, (IDα

* ||Nα 

||y1 ||y2 ||Tα)) query to get vα
*. B verifies vα

*, returns “Reject” if vα
*  vα, and 

continues the process if vα
* = vα. If it is asked in the l-th session, B lets N = B, 

randomly chooses v in {0, 1}l, returns {AID, N, v}, computes y3= ê((H(IDα
*), 

x·N), and records Tag=(IDα
* ||ID ||Nα ||N ||y1 ||y2 ||y3). Otherwise, B chooses a 

random nonce n in Zq
*, computes N = n ·P, y3 = ê((H(IDα

*), x·N), and 

y4=n·Nα, simulates Hash(h2, (IDα
* ||ID ||Nα ||N ||y1 ||y2 ||y3 ||y4)) query to get SK, 

simulates Hash(h1, SK) query to get h1(SK), simulates Hash(h1, (IDα
* ||h1(SK))) 

query to get v, and returns {AID, N, v}. 

• Execute (Uα, Sβ): When it is asked for (ID, ID), B runs the simulation of above 

Send queries: simulates SendUser (Π , Start) query to get {ID, AID, N, T, v}, 

and simulates SendServer (Π, <ID, AID, N, T, v>) query to get {AID, N, v}. B 

then returns the transmitted messages {ID, AID, N, T, v} and {AID, N, v}. 

• Reveal: The following are the two kinds of reveal query. 

- RevealSK (Π ): B runs the simulation of above Send queries for Π  and returns 

SK if the instance Π  has accepted the session, and responds a null value 
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otherwise. 

- RevealID (Π ): B returns IDα.  

• Rot: The following are the three types of Rot query. Note that at most two types of 

Rot query can be asked for a user Uα. 

- Rot (Uα, PW): B returns PWα.  

- Rot (Uα, BI): B returns Bα.  

- Rot (Uα, SC): B simulates Extractuser (IDα, RPWα) query to get {A, d, Pub}, and 

returns {A, d, Pub}. 

• Corrupt (Π ): When this query is asked for IDα, then B simulates Extract (IDα, 

RPWα) query to get {A, d, Pub}, and returns {PWα, Bα, A, d, Pub}. 

•TestSK: The following are the two types of reveal query. 

- TestSK (Π ): B flips an unbiased bit b{0,1}. B returns the session key SK if b = 

1, and returns a random value if b = 0. 

- TestID (Π ): B flips an unbiased bit b{0,1}. B returns the real identity IDα of  

if b = 1, and returns a random value if b = 0. 

A may ask other queries during asking the TestSK (Π ) query whenever  is fresh, 

and eventually outputs its guess b’ for the unbiased bit b in TestSK (Π ) query. The game 
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is terminated. 

If A can break the session key secrecy or the perfect forward secrecy of Protocol 1, 

y4
* = abP should appears in the Lh2 list. B uses Tag to find ((Tag ||y4

*), SK) in the Lh2 list 

to get y4
*. B then answers abP = y4

* to the ECCDH problem. The success probability of 

B solving the ECCDH problem depends on the event that A asking the TestSK query in 

the l-th session. The probability of A asking the TestSK query in the l-th session is 1/qn in 

above simulation. If A correctly guesses the unbiased bit b in the TestSK query with a 

non‐negligible advantage ε, B solves the ECCDH problem with a non‐negligible 

advantage ε/qn. By Assumption 3, no probabilistic polynomial time algorithm can solve 

the ECCDH problem with a non‐negligible advantage. It is a contradiction. Hence, no 

probabilistic polynomial time adversary can break the session key secrecy or the perfect 

forward secrecy of Protocol 1 with a non‐negligible advantage. Therefore, Protocol 1 

maintains session key secrecy and perfect forward secrecy by Definition 6.  

Theorem 2 The proposed Protocol 1 withstands user and server forgery attacks under 

the Decisional Bilinear Diffie-Hellman (DBDH) assumption and hash function 

assumption. 

Proof: Suppose that A is a probabilistic polynomial time adversary, who can forge a 
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user or a server in Protocol 1 with a non-negligible advantage ε. Then we can construct 

an algorithm B to solve the Decisional Bilinear Diffie-Hellman (DBDH) problem with a 

non‐negligible advantage by using A’s ability of breaking Protocol 1. B is given an 

instance (G1, G2, P, ê, q, A = aP, B = bP, C = cP, ê(P, P)d) of the DBDH problem, and 

B’s goal is to determine if ê(P, P)d = ê(P, P)abc. B runs A as a subroutine and simulates 

its attack circumstances. B sets up the system by letting Ppub=A and setting the public 

parameters Pub ={G1, G2, P, ê, H, h1, h2,Gen, Rep, q, Ppub, T}. B permeates the DBDH 

problem into the queries on user U(IDU) and server S (IDS), which are asked by A in the 

l-th session. B adds (IDU, B, NULL) and (IDS, C, NULL) into LH list. Namely, B lets 

H(IDU) = B and H(IDS) = C. Let qU and qS denotes the numbers of users and servers, 

respectively. The probability of A asking TestSK query in the l-th session for user U(IDU) 

and server S (IDS) is 1/qU·qS. 

Without loss of generality, assume that A does not ask queries for the same 

message more than once, and the user instance Π  and the server instance Π are 

partners. In order to avoid the collision and ensure the identical responses of the hash 

queries, B maintains three Hash lists LH, Lh1, and Lh2, which are initially empty. B 

simulates the oracle queries of A as follows: 
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The Hash, Execute, Reveal, Rot, Corrupt, and Test queries are identical to those 

queries in the proof of Theorem 1.  

• Extract: There are two types of extract query in Protocol 1 as follows: 

- Extractuser (IDα, RPWα): A user Extract-query can only be asked for IDα  IDU. B 

simulates Hash(H, ID) query to get H(ID), finds (ID, H(ID), w) in LH list to 

get w, and computes K = w ·A. B simulates Hash(H, (ID ||RPWα)) query to get 

C, simulates Hash(h1, C) query to get d, computes A = K + C, and then 

returns {A, d, Pub}.  

- Extractserver (ID): When a server Extract-query is asked for ID  IDS, B 

simulates Hash(H, ID) query to get H(ID). B finds (ID, H(ID), w) in LH list 

to get w, computes K = w ·A, and returns {K, Pub}. 

• Send: There are two types of send query in Protocol 1 as follows: 

- SendUser (Π , Start): When a SendUser query is asked for IDα, whose partner is 

ID, B generates a timestamp T and a random nonce nα in Zq
*, and computes 

Nα = nα · P.  

1) If IDα  IDU, B simulates Hash(H, IDα) query to get H(IDα), finds (IDα, 

H(IDα), wα) in LH list to get wα, and computes y2 = ê (wα · A, H(ID)).  
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2) If IDα = IDU and ID = IDS, B lets y2= ê(P, P)d.  

3) If IDα = IDU and ID  IDS, B simulates Hash(H, ID) query to get H(ID), 

finds (ID, H(ID), w) in LH list to get w, and computes y2 = ê (H(IDα), 

w ·A).  

Then, B computes y1 = ê(nα ·A, H(ID)), simulates Hash(h1, (y1 ||T)) query to 

get h1(y1 ||T), and computes AID = ID ⊕h1(y1 ||T). B simulates Hash(h1, 

(ID || N ||y1 ||y2 ||T)) query to get vU, and returns {ID, AID, N, T, v}. 

- SendServer (Π, <ID, AID, Nα, Tα, vα>): When a SendServer query is asked for ID, 

B generates a timestamp T, and verifies (T －Tα). If (T －Tα) > T, then B 

returns “Reject” to A; otherwise, B continues the process.  

1) If ID ≠ IDS, B simulates Hash(H, ID) query to get H(ID), finds (ID, 

H(ID), w) in LH list to get w, computes K = w·A and y1= ê(Nα, K), 

simulates Hash(h1, (y1 ||Tα)) query to get h1(y1 ||Tα), computes IDα
* = AID  

h1(y1 ||Tα), simulates Hash(H, IDα
*) query to get H(IDα

*), and computes y2 =  

ê(H(IDα
*), K).  

2) If ID  = IDS, B uses vα to find (IDα
* ||Nα ||y1 ||y2 ||Tα) in Lh1 list to get IDα

* 

and y1. If ID = IDS and IDα
* = IDU, B lets y2 = ê(P, P)d. If ID  = IDS and 
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IDα
*  IDU, B simulates Hash(H, IDα

*) query to get H(IDα
*), simulates 

Hash(H, ID) query to get H(ID), finds (IDα
*, H(IDα

*), wα) in LH list to get 

wα, and computes Kα = wα·A and y2 = ê (Kα, H(ID)).  

B randomly chooses n in Zq
*, and computes N = n·P, y3 = ê(H(IDα

*), n·A), 

and y4 = n ·Nα. B simulates Hash(h2, (IDα
* ||ID ||Nα ||N ||y1 ||y2 ||y3 ||y4)) query 

to get SK, and Hash(h1, SK) query to get h1(SK), and Hash(h1, (IDα
* ||h1(SK))) 

query to get v. B returns {AID, N, v}. 

If A answers b = 1 to the TestSK query, B answers ê(P, P)d = ê(P, P)abc to the 

DBDH problem. If A answers b1 to the TestSK query, B answers ê (P, P)d  ê (P, P)abc 

to the DBDH problem. The success probability of B solving the DBDH problem 

depends on the event that A asks the SendAKA (Π , Start) query for user U (IDU) to forge 

the server S (IDS), and asks the TestSK query in this session; or the event that A asks the 

SendAKA (Π, <ID, AID, Nα, Tα, vα>) query for server S (IDS) to forge the user U (IDU), 

and asks the TestSK query in this session. The probability of A asking the SendAKA (Π , 

Start) query for user U (IDU) or asking the SendAKA (Π, <ID, AID, Nα, Tα, vα>) query 

for server S (IDS), and asking the TestSK query in this session is 1/qU·qS in the above 

simulation. If A correctly guesses b in the TestSK query with a non‐negligible advantage 
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ε, B solves the DBDH problem with a non‐negligible advantage ε/qU·qS.  

By Assumption 4, no probabilistic polynomial time algorithm can solve the DBDH 

problem with non‐negligible advantage. It is a contradiction. Hence, no a probabilistic 

polynomial time adversary can forge a user or a server in Protocol 1 with a non- 

negligible advantage. Thus, Protocol 1 withstands user and server forgery attacks by 

Definition 6.  

Theorem 3 The proposed Protocol 1 achieves user anonymity on the Decisional 

Bilinear Diffie-Hellman (DBDH) assumption and hash function assumption. 

Proof: Suppose that A is a probabilistic polynomial time adversary, who can break the 

user anonymity of Protocol 1 (general AAKA) with a non-negligible advantage ε. By 

using A’s ability of breaking Protocol 1, we can construct an algorithm B to solve the 

Decisional Bilinear Diffie-Hellman (DBDH) problem with a non‐negligible advantage. 

B is given an instance (G1, G2, P, ê, q, A=aP, B=bP, C=cP, ê (P, P)d) of the DBDH 

problem, and B’s goal is to determine if ê(P, P)d = ê (P, P)abc. B runs A as a subroutine 

and simulates its attack circumstances. B sets up the system by letting Ppub=A and 

setting the public parameters Pub ={G1, G2, P, ê, H, h1, h2, Gen, Rep, q, Ppub, T}. B 

permeates the DBDH problem into Send queries of server S (IDS), which are asked by A. 
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B adds (IDS, B, NULL) into LH list. Namely, B lets H(IDS) = B. Let qs denotes the 

number of servers. The probability of A asking TestSK query for server S (IDS) is 1/ qS. 

Without loss of generality, assume that A does not ask queries for the same 

message more than once, A may ask the following queries and obtain the corresponding 

results: Hash, Extract, Send, Execute, Reveal, Rot, Corrupt, and TestID, and no Corrupt 

() or Reveal (Π ) query is asked before TestID (Π ) query.  

In order to avoid the collision and ensure the identical responses of the hash 

queries, B maintains three hash lists LH, Lh1, and Lh2, which are initially empty. B 

simulates the oracle queries of A as follows: 

The Hash, Execute, Reveal, Rot, Corrupt, and Test queries are identical to those 

queries in the proof of Theorem 1. The Extract quey is identical to the Extract query in 

the proof of Theorem 2. 

• Send: There are two types of send query in Protocol 1 as follows: 

- SendUser (Π , Start): When A asks a user Send-query for IDα, whose partner is 

ID, B generates a timestamp T and a random nonce nα in Zq
*, simulates 

Hash(H, ID) query to get H(ID), simulates Hash(H, ID) query to get H(ID), 

finds (ID, H(ID), r) in LH list to get r, and computes y2 = ê (r ·A, H(ID)).  
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1) If ID = IDS, B computes Nα = nα·C and 𝑦 = ê (P, 𝑃) .  

2) If ID   IDS, B computes N = nα·P and y1= ê (nα·A, H(ID)).  

B then simulates Hash(h1, (y1 ||T)) query to get h1(y1 ||T), and computes AID 

= ID ⊕h1(y1 ||T). B simulates Hash(h1, (ID ||N ||y1 ||y2 ||T)) query to get vU, 

and returns {ID, AID, N, T, v}. 

- SendServer (Π, <ID, AID, Nα, Tα, vα>): When A asks a user Send-query for ID, 

whose partner is IDα, B generates a timestamp T and verifies (T －Tα). If (T 

－Tα) > T, B returns “Reject”. Otherwise, B continues the process.  

1) If ID  = IDS, B uses vα to find (IDα ||Nα ||y1 ||y2 ||Tα) in Lh1 to get IDα and y1.  

2) If ID ≠IDS, B simulates Hash(H, ID) query to get H(ID), finds (ID, 

H(ID), r) in LH to get r, computes K = r ·A and y1 = ê (Nα, K), simulates 

Hash(h1, (y1||Tα)) query to get h1(y1||T), and computes IDα=AID⊕h1(y1||T). 

B then simulates Hash(H, IDα) query to get H(IDα) to get H(IDα), finds (IDα, 

H(IDα), rα) in LH to get rα, and computes Kα = rα·A and y2= ê (Kα, H(ID)). B 

randomly chooses n in Zq
*, and computes N = n ·P, y3= ê(H(IDα), n ·A), and 

y4 =n ·Nα. B simulates Hash(h2, (IDα ||ID ||Nα ||N ||y1 ||y2 ||y3 ||y4)) query to get 

SK, and Hash(h1, SK) query to get h1(SK), and Hash(h1, (IDα ||h1(SK))) query to 
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get v. B returns {AID, N, v}. 

If A answers b = 1 to the TestID query, B answers ê(P, P)d = ê(P, P)abc to the DBDH 

problem. If A answers b  1 to the TestID query, B answers ê(P, P)d  ê P, P)abc to the 

DBDH problem. The success probability of B depends on the event that A asks the 

SendUser (Π , Start) query for server S (IDS), and asks the TestID query for this session. 

In the above simulation, the probability that A asking the SendAKA (Π , Start) query for 

server S (IDS) and asking the TestSK query for this session is 1/ qS. If A correctly guesses 

b in the TestID query with a non‐negligible advantage ε, B can solve the DBDH problem 

with a non‐negligible advantage ε/qS. By Assumption 4, no probabilistic polynomial 

algorithm can solve DBDH problem with non‐negligible advantage. It is a contradiction. 

Thus, Protocol 1 withstands user anonymity attacks by Definition 7.   
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Chapter 6  

Privacy Protection for TMIS with Multiple 

Servers Using a Biometric-based AKA Protocol 

Telecare medical information systems (TMIS) allow patients remotely log in to 

medical service providers to acquire their medical information and track their health 

status through unsecured public networks. Hence, the privacy of patients is vulnerable 

to various types of security threats and attacks, such as the leakage of medical records or 

login footprints and the forgery attacks. Many three-factor based anonymous 

authentication and key agreement (AAKA) protocols have been proposed for TMIS 

with single server, but none of them is applicable to TMIS with multiple servers.  

In this chapter, we will propose a biometric-based three-factor AAKA protocol in 

TMIS with multiple servers (our Protocol 2) [101], and we will give a formal security 

proof of the proposed protocol. The security of the proposed protocol is based on the 

elliptic curve decisional Diffie-Hellman (ECDDH) problem assumption and hash 

function assumption. We will show that the proposed Protocol 2 is efficient enough for 

low-power mobile devices in Section 9.1.2. 
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6.1 The Framework of an AAKA Protocol in TMIS 

In a TMIS with multiple servers, there are one trusted registration center (RC), 

various medical service providers (Servers), and numerous patients (Users). RC is in 

charge of system initialization, the registration affairs, and keeping the master key of the 

system. Servers may be doctors, case managers, clinics, hospitals, health centers, and so 

on. Figure 6 illustrates the framework of an AAKA protocol in TMIS. To protect the 

privacy of users, servers are regarded as independent entities having distinct private 

keys. Any server cannot compromise the secrecy of the session between a user and 

another server. Each user has a low-power mobile device to communicate to RC and 

servers. Initially, RC establishes the system. Every server and user must register with 

RC through a trustworthy channel when join the system, and RC would generate the 

private key of the server/user and send it back through a trustworthy channel. After 

registration, each user makes online update through a public channel to get the 

necessary information before he/she logs in to an unfamiliar server. Then, a user can use 

his/her private key and the necessary information to remotely log in to a server, 

mutually authenticate with the server, and establish a session key for the upcoming 

secure communications in public channels. 
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Figure 6. The framework of an AAKA protocol in TMIS 

6.2 The Proposed Protocol (Protocol 2: AAKA for TMIS) 

Our Protocol 2 consists of five phases: the initialization phase, the registration 

phase, the online update phase, the login and AKA phase, and the password and 

biometric change phase. 

