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Abstract

In this thesis, we study a Time-Variant-Model, called the “fluid queuing model”. Consider
a directed graph injected with a continuous inflow such that water propagates to each
edge. For each edge, If the inflow rate exceeds the given capacity, the exceeding particles
form a waiting queue, and the other particles pass through this edge under the given delay
time. We study the game theory aspect of the fluid queuing model, called the dynamic
equilibrium model, which was applied to describe several problems. Examples include
the Internet, the self-driving car central control system, and the procedure of CPU-core.
Previously, several authors studied on fluid queuing model, likes Ford and Fulkerson [1,
2], Gale [3], Anderson and Philpott [4], Fleischer and Tardos [5]. Some authors studied
on dynamic equilibrium model, likes Vickrey [6], Meunier and Wagner [7], Cominetti,
Correa, andLarr¢ [8], Kaiser and Marcus [9]. Our study continues the result of PoA bound
of networks with constant inflow under monotonicity conjecture [10], and the existence of
PoA of networks with dynamic inflow [8,9]. On the one hand, the purpose of studying the
PoA 1n a series-parallel network is to measure the inefficiency of the problem of assigning
tasks to processors. On the other hand, the purpose of studying the PoA of networks with
dynamic inflow is to narrow the gap between the model and the reality. We think the
networks with dynamic inflow will be closer to the actual situation of the central control

system of autonomous vehicles. In the real world, traffic will change over time.

We find upper bounds of the PoA of networks with dynamic inflow. We prove the
PoA of 2 of parallel-link networks and (2 + 2)-parallel-link networks, the PoA of “net-
work’s diameter(called D(C'))” of series-parallel networks, the PoA of 2|V'| — 1 of general
networks with assumption. This thesis is the first study on the PoA for networks with dy-

namic inflow in the fluid queuing model. That is, we reduce the upper bound of PoA

v doi:10.6342/NTU202100753



of parallel-link networks or series-parallel networks from infinite to 2 and D(C') respec-
tively. The bounds we proved are different from networks with constant inflow in the
fluid queuing model. On the other hand, similar to the work of tax scheme [11], we design
a simple tax scheme to improve the inefficiency of the system. This may help a lot on

networks with dynamic inflow.
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Chapter 1

Introduction

In this thesis, we consider the game theory aspect of the fluid queuing model proposed
by Vickrey [6]. In the fluid queuing model, the system consists of a directed graph and
a continuous inflow. Each edge of this graph has a capacity and a delay time. When the
flow traverses through the edges, queuing occurs if the flow rate exceeds the capacity
of the edge. The exceeding particles of the flow would form queuing to wait for the next
moment, and the other particles would pass this edge with the delay time of edge as the cost
of time. This model views each of the infinite particles as a player. These players selfishly
choose the shortest path from source to sink to minimize the travel time, which forms the
equilibrium flow. The travel time of each particle is the summation of the waiting time at

the source plus the queuing time and delay time of each edge it chooses.

This model can be used to describe several problems. Examples include the Internet,
the central control system of self-driving cars, and the task processor of the CPU core.
Consider the problem of transferring packets on the Internet. We can model the Internet
as a network, packet as particle forming inflow, and network congestion as fluid queuing
of each edge. On the example of traffic networks, we can model the traffic network as
a network, vehicle as particle forming inflow, the traffic jam on each road as the fluid
queuing of each edge. Note that the optimal solution is the self-driving car central control
system. On the problem of assigning tasks to processors, we can model each processor

execution time as edges of a network, the process as particle forming inflow, and the
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waiting queue of each machine as the fluid queuing of each edge. In this example, the
programming statements forming series operations and parallel operations, such as for-

loops or if-else. These are the motivation of series-parallel networks.

Previously, Ford and Fulkerson [1,2] provided an algorithm of the fluid queuing
model with constant inflow to send the maximal mass of flow with a given time. Gale [3]
proved the existence of flow that is the optimal solution at each moment. Anderson and
Philpott [4], Fleischer and Tardos [5] improved this result from each moment to continuous

time version.

Consider the game theory aspect on the fluid queuing model, which is called dynamic
equilibrium model and laterally introduced as “Flow of Model”, firstly studied by Vickrey

[6]; Meunier and Wagner [7] proved the existence of dynamic equilibria.

For fluid queuing model with dynamic inflow, Cominetti, Correa, and Larré [§8]
proved the existence of dynamic equilibria of piecewise constant inflow and locally Lebesgue-
integrable inflow. Kaiser and Marcus [9] constructively proved the existence of dynamic

equilibria of locally Lebesgue-integrable inflow.

The purpose of studying the Price of Anarchy (PoA) is to evaluate and quantify the
inefficiency of the system. This analysis of POA enables us to measure each kind of game
and design an improved mechanism for them. The PoA was studied in several games,
likes Stackelberg game [12], selfish routing game [13], or network game or called game-
theory aspect on fluid queuing model [10]. Focusing on the networks with dynamic inflow,
we discuss PoA’s bound for parallel-link networks, series-parallel networks, and general
networks in this thesis. On the other hand, those two papers in the previous paragraph
showed the PoA of the fluid queuing model with locally integrable inflow is finite due to

the existence of dynamic equilibria.

In the fluid queuing model, the price of anarchy for networks with constant inflow
is tightly bounded by —<; under a weak assumption, called the monotonicity conjecture.
In particular, the price of anarchy for parallel-link networks tightly bounded by % without

any assumption [10].

