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中文摘要  

 

 在傳統的臨床試驗中，納入和排除標準通常是基於一些臨床指標而未考量受

試者的基因或基因的變異。在完成人類基因體計畫後，因可鑑別疾病的分子標的，

進而發展出分子標的治療方法。但是分子標的鑑定的診斷試劑通常並非百分之百

準確，所以納入標的臨床試驗的陽性診斷病人實際上有些可能並沒有此分子標

的。因此，標的臨床試驗下之標的療法對於真正擁有分子標的之病人族群而言的

療效估計值會有偏差。因此，我們提出對於真正擁有分子標的之病人配合標的療

法之不偏推論的統計方法。在強化設計的臨床試驗及指數分佈及比例化風險迴歸

模式下，我們提出利用 EM 演算法配合拔靴技術並考慮鑑定分子標的之診斷試劑

的準確度，針對設限資料來進行處理效應之推論。並運用模擬研究加以評估所提

出估計式與檢定方式的表現，及提出實例數據以說明方法的應用。 

 

 

 

關鍵字：標的臨床試驗; 強化設計; 設限資料; EM 演算法; 
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ABSTRACT 

 

 For the traditional clinical trials, inclusion and exclusion criteria are usually based 

on some clinical endpoints, the genetic or genomic variability of the trial participants 

are not totally utilized in the criteria. After completion of the human genome project, the 

disease targets at the molecular level can be identified and can be utilized for the 

treatment of diseases. However, the accuracy of diagnostic devices for identification of 

such molecular targets is usually not perfect. Some of the patients enrolled in targeted 

clinical trials with a positive result for molecular target might not have the specific 

molecular targets. As a result, the treatment effect may be underestimated in the patient 

population truly with the molecular target. To resolve this issue, under the exponential 

distribution and the Cox-Proportional hazard model, we develop inferential procedures 

for the treatment effects of the targeted drug based on the censored endpoints in the 

patients truly with the molecular targets. Under an enrichment design, we propose using 

the EM algorithm in conjunction with the bootstrap technique to incorporate the 

inaccuracy of the diagnostic device for detection of the molecular targets on the 

inference of the treatment effects. A simulation study was conducted to empirically 

investigate the performance of the proposed methods. The impact of the simulation of 

the assumption for the proportional hazard model was also examined in the simulation 

study. Numerical examples illustrate the proposed procedures. 

 

Keywords: Targeted clinical trials, Enrichment design, Censored data, EM algorithm 
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Chapter 1 Introduction 

 

 Over the years, the most common medical treatment of cancer is the chemotherapy. 

These drugs rapidly kill all cells indiscriminately, including tumor cells and certain 

normal tissues. As a result, many patients experience hair loss, gastrointestinal 

symptoms, and myelosuppression. In the past decade, however, a dramatic shift in 

cancer therapy has occurred. The Human Genome Project (HGP) started in 1990 to 

sequence an estimated 3 billion base pairs and identify all human genes and was 

published in 2003. The genetic information provided by the project combined with the 

advanced technologies and bioinformatic systems has changed the field of medical 

research. New breakthrough technologies such as microarrays, mRNA transcript 

profiling, single nucleotide polymorphisms (SNP), and genome-wide association studies 

(GWAS) have emerged in a rapid speed since the completion of the human genome 

project. Therefore, the treatments could be developed to be specific for the patients with 

the identified molecular targets. As researchers have learned more about the gene 

changes in cells that cause cancer, they have been able to develop drugs that target these 

changes. Hence, personalized medicine can finally become a reality. Treatments with 

these drugs are often called targeted therapies. Targeted therapy is a newer type of 

cancer treatment that uses drugs or other substances, such as monoclonal antibodies, for 

the identified molecular targets involved in the pathways of the disease pathogenesis, to 

more precisely identify and attack cancer cells, usually while doing little damage to 

normal cells. It is hoped that the patients will benefit from the treatment without toxicity. 

Targeted clinical trials are the trials that are employed to evaluate the efficacy and safety 

of the targeted therapies. Current paradigm to develop and evaluate a drug or a 
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treatment uses a shot-gun approach that may not be beneficial for most of the patients. 