6.2.1 Initialization Phase 

RC selects a large prime q, an elliptic curve Eq(a, b) over a finite field Fq, a base 

point PEq(a, b), a one-way hash function h:{0, 1}*→Zq
*. RC decides the maximum 

transmission delay T and the generation function Gen and the reproduction function 

Rep of fuzzy extractor. RC chooses xZq
*, keeps x as the master key, and computes 



doi:10.6342/NTU202004337

 

76 

 

X=x·P. RC lets Pub ={X, h, Gen, Rep, p, Ep, P, T} be public parameters. 

6.2.2 Registration Phase 

We are going to describe the server registration and the user registration phases in 

this subsection, and they are illustrated in Figure 7 and Figure 8, respectively. All the 

messages are transmitted in trusted channels in the registration phases. 

[Server Registration] 

When a new server Sj joins the system, Sj chooses an identity IDSj, and sends it to 

RC through a trusted channel. After receiving IDSj from the server, RC computes Sj’s 

secret key kSj = h(IDSj ||x), and sends {kSj, Pub} to Sj through a trusted channel.  

[User Registration] 

When a patient Ui with a portable device wants to be a legal user in the TMIS, the 

following steps are performed. 

Step 1:  Ui freely chooses an identity IDUi and a password PWi. Note that IDUi can be 

either the real identity of Ui or just a pseudonym, which enables Ui to achieve 

strong anonymity. Ui then imprints the biometric via a sensor to get Bi, and the 

device executes the generation function Gen on Bi to produce the secret string 

SSi and the helper string HLPi, i.e. (SSi, HLPi) = Gen(Bi).  
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Figure 7. Server registration phase of our Protocol 2 (AAKA for TMIS) 

 

Figure 8. User registration phase of our Protocol 2 (AAKA for TMIS) 

The device then computes the regenerated password RPWi = h(PWi ||SSi) and 

sends < IDUi, RPWi > to RC. 

Step 2: After receiving a request message from the user, RC computes Ui’s secret key 

kUi by the master key x, i.e. kUi = h(IDUi ||x), di = h(IDUi ||RPWi), and the 

validation value ci = h(di). RC encrypts kUi by di, i.e. ai = kUi ⊕di, and stores {ai, 

ci, Pub} into a smart card, and sents it to Ui. 

Step 3: After receiving the smart card from RC, Ui stores the helper string HLPi into the 
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smart card. Finally, the smart card contains {HLPi, ai, ci, Pub}. 

[Member revocation phase] 

When a legal user or a legal server wants to revoke the previous authorization or 

RC wants withdraw the authorization of a legal user or a legal server, RC adds the 

identity of the revoked member to the certificate revocation list (CRL) and issues the 

updated CRL to each member. 

6.2.3 Online Update Phase 

Before a patient Ui logs in to an unfamiliar server Sj, he/she has to run the online 

update phase once to get the public key PKj of Sj and the common secret key Cij 

between Ui and Sj. Ui can delete < IDSj, PKj, Cij >, which are stored in the smart card, at 

any time after the online update phase. But after deleting it, Ui has to execute online 

update phase again to get < IDSj, PKj, Cij > before Ui logs into server Sj. Ui can ask a 

batch of online update phase for different servers, and can ask for the same server more 

than once. The online update phase is illustrated in Figure 9 and performed as following 

steps. All the messages are transmitted through public channels. 

Step 1: Ui inputs the identity IDUi and the password PWi to the smart card and imprints 

the biometric impression at the sensor to get Bi.  
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Figure 9. Online update phase of our Protocol 2 (AAKA for TMIS) 

 

Ui’s smart card produces the secret string SSi
* by executing the reproduction 

function Rep on the biometric Bi and the helper string HLPi, i.e. SSi
* = Rep(Bi, 

HLPi). Ui’s device computes RPWi
* = h(PWi ||SSi

*), di
* = h(IDUi ||RPWi

*), and 

ci
* = h(di

*), and checks if ci
* = ci. If so, the validity of Ui is confirmed, and Ui’s 

device continues the procedure. Otherwise, Ui’s device terminates it. 

Step 2: Ui’s device generates a random nonce nZp
* and computes N = n·P, K = n·X, 

and DID = IDUi ⊕K. Ui’s device then sends < DID, IDSj, N > to RC. 
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Figure 10. Login and AAKA phase of our Protocol 2 (AAKA for TMIS) 

Step 3: After receiving a request message from the user, RC computes K = x·N, IDUi
* = 

DID⊕K, Ui’s secret key kUi = h(IDUi
* ||x), kSj = h(IDSj ||x), Sj’s public key PKj 

= kSj ·P, and Cij =(kUi
-1 ·h(kSj ||IDUi

*))·P. Finally, RC computes the validation 

value v = h(IDUi
* ||kUi ||PKj ||Cij ||K), and sends < PKj, Cij, v > to Ui. 

Step 4: Ui’s device computes the secret key kUi = ai ⊕di
* and the validation value v* = 

h(IDUi
* ||kUi ||PKj ||Cij ||K), and checks if v* = v. If so, it stores < IDSj, PKj, Cij > 
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into the smart card. 

6.2.4 Login and AAKA Phase  

When a patient Ui wants to log in to a server Sj, the following steps are performed. 

Figure 10 illustrates the login and AAKA phase. 

Step 1: It is the same as the procedure of Step 1 in the online update phase. 

Step 2: Ui’s device generates a random nonce nU and a timestamp TU, computes NU = 

nU·P, and derives the secret key kUi by di
* and ai, which are computed in Step 1 

and stored in the smart card, respectively, i.e. kUi = ai ⊕di
*. Ui’s device 

searches Sj’s public key PKj and Cij in the smart card by Sj’s identity IDSj, and 

computes QU_1 = nU ·PKj and QU_2 = (nU·kUi)·Cij. Ui’s device masks the real 

identity IDUi by QU_1, which only can be computed by the one who has nU or 

kSj, i.e. the dynamic identity DID = IDUi ⊕QU_1, and computes the validation 

value vU = h(IDUi ||QU_1 ||QU_2 ||TU). The device then transmits the login 

request < IDSj, DID, NU, TU, vU > to Sj through an untrusted channel. 

Step 3: When the server Sj receives the login request message from Ui, Sj generates a 

timestamp TS, and verifies (TS  TU). If (TS  TU) > T, Sj rejects the login 

request; otherwise, Sj continues the process. Sj computes QU_1= kSj ·NU, derives 
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the real identity IDUi
* of Ui by computing DID⊕QU_1, and then computes QU_2 

= h(kSj ||IDUi
*)·NU, and the validation value vU

* = h(IDUi
*||QU_1||QU_2||TU). Sj 

verifies vU
*, rejects the login request if vU

*  vU, and continues the process 

otherwise. Sj generates a random nonce nS in Zp
* and computes NS = nS·P, the 

session key SKij = h(QU_1 ||QU_2 ||NS), and the validation value vS = h(IDUi
* 

||IDSj ||SKij ||TU ||TS). Sj then sends < NS, TS, vS > to Ui through an untrusted 

channel. 

Step 4: After receiving < NS, TS, vS >, Ui’s device generates a timestamp TU’, and 

verifies (TU’ –TS). If (TU’ –TS) > T, the device aborts the session; otherwise, 

the device continues the process. The device computes the session key SKij = 

h(QU_1 ||QU_2 ||NS) and the validation value vS
* = h(IDUi ||IDSj ||SKij ||TU ||TS), 

and verifies vS
*, adopts SKij as the common session key if vU

* = vU, and sborts 

the session otherwise. 

Correctness: The session keys computed by Ui and Sj are identical, since QU_1 = 

nU ·PKj = nU ·kSj· P = kSj ·NU, and QU_2 = (nU·kUi)·Cij = (nU·kUi)·(kUi
-1 ·h(kSj ||IDUi

*))·P = 

(nU·h(kSj ||IDUi
*))·P = h(kSj ||IDUi

*)·NU. 
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6.2.5 Password and Biometric Change Phase 

When a user Ui wants to change the password or biometric impression, Ui can 

change them on his/her own by performing the following steps. 

Step 1: It is the same as the procedure of Step 1 in the online update phase. 

Step 2: Ui inputs the new password PWi
new, and imprints new biometric impression Bi

new. 

Ui’s device performs the generation function on Bi
new to get the new secret 

string SSi
new and the new helper string HLPi

new, i.e. (SSi
new, HLPi

new) = 

Gen(Bi
new), and computes the new regenerated password RPWi

new= h(PWi
new 

||SSi
new), di

new = h(IDi ||RPWi
new), ai

new = ai ⊕ di
* ⊕di

new, and the new validation 

value ci
new = h(di

new). Ui’s smart card then replaces ai, ci, and HLPi with ai
new, 

ci
new, and HLPi

new, respectively. 

6.3 Characteristic Analysis 

We analyze the properties of the proposed Protocol 2 point by point in the following. 

 (P1) Three-factor authentication: We use biometric as the third factor of a user in 

Protocol 2. That is, a user uses three factors to login a server: the password, the 

smart card, and the biometric. Thus, Protocol 2 achieves three-factor 

authentication. 
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 (P2) Applicability of multi-server environments: Servers are regarded as 

independent entities and have distinct secret keys kSj = h(IDSj ||x) in Protocol 2, 

hence Protocol 2 is applicable to multi-server environments. 

 (P3) User anonymity and (P4) User untraceability (unlinkability): A user Ui mask 

its identity IDUi by QU_1, where QU_1 = nU PKj. Since only Sj and Ui can compute 

QU_1, no third party can obtain QU_1 to get Ui’s real identity IDUi, thus Protocol 2 

achieves user anonymity. Since nU is different in each session, no third party can 

derive the relation between any two login transmissions. Moreover, we will formal 

prove thay Protocol 2 achieves user anonymity on ECDDH assumption in 

Themrem 5. Moreover, a user can log in to a server under a pseudonym to achieve 

strong anonymity if the user chooses the pseudonym to be his/her identity in the 

user registration phase. 

 (P5) Perfect forward secrecy: We will formal prove that Protocol 2 achieves 

perfect forward secrecy on ECDDH assumption in Theorem 4. 

 (P6) Member revocation: Protocol 2 does not deliberate on the member revocation 

problem, but it can use the certificate revocation list (CRL) to deal with the 

member revocation problem.  
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 (P7) Independent authentication and (P8) Table free: There is a trade off between 

authenticate dependently and maintain tables. A user and a server in Protocol 2 can 

independently authenticate with each other without the help of any third party if 

they store the login information, otherwise, they need to perform online update 

phase again to get the login information to execute the authentication and key 

exchange. 

 (P9) Public key announcement free: There are public keys of servers need to be 

issued to the users. Before a user wants to login a foreign server, the user has to 

make online update with RC to get the server’s public key and the secret 

information. 

 (P10) Formal security proof: We will give the formal proofs of Protocol 2 in 

Section 6.4, and the security of Protocol 2 is based on the Elliptic Curve 

Decisional Diffie-Hellman (ECDDH) problems. 

6.4 Security Analysis 

  In this subsection, we analyze Protocol 2 in the random oracle model [7]. The 

random oracle model assumes that the hash function is actually a true random function 

and it produces a random value for each new query. In the random oracle model, the 
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security of the proposed protocol is based on the ECDDH problem. We formally prove 

that the proposed protocol offers unforgeability, session key secrecy, and perfect 

forward secrecy, and provides user anonymity. We will prove that Protocol 2 offers 

existential unforgeability, session key secrecy and perfect forward secrecy in Theorem 4, 

and prove that Protocol 2 achieves user anonymity in Theorem 5. 

Theorem 4 The proposed Protocol 2 offers existential unforgeability, session key 

secrecy and perfect forward secrecy against adaptive chosen ID attacks on Elliptic 

Curve Decisional Diffie-Hellman (ECDDH) assumption and hash function assumption. 

Proof: Suppose that there is a probabilistic polynomial time adversary A who can break 

the unforgeability or session key secrecy or perfect forward secrecy of Protocol 2 

(AAKA for TMIS) with non‐negligible advantage ε, and given IDU and IDS. Then we 

can construct an algorithm B to solve Elliptic Curve Decisional Diffie-Hellman 

(ECDDH) problem with non‐negligible advantage. Let qU and qS denote the numbers of 

users and servers, respectively. B is given an instance (p, Ep, P, A=aP, B=bP, and C=cP) 

of the ECDDH problem. Then B’s goal is to determine whether C = abP. B runs A as a 

subroutine and simulates its attack environment. First, B chooses x and sets the public 

system parameters Pub ={X, h, Gen, Rep, p, Ep, P, T} by letting X = xP. B permeates 
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the ECDDH problem into the queries on user U (IDU) and server S (IDS), which are 

asked by A.  

Without loss of generality, assume that A does not ask queries for the same 

message more than once. A may ask the following queries and obtain the corresponding 

results: Hash, Extract, Send, Execute, Reveal, Rot, Corrupt, and TestSK, and no Corrupt 

() or Reveal (Π ) query is asked before TestSK (Π ) query. 

B maintains the list LH to ensure identical responses and avoid collision of the hash 

queries, and is LH empty in the beginning. B adds ((IDV ||x), kV), ((kV ||IDU), NULL), and 

((IDU ||x), NULL) to LH. B lets kU 
-1 ·P = A, h(kV ||IDU)·P = B, and kV = h(IDV ||x). B 

simulates the oracle queries of A as follows: 

 Hash (D): When A makes an H-query for D, B returns w if (D, w)LH. Otherwise, 

B returns a random value w and adds (D, w) to LH.  

 Extract (ID): There are two types of extract query. 

- Extractuser (IDα, RPWα): When A asks a user Extract-query for IDα  IDU, B 

makes Hash(ID ||x) query to get k, simulates Hash(ID ||RPWα) query to get 

d, simulates Hash(d) query to get c, computes a = k ⊕ d, and returns {a, 

c, Pub} to A.  
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- Extractserver (ID): When A asks a server Extract-query for ID IDS, B simulates 

Hash (ID ||x) query to get k, and then returns {k, Pub} to A.  

 Send (Π , m): There are four types of send query. 

- Sendupdate (Π , Start): When A asks this query for IDα, B generates a random 

nonce n and computes N = n·P, K = n ·X, and DID = IDα ⊕K. B returns <DID, 

ID, N > to A.  

- Sendupdate (RC, < DID, ID, N >): B computes K = x·N and IDα = DID ⊕ K, and 

simulates Hash (IDα ||x) query to get k and Hash (ID ||x) query to get k.  

1) If IDα = IDU and ID = IDS, B lets CUS =C.  

2) If IDα = IDU and ID  IDS, B lets CU = h(k ||IDU)·A.  

3) If IDα  IDU, B computes PK = k ·P, and C = (k
-1 · h(k ||IDα))·P.  

B then simulates Hash (IDα ||k ||PK ||C ||K) query to get v and returns 

<PK,C, v> to A. 

- SendAKA (Π , Start): B generates a random nonce n and a timestamp T, and 

then simulates Hash (ID ||x) query to get k, and Hash (k||IDα) query to get 

h(k ||IDα). If IDα = IDU and ID = IDS, B lets Qα_2 = n ·B; otherwise, B 

computes N = n ·P and Qα_2 = h(k ||IDα)·N. B then computes Qα_1= k ·N 
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and DID = IDα ⊕Qα_1. B simulates Hash (IDα ||Qα_1 ||Qα_2 ||Tα) query to get vα. 

B returns <ID, DID, Nα, Tα, vα>. 

- SendAKA (Π, <ID, DID, Nα, Tα, vα>): B generates a random nonce n and a 

timestamp T, and verifies (T Tα). If (T Tα) > T, B returns “Reject”. If (T 

Tα)  T, B continues the process. B simulates Hash (ID ||x) query to get k, 

and computes N = n ·P, Qα_1 = k ·Nα, IDα = DID ⊕Qα_1. If IDα = IDU and 

ID=IDS, B uses vα to find ((IDα ||Qα_1 ||Qα_2 ||Tα), vα) in LH to get Qα_2; otherwise, 

B simulates Hash (k ||IDα) query to get h(k ||IDα), and computes Qα_2 = h(k 

||IDα)·Nα. B simulates Hash (IDα ||Qα_1 ||Qα_2 ||Tα) query to get vα
*, and verifies 

vα
*. B returns “Reject” if vα

*  vα; B continues the process otherwise. B simulates 

Hash (Qα_1 ||Qα_2 ||N) query to get SKα, and Hash (IDα ||ID ||SKα ||Tα ||T) 

query to get v. B returns < N, T, v >. 

 Execute (Uα, Sβ): When A asks an Execute (ID , ID) query, B returns the 

transcript < (DID, ID, N), (PK, C, v), (ID, DID, N, T, v), (N, T, v) > by 

simulating above Send queries. 

 Reveal (Π ): There are two types of reveal query as follows: 

- RevealSK (Π ): B returns session key SK by simulating above Send queries if the 
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instance Π  has accepted SK; otherwise, B returns a null value. 