Consider the existence of dynamic equilibria of locally integrable inflow and PoA’s
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bound for networks with constant inflow. We want to find PoA’s bound of series-parallel
networks with locally integrable inflow or called dynamic inflow. The purpose of study-
ing the PoA of series-parallel networks is related to the problem of assigning tasks to
processors. That is, we want to study the efficiency of the process-and-CPU system. On
the other hand, the purpose of studying the PoA of networks with dynamic inflow is to
narrow the gap between the model and the reality. We think the networks with dynamic
inflow would be closer to real situations, such as the internet or self-driving car central

control system. In the real world, traffic will change over time.

Our Result: We find upper bounds of the PoA of networks with dynamic inflow. We
prove that the PoA of 2 is a tight bound for parallel-link networks and (2 + 2)-parallel-link
networks; the PoA of series-parallel networks is upper bounded by D(C'), where D(C)
is closed related to the diameter of the network; the PoA of general networks is upper

bounded by 2|V| — 1 with assumption. These results are shown in table 1.1.

This thesis is the first study on the PoA for networks with dynamic inflow in the fluid
queuing model. That is, we reduce the upper bound of PoA of parallel-link networks or
series-parallel networks from infinite to 2 and D(C') respectively. The bounds we proved
are different from networks with constant inflow in the fluid queuing model. On the other
hand, similar to the work of tax scheme [11], we design a simple tax scheme, called Delay-
time tax scheme, to improve the efficiency of the system. Surprisingly, the delay-time tax
scheme did not work on networks with constant inflow but may help a lot on networks

with dynamic inflow.

Our main work is to use the total amount of inflow as an upper bound of the maximal
throughput of networks to afford the lower bound of the cost of optimal flows (or said
optimal time) in the fluid queuing model. This technique helps us finding PoA’s tight
bound of parallel-link networks and a simple example of series-parallel networks, even
a loose bound of series-parallel networks. This technique provides an exactly bound of
PoA of series-parallel networks with dynamic inflow. Also, it simplifies the work from
finding PoA’s bound to calculating the mass of the maximal throughput of networks. On
the other hand, we design a tax scheme to improve society’s welfare as a possible solution

to the system’s inefficiency.
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Inflow Network PoA

Static Parallel-link % [10]
Static General w/ hypo. = [10]
Dynamic General < 00 [8,9]

Dynamic Parallel-link 2

Dynamic | General w/ hypo. | <2|V|—1

Dynamic Series-parallel < D(C)

Dynamic | (2 + 2)-parallel-link 2

Table 1.1: Summary of result. The PoA of 2 is a tight bound of parallel-link networks
and (2 + 2)-parallel-link networks; The PoA of D(C') is a loose bound of series-parallel

networks; The PoA of 2|V | — 1 is a loose bound of general networks with assumption.
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Chapter 2

Model

In this chapter, there are three sections. Firstly, we will define the fluid queuing model
as the base of this thesis; Secondly, we will introduce the few kinds of flows in the fluid
queuing model and imply the term—the Price of Anarchy; Thirdly, we will choose some

specific models to study. These contents will be used in the next chapter.

2.1 Fluid Queuing Model

Consider a network C' by directed graph G = (V, F) with source s € V and sink ¢t € V.
Each edge e; has capacity v, and delay time 7;, denoted by e; = (v;, 7;). Sometimes, we
use the notation e; = (a;, ;). Moreover, each edge also has an infinite buffer to store the

particles.

In this paper, the fluid queuing model is regarded as one of the models of network flow
changes over time. The inflow of network, 1, is a Lebesgue locally integrable function.
Denote the last leaving time by 6 = sup{0]s(#) > 0}, and the total amount by M =
foé to(0)df. Here, we assume all particles have full information, enable them to imply

each moment’s situation.

Let’s define fluid queuing model here, refer to [10]. For each e € E at 0, denote the
queuing mass by z. (), and the inflow rate by f.7(#), where f7(0) : Rt — R*. At this

doi:10.6342/NTU202100753



moment, the changing speed of z.(0) is:

fEO) —ve 2 i £5(0) > v,
— f0) N Af £5(0) < ve, ze(0) > 0,
0—, if f1(0) <we,z.(0) = 0.
So, the particle come-in e at 6 will leave e at

ze(0)

Ve

0+ + Te,

( )

where <= + 7, is named by the travel time of e at 6.

For each e € F at 6§ + 7., denote the outflow rate by

Ve, ifz.(0) >0,
AR
min(v,, £,5(0)), if z.(0) = 0.

Now, for each v € V' — {s, ¢}, no particle would stay at v at any 0. That is,
S oe= 3 50
e=(u,v)eE e=(v,w)EE
For source s, particle is allowed to wait at s and leave at any . We have:
DI A UEID DA
e=(u,s)€EE e=(s,w)eE

since some particles may stay at s.

Remark 1. In the previous paper, like [10], they denote that

+ > =Y 0.

e=(u,s)eEE e=(s,w)eE
But, in this thesis, we use the inequality notation. This is because we do not view the

particle waiting at s as part of outflow 3 _ . cp [ F(0). This only has few influence on

the continued part of thesis.

