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Abstract

In this thesis, we consider some properties of decomposition matrices of symmetric
groups and finite general linear groups in non-defining characteristic, clarify the rela-
tions among these properties, and show that SL,(q) has an anologue property to &,
and G'L,(q) in non-defining characteristic, namely the (C, p)-property.

Keywords: finite special linear group, modular representation, group theory, decom-

position matrix, finite general linear group
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0 Introduction

One of the general problems of representation of finite groups is to describe the decom-
position matrix of irreducible characters from the ordinary case to the p-modular case.
However, complete knowledge of such matrices is known only for few classes of groups,
such as the symmetric groups and the general linear groups over finite fields. In this
thesis, we are going to study properties of the decomposition matrices for the special
linear groups, where most of the ingredients are from Kleshchev-Tiep [K].

Let I, be the finite field of ¢ elements. Let K = Q be the algebraic closure of the
field of rational numbers, and F' = F, be the algebraic closure of the finite field of p
elements, where p is a prime not dividing q.

Let G be a finite group. Denote irrx(G) the set of irreducible ordinary characters,
and irrp(G) the set of irreducible Brauer (p-modular) characters. Let R} (G) be the
set of all ordinary characters, and Ry (G) be the free Z-module generated by irrg(G),
called the set of the virtual ordinary characters. Similarly, let Rf(G) be the set of all
Brauer characters, and Rpr(G) be the free Z-module generated by irrp(G), called the
set of the virtual Brauer characters.

For any finite generated K G-module V', with its character xy, we may take reduction
modulo p to get a corresponding FG-module V. This process is not unique, but different
reduction modulo p give the same Brauer character ¢y (cf. [S, Theorem 32].) Hence
the map between characters yy — ¢y is well-defined, and can be extended to a group
homomorphism d : Rk (G) — Rp(G), with bases irrg (G) and irrp(G), respectively.

Since for any prime p we have |irrp(G)| < |irrg(G)| < oo, we may write d into
a matrix with respect to the bases and take its transpose, called the decomposition
matrix of G. Each row of the matrix describes how an irreducible ordinary character
decomposes into irreducible Brauer characters when passing from Ry (G) to Rp(G). For
general group G, it is known that the map d is surjective [S, Theorem 33]. We know

some finer properties of the map d for specific groups, like the family of symmetric

1 doi:10.6342/NTU201904116



groups or finite general linear groups.

For example, Table 1 of [J1] is the decomposition matrix of G = &g, the symmetric
group of degree 6, for K = Q and F = F3 (p = 3). The index of rows and columns
are partitions, which serves as labels for the irreducible ordinary characters of G4 over
K and irreducible Brauer characters of G4 over F' respectively. The second row of the
decomposition matrix means that the irreducible ordinary character x(s 1) maps to the

Brauer character ¢ + ¢(,1)-
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Table 1: Decomposition matrix of &g, p = 3

Observe that the upper square of this decomposition matrix is a lower unitriangular
submatrix. This can be deduced from James’ Regularization Theorem for symmetric
groups, see [J3, Theorem A]. With appropriate chosen order of labels, the decomposition
matrix of the symmetric groups have the following properties:

e In each row, there exists an entry 1.

e In each row, the rightmost nonzero entry is 1, written in bold.

e In each column, there exists a bold 1.

These properties mainly come from the fact that the irreducible characters (and

conjugacy classes) of the symmetric groups have a good way of labeling, via partitions.
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When considering other related groups, like alternating groups and finite general linear
groups, some of these properties remain hold, while some others do not. In this thesis,
we concern about which of these nice properties hold for finite special linear groups of
non-defining characteristic.

Fix an finite group G, a prime p, K = Q, F = Fp, and the corresponding decomposi-
tion map d. For an ordinary character y of G, write X := d(x). For a Brauer character
¢ of G, ¢ is said to be liftable if there exists some ordinary character y of G satisfying
X = ¢, and ¢ is almost liftable if there exists some ordinary character x of G satisfying
X = a¢ for some a € N.

We say G has (R, p)-property, if property (R) (defined below) holds for G for prime p.
We use this terminology throughout the thesis, for properties listed in the introduction.

(R) All irreducible Brauer characters of G are liftable.
(QR) All irreducible Brauer characters of G are almost liftable.

Clearly property (R) implies property (QR). We are interesting about the following
problem, which originally comes from an exercise of Serre’s (see Appendix, section

for detail story.)

Problem 1. Find a finite group G and a prime p, such that G has (QR, p)-property,

but not (R, p)-property.

This leads to the definition of the (L, p)-property.

(L) If G has (QR, p)-property, then G has (R, p)-property. That is, if every irreducible
Brauer characters are almost liftable, then they are actually all liftable.

Note that if G does not have (Q R, p)-property at all, then G' automatically has (L, p)-
property. Hence G is a solution to Problem (1] for some p, if and only if (L, p)-property
fails for G. Therefore, to answer Problem , we move to the study of the (L, p)-property,
starting from some of the common families of finite groups. Actually, (L, p)-property is
a rather weak property, and often proven as a consequence of other stronger property.

By considering each irreducible ordinary character, we may strengthen (L) to properties

3 doi:10.6342/NTU201904116



below.

(L) For any x € irrg(G), X is either irreducible, or a sum of at least two distinct
Brauer characters. In other words, if ¥ = a¢ for some ¢ € irrp(G) and a € N,
then a = 1.

(L") For any x € irrg(G), X contains some ¢ € irrp(G) of multiplicity 1.

(C') There exists a partial order &> on irrp(G), and a map irrg (G) — irrp(G), X — ¢,
such that for each x € irrg(G), X contains ¢, of multiplicity 1, and if ¥ contains
¢ € irrp(G), then ¢ > ¢,.

It is clear that (C') = (L") = (L) = (L). For example, James’ Regulariza-
tion Theorem shows that the property (C') holds for symmetric groups for any prime
p. Huang [H] proves that the property (L) holds for alternating groups for any prime
p , while (L") and (C') remains unknown.

We also have (R) = (L). The Fong-Swan Theorem [S, Theorem 38| shows that for
a prime p, property (R) holds for all p-solvable groups, thus these groups have (L, p)-
property as well, while any non-abelian p-group is a counterexample of (L, p)-property.

There is a property (U), looks similar to (C'), considering each irreducible Brauer
character instead. With suitable order of the bases of the decomposition matrix, we
may find a lower unitriangular submatrix.

(U) There exists a partial order > on irrp(G), and a map irrp(G) — irrg (G), ¢ — Xo,
such that for each ¢ € irrp(G), X, contains ¢ of multiplicity 1, and if ,; contains
¢ € irrp(G), then ¢ > ¢.

We have (R) = (U), but (U) does not imply (L) (theoretically.) There are no
other trivial implication among these properties (See Appendix, section , for details.)
Kleshchev-Tiep [K| Proposition 6.3] proves that (U) holds for both finite general and
special linear groups in non-defining characteristic, but this is not enough to deduce
property (L). Nevertheless, Kleshchev’s paper gives strong tools and rich ideas for

analyzing properties of decomposition matrix of finite special linear groups, so we may
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achieve our goal easily.

The main result of this thesis is to prove that the property (C') holds for finite special
linear groups in non-defining characteristic (Theorem [6.8]), and hence implies (L"), (L')
and (L). In section 1.3, we start from the conjugacy classes of GL,(q), labeled as
[(z,A)]. Then in section 2, we introduce Lg(o, \), modules of GL,(q) over field F = K
or F', which build up a complete set of non-isomorphic irreducible FGL,,(¢)-modules.
Next in section 3, we deduce some important lemmas from Clifford’s Theorem. Finally
we prove the main result of this thesis in section 6. The proof is in fact independent
of Kleshchev-Tiep’s theorem, the main theorem in [K|], which is proved in section 5
for completeness, with the lemmas in part of section 3 and full of section 4. We make
a table showing which property holds for which groups in Conclusion, section 7, and

some other results in Appendix, section A.
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1 Preliminaries

Let F, be the finite field with ¢ = p{; elements, and Fq be the algebraic closure of
F,. Fixed a prime p not dividing ¢. In this thesis, K and I’ will always be a field of
characteristic 0 and p > 0, respectively. If both K and F' work for some result, we will

put in the statement F = K or F.

1.1 Partitions

Given k € Z=°, a partition A F k is a integer sequence (A1, Ag,---), where A\; > Ay >
-~ >0and k=), \;. For simplicity we may omit zeros and write in a compact form,
e.g., (4,2%1%) instead of (4,2,2,1,1,1,0,---). Let r; == #{j € N| \; = i}, then we

write A into (17,272, .- ) for expression of r;.

Let A, u Fn and d € N.
|A\| means A\; + Ay + - - -, that is, k;
At pis (A + g, Ao+ g, -0 ).
d\ is (dAg,dNg, -+ +).
N is the transpose of A, that is, \; = #{j e N| \; > i}.
A+ = (N + '), which combine and rearrange entries of A and pu.
[d]A = (dX')', which combine and rearrange entries of d copies of A.
A is the dominance order, 23:1 Aj > 22:1 p; for every 1.
A(X) s the greatest common divisor of \;.
Let k be an a-tuple (ky,--- ,k,), k; € Z=°.
Ak is the multipartition (A, ---  A(@)), where A®) - k;;
Nois (AL @
A v if N0 >0 for all i

A()) is the greatest common divisor of A(A®)).

6 doi:10.6342/NTU201904116



Lemma 1.1. Let o, 8O - n; with a® > O fori=1,--- m.

1) a® + - 4+ al™ > B0 4 ... 4 g™,

2) If oW 4+ 4™ = M) ... 4 B0 then o = BO) for all 4.
(3) a® [+ -+ 1] ™ > BW [4] ... (4] B,

4) If oW (4] -+ 4 ™ = BW (4] .- 4] B then o = BD for all i.

Proof. By definition of the dominance order, ijl ay) > Z;Zl 5§i) (%) for any s € N
and i =1,---,m. Thus Y5 37" ol > 520 57 % (xx) and (1) holds. For (2),
since the inequality of (xx) is actually equality, then (x) as well and (2) follows. To prove
(3), we start from a® > B and (o) < (B®)' then by (1) Y7 (a@) <3 (BD)

and hence [+]7", oD > [+ ). A similar argument to (2) gives (4). O

1.2 Group Theory

Let G be any finite group, g € G an element.
1lg or e is the identity element of G;
|G| is the cardinality of G
lg| is the order of g, i.e. the smallest m € N such that ¢™ = 14;
H <G means H is a subgroup of G.
H <G means H is a normal subgroup of G.
Oy(G) ={g€G||g|is prime to p}, the p’-part of G;
0,(G) ={g € G]||g|is ap-power}, the p-part of G;
Conventionally, when F = K, set O, (G) = G and O,(G) = {1¢}.
GL, denotes GL,(F,) or GL,(q), if ¢ is clear;
SL, denotes SL,(F,) or SL,(q);

R,, satisfies SL,, < R, < GL, and R, /SL, = Oy(GL,/SL,);
T, satisfies SL, < T, <GL, and T,,/SL,, = O,(GL,/SL,);

7 doi:10.6342/NTU201904116



S,, denotes the symmetric group of degree n;

20, denotes the alternating group of degree n.

Definition 1.2.

(1) A element g € G is a p’-element if g € O,(G), and is a p-element if g € O,(G). If
F = K, then every g is a p/-element.

(2) A element g € G is p-regular exactly if it is a p’-element, and is p-singular if it is

not p-regular.

Proposition 1.3. For any g € G, there is some p'-element ¢ € G and p-element
gp € G, such that g = ¢'g,. This decomposition is unique, both ¢ and g, is a power of
g, and g'gy = gpg'.

Proof. Let |g| = p°m with p/ m. Then there is some a,b € Z such that ap® + bm = 1.

bm

Take ¢ = ¢ and g, = ¢ Since the only element which is a p-element and a

p'-element is 14, the uniqueness follows. The other statements are clear. O

Definition 1.4.

(1) Given g € G finite group and a prime p, the p’-part and p-part of g are ¢, g, in
the previous proposition, denoted by (g),y and (g),, respectively. If F = K, set
(9)y = g and (g9), = lc-

(2) Given r € N and a prime p, write r = p°m for non-negative integer ¢, m, p not
dividing m. Then the p’-factor and p-factor of r are m, p°, denoted by |r|, and
7], respectively. If F = K, set |r|, = r and |r|, = 1. Do not confuse with p-adic

norm, which does not appear in this thesis.

We emphasize that qu is the multiplication group of F,, and we usually apply Defi-

nition , and Proposition to the elements of F; or IFqu.

8 doi:10.6342/NTU201904116



1.3 Conjugacy Classes in GL,(q)

Given o € F;, deg(o) =d, let B = B(0) € GL4(q) be the companion matrix of minimal

polynomial of o over [F;. Then the corresponding Jordan block of size r is of the form

E2! | (B I ]
1 B I

Jo (1) = o Jg(r) = B

' 1 R

o B

where J,(r) € GL,(¢%) and Jp(r) € GL,.q(q). With partition A = (\y,..., \,) given,
we let J,(A) = diag(J, (A1), -+, Jo(Am)) and Jp(\) similarly.
k1

For g € GL,(q), write the characteristic polynomial of g as f, = f* - -+ f* for some

monic irreducible f;. Then the Jordan canonical form of g over F: is
Jg = diag(J01,1(>‘(1))> B JUl,dl ()‘(1))’ B Jcra,1(>‘(a))7 B JUa,da (A(a)»

where o, ;, € qu are roots of f; for each j; = 1,--- ,d; with d; = deg(f;), and each

A9 k;. And the rational canonical form of ¢ over F, is
Ry = diag(Jp,(A\V), -+, J5,(\))

where B; the companion matrix of f;, A\ F k.

Definition 1.5. Let M,,(F,) be the set of all n x n matrices over F,.

(1) s € M,(F,) is semisimple if it has an eigenbasis in (F,)". Equivalently, there is an
x € GL,(F,) such that zsx~! is a diagonal matrix.

(2) v e M,(F,) is unipotent if (v — 1)™ = O for some m € N. Equivalently, there is

an x € GL,(F,) such that zuxr~! is an upper unitrianglar matrix.

By Jordan decomposition [Spl], every g € GL,(q) has a unique decomposition su,
where s € GL,(q) is semisimple and u € GL,(q) is unipotent.
We need to construct an appropriate complete set of representatives for conjugacy

classes in GL,(q).

9 doi:10.6342/NTU201904116



Given o € F: , let [o] be the set of all roots of the minimal polynomial of . Then

oy and o9 are (Galois) conjugate if and only if [o1] = [o].

Definition 1.6. Let ¢ = (01, ,04), T = (71, ,Ta) € (F:)“. In the following, for
all ¢ means for each i =1,--- ,a.

(1) ¢ is p-regular if every o; is p-regular as a group element of IFX
(2) o
(3)
(4)
(5)

s non-repeated if for all i, [o;] are all different.

IQ

is p-non-repeated if for all i, [(0;),] are all different.

4

q

and 7 are (Galois) conjugate if deg(o;) = deg(7;) and [0;] = [r;] for all 4.

5) ¢ and 7 are p-conjugate if deg(o;) = deg(r;) and [(0;),] = [(7),] for all 7.

Given o € FZ, deg(o) = d over Fy, then {1,0,--- ,04_1} is a Fy-basis of Fy(o) = Fq,
which produces a algebra embedding ¢7 : F, — My(F,) by ¢7(0) = B(o), then
restricts to a group embedding (7 : F;d — GLg4(q). Similarly, this produces a matrix
algebra embedding ¢ : My(Fu.a) = Mypa(Fy) by ¢7(0E;;) = B(o) ® E;j, where ® is
the Kronecer product of matrices, and E;; is the k£ x k matrix with (4, j)-entry 1 and
other entries 0, and then restricts to a group embedding ¢§ : GL1(¢%) — G Lya(q). Note
that 7(0) = B(0), {(Js(k)) = Jp(k) and (7 (J1(k)) = Jp, (k).

Let k = (k1, -+ , ko) € N* and A - k. Then 7 € G, acts naturally on each a-tuple,

such as g, k and A\. Write the action on the right.

Definition 1.7. Let 0 = (04, ,0,) € (qu)a, with deg(o;) = d; foreachi =1,--- ,a

Let A= (AN oo XY k= (ky, -+, k,) € N

(1) An n-admissible pair with a pairs is of the form (o, \), where both ¢ and ) are
a-tuple for some a € N, g is non-repeated, and n = >, k;d;.

(2) We say (o,)\) and (7,v) are equivalent if there exists some 7 € &, such that o
and 7m are conjugate, and A = vm. The equivalence class [(g,))] is called an

n-admissible symbol.

10 doi:10.6342/NTU201904116



(3) We may write pairwisely the n-admissible pair and symbol with o product,

(2:2) = (01,A") 0 0 (4, A)

(2, 2)] = [([o1), A1) 0+ 0 ([oa], A)]

(4) The dominance order of (multi)-partition naturally induces the partial order on
n-admissible symbol. Denote [(a,\)] > [(7,v)] if there exists some 7 € &, such
that ¢ and 77 are conjugate and A\ > v.

(5) If (o, A) is an n-admissible pair, then we associate an element g := su € GL,(q),

where s is semisimple and wu is unipotent,

where B; is the companion matrix of the minimal polynomial of o; over F,.

Note that diag(B*)) means k copies of B on diagonal, not k power of B.
Then it is not hard to see that

Proposition 1.8.

(1) (g,A) and (7,v) are equivalent if and only if their corresponding su are conjugate
to each other.

(2) The set X = { [(g,N)] | (g,A) is an n-admissible pair } is the complete set of
representatives of conjugacy classes of GLy(q).

(3) The set Xp :={[(a,A)] | (g, ) is an n-admissible pair, o is p-regular} is the com-

plete set of representatives of p-reqular conjugacy classes of GLy(q).

Proof. (1) Note that m means changing the order of blocks of s and wu, and if oy is
conjugate to 7 over [F,, they produce the same companion matrix of their common

minimal polynomial.
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(2) We show that every g € GL,(q) is conjugate to some s(a, k)u(A, k). The rational

canonical form of ¢ is
R, = diag(J5,(\V), -+, Jp,(A™))

so it suffices to prove the case R, = Jp(k) for some d x d matirx B = B(c) and
k € N. Let S = diag(BW), U = Jy,(k), N = U — I, then R, = S + N. Now take
D = diag(ly, B,--- ,B*1), then we have D"1SD = S and D"'ND = SN. Hence
D™ 'R,D =S+ SN = SU and we are done.

(3) Since u is always p-regular (p does not divide ¢q), su is p-regular if and only if s

is p-regular, which is equivalent to ¢ is p-regular. O]

Some other properties of the n-admissible symbols are put in chapter 4.
Given su = s(g, k)u() k), if g € GL,(q) centralize su, then it centralize both s and

u by the uniqueness of the decomposition. That is, the centralizer

CGLn(q)(SU) = OGLn(q)(S) N CGLn(q) (u)

The centralizer of s is,

Carn@)(s) = (17 x -+ x i71) (GLi, (¢™) x -+ x GLy, (¢™))

The centralizer of u is more complicated. Nevertheless, by [Sp2l I, 2.2], the size of the
centralizer of u is,
|Cero (@] = a" [TIGL(0) (1)
i>1
where N = N(}\) is defined as follows. Write A = [+]¢_ [d;]A\®) into (171,272, ---). Then
N =3"5,(A)? = ri. Note that \j = 3", 7;, hence N > 0.

1.4 Size of Conjugacy Classes of R,

Recall that R, is a subgroup of GL, satisfying SL, < R, < GL, and R,/SL, =
Oy (GL,/SL,). In the later proof, we need to find the size of conjugacy classes of R,,.
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For g € G, let Conj(g) be the conjugacy class of g in G. The following is the general

lemma we use.

Lemma 1.9. Let S <G, G/S cyclic, and S < R < G. For any g € R, let ¢ = (G :
Ca(9)S), d = (G : R). Then [ Conjg(g)|/| Conjg(g)| = ged(c, d).

Proof. Denote C' = Cg(g) and D = Cgr(g) = C' N R. Then

| Conj(g)l/[ Conjr(g)| = (G : C)/(R : D)

The key step is to drag C, D to CS, DS, where we can count their index in G. Now
CNS=CNRNS=DnNS, thus |[DS|/|CS| = |D|/|C|. Consider 7 : G — G/S = (x),
then 7(CS) = (z°), n(R) = (z%), and 7(CS N R) = (z'™D) Since CSNR = DS, we
have (G : DS) = lem(c,d). Therefore

| Conje(9)l _ |GI[D] _ 1G] [DS] |G c-d
Pomell _ 2L B 1W01Ie €9 oo, d) 0
| Conjr(g)l  |CIIR] |CS| |G| |R]  lem(c,d)

Lemma 1.10. Let u = J1(\) be a Jordan block of GLk(q), A b k. Then det maps

Cary(g)(w) onto (e2V) < FX, where € is a generator of Fyy.