- RevealID (Π ): B returns IDα.  

 Rot (Uα, TYPE): At most two types of Rot query can be asked for a user Uα. B 

responds by the following three types of Rot query.  

- Rot (Uα, PW): B returns PWα.  

- Rot (Uα, BI): B returns Bα.  

- Rot (Uα, SC): B simulates Extractuser (IDα, RPWα) query to get {a, c, Pub}, and 

then returns {a, c, Pub}. 

 Corrupt (Π ): B simulates an Extract (IDα, RPWα) query to get {a, c, Pub}, and 

then returns PWα, Bα, and {a, c, Pub} to A. 

• TestSK (Π ): B flips an unbiased bit b{0,1}. B returns SK if b = 1, and returns a 

random value otherwise.  

If A answers b=1 to the TestSK query, B answers C=abP to the ECDDH problem. If 

A answers b1 to the TestSK query, B answers CabP to the ECDDH problem. The 

success probability of B depends on the event that A asks the TestSK query for user U 

(IDU) and server S (IDS) and correctly guesses b in the TestSK query. In the above 

simulation, the probability that A asks the TestSK query in the l-th session is 1/qU·qS. If A 
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correctly guesses b in the TestSK query with a non‐negligible advantage ε, B solves the 

ECDDH problem with a non‐negligible advantage ε/qU·qS. By Assumption 2, no 

polynomial‐time algorithm can solve ECDDH problem with non‐negligible advantage, 

it is a contradiction. Hence, no probabilistic polynomial time adversary A has a 

non-negligible advantage in the above game played between A and B. Then by 

Definition 6, Protocol 2 offers existential unforgeability, session key secrecy and perfect 

forward secrecy against adaptive chosen ID attacks.  

Theorem 5 The proposed Protocol 2 maintains user anonymity on Elliptic Curve 

Decisional Diffie-Hellman (ECDDH) and hash function assumptions. 

Proof: Suppose that there is a probabilistic polynomial time adversary A who can break 

the anonymity of Protocol 2 (AAKA for TMIS) with running time T, advantage ε. Then 

we can construct an algorithm B to solve Elliptic Curve Decisional Diffie-Hellman 

(ECDDH) problem with non‐negligible advantage. Let qU, qS, and qns, respectively, 

denote the numbers of users, servers, and sessions. B is given an instance (p, Ep, P, A = 

aP, B = bP, and C = cP) of the elliptic curve decision Diffie-Hellman problem. Then 

B’s goal is to determine whether C = abP. B runs A as a subroutine and simulates its 

attack environment. First, B chooses x and sets the public system parameters Pub ={X, h, 
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Gen, Rep, p, Ep, P, T} by letting X = x·P. B gives the public parameters to A. B 

permeates ECDDH problem into the queries, which are asked by A in the l-session, for 

user U (IDU) and server S (IDS). Without loss of generality, assume that A does not ask 

queries for the same message more than once, and the user instance Π  and the server 

instance Π are partners. B maintains the list LH to ensure identical responses and 

avoid collision of the hash queries. B simulates the oracle queries of A as follows:  

 Hash (m), Extract (ID), Sendupdate (Π , Start), SendAKA (Π , Start), SendAKA (Π, 

<ID, DID, Nα, Tα, vα >), Execute (U, S), Reveal (Π ), Rot (Uα, M), and Corrupt 

(Π ) are identical to those queries in the proof of Theorem 4.  

- Sendupdate (Π , < DID, ID, N >): B computes K = x·N and IDα = DID ⊕ K, 

simulates Hash (IDα ||x) query to get k, simulates Hash (ID ||x) query to get k, 

and computes PK = k ·P and C = (k
-1 · h(k ||IDα) )·P. If IDα = IDU and ID 

= IDS, B lets PK =PKS =B. B then simulates Hash (IDα ||k ||PK ||C ||K) 

query to get v and returns < PK, C, v > to A. 

 TestID (Π ): When A makes a Test query, B flips an unbiased bit b{0,1}. B then 

returns ID if b = 1, and else returns a random number. 

If A answers b = 1 to the TestID query, B answers C = abP to the ECDDH problem. 
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If A answers b  1 to the TestID query, B answers CabP to the ECDDH problem. The 

success probability of B depends on the event that A asks the TestID query for the user U 

(IDU) and the server S (IDS) in the l-session. In the above simulation, the probability of 

A asking the TestID query for IDU is 1/qU, and asking the Send query for IDS in the 

l-session is 1/qS·qns. If A correctly guesses b in the TestID query with non‐negligible 

advantage ε, B solves mECCDH problem with non‐negligible advantage at least 

ε/qU·qS·qns. By Assumption 2, no polynomial‐time algorithm can solve ECDDH problem 

with non‐negligible advantage, it is a contradiction. Hence, no probabilistic polynomial 

time adversary A has a non-negligible advantage in the above game played between A 

and B. Then by Definition 7, Protocol 2 offers existential user anonymity against 

adaptive chosen ID attacks.  
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Chapter 7  

PUF Based AKE Protocol for IoT without 

Verifiers and Explicit CRPs 

In the chapter, we will propose a PUF based AKE protocol for IoT (our Protocol 3), 

which has no verifier and no explicit challenge–response pair (CRP). Any two of the 

IoT nodes in the proposed Protocol 3 can freely mutual authenticate with each other 

without the help of a verifier as well as no explicit challenge–response pair (CRP) is 

stored. We will describe the framework and the system assumptions first, and then 

expatiate on our Protocol 3. We then formally prove that our Protocol 3 is secure on 

Elliptic Curve Computational Diffie-Hellman (ECCDH) problem, Decisional Bilinear 

Diffie-Hellman (DBDH) problem, and hash function assumptions. 

7.1 The Framework of a PUF based AKE Protocol for IoT 

The architecture of our Protocol 3 consists of one trusted security credential 

generator (SCG), some data providers (DP), and many IoT nodes. The SCG is 

responsible for setting up the system and generating security credentials for data 

providers and IoT nodes. Data providers are responsible for providing public data for 

IoT nodes during AKE and all the data providers store identical public helper data.  
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Figure 11. The framework of our Protocol 3 (AKE for IoT) 

 

After an IoT node joining the system, all the data providers would store the public 

helper data of the IoT node. When a data provider is disabled, the IoT nodes may seek 

for another data provider to get the public helper data. IoT nodes are regarded as 

physical unclonable function (PUF) enabled provers and have limited computational 

abilities, and they prove their authenticity to another IoT node by using their embedded 

PUF instances. Figure 11 illustrates the framework of our Protocol 3. 

7.2 The Proposed Protocol (Protocol 3: AKE for IoT) 

We describe the system assumptions in an IoT environment, and propose our 

Protocol 3 in the section. Our Protocol 3 consists of three phases: initialization, 

registration, and IoT node the authentication and key exchange (AKE). The registration 

phase and the AKE phase are illustrated in Figure 12, Figure 13, respectively. 

7.2.1 System Assumptions 
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System Model: SCG is assumed to be a trusted entity that generates security 

credentials. Assume that PUF is embedded in each IoT nodes, and the IoT nodes have 

capability to perform cryptographic hash functions and elliptic curve operations, 

including pairing operation and scalar multiplication. DP is assumed to have stable 

storage, stable connection, and the capability to perform a cryptographic hash function. 

Threat Assumptions: Assume that an adversary can eavesdrop, replay, insert, 

delete, or modify any message over an untrustworthy communication channel, and any 

legitimate IoT node can behave as an adversary. The challenge-response characteristics 

is an implicit property in a PUF instance embedded in an IoT node that adversaries 

cannot access it. The goal of an adversary is to impersonate an IoT node to authenticate 

with another IoT node. 

7.2.2 Initialization Phase  

SCG sets up the system in the initial. SCG selects a large prime q, lets Fq be a 

finite field of integers modulo a large prime number q, and lets an elliptic curve E over 

Fq be defined by an equation of the form y2 = x3 + ax + b, where a, bFq satisfy 4a3 + 

27b2  0 (mod q). Let E(Fq) denotes the set of all the points on E. SCG produces a 

bilinear map ê: G1×G1→G2, where G1 is a subgroup of the additive group of points on 
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an elliptic curve over a finite field E(Fq) with order q, and G2 is a multiplicative cyclic 

subgroup with the same order q over Fq. SCG picks a base generator point P in G1, and 

chooses three one-way hash functions h1:{0, 1}*→Zq
*, h2:{0, 1}*→{0, 1}l, where l is a 

constant integer, and H:{0, 1}*→G1. SCG generates the master key MSKZq
*. SCG 

chooses a constant nN, which stands for the number of (Challenge, Response) pairs. 

For each i{1,2,…, n}, SCG randomly generates a seed ti R Zq
*, and computes the 

master private key MRKi = h1(MSK ||ti) and the master public key MPKi = MRKi·P, and 

then appends (i, ti, MRKi) to list Lkey and keeps it in secret. SCG lets Pub = {p, G1, G2, P, 

ê, h1, h2, H, {(i, MPKi)}
n
i=1} be public parameters. 

7.2.3 Registration Phase  

This subsection present the registration phases of the data provider and the IoT 

node, and the revocation phase of IoT node. The entire messages are transmitted 

through a trusted channel in the registration phases, and are transmitted through an 

unsecure channel in the revocation phase. 

[Data provider] 

SCG issues a new data provider DPj by the following processe. SCG generates 

DPj’s identity IDDPj {0, 1}*, and computes DPj’s secret key Kj = H(MSK ||IDDPj).  
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Figure 12. Registration phase of our Protocol 3 (AKE for IoT) 

 

 

Figure 13. AKE phase of our Protocol 3 (AKE for IoT) 
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SCG appends IDDPj to list LDP, which is stored in SCG’s storage, and transmits 

<Pub, IDDPj, Kj > to DPj via a trusted channel. DPj then stores < Pub, IDDPj, Kj > in its 

database. 

[IoT node] 

This phase is executed for every IoT node in a secure and trusted environment 

before deploying these IoT nodes in the communication network. Messages in Step1, 2, 

and 3 are transmitted through trusted channels, and messages in Step 4 are transmitted 

through unsecure channels. 

Step 1: IoT node A sends its identity IDA to SCG. SCG computes CA_i = h1(IDA||ti||MPKi) 

for i{1, 2, …, n}, and sends < {(i, CA_i)}
n
i=1 > back to A. 

Step 2: IoT node A computes RA_i = PUF(CA_i), executes Gen function on RA_i to 

produce the secret key SSA_i and the public key HLPA_i, i.e. Gen(RA_i) = (SSA_i, 

HLPi). IoT Node A then computes PWA_i = H(CA_i || SSA_i) for i{1,2,…, n}, and 

returns {(i, CA_i, HLPA_i, PWA_i)}
n

i=1} to SCG. SCG then computes KA_i = MRKi· 

H(IDA||MPKi), QA_i = KA_i +PWA_i, dA_i = h1(IDA ||MPKi ||CA_i ||HLPA_i ||KA_i), 

and MA_i = (CA_i, HLPA_i, QA_i, dA_i) for i{1, 2,…, n}. 

Step 3: For each data provider DPj, SCG computes Kj = H(MSK||IDDPj) and wj = 
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h2(IDA||{MA_i}
n

i=1||Kj), and sends <IDDPj, IDA, {MA_i}
n
i=1, wj > to DPj.  

Step 4: DPj verifies if wj = h2(IDA ||{MA_i}
n

i=1||Kj ). If so, appends < IDA, {MA_i}
n
i=1 > to 

its database, and then computes vj = h2(wj ||Kj ) and returns < IDDPj, IDA, vj > to 

SCG. SCG then verifies vj. If vj  h2(wj ||Kj ), then SCG resends < IDDPj, IDA, 

{MA_i}
n

i=1, wj > to DPj. 

[IoT revocation phase] 

When SCG wants withdraw the authorization of a legal IoT IDA, SCG executes the 

following steps to delete IDA’s data from data providers. The messages are transmitted 

through unsecure channels. 

Step 1: SCG generates a timestamp T. For each data provider DPj, SCG computes Kj = 

H(MSK||IDDPj) and wj = h2(IDA ||T ||Kj), and sends < IDDPj, IDA, “Revocation”, 

wj > to DPj.  

Step 2: DPj checks the timestamp T and verifies wj. If wj = h2(IDA ||T ||Kj), DPj deletes 

<IDA, {MA_i}
n

i=1> from its database, and then computes vj = h2(wj ||Kj) and 

returns <IDDPj, IDA, vj> to SCG. SCG then verifies if vj = h2(wj ||Kj). If not, SCG 

executes Step 1 again.  
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7.2.4 IoT Node AKE Phase  

When IoT Node A wants to mutually authenticate with IoT Node B through public 

channels and establish a common session key, they perform the following steps: 

Step 1: IoT Node A randomly picks k{1, 2,…, n}, and sends < IDA, k > to IoT Node B 

and the nearest Data Provider, say DPj1. 

Step 2: IoT Node B sends < IDB > to IoT Node A and sends <IDB, k> to the nearest data 

provider, say DPj2. 

Step 3: DPj1 finds (k, MPKk) and < IDA, MA_k > from its database, and sends < IDA, MA_k, 

MPKk > back to IoT Node A via the same channel. DPj2 finds (k, MPKk) and 

<IDB, MB_k> from its database, and sends < IDB, MB_k, MPKk > back to IoT Node 

B. Note that DPj1 and DPj2 may be the same Data Provider, i.e. j1 = j2. 

Step 4: IoT Node A inputs CA_k into its PUF to get RA_k, i.e. RA_k = PUF(CA_k), and 

produces the secret key SSA_k
* by executing Rep function on RA_k and HLPA_k, i.e. 

SSA_k
* = Rep(RA_k, HLPA_k). IoT Node A then computes PWA_k = H(CA_k ||SSA_k

*), 

and KA_k = QA_k  PWA_k, and verifies if dA_i = h1(IDA||MPKk||CA_k||HLPA_k||KA_k). 

If so, IoT Node A randomly generates nAR Zq
*, and computes NA = nA·P, 

y1=ê(KA_k, H(IDB||MPKk)), and vA=h2(IDA ||IDB ||NA ||y1), and then sends <NA, 
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vA> to IoT Node B. IoT Node B simultaneously executes the similar process. IoT 

Node B inputs CB_k into its PUF to get RB_k, i.e. RB_k = PUF(CB_k), and produces 

the secret key SSB_k
* by executing Rep function on RB_k and HLPB_k, i.e. 

SSB_k
*=Rep(RB_k, HLPB_k). IoT Node B computes PWB_k = H(CB_k||SS B_k

*), and 

KB_k = QB_k  PWB_k, and verifies if dB_i = h1(IDB ||MPKk ||CB_k ||HLPB_k ||KB_k). 

If so, IoT Node B randomly generates nB  RZq
*, and computes NB = nB ·P, 

y1=ê(KB_k, H(IDA ||MPKk)), and vB = h2(IDB ||IDA ||NB ||y1), and then sends < NB, 

vB > to IoT Node A. 

Step 5: IoT Node A verifies if vB = h2(IDB ||IDA ||NB ||y1). If so, the validity of IoT Node 

B is confirmed, and IoT Node A computes y2=nA·NB and the common session 

key SK = h1(IDA ||IDB ||NA ||NB ||y1 ||y2). Otherwise, aborts the session. IoT Node 

B simultaneously executes the similar process. IoT Node B verifies if vA = 

h2(IDA ||IDB ||NA ||y1). If so, the validity of IoT Node A is confirmed, and IoT 

Node B computes y2=nB·NA and the session key SK = h1(IDA ||IDB ||NA ||NB ||y1 

||y2). Otherwise, aborts the session. 

Correctness: The session keys computed by IoT Node A and IoT Node B are 

identical, since y1 = ê(KA_k, H(IDB ||MPKk)) = ê(MRKk · H(IDA ||MPKk), H(IDB ||MPKk)) 
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= ê(H(IDA ||MPKk), MRKi · H(IDB ||MPKk)) = ê(KB_k , H(IDA ||MPKk)), and y2 = nA ·NB = 

nA ·nB·P = nB ·nA·P = nB ·NA. 

7.3 Characteristic Analysis 

We analyze the properties of the proposed Protocol 3 point by point in the following. 

 (P1) Three-factor authentication: Protocol 3 adopts PUF as the third 

authentication factor.  

 (P2) Applicability of multi-server environments: Protocol 3 focus on the 

authentication and key exchange between two IoT nodes that this properity is not 

applicable to Protocol 3. 

 (P3) User anonymity and (P4) User untraceability (unlinkability): Protocol 3 does 

provide the anonymity and the untraceability of an IoT. 

 (P5) Perfect forward secrecy: We will prove that Protocol 3 achieves perfect 

forward secrecy on ECCDH assumption in Theorem 6. 

 (P6) Member revocation: When an IoT node is revoked, its helper data stored in 

the data providers would be deleted; nevertheless, a malicious IoT node cannot be 

revoked if it keeps the helper data in the previous session. 

 (P7) Independent authentication: When two IoT nodes want to authenticate with 
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each other, they need to ask for the helper data from the data providers. 

 (P8) Table free: The helper data of IoT nodes are stored in data providers. 

 (P9) Public key announcement free: Protocol 3 adopts the identity of an IoT to be 

its public key; hence no public key needs to be announced. 