On the other hand, the targeted therapy employs a guided-missile approach to reach the 

molecular targets. Targeted therapy is a growing part of many cancer treatment 

regimens. To address the issues of development of the targeted drugs, the United States 

Food and Drug Administration (U.S. FDA) issued Draft Drug-Diagnostic 

Co-Development Concept Paper and Draft Guidance In Vitro Diagnostic Multivariate 

Index Assays, respectively, in April 2005 and in July, 2007. 

 

For traditional clinical trials, the intended patient population inclusion and exclusion 

criteria included clinical endpoints and clinical pathological signs or symptoms. 

However, despite efforts to reduce the heterogeneity of the patients, there is a big 

difference in the reaction, even if it is to meet the same inclusion and exclusion criteria 

with a new treatment. The current paradigm for the development of a drug or a 

treatment uses a shot-gun approach that may not be beneficial for most patients as these 

endpoints and clinical signs or symptoms are not well correlated with the clinical 

benefits of the treatments in the patient population defined by clinical-based inclusion 

and exclusion criteria. One reason is that the inclusion/exclusion criteria of the 

traditional trials fail to account for potentially important genes or genomic variation. 

 

The development of targeted modalities requires: (a) the knowledge of the molecular 

targets involved in the disease pathogenesis; (b) a device for detecting the molecular 

targets; and (c) a treatment aimed at the molecular targets. Hence, the development of 

targeted therapies involves evaluation of the translational ability from molecular disease 

targets to the treatment modalities for the patient population with the targets. A key 

component of this new paradigm is development of biomarkers that can guide 
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application of new and existing treatments. This requires a thorough understanding of 

the relationship between the biomarker and the treatment effect. To address these new 

challenges in clinical research and development, the U.S. Food and Drug 

Administration (FDA) recently issued the draft “Drug-Diagnostic Co-development 

Concept Paper” (FDA 2005). There three designs were introduced in the FDA draft 

concept paper. One of the three designs is the enrichment design (Chow and Liu 2004). 

Similar to the traditional trials, the targeted trials using an enrichment design consist of 

two phases. The first phase is the enrichment phase in which each patient is screened by 

a diagnostic device for detection of the pre-defined molecular targets, in addition to the 

inclusion/exclusion criteria based on some clinical endpoints, signs or symptoms. Then 

only those patients with a positive result for the disease molecular target by a validated 

diagnostic device are randomized to receive either the targeted treatment or the 

concurrent control in the second phase. In general the primary analysis of a trial should 

be based on the overall arm comparison because it is the best estimate of the efficacy of 

the treatment in the real world. 

 

Statistical concepts and methods for analyzing continuous and categorical endpoints 

under the enrichment clinical trials were discussed by Liu et al. (2008), and Liu and Lin 

(2008). They proposed to apply the EM algorithm in conjunction with the bootstrap 

technique to incorporate the uncertainty on the inaccuracy of the diagnostic device in 

detection of the molecular targets for the inference of the treatment effects for the 

targeted therapy for the binary and continuous endpoints under the enrichment design. 

Clinical endpoints for assessment of efficacy and safety of a promising therapy usually 

include occurrence of some predefined events such as death, the response to a new 

chemotherapy in treatment of some advanced cancers, the eradication of an infection 
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caused by a certain microorganism (e.g., Helicobacter pylori for gastric ulcers), serious 

adverse events (e.g., neutropenia), or the elevation of asparate transaminase three times 

over the upper limit of the normal range. For these events, the primary parameter of 

interest is usually time to the occurrence of such an event. Subjects are recruited into the 

trial at different calendar time points. Note that the predefined event may not be 

observed on the subjects who complete the scheduled duration of treatment and 

follow-up. On the other hand, some subjects may withdraw prematurely without 

observing any occurrences of the event before the end of the study. These individuals 

are said to be lost to follow-up. As a result we do not have any information on these 

subjects with respect to the event. The only information we have is that the predefined 

event did not occur at these subjects in their last visit (either at the end of study or at the 

time they dropped out from the study). The time to the occurrence of the event therefore 

is not known for these subjects. We refer an endpoint of this kind to as a censored 

endpoint. Analysis of censored data has become common practice for clinical trials.  