Proof. Denote C' = Cgy,()(u) and write X into (1",272,---). Then u is similar to
Dir,o0 Irs @ J1(i), hence D = .. ., GLr,(q) ® I; commutes with u and is a subgroup
of C'. Consider Py a Sylow pg-subgroup of C. By equation , (C : D) = ¢V, thus
we have C' = PyD. Now for any element a € P,, a? = I, for some r € N, while
det?(a) = det(a) since it’s an element of Fy. Hence det(Fy) = {1}, det(C) = det(D),
and det(GL,,(¢) ® I;) = (¢*) gives det(D) = (¢2™W), as desired. O

Proposition 1.11. Let ¢ = su = s(g,k)u(\, k) be a representative of a p-reqular

congugacy class in GL,(q) corresponding to [(c,\)] € Xp. Then g € R,, and

| Conjgy,, (9)]
| Coann (9) ‘

Proof. Let ' : GL, — GL,/R,. Note that GL, /R, is a p-power, thus 7’(g) must be

= ged{(GLy : R,), A}

identity, hence g € R,,.
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Denote C' = Cgr,.(q(9). To apply Lemma, we need to find the index ¢ = (GL,, :
C'- SL,), which leads to finding det(C - SL,,) = det(C). Then

C= CGL (SU) = CGLn(q)(S) N C’GLn(q)(u) = CCGLn(q)(S) (u)

H Z(GL’“ (a™1) Lk <J1()\ ) - HLZZ (OGLkl(qdl)Jl()\(i))>

i=1

Now for k, d € N, o € qu , deg(o) = d, consider the following commute diagram

GLi(q") — GLya(q)

ldet ldet
Np 4d / Fa

IFX —>IFX

For each d, take a generator 4 € ]F;d such that ¢ = N]Fq 2 /F,(€4). Then

det(C) = [ deto o5’ (cGLkl (qdl)Jl(w))

= H Nqui /Ty o det <CGLk1 (qdl)Jl()\(l)))
(4) : (4)
- HNF . /s ( AQA )>> _ H<5A(/\ )y = (AW
=1

Hence ¢ = A()). Applying Lemma [1.9 with d = (GL,, : R,) yields the result. O

1.5 Representations and Modules

Let G be a finite group, R a commutative ring with 1, and V' an R-module. We call
(V, p) a representation of G over R if p: G — GL(V) is a group homomorphism, where
GL(V) is the group of R-module automorphisms of V. In this thesis R will always be
a field F, and V is a finite vector space over F.

Given a representation p : G — GL(V), it can be extended to an FG-module, also
denoted V. In contrast, given an FG-module V', it defines a representation p of G in V'

over F. We will also call V' a representation, although it is the underlying module of p.

Definition 1.12. Let V be an FG-module.
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(1) An FG-module W is a submodule (subrepresentation) of V', denoted W C V., if
W C V as vector space over F, and stable under the action of G.

(2) A submodule W of V is a (direct) summand of V, denoted W | V., if there is
another submodule W’ of V' such that V =W @& W’ as vector space.

(3) V is an irreducible representation, or a simple FG-module, if {0} and V are the
only submodules of V.

(4) Denote Irrp(G) to be the set of all isomorphic types of non-isomorphic irreducible
representations of G over F.

(5) V is a trivial representation if V= F and p acts trivially, denoted idg.

(6) V is semi-simple or complete reducible, if every submodule of V' is a summand of
V. Hence V = @ W, for some irreducible submodules W; of V.

(7) The dual of V, denoted V*, is the F-module Homg(V,F), equipped with the
action of G, (gf)(v) = f(g'v), becoming an FG-module. It is known that

Homg (Vi, V3) = Vi @ Vs.
Let H < G. We may construct some F H-module from an FG-module, or vise versa.

Definition 1.13. Let V be an FG-module, and W be an F H-module.

(1) The restriction of V from G to H, denoted as Res% (V) or V%, simply restrict the
action of FG to FH. If GG is clear, we may also write V|, for simplicity.

(2) The induction of W from H to G, denoted as Ind% (W) or W14, is defined to be
FG @py W. If H is clear, we may also write W1 for simplicity.

(3) Assume F = K or F = F with p/ |G|. For FG-modules V;, V3, define (V;, V2)g =
dimp Hompg(V1, V). Similarly for (Wi, Ws) g.

(4) For g € G, let H :== gHg™'. Then /W = g ® W is naturally an F(YH )-module.

(5) The kernel of V', denoted ker V, is the unique maximal subgroup H < G such that
H acts trivially on the FH-module V. It is known that ker V' < G.

The basic properties of restriction and induction is on, for example, [F, II], so we

omit them here. We only list some important theorems here.
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Theorem 1.14. Let V' be an FG-module, and W be an ¥ H-module.
(1) (Frobenius Reciprocity) Assume F = K or ¥ = F with p/| |G]|.

(VW19 a = (Vig, Wi

W19 Ve =W, Vigu

(2) (Mackey Decomposition) Let A < G. Then

(WG = D ((WiGaa)) una

summing over the complete set of double coset representative x € [A\G/H].
Let S < G. We may construct some F(G/S)-module from an FG-module, or vise

versa.

Definition 1.15. Let V' be a FG-module, and W be a F(G/S)-module.

(1) The S-fixed point of V, denoted as V¥, is the abelian group {v € V | sv =
v for all s € S} equipped with the action of G, which can be viewed as an F(G/S5)-
module.

(2) The inflation of W, denoted as infl /s(W), has the same underlying space W,
equipped with the action g - w = w(g)w for any g € G, w € W and the canonial
homomorphism 7 : G — G/S.

Their basic properties is on, for example, [GR), Chap 4]. It is known that the fixed
point construction is adjoint to inflation, so they has an analogue to the Frobenius

reciprocity. We list the following relations here for later usage.

Proposition 1.16. Let S <G, A any other subgroup of G.

(1) (Restriction commutes with inflation) Let V' be an F(G/S)-module. Then

infl}) 4ng (V1Gss) = (infigs(V)IG

Note that we identify AJANS = AS/S.
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(2) (Induction commutes with inflation) Assume additionally S < A. Let W be a

F(A/S)-module. Then

mﬂg/s(Wﬁﬁ) = (infl}, s (W))14

1.6 Characters

Given K C Q, let Ok be the ring of integer of K. Pick any prime p and any prime
ideal p of Ok containing p, there is a corresponding p-adic valuation 1,. Take the ring
A={a e K | y(a) > 0}, which has a unique maximal ideal m = {o € K | v,(cv) > 0}.
The residue field ' = A/m is of characteristic p. If K = Q is algebraically closed, then

F= Fp is also algebraically closed.
Definition 1.17. The triple (K, A, F) is called a p-modular system.

Let G be a finite group, p : G — GL(V) an representation over K. Then the
(ordinary) character yy : G — K of G corresponding to V, is defined to be xy(g) =
Tr(p(g)), with p(g) : v — p(g)v written as an invertible matrix with a chosen basis
of V. It is clear that the definition of character does not depend on the basis, by the
property of the trace.

The properties of characters can be founded in the textbook of Serre [J].

Definition 1.18.

(1) We say xy is irreducible if V' is.

(2) Write irrg (G) the set of all irreducible ordinary characters.

(3) A class function f : G — K, is a function satisfied f(zgx~') = f(g) for any g,z € G.
By the property of the trace, it is clear that characters are class functions.

(4) For two characters x, ¢ of G, define (x,¢) = |G|™' 3 . x(9)o(g7").

(5) Let R}(G) be the set of all characters of G over K, and Ry (G) be the additive
group generated by the characters of G over K. The elements of R (G) are called

the virtual characters.
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Proposition 1.19. Let K = Q.

(1) There are only finite irreducible characters of G, written as X1, , Xh-

(2) Rk (G) is a Z-module with basis {x1,- -, Xxn}, and x; are mutually orthogonal with
the inner product (-, )

(3) Ewvery class functions are virtual characters, hence the set of all class functions
coincides Rk (G). By considering that any class function is constant on a conjugacy
class of G, the number of irreducible characters of G is exactly the same as the
number of conjugacy classes of G.

(4) V and W are isomorphic representations of G if and only if xyv = xw-

(5) If V = @?:1 nW; for Wi € Irrg (G), n; means W; appears n; times. Then xy =

h .
> i1 MiXi, where x; are characters corresponding to W;.

In general, if K is a field of characteristic 0 with algebraic closure K, one can view
any KG-module V as a KG-module Vz by scalar extension, then define xy = XVie-
However, some irreducible K G-module cannot be realized over K, hence Ry (G) may
be a proper subgroup of Ri(G). To ensure Rx(G) = Ri(G), a sufficient condition is
that K contains the mth root of unity [S, Theorem 24], where m = lem{|g| | g € G}.
In this case we say K is sufficiently large for G. In other words, Ry (G) is independent
of K as long as K is sufficiently large for G, and we may replace K = Q by any K
sufficiently large for G in Proposition

Now consider G,., = {g € G | g is p-regular}. Let (K, A, F') be a p-modular system,
with K, F' sufficiently large for G,¢4, and F' = A/ m. Pick ¢ a m’th root of unity of F,
where m’ = lem{|g| | g € Gyeg}, and ¢ a m/th root of unity of K which passing from K
to F'is (.

Let V' be an FG-module of dimension n. For g € Gy, let p(g) : v — gv for v e V.
Then p(g) is diagonalizable, and its eigenvalues tq,--- ,t, are all powers of ¢, hence
t1,--- 1, are corresponding powers of ¢. Define ¢y (g) = St Then ¢y : Grey — K

is called the Brauer character of V.
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The properties of Brauer characters are also in [J]. It shares many properties with

ordinary characters, but without orthogonality.

Definition 1.20.

(1) We say ¢y is irreducible if V' is.

(2) Write irrp(G) the set of all irreducible ordinary characters.

(3) Let RE(G) be the set of all Brauer characters of G over F, and Rp(G) be the
additive group generated by the Brauer characters of GG over F'. The elements of

Rp(G) are called the virtual Brauer characters.

Proposition 1.21. Let F = Fp.

(1) If0 - Vi = V — Vi, — 0 is an exact sequence of FG-modules, then ¢v = ¢y, +odv,.

(2) Rp(G) is a Z-module with basis {¢1,- -+, dp }-

(3) The number of irreducible Brauer characters of G is exactly the same as the number
of conjugacy classes of Greq. Hence the number of irreducible Braver characters is
equal to or less than the number of irreducible ordinary characters.

(4) V and W have the same composition factors if and only if v = dw .

(5) If for each W; € Irrp(G), V' has n; composition factors isomorphic to W;, then

h :
dv =Y ., ni¢;, where ¢; are Brauer characters corresponding to W.

Note that in the case of characteristic 0, every KG-module is complete reducible.
Hence two modules have common composition factors are actually isomorphic.

We may say F' is sufficiently large for G with the same definition to K, replacing
F= Fp by any F sufficiently large for G in Proposition m

Given any ring R, let C be a category of R-modules. Then the Grothendieck group
of C is the abelian group defined by the generators [V] for any V' € C, and relations
V] =[Vi]+ Vo] if 0 =V} =V — V5 — 0 is an exact sequence.

Then for any field F = K or F' sufficiently large over GG, the Grothendieck group

of FG-modules has a canonical group isomorphism to Rg(G) by [V]| — xv or ¢v.
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Hereafter, we identify Rp(G) with the Grothendieck group of FG-modules, and omit
the bracket. That is, when we say V = V; 4+ V5 in the Grothendieck group of FG-
modules, we actually means [V| = [V4] + [V3], hence xv = x1; + Xv, OF Oy = ¢y + D
We use this terminology because the name of the representation is often quite long (e.g.

Lk (o, ))), which is not suitable to write in character form.

1.7 The Decomposition Matrix

Let K C Q be a field of characteristic 0, sufficiently large with respect to G, and
F = A/m be the field of characteristic p defined in the first paragraph of section
so (K, A, F) forms a p-modular system.

For a KG-module V| pick a lattice Vi, a finite generated A-submodule of V', gener-
ating V' as a K-module. Let V5 be the sum of the image of V; under elements of G,
hence V4 is also a lattice of V' which is stable under G. Define V = V4 /mVs. Then Vis
an FG-module, called a reduction modulo p of V, written as V' =V mod p (although
it is actually mod m.)

The following proposition are from [S].

Proposition 1.22. Let V be an KG-module.
(1) V is not unique, but they share common composition factors, hence having the same

Brauer characters ¢r.

(2) We have ¢y = xv|a,., -

Hence the reduction modulo p of an ordinary (virtual) character x may be defined
as X = X|@,.,» and the group homomorphism d : Rx(G) — Rp(G) defined by reduc-
tion modulo p is well-defined, and send characters R} (G) to characters Rj:(G). The
transpose of the matrix form of d is a |Irrx (G)| X | Irrp(G)| matrix with non-negative
integer entries, called the decompostion matrix. Each row of the decompostion matrix

shows how ¥ decompose into sum of Brauer characters.
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A theorem [S] shows that d is surjective (so the decomposition matrix has full rank),
but little else properties are known. Finding out the properties of decomposition matrix
is a main objective in the study of representation theory.

We list here some properties of reduction modulo p.

Proposition 1.23. Reduction modulo p commutes with conjugation, restriction, induc-

tion and inflation, in the sense of common composition factor.

Proof. These are all simple with character and using Proposition [I.22{2). O

1.8 Harish-Chandra Induction

In this thesis, we are concerning about Harish-Chandra induction, a construction of
FGL,-module from FGL,-module and FGL,-module with n = r + s.

Let L,U, P < GL, be the group of matrices of the form:

e B e B o Py
gs I gs
with g, € GL,, g € GLg, and I, I, identity. It is easy to check that L. = G L, x GLs,
U< P,and L = P/U canonically.

Let W,., Wy be FGL,-module and FGL,-module, respectively. Then W, ® Wy gives

an FL-module. The Harish-Chandra induction is defined as
W, o W, = (infl] (W, ® W) 155"

Proposition 1.24. Let W, be FGL,-module for + =r,s,t.
(1) W, o W, 2 W, o W,.

(2) (W,oWs)oW, = Wgo (W, oW,).

(3) Wy oW, = W0 W,.

The commutativity and associativity of this Harish-Chandra induction can be easily

extended to the case n = > 7 n; for any a € N.
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2 Representation Theory of GL,(q)

Here we follow [J] to gives a construction of irreducible representations of GL,, = G'L,,(q)
over F = K or F' with characteristic not dividing ¢q. F needs to contain py-root of unity,

and be sufficiently large for all the groups we have considered in this section.

2.1 Compositions, Tableaux and Permutations

Although we have defined patitions of k in section [I.1] it is natural to consider compo-
sitions, an unordered version of partition, when talking about the FGL,,-modules.

A composition A of a non-negative k, denoted A\ |= k, is a non-negative integer
sequence (Ar, Ag,---) where > . \; = k. A composition is a partition if Ay > Ay > -+,
written as A - k. The transpose X' = (M|, A}, ---) is defined as X, = #{\; | A\; > i}.
Note that A" must be a partition, and \” is the partition rearranging each terms of A
by order. If A\, pu |= k, the dominance order Ay is defined by that of partitions X' <y,
that is, Y7, X, < 327yl for all j € N.

Fixed some r € N, a partition A F k is r-singular if for some 7, \; = \j; 1 = --- =
Airr—1 > 0, otherwise it is r-regular. Hence every nonempty partition is 1-singular, and
conventionally every partition is oo-regular.

For A | k, a A-tableau is a bijection from [\ = {(4,7) | 1 <4, 1 < j < A} to
{1,2,--- ,k}. For a A-tableau ¢, we may draw it by embedding [\] into N x N, with
x-axis point to south and y-axis point to east, and put the number on its corresponding

coordinate. The following are examples of tableaux.

A (22,3)-tableau t; A (4,3,2)-tableau t, A (4, 3,2)-tableau t3
2 4 1 2 3 4 1479
17 5 6 7 2 5 8
3 5 6 8 9 3 6

A tableau t is said to be row standard if in each row, the number increase as the

y-coordinate increase. The ¢, o, t3 above are all row standard.
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Let t* be the unique A-tableau, put the number in lexicographical order of the coor-
dinate, comparing z-coordinate first. Similarly, let t*wy be the unique M-tableau, put
the number in lexicographical order of the coordinate, comparing y-coordinate first.
For example, if A = (4,3,2), then t* = t, and t*w, = t3 above.

For A |= k, let ¢t be a A-tableau, (i,7) € [A] a node of [A], m < k.

(7,7)t is the number corresponding to the node.
row;(m) =1, if (i,7)t = m. That is, m is on the ith-row of ¢.
coly(m) =7, if (¢,5)t = m. That is, m is on the jth-column of .

rowy(m) = rowu,(m), an abbreviation for tableau #*.

For w € &, let tw be the A-tableau such that (i,7)(tw) = ((i,7)t)w. wy € Sy is
the permutation consistent with the notation t*wy above. For example, if A = (4, 3,2),
then wy = (2496 5)(378). Let R(t) = {w € & | row,(i) = row,(iw) for all i},
the row stabilizer of ¢, and C(t) = {w € & | coly(i) = col;(iw) for all i}, the column
stabilizer of ¢.

Let d, k € N and n = dk. If XA =k, define dX\ |=n by (d)); = d(\,).

For w € &, define 7, € G,, by
Tw:ad—b— (aw)d—b, 1<a<k 0<b<d-1

That is, if we divide {1,2,--- ;n} into k packs vy = (1,2,--- ,d), vg = (d + 1,d +
2,---.2d), -, v =((k—1)d+1,(k—1)d+2,--- ,kd), then m, permutes the index
of {v;} while not changing its order inside.

Let W,, < GL,(q) be the permutation group. We identify W, with &,, via 7 —
(e; — e;r), where {e;} is the standard basis of (F,)". Then Wy, = {m, | w € &} is
a subgroup of W,,.

For example, if A = (4,3,2), w=(35478),d=2, then we have
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1 2 3 4 1 2 3 4 5 6 78

= 56 7 A= 9 10 11 12 13 14

8 9 15 16 17 18

1 257 1 2 3 4 9 10 13 14
trw= 4 6 8 tPr, = 7 8 11 12 15 16

39 5 6 17 18

We can see how 7, moving the packs like w moving the numbers.

2.2 Subgroups of GL,

Fixed n for GL,. Let E;; be the n x n matrix with (i, j)-entry 1 and other entries 0.
Let & == {(4,7) | 1,7 € Nyi < n,j < n,i # j}, with the action of &,, on the right,

(i,7)m = (im, jm). For a € Fy, (i,7) € @, define

x,-j(a) = In + OlEij

hi(a) =1, + (o — 1) E};

Then the root subgroup of GL,
Xij ={=mi(e) [ a € Fg}

is a multiplicative group isomorphic to the additive group of F,. Let H, = (h;(«) |
1<i<nac IF;) be the set of all invertible diagonal matrices.
A subset I' C @ is said to be closed if (4,7), (j, k) € T" implies (i,k) € I'. Then we

have the following fundamental theorem:

Theorem 2.1. [J2| Theorem 5.2] Let I' be a closed subset of ®, and G(I') == (X;; |
(i,7) € I') be a subgroup of GL,,. Then
GI) = [] Xi=Al+ D ayEi|ayecF}
(i,)eTl (i,)erl
where the product can be taken in any order. Once the order is chosen, then each

element of G(I') has a unique expression of [ ; jer ij(ij)-
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For 1 = n, define the subset of @,

o= {(i,j) € | j > i}
AF (1) = {(i. ) € @ | xow, (i) = row,(j).j =i + 1}
BT (p) = {(i,7) € " | row,(i) = row,(j),j > i+ 1}
O () = {(i.4) € & | row, (i) = row,(j)} = A* (1)) U B* (1)
D¥(n) = {(i,j) € ©* | row,(i) < row,(j)}
For 5 C @, let ST = {(j,i) | (i,j) € B} Define = = (&+)7 and S~ (1) =
(S ()" for S = A, B,C,D. Also let C(u) == C* (1) U C~(1). Below is a example

for p = (3,4, 1,2), where the letters A, B, D means the entry belongs to A" (u), Bt (u),

D™ (u), respectively.

~oOo T

i Slvlvlw

S lvlvlw
v ivBwlw
sivAvivivlivhiviw

miv/isAvivivlivivlw
s isllvivivhv/ivBvle

Observe the entries right above the diagonal. They can be A or D, and they are all
A only when pu = (k). Also C*(u), Dt (1), C~ (1), D™ (u) are closed subsets of .

Now for p = n, define the subgroups of GL,,

Ly = (Hyn, Xi5 | (i) € C(p))
Uy = (Xy; | (i,5) € D" (n))
P = (Hy, Xy | (i) € Clu) U D () = Uf L,
and denote the set of unitriangular matrices Ut := U(J{n) and U™ = U(_ln). Note that

U; < Pj and Pj/U;r = L, thus every FL,-module can be viewed as a FP/j—module

25 doi:10.6342/NTU201904116



with U acting trivially (that is, inflation from L, to P;). For example, if u = (3,1,2),

then we have

L, UJ P/j
E 1T x| % x x % k| k| k%
* k% * | x % * ok ok | k| x %
¥k k 1% *x % ¥ ok ok |k [k %
1% =% * | %k
1 * %
i 1L 1 * %

with the diagonal block invertible.