 (P10) Formal security proof: We will give the formal proofs of Protocol 3 in 

Section 7.4, and the security of Protocol 3 is based on the Elliptic Curve 

Computational Diffie-Hellman (ECCDH) and the Decisional Bilinear 

Diffie-Hellman (DBDH) assumptions. 

7.4 Security Analysis  

In this section, we will analyze the security of the proposed protocol in the random 

oracle model [7]. In the random oracle model, the hash functions are assumed to be a 

true random function that produces a random value for each new query. The security of 

the proposed protocol is based on Elliptic Curve Computational Diffie-Hellman 

(ECCDH) problem, Decisional Bilinear Diffie-Hellman (DBDH) problem, and hash 

function assumptions. We give formal proofs of the proposed protocol in Theorem 6 

and Theorem 7 to demonstrate that Protocol 3 (AKE for IoT) achieves existential 

session key secrecy and perfect forward secrecy, and achieves existential 
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unforgeryability, respectively.  

Theorem 6 The proposed Protocol 3 achieves existential session key secrecy and 

perfect forward secrecy on the Elliptic Curve Computational Diffie-Hellman (ECCDH) 

assumption and hash function assumption. 

Proof: Suppose that A is a polynomial-time adversary, who can break the session key 

secrecy or the perfect forward secrecy of Protocol 3 (AKE for IoT) with a 

non‐negligible advantage ε. We can construct an algorithm B to solve the ECCDH 

problem with a non‐negligible advantage by using A’s ability of breaking Protocol 3. B 

is given an instance (G1, G2, P, ê, q, A =aP, B =bP) of ECCDH problem, and B’s goal is 

to output abP. B maintains a hash list LH to avoid the collision and ensure the identical 

responses. B generates master secret key MSKZp
* and chooses a constant nZ. For 

each i{1, 2,…, n}, B randomly generates ti, MRKiR Zq
*, appends (h1, (MSK ||ti), MRKi) 

to list LH, computes master public key MPKi = MRKi·P, appends (i, ti, MRKi) to list Lkey, 

and sets the public parameters Pub ={p, G1, G2, P, ê, h1, h2, H, {(i, MPKi)}
n
i=1}.  

Without loss of generality, assume that A does not ask queries for the same 

message more than once, A may ask the following queries and obtain the corresponding 

results: Hash, Extract, Send, Execute, Reveal, Rot, Corrupt, and TestSK, and no Corrupt 
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() or Reveal (Π ) query is asked before TestSK (Π ) query.  

B permeates the ECCDH problem into the queries asked by A in the lth session for 

the instance Π  or Π , where Π  and Π  authenticate mutually and establish a 

common session key. B simulates the oracle queries of A as follows: 

 Hash (type, M): There are three types of hash query in the proposed protocol. B 

returns h if (type, M, h) is in LH. Otherwise, B randomly chooses r1Zq
* and 

r2{0,1}l. If type = H, B computes R = r1 ·P, adds (H, M, R, r1) to LH, and returns 

R. If type = h1, B adds (h1, M, r1) to LH, and returns r1. If type = h2, B adds (h2, M, 

r2) to LH, and returns r2. 

• Extract (IDα): When A asks the Extract query for IDα, B simulates Hash(h1, 

(IDα||ti||MPKi)) query to get Cα_i for i{1,2,…,n}, returns < {(i, Cα_i)}
n
i=1 >, and 

waits for the input. After A inputting {(i, Cα_i, PWα_i)}
n

i=1, B simulates Hash(H, 

(IDα ||MPKi)) query to get H(IDα ||MPKi), computes Kα_i =MRKi ·H(IDα ||MPKi) 

and Qα_i = Kα_i +PWα_i, simulates Hash(h1, (IDα ||MPKi ||Cα_i ||Kα_i)) query to get 

dα_i, and lets Mα_i =(Cα_i,  Qα_i,  dα_i) for i{1, 2,…, n}. For each data provider 

DPj, B simulates Hash(H, (MSK||IDDPj)) query to get Kj and Hash(h2, 

(IDA||{Mα_i}
n

i=1 ||Kj)) query to get wj, and returns < IDDPj, IDα, {Mα_i}
n

i=1, wj >. 
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 SendDB (< IDα, k >): B simulates Hash-query for (H, (IDα ||MPKk)). B finds (k, tk, 

MRKk) in list Lkey, and computes Kα_k = MRKk ·H(IDα ||MPKk). B simulates 

Hash-query for (h1, (IDα ||tk ||MPKk)) to get Cα_k, and computes Pα_k = PUF(Cα_k), 

PWα_k = H(Cα_k ||Pα_k), and Qα_k = Kα_k +PWα_k. B simulates Hash-query for (h1, 

(IDα ||MPKk ||Cα_k ||Kα_k)) to get dα_k, lets Mα_k =(Cα_k,  Qα_k,  dα_k), and returns < 

(k, MPKk), IDα, Mα_k >. 

 SendIoT (Π , <ID, k, Mα_k = (Cα_k,  Qα_k,  dα_k), MPKk>): B computes Pα_k = 

PUF(Cα_k), PWα_k = H(Cα_k ||Pα_k), Kα_k = Qα_k PWα_k. B verifies if dα_k = h1(IDα 

||MPKk ||Cα_k ||Kα_k), and aborts the session if it is not. Otherwise, B computes y1 = 

ê(Kα_k, H(ID ||MPKk)), vA = h2(IDα ||ID ||Nα||y1), and returns < Nα, vA >. 

 Execute (, ): If it is asked for lth session, B lets Nα = A and N = B. Otherwise, B 

randomly generates nα, n R Zq
*, and computes Nα = nα·P and N = n·P. B then 

computes Pα_k = PUF(Cα_k), PWα_k = H(Cα_k ||Pα_k), Kα_k = Qα_k  PWα_k,  y1 = 

ê(Kα_k, H(ID ||MPKk)), vα = h2(IDα ||ID ||Nα ||y1), and v = h2(ID ||IDα ||N ||y1). 

B lets Tag = (IDA ||IDB ||NA ||NB ||y1), and returns < k, IDα, Mα_k = (Cα_k,  Qα_k,  

dα_k), MPKk, ID, M_k = (C_k,  Q_k,  d_k), Nα, vα, N, v>. 

 Reveal (Π ): B runs the simulation of above Send queries, and returns SK if the 
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instance Π  has accepted the session and responds a null value otherwise. 

 Corrupt (, M): B computes and returns PUF(M). 

 TestSK (Π ): B flips an unbiased bit b{0,1}. B returns the session key SK of the 

instance Π  if b=1, and returns a random value if b=0. 

If A can break the session key secrecy or the perfect forward secrecy of the 

proposed protocol, abP should appears in the LH list. B uses Tag to find (h1, M = 

(Tag||y2), r1) in LH, where y2=abP. The success probability of B solving the ECCDH 

problem depends on the event that A asks the Test query in the lth session. Let qn 

denotes the number of sessions, then the probability of A asking the Test query in the lth 

session is 1/qn. If A correctly guesses b in the Test query with a non‐negligible 

advantage ε, B can solve the ECCDH problem with a non‐negligible advantage ε/qn. By 

Assumption 3, no polynomial-time algorithm can solve the ECCDH problem with a 

non‐negligible advantage. It is a contradiction. Thus, no polynomial-time adversary can 

break the session key secrecy or the perfect forward secrecy of Protocol 3 with a 

non‐negligible advantage by Definition 6.  

Theorem 7 The proposed Protocol 3 achieves existential unforgeability of IoT nodes on 

the Decisional Bilinear Diffie-Hellman (DBDH) assumption and hash function 
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assumption. 

Proof: Suppose that A is a polynomial-time adversary, who can forge an IoT node in 

Protocol 3 with a non‐negligible advantage ε. Then we can construct an algorithm B to 

solve the DBDH problem with a non‐negligible advantage by using A’s ability of 

breaking the protocol. Suppose that B is given an instance (G1, G2, P, ê, q, A = aP, B = 

bP, C = cP, g = ê(P, P)d) of DBDH problem, and B’s goal is to determine if g = ê(P, 

P)abc. B permeates the DBDH problem into queries, and chooses target IoT nodes U and 

V. B maintains a hash list LH to avoid the collision and ensure the identical responses. B 

chooses a constant nZ. For each i{1, 2,…, n}, B randomly generates ai, ti, riR Zq
*, 

computes MPKi = ai ·A, appends (i, ti, (MPKi, ai)) to list Lkey, and appends (H, (IDU 

||MPKi), ri ·B, ri) and (H, (IDV ||MPKi), ri ·C, ri) to list LH. B sets the public parameters 

Pub = {p, G1, G2, P, ê, {(i, MPKi)}
n

i=1}.  

Without loss of generality, assume that A does not ask queries for the same 

message more than once, A may ask the following queries and obtain the corresponding 

results: Hash, Extract, Send, Execute, Reveal, Rot, Corrupt, and TestSK, and no Corrupt 

() or Reveal (Π ) query is asked before TestSK (Π ) query. B simulates the oracle 

queries of A as follows: 
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 The Hash, Extract, Reveal, Corrupt, and Test queries are identical to those queries 

in the proof of Theorem 6. 

 SendDB (< IDα, k >): B finds (k, tk, (MPKk, ak)) in list Lkey. If α = U or α = V, B 

randomly chooses Kα_k R G1. If α  U and α  V, B simulates Hash-query for (H, 

(IDα ||MPKk)), finds (H, (IDα ||MPKk), H(IDα ||MPKk), r1) in LH to get r1, and 

computes Kα_k = ak · r1 · A, where ak · r1 · A = MRKk · H(IDα ||MPKk) = Kα_k. B 

then simulates Hash-query for (h1, (IDα ||tk ||MPKk)) to get Cα_k, and computes Pα_k 

= PUF(Cα_k), PWα_k = H(Cα_k ||Pα_k), and Qα_k = Kα_k +PWα_k. B simulates 

Hash-query for (h1, (IDα ||MPKk ||Cα_k ||Kα_k)) to get dα_k, lets Mα_k = (Cα_k,  Qα_k,  

dα_k), and returns < (k, MPKk), IDα, Mα_k >. 

 SendIoT (Π , <ID, Mα_k = (Cα_k,  Qα_k,  dα_k), MPKk >): B computes Pα_k = 

PUF(Cα_k), simulates Hash-query for (H, (Cα_k ||Pα_k)) to get PWα_k, and computes 

Kα_k = Qα_k PWα_k. B simulates Hash-query for (h1, (IDα ||MPKk ||Cα_k ||Kα_k)), 

verifies if dα_k = h1(IDα ||MPKk ||Cα_k ||Kα_k), and returns NULL if it is not true. 

Otherwise, B randomly generates nαR Zq
*, computes Nα = nα·P and y1 = ê(Kα_k, 

H(IDB||MPKk)), simulates Hash-query for (h2, (IDα ||ID ||Nα ||y1)) to get vα, and 

returns < IDα, vα >. 
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 Execute (Π ): When it is asked for IoT Node α, who authenticate with IoT Node , 

B randomly selects k{1, 2,…, n}, finds (k, tk, (MPKk, a)) in list Lkey, and 

simulates SendDB (< IDα, k >) and SendDB (< ID, k >) queries to get < (k, MPKk), 

IDα, Mα_k > and < (k, MPKk), ID, M_k> . 

If α = U and  = V, B finds (H, (IDU ||MPKk), rk·B, rk) and (H, (IDV ||MPKk), rk·C, 

rk) in LH, and computes y1 = kkk rrag  . (Note that y1 = ê(KU_k , H(IDV ||MPKk)) = 

ê(MRKk ·H(IDU ||MPKk), rk·C) = ê(ak ·a·rk ·B, rk ·C)= ê(ak ·rk ·P, rk ·P)abc= kkk rrag  ). 

If α  U, B finds (H, (IDα ||MPKk), H(IDα ||MPKk), r) and (H, (ID ||MPKk), H(ID 

||MPKk), r
*) in LH, and computes Kα_k = ak ·r·A and y1 = ê(Kα_k, H(ID ||MPKk)). 

(Note that Kα_k = MRKk ·H(IDα ||MPKk) = ak ·a·r·P = ak ·r·A).  

If   V, B finds finds (H, (IDα ||MPKk), H(IDα ||MPKk), r) and (H, (ID ||MPKk), 

H(ID ||MPKk), r*) in LH, and computes K_k = ak ·r
*·A and y1= ê(K_k, H(IDα 

||MPKk)). (Note that K_k = MRKk · H(ID ||MPKk) = ak·a·r*·P = ak·r
*·A). 

B then randomly generates nα, nR Zq
*, computes Nα = nα·P and N = n·P, 

simulates Hash-query for (h2, (IDα ||ID ||Nα ||y1)) to get vα and for (h2, (ID ||IDα 

||N ||y1)) to get v, and returns {< IDα, k >, < ID, k >, < IDα, Mα_k, MPKk >, < ID, 

M_k, MPKk >, < Nα, vα >, < N, v >}. 
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If A answers b = 1 to Test query, B answers g = ê(P, P)abc to the DBDH problem. If 

A answers b  1 to Test query, B answers g  ê(P, P)abc to the DBDH problem. The 

success probability of B solving the DBDH problem depends on the event that A asks 

the Test query for IoT node U and V. Let qI denotes the number of IoT nodes, then the 

probability of A asking Execute and Test query for IoT node U (who authenticates with 

IoT node V) or and IoT node V (who authenticates with IoT node U) is 2/(qI ·(qI 1)). If 

A correctly guesses b in the Test query with a non‐negligible advantage ε, B can solve 

the ECCDH problem with a non‐negligible advantage 2ε/(qI ·(qI 1)). By Assumption 4, 

no polynomial-time algorithm can solve the DBDH problem with a non‐negligible 

advantage. It is a contradiction; hence, Protocol 3 achieves existential unforgeability by 

Definition 7.  
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Chapter 8  

CAKE: Compatible Authentication and Key 

Exchange Protocol  Taking a Smart City for 

Example in 5G Networks 

In this section, we take a smart city for example to propose a compatible 

authentication and key exchange (CAKE) protocol and extend it to an anonymous 

CAKE (ACAKE). The benefits of 5G technology, such as high speed, high capacity, 

extremely low latency, and good quality of service of servers, realize the rapid and 

frequent authentication and communication between members in the communication 

networks. In the proposed CAKE/ACAKE protocol, there are four kinds of components: 

one registration center (RC), numerous service providers (Server), plenty of natural 

persons (NP), and a large number of IoT devices. Figure 14 depictes the components of 

a smart city. RC is a trusted third party, which is responsible for system initialization 

and performing the registration, revocation, and key updating for members. Servers can 

have various kinds of functions, such as providing services for NPs, monitor and 

controlling IoT devices, gathering and analyzing data from IoT devices, etc.  
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Figure 14. Components of a smart city 

A server may be a cashier, an Automated Teller Machine (ATM), a housekeeper, a 

web service provider, a cloud service provider, a medical service provider, a library, a 

school, a company, a bank, a city control center, a government department, etc. An IoT 

device is assumed to be embedded Physical Unclonable Functions (PUFs); it may be a 

sensor, an electrical appliance, a traffic signal, a street light, a surveillance camera, a 

vehicular, etc.  

8.1 The Framework of a CAKE/ACAKE Protocol for a Smart 

City 

Here, we present the framework of a CAKE/ACAKE protocol, which is depicted 

in Figure 15. The ACAKE protocol is an extended CAKE protocol, which additionally 

provides an anonymity option for natural persons to protect their privacy. The 

framework of a CAKE/ACAKE protocol consists of four phases: initialization phase, 
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registration phase, online update phase, and CAKE/ACAKE phase.  

In both CAKE and ACAKE protocols, every member has to register to the 

registration center (RC) in a secure environment when it joins the system. In the CAKE 

phase, each member can mutually authenticate with the other member and establish a 

secure session key through a public channel without the help of any third party, even if 

they are different kinds of members. In the ACAKE protocol, NP has an anonymity 

option to run the ACAKE phase with the other NP, Server or IoT device; meanwhile, 

the real identity of NP would not be revealed in the transmitted channel, and the relation 

between NP’s sessions is untraceable. Temporary Mobile Subscriber Identity (TMSI) in 

mobility managementis is randomly assigned by the visitor location register (VLR) to 

every mobile in the area and the moment it is switched on, on the contrary the 

anonymous identity in our ACAKE protocol is decided by each member off-line. 

For the member revocation problem, the proposed CAKE/ACAKE protocol 

employs a key update method to refresh the current secret key for current time period. 

In such case, every member must run the online update phase to update its secret key. In 

particular, members need not run the online update phase in each time period, and the 

member can only run the online update phase in the specific time period. 
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Figure 15. The framework of the proposed CAKE/ACAKE protocol 

 

Before a member executing the compatible authentication and key exchange with 

another member, both of them have to update their secret keys with the help of RC 

through an open channel in the current time period. Once a member is revoked or 

disable, it will not be able to receive the new updated keys in the next time period; that 

is, the disable member would be revoked in the next time period. The length of a time 

period, which is decided by the supervisor, may be hours, days, weeks, or months. If a 

member wants to revoke the previous authorization immediately in the current time 

period, RC revokes the member by the certificate revocation list (CRL). 
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8.2 The Proposed Protocol (Protocol 4: CAKE) 

The proposed CAKE protocol is comprised of four phases: initialization, 

registration, online update, compatible authentication and key exchange (CAKE), and 

password and biometric change phases. We expatiate on these four phases in the 

following. 

