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摘 要

在這篇論文中，我們研究了一個隨時間變化的網路流（network flow）模型，稱之為

「流體排隊模型」。考慮到一個有向圖被注入連續的流量，致使水分子傳播到每一條

邊上。對於每一條邊而言，如果流入的流率超過給定的容量，那麼超出的粒子將會

形成等待的隊伍，而其他的粒子在給定的時間長度內通過這一條邊。更精確地，我們

研究了在賽局觀點上的流體排隊模型，稱之為動態平衡模型，這被用來描述一些問

題。例子包含了網際網路、自駕車中控系統、以及中央處理器挑選任務的過程。先前，

有幾位作者研究了流體排隊模型，像是 Ford and Fulkerson [1,2]、Gale [3]、Anderson

and Philpott [4]、Fleischer and Tardos [5]。也有一些作者研究了動態平衡模型，像

是 Vickrey [6]、Meunier and Wagner [7]、Cominetti, Correa, andLarré [8]、Kaiser and

Marcus [9]。我們的研究延續了單調猜想 (monotonicity conjecture)下具有常數函數流量

的網路的 PoA(Price of Anarchy)上限結果 [10]，以及具有連續函數流量的網路的 PoA

存在性結果 [8,9]。一方面，在串並聯網路（Series­parallel network）研究 PoA 的目的

是要測量「分配任務給處理器」這項任務的無效率程度。另一方面，在具備連續函數流

量的網路研究 PoA的目的是要縮小模型和現實中的差距。我們認為具備動態函數流量的

網路相對接近實際狀況，如自駕車中控系統。在現實生活中，交通流量隨著時間而變化。

我們在研究中發現了具備連續函數流量的網路的 PoA上限。我們證明了平行網路和

兩層兩條邊平行網路的 PoA上限為 2，串並聯網路有一個 PoA上限為「網路的直徑」，

所有網路在假設成立下有一個 PoA上限為 2|V | − 1。這是第一篇論文研究具備連續函數

流量的網路在流體排隊模型上的 PoA。我們把平行網路和串並聯網路的 PoA上限從無限

大分別壓低到 2和「網路的半徑」。這兩個被證明出來的上限和具備常數函數流量的網路

在流體排隊模型上的情況截然不同。另一方面，類似於在早先抽稅方案上的研究 [11]，

我們設計了一個簡單的抽稅方案來改善系統的無效率程度。這會許對於具備連續函數流

量的網路會有極大的幫助。
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Abstract

In this thesis, we study a Time­Variant­Model, called the “fluid queuing model”. Consider

a directed graph injected with a continuous inflow such that water propagates to each

edge. For each edge, If the inflow rate exceeds the given capacity, the exceeding particles

form a waiting queue, and the other particles pass through this edge under the given delay

time. We study the game theory aspect of the fluid queuing model, called the dynamic

equilibrium model, which was applied to describe several problems. Examples include

the Internet, the self­driving car central control system, and the procedure of CPU­core.

Previously, several authors studied on fluid queuing model, likes Ford and Fulkerson [1,

2], Gale [3], Anderson and Philpott [4], Fleischer and Tardos [5]. Some authors studied

on dynamic equilibrium model, likes Vickrey [6], Meunier and Wagner [7], Cominetti,

Correa, andLarré [8], Kaiser andMarcus [9]. Our study continues the result of PoA bound

of networks with constant inflow under monotonicity conjecture [10], and the existence of

PoA of networks with dynamic inflow [8,9]. On the one hand, the purpose of studying the

PoA in a series­parallel network is to measure the inefficiency of the problem of assigning

tasks to processors. On the other hand, the purpose of studying the PoA of networks with

dynamic inflow is to narrow the gap between the model and the reality. We think the

networks with dynamic inflow will be closer to the actual situation of the central control

system of autonomous vehicles. In the real world, traffic will change over time.

We find upper bounds of the PoA of networks with dynamic inflow. We prove the

PoA of 2 of parallel­link networks and (2 + 2)­parallel­link networks, the PoA of “net­

work’s diameter(calledD(C))” of series­parallel networks, the PoA of 2|V |−1 of general

networks with assumption. This thesis is the first study on the PoA for networks with dy­

namic inflow in the fluid queuing model. That is, we reduce the upper bound of PoA

iv
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of parallel­link networks or series­parallel networks from infinite to 2 and D(C) respec­

tively. The bounds we proved are different from networks with constant inflow in the

fluid queuing model. On the other hand, similar to the work of tax scheme [11], we design

a simple tax scheme to improve the inefficiency of the system. This may help a lot on

networks with dynamic inflow.
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Chapter 1

Introduction

In this thesis, we consider the game theory aspect of the fluid queuing model proposed

by Vickrey [6]. In the fluid queuing model, the system consists of a directed graph and

a continuous inflow. Each edge of this graph has a capacity and a delay time. When the

flow traverses through the edges, queuing occurs if the flow rate exceeds the capacity

of the edge. The exceeding particles of the flow would form queuing to wait for the next

moment, and the other particles would pass this edge with the delay time of edge as the cost

of time. This model views each of the infinite particles as a player. These players selfishly

choose the shortest path from source to sink to minimize the travel time, which forms the

equilibrium flow. The travel time of each particle is the summation of the waiting time at

the source plus the queuing time and delay time of each edge it chooses.

This model can be used to describe several problems. Examples include the Internet,

the central control system of self­driving cars, and the task processor of the CPU core.

Consider the problem of transferring packets on the Internet. We can model the Internet

as a network, packet as particle forming inflow, and network congestion as fluid queuing

of each edge. On the example of traffic networks, we can model the traffic network as

a network, vehicle as particle forming inflow, the traffic jam on each road as the fluid

queuing of each edge. Note that the optimal solution is the self­driving car central control

system. On the problem of assigning tasks to processors, we can model each processor

execution time as edges of a network, the process as particle forming inflow, and the

1
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waiting queue of each machine as the fluid queuing of each edge. In this example, the

programming statements forming series operations and parallel operations, such as for­

loops or if­else. These are the motivation of series­parallel networks.