2.3 Idempotents of GL,

Let F = K or F, containing a py-root of unity. Pick any non-trivial homomorphism

xr : (Fy, +) = F*. For each u = n, there is a linear F-character of U™,

0ulu) = xe( Y

(1,)€AT (1)

uij), U = (ul]) € U+

Then for each p = n we can define

B = U4 Y b, € FU*
ueU+
It is clear that uEf(p) = Ef(p)u = 6, (u)Ef(p) for any u € UT, and (Ef (1)) =
E{ (1), hence Ef () is an idempotent of FUT.
Also, we need another characterization of Fg (u). For (i,7) € @, let
Xij=q" ) xe(—a)z(a), Xij=q"' ) wila)
aclF, a€cly

Then for p = n, define

Qf(u) =UTNLTT Y fu(u ),

ueU+tNL,

Ug () = U7 Y u

uEU;J[
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Proposition 2.2. For (i,j) € ®*, let X;;(1) be Xi; if (i,5) € At(n), and X;; other-

wise. Then for u = n we have

Qe = 1] Xsw= 1] X5 ] Xu

(4.5)ECT (1) (.7)€AT (1) (4.7)€B* (1)
Up (1) = H Xij(p) = H Xij
(4.4)eD* (n) (4.5)eD* (1)

Ef (1) = Qi (1)U (1)

= ] Xsw= I Xy Xij

(i,4) €@t (i.4)€AT (1) (1,4)€BF (n)UD* (1)

The product can be taken in any order.

Proof. This is just the consequence of Theorem Also see [J2, Theorem 9.2] for a

proof. O

We emphisize that C*(u) and D* () are closed, Hence U* N L, and U,; are closed
under multiplication. This implies that uQp (1) = 0,(v)Qfh(p) if w € Ut N L, and

uUg (p) = Ug () if u € U

2.4 The Module Mg(o, (1))

In |G, Theorem 13], Green has found all ordinary irreducible characters of GL,, in
explicit form. However this form of Green is difficult to analyze, and does not reflect
well a natural correspondence between the conjugacy classes of GL,, and its irreducible
ordinary characters. The main work of James and Dipper is to create a full list of
irreducible representations of GGL,, in the module phase, both ordinary and p-modular,
with the natural label (g, \) we defined in Definition

Let () =F and € = (uuy = exp(27i/(q¢? — 1)) € C. Then we can send FlitoC

injectively by € — &. Define (, )4 : ]F;d X F;d — C by

(o,7)g =89 ifo=¢c,7=¢
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Note that for 01,09, 7 € F;d,

(0109, T)a = (01, T)a{(02,T)a

If we write o = 0’0, where ¢’ and o, are p’-part and p-part of o, respectively, then for
any p-regular 7 we have (o, 7)q = (0, 7)q4.
A conjugacy class [(7,A)] is said to be primary if both 7 = (7) and A = (\) are in

fact 1-tuples. Hence (7,A) = (7, A) in the form of o notation.

Theorem 2.3. (Green) Given o € F, with deg(o) = d, there is an ordinary irreducible
character v, of GLg(q) which satisfies the following,

(1) s is zero on all conjugacy classes except for those are primary.

(2) For a primary conjugacy class [(T, N)], with deg(7) = a, A b, ab = d, the value of

Y, on such conjugacy class is

a—1

(D)™ (¢" = D@ = 1) (@ = D{{o.m)a+ (o, 1)+ + (o 7)§ )

where x is the number of nonzero parts of \.

(3) By takingT=1,a=1,b=x=d, A = (1%), the degree of 1, is
N=(g-1)@ -1 (" =1

Moreover, if both 01,09 has degree d over F,, then 1, and 1,, agree on all p-reqular
congugacy classes of GLg if and only if their p’-part have the same minimal polynomial

over Fy, 1.e. o1 and oy are p-conjugate to each other.
Proof. This ¢, is (—1)*1%[1] in [G], where 7 is any integer satisfied ¢ = &°. The virtual
character I%[1] is described in the end of chapter 5 of [G], which gives (1) and values

of (2). Lemma 7.5 of [G] gives the sign (—1)%*%, and lemma 7.6 of [G] show that ¢, is

irreducible. Finally, (3) and the last statement is the consequence of (2). O

From now on, write F = K or F, of characteristic 0 or p, respectively, which is
sufficiently large for all the groups hereafter we shall consider.
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We follow Gelfand’s procedure to construct the KGLs-module Mk (e, (1)) with cor-
responding character 1), .
First pick a non-trivial linear complex character y : (F,,+) — C. Define a non-trivial

linear complex character of U™,

O(u) == x (Z Ui,i+1)

where wu; ;1 is the (i,7 + 1)-entry of u € UT.

Next let Cv be a one-dimensional CU"-module with vu = 6(u)v action on the right.
Set G%_, be the subgroup of GL; with (1,1)-entry 1 and (7, 1)-entry 0 for 1 < i < d.
Observe that (G%_, : U') = N, the degree of 9, in Theorem 2.3(3). Now induce the
CU*-module Cv to CG%_;-module, denoted by C'.

Now we consider the idempotents acts on the right.

Lemma 2.4. Let u = d, Ef(u) idempotent defined in section . Then
(1) vEL((d) = v.

(2) vgEL((d) =0 forg € Ga, \U™.

(3) CUL (1) = 0 for j" # (d).

Proof. We make use of vu = 0(u)v and uEZ ((d)) = 0(u)EL((d)) for u e UT.

(1) vEE(d) = [U 5 e 6= You = (U7 e v = .

(2) If we can pick some uj,us € U, u1g = gug and 6(uy) # 0(uz), then
0(u)vgE¢ ((d)) = vurg EE () = vgua EE((d)) = 0(uz)vg B¢ ((d))

hence vgEZ ((d)) = 0.

Write g = [§ 2], where v € (Fy)?*! and g1 € GLg_1(q). Consider u; = [(1) Iﬁl]’

wt

Uy = [é L2 }, wy, wy € (F,)*!, then uyg = guy gives gilw; = wy. If there are some
w1, wy have different first coordinate, then 6(u;) # 0(uy) and we are done. If for all
wy € (F q)d_l, wy = gtw; have common first coordinate with wy, then the first row

of gt must be [1,0,---,0]. Now we can replace g by g; and continue the process. If
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we never find such pair wy, wo, then g would be a upper unitriangular matrix, that
is, g € U™, which contradicts to the assumption.

(3) Write g = (g1, p1e), 0 < g < d. Then U () contains X; ;.1 for i = ;. Now
for any v € C,

vXiiv1=q " Z Tiipi(@)v=q7" Z x(a) Jv=0

aclFy ackF,

by the property of non-trivial linear complex character y. O
Let [UT\G5_1] = {1 = g1, 92, -+ , gn} be right coset representatives.
Lemma 2.5. C' is an irreducible CG}_,-module.

Proof. By definition, C' is generate by v. If M is an non-trivial CG},_,-sub- module of
C, then 0 #2 m € M has the form Zf\il ¢i(vg;) for ¢; € C. Pick some ¢, # 0, then
v=c'mg'E{((d)) € M and hence M = C. O

Now define J : GL4(q) — C by
= U™ 0w )ee(gu)
uelU+

Then with ¢, |g= | is irreducible and ¢, |+ contains ¢ with multiplicity 1, we have

N

(vg1)g =Y J(g;997 ") (vg:)

i=1
for a right coset representative [UT\G%_;] = {1 = ¢g1,92, -+ ,gn}. Now for arbitrary

g€ GLd(Q)a let
N

(vg1)g =Y J(g;997 ") (vg:)

i=1

Gelfand show that this actions extends C' to a KGL4(q)-module Mg(o, (1)), and the
character of Mk (o, (1)) is ¥,. Let Mp(o, (1)) be the reduction modulo p of Mg(o, (1)).

Proposition 2.6. Let F = K or F.
(1) Mg(o, (1)) is an irreducible representation.
(2) Mg(o, (1)) is a cyclic module generated by v.
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(3) dim Mp(o, (1)) = N = (¢ = 1)(¢* = 1)--- (¢*7" = 1).
(4) Ifo,7T € F:, deg(o) = deg(7), then Mg(o, (1)) = Mg(7, (1)) if and only if o, T are

p-conjugate to each other.

Proof. (2)(3) follows from the definition. A analogue to Lemma proves (1). (4)

follows from the last statement of Theorem 2.3 O
Lemma 2.7. Let pu |=d, Ef(u) idempotent defined in section . Then

(1) vEg((d)) = v.

(2) Mp(o, (1)) Eg((d)) = Fu.

(3) Mp(o, (1))Ug () =0 for pi" # (d).

Proof. The space of Mg(c, (1)) has no different with C, hence this is just a rewrite of
Lemma 2.4 O

2.5 The Module Mg(o, (1%))

Let d,k € N, dk = n, UEF;,deg(U) =d, and F = K or F. Define
G = {diag(g1, -~ , %) | 9» € GLa(q), gr = Iafort #r}, 1<r<k

Then clearly G = GLy(g) and GM x --- x G® is the Levi subgroup Lg. For
each 7, let M be a FG("-module obtain from Mg(c, (1)) under the trivial embedding

U7 GLy(q) — G € GL,(q) with generator v,..

Definition 2.8.
(1) Let M =MD @--- @ M) be a FL)-module with generator v; ® - - - ® vy
(2) Define

My(o,(1%)) = MW o ... o M® = Ind (infl] M)

be a FGL,(q)-module, where G = GL,(q), P = P(Zk) and L = L4 for temporary

abbreviation of Definition [2.8] and Proposition [2.9]
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It is well-known that GL,, = P’

(ln)WnP(J{n) (the Bruhat decomposition), hence the

set {mu | m € W,,,u € UT} is a right coset representative of P(Jlrn)\G. Since P(41—”) C A,
elements of [P\G] is also of the form 7u, although they may not represent distinct

cosets.

Proposition 2.9.
(1) Mg(o, (1%)) is a cyclic module generated by v; & - -+ & vy.

(2) Each element of Mg (o, (1%)) is a linear combination of terms
(0191 ® -+ @ vygy)TU

where g, € G and wu representative of [P\G].
Proof. Both of them are consequence of the definition of Mg(a, (1%)). O

Lemma 2.10. Let u |=n, Ef (i) be idempotent defined in section .

1) (@ @u)Eg((d) =v® - @v.

(2) Form e M, 7 € W, \ Wy_,, such that t@ 7 is row standard, uw € U, we have
mauBg(u) =0 for any p = n.

(3) My(o,(1¥))Us () =0 if p= (n—r,r) for some r not a multiple of d.

Proof. (1) Ex((d)) = Qp((d"))Ug ((d*)). We have Qg ((d")) = Eg ((d))®- - @ Eg ((d))
fixes v; @ - - ® vy, and Uy ((d*)) € U} acts trivially.

(2) By uEg (1) = 6,,(u) Eg: (1), we can ignore it. If 7 is not in Wj_,,,, then for some a, the
ath-row of t = t@) 7 must containing numbers not all consecutive. Pick x such that
row(x) = a, row,(z+1) # a, and coly(x) # d, that is,  is in the ath-row with next
number not z + 1. Consider S = {(i,7) € ® | row;(i) = row,(j) = a, i <z < j}
which is non-empty and forms a hollow rectangular. Then (7,5) € Sm implies

Jj>i+1, Ef(n) contains [T jesn X;; whenever y is. But then 7Ey (1) contains
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where S == {(i,7) € ® | row(gry (i) = row(gy(j) = a, i < xn' < j} (note that m and
71 preserve order in each row,) forming a solid rectangular. Write 7~ = ad — b,

then [, = () (U ((d — b,b))), which eliminates M by Lemma (3),

(4,9) eS
hence M, and m as well.

(3) It suffices to show that for any m € M, 7 € W, such that t = @) is row standard,
and u € U, we have mruUg (1) = 0, and the proof is similar to (2), as following.
Since u and Ug (i) commutes, we can ignore it. Because r is not a multiple of d,
there is some a such that the ath-row of ¢ contains some element less or equal then
r, and some larger then r. Pick x in the ath-row of ¢ such that the next number of x
is greater then r. Then S7 = {(7,7) € ® | row,(i) = row,(j) = a, i <z < j} forms

a hollow rectangular, and Uy (1) contains [ X,;. Now the same argument to

(4,4)eST

(2) shows that mU () contains 1 (U (d — b, b)) for some b and eliminates m. [

Corollary 2.11. Let = n. Then My (o, (1%)Eg (1) = 0 if u is not of a form dX for
some A\ = k.

Proof. Write u = (u1, pi2, -+ , ftm). Then there is some j such that r = 25:1 L 18
not a multiple of d. In the view of Proposition [2.2) Eyf (1) contains Uy (1) and Uy (1)

contains Uy ((r,n — r)), thus the corollary follows from Lemma [2.10{3). O

In order to find out Mg(o, A) for other A |= k, we introduce the Hecke algebra arising
from Mg (o, (1%)).

Definition 2.12. Let H; = Hg i, be the algebra of FGL,-module endomorphisms of
My (o, (1%)), written on the left.
Theorem 2.13. [J, 4.10] The algebra Hy has a basis {h, | w € S} defined by
B 01 @ @up = (1] @ - -+ @ vy, Ugh ((d¥))
Furthermore, we have

Mg (0, (1)) EE((d") = Hi(v1 @ - @ vp)
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Definition 2.14. For each w € &y, define T,, € H}, by
Ty @ @ v = (J(=L)gd ™)@ (0 @ - @ vy, Ug ()
where [(w) denotes the length of w.

Theorem 2.15. [J, 4.12] The algebra Hy, is an associative algebra over F with basis

{Ty | w € &}, with the multiplication generate by the rule

e Toww if l(wv) = l(w) + 1
v Ty, + (¢ — 1)T,, otherwise.

where w,v € S, v = (i,i+ 1) for some 1 <i <k —1.

2.6 The Module MF(O', )\), SF(O', )\) and DF(O', /\)

For any A = k, let

where R(t*) is the row stabilizer of ¢t*. Define
Mg(0,X) = 2\Mgp(0, (1))

hence Mg(a, \) is an FG L,-submodule of Mg(a, (1¥)). The notation is consistent since
wqry = 1. Also it is consistent with Harish-Chandra induction, that is, Mg(o,\) =
Mg (0, (A1) o Mp(o,(X2)) o ---. Hence to investigate Mg(o,\), it suffices to study
Mg (o, (k)).

Lemma 2.16. [J, 6.3]
(1) Mg(o,(k)) is an irreducible FGL,,-module.

(2) Mg(o, (k))Er((d*)) is the one-dimensional space Fx(v1 ® - -+ @ vy).
By counting the dimension of Mg(o, (k)), we can deduced that

Theorem 2.17. [J, 6.9] Let u = n. Then My (o, (k))Eq (1) is one-dimensional if
p = (d*) and is zero otherwise.
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And its generalization to Mg (o, \),

Theorem 2.18. [J, 7.1] Let A\, u |= k. Then
(1) Mg(o,\)Ey(dp) = 0 unless ' > .

(2) Mw(o,\)Eg(dN) is a one-dimensional space.

Now for A\ |= k, we can define
Sr(0,\) = Mg(o, \)Eg (AN)FGL,(q)

By the previous theorem, Sg(o, ) is not 0. Since Mg (o, (k)) is irreducible, we have

Sr(0o, (k) = Mg(o, (k)). It is easy to prove that

Proposition 2.19. [J, 7.8] Sg(c,\) has a unique mazimal FGL,(q)-submodule
SF(U, )\)max.

Corollary 2.20. [J, 7.9] If F = K, then Sk(o,\) is irreducible.

Lemma 2.21.
(1) If p = n is a rearrangement of partition X\ & n, i.e. p’ = X, then Mg(o,p) =
Myg(o,\) and Sg(o, 1) = Sp(o, A).
(2) Ifo,7 € F:, deg(o) = deg(7), then Mg(o,\) = Mg(7,\) and Sg(o,\) = Sp(7, \)
if the p'-part of o, T have the same minimal polynomial over F,.
Proof. (1) Write Mg(o,u) = Mg(o, 1) o Mp(o, p2) o ... and note that the Harish-
Chandra induction is commutative up to isomorphism. The Sg(o, \) case follows from
' = X and the definition.
For (2), from Proposition [2.6( we have Mg(o, (1¥)) = Mg(r, (1%)) if and only if o
and 7 are p-conjugate (defined in Definition , hence they have isomorphic Hecke

algebra, and hence isomorphic Mg(o, A) and Sg(o, A). O

Therefore, when we talk about isomorphic types of Mg (o, A) and Sg(o, A), it suffices

to consider partitions A - n rather then A\ = n.
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By counting the dimension of Sg(o, A), we have two important consequence analogue
to the case of symmetric groups. One is the kernel intersection theorem (we omitted

here), and the other is Young’s rule, described below,

Theorem 2.22 (Young’s Rule). [J, 7.19(iii)] Suppose A, p = k. Then the composition
factors of Mg(o, \) are of the form Sg(o, p), with multiplicity equals the Kostka number

K\, which means the number of semistandard p-tableauz of type A (a definition of this

see |J1, 13].)
Observe that K, is independent of o.

Corollary 2.23. In the Grothendieck group of FG L, -module we may write
Mg(o,)) = Sp(0,\) + > KunSr(o, 1)
HEA pFAN
Proof. By Theorem and the definition of Sg(o, 1), we may deduce that K, = 0
unless ;> A, and K, = 1. One may obtain the result as well by the definition of

Kostka numbers. O]
Once we have the Young’s Rule, the Littlewood-Richardson rule follows,

Theorem 2.24 (Littlewood-Richardson rule). Let o € F:, deg(o) =d, \F ki, put ko,

and n = d(ky + ka). Then in the Grothendieck group of FG L, -module,

Sg(o,\) o Sp(o, 1) = Z cxuSr (o, V)

vhki+ko

where cf,, is the Littlewood-Richardson coefficient, the number of semistandard skew-
v\A-tableau of type p which the sequence obtained from concatenating reversed rows is

a lattice permutation (A definition see [J1l, 15, 16].)

Proof. A proof of the case of symmetric groups is in [J1, 16], which proves that the
Young’s rule implies the Littlewood-Richardson rule. Now an analogue proof follows

from Theorem [2.22] m

We need a property of Littlewood-Richardson coefficients later.
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Proposition 2.25. The Littlewood-Richardson coefficient c§,, = 0 unless A+p>rBA [+

. In the case v =X+ p or v = X[+ u, we have c§, = 1.

Proof. Assume ¢, > 0, which is the number of the skew-1/\\-tableau of type y, filling
p; many number 7 each, forming a semistandard tableau (nondecreasing on each row,
increasing on each column), and the sequence obtained concatenating reversed row is
a lattice permutation (each prefix has at least as many positive integers i as integers
i+1.)

First we claim that for any number ¢, it can only appear on ith row or below. If
i appears on (i — 1)th row or above, then some i — 1 must appears before that i in
the sequence, that is, on the right of ¢ or on the rows above. But since the tableau
is semistandard, ¢ — 1 cannot put on the right of ¢, thus it must appears on the rows
above, i.e. i — 1 appears on (i —2)th row or above. Continue this we have there is some
1 appears before the first row, which is absurd.

Now the first n rows can only put those number not greater then n. By comparing
the total blocks we have Y " | (v; —A;) < > p;, which exactly means v <A + p. If
v = A+ u, then the ith row can only put number ¢, so there is only one possible tableau,
o, =1L

Next observe that each column can only put strictly increasing numbers, still compar-
ing the total blocks we have """ (v/ — A}) < > | ui, which exactly means v/ <N + 1/,

thus v > X\ [+] p. Similarly, if v = X\ [+] p then ciu =1. ]

When F = K, every Sk(o, ) is irreducible, but not for F = F. To find irreducible
FGL,-modules, we define

Dg(0,\) == Sg(0, \)/Sg(a, \)™*.

Clearly Dg(o, M) is irreducible. When F = K, Sk (0, A\) = Dg(o, A) and we have no

interest on it. We immediately have

Lemma 2.26. [J, 7.24] Let \ =k and v = n
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(1) Sp(o, N\ B (v) and Dp(o, \)Egf (v) are both zero unless v = dy for some p = k and
w >\
(2) Sr(o,\)Ef(dN) and Dp(o, \)Eg (dXN') are both one-dimensional spaces.

Lemma 2.27.

(1) If p = n is a rearrangement of partition A = n, i.e. p’ = X, then Dg(o,pn) =
Dg(o,\).

(2) Ifo,7 € F:, deg(o) = deg(7), then Dg(o,\) = Dg(7,\) if 0, T are p-conjugate to

each other.
Proof. This follows from Lemma and the definition of Dg(c, ). O

Theorem 2.28. [J, 7.25] Let A\, u + k.
(1) If X # u then Dg(o,\) is not isomorphic to Dg(o, ).
(2) If some composition factor of Sg(o, \) is isomorphic to Dg(co, i), then pn> A.

(3) Precisely one composition factor of Sg(o, ) is isomorphic to Dg(o, ).

In fact, every composition factor of Sg(c,\) is isomorphic to some Dg(o, ). To
prove this, we need the submodule theorem (Theorem below.