8.2.1 Initialization Phase 

RC chooses a large prime q, and defines a finite field Fq and an elliptic curve E(Fq) 

by an equation of the form y2 = x3 + mx + n, where m, nFq satisfy 4m3 + 27n2  0 (mod 

q). RC produces a bilinear map ê : G1×G1→G2, where G1 is a subgroup of the additive 

cyclic group of points on E with order q, and G2 is a multiplicative cyclic subgroup over 

Fq with order q. RC picks a generator point P in G1, and chooses four distinct one-way 

hash functions, namely, H1:{0, 1}*→G1, H2:{0, 1}*→G1, h1:{0, 1}*→{0, 1}l, and h2:{0, 

1}*→{0, 1}l, where l is the fix length of output. RC also generates the master secret key 

MSKZp
*. For each t-time-period, RC randomly generates a seed stZq

*, computes the 

master private key MRKt =h1(MSK||st) and master public key MPKt=MRKt·P, and 

appends (t, st, MRKt, MPKt) to list Lseed and keeps it secret. RC sets the public 

parameters Pub ={q, G1, G2, P, ê , H1, H2, h1, h2}.  
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8.2.2 Registration Phase 

[Natural Person]  

When a natural person NPi with a portable device wants to join to the system, the 

NPi interacts with the RC as the following steps, which are depicted in Figure 16, in a 

trusted environment. 

Step 1: NPi chooses his/her identity IDi and password pwi. Note that NPi can choose 

either the real identity or a pseudonym to be IDi, where the pseudonym enables 

NPi to achieve strong anonymity. NPi imprints his/her biometric to the device to 

get Bi. The device performs the generation procedure Gen of fuzzy extractor on 

Bi to get secret string SSi and helper string HLPi, i.e. (SSi, HLPi) = Gen(Bi). The 

device computes the regenerating password RPWi = H2(IDi ||pwi ||SSi), and sends 

< IDi , RPWi , “NP” > to RC through a trusted channel.  

Step 2: RC checks the current time period index t, and verifies the validity of NPi. If RC 

wants to authorize NPi, RC computes NPi’s secret key Ki_t by using RC’s secret 

key MRKt, encrypts the secret key Ki_t by the regenerating password RPWi, i.e. 

computes Ki_t = MRKt ·H1(IDi ||MPKt) and Qi_t = Ki_t +RPWi. RC then computes 

the confirmation parameter ci = H2(IDj ||RPWi), lets Info {IDi , t, Qi_t , ci, 
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MPKt}, issues a new smart card with Info, and sends the smart card to NPi in a 

trusted environment. 

Step 3: NPi inserts the receiving smart card into the device, and the device appends 

HLPi to the smart card. 

[Server]  

When a new server Sj wants to join the system, it has to register to RC and perform 

the following steps, which are depicted in Figure 17, in a trusted environment.  

Step 1: Sj chooses its identity IDj and password pwj, and gives < IDj, “Server” > to RC. 

Step 2: RC checks the current time period index t, and verifies the validity of Sj. If RC 

wants to authorize Sj, RC computes Sj’s secret key Kj_t by using RC’s secret key 

MRKt, i.e. Kj_t = MRKt · H1(IDj ||MPKt), and sends < t, MPKt, Kj_t > to Sj. 

Step 3: After receiving < Kj_t >, Sj computes its regenerating password RPWj = H2(IDj 

||pwj), Qj_t = Kj_t +RPWj , and cj = H2 (IDj ||RPWj). Sj then lets Info {IDj , t, 

Qj_t , cj , MPKt} and stores Info. 

[IoT Device]  

The following steps, which are depcited in Figure 18, are performed in a trusted 

environment before adding an IoT device Dl into the system. 
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Figure 16. Registration phase for a natural person in our Protocol 4 

 

 

Figure 17. Registration phase for a server in our Protocol 4 

 

 

Figure 18. Registration phase forf an IoT device in our Protocol 4 
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Step 1: RC checks the current time period index t, chooses Dl’s identity IDl, computes 

the challenge string Cl = h1(IDl ||MPKt), gives < IDl, Cl > to Dl, and waits for the 

response. 

Step 2: Dl performs PUF on the challenge string Cl to get the output response Rl, 

performs the generation procedure Gen of fuzzy extractor with BCH encoder 

[110] on Rl to get secret string SSl and helper string HLPl, i.e. Rl =PUF(Cl) and 

(SSl , HLPl) = Gen(Rl). Dl computes the regenerating password RPWl = H2(IDl 

||SSl), and sends < RPWl, HLPl > to RC. 

Step 3: RC computes Dl’s secret key Kl_t by using RC’s secret key MRKt and encrypts 

the secret key Ki_t by the regenerating password RPWi, i.e. Kl_t = MRKt ·H1(IDl 

||MPKt) and Ql_t = Kl_t +RPWl. RC then lets Info {IDl, t, Ql_t, MPKt, HLPl} 

and sends < Infol > to Dl. Dl then stores Infol. 

For convenient, we define an algorithm GETKEY(A) in online update, CAKE, and 

ACAKE phases to be a procedure of getting the secret key of member A. 

[GETKEY(A) Algorithm]  

1) If A is a NP, A inputs IDA and pwA
*, imprints biometric to get BA, the smart card 

performs the deterministic reproduction procedure Rep on BA
* to recover SSA

* from 
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the corresponding helper string HLPA, i.e. SSA
* = Rep(BA

*, HLPA), computes the 

regenerating password RPWA
* = H2(IDA ||pwA

* ||SSA
*), cA

* = H2(IDA ||RPWA
*), and 

checks if cA
* = cA. If so, then the validity of A is confirmed, and then computes the 

secret key KA = QA_t  RPWA
* and outputs KA. Otherwise, the smart card returns a 

random number. 

2) If A is a server, A inputs IDA and pwA
*, computes the regenerating password RPWA

*  

= H2(IDA ||pwA
*), derives its secret key KA from QA_t by using RPWA

*, i.e. KA_t = QA_t  

 RPWA
*, and outputs KA. 

3) If A is an IoT, A computes the challenge string CA = h1(IDA ||MPK), performs PUF 

on CA to get the response string RA, performs deterministic reproduction procedure 

Rep on RA to recover SSA from the corresponding helper string HLPA , i.e. RA = 

PUF(CA) and SSA = Rep(RA , HLPA), computes the regenerating password RPWA = 

H2(IDA ||SSA), derives its secret key secret key KA_t from QA_t by using RPWA
*, i.e. 

KA_t = QA_t RPWA, and outputs KA_t. 

8.2.3 Online Update Phase 

Each NP, server, and IoT device needs to perform the following steps through 

public channels to online update its secret key before it authenticates with another 
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member in the current t-time-period. This phase is depicted in Figure 19.  

Step 1: The entity, say Entity A, executes GETKEY(A) algorithm to get A’s secret key 

KA_t, generates a random number nR Zq
*, computes N1=n·P, R=n·MPKt, N2 = 

h2(IDA ||t||N1 ||R ||KA_t), and sends < IDA, t, N1, N2, “Update” > to RC through an 

untrusted channel. 

Step 2: RC checks the index t* of current time period, verifies the validity of IDA. RC 

computes A’s newer secret key KA_t* = MRKt* ·H1(IDA ||MPKt*), A’s older secret 

key KA_t = MRKt ·H1(IDA ||MPKt), and R = MRKt ·N1. RC then verifies if N2 = 

h2(IDA ||t||N1 ||R||KA_t). If not, RC aborts it. Otherwise, RC computes UA_t* = KA_t* 

+ H2(KA_t ||R), VA_t* = MPKt* +H2(KA_t ||N1), and dA_t = h2(MPKt* ||KA_t* ||KA_t ||R), 

and sends < IDA, t*, UA_t*, VA_t*, dA_t* > to A. 

Step 3: A derives A’s newer secret key secret key KA_t* from UA_t* and derives the newer 

master public key MPKt* by using A’s older secret key KA_t, i.e. KA_t* = UA_t* 

H2(KA_t ||R) and MPKt* = VA_t* H2(KA_t ||N1). A then computes Q =QA KA_t 

KA_t*, and verifies if dA_t* = h2(MPKt ||KA_t* ||KA_t ||R). If so, A rewrites QA_t Q, 

tt*, and MPKt MPKt*. 
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8.2.4 CAKE Phase 

When two entities, say Entity A and Entity B, want to mutually authenticate with 

each other in t-time-period and create a secure session key, they perform the following 

steps, which are depicted in Figure 20, through a public channel. Note that the entity 

may be one of natural person, server, and IoT device. 

Step 1: A generates a randon number nAR Zq
*, computes NA = nA·P, and sends < IDA, 

NA, “AKE” > to B through an untrusted channel. 

Step 2: B executes GETKEY(B) algorithm to get B’s secret key KB_t, generates a randon 

number nBR Zq
*, computes NB = nB ·P, y1 = nB ·NA, y2 = ê(KB_t, H1(IDA ||MPKt )), 

and vB = h2(IDA ||IDB ||MPKt ||y1 ||y2), and sends < IDB, NB, vB > to A through an 

untrusted channel. 

Step 3: A performs GETKEY(A) algorithm to get A’s secret key KA_t, computes y1 = 

nA ·NB and y2 = ê(KA_t, H1(IDB ||MPKt)), and verifies if vB = h2(IDA ||IDB ||MPKt 

||y1 ||y2). If so, the authority of B is confirmed, and A computes the session key 

SK = h1(IDA ||IDB ||NA ||NB ||y1 ||y2) and vA = h2(IDA ||IDB ||h2(SK)), and sends < 

vA > to B. 
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Figure 19. Online update phase of our Protocol 4 

 
 

 

Figure 20. CAKE phase of our Protocol 4 
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Figure 21. ACAKE phase of our Protocol 4 

Step 4: B computes the session key SK = h1(IDA ||IDB ||NA ||NB ||y1 ||y2) and verifies if vA 

= h2(IDA ||IDB ||h2(SK)). If so, the authority of A is confirmed and B accepts SK 

as the session key. 

Correctness: The session keys SK = h1(IDA ||IDB ||NA ||NB ||y1 ||y2) computed by 

IoT Node A and IoT Node B are identical, since the following equations hold. 

y1 = nB ·NA = nB ·nA ·P = nA ·nB ·P = nA ·NB. 

y2 = ê(KB_t, H1(IDA ||MPKt)) = ê(MRKt ·H1(IDB||MPKt), H1(IDA||MPKt ))  

= ê(H1(IDB||MPKt), MRKt ·H1(IDA ||MPKt )) = ê(H1(IDB ||MPKt), KA_t)  

= ê(KA_t, H1(IDB ||MPKt)). 
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8.2.5 Password and Biometric Change Phase 

[Nature Person] 

When a natural person NPi wants to change the password or biometric impression, 

NPi can change them on his/her own by performing the following steps. 

Step 1: NPi inputs his/her identity IDi and password pwi
*, imprints his/her biometric on 

the device to get Bi
*, and the device performs the deterministic reproduction 

procedure Rep on Bi
* to recover SSi

* from the corresponding helper string HLPi, 

which is stored in the smart card, i.e. SSi
* = Rep(Bi

*, HLPi). The device 

computes the old regeneration password RPWi
* = H2(IDi ||pwi

* ||SSi
*), the old 

confirmation parameter ci
* = H2(IDi ||RPWi

*), and checks if ci
* = ci. If so, the 

validity of NPi is confirmed, and the smart card continues the process. 

Otherwise, the smart card terminated it. 

Step 2: NPi inputs the new password PWi
new, and imprints the new biometric impression 

Bi
new. NPi’s device performs the generation procedure Gen on Bi

new to get secret 

string SSi
new and helper string HLPi

new, i.e. (SSi
new, HLPi

new) = Gen(Bi
new). The 

device then computes the new regenerating password RPWi
new = H2(IDi ||pwi

new 

||SSi
new), Qi_t

new= Qi_t RPWi
*+RPWi

new, and ci
new= H2(IDi ||RPWi

new). NPi’s 
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device then replaces Qi_t, ci, and HLPi with Qi_t
new, ci

new, and HLPi
new in the 

smart card, respectively. 

[Server] 

When a server Sj wants to change the password, Sj can change them on his/her own 

by performing the following steps.  

Step 1: Sj inputs the identity IDj, the old password pwj
*, and the new password pwj

new. Sj 

computes the old regenerating password RPWj
*= H2(IDj ||pwj

*) and the old 

confirm parameter cj
*=H2(IDj||RPWj

*), and checks if cj
* = cj. If so, the validity 

of the old password pwj is confirmed and Sj continues the process. Otherwise, 

Sj terminated the process.  

Step 2: Sj computes the new regenerating password RPWj
new = H2(IDj ||pwj

new), Qj_t
new = 

Qj_t  RPWj
*+RPWj

new, and the new confirm parameter cj
new = H2(IDj ||RPWj

new). 

Sj then replaces Qj_t and cj with Qj_t
new and cj

new, respectively. 

8.3 The Proposed Protocol (Protocol 4: ACAKE) 

The proposed ACAKE protocol is an extension of the CAKE protocol, which has 

extra anonymous authentication & key exchange (ACAKE) phase for natural persons. 

We let the identity be the public key to avoid public key announcement problem. 
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The GETKEY algorithm and initialization, registration, online update, AKE, and 

password and biometric change phases are the same as those in the proposed CAKE 

protocol. NP can additionally perform the ACAKE phase as follows, which is depicted 

in Figure 21, to make AKE with another member, while keeping secrecy of his/her real 

identity.  

8.3.1 ACAKE Phase 

When a natural person, say NPi, wants to anonymously authenticate with Entity B, 

whose identity is known by NPi, they perform the following steps to mutually 

authenticate with each other and establish a secure common session key through a 

public channel. 

Step 1: NPi randomly generates niR Zq
*, computes Ni = ni ·P, TK = ê(ni·MPKt, 

H1(IDB||MPKt )), and anonymous identity AID = TK IDi, and sends <AID, Ni, 

“ACAKE” > to B. 

Step 2: B randomly generates nBR Zq
*, computes NB = nB ·P, KB_t GETKEY(B), 

TK=ê(Ni, KB_t), IDi = AIDTK, y1 = nB ·Ni, y2 = ê(KB_t, H1(IDi ||MPKt)), and vB= 

h2(IDi ||IDB ||MPKt ||y1 || y2). B then sends < NB, vB > to NPi. 

Step 3: NPi performs Ki_tGETKEY(NPi), computes y1 = ni ·NB and y2 = ê(Ki_t, H1(IDB 
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||MPKt)), and verifies if vB = h2(IDi ||IDB ||MPKt ||y1 ||y2). If so, the authority of 

B is confirmed, and NPi computes session key SK = h1(IDi ||IDB ||Ni ||NB ||y1||y2) 

and vi = h2(IDi ||IDB ||h2(SK)), and sends <vi> to B. 

Step 4: B computes SK = h1(IDi ||IDB ||Ni ||NB ||y1 ||y2), and verifies if vi = h2(IDi ||IDB || 

h2(SK)). If so, the authority of NPi is confirmed and SK is accepted as the session 

key. 

8.4 Characteristic Analysis 

We analyze the properties of the proposed Protocol 4 point by point in the following. 

 (P1) Three-factor authentication: We use biometric as the third authentication 

factor of nature persons, and use PUF as the third authentication factor of IoT 

devices. 

 (P2) Applicability of multi-server environments: Servers are regarded as 

independent entities and have distinct secret keys Kj_t =MRKt  H1(IDj ||MPKt) in 

Protocol 4, hence Protocol 4 is applicable to multi-server environments. 

 (P3) User anonymity and (P4) User untraceability (unlinkability): An anonymous 

nature person NPi mask its identity IDi by TK = ê(ni·MPKt, H1(IDB||MPKt )). Since 

only Sj and the login entity can compute TK, no third party can obtain TK to get 
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NPi’s real identity IDi, thus Protocol 4 achieves user anonymity. Since ni are 

different in each session, no third party can derive the relation between any two 

login transmissions. Moreover, we will formal prove that Protocol 4 achieves user 

anonymity on DBDH assumption in Theorem 10. Moreover, a nature person can 

perform AAKA with another entity under a pseudonym to achieve strong 

anonymity if the nature person chooses the pseudonym to be his/her identity in the 

registration phase. 

 (P5) Perfect forward secrecy: We will prove that Protocol 4 achieves perfect 

forward secrecy on ECCDH assumption in Theorem 8. 

 (P6) Member revocation: Protocol 4 uses online update to deal with member 

revocation problem that the revoked member cannot execute the online update 

phase to get its newer secret keys in the next time period. The time period may be 

hours, days, or weeks, and it is decided by RC. 

 (P7) Independent authentication: Any two valid entities in Protocol 4 can 

independently authenticate with each other without the help of any third party. 

 (P8) Table free: No table needs to be stored or maintained in Protocol 4. 

 (P9) Public key announcement free: Protocol 4 adopts the identities to be the 
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public keys, hence no public key needs to be announced. 

 (P10) Formal security proof: We will give the formal proofs of Protocol 4 in 

Section 8.5, and the security of Protocol 4 is based on the Elliptic Curve 

Computational Diffie-Hellman (ECCDH) and the Decisional Bilinear 

Diffie-Hellman (DBDH) problems. 