In the fluid queuing model, the strategy of each particle is to wait for a moment in s,
and then choose a path to leave. For this particle p, the travel time is defined by waiting

time at s plus the summation of the travel time of all e € path at the arriving time of p.

doi:10.6342/NTU202100753



2.2 Flow of Model

2.2.1 OPT flow

The OPT solution (OPT flow) of the fluid queuing model is the strategy as below: Given
network C, inflow 1. Each particle from i is manipulated such that the last particle can
arrive at ¢ at the earliest time. We denoted this earliest time by 7 pr, called the arriving

time of all particles in OPT flow.

Remark 2. The OPT flow maybe not unique. We default it by the OPT flow without

queuing and prefer paths with shorter delay time.

2.2.2 EQU flow

For each particle as a player, the Nash Equilibrium (EQU flow) of the fluid queuing model
is the strategy as below: Given network C, inflow py. For each particle, it has to choose
waiting time at s plus the travel time of one of the paths from s to . And, the cost of each
particle is the arriving time. Finally, we denoted the time of the last particle arriving ¢ by

Trou, called the arriving time of all particles in EQU flow.

Now, let’s introduce two terms. The PoA, price of anarchy [14], is the ratio between
the worst Nash Equilibrium and the optimal solution of social cost. The PoS, price of
stability [15], is the ratio between the best Nash Equilibrium and the optimal solution of
social cost. However, there is only one unique Nash equilibrium in this network game.

Trqu

We simply denote PoA := === without any ambiguity. Here, PoA is the ratio of the

TopT

arriving time of all particles in EQU flow to OPT flow.
Remark 3. The waiting time at s is 0 for all particles in this case.

Definition 1. Consider EQU flow of network C, inflow . For the particles arriving s

at 0y, we denote the earliest time to arrive eachv € V. — s by ().

Definition 2. Consider EQU flow of network C, inflow . The mass of particle existing
in C at 6y, Q(C, po, ) := f{9|9§90’lt(9)>00} o (0)dl. When it is clear from the context, we
use Q(0y) to denote Q(C, o, by).
doi:10.6342/NTU202100753



Definition 3. Consider EQU flow of network C, inflow 1. At the moment 6y, we define
the shortest travel time L(C, g, 6y) = 1;(00) — 0o. And, at the last leaving time 0, we

short-write L := L(C, j1o, ). When it is clear from the context, we use L(6) to denote
L(C, po, o).

2.2.3 Throughput flow

The throughput flow of the fluid queuing model is the strategy as below: Given network
C, inflow pg, period time § = 0 ~ t. Each particle from p is manipulated such that

sending the maximal mass of particle throughput C' at inflow py during § = 0 ~ ¢.

Definition 4. The maximal mass of particle is denoted by M,,;(C, 119, t). Sometimes we
instead inflow function of infinite inflow rate during 0 = 0 ~ t to afford an upper bound
of Mpu:(C, po, t), denoted by M,,.(C,00,t). When it is clear from the context, we use
M, (t) to denote My, (C, 00, t).

2.3 Networks of Model

Definition 5 (Parallel-link Network). Given a network C' in fluid queuing model, C' is
Parallel-link networks if e = (s, t) forall e € E.

Definition 6 (Series-parallel Network). Series-parallel networks are defined by Induc-
tion: Start from parallel-link networks, each time can do series-linking or parallel-linking
operation to another well-defined series-parallel network. All possible results form series-

parallel networks.

Definition 7. Given the series-parallel network C, the maximal number of each path's

nodes among all paths is denoted by D(C).

Definition 8 (Parallel-group-link Network). Given € > 0 and a parallel-link network C.

If there exists [L1, Ry], ..., [Ly, Rn|, 12— <1+ eand % > % and the delay time of

each edge of C' is in one of the intervals, then C' is called parallel-group-link network.
Connected from the routing game with groups of similar links, refer to [11].
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7N\, \,
NSNS

Figure 2.1: The diagram of “(2 + 2)-parallel-link Network™. In the first stage C, the

source is s and the sink is p; In the second stage (5, the source is p and the sink is ¢.

Definition 9 ((2 + 2)-parallel-link Network). Given parallel-link networks Cy, Cy and
C1 5 inflow py. Now, series-link C to Cs, denoted by C + Cy. Consider OPT flow and
EQU flow on this linking network C + Cy, the maximal number of used edges in OPT flow
or EQU flow in Cy and C5 part are denoted by my and ms respectively. If mi,mqo < 2,
we called Cy + Cs is a (2 + 2)-parallel-link network.

doi:10.6342/NTU202100753



Chapter 3

Main

We will show several PoA’s bounds in the fluid queuing model in this chapter. These
include some tight upper bound on parallel-link networks or (2+2)-parallel-link networks

and some finite upper bound on series-parallel networks.

3.1 Parallel-link Networks

First of all, we need Lemma 1 to evaluate the upper bound of the Price of Anarchy for

networks.

Lemma 1. Consider the fluid queuing model with network C, inflow po. For all time 6y,
if

Mput(L(60)) < K+ Q(6o),
then Tpou < (k + 1) x Topr, where M, is the maximal mass of particle throughput

network, () is the particle existing in network, and Topr, Trou are the arriving time of

all particle in OPT flow, EQU flow respectively.