Previously, Ford and Fulkerson [1,2] provided an algorithm of the fluid queuing

model with constant inflow to send the maximal mass of flow with a given time. Gale [3]

proved the existence of flow that is the optimal solution at each moment. Anderson and

Philpott [4], Fleischer and Tardos [5] improved this result from eachmoment to continuous

time version.

Consider the game theory aspect on the fluid queuing model, which is called dynamic

equilibrium model and laterally introduced as “Flow of Model”, firstly studied by Vickrey

[6]; Meunier and Wagner [7] proved the existence of dynamic equilibria.

For fluid queuing model with dynamic inflow, Cominetti, Correa, and Larré [8]

proved the existence of dynamic equilibria of piecewise constant inflow and locally Lebesgue­

integrable inflow. Kaiser and Marcus [9] constructively proved the existence of dynamic

equilibria of locally Lebesgue­integrable inflow.

The purpose of studying the Price of Anarchy (PoA) is to evaluate and quantify the

inefficiency of the system. This analysis of PoA enables us to measure each kind of game

and design an improved mechanism for them. The PoA was studied in several games,

likes Stackelberg game [12], selfish routing game [13], or network game or called game­

theory aspect on fluid queuingmodel [10]. Focusing on the networks with dynamic inflow,

we discuss PoA’s bound for parallel­link networks, series­parallel networks, and general

networks in this thesis. On the other hand, those two papers in the previous paragraph

showed the PoA of the fluid queuing model with locally integrable inflow is finite due to

the existence of dynamic equilibria.

In the fluid queuing model, the price of anarchy for networks with constant inflow

is tightly bounded by e
e−1

under a weak assumption, called the monotonicity conjecture.

In particular, the price of anarchy for parallel­link networks tightly bounded by 4
3
without

any assumption [10].

Consider the existence of dynamic equilibria of locally integrable inflow and PoA’s

2
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bound for networks with constant inflow. We want to find PoA’s bound of series­parallel

networks with locally integrable inflow or called dynamic inflow. The purpose of study­

ing the PoA of series­parallel networks is related to the problem of assigning tasks to

processors. That is, we want to study the efficiency of the process­and­CPU system. On

the other hand, the purpose of studying the PoA of networks with dynamic inflow is to

narrow the gap between the model and the reality. We think the networks with dynamic

inflow would be closer to real situations, such as the internet or self­driving car central

control system. In the real world, traffic will change over time.

Our Result: We find upper bounds of the PoA of networks with dynamic inflow. We

prove that the PoA of 2 is a tight bound for parallel­link networks and (2+2)­parallel­link

networks; the PoA of series­parallel networks is upper bounded by D(C), where D(C)

is closed related to the diameter of the network; the PoA of general networks is upper

bounded by 2|V | − 1 with assumption. These results are shown in table 1.1.

This thesis is the first study on the PoA for networks with dynamic inflow in the fluid

queuing model. That is, we reduce the upper bound of PoA of parallel­link networks or

series­parallel networks from infinite to 2 andD(C) respectively. The bounds we proved

are different from networks with constant inflow in the fluid queuing model. On the other

hand, similar to the work of tax scheme [11], we design a simple tax scheme, called Delay­

time tax scheme, to improve the efficiency of the system. Surprisingly, the delay­time tax

scheme did not work on networks with constant inflow but may help a lot on networks

with dynamic inflow.

Our main work is to use the total amount of inflow as an upper bound of the maximal

throughput of networks to afford the lower bound of the cost of optimal flows (or said

optimal time) in the fluid queuing model. This technique helps us finding PoA’s tight

bound of parallel­link networks and a simple example of series­parallel networks, even

a loose bound of series­parallel networks. This technique provides an exactly bound of

PoA of series­parallel networks with dynamic inflow. Also, it simplifies the work from

finding PoA’s bound to calculating the mass of the maximal throughput of networks. On

the other hand, we design a tax scheme to improve society’s welfare as a possible solution

to the system’s inefficiency.

3
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Inflow Network PoA

Static Parallel­link 4
3
[10]

Static General w/ hypo. e
e−1

[10]

Dynamic General < ∞ [8,9]

Dynamic Parallel­link 2

Dynamic General w/ hypo. < 2|V | − 1

Dynamic Series­parallel ≤ D(C)

Dynamic (2 + 2)­parallel­link 2

Table 1.1: Summary of result. The PoA of 2 is a tight bound of parallel­link networks

and (2 + 2)­parallel­link networks; The PoA of D(C) is a loose bound of series­parallel

networks; The PoA of 2|V | − 1 is a loose bound of general networks with assumption.

4
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Chapter 2

Model

In this chapter, there are three sections. Firstly, we will define the fluid queuing model

as the base of this thesis; Secondly, we will introduce the few kinds of flows in the fluid

queuing model and imply the term–the Price of Anarchy; Thirdly, we will choose some

specific models to study. These contents will be used in the next chapter.

2.1 Fluid Queuing Model

Consider a network C by directed graph G = (V,E) with source s ∈ V and sink t ∈ V .

Each edge ej has capacity vj and delay time τj , denoted by ej = (vj, τj). Sometimes, we

use the notation ej = (aj, σj). Moreover, each edge also has an infinite buffer to store the

particles.

In this paper, the fluid queuingmodel is regarded as one of themodels of network flow

changes over time. The inflow of network, µ0, is a Lebesgue locally integrable function.

Denote the last leaving time by θ̂ = sup{θ|µ0(θ) > 0}, and the total amount by M =∫ θ̂

0
µ0(θ)dθ. Here, we assume all particles have full information, enable them to imply

each moment’s situation.

Let’s define fluid queuing model here, refer to [10]. For each e ∈ E at θ, denote the

queuing mass by ze(θ), and the inflow rate by f+
e (θ), where f+

e (θ) : R+ → R+. At this

5
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moment, the changing speed of ze(θ) is:
f+
e (θ)− ve ↗, if f+

e (θ) ≥ ve,

ve − f+
e (θ) ↘, if f+

e (θ) ≤ ve, ze(θ) > 0,

0 →, if f+
e (θ) ≤ ve, ze(θ) = 0.