8.5 Security Analysis 

We propose threat assumptions and construct an adversarial model for the 

CAKE/ACAKE protocol in this section. We then formally prove that our Protocol 4 

(CAKE/ACAKE for a smart city) achieve existential session key secrecy and perfect 

forward secrecy under ECCDH and hash function assumptions, and achieve existential 

unforgeability under the DBDH and hash function assumptions in Theorem 8 and 

Theorem 9, respectively. We also formally prove that our Protocol 4 (ACAKE for a 

smart city) achieves existential anonymity under DBDH and hash function assumptions 

in Theorem 10.  

Theorem 8 The proposed Protocol 4 (CAKE/ACAKE for a smart city) achieve 

existential perfect forward secrecy and secrecy of session key on the Elliptic Curve 

Computational Diffie-Hellman (ECCDH) and hash function assumptions. 
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Proof: Suppose that there are one trusted third party RC, m Server, n Natural Persons 

(NP), and d IoT Devices in the smart city system. Each entity has a unique identity. 

Suppose that there is an adversary A, who can break the perfect forward secrecy or the 

secrecy of session key of Protocol 4 (CAKE/ACAKE for a smart city) with a 

non‐negligible advantage in probabilistic polynomial time. Then we can construct a 

Challenge Algorithm B to solve ECCDH problem with a non‐negligible advantage by 

using A’s ability of breaking the protocol. An instance (G1, G2, P, ê, q, X = xP, Y = yP) 

of ECCDH problem is given to B, and B’s goal is to output xyP. B permeates the 

ECCDH problem into the queries, which are asked by A in l-session for Π  and its 

partner Π . B manages one time seed list Lseed, and three hash lists LH1, LH2, Lh1, and Lh, 

which are initially empty. B generates master secret key MSKZp
*.  

For each t-time-period, B randomly generates st, rt Zq
*, sets master private key 

MRKt = h1(MSK||st) and master public key MPKt = MRKt ·P, appends ((MSK||st), rt, rt ·P) 

to list Lh1 and (t, st, MRKt, MPKt) to list Lseed. B sets Pub = {q, G1, G2, P, ê} to be public 

parameters.  

Without loss of generality, assume that A does not ask queries for the same 

message more than once, A may ask the following queries and obtain the corresponding 
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results: Hash, Extract, Send, Execute, Reveal, Rot, Corrupt, and TestSK, and no Corrupt 

() or Reveal (Π ) query is asked before TestSK (Π ) query. B simulates the oracle 

queries: 

 Hash (D): B checks the hash lists, and returns the corresponding value if it is in the 

list. Otherwise, B randomly generates wZq
* and d{0,1}l, returns the value by the 

following three different types of hash queries. 

- HashH1 (D): Compute W = w ·P, append (D, w, W) to list LH1, and return W.  

- HashH2 (D): Compute W = w ·P, append (D, w, W) to list LH2, and return W.  

- Hashh1 (D): Append (D, d) to list Lh1, and return d. 

- Hashh2 (D): Append (D, d) to list Lh2, and return d. 

 GETKEY(A) Algorithm: If A is a NP, inputs IDA, pwA, and Bi, computes SSA = 

Rep(BA , HLPA), simulates Hashh1 query to get RPWA = H2(IDA  ||pwA ||SSA), 

computes KA = QA RPWA , and returns KA. If A is a server, A inputs IDA and pwA, 

simulates HashH query to get RPWA = H2(IDA ||pwA), computes KA_t = QA RPWA, 

and returns KA. If A is an IoT, A computes CA=h1(IDA||MPK), performs RA = 

PUF(CA), computes SSA = Rep(RA, HLPA), makes Hashh1 query to get RPWA = 

H2(IDA ||SSA ), computes KA=QARPWA, and returns KA. 
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 Extract (, M): If  is one of the members, returns “Reject”. Otherwise, returns the 

corresponding registration parameters as follows. B checks the current time period 

t, and list Lseed to get (t, st, MRKt, MPKt). 

- M = < ID, RPW, “NP” >: B simulates HashH1 query to get H1(ID ||MPKt), 

computes K_t = MRKt ·H1(ID ||MPKt) and Q_t = Kα_t+RPW, lets Info {ID, 

t, Q, MPKt}, and returns Info. 

- M = < ID, “Server” >: B simulates HashH1 query to get H1(ID ||MPKt), 

computes K_t = MRKt ·H1(ID ||MPKt), and returns < t, MPKt, K_t >. 

- M = < “IoT” >: B chooses ID, simulates Hashh1 query to get C = h1(ID 

||MPKt), returns <C>, and waits for the input <RPW, HLP>. B simulates 

HashH1 query to get H1(ID ||MPKt), computes K_t = MRKt · H1(ID ||MPKt) 

and Q_t = K_t +RPW, and lets Info { ID, t, Q, MPKt, HLP}, and returns 

Info. 

 Send (Π , M): There are three different types of Send query in the proposed 

protocols: Update, CAKE, and ACAKE. Assume that current time is in 

t*-time-period. B checks list Lseed to get (t*, st*, MRKt*, MPKt*) and responds 

according to the type of Send query. 
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- Send (RC, < IDA, t, N1, N2, “Update” >): B checks list Lseed to get (t, st, MRKt, 

MPKt), simulates HashH1 query to get H1(IDA ||MPKt) and H1(IDA ||MPKt*), 

computes KA_t = MRKt·H1(IDA||MPKt), KA_t* =MRKt* ·H1(IDA ||MPKt*), and R = 

MRKt ·N1. B simulates HashH2 query to get H2(KA_t ||R), computes UA_t* =KA_t* 

+H2(KA_t ||R) and VA_t* = MPKt* +H2(KA_t ||N1), and simulates Hashh2 query to 

get dA_t* = h2(MPKt* ||KA_t* ||KA_t ||R). B then returns <IDA, t*, UA_t*, VA_t*, dA_t* >. 

- Send (Π , < IDA, NA, “CAKE” >): B randomly generates nR Zq
*, computes N 

= n·P, makes GETKEY() algorithm to get K_t, computes y1 = n ·NA. B 

simulates HashH1 query to get H1(IDA ||MPKt), computes y2 = ê(K_t, H1(IDA || 

MPKt)), simulates Hashh2 query to get v = h2(IDA ||ID ||MPKt ||y1 ||y2). B 

returns < ID, N, v  >. 

- Send (Π , < AID, NA, “ACAKE” >): B randomly generates n R Zq
*, computes 

N = n ·P, makes GETKEY() algorithm to get K_t, computes TK = ê(NA, 

K_t), IDA = AID TK, and y1 = n ·NA. B simulates HashH1 query to get H1(IDA 

||MPKt), computes y2 = ê(K_t, H1(IDA ||MPKt)), and simulates Hashh2 query to 

get v = h2(IDA ||ID ||MPKt || y1 ||y2). B then returns < ID, N, v  >. 

• Execute (Π , Π ): If Π = Π  and Π = Π , B lets Nα = X, N = Y, y1 = NULL, 
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and Tag = (IDU ||IDV ||X||Y), and randomly chooses v R {0, 1}l. Otherwise, B 

randomly generates nα, n R Zq
*, and computes Nα = nα·P, N = n ·P, and y1 = 

n ·Nα. Suppose that current time is in t-time-period, B checks list Lseed to get (t, st, 

MRKt, MPKt). 

- ExecuteUPDATE (, RC): B chooses tOLD-time-period, lets N1 = Nα, computes R = 

nα ·MPK(t OLD), simulates Hashh2 query to get N2 = h2(IDA || tOLD ||N1 ||R ||KA_(t 

OLD)), and simulates Send (RC, < IDα, t
OLD, N1, N2, “Update” >) query to get < 

IDα, t, Uα_t, Vα_t, d_t >. B then returns < IDα, t
OLD, N1, N2, “Update” > and <IDα, t, 

Uα_t, Vα_t, dα_t>. 

- ExecuteCAKE (Π , Π ): B makes GETKEY( ) algorithm to get K_t, simulates 

HashH query to get H(IDα||MPKt), and computes y2 = ê(K_t , H1(IDα ||MPKt)). 

If Π ≠ Π  or Π ≠ Π , B simulates Hashh2 query to get v = h2(IDα ||ID 

||MPKt ||y1 ||y2 ), and simulates Hashh1 query to get SK = h1(IDα ||ID ||Nα ||N 

||y1 ||y2). B then simulates Hashh2 query to get h2(SK) and vα = h2(IDα ||ID || 

h2(SK)), and returns < IDα , Nα , “CAKE” >, < ID , N , v >, < vα >. 

- ExecuteACAKE (Π , Π ): B computes TK = ê(nα ·MPKt, H1(ID ||MPKt)) and 

AID = TK IDα. B makes GETKEY( ) algorithm to get K_t, simulates HashH1 
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query to get H1(IDα ||MPKt), computes y2 = ê(K_t, H1(IDα ||MPKt)). If 

Π ≠ Π  or Π ≠ Π , B simulates Hashh2 query to get v = h2(IDα ||ID 

||MPKt ||y1 ||y2), and simulates Hashh1 query to get SK = h1(IDα ||ID ||Nα ||N 

||y1 ||y2). B then simulates Hashh2 query to get vα = h2(IDα ||ID ||h2(SK)), and 

returns < AID, Nα , “ACAKE” >, < ID, N, v  >, and < vα >. 

• Reveal (Π ): If entity  has accepted a session key, say SK, in its s-session, B 

returns SK. Otherwise, B returns “NULL”.  

• Rot: The following are the three types of Rot query. Note that at most two types of 

Rot query can be asked for a natural person NPα. 

- Rot (NPα, PW): B returns pwα.  

- Rot (NPα, BI): B returns Bα.  

- Rot (NPα, SC): B simulates Extractuser (NPα, < IDα, RPWα, “NP”>) query to get 

{IDα, t, Qα, MPKt, Pub} and returns {IDα, t, Qα, MPKt, Pub}. 

• Corrupt (): If entity  is one of the system members, B runs the same procedures 

of Extract (, M) query, and returns the corresponding result.  

• TestSK (Π ): B flips an unbiased bit b{0,1}. B returns entity’s real session key in 

its s-session if b = 1, and returns a random value if b = 0. 
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• TestID (Π ): B flips an unbiased bit b{0,1}. B returns entity’s real identity if b=1, 

and returns a random value if b = 0. 

If A can successfully break the perfect forward secrecy or the secrecy of session 

key of Protocol 4, xyP should appears in the Lh1 list. B uses Tag to find (M=(Tag|| y1||y2), 

r, R) in Lh1, where y1 = xyP and R = SK. Then B answers xyP to ECCDH problem. The 

successful probability of B solving ECCDH problem depends on the successful 

probability of A asking TestSK query in l-session for Π  or its partner Π  and breaking 

the perfect forward secrecy or the secrecy of session key of Protocol 4. The successful 

probability of B solving ECCDH problem depends on the event that A asking the TestSK 

query in the l-session for Π  or its partner Π  and breaking the session key secrecy or 

the perfect forward secrecy of Protocol 4. The probability of A asking the TestSK query 

in the l-session for Π  or its partner Π  is 1/qn, where qn is the total number of 

sessions. If A successfully guesses b in TestSK query with advantage , which is 

non‐negligible, then B can solve ECCDH problem with advantage /qn, which is also 

non‐negligible. It contradicts ECCDH assumption. Thus, no polynomial-time adversary 

can break the perfect forward secrecy or the secrecy of session key of Protocol 4 with a 

non‐negligible advantage.  
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Theorem 9 The proposed Protocol 4 (CAKE/ACAKE for a smart city) achieve 

existential unforgeability on Decisional Bilinear Diffie-Hellman (DBDH) and hash 

function assumptions. 

Proof: Suppose that there are one trusted third party RC, m Server, n Natural Persons 

(NP), and d IoT Devices in the smart city system, and each entity has a unique identity. 

Suppose that there is an adversary A, who can forge a member to cheat another member 

in Protocol 4 (CAKE/ACAKE for a smart city) with a non‐negligible advantage in 

probabilistic polynomial time. Then we can construct a Challenge Algorithm B to solve 

DBDH problem with a non‐negligible advantage by using A’s ability of forging a 

member. An instance (G1, G2, P, ê, q, X = xP, Y = yP, Z = zP, g) of DBDH problem is 

given to B, and B’s goal is to determine if g = ê(P, P)xyz.  

B guesses that A tends to forge member U to cheat member V, and permeates the 

DBDH problem into the queries. A cannot ask Corrupt query for U or for V. B manages 

a time seed list Lseed, and three hash lists LH1, LH2, Lh1, and Lh2, which are initially empty. 

For each t-time-period, B randomly generates at, rtR Zq
*, computes MPKt = at ·X, 

appends (t, at, MPKt) to list Lseed, and appends ((IDU ||MPKt), rt, rt ·Y) and ((IDV ||MPKt), 

rt, rt ·Z) to list LH1; i.e. let H1(IDU ||MPKt) = rt ·Y and H1(IDV ||MPKt) = rt ·Z. Note that 
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MRKt  = at ·x is unknown here. B sets Pub ={q, G1, G2, P, ê} to be public parameters.  

Without loss of generality, assume that A does not ask queries for the same 

message more than once, A may ask the following queries and obtain the corresponding 

results: Hash, Extract, Send, Execute, Reveal, Rot, Corrupt, and TestSK, and no Corrupt 

() or Reveal (Π ) query is asked before TestSK (Π ) query. B simulates the oracle 

queries: 

 The Hash, Reveal, Rot, Corrupt, and Test queries are identical to those in the proof 

of Theorem 8. 

 Extract (, M): If  is one of the members, returns “Reject”. Otherwise, returns the 

corresponding registration parameters as follows. B checks the current time period 

t and list Lseed to get (t, at, MPKt). 

- M = <ID, RPW, “NP”>: B simulates HashH1 query for (IDα ||MPKt), finds 

((IDα ||MPKt), r, H1(IDα ||MPKt)) in LH to get r, and computes Kα_t = at ·r·X. 

Note that Kα_t = MRKt ·H1(IDα ||MPKt) = at ·r·X. B computes Q_t =Kα_t+ RPW, 

lets Info {ID, t, Q, MPKt}, and returns Info. 

- M = < ID, “Server” >: B simulates HashH1 query for (IDα ||MPKt), finds ((IDα 

||MPKt), r, H1(IDα ||MPKt)) in LH1 to get r, and computes Kα_t = at ·r·X. B 
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returns < t, MPKt, K_t >. 

- M = < “IoT” >: B chooses ID, simulates Hashh1 query to get C = h1(ID || 

MPKt), returns < C >, and waits for the input < RPW, HLP >. B simulates 

HashH1 query for (IDα ||MPKt), finds ((IDα ||MPKt), r, H1(IDα ||MPKt)) in LH1 to 

get r, computes Kα_t = at ·r·X and Q_t = K_t +PWl, and lets Info { ID, t, Q, 

MPKt, HLP}, and returns Info. 

 Send (Π , M): There are three different types of Send query in the proposed 

protocols: Update, CAKE, and ACAKE. Assume that current time is in 

t-time-period. B checks list Lseed to get (t, at, MPKt) and responds according to the 

type of Send query. 

- Send (RC, <IDα, t
OLD, N1, N2, “Update” >): B checks list Lseed to get (tOLD, at

 
OLD, 

MPKt
OLD), simulates HashH1 query for (IDα||MPKt), finds ((IDα||MPKt), rt, 

H1(IDα ||MPKt)) and  ((IDα ||MPKt
OLD), rtOLD, H1(IDα ||MPKt

OLD)) in LH1 to get 

rt and rtOLD. If {U, V}, B finds ((IDA ||t
OLD ||N1 ||R ||Kα_(tOLD)), N2) in list Lh2 to 

get R and Kα_(tOLD), and computes Kα_t = at ·atOLD
-1 ·rt ·rtOLD

-1·Kα_(tOLD). If   

{U, V}, B computes Kα_(tOLD) =at ·rtOLD ·X and Kα_t = at ·rt ·X. B then simulates 

HashH2 query to get H2(Kα_(tOLD) ||R) and dα_t = H2(MPKt ||Kα_t ||Kα_(tOLD) ||R), 



doi:10.6342/NTU202004337

 

143 

 

computes Uα_t = Kα_t +H2(Kα_(tOLD) ||R) and Vα_t = MPKt + H2(Kα_(tOLD) ||N1), 

and returns < IDα, t, Uα_t, Vα_t, dα_t >. 

- Send (Π , < IDα, Nα, “CAKE” >): B randomly generates nR Zq
*, computes N 

= n ·P and y1 = n ·Nα, and simulates HashH query to get H1(IDα ||MPKt) and 

H1(ID ||MPKt). If {U, V} and {U, V}, B randomly chooses y2 = g. If 

{U, V} and {U, V}, B finds ((IDα ||MPKt), r, H1(IDα ||MPKt)) in LH1 to 

get r, and computes Kα_t = at ·r·X and y2 = ê(Kα_t, H1(ID ||MPKt)). If {U, V}, 

B finds ((ID ||MPKt), r, H1(ID ||MPKt)) in LH1 to get r, and computes K_t = 

at ·r·X and y2 = ê(K_t, H1(IDα ||MPKt)). B then simulates Hashh2 query to get v 

= h2(IDα ||ID ||MPKt || y1 ||y2), and returns < ID, N, v >. 