Proof. For the shortest travel time L = L(6) := I,(d) — 6§, we have:

" o A~ () .
Trpou — Topr = 1(0) — Topr = L+ 0 —Topr < L,

10 doi:10.6342/NTU202100753



Ho(t)
(a, 0) e

7N

S t

N 5
(1, 1/3)

1/3*a/(1-a) 1/3

Figure 3.1: The diagram of “PoA of 2 Example”. Left part is the parallel-link network
with edges {e; = (a,0),e2 = (1, 3)}; Right part is the inflow function, which is a step

function with range={1, a}.

last inequality holds by considering the leaving time and the arriving time of last particle

in OPT flow. On the other hand, for the total amount M and the inequality, we have:

. 1 A (0 1 14
M 2 Q(0) 2 o Myur(L(0)) = 7 %k Myue( L()),

last inequality holds since we can copy the infinite inflow during = 0 ~ %L(é) for k
times as an option of infinite inflow during 6 = 0 ~ L(é) On the other hand, since we

have to send M mass of particle in OPT flow, so:

1 1. 1
Topr > —L(0) = =L > ~(Tpoy — T
OPT — k ( ) k k’( EQU OPT)a
T
k41> 229U — poA.
OPT

]

Theorem 1. In the fluid queuing model, the Price of Anarchy of 2 for parallel-link net-

works is tight.

Proof. Gien parallel-link network C, inflow 11, denoted e; = (v;, 7;) forall e; € E. At
any moment 6, suppose EQU flow use n edges, then we have:
L(Qo) S Tn+1-

For each edge, the travel time minus the delay time of edge is the queuing time. Hence,

we can calculate the mass of particle queuing in C' at 6, as an lower bound of Q(6y):
00 > Z ’UZ 60 - T,L

1 doi:10.6342/NTU202100753



where (Q(6,) is the particle existing in C' at 6. On the other hand, for each edge, the given

time of M, minus the delay time of edge is the total time to pass particle. We have:

put E vz 60 - T’L

This implies Q(0y) > Mp.(L(6y)). Follow from Lemma 1, we have PoA < 2. Fur-

thermore, let’s provide an example for the Price of Anarchy of 2. Given 1 > a > 0,

consider:
1
E = {61 = (a> 0)762 = (1’ g)}
1, =0 Nl* ¢ ,
_ 3 1—a
NO(G)— a 1 a
9:— ~ — —
@ 1-a T3 1-473
In this case, we have:
1 a 1
T = =
oPT 3*1 3,
1 a 1 1
T = _ _ -
EQU ¥ 14373
T * (2 — 2a +
por — Lpeu _5*(2=20ta) o, o g

1
3
Torr %*(1—a—|—a)

]

Theorem 2. In the fluid queuing model, if all edges in 1 aggregated network, the Price of
Anarchy of 2 — 1%6 ~ 1 + € for parallel-group-link networks is tight, where € is given by

the network.

Proof. Given parallel-group-link network C' whose edges are in 1 aggregated network,
inflow 119, denoted e; = (v;, 7;) for all ¢; € E. At the last leaving time 6, for the shortest
travel time I:, we have the condition:

L

Sl—i—e, VGjEE.
Tj

Similar as Lemma 1, we have:

1 (%) 1
L 0T, < (1-—
e )L+ + orr < ( 11 c

)L,

TEQU_TOPT:£+é_TOPT§(

12 doi:10.6342/NTU202100753



where the last inequality holds by considering the leaving time plus minimal delay time

and the arriving time of last particle in OPT flow. Hence, we afford:

1 T
- > —FRU _ poA.
14+¢ TOPT
Finally, similar as Theorem 1, the example for the Price of Anarchy of 2 — 1+r€ is shown
as below:
11 1
F = = — =(1.=
{61 (CL, 31+€)7€2 ( 73)}7
1 11
1, §=0 N T
(0) = 3 3l4e€el—-a
Ho gl 11 a A1l a |1
a = (= — = ~N— — — —.
’ 3 3l4e¢l—a 3 3l4el—a 3
In this case, we have:
1 11 a 1
T = (z—3 5
orr = (37313 )T=a " 3
1 11 a 1 11 1
T = (z—= - —= =
rov = Gogrr i TG s Ty
Toqu . 3~ 3r 1
PoA = £ =2- ~2—(1l—e)=1+¢
Topr 3 l+e ( )
holding when a — 0. O

3.2 Series-parallel Networks

Lemma 2. Consider the fluid queuing model with network C, inflow 11, the total capacity
of minimal cut face Min-Cut(C'), the inequality holds:

M S TOPT * Mln—Cut(C),

where M is the total amount and T pr is the arriving time of all particle in OPT flow.

Proof. In this case, for OPT flow, each particle from s to ¢ has to pass by one of the edges
contained in the minimal cut face of C'. And, the throughput of the minimal cut face is at

most Min-Cut(C') at any moment. As a result, the inequality holds. O

Theorem 3. In the fluid queuing model, given network C, inflow pg. If each of C's edge
is used by OPT flow at some moment, the Price of Anarchy is at most 2|V'| — 1.
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Proof. At the last leaving time 6, record [,(9) for all v € E — {s} and sort them into
{to,t1, ..., t, }. We discretize the earliest travel time L = [,() — 0 into interval (t;_1, t;).

Note that,n +1 < |V|.