So, the particle come­in e at θ will leave e at

θ +
ze(θ)

ve
+ τe,

where ze(θ)
ve

+ τe is named by the travel time of e at θ.

For each e ∈ E at θ + τe, denote the outflow rate by

f−
e (θ + τe) =

 ve, if ze(θ) > 0,

min(ve, f+
e (θ)), if ze(θ) = 0.

Now, for each v ∈ V − {s, t}, no particle would stay at v at any θ. That is,∑
e=(u,v)∈E

f−
e (θ) =

∑
e=(v,w)∈E

f+
e (θ).

For source s, particle is allowed to wait at s and leave at any θ. We have:

µ0(θ) +
∑

e=(u,s)∈E

f−
e (θ) ≥

∑
e=(s,w)∈E

f+
e (θ),

since some particles may stay at s.

Remark 1. In the previous paper, like [10], they denote that

µ0(θ) +
∑

e=(u,s)∈E

f−
e (θ) =

∑
e=(s,w)∈E

f+
e (θ).

But, in this thesis, we use the inequality notation. This is because we do not view the

particle waiting at s as part of outflow
∑

e=(s,w)∈E f+
e (θ). This only has few influence on

the continued part of thesis.

In the fluid queuing model, the strategy of each particle is to wait for a moment in s,

and then choose a path to leave. For this particle p, the travel time is defined by waiting

time at s plus the summation of the travel time of all e ∈ path at the arriving time of p.

6
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2.2 Flow of Model

2.2.1 OPT flow

The OPT solution (OPT flow) of the fluid queuing model is the strategy as below: Given

network C, inflow µ0. Each particle from µ0 is manipulated such that the last particle can

arrive at t at the earliest time. We denoted this earliest time by TOPT , called the arriving

time of all particles in OPT flow.

Remark 2. The OPT flow maybe not unique. We default it by the OPT flow without

queuing and prefer paths with shorter delay time.

2.2.2 EQU flow

For each particle as a player, the Nash Equilibrium (EQU flow) of the fluid queuing model

is the strategy as below: Given network C, inflow µ0. For each particle, it has to choose

waiting time at s plus the travel time of one of the paths from s to t. And, the cost of each

particle is the arriving time. Finally, we denoted the time of the last particle arriving t by

TEQU , called the arriving time of all particles in EQU flow.

Now, let’s introduce two terms. The PoA, price of anarchy [14], is the ratio between

the worst Nash Equilibrium and the optimal solution of social cost. The PoS, price of

stability [15], is the ratio between the best Nash Equilibrium and the optimal solution of

social cost. However, there is only one unique Nash equilibrium in this network game.

We simply denote PoA :=
TEQU

TOPT
without any ambiguity. Here, PoA is the ratio of the

arriving time of all particles in EQU flow to OPT flow.

Remark 3. The waiting time at s is 0 for all particles in this case.

Definition 1. Consider EQU flow of network C, inflow µ0. For the particles arriving s

at θ0, we denote the earliest time to arrive each v ∈ V − s by lv(θ0).

Definition 2. Consider EQU flow of network C, inflow µ0. The mass of particle existing

in C at θ0, Q(C, µ0, θ0) :=
∫
{θ|θ≤θ0,lt(θ)>θ0} µ0(θ)dθ. When it is clear from the context, we

use Q(θ0) to denote Q(C, µ0, θ0).

7
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Definition 3. Consider EQU flow of network C, inflow µ0. At the moment θ0 , we define

the shortest travel time L(C, µ0, θ0) := lt(θ0) − θ0. And, at the last leaving time θ̂, we

short­write L̂ := L(C, µ0, θ̂). When it is clear from the context, we use L(θ0) to denote

L(C, µ0, θ0).

2.2.3 Throughput flow

The throughput flow of the fluid queuing model is the strategy as below: Given network

C, inflow µ0, period time θ = 0 ∼ t. Each particle from µ0 is manipulated such that

sending the maximal mass of particle throughput C at inflow µ0 during θ = 0 ∼ t.

Definition 4. The maximal mass of particle is denoted by Mput(C, µ0, t). Sometimes we

instead inflow function of infinite inflow rate during θ = 0 ∼ t to afford an upper bound

of Mput(C, µ0, t), denoted by Mput(C,∞, t). When it is clear from the context, we use

Mput(t) to denoteMput(C,∞, t).

2.3 Networks of Model

Definition 5 (Parallel­link Network). Given a network C in fluid queuing model, C is

Parallel­link networks if e = (s, t) for all e ∈ E.

Definition 6 (Series­parallel Network). Series­parallel networks are defined by Induc­

tion: Start from parallel­link networks, each time can do series­linking or parallel­linking

operation to another well­defined series­parallel network. All possible results form series­

parallel networks.

Definition 7. Given the series­parallel network C, the maximal number of each path’s

nodes among all paths is denoted by D(C).

Definition 8 (Parallel­group­link Network). Given ϵ > 0 and a parallel­link network C.

If there exists [L1, R1], ..., [LN , RN ], Ri

Li
≤ 1 + ϵ and Li+1

Ri
≥ 1

ϵ
, and the delay time of

each edge of C is in one of the intervals, then C is called parallel­group­link network.

Connected from the routing game with groups of similar links, refer to [11].

8
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Figure 2.1: The diagram of “(2 + 2)­parallel­link Network”. In the first stage C1, the

source is s and the sink is p; In the second stage C2, the source is p and the sink is t.

Definition 9 ((2 + 2)­parallel­link Network). Given parallel­link networks C1, C2 and

C1’s inflow µ0. Now, series­link C1 to C2, denoted by C1 + C2. Consider OPT flow and

EQU flow on this linking networkC1+C2, the maximal number of used edges in OPT flow

or EQU flow in C1 and C2 part are denoted by m1 and m2 respectively. If m1,m2 ≤ 2,

we called C1 + C2 is a (2 + 2)­parallel­link network.

9
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Chapter 3

Main

We will show several PoA’s bounds in the fluid queuing model in this chapter. These

include some tight upper bound on parallel­link networks or (2+2)­parallel­link networks

and some finite upper bound on series­parallel networks.