- Send (Π , < AID, Nα, “ACAKE” >): B randomly generates n R Zq
*, computes 

N = n ·P and y1 = n ·Nα, and simulates HashH1 query to get H1(IDα ||MPKt) 

and H1(ID ||MPKt). If {U, V}, B randomly chooses y2 = g. If {U, V}, B 

finds ((IDα ||MPKt), r, H1(IDα ||MPKt)) in LH1 to get r, and computes K_t = 

at ·r·X, TK = ê(Nα, K_t), IDα = AID TK, y2 = ê(K_t, H1(IDα ||MPKt)). B then 

simulates Hashh2 query to get v = h2(IDα ||ID ||MPKt ||y1 ||y2), and returns < 

N, v >. 
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 Execute (Π , Π ): B simulates corresponding Send query to get the result and 

return it. 

B answers g = ê(P, P)xyz to DBDH problem if A answers b = 1 to TestSK query, and 

answers g  ê (P, P)xyz if A answers b = 0. Whether B can successfully solve DBDH 

problem depends on whether A asks Send and TestSK query for member U and V. The 

the probability of A asking Send and TestSK query for member U, whose partner is V, or 

for member V (whose partner is U) is 2 / (m+n+d). If A successfully guesses b in TestSK 

query with advantage , which is non‐negligible, B can solve ECCDH problem with 

advantage 2 / (m+n+d), which is also non‐negligible. It contradicts DBDH assumption, 

and thus Protocol 4 achieve existential unforgeability   

Theorem 10 The proposed Protocol 4 (ACAKE for a smart city) achieves existential 

anonymity on Decisional Bilinear Diffie-Hellman (DBDH) and hash function 

assumption. 

Proof: Suppose that there are one trusted third party Registration Center (RC), m Server, 

n Natural Persons (NP), and d IoT Devices in the smart city system, and each entity has 

a unique identity. Suppose that there is an adversary A, who has ability to break the 

anonymity of a NP in the proposed ACAKE protocol with a non‐negligible advantage in 
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probabilistic polynomial time. Then we can construct a challenge algorithm B to solve 

DBDH problem with a non‐negligible advantage by using A’s ability of forging a 

member. An instance (G1, G2, P, ê, q, X = xP, Y = yP, Z = zP, g) of DBDH problem is 

given to B, and B’s goal is to determine if g = ê (P, P)xyz.  

B guesses that A tends to break the anonymity of a natural person, who makes an 

ACAKE with entity U. B permeates the DBDH problem into the queries. B manages 

one time seed list Lseed, and three hash lists LH1, LH2, Lh1, and Lh, which are initially 

empty. For each t-time-period, B randomly generates at, rtR Zq
*, computes MPKt = at ·X, 

appends (t, at, MPKt) to list Lseed, and appends ((IDU ||MPKt), rt, rt·Y) to list LH1, i.e. let 

H1(IDU ||MPKt) = rt ·Y. Note that MRKt =at·x is unknown here. B sets public parameters 

Pub = {q, G1, G2, P, ê},  

Without loss of generality, assume that A does not ask queries for the same 

message more than once, A may ask the following queries and obtain the corresponding 

results: Hash, Extract, Send, Execute, Reveal, Rot, Corrupt, and TestSK, and no Corrupt 

() or Reveal (Π ) query is asked before TestID (Π ) query. B simulates the oracle 

queries: 

 The Hash, Reveal, Rot, Corrupt, and Test queries are identical to those in the proof 
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of Theorem 8, and Extract query is identical to those in the proof of Theorem 9. 

 Send (Π , M): There are three different types of Send query in the proposed 

protocols: Update, CAKE, and ACAKE. Assume that current time is in 

t-time-period. B checks list Lseed to get (t, at, MPKt), simulates HashH query to get 

H1(ID ||MPKt), finds ((ID ||MPKt), r, H1(ID ||MPKt)) in LH1 to get r, and 

responds according to the type of Send query. 

- Send (RC, < IDα, t
OLD, N1, N2, “Update” >): B checks list Lseed to get (tOLD, at

 
OLD, 

MPKt
OLD), simulates HashH query for (IDα ||MPKt), finds ((IDα ||MPKt), rt, 

H1(IDα ||MPKt)) and  ((IDα ||MPKt
OLD), rtOLD, H1(IDα ||MPKt

OLD)) in LH1 to get 

rt and rtOLD. If  =U, B finds ((IDA ||t
OLD ||N1 ||R ||Kα_(tOLD)), N2) in list Lh2 to get 

R and Kα_(tOLD), and computes Kα_t = at · atOLD
-1 · rt · rtOLD

-1 · Kα_(tOLD). If   U, 

B computes Kα_(tOLD) = at · rtOLD · X and Kα_t = at ·rt ·X. B then simulates HashH2 

query to get H2(Kα_(tOLD)||R), simulates Hashh2 query to get dα_t = h2(MPKt ||Kα_t 

||Kα_(tOLD) ||R), computes Uα_t = Kα_t + H2(Kα_(tOLD) ||R) and Vα_t = MPKt 

+H2(Kα_(t OLD) ||N1), and returns < IDα, t, Uα_t, Vα_t, dα_t >. 

- Send (Π , < IDα, Nα, “CAKE” >): B randomly generates n R Zq
*, computes N 

= n ·P and y1 = n ·Nα, and simulates HashH query to get H(IDα ||MPKt). If   



doi:10.6342/NTU202004337

 

147 

 

U, B computes K_t = at · r · X and y2 = ê(K_t, H1(IDα ||MPKt)). If  = U, B 

finds ((IDα ||MPKt), r, H1(IDα ||MPKt)) in LH1 to get r, and computes Kα_t = 

at ·r·X and y2 = ê(Kα_t, H1(ID ||MPKt)). B then simulates Hashh2 query to get v 

= h2(IDα ||ID ||MPKt ||y1 ||y2), and returns <ID, N, v >. 

- Send (Π , < AID, Nα, “ACAKE” >): B randomly generates nR Zq
*, computes 

N = n ·P and y1 = n ·Nα. If  = U, B randomly chooses v R {0, 1}l. If   U, 

B computes K_t = at ·r ·X, TK = ê(Nα, K_t), and IDα = AID TK, simulates 

HashH1 query to get H1(IDα ||MPKt), computes y2 = ê(K_t, H1(IDα ||MPKt)), 

and simulates Hashh2 query to get v = h2(IDα ||ID ||MPKt ||y1 ||y2). B then 

returns < N, v  >. 

  Execute (Π , Π ): Suppose that current time is in t-time-period, B checks list 

Lseed to get (t, at, MPKt). B simulates HashH1 query to get H1(IDα ||MPKt) and 

H1(ID ||MPKt), and finds ((IDα ||MPKt), H1(IDα ||MPKt), rα) and ((ID ||MPKt), 

H1(ID ||MPKt), r) in LH1 to get rα and r.  

- ExecuteUD (, RC): B chooses tOLD, checks list Lseed to get (tOLD, atOLD, MPKt
OLD), 

randomly generates nR Zq
*, and computes N1= n·P and R = n ·MPKt

OLD. If  = 

U, B randomly chooses N2R {0, 1}l. If   U, B simulates Hashh2 query to get 
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N2 = h2(IDA || tOLD || N1 || R || atOLD · rα ·X). B simulates Send (RC, < IDα, t
OLD, N1, 

N2, “Update”  >) query to get < IDα, t, Uα_t, Vα_t, d_t >. B then returns < IDα, 

tOLD, Nα, “Update”  > and < IDα, t, Uα_t, Vα_t, dα_t >. 

- ExecuteCAKE (Π , Π ): There must be one of   U and   U is true. If   U, 

B computes Kα_t = at ·rα ·X, simulates HashH1 query to get H1(ID ||MPKt), and 

computes y2 = ê(Kα_t, H1(ID ||MPKt)). If   U, B computes K_t = at · r · X, 

makes HashH query to get H1(IDα ||MPKt), and computes y2 = ê(K_t, H1(IDα || 

MPKt)). B randomly generates nα, nR Zq
*, computes Nα = nα ·P, N = n ·P, and 

y1 = nα · n ·P. B simulates Hashh1 query to get SK = h1(IDα ||ID ||Nα ||N ||y1 

||y2), and simulates Hashh2 query to get h2(SK), vα = h2(IDα ||ID ||h2(SK)), v = 

h2(IDα ||ID ||MPKt ||y1 ||y2). 

- ExecuteACAKE (Π , Π ): If  = U, B lets Nα = Z, TK = g. If   U, B randomly 

generates nα R Zq
*, computes Nα = nα ·P and TK =ê(Nα, at · r ·X). B computes 

AID = TK  IDU, B randomly generates n R Zq
*, computes N = n ·P, y1 = n · 

NU, and  y2 = ê(at · rα · X, H1(ID ||MPKt)). B simulates Hashh2 query to get v = 

h2(IDα ||ID ||MPKt ||y1 ||y2), and simulates Hashh1 query to get SK = h1(IDα ||ID 

||NU ||N ||y1 ||y2). B then simulates Hashh2 query to get vα = h2(IDα ||ID || 
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h2(SK)), and returns {< AID, NU, “ACAKE” >, < N, v >, < vα >}. 

B answers g = ê (P, P)xyz to DBDH problem if A answers b = 1 to TestID query, and 

answers g  ê(P, P)xyz if A answers b=0.  Whether B can successfully solve DBDH 

problem depends on whether A asks Send and Test query for member U and V. The 

probability of A asking SendACAKE and TestID query on any one of natural member, 

whose partner is U, is n / (m+n+d). If A successfully guesses b in the Test query with 

advantage , which is non‐negligible, B can solve the ECCDH problem with advantage 

n / (m+n+d), which is also non‐negligible. It contradicts DBDH assumption; hence, 

Protocol 4 achieves existential unforgeability.   
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Chapter 9  

Performance Analysis and Comparisons 

In this chapter, we analyze the performance of the proposed protocols and estimate 

the execution times by referring to some implementations to show that the execution 

times of each proposed protocol are rational and acceptable. We also compare the 

properties of the proposed protocols and relevant secure protocols to show the benefits 

of the proposed protocols, and point out the applications of each protocol. 

9.1 Performance Analysis of the Proposed Protocols 

We refer to some implementations [111][112] of elliptic curve cryptographic 

primitives and pairings [113][114][115] on microprocessors to estimate the execution 

times of performing the proposed protocols on low-power computing devices (i.e., 

smartcards) and low power devices.  

Vliegen et al. [111] implementated elliptic curve cryptography over prime fields on 

the Xilinx VirtexII-Pro XC2VP30 FPGA device with maximal clock frequency 25.51 

MHz, the execution times of TGmul, Tinv, TGadd, and Tmul are 17.71 milliseconds (ms), 

1.24 ms, 0.06276 ms, 0.00286 ms, respectively. Cavalieri and Cutuli [112] implemented 

hashing algorithm on MSP430 family, assuming a frequency of 8 MHz, and the 
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execution time is 0.065 milliseconds, which is negligible.  

Scott et al. [113] implemented the standard Tate pairing (k = 2) over a large 512-bit 

field on a 32-bit Philips HiPerSmartTM smart card with a maximum clock speed of 

36MHz, an instantiation of the MIPS-32 based SmartMIPSTM architecture, and the 

execution times of TGê and TGmul are 290 milliseconds (ms) and 270ms, respectively. 

Cao et al. [114] implemented the standard Tate pairing over a large 512-bit field 

and the 160-bit hash in group G on a PIV 3.0 GHz processor with 512-MB memory and 

a Windows XP operation system, and on a Linux personal digital assistant equipped 

with a 206-MHz Strong ARM processor. The execution times of TGê, TGmul, and TH on 

the 3-GHz processor are 20.04 milliseconds (ms), 6.38 ms, and 3.04 ms, respectively. 

The execution times of TGmul and TH on a 206-MHz processor are 92.91 ms and 44.27 

ms, respectively. The estimated execution time of TGê on a 206-MHz processor, which 

is estimated from the result of 3-GHz processor, is 20.04*3000/ 206=291.84 

milliseconds.  

Xiong and Qin [115] implemented the same experiment on an Intel PXA270 

processor at 624-MHz installed on the Linux personal digital assistant, and the 

execution times of TGê and TGmul are 96.2 milliseconds (ms) and 30.67, respectively.  
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Table 5. Execution times of operations (in milliseconds) 

Platform 

Operations 

(25.51 MHz)  
Xilinx 

VirtexII-Pro 
XC2VP30 

FPGA [111] 

(36-MHz)  
MIPS-32 

based 
SmartMIPSTM 

[113] 

(206-MHz)  
StrongARM 

[114] 

(624-MHz)  
Intel PXA270 

[115] 

(3GHz) 
PIV 3.0GHz 

[114] 

TGmul 17.71 

- - - - 
Tinv 1.24 

TGadd 0.06276 

Tmul 0.00286 

TGê - 290 
291.84 

(estimated) 
96.2 20.04 

TGmul - 270 92.91 30.67 6.38 

TH - 
253 

(estimated) 
44.27 

14.62 

(estimated) 
3.04 

Table 6. Estimated execution times on the user side in our Protocol 1 

Platform 

AAKA phase 

36-MHz device 

MIPS-32 based 

SmartMIPSTM [113] 

206-MHz device  

StrongARM [114] 

624-MHz device 
Intel PXA270 

[115] 

Computational cost 3 TGê + 3 TGmul +9Th 

Execution time 1680 ms 1150 ms 380 ms 

Table 7. Estimated execution times on the user side in our Protocol 2 

Phase Computational cost 
Estimated 

execution time 
Platform 

User registration 1Th 0.065 ms (25.51 MHz) [111] 

Xilinx VirtexII-Pro 

XC2VP30 FPGA 

Online update 2TGmul + 4Th 35.68 ms 

Login and AAKA 3TGmul + Tmul + 6Th 53.523 ms 
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The time costs of TH on a 36-MHz device and on a 3GHz device are estimated by 

3.04*3000/624=14.62 and 3.04*3000/36=253 milliseconds, respectively. The execution 

times of performing TGê, TGmul, TH, TGmul, Tinv, TGadd, and Tmul operations on various 

mobile devices are summarized in Table 5. We ignore Th, TGadd, Tmul, and the 

computational costs of generating a random number, XOR, and concatenation 

operations in this dissertation, since they are extremely low. 

9.1.1 Our Protocol 1 (General AAKA) 

In our Protocol 1, which is proposed in Chapter 5, the computational cost of a user 

is 3 TGê + 3 TGmul +9Th during the login and AKA phase, and the approximate 

execution times on a 36-MHz device, 206-MHz device, and 624-MHz device are about 

3290+3270=1680 milliseconds (ms), 3291.84+392.91=1150 ms, and 396.2+ 

330.67=380 ms, respectively. The execution times are summarized in Table 6. Thus, 

the proposed Protocol 1 is applicable to the low-power mobile devices.  

9.1.2 Our Protocol 2 (AAKA for TMIS) 

Table 7 shows the estimated executing times on the user side in our Protocol 2, 

which is proposed in Chapter 6. The computational costs of a user in the registration 

phase, online update phase, and login and AAKA phase are 1Th, 2TGmul + 4Th, and 
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3TGmul + Tmul + 6Th, respectively. The estimated execution time of a user executing 

registration phase, online update phase, and login and AKA phase on a 25.52 MHz 

device are only 0.065 ms, 217.71+40.065=35.68 ms, and 317.71+0.00286+ 

60.065=53.523 ms, respectively. Obviously, our Protocol 2 is well applicable to the 

low-power mobile devices.  

9.1.3 Our Protocol 3 (AKE for IoT) 

When an IoT node mutually authenticates with another IoT node and establishes a 

new session key in our Protocol 3, which is proposed in Chapter 7, the computational 

cost of the IoT node is 1TGê + 2TGmul+ 1TGadd + 6TH, and the estimated execution time 

is less than 0.6504 seconds. 

Chatterjee et. al. [13] implemented their protocol on an Intel Edison board, with a 

Digilent Nexys-4 FPGA board consisting of an Artix-7 FPGA. The scenario is that a 

video camera transmits unencrypted captured video over a network. The camera, Edison 

board, and Artix-7 FPGA together form an IoT node, and the receiver PC acts as the 

verifier. The latency of running the end-to-end authentication protocol is 480.11 ms on 

average. The computational costs of each component in Chatterjee et. al.’s [13] protocol 

and our protocol are listed in Table 8. 
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Table 8. Computational costs of our Protocol 3 and relevant protocols 

 Chatterjee et. al’s protocol [13] Our Protocol 3 (IoT) 

IoT Node 1TGê + 2TGmul+ 2TGadd + 7TH + TBCH 1TGê + 2TGmul+ 1TGadd + 6TH 

Verifier 1TGê + 2TGmul+ 6TGadd + 9TH None 

Latencya 480.11 ms < 480.11 ms 
a Latency of end-to-end authentication. 