We know that (¢;_1, ¢;) contains some edges with some queue mass. For each edge e;
in this interval, we suppose ¢; start at ¢ ;) < ?;_, denoted e; = (vj, 7;) and the queuing
mass 2;(ts(;)), then:

zi(ts() st
Yj
Now, for network C, interval (¢;_1,t;), consider the Min-Cut(C') and an index set of

interval S := {k|ex, € [t;_1,t;]}, we have:

(%)
YoresUk  Dokes Uk Min-Cut(C) —
last inequality holds by Lemma 2. This implies mingcg %J:k)) < Topr. Now, consider
j = argmin #Bw) | \we have:

Vg

o (%)
ti—ti—1 < % +71; < Topr + Torr,
fz = L(O, Mo,é) = lt(é) — é = tn — to = Z?:l tz — ti—l S 27’L X TOPT;

PoA <2n+1=2|V|-1.
Note that, 7; < Tppr holds since OPT flow uses all edges including e;. [

Conjecture 1. In the fluid queuing model, removing each OPT-unused edge in networks
only worsens the Price of Anarchy. Hence, the Price of Anarchy is at most 2|V | — 1 for

networks.

Remark 4. In parallel-link networks, this conjecture is true. In general networks, this
conjecture could be false, take Pigou's example for an example. The conjecture is possible

to be true in series-parallel networks.

Theorem 4. In the fluid queuing model, the Price of Anarchy is at most D(C') for series-
parallel networks C, where D(C') denotes the maximal number of each path s node among

all s to t paths.
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Claim: Given a series-parallel network C, inflow 14, any moment 6. For the through-
put flow M, the shortest travel time L, and the mass of particle existing in network ().

We have the inequality:
MPUt<C7 0, L(O7 Ko, 00)) S (D(C) - 1)@(0, Mo, 00)’
which implies the Theorem from Lemma 1.
Proof. (a)Base Case
In parallel-link network, D(C') = 2. The statement is true by Theorem 1.

(b)Parallel-linking
After parallel-linking operation, series-parallel networks 'y links to C5. For C’s inflow
1o, define the EQU flow’s inflow of C is uF, inflow of Cy is ud, and g = g’ + pd;

for any moment 6,. we have:

L(Ola M8p7 60)

v

L(C7 Ho, 00)7
L(027Mgn700) > L<C7 NU?QO)a

Q(Cnu0790) = Q(Clnugpae())+Q(027:ugn760)'

Induction hypothesis of Claim:

giVen Cla,ugpveo : Mput<Cl7oouL(Claﬂgp760>> S (D(Cl) - 1)@(017,“3]0790)7
giVCl’l 027 Mgn, (90 . Mput(CQa 0, L<027 ugna 90)) S (D(CQ) - 1)Q<027 ugna (90)7

This implies:
(*)
Myt (C, 00, L(C, p19,6p)) < sum of LHS
< sum of RHS
< max(D(Cy) — 1, D(Cy) — D)[Q(Ch, g, 0o) + Q(Ca, 1™, 00)]

(D(C) = 1)Q(C, o, bo),

where D(C) = max(D(C4), D(Cs)). And, the first inequality holds since the throughput
of C'is just the sum of throughput of C'; and C; with same period time.
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(c)Series-linking
After series-linking operation, series-parallel networks C links to Cs. For C;’s inflow
(1o, define the EQU flow’s outflow of '} is p1, and pq is Cy’s inflow; for any moment 6,

define 6, = 1,,(6y). We have:

L(C, o, 00) = 1:(00) — 0o
= 11(0o) — 01+ 1,(60) — o
= L(Og,ul,el) +L(01;U0a‘90)7

—~
*
~

Q(C’ NOaQO) > Q(Ch#meo)a
()
Q(Ca MOaGO) Z Q(CZ)M(LQO)’

Inequality (*) holds by consider the mass of particle existing in C at § = 0, as a lower
bound; Inequality (**) holds by consider the mass of particle existing in C; at ¢ = ¢, as a

lower bound.

Induction hypothesis of Claim:

giVen Cla,u0700 : Mput(cb OO7L(Cla,u0700)) S (D(Cl) - 1)Q<017H0790)7
given Cs, 11,01 : Myt (Cy, 00, L(Cy, 11, 61)) < (D(Cs) — 1)Q(Cy, 11, 64),

This implies:
Myt (C, 00, L(C, 110, 6)) (*g) sum of LHS
< sum of RHS
< [D(Gy) = 1+ D(Cy) = 1]Q(C, o, bo)

(D(C) = 1)Q(C, o, bo),

where D(C') = D(Cy) + D(Cy) — 1. Moreover, the first inequality holds since we
can consider 5 sending infinite particle without delay time in § = 0 ~ 6; and C'; sending

infinite particle without delay time in 6 = 6; ~ [,(6) as an upper bound of M,,;. [
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3.3 (2 + 2)-parallel-link Network

Remark 5. We remove all edges exceed my and ms, where my and mo are the maximal
number of used edges in OPT flow or EQU flow in C and C5 parts respectively. And,
this has no influence on our model. On the other hand, we use e; = (a;,0;) in Cy and

€; = (Uj, Tj) in CQ.

Now, consider the flows on network C and inflow . Define Trou|c,,Topr|c, as
the arriving time of all particle in EQU flow and OPT flow respectively. Let’s see a new

model named by “Restricted Inflow Model” as below:

Definition 10 (Restricted Inflow Model). In EQU flow, consider any moment 6 such that
po(o) > a1 + ... + ay,, and 1;(0y) = o,,,. We imitate the OPT flow, let io(6p) — (a1 +
c. + Q) mass of particles wait at s until g < ay + ... + a,, and all previous particles

have leaven.