3.1 Parallel­link Networks

First of all, we need Lemma 1 to evaluate the upper bound of the Price of Anarchy for

networks.

Lemma 1. Consider the fluid queuing model with network C, inflow µ0. For all time θ0,

if

Mput(L(θ0)) ≤ k ∗Q(θ0),

then TEQU ≤ (k + 1) ∗ TOPT , where Mput is the maximal mass of particle throughput

network, Q is the particle existing in network, and TOPT , TEQU are the arriving time of

all particle in OPT flow, EQU flow respectively.

Proof. For the shortest travel time L̂ = L(θ̂) := lt(θ̂)− θ̂, we have:

TEQU − TOPT = lt(θ̂)− TOPT = L̂+ θ̂ − TOPT

(∗)
≤ L̂,

10
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Figure 3.1: The diagram of “PoA of 2 Example”. Left part is the parallel­link network

with edges {e1 = (a, 0), e2 = (1, 1
3
)}; Right part is the inflow function, which is a step

function with range={1, a}.

last inequality holds by considering the leaving time and the arriving time of last particle

in OPT flow. On the other hand, for the total amountM and the inequality, we have:

M ≥ Q(θ̂) ≥ 1

k
Mput(L(θ̂))

(∗)
≥ 1

k
∗ k ∗Mput(

1

k
L(θ̂)),

last inequality holds since we can copy the infinite inflow during θ = 0 ∼ 1
k
L(θ̂) for k

times as an option of infinite inflow during θ = 0 ∼ L(θ̂). On the other hand, since we

have to sendM mass of particle in OPT flow, so:

TOPT ≥ 1

k
L(θ̂) =

1

k
L̂ ≥ 1

k
(TEQU − TOPT ),

k + 1 ≥ TEQU

TOPT

= PoA.

Theorem 1. In the fluid queuing model, the Price of Anarchy of 2 for parallel­link net­

works is tight.

Proof. Gien parallel­link network C, inflow µ0, denoted ej = (vj, τj) for all ej ∈ E. At

any moment θ0, suppose EQU flow use n edges, then we have:

L(θ0) ≤ τn+1.

For each edge, the travel time minus the delay time of edge is the queuing time. Hence,

we can calculate the mass of particle queuing in C at θ0 as an lower bound of Q(θ0):

Q(θ0) ≥
n∑

i=1

vi[L(θ0)− τi],

11
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whereQ(θ0) is the particle existing in C at θ0. On the other hand, for each edge, the given

time ofMput minus the delay time of edge is the total time to pass particle. We have:

Mput(L(θ0)) =
n∑

i=1

vi[L(θ0)− τi].

This implies Q(θ0) ≥ Mput(L(θ0)). Follow from Lemma 1, we have PoA ≤ 2. Fur­

thermore, let’s provide an example for the Price of Anarchy of 2. Given 1 > a > 0,

consider:

E = {e1 = (a, 0), e2 = (1,
1

3
)}.

µ0(θ) =


1, θ = 0 ∼1

3
∗ a

1− a
,

a, θ =
1

3
∗ a

1− a
∼1

3
∗ a

1− a
+

1

3
.

In this case, we have:

TOPT =
1

3
∗ a

1− a
+

1

3
,

TEQU =
1

3
∗ a

1− a
+

1

3
+

1

3
,

PoA =
TEQU

TOPT

=
1
3
∗ (2− 2a+ a)

1
3
∗ (1− a+ a)

= 2− a → 2 as a → 0+.

Theorem 2. In the fluid queuing model, if all edges in 1 aggregated network, the Price of

Anarchy of 2− 1
1+ϵ

≈ 1 + ϵ for parallel­group­link networks is tight, where ϵ is given by

the network.

Proof. Given parallel­group­link network C whose edges are in 1 aggregated network,

inflow µ0, denoted ej = (vj, τj) for all ej ∈ E. At the last leaving time θ̂, for the shortest

travel time L̂, we have the condition:

L̂

τj
≤ 1 + ϵ, ∀ej ∈ E.

Similar as Lemma 1, we have:

TEQU − TOPT = L̂+ θ̂ − TOPT ≤ (1− 1

1 + ϵ
)L̂+ τ1 + θ̂ − TOPT

(∗)
≤ (1− 1

1 + ϵ
)L̂,

12
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where the last inequality holds by considering the leaving time plus minimal delay time

and the arriving time of last particle in OPT flow. Hence, we afford:

2− 1

1 + ϵ
≥ TEQU

TOPT

= PoA.

Finally, similar as Theorem 1, the example for the Price of Anarchy of 2 − 1
1+ϵ

is shown

as below:

E = {e1 = (a,
1

3

1

1 + ϵ
), e2 = (1,

1

3
)},

µ0(θ) =


1, θ = 0 ∼(

1

3
− 1

3

1

1 + ϵ
)

a

1− a
,

a, θ = (
1

3
− 1

3

1

1 + ϵ
)

a

1− a
∼(

1

3
− 1

3

1

1 + ϵ
)

a

1− a
+

1

3
.

In this case, we have:

TOPT = (
1

3
− 1

3

1

1 + ϵ
)

a

1− a
+

1

3
,

TEQU = (
1

3
− 1

3

1

1 + ϵ
)

a

1− a
+ (

1

3
− 1

3

1

1 + ϵ
) +

1

3
,

PoA =
TEQU

TOPT

→
2
3
− 1

3
1

1+ϵ
1
3

= 2− 1

1 + ϵ
≈ 2− (1− ϵ) = 1 + ϵ.

holding when a → 0.

3.2 Series­parallel Networks

Lemma 2. Consider the fluid queuing model with networkC, inflow µ0, the total capacity

of minimal cut face Min­Cut(C), the inequality holds:

M ≤ TOPT ∗Min­Cut(C),

whereM is the total amount and TOPT is the arriving time of all particle in OPT flow.

Proof. In this case, for OPT flow, each particle from s to t has to pass by one of the edges

contained in the minimal cut face of C. And, the throughput of the minimal cut face is at

most Min­Cut(C) at any moment. As a result, the inequality holds.