Table 9. Estimated execution times of our Protocol 4 

 
IoT Device Natural Person Server RC 

(36-MHz) 
[113]  

(206-MHz) 
[114] 

(624-MHz) 
[115] 

(3GHz) 
[114] 

TGê 290 
291.84 

(estimated) 
96.2 20.04 

TGmul 270 92.91 30.67 6.38 

TH 
253 

(estimated) 
44.27 

14.62 
(estimated) 

3.04 

Online Updating 1299 318.63 105.2 21.88 31.3 

Executing CAKA 1336 566.2 186.78 38.88 - 

Executing AAKA 1626 950.95 292.93 58.92 - 

Table 10. Computational costs of the proposed protocols 

Entity 
Protocol 1 

(Chapter 5) 

Protocol 2 

(Chapter 6) 

Protocol 3 

(Chapter 7) 

Protocol 4 

(Chapter 8) 

RC 0 0 0 0 

User 3TGê +3TGmul+9Th 3TGmul+Tmul+6Th 
1TGê + 2TGmul+ 

1TGadd + 6TH 

2TGê + 3TGmul + 

2TGH + TGadd +4Th 

Server 3TGê +2TGmul+6Th 3TGmul +4Th 
1TGê + 2TGmul+ 

1TGadd + 6TH 

2TGê + 2TGmul + 

2TGH +TGadd +4Th 



doi:10.6342/NTU202004337

 

156 

 

As shown in Table 8, the computational cost of an IoT node in our protocol is less 

than Chatterjee et. al.’s [13] protocol, and there is no verifier in our protocol. According 

to Chatterjee et. al.’s implementation, the latency of running the end-to-end 

authentication protocol of our protocol in Chatterjee et. al.’s implementation would be 

less than 480.11 ms.  

9.1.4 Our Protocol 4 (CAKE/ACAKE) 

In the online update phase, the time cost of cryptographic operations of a member 

and RC is 2TGmul +3TGH +4TGadd +2Th and 3TGmul +4TGH +2TGadd +2Th, respectively. 

The time cost of cryptographic operations of each member is TGê + 2TGmul +2TGH 

+TGadd +4Th in CAKE phase. In ACAKA phase, the time cost of cryptographic 

operations of NP and his/her partner member is 2TGê + 3TGmul +2TGH + TGadd +4Th and 

2TGê + 2TGmul +2TGH +TGadd +4Th, respectively. Note that TGadd and Th are negligible 

and ignored here. Table 9 summarizes the estimated execution times (in milliseconds) 

of executing cryptographic operations and the estimated execution times of RC and each 

kind of members during online update phase, CAKE, and ACAKE phases of our 

protocol 4. As shown in Table 9, the executing times are appropriate. 

Assume that RC has 100 computers, with frequency 3GHz, simultaneously 
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perform member’s registration and online updating, then RC can perform registration 

for 10615 entities in one second, where 1000ms/((6.38ms+3.04ms)/entity)*100= 10615 

entities, or perform online updating for 3194 members in one second, where 

1000ms/(31.3ms/member)*100=3194 members. Thus, RC has ability performing online 

update for all members in each time period to deal with the member revocation issue. 

The proper length of a time period, which is decided by the supervisor, may be hours, 

days, or weeks. 

9.2 Comparisons 

In this section, we compare the four proposed protocols first, and then compare 

them with relevant secure protocols in different applications. We compare our Protocol 

1 and Protocol 2 with relevant secure AAKA protocols for general multi-server 

environments, compare our Protocol 2 with relevant secure AAKA protocols for TMIS, 

compare our Protocol 3 with relevant secure IoT AAKE protocols, and compare our 

Protocol 4 with relevant secure AKE protocols for smart cities. 

9.2.1 Four Proposed Protocols 

We have elaborated on the ten properties (P1~P10) of the proposed Protocol 1, 2, 3, 

and 4 in Chapter 5, 6, 7, and 8, respectively, and we are going to make a description of 
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their difference. The computation costs and the properities of the four proposed 

protocols are summarized in Table 10 and Table 11, respectively. As shown in Table 10, 

the computation costs of Protocol 1, 2, and 4 are close. Protocol 2 has lowest 

computation cost; meanwhile, it lost some properities (P6, P7, P8). 

Protocol 1, 2, and 3 do not deal with the member revocation problem efficiently, 

and Protocol 4 adopts online update in each time period to revoke the member. Protocol 

4 achieves all the properities and keeps the efficiency because of the key update method 

and identity based authentication. Only valid members can get their new secret keys 

through the online update. As mentioned in the design guideline, the user encrypts 

his/her identity by using the server’s public key in Protocol 4, and the public keys are 

identities of members. 

No perfect protocol, only the most appropriate protocol. Efficiency and properities 

are trade-off. Choose the most appropriate protocol for different applications. Our 

Protocol 1 is applicable to common multi-server environment; Protocol 2 is applicable 

to the TMIS, autonomous vehicle, etc.; Protocol 3 is applicable to the Wireless Body 

Area Network (WBAN), factories, etc.; Protocol 4 is applicable to the smart city, the 

Vehicular Ad hoc Network (VANET), etc. 
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9.2.2 Our Protocol 1 and Relevant Secure AAKA Protocols 

The properties of relevant AKA protocols [45][51][53][54][58][60][61], which are 

designed for general multi-server environments, are compared in Table 12. It shows that 

no present AKA protocol achieves the entire properties (P1~P10). Therefore, we 

propose Protocol 1, which achieves more properties. 

We compare the computation costs of members during the login and AKA phase in 

our Protocol 1 and relevant secure protocols [45][51][53][54][58][60][61] in Table 13. 

 All the protocols, the computation costs of the user in the login and AKA phase 

are low and close, all of them are applicable to low power devices. Only our Protocol 1 

simultaneously achieves all the properties except member revocation (P6). The 

registration center need not be involved in the user login and AKA phases and need not 

maintain any table; meanwhile, no public key needs to be announced. Moreover, we 

provide formal security proofs of Protocol 1, and the computation costs in Protocol 1 

are acceptable and applicable for low power devices, which have been discussed in 

Section 9.1.1. 
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Table 11. Properties of the proposed protocols 

Our protocols 
Protocol 1 

(Chapter 5) 

Protocol 2 

(Chapter 6) 

Protocol 3 

(Chapter 7) 

Protocol 4 

(Chapter 8) 

Application 
Property 

General 
Case 

TMIS IoT ALLa 

Compatible authentication No No No Yes 

(P1) Three-factor authentication Yes b Yes b Yesc Yes bc 

(P2) Multi-server environment Yes Yes N/A Yes 

(P3) User anonymity Yes Yes Yes Yes 

(P4) User untraceability Yes Yes Yes Yes 

(P5) Perfect forward secrecy Yes Yes Yes Yes 

(P6) Member revocation Nod Nod Noe Yes 

(P7) Independent authentication Yes 
Optional f 

No Yes 

(P8) Table free Yes No Yes 

(P9) Public key announcement free Yes No g Yes Yes 

(P10) Formal security proof Yes Yes Yes Yes 
a:it is not only applicable to smart cities but is also applicable to other applications, b: biometric, c:PUF, 
d: CRL, e:delete the helper data, f: achieves either P7 or P8, g: the server’s public keys are issued to ther 
users in the online update phase. 

Table 12. Properties of our Protocol 1 and relevant secure protocols 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Lin et al. [45] Ya Y Y Y Y N Y Nde Y N 

Jiang et al. [51] Ya Y Y N Y N N Y Y Y 

Odelu et al. [53] Ya Y Y Y Y Yb N Nd Y Ni 

Park-Park [54] Ya Y Y Y Y N N Nd Y Ni 

Irshad et al. [58] Ya Y Y Y Y Nc Y Y Nde Y 

Xu et al. [60] Ya Y Y Y Y Yb Y Nde Nf Y 

Qi et al. [61] Ya Y Y Y Y N N Y Nf Ni 
Our Protocol 1 

(General) Ya Y Y Y Y Nc Y Y Y Y 

Y: Yes, N: No, a: biometric based, b: data deletion, c: CRL, d: RC, e: users, f: servers, g: achieves either 
P7 or P8, h: the server’s public keys are issued to ther users in the online update phase, i: BAN logic. 
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Table 13. Computational costs of members executing the login and AKA phase 

 

9.2.3 Our Protocol 2 and Relevant Secure AAKA Protocols for TMIS 

We compare our Protocol 2 with relevant AAKA protocols for TMIS [66][69][72] 

[76][77][80] in Table 14. It shows that only our Protocol 2 provides independent 

authentication (P7) and public key announcement free (P9); only our Protocol 2 and 

Wei et al. [80] are applicable to multi-server environments (P2); only our Protocol 2 and 

Jiang et al. [77] deal with member revocation issue (P6). Obviously, our Protocol 2 is 

perferable to other relevant protocols for TMIS. 

 RC User Server 

Lin et al. [45] 0 3Tsym +2TGmul +8Th 2Tsym +2TGmul +3Th 

Jiang et al. [51] 10Th 2TGmul +7Th 2TGmul +5Th 

Odelu et al. [53] 3Tsym +1TGmul +10Th 1Tsym +3TGmul +7Th 2Tsym +2TGmul +6Th 

Park-Park [54] 11Th 2TGmul +10Th 3TGmul +4Th 

Irshad et al. [58] 0 4TC +7T 4TC +4Th 

Xu et al. [60] 0 3TGmul +10Th 3TGmul +6Th 

Qi et al. [61] 1Tsym +1TGmul +Tkdf +5Th 3TGmul +6Th 1Tsym +4TGmul +Tkdf +4Th 

Our Protocol 1 

(General) 
0 3TGê +3 TGmul +9Th 3TGê +2TGmul +6Th 

Our Protocol 2 

(TMIS) 
0 3TGmul +Tmul +6Th 3TGmul +4Th 
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9.2.4 Our Protocol 3 and Relevant PUF Based AKE Protocols for IoT 

The comparison of Braeken’s [89], Chatterjee et. al.’s [13], and our Protocol 3 are 

shown in Table 15. Only in our protocol, IoT nodes can independently authenticate each 

other without the help of trusted third party. No explicit CRP is in Chatterjee et. al.’s 

[13] or our protocol. It shows that our Protocol 3 is perferable to other relevant 

protocols for IoT. 

9.2.5 Our Protocol 4 and Relevant AKE Protocols for a Smart City 

The comparison of our Protocol 4 and the relevant AKE protocol for a smart city 

are shown in Table 16. Table 16 shows that only our ACAKE protocol achieves all the 

properties (P1~P10); meanwhile, it keeps the efficiency that the computation costs in 

Protocol 1, which have been discussed in Section 9.1.4, are acceptable and applicable to 

smart cities. 
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Table 14. Comparisons of our Protocol 2 and relevant AAKA protocols for TMIS 

 
Xu-Wu 

[66] 

Das 

[69] 

Jiang et 

al. [72] 

Wazid et 

al. [76] 

Jiang et 

al. [77] 

Wei et 

al. [80] 

Our 

Protocol 2 

(TMIS) 

(P1) Three-factor 

authentication 
Ya Ya Ya Ya Ya Ya Ya 

(P2) Multi-server 

environment 
N N N N N Y Y 

(P3) User 

anonymity 
Y Y Y Y Y Y Y 

(P4) User 

untraceability 
N Y Y N Y N Y 

(P5) Perfect 

forward secrecy 
Y Y Y Y Y Y Y 

(P6) Member 

revocation 
N N N N Y N Y 

(P7) Independent 

authentication 
- - - - - - Y/Nb 

(P8) Table free Y Y Y Y N c Y Y/Nb 

(P9) Public key 

announcement free 
- - - - - - Y d 

(P10) Formal 

security proof 
N Ne N Y Nf N Yes 

Y: Yes, N:No, abiometric based, beither independent authentication or table free, cServer,  

duse identity as public key, eAVISPA, fBAN logic. 
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Table 15. Comparisons of our Protocol 3 and the relevant AKE protocols for IoT 

 
Braeken’s  

protocol [89] 

Chatterjee et. al’s 

protocol [13] 
Our Protocol 3 (IoT) 

Explicit CRPs Stored in Server None None 

Implicit CRPs None 

Stored in Security 

Association 

Provider 

Stored in Data 

Provider 

Helper a Server Verifier None 

Outer database None 
Security Association 

Provider 
Data Provider 

(P1) Multi-factor 

authentication 
Nb Nb Nb 

(P2) Multi-server 

environment 
- - - 

(P3) User 

anonymity 
N N N 

(P4) User 

untraceability 
N N N 

(P5) Perfect 

forward secrecy 
Y Y Y 

(P6) Member 

revocation 
N N N 

(P7) Independent 

authentication 
N N Y 

(P8) Table free N N N 

(P9) Public key 

announcement free 
Y Y Y 

(P10) Formal 

security proof 
N Y Y 

Y: Yes, N:No, a trusted third party involved in authentication phase, bonly using PUF as the fingerprint of 

the IoT device. 
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Table 16. Comparisons of our Protocol 4 and the relevant protocols 

 [95] [96] [97] [98] [99] 
Our 

CAKE 

Our 

ACAKE 

Compatible authentication N N N N N Yab Yab 

(P1) Multi-factor 

authentication 
N N N N N Y Y 

(P2) Multi-server 

environment 
N N N Y Y Y Y 

(P3) User anonymity Y Y Y Y Y N Y 

(P4) User untraceability Y Y Y Y Y N Y 

(P5) Perfect forward secrecy Y Y Y Y Y Y Y 

(P6) Member revocation N N N N N Y Y 

(P7) Independent authentication N Y Y N Y Y Y 

(P8) Table free Y Nc Y Y Y Y Y 

(P9) Public key 

announcement free 
Y Y Y Y N Y Y 

(P10) Formal security proof N Y Y N N Y Y 

abiometric based, bPUF based, cServer, duse identity as public key, eAVISPA, fBAN logic. 
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Chapter 10  

Conclusions and Future Work 

10.1 Conclusions 

In this dissertation, we surveyed recently proposed three-factor AKE protocols 

with user privacy preserving, and then discuss and analyze these protocols to propose 

the guideline for designing a secure AKE protocol with user privacy protection for 

multi-server environments. We then obeyed the guideline to design three AKE 

protocols that are applicable to general situations, the TMIS, and the IoT, respectively.  

We brought up the concept of a compatible authentication and key exchange 

(CAKE) protocol, which provides cross-species authentication that any two valid 

entities can authenticate with each other and create a secure session key. We proposed a 

CAKE protocol for a smart city, and extended the CAKE protocol to an anonymous 

CAKE (ACAKE) protocol, which additionally provides an anonymity option for natural 

persons to protect their privacy.  

We constructed a formal security model for an AKE protocol in multi-server 

environments, and gave the formal proofs of each proposed protocol. We demonstrated 

that our protocols are efficient enough for portable mobile devices by estimating the 



doi:10.6342/NTU202004337

 

167 

 

executing times of performing our protocols on low-power devices. We also compared 

our protocol to relevant AKE protocols to show that our protocols are better than 

existing protocols. 

There is no perfect protocol, only the most appropriate protocol. Efficiency and 

properties are trade-off. We proposed four AKE protocols to provide the chance to 

choose the most appropriate protocol for each common application. 

10.2 Future Work 

There has been steady progress towards building quantum computers in recent 

years. The large-scale quantum computers would threaten the security of many present 

public-key cryptosystems if they are realized. Public-key encryption (PKE), 

key-establishment mechanisms (KEM), and digital signatures based on factoring, 

discrete logarithms, and elliptic curve cryptography will be the most severely affected; 

meanwhile, symmetric cryptographic primitives, such as block ciphers and hash 

functions, will only be mildly affected. [116] Post-quantum cryptography (PQC) is a 

study of cryptosystems that would be secure against adversaries who have both 

quantum and classical computers and that can be deployed without drastic changes to 

existing communication networks and protocols.  
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Table 17. PQC algorithms selected by the NIST 

 
NIST 

selection 
Algorithm Hardness 

PKE &  

KEM 

Third-Round 

finalists 

Classic McEliece Code-based 

CRYSTALS-KYBER 
Module Learning With 

Errors (MLWE) 

NTRU Lattice-based KEM 

SABER 
Module Learning With 

Rounding (MLWR) 

Alternate 

candidate 

BIKE Code-based 

FrodoKEM Lattice-based LWE 

HQC Code-based 

NTRU Prime Lattice-based 

SIKE Isogenies of elliptic curves 

Digital  

signatures 

Third-Round 

finalists 

CRYSTALS-DILITHIUM Lattice-based 

FALCON Lattice-based 

Rainbow Multivariate 

Alternate 

candidate 

GeMSS Multivariate 

Picnic Hash-based 

SPHINCS+ Hash-based 

 

Generally speaking, there are five categories of post-quantum cryptography 

algorithms: lattice-based, code-based, isogenies of elliptic curves, multivariate, and 

hash-based. The National Institute of Standards and Technology (NIST) is in the 

process of selecting public-key cryptographic algorithms through a public, competition 

like process. The new public-key cryptography standards will specify one or more 
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additional algorithms for digital signatures, public-key encryption, and 

key-establishment. The NIST Post-Quantum Cryptography Standardization Process 

began in 2017 with 69 candidate algorithms that met both the minimum acceptance 

criteria and submission requirements. NIST selected 26 algorithms to advance to the 

second round for more analysis in 2019, and selected 7 third-round finalists and 8 

alternate candidates to advance to the third round in 2020 [116]. We summarize these 

15 algorithms, which are selected by the NIST, in Table 17. 

Our future work is to design quantum resistant AAKA/ACAKE protocols and 

encryption/signature/signcryption schemes for various circumstances, such as the 

Internet of things (IoT), the cloud service, the Telecare Medicine Information System 

(TMIS), the smart city, the Vehicular Ad hoc Network (VANET), the epidemic control 

system, the financial system, the electronic voting, etc. 
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