For each FGL,-module M, define (temporary here) an FG L,-module *M with the
same vector space as M, and the action m x g = m((¢g~')?). Then if M is irreducible,
then M is isomorphic to the dual of M since their Brauer characters are complex
conjugate to each other. But from ,-: is complex conjugate to 1,, we also have

Mw (o™, (1)) is isomorphic to the dual of Mg(c, (1)), hence
"Mr(o, (1) = Mp(o~", (1))

A proof [}, 7.25] show that the map M +— *M commutes with Harish-Chandra induction

and the action of Hj, hence we have

Lemma 2.29. [J| 7.32, 7.33] Let A\ = k. Then
(1) “Mp(o, (V) = Me(o~, (1))
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(2) Mw(o, (X)) is isomorphic to the dual of Mg(a™1, (N)).
(3) “Sk(0, (V) = Sw(a, (V)

Then we obtain a non-singular bilinear map f : Mg (0, \) x Mg(c™", \) — F satisfying

f(m197m2) = f(ﬂh, m2971) for m; € MF(Ua )‘)7 may € MF(J?l’ /\) and g € GLy. Define
Sp(oc™" A = {my € Mp(o,\) | f(my1,mz) =0 for all my € Sp(c™",A)}

Theorem 2.30 (Submodule Theorem). [J, 7.34] Let A = k. For every X C Mg(o, \),
either X D Sp(o,\) or X C Sp(o™1 A\t

Theorem 2.31. [J, 7.35] Let A+ k.
(1) For every irreducible FGL,-module D, the composition multiplicity of D in the

module Sy (o, \)™ is at most that in Mg(o,\)/Sg (0, A).

max

(2) Ewvery composition factor of Sg(o, \)™ is isomorphic to some Dg (o, u) with =k,

LA, A
(3) We have Sg(o,\)™* = Sg(o,\) N Sp(c™ \)*.

2.7 The Module Sg(c,\) and Dg(c, \)

In Definition[1.7] we have defined the n-admissable pair (o, \). Giveng = (01, -+ ,0,) €
(F, )%, deg(0:) = di, and XD |= ky, k= (ku, -+ ko), n = S0, kid;, define

Sr(o, ) = Sr(o1, /\(1)) o0 Sp(0q, )\(a))
as an FGL,-module, where o is the Harish-Chandra induction. Similarly,
Dr(c, ) == Dg(o1, A\V) o --- 0 Dp(a,, \?)

For F = K, we are going to find the complete set of non-isomorphic irreducible
KGL,-module Sk(c,)). By Lemma [2.21)1), we may assume A\ are partitions. Also

by Lemma [2.21(2), we may assume ¢ is non-repeated, otherwise we may use the
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Littlewood-Richardson rule to decompose Sk (o, A) o Sk (o, ). Hence (g,)) is an n-

1%

admissable pair. Since the Harish-Chandra induction is commutative, Sk (g, )

Sk (r,v) if (g, ) and (7,v) are equivalent. Therefore

Lk([(a,N)]) = Sk(a,N), [(g,))] € Xk

is well-defined (up to isomorphism), and we shall write Lk (o, A) for simplicity. Then

we have

Theorem 2.32. [DI1, Theorem 4.7] The set {Lk(a,\) | [(g,A)] € Xk} is a complete

set of representative of non-isomorphic irreducible K G L,-module.

For F = F, we are going to find the complete set of non-isomorphic irreducible

FGL,-module. By Lemma and a similar argument to ordinary case above,
Lp([(g,M)]) = Dr(g,A), [(g,M)] € Xr

is well-defined (up to isomorphism), and we shall write Lz (o, \) for simplicity. However,
Lr(o,A) may not be pairwise non-isomorphic, even not irreducible. A good guess is that
the set {Lr(a,\) | [(g,A)] € Xr} serves our requirement (and this is indeed correct),

but it is not easy to prove this fact directly, which is the main goal of [D1].

Theorem 2.33. [D1], Corollary 5.3] The set {Lr(a,)) | [(c,A)] € Xr} is a complete

set of representative of non-isomorphic irreducible F'G L,-module.

Finally, we put a lemma here for later usage, whose proof depends on the construction

of the modules.

Lemma 2.34. Let [(g,A)] be an n-admissible symbol. For 7 € Oy(Fy), let 7o =
(o1, ,704). Then
LF(Q7 A) ® LF(T7 (n>> = LF(TQ7 A)

Proof. Note that [(T7a, A)] is an n-admissible symbol by Proposition (which is inde-
pendent from here). We prove it along the construction of Lg(a, A).
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First, the character of the irreducible KGLg-module M (o, (1)) are given explicitly

in [J, (3.1)], involving a function (x,y) with the property

(T172,¥)a = (T1,Y)a - (T2,Y)a

hence (o7,y)g = (0,y)a - (T,y)a and (1,7)4"" = 1. Tt is known that Lg(7, (n)) is one

dimensional and have the character y — (7,4)4. Then

Mk (0,(1)) ® Lg(T,(n)) = Mg(oT, (1)) ordinary character

Mp(o,(1)) @ Lp(7, (n)) = Mgp(oT, (1)) reduction modulo p

Mg (o, (1%) ® Le(r, (n)) = Mgp(oT, (1%)) Harish-Chandra induction
Mp(o,\) @ Lp(7, (n)) & Mp(oT, \) xy € Hy
Sr(0,A) @ Lp(7, (n)) = Sp(oT,A) B (dX)
Dp(o,\) @ Lp(t,(n)) = Dp(oT, \) subquotient
Lp(ag,A) ® Lp(7,(n)) = Lr(1to, \) Harish-Chandra induction

which proves the lemma. O
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3 Clifford Theory

In section 3 to 5, we are going to prove Theorem a theorem of Kleshchev-Tiep.
The original proof is in [K].

Clifford theory gives the information about the restriction to a normal subgroup,
especially when the quotient is cyclic. Observe that GL,,/SL,, = C,_1. A good reference
to Clifford theory see [EL III].

Let F = K or F, sufficiently large for any group we have considered in this section.

Theorem 3.1 (Clifford). Given S a normal subgroup of G, V € Irrg(G). Then

(1) Vg is completely reducible. That is,

t
Vis = @ Wi
i=1

where W; are irreducible FS-modules (but not necessary non-isomorphic.)
(2) There is an e € N such that
Vig=e (ED Wj>
j=1
where W; are non-isomorphic irreducible FS-modules.
(3) W; are G-congugate to each other. In fact, W; = %9W;, where {1 = g1, , gy} is
a set of representative of G/I, with I = Stabg (W) called the inertia group of Wi
n G.
(4) There is some W, € Irrgp(I) such that V~V1¢S = eWy and V = Wi, This Wy is

called an isotypic component of V' with respect to W7.

Denote k§ (V) ==t the branching number of V restricted from G to S. If G is clear
we also write kg(V') instead. Since dim(W;) = dim(W;) for all j, we may also write

kS (V) = dim(V)/ dim(W,).
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3.1 Cyclic Quotient

If L € Irrp(G/S), then inﬂg/S(L) € Irrg(G), which we also denoted L. Hence when we
write V ® L for FG-module V' and L € Irrp(G/S), it means V ® inﬂg/S(L). Note that

both L have dimension 1 over F.

Lemma 3.2. [E| III, 2.14] Let S < G, G/S be cyclic, and W € Irrg(G). Assume

I = Stabg(W) = G. Then

(1) There is some FG-module V' satisfied V]g = W.

(2) For any U € Irrp(G), if W is an irreducible summand of Ulg, then Ulg = W, and
U=V ®L for some L € Irrp(G/S5).

Proof. (1) First suppose that F is algebraically closed. Choose z € GG such that x and
S span G, then z™ € S for n = (G : §). Now consider the representation p of S with
underlying module W. Since Stabg(W) = G, “p = p, that is, p(zyz~') = fp(y)f~' for
some f € GL(W) and all y € S. Hence f"p(y)f™" = p(z"yz™™) = p(z")p(y)p(z™) 7",
and by Schur’s lemma f" = cp(2™) for some ¢ € F. Since F is algebraically closed, there
is some ¢; € F such that ¢! = c. Define p(z) := ¢, ' f, then p extends to a representation
of G. Let V' be the underlying module, then we have V|g = W.

Now assume F is sufficiently large for G and S. Write F algebraically closure of
F. Then every FG-module Vi is realizable on F, that is, V& & FG ®p¢ V for some
FG-module V. By previous statement, there is some FG-module Vi satisfied Viglg =
Wy = FS ®ps W. Then we have V|4 = W.

(2) Consider W1¢ =2 W ®@pg FG = V ® F(G/S). By Frobenius reciprocity U is an
irreducible summand of W1, and thus U = V ® L for some L € Irrp(G/S). Since
G/S is cyclic, dimp L = 1, so dimg U = dimp V' = dimp W and Ul g = W. O

Lemma 3.3. If G/S is cyclic, then e = 1, that is, Vg is multiplicity free for any
V € Irrp(G). Hence k§(V) = (G : I).

Proof. Assume not, there is some V' € Irrp(G) with e > 1. Given W € Irrp(S) an
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irreducible summand of V| g, consider We Irrg (1) where Wis = ellV. But by Lemma

(i), Wlg = W, which is a contradiction. The second statement is clear. []

Lemma 3.4. Let S<H <G and S<LG, G/S be cyclic, and V € Irrp(G). Let U be an

irreducible component of Vig. Then xS (V) = G (V) - k2 (U).

Proof. Let k§(V) =t and k% (V) = t;. Then

t
Vie=EPw W; € Irrp(S)
=1
t1
Vi =PUu U; € Trrp(H)
j=1

Since V}g = (Vig)ls, we have s§(V) = 2?:1 k5 (U;), hence it suffices to prove
k2 (U;) = kB (Uy) for all j. We may assume W is an irreducible component of U;|g.
Then k% (Uy) = (H : 1), where I, = Staby(W;). Now for any W; we have W; = %W,

for some ¢g; € G and
P = StabH(Wl) =H ﬂgi StabG(Wi)gi_l = g; (H N StabG(I/VZ»))gi_l = giflgi_l

since H < G. Therefore (H : I;) = (H : I;) and the lemma follows. O

The following lemma is a crucial part of proof of Kleshchev-Tiep’s theorem, which
gives a lower bound of x% (V). Note that if F = K, then any cyclic group is a p’-group

conventionally.

Lemma 3.5. Let S <G with G/S a cyclic p'-group, and V € Irrg(G). Then

(1) We have k§(V) = #{L € Irrp(G/S) |V =V @ L}.

(2) If L € irp(G/S) and V 2V @ L then S(V) > (G : ker L).

Proof. (1) Let J = {L € Intg(G/S) | V = V ® L}. Pick W € Irrp(S), W | Vg,
I = Stabg(W), then there is some W € Irrg(G) such that W]y = W and W1¢ = V.
Now If L € Irrg(G/I), then

VRL=W@L=2 (WL ,)1“=2W1¢=V
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and thus |J| > xS (V).
On the other hand, let L € Irrg(G/S) and V = V @ L. Then W1 = (W @ L{;)1°.
Since there are only one irreducible summand of V'|; containing W when restricts to S,
W2W®L ]}, and hence W*@W 2 W*@W ® L dr. By W oW = HomFI(W, W) =
id; we have id; = L|;. Hence L € Irrp(G/I) and |J| < k§ (V).
For (2), since I < ker L we have k§(V) = (G : I) > (G : ker L).

U

In general, k§ (V') splits into two parts.

Lemma 3.6. Let r be a prime, S I G with G/S a cyclic group, and V € Irrp(G).
Consider S < A, B < G where A/S = O,(G/S) and B/S = O,.,(G/S). Take Uy and
Ugp be an irreducible summand of V], and Vg respectively. Then

(1) k§(V) = sG(V) - kE(V).

(2) £5(V) = k§(Up), £G(V) = K5 (Ua).

Proof. Pick W an irreducible summand of V'] ¢, and let I = Stabg (W), I4 = Stab, (W),
I = Stabg(W). If one can prove I/S = 14/S x Ig/S, then

KS(V)=(G:1)=(G/S:1/S)=(A/S:14/S) - (B/S:1Ip/S)
=(A:14)-(B:1Ip)=ra(Us)-x5(Up)

and thus both (1) and (2) follows from Lemma (3.4}

By definition of stabilizer group /S > 14/S x Ig/S. Now given = € I, write S =
yS-zS, where yS, zS are r-part and r’-part of .S, respectively. Then by Proposition[L.3]
both yS and zS are power of 2.5, hence stabilize W, which gives I /S < I,/SxIg/S. O

3.2 Direct Product

We put the following lemma here for later usage when applying induction on n for GL,,

and related subgroups. Note that GL,/SL, = F; is independent of n.
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Lemma 3.7. Let G = Gy x Go and V € Irrp(G). For each i = 1,2, S; <Gy, G /S; =
(z;) = C, for some r € N. Consider a subgroup H satisfies S x S9 < H < G
and H/(S1 X S3) == (Z1Z3). Then ky(V) = ged(ky, k2), where k1 = Kgyxa, (V) and

Rog = /{GIXSQ(V).

Proof. Throughout the proof, i = 1, 2.

Write V' = V1 ®V; for V; € Irrp(G), and pick an W; € Irrg(S;) such that W | (V;)l,.
Let I; = Stabg,(W;), then x; = (G; : I;). Since Wy ® Ws | Vg, «g,, there is some
U e Irrp(H), Wy @ Wy | Ulg,xs, and U | V. Let J = Staby(W; ® W;), then
K8 xs,(U) = (H : J).

Now we are going to find m = (H : J). Choose x; € G; such that z;5; = 7,
then H = (51,52, x122) and (z122)™ € J. From W) @ Wy = (x120)™(W) @ W) =
(x7"W1) ® (25'W3), we have z"W; =2 W, and z[" € I;, hence m is a multiple of both
(G; : I;) = k;. This proof is clearly invertible, hence (H : J) = lem(k, k2).

Finally we consider the dimension as vector space over F,

dim(V)  dim(V)/ dim(W, @ Wa)
~ dim(U)  dim(U)/ dim(W; @ Wa)
(G1 . ]1) . (Gg . 12) K1 Ko

(H:J) lem(ky, K2) ged(r, )

liH(V)

3.3 Classification of Irreducible Representations of SL,

Lemma 3.8. Let ¥ = F. If G/S is an p-group, and Vi, Vo € Irrp(G) have common
irreducible summand W (up to isomorphism) in their restrictions (V1)lg, (Va)lg, then

iz

Proof. First assume G/S = C,. Consider I = StabgW. If I = G, then by Lemma
B2 Vi 2Vo®L for L € Irrp(G/S), but the only irreducible FC,-module over F of
characteristic p is the trivial module. Now if I = S, then by Theorem [3.1(4) we have
W = W and hence V= WTG &V,
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For the induction step, Take S < H < G such that H/S is a maximal subgroup of
G/S. Since both ((Vi)dy)dg and ((Va)lpy)ds have common irreducible summand W,

by induction hypothesis (V1)) = (V2)ly, again by induction hypothesis V3 = V,. 1

Lemma 3.9. Let S<G with G/S cyclic, S < A< G with A/S = O,(G/S), and V1, V;
irreducible FG-modules. If W is an irreducible summand of both (Vi)lg and (Va)lg,
then there ezists M € Irrp(G/A) such that Vo = Vi ® M.

Proof. First assume F = F| p not dividing |G| or F = K, then A = S. Let [ =
Stabg (W) be the inertia group, then there are some FI module U; satisfy V; 2 (U;)1¢
and W = (U;)lg, i = 1,2. Hence by Lemma Uy = U; ® N for some irreducible
F(I/S)-module N. But since G/S is cyclic, N is G/S-invariant and extends to an

irreducible F(G/S)-module L. Hence
Va2 (U1 @ N1 = (Ui @ (L)),) = (U1 @ L=V ® L

Now assume p divide |G|. For i = 1,2, there is some W; € Trrg(A) such that W | (W;)lg
and W; | (Vi)} 4. By Lemma we have Wi = W,. Replacing A by S returns to the

first case. O

Proposition 3.10. Let S < G with G/S cyclic, and S < A < G, A/S = O,(G/S).
Define an equivalence relation as following: if V., U € Irrp(G), then V ~ U if V =2 URL
for some L € Trrg(G/A). Pick Vi, Va, -+, Vy as a complete set of representative of

equivalence classes of Irrg(G), and take restriction to S,
t;
(Vids = ED Wy
j=1
where t; = kS(V;). Then
Wi 11<i<m, 1 <5 <t}

18 a complete set of representative of the isomorphism classes of the irreducible FS-

module.
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Proof. Let W € Irrg(S). Then W | Vg for some V € Irrp(G), and V' ~ V; for some
i gives W = W;; for some j. Now if W;; = Wy, then by Lemma Vi=Vi® L for
some L € Irrp(G/A), i.e. i =k, and thus j = [ by Lemma O

Therefore, we have the complete list of irreducible representation of SL,,.

Proposition 3.11. Let W € Irrp(SL,). Then

(1) W | Le(g, M sr,, for some Lg(a,A) € Trrp(GLy,).

(2) If W | Lp(g,A)lsg, and W | Lp(z,v)lsp, for both Le(a,)) and Lg(z,v) €
Irrp(GLy), then [(o, A)] = p- [(z,v)] for some p € Oy (Fy).

(3) Define [(a,A)] ~ [(7,v)] over Zg, if (o, A)] = p- [(z,v)] for some p € Oy (Fy). Let

Yp/~ be the set of equivalence classes, and write

Q

K (0,A)

J=1

where kp(o, A) = ngf;; (Lr(a,A)). Then

{Yr(o, A7) |1 <j < rp(g, Q) [(g,A)] € B/~}
1s a complete set of representative of the isomorphism classes of the irreducible
FSL, -module.

Proof. These follow from Lemma and Proposition [3.10 Note that p - [(z,v)] is

defined in Proposition [4.6] which is independent from here. O

3.4 (G-tile and S-tile

Definition 3.12. Let S < G.

(1) For Vi, V5 € Irrp(G), define Vi ~g Vo if (Vo)lg = (Vi)lg.

(2) For Wy, Wy € Irrp(S), define Wy ~g Wy if Wy = 94 for some g € G.

(3) f W | Vg, let n§ (W) == #[V]e be the branching number of W induced from S
to G.
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(4) Let V € Irrg(G) and D € Irrp(G). The submatrix of the decomposition matrix of
G with labels [V]g x [D]g is called a G-tile.

(5) Let W € Irrg(S) and E € Irrp(S). The submatrix of the decomposition matrix of
S with labels [W]s x [E]g is called a S-tile.

Proposition 3.13. Write W; | (V))|$, i =1,2.

(1) k§(V1) = #[W]s.

(2) Vile = [Valg if and only if [Wh]s = [Wols.

(3) There are canonical isomorphic maps [V]g — [Wls, [D]e — [Els, and G-tile to

S-tile.
Proof. (1)(2) are trivial from Clifford theorem, and (2) implies (3). O

Therefore, one may discuss the relation of the decomposition map of G and S tilewise.

| D1 Dy -+ Dy | B - B
Villan ai --- A 1p* H (Dl)\LS Wil bin -+ b
Vol aor age -+ agy (V)i H c ) )

1)+8 : :
Wf{ b/@ bK/H*
Vil am ape - Gy '
G-tile mid-tile S-tile

Consider the case G/S is cyclic. Pick some [V]g and [D]g, there are corresponding
[(Wls and [Els. Let k = s$(V), v* = s%(D), n = n§(W), and n* = n§(E). For
V; € [V]g, Di~ € [D]g, let a;;» be the multiplicity of Dy in V; for W; € [W]s,
Ej. € [E]s, let b+ be the multiplicity of Ej. in W;. Let row™(V;) = S20_, a4, the
row sum of the G-tile. Similarly for col”(D;-), row”(W;) and col”(E;-).

Proposition 3.14. Let G/S be cyclic.
1

There is some ¢ = row>(V;) = col”(E;-)

(1)
(2) There is some ™ € Gy, Qi+ = ay4+r. Stmilar for bj j-.
(3) k-row>(W;) = k* - row™(V;).

(4)

4) Ifc =1, then k| k*, and row™(W;) = £* /K.
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Proof. In the Grothendieck group of K G-modules and K S-modules, consider

,'7* K*
Vi = E ai,i*Di*a Wj = E ij‘*Ej*
i*=1 j*=1

Then we have both

(Vills = (Z ai,i*) (D1 ) = row™ (Vi) - Z Ly

*=1

(Vilks =) W;=> > bjjEj = col™(Ej.) - > Eje
i=1 i=1

j=1j7=1

Hence (1) follows from (V;)|g = (V)lg for all i.

For (2), consider V; = V; ® L for some L € Irrg(G/S). Note that (G/S),e, = G/A
for A/S = 0,(G/S), and L € Irrp(G/A). Hence D;» ® L € [Dy]. Construct m € &,
by Dj+r = D;» ® L. Then

Vi=V,® L= i a; i+ (D ® E) = i ;i Disr
i*=1 i*=1

gives a;; = a1 +,. Similarly, for Wy = 9W; for some g € G, construct 7 € &, by
Ej*ﬂ- = gEj*. Then bj,j* = bl,j*ﬂ-.

For (3), consider two ways to sum up » 7 Zle b; j« and use (1). (4) follows by
(3) and (1). O

There are 3 good cases that one may deduce the S-tile from G-tile directly.