Theorem 3. In the fluid queuing model, given network C, inflow µ0. If each of C’s edge

is used by OPT flow at some moment, the Price of Anarchy is at most 2|V | − 1.

13
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Proof. At the last leaving time θ̂, record lv(θ̂) for all v ∈ E − {s} and sort them into

{t0, t1, ..., tn}. We discretize the earliest travel time L̂ = lt(θ̂)− θ̂ into interval (ti−1, ti).

Note that, n+ 1 ≤ |V |.

We know that (ti−1, ti) contains some edges with some queue mass. For each edge ej

in this interval, we suppose ej start at tf(j) ≤ ti−1, denoted ej = (vj, τj) and the queuing

mass zj(tf(j)), then:
zj(tf(j))

vj
+ τj ≥ ti − ti−1.

Now, for network C, interval (ti−1, ti), consider the Min­Cut(C) and an index set of

interval S := {k|ek ∈ [ti−1, ti]}, we have:∑
k∈S zk(tf(k))∑

k∈S vk
≤ M∑

k∈S vk
≤ M

Min­Cut(C)

(∗)
≤ TOPT ,

last inequality holds by Lemma 2. This implies mink∈S
zk(tf(k))

vk
≤ TOPT . Now, consider

j = argmin zk(tf(k))

vk
, we have:

ti − ti−1 ≤
zj(tf(j))

vj
+ τj

(∗)
≤ TOPT + TOPT ,

L̂ = L(C, µ0, θ̂) = lt(θ̂)− θ̂ = tn − t0 =
∑n

i=1 ti − ti−1 ≤ 2n ∗ TOPT ,

PoA ≤ 2n+ 1 = 2|V | − 1.

Note that, τj ≤ TOPT holds since OPT flow uses all edges including ej .

Conjecture 1. In the fluid queuing model, removing each OPT­unused edge in networks

only worsens the Price of Anarchy. Hence, the Price of Anarchy is at most 2|V | − 1 for

networks.

Remark 4. In parallel­link networks, this conjecture is true. In general networks, this

conjecture could be false, take Pigou’s example for an example. The conjecture is possible

to be true in series­parallel networks.

Theorem 4. In the fluid queuing model, the Price of Anarchy is at mostD(C) for series­

parallel networksC, whereD(C) denotes the maximal number of each path’s node among

all s to t paths.

14
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Claim: Given a series­parallel networkC, inflowµ0, anymoment θ0. For the through­

put flowMput, the shortest travel time L, and the mass of particle existing in network Q.

We have the inequality:

Mput(C,∞, L(C, µ0, θ0)) ≤ (D(C)− 1)Q(C, µ0, θ0),

which implies the Theorem from Lemma 1.

Proof. (a)Base Case

In parallel­link network, D(C) = 2. The statement is true by Theorem 1.

(b)Parallel­linking

After parallel­linking operation, series­parallel networks C1 links to C2. For C’s inflow

µ0, define the EQU flow’s inflow of C1 is µup
0 , inflow of C2 is µdn

0 , and µ0 = µup
0 + µdn

0 ;

for any moment θ0. we have:

L(C1, µ
up
0 , θ0) ≥ L(C, µ0, θ0),

L(C2, µ
dn
0 , θ0) ≥ L(C, µ0, θ0),

Q(C, µ0, θ0) = Q(C1, µ
up
0 , θ0) +Q(C2, µ

dn
0 , θ0).

Induction hypothesis of Claim:

given C1, µ
up
0 , θ0 : Mput(C1,∞, L(C1, µ

up
0 , θ0)) ≤ (D(C1)− 1)Q(C1, µ

up
0 , θ0),

given C2, µ
dn
0 , θ0 : Mput(C2,∞, L(C2, µ

dn
0 , θ0)) ≤ (D(C2)− 1)Q(C2, µ

dn
0 , θ0),

This implies:

Mput(C,∞, L(C, µ0, θ0))
(∗)
≤ sum of LHS

≤ sum of RHS

≤ max(D(C1)− 1, D(C2)− 1)[Q(C1, µ
up
0 , θ0) +Q(C2, µ

dn
0 , θ0)]

= (D(C)− 1)Q(C, µ0, θ0),

whereD(C) = max(D(C1), D(C2)). And, the first inequality holds since the throughput

of C is just the sum of throughput of C1 and C2 with same period time.
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(c)Series­linking

After series­linking operation, series­parallel networks C1 links to C2. For C1’s inflow

µ0, define the EQU flow’s outflow of C1 is µ1, and µ1 is C2’s inflow; for any moment θ0,

define θ1 = lp(θ0). We have:

L(C, µ0, θ0) = lt(θ0)− θ0

= lt(θ0)− θ1 + lp(θ0)− θ0

= L(C2, µ1, θ1) + L(C1, µ0, θ0),

Q(C, µ0, θ0)
(∗)
≥ Q(C1, µ0, θ0),

Q(C, µ0, θ0)
(∗∗)
≥ Q(C2, µ0, θ0).

Inequality (*) holds by consider the mass of particle existing in C1 at θ = θ0 as a lower

bound; Inequality (**) holds by consider the mass of particle existing in C2 at θ = θ1 as a

lower bound.

Induction hypothesis of Claim:

given C1, µ0, θ0 : Mput(C1,∞, L(C1, µ0, θ0)) ≤ (D(C1)− 1)Q(C1, µ0, θ0),

given C2, µ1, θ1 : Mput(C2,∞, L(C2, µ1, θ1)) ≤ (D(C2)− 1)Q(C2, µ1, θ1),

This implies:

Mput(C,∞, L(C, µ0, θ0))
(∗)
≤ sum of LHS

≤ sum of RHS

≤ [D(C1)− 1 +D(C2)− 1]Q(C, µ0, θ0)

= (D(C)− 1)Q(C, µ0, θ0),

where D(C) = D(C1) +D(C2) − 1. Moreover, the first inequality holds since we

can consider C2 sending infinite particle without delay time in θ = 0 ∼ θ1 and C1 sending

infinite particle without delay time in θ = θ1 ∼ lt(θ0) as an upper bound ofMput.
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3.3 (2 + 2)­parallel­link Network

Remark 5. We remove all edges exceed m1 and m2, where m1 and m2 are the maximal

number of used edges in OPT flow or EQU flow in C1 and C2 parts respectively. And,

this has no influence on our model. On the other hand, we use ej = (aj, σj) in C1 and

ej = (vj, τj) in C2.