In EQU flow after the operation, the arriving time of each particle is the same as usual.
Since the order of any pair of particles is conserved and each edge passing the same mass
of particles as usual. Furthermore, the travel time of each particle is at most o0, in the
Restricted inflow model. Finally, each particle in EQU flow would depart earlier or equal

to OPT flow, since there is always no more particle wait at s in EQU flow.

Definition 11 (Different Arriving Time). Given parallel-link network C', inflow p, each
particle p from . Define d(C1, 1o, p) by the different arriving time of EQU flow to OPT

flow for particle p. Define d(C1, o) = sup,d(Ch, o, p).

Follow from definition, we have:

d(Cla /,Lo,p) S Omy -

(%)
Trqule, — Torr|o, < d(Ch, o) < Oy s

last inequality holds by considering the last particle as a special case of particle p.

Definition 12 (EO flow). Given (2 + 2)-parallel-link network Cy + Cy, inflow 1. For
EQU flow in network C\ using inflow i, we have the outflow of C as the inflow of Cs,

17 doi:10.6342/NTU202100753



denoted by (1, Now, consider the OPT flow of network Cs using inflow p1, this is the EO
flow in (2 + 2)-parallel-link network Cy + Cs. And, define the arriving time of all particle
in EO flow by the arriving time of all particle in OPT flow of network Cy using inflow ;.

Define n, is the maximal number of used edges in EO flow or EQU flow in C5 part.

We apply the above lemma on networks C', inflow 111, we have:
TEQU - TEO S Tno S Tma s

where And, ms is the maxiaml number in OPT flow or EQU flow in 5 part. Since we

remove all edges exceed mso, ny < mes.

Lemma 3. In the fluid queuing model, given (2 + 2)-parallel-link network C series-
linking to Cy and inflow pu, denoted e; = (a;,0;) in Cy and ej = (vj,7;) in Cy. For the
OPT flow and EQU flow, we have:

Teou — Topr < Omy + T,

Proof. Follow from above, for the EO flow in this (2 + 2)-parallel-link network, we have:

Tequ —Teo < Tmas

Troule, — Torrle, < Om,-

In EO flow, consider a strategy as below: For all particle arriving source of C', let them
wait at source for o,,,, — d(C1, po, p) time and leave. In this case, EO flow has the same

inflow of C5 as OPT flow, but delay for exactly o,,, time. That is:

OPT’s inflow of Cy :  p2(6),
EO’s inflow of C5 :  po(0 + 04y ),

where 115(0) is the inflow of C in OPT flow. This relationship implies Tzo—Topr = O, -

However, EO flow may choose some better solutions, implies

Tro —Topr < Oy,

Teou — Topr = Trqu — Tro + Tpo — Torr < Omy + Tiny-

]
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Remark 6. In the proof of Lemma 3, for EO flow, we let the particle wait at the intermedi-
ate point p. Despite this is not allowed in our model, it only worsens Trqy and makes the
PoA bigger. The upper bound of PoA is still true if we allowed waiting at the intermediate

point p. So, we allow it.

Lemma 4. Given (24 2)-parallel-link network Cy+ Cs, Topr = Tgo or Topr > 09+,
where Topr, Tro is the arriving time of all particle in OPT flow and EO flow respectively

and (ay,01), (ag, 09) denotes the edges of C1, (v1,71), (va, To) denotes the edges of Cs.

Proof. Given (2 + 2)-parallel-link network C; + C, inflow 11, the maximal number of

used edges in OPT flow or EQU flow in ' part and C part are m; and ms respectively.

Now, if m; = 1, then Topr = Tro. Else, consider m; = 2. Let’s divide it into two

Casces:

(a)m1 = 2 and ai Z V1
During 8 = 0 ~ 05, OPT flow and EO flow have the same inflow and outflow at Cj.
Now, if my = 1, after @ = o + 2, OPT flow and EO flow still have the same outflow at

Csy, implying Topr = Tro. Else, my = 2, both OPT and EO active (vq, 72) at 0 = o7.

* If EO flow shutdown (vs, 72) first, then Tro < Topr, implies Trg = Topr.

» If OPT flow shutdown (vg, 73) first but before § = o4 + 75, then OPT flow and EO
flow have the same outflow at C5 later, which will pass the same mass of particle.

We let EO flow shutdown (vs, 72) at the same time to afford Txg = Topr.

 If OPT flow shutdown (vq, 72) first and after § = oy + 75, then Topr > 09 + To.

(bym; =2and a; < vy
If my = 1, consider the EO flow and OPT flow. Maybe EO flow and OPT flow have the
total same outflow, then Tro = Topr; Else, EO flow and OPT flow must have the same
outflow during § = 0 ~ o9 + 71, implies Topr > 05 + 71. Both of the cases are enough

to prove PoA < 2.

Else, my = 2, which implies a; + ay > vy > a4 since vy is used. Now, if OPT flow

doi:10.6342/NTU202100753
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use (vy, 72), then Topr > 03 + 7. Else, EQU flow use (v, 72), we can compute:

O, :O+TIN UI+T17
Mput(caooao-Q‘{’TQ): &1(02-0’1), ‘9:O'1+7'1N o9 + T,
Ul(TQ_Tl), (9:02+71N 0'2+7'2.