Proposition 3.15. Let G/S be cyclic.

(1) If k =1, then the S-tile is a 1 X k* matriz with all entries c.

(2) If k* =1, then the S-tile is a k X 1 matriz with all entries c/k.

(3) If c =1, then in a suitable order of labels, the S-tile is a k X K* matriz, which just

put K* /K identity matrices of size Kk in a row.
Proof. These are all obvious from Proposition [3.14 [

When none of the case above, one cannot obtain full S-tile without other methods.
For example, let G = G153 and S = 3, p = 3, and take the G-tile [SS’BQJQ)]G X
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[Dg’?”m)]g. The G-tile is a 1 x 1 matrix [2], and the corresponding S-tile is a 2 x 2
matrix. Our methods here can only find that the matrix is of the form [%;] with

r+ s = 2, while it is in fact [1}]. One may find this in [web], with the dimension

dim 531 = 16016 and dim D{7**Y = 1428.

3.5 Representation Theory of G/S

Let SAG. The relation of irreducible F(G/.S)-modules and FG-modules is much simpler
then that of irreducible F'S-modules and FG-modules. We modify the Proposition 2.5,

2.19 of [L] into module phase.

Proposition 3.16. Let U; € Irrp(G/S), i =1,--- ,h, and V; = inﬂg/S(Ui). Then
(1) V; is irreducible.
(2) The set {V;} is characterized by {V € Irrp(G/S) | ker V> S}.

(3) The inflation map is a bijective map from Irrp(G/S) to {V;}.

Proof. Consider an inverse of inflation. For an FG-module V' with kerV > S| let
quotg/S(V) be the same F-module V| with the multiplication (¢S5)v = gv, becoming
an F(G/S)-module. This is well-defined since Sv = v. It is trivial to check that the
inflation map and the quotient map are inverse to each other. Hence it remains to
check (1). If 0 # W C V;, then 0 # quotg/S(W) C U;, hence quotg/S(W) = U; and
W =1V, O

Proposition 3.17. Let Aq, Ag/s be the decomposition matriz of G, G/S (for the same

p), respectively. Then Ag is of the form

A O
o= [24]

Proof. Write Agys = (d;;) with the row labels Uy, - - -, Uy, € Ittg(G) and column labels
Ch,-++,Cpr € Ittp(G) (they are not cyclic groups here). Similarly, write Ag = (d;;)
with the row labels Vi, --- |V}, € Irrg(G) and column labels Dy, .-+, Dy« € Iirp(G),
and set V; = inﬂg/s(Ui), D; = inﬂg/s(Cj).
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We prove it in character phase. Let xv;, xu, be the character of V;, U;, and ¢p,; éc,

be the character of D;, C;, respectively. Then for each 1 < i < m and each g € G, we

have
xvi(9) = xu.(9S) = di;éc,(95) =D di;ép,(9)
j=1 Jj=1
Hence d;; = dgj for 1 <j <m* and d;; = 0 for m* < 5 < h*. O

Corollary 3.18. If G has (C,p), (L",p), (L', p)-property, then G/S also has (C,p),

(L",p), (L', p)-property, respectively.

Proof. The cases (L",p)-property and (L', p)-property are obvious from the definition.
For (C, p)-property, define the partial order as following. Let C, Cy € Irrp(G/S), then
C > Cyif inﬂg/S(Cl) > inﬂg/S(C’g). Then we may pass the (C, p)-property from G to
G/S. O

The following result is not used in this thesis. We put it here just for completeness.

Corollary 3.19. Assume that S is a p-group. Then if G/S has (R, p), (U, p)-property,

then G also has (R,p), (U, p)-property, respectively.

Proof. If we can prove that |Irrp(G)| = | Irr(G/S)|, then the O of Ag in Proposition
does not appear, hence the properties involving surjectivity may be passed from
G/S to G.

Now we show that the number of p-regular conjugacy classes of G equals the number
of p-regular conjugacy classes of G/S. Given p-regular g;, go € G, if go = hgih™?
for some h € G, then clearly g2S = (hS)(g1S)(h™'S). On the other hand, if goS =
(hS)(g1.9)(h™18S), write gasy = mgisym™' = (mgim™")(msym™!) for some s, sy € S,
m € hS. Then by considering the uniqueness of decomposition of p’-part and p-part,

we have go = mgim ™! and s, = ms;m~!. This completes the proof. O
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4 Field Theory

In this chapter, we will clarify the relations between o in a larger field F 4, and its
p/-part ¢’ = (0), in a smaller field F,.

One relation which has been highly used in Dipper-James’s paper [DI] states that
every irreducible representation of GL, has a p-regular label. Also when we bring a
representation of GL, from K to F' by reduction modulo p, it appears as the label of

the canonical composition factor.

4.1 Basic Facts

The following propositions are basic for finite fields. We list here without proof and

shall use them freely.

Proposition 4.1. Let o € F:. Then o € IFqu for some d € N. Hence we can talk about

p'-part (o), and p-part (o), of o, viewing F;d a multiplicative group.

Proposition 4.2. Let 0 € F;. The following are equivalent.

(1) 0 €Fpa and 0 € Fye for any c €N, c < d.

(2) There is some monic irreducible p,(T) € F,[T] of degree d such that o is a root of
wo(T), called the minimal polynomial of o over F,,.

(3) Fy(o) 2 Fua as a vector space over Fy with basis {1,0,--- 0%}

(4) 0t =g and 0,09, 09" are all distinct.

In this case, we say o is of degree d over F,, denote as deg(o) = d.

Proposition 4.3. Let o € F:, deg(o) = d. The following sets coincide.
(1) The set of roots of pus(T)

(2) {o,0%-- 0"}

(3) {o" |j€2Z.j =0}

Denote this set [o], which has d elements, and can be view as equivalence class under
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the relation having common minimal polynomaual.

Proposition 4.4. Let 01,09 € F:. The following are equivalent.
(1) [o1] = [o2].

(2) o1 and o9 have common minimal polynomial.

(3) There is some non-negative integer j such that oo = a‘fj.

In this case, we say o1 and oy are (Galois) conjugate over F,.

Definition 4.5. Given 7 € .
(1) For o € F:, deg(o) = d, define 7[o] = {70,709, - - ,Taqd_l}.
(2) For g = (01, ,04), define 70 = (101, -+ ,T0,) pairwisely.

(3) For n-admissible pair (g, ), define 7 - (g, A) = (70, ).

X

Proposition 4.6. Let 1 € F*, 0,01,09 € Fq ,

77 and (o, ) an n-admissible pair.

Proof. (1) follows from 7¢ = 7 and Proposition 4.2l (2)(3) follows from (1), and (4)
follows from (3). For (5), write oy = afj for some j > 0. By the uniqueness of
@

decomposition, we have both (02), = (01)y" and (03), = (al)qu. O

4.2 Elementary Number Theory

The following lemmas are from elementary number theory. They focus on the order of
p-part of multiplication groups of finite fields.
In the section [.2] fixed a prime p.

Definition 4.7. Let r € N.
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rm—1

(1) Let Np(m) =1+7r+---+7r™ Y Ifr > 1, then N.(m) =
r—

. Hence one may
prove that N, (km) = Nym(k)N,.(m).

(2) Let e(r) be the minimal number m such that p | N.(m). If no such m exists, set
e(r) = oo. Observe if p | r — 1, then e(d) = p; if p | r, then e(d) = oo; otherwise,

e(d) | p—1.

Lemma 4.8. Let r € N, [ a prime, and p | r — 1. Take N = N,.(1).

1, 1
(1) Ifp>2, then |N|, = 47 '7P.
p, l=p
1, 142
(2) If p=2, then |N|y = « 2, =2, r=1 modA4.

2% for someb>2, =2, r=3 mod4
We callp=2,1=2,r=3 mod 4 the exceptional case.
Proof. The case r = 1 is clear, so assume r > 1.
Since r = 1 modp, ¥ = 1 mod p for all k € N. Then if [ # p, then N =
14+r+---+r~1 =1 mod p, hence has trivial p-factor.

For | = p case, let r = 1 + p°m with p/ m. Then
P =1+4p-pm+(p(p—1)/2) - p*m® + -+

If p> 2 then r? = 1 + pim + p**™m’ for some m’ € N, where 2c +1 > ¢+ 1. Or if
¢ > 2 then P = 1 4 p“tlm + p?*m/ for some m’' € N, also 2c > ¢+ 1. Hence in both
case |r? —1|,/|r — 1], = p.

For p = 2 and ¢ = 1 case, which means r = 3 mod 4, write » = 1 + 2m, then

r?=1+4m+4m?* =1+ 8(m(m — 1)/2), thus |[r? — 1]y/|r — 1]y > 22. O

Lemma 4.9. Let r € N withp | r — 1. Take N = N, (k) for any k € N. Then |k|,
divides |N|,. More precisely,
(1) |N|, = |kl|,, except for the case p =2, k is even, r =3 mod 4.

(2) In the exceptional case, |N|, is a proper multiple of |k|,.
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Proof. 1f k' = Ik for some prime [, then N’ := N,.(k') = N,x(I)N,.(k), so we can replace
r by r* in Lemma For non-exceptional case we have |N’|, = |I|,|N|,, and then
applying induction on £ yields the result.

In the exceptional case, the initial step |r? — 1]5/|r|2 is a proper multiple of 2. Now
for any even k', write k' = lk with k even, then 7* =1 mod 4 which is non-exceptional,

so |N'|a = [l|2| Nz is still valid. The result follows from induction on even k. O

Lemma 4.10. Let r € N with pfr, pfr — 1. Take N = N,(k) for any k € N. Write
e = e(r), then
(1) ef k, then |N|, = 1.

(2) e| k, then |N|, is a proper multiple of |k|,.

Proof. Since r > 1, Consider N(r — 1) = 7* — 1. Then e is the smallest number m
satisfied p | r™ — 1, that is, e is the order of 7 in Z;. Hence p | r* — 1 if and only if
e | k. This gives (1). When e | k, we have N = N,.(k/e)N,(e). Since p | r® — 1, by
Lemma [4.9] | N, (k/e)], is a multiple of |k/e|, = |k|,, and N, (e) is a multiple of p. This
gives (2). O

4.3 Degree Extension Lemma

The following lemma is of importance in Dipper-James’s paper [D1], although the proof

is scattered in several places of Kleshchev-Tiep’s paper [K].

Lemma 4.11. Let o0 € F: be a p-reqular element with deg(c) = d over F,, p | ¢ — 1.
Then the following are equivalent:
(1) a =dp° for some non-negative integer c.

(2) There exists some p-element v € Ej such that deg(ov) = a over F,,.

Proof. (1) = (2): Taking v = 1 for ¢ = 0, we may assume ¢ > 1. Let P, = Op(IFqupi)

fort =0,1,--- ,c. Then for i < j, P, < P; via qupi - ]qupj. The following diagram
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may help, where every groups in the diagram are cyclic.

X X X X

]qupc - qupc—l - qup - qu
p-part p-part p-part p-part

Pc Pc—l_"'_Pl PO

Taking r = ¢% and k¥ = p in Lemma , we have p divides (P41 : P;) for i =
0,1,---,¢—1. Pick any v € P, \ P._y, hence v is of degree p® over F . Evidently o
and v are p’-part and p-part of ov, hence by Proposition [I.3] both o and v are power
of ov. Therefore

F,(ov) =F,(0)(v) =Fa(v) =T ape

q q

and ov is of degree dp® over F,,.

(2) = (1): By the same argument above, F,(ov) = F(v), thus we may assume
v € F ar for some k = p’m, p does not divide m. But then by Lemma (1), qudk and
IFqupb have the same p-part. Hence v € Fae, v is of degree p® over F a for some ¢ < b,

and a = dp°. O

Corollary 4.12. Follow the notation and assumption in Lemma[{.11. Then the v in

Lemma [{.11] has the following property.

(1) v has degree p° over Fa.

(2) v has degree dp° over F,.

(3) The choice of v only depends on d and c. In particular, we can choose one v for
all p-reqular o € qu with deg(o) = d.

(4) If p=2, ¢*=3 mod 4 and c = 1, then v can be chosen to be |v| = 4.

Proof. (1)(2)(3) follows from the proof of Lemma [{4.11] For (4), By = (—1), pick some

v € P; such that v? = —1, then v € P, \ P, and the rest of the proof is the same. [J
The following is a generalized version of Lemma [£.11]

Lemma 4.13. Let 0 € F; be a p-reqular element with deg(o) = d over F,. Write
e = e(q?). Then the following are equivalent:
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(1) a=d or a=dep® for some non-negative integer c.
(2) There exists some p-element v € F: such that deg(ov) = a over F,,.
Proof. When p | ¢¢ — 1, e = p, and this is just Lemma . Assume pf ¢¢ — 1. Then
e|p—1,and p|q% —1.
(1) = (2): If a = d, take v = 1. A similar argument to Lemma [£.11] gives the

following diagram:

X X X X X

quepc - ]quepcfl - ]quep - que - qu
p-part p-part p-part p-part p-part

b——"—FP 1 ——h R Py

Taking 7 = ¢%“™" and k = p in Lemma , we have p divides (P, : P._1), so in
particular P, \ P._; is nonempty. Pick any v € P.\ P._1, then v is of degree ep® over
Fyi. Now Fy(ov) = Fua(v) = Faee gives ov is of degree dep® over F,.

(2) = (1): By Fy(ov) = Fa(v), we may assume v is of degree k over ¢%. If e} k,
taking r = ¢ in Lemma shows that IE'quk and IE'qu have the same p-part. This forces
k=1and a=d. If e |k, write k = ep®m, p/ m. Taking r = ¢ in Lemma shows

that IFquk and ]F; have the same p-part. This forces m = 1 and a = dep®. O

dep®

The following theorem is the main result of Dipper-James’s paper [D1]. It is one of
the crucial part of proving the complete set of non-isomorphic irreducible representation
of GL,, over F' (Theorem [2.33)), and plays an important role on Kleshchev’s theorem

and the p-regularization of the n-admissible symbol.

Theorem 4.14. [DI, Theorem 5.1] Let o € F,, deg(c) =d, Ak € N, and n = dk.
Write e = e(q?). By virtue of division algorithm, there is an unique pair of partition

(1,7y) satisfied

A= ([e]p) [+ vy, 7 is e-reqular

Then if u # 0 and v # 0, we have

Lp(o,\) = Lp(ov, p) o Lp(o,7)
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And if u # 0 and v = 0, we have
LF(Uu )‘) = LF(Uva :LL)
where v € F; is some p-element such that deg(ov) = de.

Corollary 4.15. Let o € F;, deg(o) = a, and A\ = k € N. Write o' = (0),,
deg(o’) = d, and let p = [a/d]\. Then

LF<O_7 )‘) = LF(J/a M)

Proof. Assume a > d. Write e(q?) = e. By Lemma [4.13] a/d = ep® for some non-
negative integer c. Again by the same Lemma, for each ¢ = 0,1,--- ,c—1, there is some
p-element v; € F: such that deg(c’v;) = dep’, and take v, = (0),. Let p; = [p* ]\

Then we have the series
(0-/7 :U/) — (O-/U()a:u()) — (O-/Uc—la/vbc—l) - (OJU& MC) = (07 )‘>

Applying Theorem to each arrow completes the proof. O

4.4 Lemmas for Kleshchev-Tiep’s Theorem

From now on, we are going to establish lemmas used in Kleshchev-Tiep’s paper, which

X

oy , e
q» and its p’-part o', under multiplication of some

talk about the properties of ¢ € F

element 7 € qu.

Lemma 4.16. Let 0 € qu with p'-part o', and p-part v, deg(o) = kd and deg(c’) = d.
If one of the following criterion holds,

(1) p>2o0rp=2,¢°=1 mod 4.

(2) p=2,¢*=3 mod 4, k > 2.

(3) p=2,¢"=3 mod 4, k =2, |[v| = 4.

Then there exists some a € Op(Fy), |a| = |ged(k,q —1)|,, such that oo is conjugate
to o over IF,.
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Proof. 1f p does not divide g — 1, or k = 1, then just take a = 1, so assume p | ¢ — 1
and k > 1. Hence p | ¢ — 1, and by Lemma we have k = p® and the p-factor of
ged(k,q — 1) is p© for some integers b > ¢ > 1.

apb—c

For case (1), take o = 04" L.

Since (07)4"~! = 1, « is a power of v, thus a
p-element. It suffices to prove that |a] = p°. By Lemma , the p-part of (qdpb —
1)/(¢™"° — 1) is p°, thus g1 1 — implies a?* = 1. On the other hand, the p-part
of (¢ —1)/(¢%™" ™ —1)is p¢!, so if &? " = 1, then g = 1, contradicts to
deg(o) = dp°.

For case (2) and (3), note that if 4 | ¢ — 1 implies ¢ = 1 mod 4, hence we only

b—
need to find |a| = 2. Take a = ¢’ B

~1. By similar argument in case (1), then « is a
2-element, and « # 1 or it will contradict to deg(o) = 2%d. If k > 2, then b > 1, note
that q2b_1d =1 mod 4 is non-exceptional case of Lemma , so a similar argument in

case (1) holds. If k = 2, then b = 1, since v* = 1, a? = o2@"~1) — 2"~ = 1. O

Lemma 4.17. Given o € F: with p'-part o' and p-part v, deg(o) = kd, and deg(o’) =
d. Let I = {7 € Oy(Fy) | [o] = [o7]}. Then we have |I| divides | gcd(k,q —1)|,. More
precisely,

(1) || = |ged(k,q —1)|,, unless p=2, ¢ =3 mod 4, k =2, and |v| > 8.

(2) In the exceptional case |I| = 1.

Proof. 1If p does not divide ¢ — 1, then |I| =1 = |ged(k,q — 1)|,, so assume p | ¢ — 1.
For any 7 € I, write o7 = ¢¢ for some integer j > 0, then (¢/)'~¢ = ¥ ~1771 = 1,
Hence 7 = v !, and by deg(c’) = d, we have (¢/)¥~' = 1 if and only if d | j. Note

that 7¢ = 7,

I foegrgb—1)d i Jporegq(k=1)i kj_
7k — FHd+ta - (Uq 1)1+q ++q =01 =1

since deg(v) = kd by Corollary 4.12| Hence |I| | k, as well as | ged(k,q — 1)|,.
Now (1) follows from an element o € I of degree exactly |ged(k,q — 1)|, found
in Lemma m For (2), consider the case p = 2, ¢ = 3 mod 4, k = 2, where
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|ged(k,q—1)|, = 2 and |I| | 2. We show that if 7 = —1 € I, then |v| = 4. Write
again or = o7. From deg(c) = 2d, j can be chosen from 0 < j < 2j. Since ¢ is
odd, j = 0 is excluded. By (¢/)'"% = v¥ 1771 = 1, we have d | j, thus d = j. Now
r=v""1=—1and ¢’ =3 mod 4 gives lu| = 4. Note that 1, —1 € Fa when ¢% =3

mod 4, so deg(v) = 2d implies |v| > 4. O
Lemma 4.18. Let d € N and p° | (¢ — 1) for some integer ¢ > 0. Then there exists

an p-element v € F:, depending only on c,d, such that for any p'-element o € E? of

degree d, we have deg(ov) = dp® and |I| = p°, where I = {1 € O,(Fy) | [ov] = [ovT]}.

Proof. The existence of such v follows from Lemma and Corollary [£.12] For p = 2,
=3 mod 4, ¢ = 1, we can pick |v| = 4 by Corollary (4). Therefore, we avoid the

exceptional case in Lemma 4.17) taking k = p° = | ged(k, ¢ — 1 ives |I| = p°. O
P g p g 4 p 8 p
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5 Kleshchev-Tiep’s Theorem

Here we are going to derive the main result of Kleshchev-Tiep.

Let F = K or F be sufficiently large for GL,,. In [K], F is asked to be albegraically
closed, but it seems that sufficiently large is enough. Recall that any irreducible KGL,,-
module is of the form Lg(o,\) for some [(g,\)] € Xk, and any irreducible FGL,,-

module is of the form Lx(g, \) for some [(g, )] € Xp.

Definition 5.1. Let (g, A)] be an n-admissible symbol, p a prime.

(1) The p’-branching number is defined by
rp (2, A) = #{T € Oy (F) | 7- (2, A)] = [(a, M)}
(2) The p-branching number is defined by
kp(o, A) = | ged(q — 1, AQX))],
(3) The ordinary branching number is defined by
k(a,A) = {1 € F} | 7 [(a,N)] = [(g, )]}
When V' = Lg(g, A), we also denote ry(V), k,(V) instead of ky(c, A), k,(a, A).
The Kleshchev-Tiep’s Theorem is stated as following.

Theorem 5.2 (Kleshchev-Tiep (2008)).
(1) Let V = Lp(a,\) be an irreducible FGL,,-module corresponding to [(g,\)] € Xp.

Then the branching number of V]gy s
ks, (V) = k(g A) - kp(a, A)

Note that ky(a,A) and k,(a, ) are the p'-factor and p-factor of ksr,, (V).
(2) Let Vi = Li(o, ) be an irreducible KG L, -module corresponding to [(o,\)] € L.