Now, consider the flows on network C1 and inflow µ0. Define TEQU |C1 ,TOPT |C1 as

the arriving time of all particle in EQU flow and OPT flow respectively. Let’s see a new

model named by ”Restricted Inflow Model” as below:

Definition 10 (Restricted InflowModel). In EQU flow, consider any moment θ0 such that

µ0(θ0) ≥ a1 + ... + am1 and lt(θ0) = σm1 . We imitate the OPT flow, let µ0(θ0) − (a1 +

...+ am1) mass of particles wait at s until µ0 ≤ a1 + ...+ am1 and all previous particles

have leaven.

In EQU flow after the operation, the arriving time of each particle is the same as usual.

Since the order of any pair of particles is conserved and each edge passing the same mass

of particles as usual. Furthermore, the travel time of each particle is at most σm1 in the

Restricted inflow model. Finally, each particle in EQU flow would depart earlier or equal

to OPT flow, since there is always no more particle wait at s in EQU flow.

Definition 11 (Different Arriving Time). Given parallel­link network C1, inflow µ0, each

particle p from µ0. Define d(C1, µ0, p) by the different arriving time of EQU flow to OPT

flow for particle p. Define d(C1, µ0) = suppd(C1, µ0, p).

Follow from definition, we have:

d(C1, µ0, p) ≤ σm1 .

TEQU |C1 − TOPT |C1

(∗)
≤ d(C1, µ0) ≤ σm1 ,

last inequality holds by considering the last particle as a special case of particle p.

Definition 12 (EO flow). Given (2 + 2)­parallel­link network C1 + C2, inflow µ0. For

EQU flow in network C1 using inflow µ0, we have the outflow of C1 as the inflow of C2,

17
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denoted by µ1. Now, consider the OPT flow of network C2 using inflow µ1, this is the EO

flow in (2+2)­parallel­link network C1+C2. And, define the arriving time of all particle

in EO flow by the arriving time of all particle in OPT flow of network C2 using inflow µ1.

Define n2 is the maximal number of used edges in EO flow or EQU flow in C2 part.

We apply the above lemma on networks C2, inflow µ1, we have:

TEQU − TEO ≤ τn2 ≤ τm2 ,

where And, m2 is the maxiaml number in OPT flow or EQU flow in C2 part. Since we

remove all edges exceedm2, n2 ≤ m2.

Lemma 3. In the fluid queuing model, given (2 + 2)­parallel­link network C1 series­

linking to C2 and inflow µ0, denoted ej = (aj, σj) in C1 and ej = (vj, τj) in C2. For the

OPT flow and EQU flow, we have:

TEQU − TOPT ≤ σm1 + τm2 .

Proof. Follow from above, for the EO flow in this (2+2)­parallel­link network, we have:

TEQU − TEO ≤ τm2 ,

TEQU |C1 − TOPT |C1 ≤ σm1 .

In EO flow, consider a strategy as below: For all particle arriving source of C2, let them

wait at source for σm1 − d(C1, µ0, p) time and leave. In this case, EO flow has the same

inflow of C2 as OPT flow, but delay for exactly σm1 time. That is:

OPT’s inflow of C2 : µ2(θ),

EO’s inflow of C2 : µ2(θ + σm1),

whereµ2(θ) is the inflow ofC2 in OPT flow. This relationship implies TEO−TOPT = σm1 .

However, EO flow may choose some better solutions, implies

TEO − TOPT ≤ σm1 ,

TEQU − TOPT = TEQU − TEO + TEO − TOPT ≤ σm1 + τm2 .
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Remark 6. In the proof of Lemma 3, for EO flow, we let the particle wait at the intermedi­

ate point p. Despite this is not allowed in our model, it only worsens TEQU and makes the

PoA bigger. The upper bound of PoA is still true if we allowed waiting at the intermediate

point p. So, we allow it.

Lemma 4. Given (2+2)­parallel­link networkC1+C2, TOPT = TEO or TOPT ≥ σ2+τ2,

where TOPT , TEO is the arriving time of all particle in OPT flow and EO flow respectively

and (a1, σ1), (a2, σ2) denotes the edges of C1, (v1, τ1), (v2, τ2) denotes the edges of C2.

Proof. Given (2 + 2)­parallel­link network C1 + C2, inflow µ0, the maximal number of

used edges in OPT flow or EQU flow in C1 part and C2 part arem1 andm2 respectively.

Now, if m1 = 1, then TOPT = TEO. Else, consider m1 = 2. Let’s divide it into two

cases:

(a)m1 = 2 and a1 ≥ v1

During θ = 0 ∼ σ2, OPT flow and EO flow have the same inflow and outflow at C2.

Now, if m2 = 1, after θ = σ + 2, OPT flow and EO flow still have the same outflow at

C2, implying TOPT = TEO. Else,m2 = 2, both OPT and EO active (v2, τ2) at θ = σ1.

• If EO flow shutdown (v2, τ2)first, then TEO ≤ TOPT , implies TEQ = TOPT .

• If OPT flow shutdown (v2, τ2)first but before θ = σ2+ τ2, then OPT flow and EO

flow have the same outflow at C2 later, which will pass the same mass of particle.

We let EO flow shutdown (v2, τ2) at the same time to afford TEQ = TOPT .

• If OPT flow shutdown (v2, τ2)first and after θ = σ2 + τ2, then TOPT ≥ σ2 + τ2.

(b)m1 = 2 and a1 ≤ v1

If m2 = 1, consider the EO flow and OPT flow. Maybe EO flow and OPT flow have the

total same outflow, then TEO = TOPT ; Else, EO flow and OPT flow must have the same

outflow during θ = 0 ∼ σ2 + τ1, implies TOPT ≥ σ2 + τ1. Both of the cases are enough

to prove PoA ≤ 2.