.
0, 0=0+7~ o1+,

o2—01
Mput(ca Ho, 02 + 7—2) = / mln(u0(6)7 a’l)deu 0 =01 + T~ 02 + 1,
0

\U1(7-2_7-1), 9202+T1N O'2+7'2.
On the other hand, in EQU flow, let’s find a lower bound of the total mass of particle

arriving at the source of C + C before activating (v, 72) as an lower bound of M:

0, =047 ~ o1+ 11,
o9—01

the mass of particle passing by Cy + C5 = |, min(uo(0),a1)dd, 0 =01+ 1 ~ o9+ T,

the mass of particle queuing at C to active (vq, 72) = v1 (72 — 71), 0=0y+1 ~ 0.

As a result, we have:

Mput(ca Ho, 02 + T2> S M.

Similar as Lemma 1, this implies Topr > 09 + To. O

Theorem 5. In the fluid queuing model, the Price of Anarchy of 2 for (2+ 2)-parallel-link

networks is tight.

Proof. Follow from the Lemma 4, if Topr = T, apply Lemma 1 on network C', using

inflow p1, we have:

Trqu _ Trqu <9

Topr Tro

On the other hand, if Topr > 05 + o, together with Lemma 3, we have:

Topr 2 02 + T2 > Trou — Topr,

PoA = ;Eﬂ < 2.
OoOPT —

So, we achieve the goal. O
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Chapter 4

Extension

We will show a self-defined tax scheme and improve the PoA’s bound with it in the fluid
queuing model. Although it seems helpless for the networks with constant inflow, it is

helpful for the parallel-link networks with some extreme inflow cases.

Definition 13 (Delay-time Tax Scheme). In the fluid queuing model, we increase the delay
time of edges by imposing tax in the given networks. The tax is not considered as the cost
of societys welfare. That is, the tax scheme will only change the behavior of particles,
and the computation of delay time and travel time still uses the original setting. This is

called the delay-time tax scheme, refer to [11].

Remark 7. Under the definition of the Delay-time Tax Scheme, OPT flow would not
change anything after taxing. This is because the computation of delay time and travel
time still uses the original setting. As a result, we only discuss EQU flow and the changes

on the arriving time of all particle in EQU flow, Trqu.
Theorem 6. In the fluid queuing model with constant inflow, the Price of Anarchy is at

least % for parallel-link networks after taxing.

Proof. Let’s show an example of the Price of Anarchy of 2, refer to [10]. Consider the

parallel-link network with two edges, the total amount A/, and the constant inflow function
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(0.5, 0)

S t

N

11

Figure 4.1: The diagram of “PoA of % Example” This is the parallel-link network with
edges {e; = (0.5,0),e5 = (1,1)}, the total amount M = 1, and the constant inflow

function py = 1.

Lo as below:

E ={e; =(0.5,0),e5 = (1,1)},
M =1,
po(0) = 1.
In this example, we have:
Topr = 1.5, Tepou =2, PoA = %'

Now, for this example, we apply the Delay-time tax scheme into the below 3 cases, and

discuss the influence on Tgqy:

(a)Taxing on both edges
This can reduce to "Taxing on single edge” case, since the behavior of particles only be
influenced by the difference of two edges’ delay time, but not the exactly value of each

edge’s delay time.

(b)Taxing on down edge e; = (1,1)
In EQU flow, all particle still choose up edge as usual. Nothing is changed. We have:

Trou = 2 and PoA = % after taxing.

(c)Taxing on up edge e; = (0.5,0)
Denote the delay time of e; by z after taxing. Consider EQU flow:
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* if x > 1, then all particle choose down edge. We have: Trgy = 2 and PoA = %

after taxing.

» if x = 1, then passing two edges spends the same time. That is, there are infinitely
many Nash equilibrium, and we consider the worst-case, the last particle go down

edge”. We have: Tpgu = 2 and PoA = 3 after taxing.

« if x < 1, then the behavior of particle is as below: During § = 0 ~ 1 — z, all
particles go up edge and queue length is %(1 — z) finally. From now on, passing
two edges spends the same time. That is, there are infinitely many Nash equilibrium,

and we consider the worst-case. We have: Troy = 2 and PoA = % after taxing.

As a result, the Price of Anarchy for this example is % after taxing. [

Theorem 7. In the fluid queuing model with constant inflow, the Price of Anarchy is at
least - after taxing on single edge.

Proof. Let’s show an example of the Price of Anarchy of —=;, refer to [10]. Consider the
series-parallel-link network with 2m edges, the total amount M, and the constant inflow

function g as below:

{ei = (ui70)7 ei = (ui7O[,le( L - i))}i:lwmv

uopT

M = ap™,
Ho = ,um7
wherem € N, a > 0, yu* = 22:1 (. In this example, we have:

1 1
— —), TEQU = Oé,U,m, lim PoA =
Uopr Ui m—00 e—1

Topr = ap™(

Now, for this example, we apply the Delay-time tax scheme on single edge into the below

2 cases, and discuss the influence on Trqy:

. (i 1 1.

(a)Taxing on up edge ¢; = (u ,aum(uopT o))
In EQU flow, all particles go down edge firstly and become part of queuing until ¢ = «.
At this moment, inflow stop! For non-taxing-up-edges, they are about to be activated;
For the only taxing-up-edge e;, it is not yet to be activated. So, Trpou > aou™ and
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?Vm— e—4V4e—3 V3 o2 V2 el vi(t)

Figure 4.2: The diagram of “PoA of _; Example” This is the series-parallel-link network
with edges {e; = (u;,0), ¢ = (u',ap™(;-— — ) }iz1~m, the total amount M =

ap™, and the constant inflow function po = ™, where m € N, o > 0, i = 22:1 -

lim,, ;o POA > 5.