Then the branching number of (Vi)lgy s

kst, (Vi) = k(a, A)
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The proof of Theorem splits into several steps. Recall that T,, and R,, satisfy
SL, <T, R,<GL,, T,/SL, = O,(GL,/SL,), R,/SL, = Oy(GL,/SL,).

Using Lemma [3.6| to split gy, (V) into k1, (V) - kg, (V). The k1, (V) part is rather
simple, using Lemma [3.5]and Lemma[2.34] The rest is to find out kg, (V). The strategy
is to find a lower bound of kg, (V'), and use total counting to force kg, (V') to match its
lower bound.

In the rest of the section, let o € E?, deg(o) =d, n = kd.

Lemma 5.3. Let m € N, R be any group satisfies SL, < R < GL,,. If kg (Lx(o,\)) >
m for all A\ &bk, then kg (Lp(o,\)) > m for all A+ k.

Proof. By Theorem [2.28] the composition factors of Sg(c, A) are of the form Ly (o, p)
for > A, and exactly one of them is Lr(o, \). Hence applying induction on dominance
order on partition makes sense.

If A= (k), then Lp(o,\) = Sp(o, A), so the lemma holds.

Assume for any >\, u # A, we have Lg(o, )} G5 = @™ LF, where L¥ € Irrp(R)
and m(p) > m. Since GL,/R is cyclic, by Lemma m(p) = (GL, : I;) for any
I; = Stabg(LY). Now consider Sg(o,A) in the Grothendieck group of F'GL,-module,

we have

SF(Uv )\> = LF(J7 )‘) + Z LF(U7 ,LL)
U UFEN

Taking restriction gives

Sp(o, VG = Le(o, VG + > ZL”

uEA pu#EN =1

On the other hand, Sp(o,\) is a reduction modulo p of Sk(o,\) = Lk(o,)\). By
assumption of the statement, Lx (o, \) |G- = @;Zl Vi (j), where Vi (j) € Irrg(R) and

t > m. Since reduction modulo p and restriction commute,

t

Sp(o, NG5 = Lic(o, \) G0 = @VK =PV

Jj=1
Where V; is a reduction modulo p of V(7).
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Now assume the contrary, Lp(o, \)} G5 = @;l(f) L;, where L; € Irr(R) but m(\) <
m. For convenience let L; be a composition factor of V;. Since for any j, Vi (j) =
V(1) for some g € GL,, thus 9L, is a composition factor of V;. Hence there are
at least t conjugates of Lj, which cannot be all summands of Lg(o, \) gL", and thus

there are some LY = 9L;. But the indices of inertia group of L!" and YL, are m(u), t,

respectively, which leads to a contradiction as m(u) > m > t. ]

Lemma 5.4. Let A\ k and 1 # a € F;. Assume [o0a] = [o]. Then kr(Lr(0,))) > |af
for R =ker(Lk(a, (n)))

Proof. By virtue of Lemma(2.34] Ly (0, \)® Lk (o, (n)) = Lg(oca, ) = Lg (o, A). Hence
the assumption of Lemma(3.5(2) is fulfilled, and thus kg(Lk (0, A)) > |af as |a| = (GL,, :

R). Since A is arbitrary, the result follows from Lemma . n
|

Lemma 5.5. Let r € N with r > 1, and |r — 1|, = p® with ¢ € N. Take N = T 1
7" —

for any a € N. Then p* divides |N|,. More precisely,

(1) |N|, = p*, except the case p=2, c=1, r =3 mod 4.

(2) In the exceptional case, |N|, is a proper multiple of p®.

Proof. Take k = p? in Lemma |4.9, ]

Lemma 5.6. Assume that o is an p'-element, p° | ged(n,q — 1) with ¢ > 1. Then for

any A\ = k with p° | X, we have kg, (Lr(o,\)) > p°.

Proof. Let d = deg(c). Take a = dp° in Lemma [4.11] there exists some v such that
deg(ov) = dp®. If p=2, ¢ =3 mod 4, ¢ = 1, by Corollary we can take |v]| = 4.
Therefore, by Lemma there is some o € F ', |a| = | ged(p®, ¢ — 1), = p°, such that
[ov] = [ova). In particular, o # 1, which matches the assumption of Lemma/[5.4 Thus
kr(Lr(ov,v)) > |a] for R = ker(L¢(a, (n))) and all v = n/deg(or) = n/(dp®) = k/p°.
By (GL, : R) = |a| = p* < (GL, : R,), we have R > R,, and kg, (Lp(ov,v)) > p° for
any v b k/p°. Now since p© | X, there exists some p b k/p¢ such that A = [p°|u. Then
Lp(oTr, ) & Lp(o,\) by Corollary and the proof is complete. O
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Lemma 5.7. Assume p°® | ged(n,q—1)) withc > 1. Let V = Lp(o, \) be an irreducible
FGL,-module, [(g,)\)] € XF, and p°¢ | A()N). Then kg, (V) > p°.

Proof. Write ¢ = (01, ,04), A = AD, .- X)) Fori = 1,--- a, deg(o;) = d;,
A ki and n = ¢ kid;. Apply induction on a. The case a = 1 is Lemma

Assume a > 2, set

r= kldla A= GLT'? Al = R?" WA = LF(O-la )‘(1))7

s=n-r, B=GL, Bi=R, Ws=Lp(02,AP)o-- 0Lp(c,,\).

then Wy € Trrp(A), Wp € Irrp(B) and V = W4 0 Wg. Since p© | (A®D) for any 4, we

have p° | ged(r,q — 1) and p° | ged(s, ¢ — 1). By induction hypothesis,

KA, (WA) = KA1><B(WA ® WB) =p* >p°

kg, (Wa) = Kaxs, (Wi @ W) =p? > pf

Now choose suitable = € A, y € B satisfied det(z) = 7, (1) = O,(F;), det(y) = 77",
Then T = xA; generates A/A; and y = yB; generates B/B;. Since GL,,/SL, = IF; is
independent of n, we have (A: A;) = (B : By) = (GL, : R,,).

Consider the standard parabolic subgroup P = QL < GL,, with upper unitriangular

subgroup @) and Levi subgroup L = GL, x GL; = A x B. Let H = (Ay, By, xy), then

H/(A; x By) = (zy) and applying Lemma [3.7]
k(W ® Wp) = ged(p®,p”) 2 p°

Note that H = L N R,. For this, observe that (A, By,zy) < LN R,, and check
(L:H)=(L/(A; x By): K/(A; x By)) =(GL, : R,) = (L: LN R,). Multiply @ on

the left gives QH = P N R,,. The following lattice may help.

GL, —— P=QL —— L

R, QH H
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From P - R, = GL,, we have [P\G/R,] = {1}. Then

VG = ((infly (Wa @ We))1E5) 150

I

((infl] (W4 ® WB))iQH) T

(mﬂQH (W@ Wp)lh )) i

1%

Hence /f%f“(V) > kE (W4 @ Wg) > p°. O

Lemma 5.8. Let V = Lp(a,A) be an irreducible FGL,-module, [(c,\)] € ¥r. Then
kg, (V) =ged (GL, : R,),A())).

Proof. Write ¢ = (o1, ,04), A = (A ... X)) Fori = 1,---,a, deg(o;) = d;,
A -k and no= >0 kid,.

Note that (GL, : R,) is a power of p, thus gcd ((GL, : R,), A(X)) = p°V) for some
non-negative integer ¢(V). Since p«V) divides >°¢_| |(AD)'| = n and (GL, : R,) divides
|Fo | = ¢—1, applying Lemmagives kg, (V) > pV)if ¢(V) > 1. The case ¢(V) =0
holds trivially.

To force kg, (V) to match their lower bound, we gives a counting argument. Take
S =R, and G = A = GL, in Lemma the set X containing all irreducible
summand of restriction of any non-isomorphic irreducible F'G L,-module, is exactly the
set Y containing all non-isomorphic irreducible F'R,-module.

Now |X| equals > kg, (V), sum over V = Lp(c,A) for [(g,A\)] € Xp. On the
other hand, by Proposition Y| equals to Y ged ((GLy, : R,), A(A)), sum over all
[(c,))] € Xp. Since A only depends on &, [(¢,))] € XF means [(¢, )] € X for any
p = A In particular, we may write Y| = Y ged ((GL, : R,), A(X)) = Y pV), sum
over V = Lp(a,)) for [(o,))] € Xp. This forces the inequality of each kg, (V) > p<(V)

is actually equality, hence proves the lemma. O
Now we can prove Theorem [5.2]

Proof. By Lemmal[3.6) we have kgr, (V) = k1, (V) kg, (V). From Lemma[3.5 rr, (V) =
#{L € Irrr(GL,/T,) | V=2V ® L}. The tensor product is describe in Lemma
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which proves exactly k7, (V) = £y (o, A). Lemma gives kg, (V) = k,(g, A), which

proves (1).
In the case F = K, any finite group G is a p’-group, and O, (G) is G itself. Hence
again by Lemma [3.5/and Lemma we have kg, (Vi) = k(a, A). O
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6 Main Theorem

6.1 The Canonical Composition Factor

Given Vi = Lk (o, ) € Trrg(GL,), where [(g, \)] is an n-admissable symbol, we con-
sider Vg, its reduction modulo p. Then (g, \) may not be p-regular, even not p-non-
repeated. Nevertheless, we can find a corresponding p-regular n-admissable symbol
[(c*,A")], called the p-regularization of [(g, A)], such that V' = Lr(c*,A\*) € Irrp(GLy,)
has some good properties related to Vi.

Let [(¢,))] be an n-admissable symbol, where ¢ = (01, ,04), A = (AL ... A@)

with A + k;. For each oy, let o) = (0)y, vi = (0),, di = deg(o;) and f; =

deg(c;)/ deg(o?). Consider the index set A = {1,--- a} with the equivalence rela-

tion 41,4y € A, i1 ~ iy if [0} | = [07,]. Under this equivalence relation, A is split into
parts Ay, .-+, Ay. Foreach j =1,--- b, pick some i, € A; and take o} = o} as a repre-
sentative. Let A0)* = [+;,ea, [£i,]JAGR) and set o* = (0F, -+, 0F), A* = (AW .. \O),

It is clear that (¢*, A") is p-regular and p-non-repeated.

Definition 6.1. The p-regular n-admissable symbol [(c*, A")] defined above is called

the p-regularization of [(g, A)].

By Proposition [4.6] [01] = [o2] implies [0}] = [0}]. Hence the p-regularization is
well-defined.
Lemma 6.2. Let Vi = Lg(o,aM) o0 Lg(o,a™) and a = [+]]~, 'Y, Then Vi has

a composition factor of Lk (o, a) of multiplicity one, and all other factor is of the form

Lk (o, 8) with 5> a.
Proof. By Theorem [2.24] in the Grothendieck group of K GL,-modules we have

Lk(o,a) 0 Lg(o,B) = Z ol (o,7)
Ylal+1B]

where CZB are Littlewood-Richardson coefficients. By Proposition if 0 =a [+ B,
then c‘;B =1 and czﬂ > 0 implies v > §. Now the result follows by induction on m. [
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Lemma 6.3. Given o an p'-element, let V = Lp(oc,A) o --- 0 Lp(a,\™) and A =
[+, XD Then V' has a composition factor of Lr(c,\) of multiplicity one, and all

other factor is of the form Lp(o, u) with > \.

Proof. By Theorem m, if deg(o) = d, 5 F k, then in the Grothendieck group of
FGLpg-modules we may write
Li(@.8) = Li(0,8) + S waaLr(o,0)
a>B,a#p
This gives an integer lower unitriangular matrix (wg,) with index as partition ordered
by dominance order. Its inverse (x,) is also an integer lower unitriangular matrix. Note
that the set & = {(a, #) | >} is a closed subset (see of &> = {(a, B) | a« > B}.
Hence if all («, §)-entries of (wg,) with («, 8) € &>\ P are zero, then so do such entries
of (2g4). Therefore we may write
Lp(0,8) = Lr(0,8) + )Y wsalx(0,0)
al>B,a#p

Now replace 3 by A®) and apply Harish-Chandra induction to get

V= V_K + Zxa(1>7,,,’a(m>LK(a, oz(l)) 0--:0 LK(J, Oz(m))

which sum over oY > A for all  and o) # AU for at least one j, Vg = L (o, A(V) o
-+ 0 L(o,A™), and z,0) ... qom) € Z.
Now if Lg(o, 1) is a composition factor of V| then either it’s a composition factor of

Vi, which pr = A with multiplicity one or ;> X and p # X; or it’s a composition factor

of some Lk (o,aM)o-- 0 Lg(o, ™), which B> [+, ad > [+, A = X and p # A
by the strict inequality of the second >>. This proves the lemma. O]
Theorem 6.4. Let Vi = Lg(c,)) be an irreducible KGL,-module. Then Vi has

Lp(c*,\") as a composition factor with multiplicity one, and all other factor is of the

form Lgp(c*,v) with v > \*.
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Proof. Adopt the notation before Definition 6.1} such as oy, o, ki, d;, f;, partition set
Ay, -+, Ay, and the corresponding o}, ;.
Now consider some i € A; for some j. Then by Corollary [4.15]
BEAD BEND)

= Lp(@ [N+ > 2 Lp(o]. [£18)

[C=ONONCEOND)

in the Grothendieck group of F'GLy,4,-modules, xg) € 4.
For il,‘ N ,im € Aj, let VK,j = LK(O'iI,A(il)) ©:«--0 LK(Uim,)\(im)) and let V} =

LF(O-;a [fu])\(“)) ©--+0 LF<O-;’<a [fzm]/\(lm))a then
Vg =V, + Z%(m,...,g(im)LF(U;, fuBN) o0 Lp(o}, [fi] B

which sum over ) > \0») for all i), € A;, and BUn) £ \@n) for at least one i, € Aj,
TGir).... glim) € L.

By Lemma , any composition factor of RHS is of the form Lg (o7, u), either it is
a composition factor of V;, which has p = AUV* with multiplicity one or p > A0)* and
p# A9*; or it is a composition factor of some Lp(a7, [f;,]8%)) 0 - -0 Lg(03, [fi,,]8%™),

which has
> [4] £l 8 & [4] [fu] AW = 20"

ih€A; inCA;
with strict inequality from the second . Hence in particular Lr (o7, A0*) is a compo-
sition factor of Vi ; with multiplicity one.
Finally, taking Harish-Chandra induction over all Vi ; gives Vk. Hence Lp(c*, A*)

is a composition factor of Vi with multiplicity one. O

Corollary 6.5. GL,(q) has (C,p)-property, hence (L",p)-property, (L', p)-property,

and (L, p)-property for p not dividing q.

Proof. This is the direct result of the previous theorem. O
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6.2 Main Results

In Definition we have defined a partial order of n-admissible symbol, hence a partial
order of irreducible representations of GL,. Now we are going to define a partial order

for irreducible representations of SL,,.

Definition 6.6. Let [(o, A)], [(z,v)] be n-admissible symbol.

(1) Denote [(¢,A)] >, [(1,v)] if there exists some p € O, (F) such that p - [(a,\)] >
[(z,v)]. Write [(a,A)] =p [(z,v)] if p-[(¢,N)] = [(z,v)].

(2) If Vi = Lp(o,A), Vo = Lp(r,v), then write Vi >, V4 if [(o,A)] &, [(z,v)], and
Vi =y V2 if [(a, N)] =p [(z,v)].

(3) By Proposition |3.11} we have
Ly(o, Mg, = @ Yr(a, A;i)
i=1

for kK = kg, (Lw(c,A)). Define any total order on these Yr(c, A; i), for example,
Ye(a,Aji) > Ye(a, A j) if i > 5.

(4) For W; € Irrp(SLy,), write W; | (V;)]g for some V; € Irrp(GL,), i = 1,2. Denote
Wy > Wy if either Vi B>,y Vo but Vi #, Vs, or Vi =, Vo and Wy > W, with total
order defined in (3).

Lemma 6.7.

(1) The order >, defined in Definition (1) is a partial order on Yg /Oy (F).

(2) The order > defined in Definition [6.6(4) is a partial order on Irrp(SLy).

Proof. (1) Clear. (2) If Wi = Ws, then by Proposition 3.11} V4 & Lp(p, (n)) ® V, for
some p € Oy(Fy), which is equivalent to Vi =, V5, so the reflexivity follows. The
transitivity is clear. For the anti-symmetry, if W; > Wy and Wy &> Wy, then Vi =, Vs,

Wy > Wy and Wy > Wy gives Wy = Ws (up to isomorphism.) O

Now we can prove our main theorem of this thesis.
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Theorem 6.8. For any Wi € Irrg(SLy,), there is some W € Irrp(SLy,) such that W
is a summand of Wy with multiplicity 1, and if U € Irrp(SLy,) is a summand of Wi,
then U > W.

Proof. Write Wy = Yk (o, A;i). By Theorem 6.4, in the Grothedieck group of GL,, we

have

Li(g,)) = Lp(c*, A+ > x,Lp(c",v)
VAT V#£ENT

where x, € Z. Note that this implies [(c*,v)] By [(¢*, A")] and [(¢*, v)] #» [(c*, AY)],
since the multipartition part must be inequality.

Consider the G-tile [Lk (g, A)]a X [Lr(c*,A")]q. We claim that ¢ = 1 in the mid-tile,
by showing [Lr(c*, A*)]¢ contains only one element Lp(c*, \*). Assume Lgp(c*,v) =

Lp(pa*,A") for some p € Oy(Fy), v > A*. Then po* = g*r for some 7 € &,, and

v = N'7~! > \*. This implies A*7~! = \*, and ¢ = 1 follows.

Now by Proposition [3.14(4), Yk (g, ;) contains xk*/k composition factors of the
form Yr(o*,A*;j). Pick the minimum j, and set W = Ygr(c*, A*; jo), then W is the
required composition factor. L]
Corollary 6.9. SL,(q) has (C,p)-property, hence (L",p)-property, (L', p)-property,

and (L, p)-property for p not dividing q.
Proof. This is the direct result of the previous theorem. O]

Corollary 6.10. PSL,(q) has (C,p)-property, hence (L", p)-property, (L', p)-property,
and (L, p)-property for p not dividing q.
Proof. By definition, PSL,(q) = SL,(q)/Z(SL,(q)), where Z(SL,(q)) is the center of

SL,(q). Then by Corollary PSL,(q) has (C, p)-property, and thus other proper-

ties. O
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6.3 Relations Between Branching Numbers

Given Vi = Lk(o,)) irreducible representation of GL, over K, and its canonical
p-regularization V' = Lgp(c*, A*) over F', we want to find the relation between their
branching numbers, kgr, (Vi) and kg, (V). Recall that by Theorem we have the

branching number in K,

ksr, (Vi) = #la € Fy | a-[(a,A)] = [(g,M)]}

and the branching number in F',

FLSLn(V) = /fp'(g*aé*) : /ﬂp(g*vé*)

rp (a5 A7) = #H{a € Oy (Fy) [ - [(a" A7) = [(e A7)]}

Hp<g*7A*) = ’ ng<n7 q— 17 A((A*)/)‘p

Here we also split xgr, (Vi) into its p-factor k,y (Vi) and p-factor x,(Vi).

Lemma 6.11. Let [(o,)\)] € ¥k, Vk = Lk(a,A), and V = Lp(c*,\"). Then
(1) ky (Vi) divides rky(a*, A").

(2) kp(Vi) divides k,(a*, \").

Therefore ks, (Vi) divides ksr, (V).

Proof. Adopt the notation before Definition , such as oy, 0%, k;, d;, f;, partition set
Ay, .-+, Ay, and the corresponding o}, \}.

(1) Let ' = {8 € Oy(F2) | 8- [(c, )] = [(, M]} = (). We are going to prove that
p also fixes the p-regularization of [(g,\)].

By Proposition , [poi,] = [oi,) implies [poj | = [0],]. Then p send [o;] with

12

iy € Aj, to [o;,] with iy € Aj,, hence actually p send every [o;,] with i; € A;, to [o4,]

J29

with iy € Aj,, and p~! do the inverse. Therefore A; is bijective to A;, via p, and also

the corresponding f;, = f;, and A = A02)_ This implies AUV)* = \0U2)* and p send

[0}

%1 to [07,], which means p fixes [(¢*,A")] and |I'| divides (", A").
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(2) Let I = {a € O,(F) | a- [(2.N)] = (@, M]} = (). By definition, r, (Vi) —
7] = p¢ for some e. We are going to prove that p° | A&+’ for each j.

Consider some i; € A; for some j. Since 7 fixed [(g, )], [T0s,] = [o,] for some
iy, with corresponding A2 = A0 Moreover, by Proposition [4.6] [r0;,] = [03,] im-
plies [0} ] = [0},], we have iy € A;. Therefore, there is an orbit O C A; such that

c—1 1

[04,], 103, ], -+, [TP " toy,] are p© distinct elements, 0 < ¢ < e, each [t""toy,] = [0y, ] for
some i, € O, with corresponding A\(») = A1) Hence 77° fixed [0;,] for all i, € O, so
L, = {a € Oy(F)) | laoy,] = [03,]} = (77"), and applying Lemma we have |I;, |
divides | ged(fi,,q — 1)|p, in particular |I;, | = p*~=¢ | f;,. Note that f;, are all the same
over i, € O, thus p°® | A\, where

No = <[+] [fih]/\(ih)> = Fin A = pe fy, AV

i €0 ip,eO

Now consider each orbit of A;, we have p° | A = Yo A, Ap- Therefore p¢ divides

A((A")"), and of course n and g — 1, hence k,(c*, A*). O

6.4 A Lower Unitriangular Submatrix

For completeness, we show that SL, have (U, p)-property for p not dividing ¢, which is

a consequence of Kleshchev’s theorem.