Else, m2 = 2, which implies a1 + a2 ≥ v2 ≥ a1 since v2 is used. Now, if OPT flow
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use (v2, τ2), then TOPT ≥ σ2 + τ2. Else, EQU flow use (v2, τ2), we can compute:

Mput(C,∞, σ2 + τ2) =


0, θ = 0 + τ1 ∼ σ1 + τ1,

a1(σ2 − σ1), θ = σ1 + τ1 ∼ σ2 + τ1,

v1(τ2 − τ1), θ = σ2 + τ1 ∼ σ2 + τ2.

Mput(C, µ0, σ2 + τ2) =


0, θ = 0 + τ1 ∼ σ1 + τ1,∫ σ2−σ1

0

min(µ0(θ), a1)dθ, θ = σ1 + τ1 ∼ σ2 + τ1,

v1(τ2 − τ1), θ = σ2 + τ1 ∼ σ2 + τ2.

On the other hand, in EQU flow, let’s find a lower bound of the total mass of particle

arriving at the source of C1 + C2 before activating (v2, τ2) as an lower bound ofM :
0, θ = 0 + τ1 ∼ σ1 + τ1,

the mass of particle passing by C1 + C2 =
∫ σ2−σ1

0
min(µ0(θ), a1)dθ, θ = σ1 + τ1 ∼ σ2 + τ1,

the mass of particle queuing at C2 to active (v2, τ2) = v1(τ2 − τ1), θ = σ2 + τ1 ∼ θ̂.

As a result, we have:

Mput(C, µ0, σ2 + τ2) ≤ M.

Similar as Lemma 1, this implies TOPT ≥ σ2 + τ2.

Theorem 5. In the fluid queuing model, the Price of Anarchy of 2 for (2+2)­parallel­link

networks is tight.

Proof. Follow from the Lemma 4, if TOPT = TEO, apply Lemma 1 on network C2 using

inflow µ1, we have:
TEQU

TOPT

=
TEQU

TEO

≤ 2.

On the other hand, if TOPT ≥ σ2 + τ2, together with Lemma 3, we have:

TOPT ≥ σ2 + τ2 ≥ TEQU − TOPT ,

PoA =
TEQU

TOPT
≤ 2.

So, we achieve the goal.
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Chapter 4

Extension

We will show a self­defined tax scheme and improve the PoA’s bound with it in the fluid

queuing model. Although it seems helpless for the networks with constant inflow, it is

helpful for the parallel­link networks with some extreme inflow cases.

Definition 13 (Delay­time Tax Scheme). In the fluid queuing model, we increase the delay

time of edges by imposing tax in the given networks. The tax is not considered as the cost

of society’s welfare. That is, the tax scheme will only change the behavior of particles,

and the computation of delay time and travel time still uses the original setting. This is

called the delay­time tax scheme, refer to [11].

Remark 7. Under the definition of the Delay­time Tax Scheme, OPT flow would not

change anything after taxing. This is because the computation of delay time and travel

time still uses the original setting. As a result, we only discuss EQU flow and the changes

on the arriving time of all particle in EQU flow, TEQU .

Theorem 6. In the fluid queuing model with constant inflow, the Price of Anarchy is at

least 4
3
for parallel­link networks after taxing.

Proof. Let’s show an example of the Price of Anarchy of 4
3
, refer to [10]. Consider the

parallel­link network with two edges, the total amountM , and the constant inflow function
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Figure 4.1: The diagram of “PoA of 4
3
Example” This is the parallel­link network with

edges {e1 = (0.5, 0), e2 = (1, 1)}, the total amount M = 1, and the constant inflow

function µ0 = 1.

µ0 as below:

E = {e1 = (0.5, 0), e2 = (1, 1)},

M = 1,

µ0(θ) = 1.

In this example, we have:

TOPT = 1.5, TEQU = 2, PoA =
4

3
.

Now, for this example, we apply the Delay­time tax scheme into the below 3 cases, and

discuss the influence on TEQU :

(a)Taxing on both edges

This can reduce to ”Taxing on single edge” case, since the behavior of particles only be

influenced by the difference of two edges’ delay time, but not the exactly value of each

edge’s delay time.

(b)Taxing on down edge e2 = (1, 1)

In EQU flow, all particle still choose up edge as usual. Nothing is changed. We have:

TEQU = 2 and PoA = 4
3
after taxing.

(c)Taxing on up edge e1 = (0.5, 0)

Denote the delay time of e1 by x after taxing. Consider EQU flow:
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• if x > 1, then all particle choose down edge. We have: TEQU = 2 and PoA = 4
3

after taxing.

• if x = 1, then passing two edges spends the same time. That is, there are infinitely

many Nash equilibrium, and we consider the worst­case, ”the last particle go down

edge”. We have: TEQU = 2 and PoA = 4
3
after taxing.

• if x < 1, then the behavior of particle is as below: During θ = 0 ∼ 1 − x, all

particles go up edge and queue length is 1
2
(1 − x) finally. From now on, passing

two edges spends the same time. That is, there are infinitelymanyNash equilibrium,

and we consider the worst­case. We have: TEQU = 2 and PoA = 4
3
after taxing.

As a result, the Price of Anarchy for this example is 4
3
after taxing.

Theorem 7. In the fluid queuing model with constant inflow, the Price of Anarchy is at

least e
e−1

after taxing on single edge.

Proof. Let’s show an example of the Price of Anarchy of e
e−1

, refer to [10]. Consider the

series­parallel­link network with 2m edges, the total amount M , and the constant inflow

function µ0 as below:

{ei = (ui, 0), ei = (ui, αµm( 1
uOPT

− 1
ui
))}i=1∼m,

M = αµm,

µ0 = µm,

wherem ∈ N, α > 0, µi =
∑i

k=1 µk. In this example, we have:

TOPT = αµm(
1

uOPT

− 1

ui

), TEQU = αµm, lim
m→∞

PoA =
e

e− 1
.

Now, for this example, we apply the Delay­time tax scheme on single edge into the below

2 cases, and discuss the influence on TEQU :

(a)Taxing on up edge ei = (ui, αµm( 1
uOPT

− 1
ui
)):

In EQU flow, all particles go down edge firstly and become part of queuing until t = α.