(b)Taxing on down edge ¢’ = (u;, 0):

Denote the delay time of e’ by z after taxing.

* In EQU flow, if x > oz/f”(uOIPT — Lyorz = Oélim(uoﬁ — L), similar as Theorem

6, then all particles coming v;1; go up road e;;;. This makes Troy the same and

e

llmmﬁoo PoA = —i

* In EQU flow, if # < ap™(;—— — ), then all particles go down edge firstly. And,

UOPT
the up road e; is activated earlier than ¢t = «, implies [,,,,(§) = 7,41. Despite
the up orad e; is activated earlier, but the subsystem from v;,; to v; would not

finish earlier. This is because the inflow from v;,; coming e;,; and e’ is the same

as usual. So, Trou = au™ and lim,,_,., POA = —%.

As aresult, the Price of Anarchy for this example is —=; after taxing on single edge. [
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Ho(t) 1
(a, 0)

(b, 7) =

(t-o)a/(1-a) T-O

Figure 4.3: The diagram of “PoA of 2 Example”. Left part is the parallel-link network
with 2 edges {e; = (a,0),e2 = (b, 7)}; Right part is the inflow function, which is a step

function with range={1, a}.

Theorem 8. In the fluid queuing model with dynamic inflow, the Price of Anarchy can be

reduced by the delay-time tax scheme in some cases.

Proof. Let’s show the parallel-link network with 2 edges as example, whose Price of An-
archy is 1 + e after taxing with given e. This example is similar as Chapter 3-Therorem 1.

Givena, o, b, 7 suchthata + b > 1, o0 < 7, consider:

E ={e; = (a,0),ea = (b,T)}.

1, =0 ~(T —0) % a ,
1—a
po(0) = a a
a, 9:(7—0)*1_a N(T—U)*l_a+7—a.
In this case, we have:
Topr = (T—0)% —— +
opr = \T—0O 1—a T,
a
Tpou = (T—U)*l_a+7+(7—0),
T T—0)7—+0o
PoA EQU _ ( ) 7 as a— 0.

= —
Torr (T—o)7=+(—0) 2(1—o0)
Now, we apply the Delay-time tax scheme on this example. Given ¢ > 0, tax on up edge

e; = (a,0) such thate; = (a, 7 —¢). In EQU flow, the behavior of particles are as follow:

All particles go up-road and queue length achieves ae, 0 ~ € a ,
—a
Particles go up road at speed a; down road at speed 1 — a, € ¢ ~ (T —0) 1 a4 ,
—a —a
Inflow stop! Consume the queuing, (1 —o0) . LY (1 —0) 1 +7+e
\ —a —a
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Asaresult,TEQU:(T—U)ﬁ—FT—l—eandPoA:1—i—M — lase — 0%, O

T—ao
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Chapter 5

Conclusions and Future Works

We find upper bounds of the PoA of networks with dynamic inflow. We prove the PoA of
2 of parallel-link networks and (2 + 2)-parallel-link networks, the PoA of D(C) of series-
parallel networks, the PoA of 2|V | — 1 of general networks with assumption. We reduce
the upper bound of PoA of parallel-link networks or series-parallel networks from infinite
to 2 and D(C') respectively. The bounds we proved are different from networks with
constant inflow in the fluid queuing model. On the other hand, similar to the work of tax
scheme [11], we design the Delay-time tax scheme to improve the system’s inefficiency,
which may help a lot on networks with dynamic inflow. Our main work is to use the total
amount of inflow as an upper bound of the maximal throughput of networks to afford the
lower bound of the cost of optimal flows (or said optimal time) in the fluid queuing model.
This technique helps us finding PoA’s tight bound of parallel-link networks and a simple
example of series-parallel networks, even a loose bound of series-parallel networks. This
technique provides an exactly bound of PoA of series-parallel networks with dynamic
inflow. Also, it simplifies the work from finding PoA’s bound to calculating the mass
of the maximal throughput of networks. On the other hand, we design a tax scheme to

improve society’s welfare as a possible solution to the system’s inefficiency.

Now, consider we have proved a loose upper bound D(C') of series-parallel networks
and the tight bound 2 of parallel-link networks and (2 + 2)-parallel-link networks. The

first future work is to find the tight bound of extension-parallel networks or series-parallel
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networks, which probably is 2. In this case, the technique used in the proof of PoA of
(2 + 2)-parallel-link networks can be essential. On the other hand, consider the Delay-
time tax scheme. We have shown it is helpful on networks with dynamic inflow by an
example. Another future work is to prove the PoA of parallel-link networks is % after
taxing. In networks with dynamic inflow, the equilibrium flows after taxing will prefer no
queuing and using the shortest delay time path, similar to the optimal flows. However, in
networks with static inflow, the equilibrium flows after taxing will not stop larger delay
time edges to queue at shorter delay time edges at the final step, which is different from
the optimal flows. As a result, the PoA of networks with dynamic inflow after taxing may
be the PoA of networks with constant inflow. Finally, the study of general networks is
also a point. For example, we may prove that Tpopr > L(é) =L > Trou — Topr In
Pigou’s example, which implies PoA is 2. However, the technique in Lemma 1 cannot be

used directly in this case.
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