Proposition 6.12. Given an p-regular n-admissible symbol [(T,v)], there is some n-
admissible symbol [(a, \)], such that

(1) [(e" A")] = [(z, v)].

(2) kse,(Li(g,A)) = ks, (Lr(z, v)).

Proof. (1) Write 7 = (11, ,7,) and v = (v --. @) the index set A = {1,--- ,a}.
Let £,(7,v) = p° for some integer ¢ > 0, and x (7, v) = |J'|, where J' = {8 € Oy (F) |
B-1(r,v)] = [(z,v)]} = (p). Since p° | (') for all 4, choose A such that v = [pA@),

and let A = (AW ... A@),
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Given some 7;,, consider the orbit O C A such that [r;,], [p7,],- -+ ,[0° 17;,] are all
distinct, [p"~'7;,] = [7;,] for some i), € O, and the corresponding v() = v 1 <} < b.

We may repick 7;, such that p"~'r;, = 7, without changing [(r,v)]. By Proposition

, all 7;, have same degree d, hence by Lemma [4.18| there is some p-element v € F:,

such that o;, = 7, v have degree p“d.

Then o = (01, -+ ,0,) is constructed by considering all orbits of A. It is not hard
to see that [(c*, A")] = [(7, )], so this proves (1).

(2) First we show that #y (Li(c,A)) = kp(z,v). Let I' = {8 € Oy (Fy) | B-[(c, )] =
[(c,\)]}. If B € I' send [0;,] to [04,], then the corresponding M) = A(2) hence
v = 102) and B also send [r;,] to [73,], so I’ C J'.

Conversely, we want to prove p € I'. If p not divide g — 1, then [(g,A)] = [(T, )], so
assume p | ¢ — 1. From the orbit O above, we have 7;, = "7, , thus p sends 0;, to
i,y for 1 < h <b—1. Thus it suffices to show that [a7;,| = [r;,] implies [0y, | = [03,]
for & = p’. There is some integer j > 0 such that a7, = (7;,)?, so & = (7;,)¢ ~'. Take
|u| = p° for some integer e > 0. Since p | ¢ — 1, by Lemmape | ¢*° — 1. Then with

a? = o we have

ape — a1+qj+~~-+q(p571)j _ (Til)que_l . (Tilv)quﬁ—l

hence [ 0y,] = [07,]. Now « is p-regular, so « also fixed [0y, ].

Next we shall prove that k,(Lk(a,A)) = ky(z,v), that is, |I| = p¢, where I = { €
Op(F7) | B-[(e,A)] = [(g,A)]}. But since [(g, )] is p-non-repeated by construction,
this implies 7 = (._, I, I; = {8 € O,(F;) | [Bo;] = [03]} for each i. Then Lemmam

claim that |I;| = p° for each i, thus also for |I|. O

Theorem 6.13. Let W be an irreducible F'SL,,-module. Then there is an irreducible
KSL,-module Wy, such that W is a composition factor of Wy with multiplicity 1, and

if U is a composition factor of Wy, then U > W.
Proof. Write W = Yp(7,v;j0). Then by Proposition [6.12] there is some [(g,)\)] €
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Yk such that [(¢*,\")] = [(z,v)] and ksp,(Li(o,N)) = ks, (Lr(T,v)). A similar
consideration to Theoremshows that each Yi (o, A; i) contains £*/k = 1 composition
factors of the form Yr(o*, A*; 7). Relabel i such that Yi (o, ;i) = Ye(z,v;1) for i =

1,--+ K, then Wg = Yi(a, A; jo) is the required module. O
Corollary 6.14. SL,(F,) has (U, p)-property for p not dividing q.

Proof. This is equivalent to the previous theorem. O
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7 Conclusion

The main result is Theorem [6.8] that SL,(q) has (C, p)-property of non-defining char-
acteristic. In the following we list a table of related known result. Recall that (C') =

(L") = (L')= (L) and (R) = (L), (V).

(@) L") (L) (L) (R) (U)

& O O O O x O

A, | 7 ? O O x ?

pfa, GLy(e) | O O O O x O
pfa, SL.ig) | O O O O x O
abeliangroup | O O O O O O
p-solvable group | x X x O O O

Table 2: The property table for some families of groups

e G, symmetric group.
James’ Regularization Theorem [J1] is exactly (C), and (U) is the consequence
that the labels of irreducible Brauer characters are p-regular partitions. A coun-
terexample of (R) is &g for p = 3, which the decomposition matrix is listed in
Table [

e 2, alternating group.
Huang shows that (L’) holds [H]. The difficulty of alternating groups is that the
Mullineax map distorts the dominance order of partitions, while (C) and (U)
needs some partial order. It is also not easy to prove that (L”) is true or not,
either, again due to the Mullineax map, which combines entries when generating
the decomposition matrix of 2, from &,,.

e GL,(q), pf g, finite general linear group of non-defining characteristic.
An analogue of James’ Regularization Theorem for GL,(q) gives property (C')
[Kl Theorem 5.4], which combines the result of [J] and the end-part of [D2].
Kleshchev-Tiep also proves (U) for both GL,(q) and SL,(q), pf q [K, Theorem
6.3].
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e SL,(q), p/ g, finite special linear group of non-defining characteristic.
Kleshchev-Tiep only proves (U), while he gives a powerful Kleshchev-Tiep’s theo-
rem (Theorem [5.2)), which can be use to prove (C'), the main result of this thesis,
implying (L"), (L'), (L).

e abelian group
Since every characters are of degree 1, they remains irreducible after reduction
modulo p, hence (C') holds automatically. Since d is surjective, the decomposition
matrix is of full rank, so (R) also holds.

e p-solvable group
The well-known Fong-Swan Theorem [S, Theorem 38] shows that (R) holds, while
any non-abelian p-group is a counterexample of (L’).

Counterexamples of (R) for 2,, GL,(¢) and SL,(q) are in Appendix [A.4]
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A Appendix

A.1 The Original Problem

Problem (1| in the introduction comes from exercise 16.6 in the textbook of Serre [S].
We start from the cde-triangle.

Fixed a finite group G and a prime p. Recall that given K C Q a field of characteristic
0, we may pick a valuation ring A, and obtain its residue field F' = A/ m of characteristic
p (see the first paragraph of section ) Here we need K and F' to be sufficiently large
for G.

Let Rk (G) be the Grothendieck group of K G-modules (see the last paragraph of
section [L.6]), with the basis 8x = {[Vi]x | V; € It (G)}. Similarly, let Rp(G) be the
Grothendieck group of F'G-modules, with the basis fp = {[E;]r | E; € Irrp(G)}. Then

the decomposition map is defined to be

d: Rg(G) = Rp(@), [Vlk — [V]p

where V is a reduction modulo p of V' (see section [1.7). The decomposition matrix of
G is the transpose of the matrix of d with respect to Bk, OF.

Now we briefly recall the definitions and properties of projective modules.

Definition A.1. Let R be a ring, P be an left R-module.
(1) We say P is projective if any of the following equivalent condition holds:
(1) P is a direct summand of some free R-module.

(7i) Given any surjective R-module homomorphism f : E — E’, and any R-
module homomorphism ¢’ : P — E’, there exists a homomorphism g : P — E
such that ¢’ = fog.

(i7) For any exact sequence 0 — E; — E — FEy — 0 of left R-modules, the
sequence 0 — F(E,) — F(FE) — F(FE2) — 0 is also exact, where F is the

functor £ — Hompg(P, E).
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(2) Assume R is artinian. We say an R-module homomorphism f : £ — E’ is essential,
if f(E)=F', and f(U) # E’ for any proper submodule U of E. Note that if f is
essential, then f must be surjective.

(3) We say P is a projective envelope of an R-module E, if P is projective, and there

exists an essential homomorphism f: P — F.
In particular, the group ring F'G is artinian.

Proposition A.2. Let E be an FG-module.
(1) There exists a projective envelope of E, unique up to isomorphism.
(2) Let P; be the projective envelope of E; € Irrp(G) for each j. Then P; is indecom-

posible, and every projective F'G-module is a direct sum of these P;.
Proof. For a proof, see [S, Proposition 41] and its corollaries. O

Therefore, we may define Pr(G) to be the Grothendieck group of projective FG-
modules with the basis fp = {[P;]p}, where P; is the projective envelope of E; €

Irrp(G) in the same order as Sp. Then we naturally have the Cartan homomorphism:
c:Pr(G) — Rp(G), [Plp—[Plr

which roughly means the decomposition of a projective module into its composition
factors.

To define the map e, we consider the projective AG-modules, where A is the valuation
ring with F' = A/m. Given E an AG-module, the quotient £/mE is an FG-module.

Denote this map mp,.

Proposition A.3.

(1) Every projective AG-module is a direct sum of indecomposible projective modules
Qj, which is characterized (up to isomorphism) by my(Q;) = P;.

(2) Let Pa(G) be the Grothendieck group of projective AG-modules. Then we may
identify P4(G) and Pp(G) via the map my,.
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Proof. For a proof, see [S, Proposition 42] and its corollaries. O

Now the map e is given by

~

e: Pr(G) = Ri(G), [Plp [Plx

where P = KG ® 4 7, (P). That is, first pass P to the AG-module via the inverse of
T, then tensor with K to obtain the KG-module P. It roughly means that the there
is an inverse of reduction modulo p on projective F'G-modules.

Here we list some basic properties of the cde-triangle.

Proposition A.4.

(1) ¢ =doe. Hence the following diagram commutes.

Pr(G) £ > Rp(G)

S~ A

Rk (G)

(2) With the basis Bk, Br, Bp, the matriz of d is transpose to the matriz of e. Hence
the matriz of ¢ (the Cartan matriz) is symmetric.

(3) d is surjective. Hence e is a split injection.
Proof. See section 15.4 and 16.1 of [J]. O

Note that in this thesis, the decomposition matrix of G is actually the matrix of e,
the way as the decomposition matrix of symmetry groups list by James.

Despite of Rx(G), we are often more interesting on Rj.(G) = {[V]x}, the case that
there indeed exists a KG-module V, which can be characterized as {), ¢;[Vi]x | ¢ €
Z,c; > 0,V; € Irrg (@) }. Similarly we may define R} (G) and Pf(G). Then in general,
d no more sends R} (G) onto R (G), while it sends Ry (G) onto Rrp(G). We then have
the condition (R).

(R) d(R}.(@)) = Rf:(G). That is, d sends R} (G) onto RE(G).

For the map e, we may also consider a condition (F).
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(E) e(P1(Q)) = e(Pr(G))NRL(G). That is, e sends R} (G) onto the ”positive part”
of its original image.

The exercise 16.6 of Serre [S] asks the reader to prove that

The condition (E) is equivalent to the condition (R).

But Huang had difficulty to prove it. He then wrote a letter to the original author,
J. P. Serre, asking for help. Serre sent back the modified exercise,

The condition (F) is equivalent to the condition (QR).
and gave a proof for it, with a slightly weaker condition.
(QR) There is some N € N such that N - RL(G) C d(RE(Q)).

In the last part of the letter, Serre left an open problem, that whether there exists
any group G (and a prime p) such that (QR) is true but (R) is false, in order to ensure
the original exercise is wrong. This is Problem [I} which remains unsolved in this thesis.

A proof for the modified exercise is in the Appendix A, B of [H]. Note that the
condition (R), (QR) is equivalent to the property (R), (QR) listed in the introduction,

respectively.

A.2 The Implication Among Properties

Here we list again the properties in the introduction.
(R) All irreducible Brauer characters of G are liftable.
(QR) All irreducible Brauer characters of G are almost liftable.
(L) If G has (QR, p)-property, then G has (R, p)-property.
(L) For any x € irrg(G), if X = a¢ for some ¢ € irrp(G), then a = 1.
(L") For any x € irrg(G), X contains some ¢ € irrp(G) of multiplicity 1.
(C) There exists a partial order &> on irrp(G), and a map irrg (G) — irrp(G), X — @y,
such that for each x € irrg (G), X contains ¢, of multiplicity 1, and if ¥ contains
¢ € irrp(G), then ¢ > ¢,.

(U) There exists a partial order &> on irrp(G), and a map irrp(G) — irrg (G), ¢ = Xe»
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such that for each ¢ € irrp(G), X, contains ¢ of multiplicity 1, and if ¥, contains
¢ € irrp(G), then ¢ > ¢.

We are going to find out all implication among these properties excluding (QR).
For any two properties (A), (B), write (A) = (B) if for any finite group G and
prime p, G has (A, p)-property implies G has (B, p)-property, and (A) =~ (B) means
there exists some group G and some prime p, such that G has (A, p)-property, but not

(B, p)-property. In this case we say that a counterexample is found for (4) =~ (B).
Proposition A.5. We have (C) —= (L") = (') = (L), (R) = (L), and
(R) = (U).

Proof. Clearly (C) = (L") = (L) from the text of definition. If (L') and (QR)
holds, then for all ¢ € irrp(G), there is some y € irrg(G) such that ¥ = a¢, but then
a =1 and (R) holds, which proves (L') = (L). If (R) holds, then (L) holds logically
from the definition, hence (R) = (L). Finally if (R) holds, for each ¢ € irrp(G),
there is some x € irrg(G) such that ¥ = ¢, then the map ¢ — x and any partial order
gives (U). This proves (R) = (U). O

In the rest of this section, we will show that there are no other implications among

these properties.

Lemma A.6. Given (A) = (a) and (B) = (b). If (A) =~ (b), then none of
(A), (a) imply any of (B), (b).
Proof. Assume some of (A), (a) imply some of (B), (b). Then (A) = (b). O

Proposition A.7. We have

(1) (R) =% (L'). Hence none of (R),(U), (L) imply any of (C), (L"), (L).
(2) (€) =& (R). Hence none of (C), (L"), (L"), (L) imply (R).

(3) (U) =% (R).

4) (L)) =& (L"). Hence (L) =& (C), cither.

(5) (C) =& (U). Hence none of (C), (L"), (L), (L) imply (U).
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(6) (L") = (C).

Proof. For (1), any non-abelian p-group is a counterexample. Here we take G = Q)3 the
quaternion group and p = 2. There are four irreducible ordinary characters of degree 1,
and one of degree 2. Let y; € irrg(Qs) be the trivial character, and xy € irrg(Qg) be
that of degree 2. Since the only ¢ € irrp(Qs) is the trivial character, we have 3 = 2¢
by considering degree, hence (L) fails, while x7 = ¢ and (R) holds.

For (2)(3), take G = S and p = 3 as a counterexample. By James’ Regularization
Theorem, both (C') and (U) holds for &,, with any n and any prime p. From Table
in the introduction, ¢ 1y is not liftable, hence (R) fails.

For (4), take G = ON and p = 2, see [web]. One may check that each row contains
single nonzero entry 1, or at least 2 nonzero entries, while the row Y15 does not have
an entry 1.

For (5), take G = S4(4) and p = 2, see [web]. One may check that (C') holds with
the original order on the table of block 1. Observe that # Irrp(G) = 16. If (U) holds,
then there should be at least 13 columns containing at least 3 entries zero, but there
are only 11 such columns.

For (6), take G = Fio3 and p = 3, see [web]. One may check that each row contains
some entry 1. If (C) holds, then there is a (minimal) column containing only entries 1

and 0, but there is no such column. O

The only implication unchecked is that (U) =~ (L), which a real example has not

been found. If there exists some example, it is a solution to Problem 1.

A.3 The Decomposition Matrix of GL, and SL,

In this section, we are going to find the decomposition matrix of GLs(q) and SLsy(q)

for p not dividing ¢q. We split the procedure into several parts.
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(Step 1) Elements of F; and F,

Write ¢ — 1 = pm, and ¢ — 1 = p2my, where ci, ¢, m;, My are nonnegative
integers, and p does not divide my, ms. It is clear that ¢; < ¢y and my | mo.

By Proposition , every element o € IE‘qXQ decomposes into its p’-part ¢’ and p-part
v. Write e € F ; the identity, ol € Fo, if it is p-regular of degree d, and v(y) € Fp;
if it is a p-element of degree d and is not identity. Then the following multiplication
table gives the number of each kind of elements. Note that only {o{;)} and {of;v(1)}

are elements of F;, the others are those of F;.

1 s1:=p" =1 s9:=p= —p~
= #Holnt  #Hopyvwt  #opve)
ro=my —my | #oly} #Hovat  #olve)

Let 7 € F be an element of degree 1, 7’ for those p-regular. Similarly, let w € F,
be an element of degree 2, w’ for those p-regular. The following table shows their

corresponding p’-part. The entry — means the element is already p-regular.

element | form p-part form #
Uél)U(l) T/ 021) r181
w o’ — — 7y
52) !/ /
0'22)’(](2) w’ 022) T'959
oyl T Ony TS

3 / / s / / 3
From now on, we write 7/, w’, v instead of T1ys T2y V(1) respectively.

(Step 2) Conjugacy classes of G L,
For simplicity, we write (o) instead of (o, (1)), and write e the identity of IFqXQ, in
order to make difference from the partition (1) = 1. The following table shows the

conjugacy classes of G Lo, where C% :=¢(t — 1)/2 for t € N.
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symbol  (7,(2)) (7,(1%) (nom)  (w)
#  q-1 q-1 O 3

e [ [ P

#Cent. q(qg—1) |GLy] (¢—1)* ¢ -1
#Conj. ¢>—1 1 q¢+1) qlg—1)

(Step 3) Counting dimension of irreducible representations of GL,

We make use of the following dimension formulas.

Theorem A.8.
(1) Let Vi, V4 be FGL,-module, FG Ls-module, respectively, n =r + s. Then

dimp Vi o Vo = (G : P)-dim V] - dim V;

where G = GL,, P = P[, defined in .
(2) Let Mp(o,)) be the FGL,-module defined in §2.6. Then

Aj

dimp Mp(o, \) = ﬁ(qi — 1)/10_01 H(qdi —1)

i =

(3) Let Sg(o,\) be the FGL,-module defined in §2.6, Then Theorem (Young’s
Rule) gives a way to find dimg Sg(o, ) from dimp Mg (o, A).

Proof. (1) follows from the definition of Harish-Chandra induction. (2) comes from [J]
6.5, 6.8], which gives dimp Mp(0o, (k)). One may use (1) to extend the formula to (2).
For (3), note that Kostka numbers form a unitriangular matrix, hence we may find

dimg Sg(0o, (k)) one by one, or just use inverse matrix. O

Hence we may calculate the dimension of irreducible FG Ly-modules.

irr. tepn Ly (7,(2)) Lg(r,(1?)) Lg(riom) Lg(w)
# q—1 q—1 Cy Cy
dim g 1 q g+1 qg—1

The dimg Lp(c, A) heavily depends on p, and have no general formula.
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(Step 4) The p-regularization and James-Mathas theorem

The p-regularization is defined right before Definition 6.1, Roughly speaking, it
consists the following 3 steps.
(1) Decompose each o; = ojv; into its p/-part and p-part.
(2) Replace each (o5, \D) by (o, [fi]A@), where f; = dego;/ deg o’
(3) If [0] = [o], then replace (i, A\?) o (0, AD)) by (o5, AD [+] AD)).

Theorem (6.4 tells that each L (o, ) contains Lp(c*, A*) of multiplicity 1, and every
composition factor is of the form Lp(c*,v) with v > A",

There is another theorem useful to find the entries of a decomposition matrix, which

classifies which Ly (o, \) remains irreducible over F.

Theorem A.9 (James-Mathas theorem). Let V = Ly (o, \) € Irrg(GL,,), and V be a
reduction modulo p of V. Write (a,\) = (61, A1) 0 -0 (04, A D). Then V remains
irreducible if and only if the following two conditions hold:

(1) If i # j, dego; = dego;, then oy, o; are not p-conjugate to each other.

(2) For each i and all nodes (r,t), (s,t) in the Young diagram of N, write h,, hy the

corresponding hook length, d; = deg ;. Then
‘qui (hrt)|p = ‘qui (hst)’p

where N,(m) = (r™ —1)/(r — 1), defined in §4.3
Given a label [(g, A)] and its p-regularization [(¢*, \")], we say [(c, A)] is of type I, if
in the construction of p-regularization above, all f; = |A((A*)")|, = p° in step (2), and
step (3) never happens. Otherwise it is of type II.
The following table describes the number of p-regular and p-singular irreducible
ordinary representations, their p-regularizations, and if they satisfy the criterion in

James-Mathas theorem or not.
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irr. rep'n  form #p-reg F#p-sing preg'n  type* JM?