At this moment, inflow stop! For non­taxing­up­edges, they are about to be activated;

For the only taxing­up­edge ei, it is not yet to be activated. So, TEQU > αµm and
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Figure 4.2: The diagram of “PoA of e
e−1

Example” This is the series­parallel­link network

with edges {ei = (ui, 0), ei = (ui, αµm( 1
uOPT

− 1
ui
))}i=1∼m, the total amount M =

αµm, and the constant inflow function µ0 = µm, wherem ∈ N, α > 0, µi =
∑i

k=1 µk.

limm→∞ PoA > e
e−1

.

(b)Taxing on down edge ei = (ui, 0):

Denote the delay time of ei by x after taxing.

• In EQU flow, if x > αµm( 1
uOPT

− 1
ui
) or x = αµm( 1

uOPT
− 1

ui
), similar as Theorem

6, then all particles coming vi+1 go up road ei+1. This makes TEQU the same and

limm→∞ PoA = e
e−1

.

• In EQU flow, if x < αµm( 1
uOPT

− 1
ui
), then all particles go down edge firstly. And,

the up road ei+1 is activated earlier than t = α, implies lvi+1
(θ) = τi+1. Despite

the up orad ei+1 is activated earlier, but the subsystem from vi+1 to v1 would not

finish earlier. This is because the inflow from vi+1 coming ei+1 and ei is the same

as usual. So, TEQU = αµm and limm→∞ PoA = e
e−1

.

As a result, the Price of Anarchy for this example is e
e−1

after taxing on single edge.
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Figure 4.3: The diagram of “PoA of 2 Example”. Left part is the parallel­link network

with 2 edges {e1 = (a, σ), e2 = (b, τ)}; Right part is the inflow function, which is a step

function with range={1, a}.

Theorem 8. In the fluid queuing model with dynamic inflow, the Price of Anarchy can be

reduced by the delay­time tax scheme in some cases.

Proof. Let’s show the parallel­link network with 2 edges as example, whose Price of An­

archy is 1+ ϵ after taxing with given ϵ. This example is similar as Chapter 3­Therorem 1.

Given a, σ, b, τ such that a+ b ≥ 1, σ < τ , consider:

E = {e1 = (a, σ), e2 = (b, τ)}.

µ0(θ) =


1, θ = 0 ∼(τ − σ) ∗ a

1− a
,

a, θ = (τ − σ) ∗ a

1− a
∼(τ − σ) ∗ a

1− a
+ τ − σ.

In this case, we have:

TOPT = (τ − σ) ∗ a

1− a
+ τ,

TEQU = (τ − σ) ∗ a

1− a
+ τ + (τ − σ),

PoA =
TEQU

TOPT

=
(τ − σ) 1

1−a
+ σ

(τ − σ) 1
1−a

+ (τ − σ)
→ τ

2(τ − σ)
as a → 0+.

Now, we apply the Delay­time tax scheme on this example. Given ϵ > 0, tax on up edge

e1 = (a, σ) such that e1 = (a, τ − ϵ). In EQU flow, the behavior of particles are as follow:
All particles go up­road and queue length achieves aϵ, 0 ∼ ϵ

a

1− a
,

Particles go up road at speed a; down road at speed 1− a, ϵ
a

1− a
∼ (τ − σ)

a

1− a
,

Inflow stop! Consume the queuing, (τ − σ)
a

1− a
∼ (τ − σ)

a

1− a
+ τ + ϵ.
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As a result, TEQU = (τ − σ) a
1−a

+ τ + ϵ and PoA = 1 + (1−a)ϵ
τ−aσ

→ 1 as ϵ → 0+.
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Chapter 5

Conclusions and Future Works

We find upper bounds of the PoA of networks with dynamic inflow. We prove the PoA of

2 of parallel­link networks and (2+2)­parallel­link networks, the PoA ofD(C) of series­

parallel networks, the PoA of 2|V | − 1 of general networks with assumption. We reduce

the upper bound of PoA of parallel­link networks or series­parallel networks from infinite

to 2 and D(C) respectively. The bounds we proved are different from networks with

constant inflow in the fluid queuing model. On the other hand, similar to the work of tax

scheme [11], we design the Delay­time tax scheme to improve the system’s inefficiency,

which may help a lot on networks with dynamic inflow. Our main work is to use the total

amount of inflow as an upper bound of the maximal throughput of networks to afford the

lower bound of the cost of optimal flows (or said optimal time) in the fluid queuing model.

This technique helps us finding PoA’s tight bound of parallel­link networks and a simple

example of series­parallel networks, even a loose bound of series­parallel networks. This

technique provides an exactly bound of PoA of series­parallel networks with dynamic

inflow. Also, it simplifies the work from finding PoA’s bound to calculating the mass

of the maximal throughput of networks. On the other hand, we design a tax scheme to

improve society’s welfare as a possible solution to the system’s inefficiency.

Now, consider we have proved a loose upper boundD(C) of series­parallel networks

and the tight bound 2 of parallel­link networks and (2 + 2)­parallel­link networks. The

first future work is to find the tight bound of extension­parallel networks or series­parallel
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networks, which probably is 2. In this case, the technique used in the proof of PoA of

(2 + 2)­parallel­link networks can be essential. On the other hand, consider the Delay­

time tax scheme. We have shown it is helpful on networks with dynamic inflow by an

example. Another future work is to prove the PoA of parallel­link networks is 4
3
after

taxing. In networks with dynamic inflow, the equilibrium flows after taxing will prefer no

queuing and using the shortest delay time path, similar to the optimal flows. However, in

networks with static inflow, the equilibrium flows after taxing will not stop larger delay

time edges to queue at shorter delay time edges at the final step, which is different from

the optimal flows. As a result, the PoA of networks with dynamic inflow after taxing may

be the PoA of networks with constant inflow. Finally, the study of general networks is

also a point. For example, we may prove that TOPT ≥ L(θ̂) = L̂ ≥ TEQU − TOPT in

Pigou’s example, which implies PoA is 2. However, the technique in Lemma 1 cannot be

used directly in this case.
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