Lk(r,(2)) 7 1 — I yes
T'v r181 (7',(2)) I yes

Lg(r,(1?) 7 T — I/11 XE
T'v r151 (7', (1?) L1 on

Li(riom) 7 o7 Cy! — I yes
T O THU 203 sy (1] 074) I yes

T{U] © T4y Citst (7o) I yes

7' o7V 181 (', (12)) 11 1no

701 0 Ty rCyt (7, (12) I no

Lg(w) W ro/2 - I yes
w'v T951/2 (W) | yes

w'v(2) T9S2/2 (W) I yes

T'U(2) rise/2  (7,(1%)) II/T  yes

Kk

* [type for p > 2] / [type for p = 2]

(Step 5) The branching numbers

yes, if pf g+ 1;no, if p| g+ 1.

Given Lg(o, A) € Irrp(GL,), write K, k* the branching number from G L,, to SL,, over

K, F, and write n, n* the branching number from SL,, to GL,, over K, F', respectively.

Write k* = kK, for its p’-factor and p-factor.

Proposition A.10. Let G = GL,, and S = SL,,. Given the label [(a,))].

(
(
(
(

Proof. (1)(2)(3) is Theorem [5.2l By Proposition [3.11],

2
3

)
)
)
)

D) k=4#{pelF;|p-lla,N)] =[]}

rp = #{p € Op(Fy) | p- (e, )] = [(e, )]}

K’p = | ng(n> q—

LAQX)),

4) nk =q—1 and n*Kky = m;.

n = #{ orbit of [(¢,A)] act by p € F'}

n* = #{ orbit of (g, A)] act by p € Op(F)}

hence (4) follows by the orbit-stabilizer theorem.

Corollary A.11. Let G = GLy and S = SL,.

88
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(1) Kk =1, except for q odd, label (T o —7) or (w) with w? = —w. In the exceptional
case, Kk = 2.

(2) ky =1, except for q odd, p > 2, label (T o —7) or (w) with w? = —w. In the
exceptional case, Ky = 2.

(3) In above two exceptional case, there are (q — 1)/2 labels of the form (1 o —7), and
another (q — 1)/2 labels of the form (w) with w! = —w.

(4) K, =1, except for p =2, label (1, (1%)). In the exceptional case, k, = 2.

Proof. Assume p,7 € F

o w€F5, degw = 2. Then pr = 7 implies p = €; p11 = 7,

pTy = T implies p = e, —e, and it is clear that there are (¢ — 1)/2 labels of the form
(T o —7); take g5 a generator of F,, Then p = 55‘I+1)j, and w = ¢4, 0 <i < ¢ -1,
g —1/i. Then pw = w? implies (¢ + 1)j = i(¢ — 1). Hence either ¢ — 1 | j and p = e,
orp#e, (q—1)/2|j, thusi= (2t +1)(¢+1)/2,0 <t < g—1. So there are (¢ —1)/2

labels of the form (w) with w? = —w. In order that —e € I,

we need ¢ being odd.
This gives (1) and (3). For (2), in order that —e € O, (F7), we need further p > 2.
Finally, (4) follows by checking every labels of GLs for the criterion in James-Mathas

theorem. O

(Step 6) The decomposition matrix
We split into several cases. Note that p/f g.
e p>2pfg*—1.
That is, pf |GLs| and p [ |SLs|. By Proposition 43 of [S], both the decomposition
matrix of GLs and SLo are identity. We notice that this result is consistent
to James-Mathas theorem, that is, every label [(g, \)] satisfies the irreducibility

criterion.
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e GLy,p>2,plqg—1

In this case, pf ¢+ 1. Thus m

9 =

s9 = 0.
dimg Irg(GLy)  # p-reg’n  type JM
1 Lg(r,(2) g¢q—1 (7',(2)) I yes
¢ Li(r.(1?) q—1 (#,(12) T yes
g+1 Lg(miom) (¢g—1)(¢q—2—s51)/2 (1{07)) [ yes
(g—1)s1/2 (1,(1*)) II  no
¢q—1 Lg(w) (g —1)q/2 (W) I yes
¢* -1
dimp Irrp(GLy)  #
1 Lp(7,(2) n
g Lp(r',(1?) n
q+1 Lp(rio7y) ri(ri—1)/2
g—1 Lp(w) r1q/2
ri(ri+q+3)/2
dimp 1 q g+1 q—-1
dimg type | (7,(2)) (7,(1%) (riom) (W)
1 (r,(2) 1 1
g (r,(1?) 1 1
qg+1 (rom) 1 1
II 1 1
g—1 (w) I 1

Table 3: Decomposition matrix of GLy, p > 2, p| q¢—1

(¢ + 1)my and r9 = myq. Also ¢; = ¢y gives

The bold 1 means we find it by Theorem The underlined 1 means we find it

by counting the dimension.
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e SLy,p>2,plq—1,qodd
When ¢ is odd with label (7 0 —7) or (w) with w? = —w, we have kK = Ky = 2,
otherwise 1. We have k, =1, n = (¢ — 1)/k, n* =11 /Kp.
If Lg(o,A)lgy, is irreducible, write Yg (o, A) instead of Yg(co, A; 1).

(a+1)/2 ap°1(q+1)/2

Pick 9 a generator of F o let wy be the p’-part of ; Then wy = &,

for some a, b satisfying ap®* + 2bm; = 1. Note that ap® is odd. Then wg_l =

5éq_1)apcl (@+D)/2 - —e, 50 wy is p-regular with wi = —wy.
dimg IrrK( 2) # type
1 Yi(e, (2)) 1 I
Yi(e, (17)) 1 I
(g+1)/2 K(( —e);i), 1 =1,2 1 each I
(+1 Yileor),r#-e  (q-3-s)/2 I
51/2 I1
(g—1)/2 Yi((wo);i), 1 =1,2 1 each I
(g—1) Yg(w), w'# —w (¢—1)/2 I
(g—1)+5
dimp Trrp(SLsy) #
1 Yr(e (2)) 1
Yp(e, (1)) 1
(q+1)/2 Yp((eo—e);i),i=1,2 1each
q+1 Yp(eor), 7 # —e (ry —2)/2
(g—1)/2 Yp((wo);i),i=1,2 1 each

dimp |1 ¢ (q+1)/2 q+1 (¢g—1)/2 ¢q—1
dimg type | (e,(2)) (e,(1?)) (eo—e);i (eo7)  (wo);i (W)
1 (e,(2) I 1
¢ (e,(1%) 1 1
(¢+1)/2 (eo—e)i 1 1
g+1 (eoT) I 1
IT 1 1
(¢=1)/2 (wo);i I 1
¢—1 () I 1

Table 4: Decomposition matrix of SLy, p > 2, p|q— 1, g odd
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o SL2>P>27p‘q_17quen

We have k = ky = Kk, = 1, 1 = g —1, n* = r; for all labels.

decomposition matrix of SLs is similar to that of GLs.

dimg It (SLa)  # type
1 Yi(e,(2) 1 I
q Yi(e (1?) 1 I
g+1 Yg(eor) (g—2—s1)/2 I
81/2 1I
q—1 Yg(w) q/2 I
(g—1)+2
dimp Irrp(SLy) #
1 YF(e, (2)) 1
q Yr(e, (1)) 1
g+1 Yp(eor) (rn—1)/2
qg—1 Yp(w) q/2
(7’1+q—1)/2+2
dimp 1 q g+1 gqg—1
dimp type | (e,(2)) (e, (1%)) (eo7) (W)
1 (e,(2) I 1
q (e (1?) 1 1
g+1 (eor) 1 1
11 1 1
g—1 (w) | 1

Table 5: Decomposition matrix of SLy, p > 2, p|qg—1, g even
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e GLy,p>2,plq+1.

In this case, pf ¢ — 1. Thus ¢; = sy = 0 and r; = m; = ¢ — 1, so every element

of F is p-regular.

ro :=12/(q —1).
dimg IrrK( Ly) # pregn  type JM
1 Lg(r,(2) q¢-1 (7,(2) I yes
¢ Li(r,(1%) ¢—1 (7,(1%)) T o
q+1 K(71072) (¢—1)(q—2)/2 (riom) 1  yes
¢—1 Lg(w) (¢—1)(g—s2)/2 () I yes
(¢ —1)s2/2 (r',(1%)) I yes
¢ -1
dimp Irrp(GLy) #
1 Lp(m,(2) q¢-—1
¢—1 Lp(r,(1?) q—1
q+1 Lp(riom) (¢—1)(¢—2)/2
q—1 Lp(w) T9/2
CEICERVCERYE
dimpg 1 q—1 q+1 q—1
dim wpe | (7,2) (7,(1%) (Hom) ()
1 (,(2)) 1
¢ (7,(1%) 1 1
qg+1 (mom) 1
¢—1 (w) 1
II 1

Table 6: Decomposition matrix of GLs, p > 2, p | ¢+ 1
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b SL2>P>27p‘CI+1>q0dd
When ¢ is odd with label (7 o —7) or (w) with w? = —w, we have kK = Ky = 2,
otherwise 1. We have k, =1, n = (¢ — 1)/k, n* =11 /Kp.
(2t+1)(g+1)/2

Pick €5 a generator of IFqXQ. If w! = —w, then w = &5 for some ¢t € N.

Then the order of w is 2(¢—1), which is prime to p, hence every such w is p-regular.

Take wy = 5§q+1)/ . In particular, wl # wp, hence degwy = 2.
dimg  Irrg(SLs) # type
1 Yik(e, (2)) 1 I
q Yi(e, (1?)) 1 I
(g+1)/2 Yi((eo—e);i),i=1,2 1 each I
q+1 Yg(eor), 7# —e (g—3)/2 I
(g—1)/2 Yi((wo);i), 1 =1,2 1 each I
(¢—1) Yg(w), w'# —w (g—1—s)/2 1
S9/2 I1
(g—1)+5
dimp Irrp(SLs) #
1 Yr(e, (2) 1
q—1 Yg(e, (1%)) 1
(g+1)/2 Yp((eo—e);i),i=1,2 1 each
q+1 Yp(eor), 7 # —e (g—3)/2
(g—1)/2 Yp((wo);i),i=1,2 1 each
q—1 Yp(), (W)?# —u' (ro —1)/2
(ro+q—2)/2+5
dimp 1 g—1 (¢+1)/2 qg+1 (¢—1)/2 ¢—1
dimg type | (6,(2)) (e,(1?)) (eo—e);i (eo7)  (wo);i (W)
1 (e (2) I 1
¢ (e,(17) 1 1 1
(g+1)/2 (eo—e);i 1 1
g+1 (eor I 1
(¢=1)/2 (wo);i I 1
g—1 (w) I 1
IT 1

Table 7: Decomposition matrix of SLy, p > 2, p| ¢+ 1, ¢ odd
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e SLy,p>2,plqg+1,qeven

We have k = ky = k, = 1, n = n* = (¢ — 1) for all labels. Hence again the

decomposition matrix of SLs is similar to that of GLs.

dimg It (SLa)  # type
1 Yi(e,(2) 1 I
q Yg(e (1?) 1 I
q+1 Yk(eor) (¢—2)/2 I
q—1 Yg(w) (g—s2)/2 1
522 11
(g—1)+2
dimp Iirp(SLy) #
1 Ye(e,(2) 1
¢—1 Yp(e,(1?) 1
g+1 Ygr(eot) (¢—2)/2
qg—1 Yg(w) r0/2
(ro+q—2)/2+2
dimp 1 q—1 g+1 qg—1
dim type | (¢, (2)) (e, (1?)) (eor) (W)
1 (e,(2) I 1
g (e,(1%) I 1 1
g+1 (eor) 1 1
g—1 (w) | 1
1I 1

Table 8: Decomposition matrix of SLy, p > 2, p| g+ 1, g even
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e GLy, p=2, qodd.
In this case, p | ¢g—1land p | ¢+ 1. Let ro = ry/r; and so = so/(s1 + 1). For type

I, if all f; = p© for some ¢, write I, for distinction.

dimg Irg(GLy)  # pregn  type JM
1 Lg(r,(2) q¢-—1 (7,(2)) I yes
q Lg(r,(1?)) ¢—1 (7',(1%)) 1I no
g+1 Lg(miom) (g—1)(¢—2—s51)/2 (1107 I yes
(¢ —1)s1/2 (r,(1%)) II  mo
¢—1 Lg(w) (¢ —1)(q — s0)/2 (w') Ip  yes
(g —1)so/2=r18/2 (7/,(1%)) I,  yes
¢* 1
dimp IrrF(GLQ) #
1 Lp(7,(2)) n
¢—1 Lp(m,(1%) n

?)
q+1 Lp(rioT)) mri(ri—1)/2

dimp 1 q—1 g+1 q¢q—1
dim g type | (7,(2)) (7,(1%)) (r{om) (W)
1 (r,(2) 1 1
g (r.(1?) II 1 1
g+1 (rmom) 1 1
11 2 1
g—1 (w) Iy 1
I; 1

Table 9: Decomposition matrix of GLo, p = 2, ¢ odd
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e SLy, p=2, qodd
When ¢ is odd with label (70 —7) or (w) with w? = —w, we have k = 2, otherwise
1. When the label is (7, (1?)), we have r, = 2, otherwise 1. We have r, = 1,
n=(q—1)/k and n* = r;. Note that either 4 | ¢ —1 and so =1, or 4| ¢+ 1 and

s; = 1. Hence in each case there is a type of Irry (S Ly) missing.

Pick e5 a generator of IFqXQ. Let wy = egqﬂ)/z. Then wi = —wy.
dimg  Irrg(SLo) # type
1 Yg(e (2)) 1 I
¢ Yk(e, (1%)) 1 I
qg+1 Yg(eor), 7# —e (g—2—-s1)/2 1
(s1—1)/2 I
(+1)/2 Yg((eo—e);i),i=1,2 1each I
qg—1 Yg(w), w?# —w (g —s0)/2 Iy
(so—1)/2 I
(g—1)/2 Yi((wo);7),i=1,2 1 each I
(g—1)+5
dimp Irrp(SLs) #
1 Yr(e, (2)) 1
(q—1)/2 Yp((e,(1?));i),i=1,2 1 each
q+1 Yr(eoT') (r1—1)/2
qg—1 Yp(w') ro/2
(ro+m —1)/2+3
dimp | 1 (¢—=1)/2 (¢—-1)/2 q+1 q-1
dimy type | (e,(2)) (e, (1%));2 (e,(1%));1 (eo7) (v
1 (e (2) I 1
q (e, (1%)) IT 1 1 1
g+1 (eor) I 1
11 2 1 1
(g+1)/2 (eo—e);2 I 1 1
(g+1)/2 (eo—e);1 I 1
g—1 (w) Iy 1
I 1 1
(¢—1)/2 (wo);2 L 1
(g—1)/2 (wo);1 I 1

Table 10: Decomposition matrix of SLs, p = 2, ¢ odd
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A.4 The Decomposition Matrix of Other Groups

Counterexample for (R, p)-property of GL,

Pick G = GL3(4), p = 3. Then ¢ = 4 and p | ¢ — 1. For d = 1,2,3, write
¢ — 1 = p%my and set ¢y = 0. Let ry = th p(t)may and sq = Zt‘d u(t)peare. Let
O'E d) be p'-element of degree d, and v(g) be p-element of degree d. It is not hard to prove
that deg(o(y, V() = lem(dy, da).

#lot 1=r=m #{vw} 3=s=p

/
(

#{022)} d=ry=my—m F#{ve} 0=sy=p=2—p=

#{023)} 6 =Tr3=m3g—"my #{U(g)} 6 = 83 = pCS _ pcl

deg element | form p/-part #
1 T aél)v(l) 7! ris; =3
2 w UEQ)U(D W’ ros; =12
3 ) 023)1)(1) o r3s; = 18
023)1)(3) 0’ r3ss3 = 36
0'21)1)(3) 7! riss =6
dim g dimg dim g
1 Mg(r,(3)) 1 Sk(7,(3)) 1 Lg(r,(3))
21 Mg(71,(2,1)) 20 Sk(7,(2,1)) 20 Lg(7,(2,1))
105 Mg(r, (1) 64 Sk(r,(1%) 64 Lg(r,(1%))
1 Mk(r,(2)) 1 Sk(r,(2)) 21 Lg((71,(2)) o (12))
5 Mg(r,(1%)) 4 Sk(r,(1?)) 84 Lg((n,(1%)) o (2))
1 Mg(r) 1 Sk(7) 105 Lg((m1) o (12) o (73))
3 Mg(w) 3 Sk(w) 63 Lg((w)o(1))
45 M() 45 S(5) 45 L(5)
dim Ly symbol p-reg’n # type JM #Lp
1 (7,(3)) (7',(3)) 3 I yes 1
20 (1,(2,1)) (7,(2,1)) 3 I no 1
64 (7,(1%)) (7,(1%) 3 II  no 1
21 (11,(2)) o (72) (7,(2,1)) 6 II  no —
84 (r,(1%) o () (7,(1%)) 6 II no —
105 (1) o (m)o(m) (7,(1%)) 1 II no
63 (w)o (1) (W)o(r') 18 I  yes 2
45 (9) (0") 18 Iy yes 2
(7', (1%)) 2 I,

98 doi:10.6342/NTU201904116



To find the full decomposition matrix, we make use of Theorem [2.311).

For ex-

ample, the composition multiplicity of Dg(e, (3)) in Sp(e,(2,1)) is at most that in

Mrp(e, (2,1))/Sk(e

,(2,1)) = Sk(e, (3)), hence the multiplicity is 1, and one may calcu-

late dimp Dp(e, (2,1)) = 19. From the G-tile [Sk(e, (2,1))]e X [Dr(e, (3))]e, Proposi-

tion [3.14)(2) shows that Dpg(e, (3)) is of multiplicity 1 in each Sp(7,(2,1)).

We omit the rest of the calculations and give the decomposition matrix here.

dimpg 1 19 45 45
dimg type | (e, (3)) (e, (2,1)) (e, (17)) (w') 0 (e) (&)
1 (7,(3)) I 1
20 (r,(2,1)) I 1 1
64 (r,(1%) 11 1 1
21 (1,(2)o(m) I 2 1
84 (1, (12)) o (m) 11 1 2 1
105 (1) o (m)o(m3) II 3 3 1
63 (w)o(7) I
45 (0) I 1
Iy 1

Table 11: Decomposition matrix of GL3(4), p =3

Observe that Lg(e, (2,1)) is not liftable, so GL3(4) does not have (R, p)-property for

p=3.

Counterexample for (R, p)-property of SL,

Now consider S = SL3(4), p = 3. Since n*k,y = r; = 1, thus they are both 1. We

have n = 3/k, and k = 1 unless the labels (7; 0 73 0 73) and (§) with deg(d), = 1. In

these cases x = 3. Those ¢ can be characterized as €X', i = 1,2, where e3 is a generator

of Fg,. Finally, , = 1 unless the labels (e o (1?)). In this case k, = 3.

In the following table, : = 1,2, 3.
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dim Lyx # label type dimLp # label
11 (1,(3)) I 11 (e, (3))

20 1 (r,(2,1)) I 19 1 (e,(2,1))
64 1 (1, (1%)) I 15 1each (e, (1%));i
21 2 (71, (2)) © (1) 11

84 2 (11, (12)) o (12) II

35 leach (m)o(m)o(rs);i I

63 6 (w) o (1) I 63 2 (W) o (1)
45 6 (6), (8), #e I} 45 2 (0")

15 2each (8);4, (0),=e Iy

Since each G-tile is one of the good case in Proposition [3.15 we have the decompo-

sition matrix of SL3(4) for p = 3.

dimp 19 15 15 15 63 45
# 1 1 1 1 2 2
— T
[ N
S
dimp  # pe | S L £ £ 8 2=
11 (7,03) I [ 1
20 1 (1,(2,1)) I 1
64 1 (7,(1%) 11 1 1 1 1
21 2 (11,(2)) o (m) 11 2 1
84 2 (m,(1*)o(p) II |1 2 1 1 1
35 1 (m)o(m)o(m);3 II |1 1 1
35 1 (m)o(m)o(r);2 11 1 1 1
35 1 (m)o(r)o(m);l II | 1 1 1
63 6 (w)ol(r I 1
45 6 (9), (9),#e I 1
15 2 (0);3, (6)py=¢ I 1
15 2 (6);2, (6)p,=¢ I 1
15 2 (0);1,(6)p,=¢ I 1
Table 12: Decomposition matrix of SL3(4), p =3

Observe that Yr(e, (2,1)) is not liftable, hence SL3(4) does not have (R, p)-property

for p = 3.
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Counterexample for (R, p)-property of S,, and 2,

Here we take G = Gg, S = g, p = 3. The decomposition matrix of s comes from

that of &4, with the method of G-tile and S-tile in Proposition [3.15]

= o~ =&
e Bls 5|2 y|% ~lalul,
N S PR
6)] 1 : = =
((163 1 A N NS I
51) [ 1
(2,1%) 1 1 (6), (1° | 1
(4.2) (5,1), (2,1 | 1 | 1
(2 (;23 . L (4,2), (22, 1?) 1
(23) 1 1 (32)7 (23> 1 1
@1 1 (4,1%),(3,1°) 1 11
(3,1%) 1 1 (3,2,1)+ | 1 |1 1
G2, 1 1 1 1 3,2, )— || 1 |1 1

G =Gg for p=3

G =% forp=3

Table 13: Decomposition matrix of g, p = 3

Then the column (5,1) of &4 and the column (5,1),(3,2,1) of 2 show that both

S and g do not have (R, p)-property for p = 3, respectively.
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