 

1.1 Accuracy of Diagnostic Devices 

 In practice, no diagnostic test is perfect with 100% positive predicted value (PPV). 

For example, MammaPrint is a Class II device approved by the FDA to assess a 

patient’s risk of distant metastasis based on a 70 gene signatures. The PPV is computed 

based on the data of the TRANSBIG study (Buyse et al. 2006). In decision summary of 

MammaPrint, the PPV is the probability that metastatic disease occurs within a given 

time frame given the device output for that patient that is high risk (FDA 2007a). For 

the metastatic disease at 10 years, the TRANSBIG trial provides an estimate of 0.29 for 

the PPV with a 95% confidence interval from 0.22 to 0.35. In other words, the patients 
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testing positive for high risk using the MammaPrint in fact have a 71% probability that 

the metastatic disease will not occur within 10 years and may receive unnecessary 

chemotherapy from which these patients will not benefit. Therefore, a futile result from 

the component of chemotherapy randomization of the MINDACT trial does not mean 

that the chemotherapy is not effective for the patients truly with a high risk of metastasis. 

This is because 71% of the patients that tested positive for high risk of distant metastasis 

by the MammaPrint in fact are not at high risk at all, and the treatment effect of 

chemotherapy may be underestimated for patients truly at a high risk of distant 

metastasis.  

 

For another example, the human epidermal growth factor receptor (HER2) is a growth 

factor receptor gene that encodes the HER2 protein found on the surface of some normal 

cells that play an important role in the regulation of cell growth. Tumors with 

over-expressed HER2 are more likely to recur and the patients have a statistically 

significantly shorter progression-free survival (PFS) and overall survival (OS) (Seshadri 

et al. 1993; Ravdin and Chamness 1995). Because the over-expression of the HER2 

gene is a prognostic and predictive marker for clinical outcomes, it provides a target to 

search for an inhibitor of the HER2 protein as a treatment for patients with metastatic 

breast cancer.  

 

Herceptin® (trastuzumab) is a recombinant DNA-derived humanized monoclonal 

antibody that selectively binds with high affinity in a cell-based assay to the 

extracellular domain of the HER2 protein. Several large-scaled, randomized Phase III 

trials were conducted in the patients with metastatic breast cancer with over-expressed 

HER2 protein to confirm the effectiveness and safety of Herceptin®. (Slamon, et al, 
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2001).  

 

The safety and efficacy of HERCEPTIN were studied in a randomized, controlled 

clinical trial in combination with chemotherapy (469 patients) and an open-label single 

agent clinical trial (222 patients). Both the studies employed the enrichment design, 

which restricted enrolment of women whose breast cancer demonstrated 2+ or 3+ 

over-expression of HER2 protein, observed either by IHC(immunohistochemica) assay 

or gene amplification by FISH (Fluorescence in situ hybridization). All the patients 

received the standard adjuvant chemotherapy that consists of four 21-day cycles of 

doxorubicin and AC (anthracyclines and cyclophosphamide), followed by paclitaxel 

administrated weekly or every 3 weeks for a total of 12 weeks. Both the studies 

employed a randomized, two-parallel group design, which compared the standard 

adjuvant chemotherapy plus Herceptin® with the standard adjuvant chemotherapy alone 

(no treatment control). The treatment of Herceptin® included Herceptin® at 4mg/kg on 

the day of paclitaxel initiation and subsequently at 2mg/kg for a total of 52 weeks. 

 

Compared with patients randomized to chemotherapy alone, the patients randomized to 

HERCEPTIN and chemotherapy experienced a significantly longer median time to 

disease progression, a higher overall response rate (ORR), a longer median duration of 

response, and a longer median survival (see Table 1.1). These treatment effects were 

observed both in patients who received HERCEPTIN plus paclitaxel and in those who 

received HERCEPTIN plus AC, however the magnitude of the effects was greater in the 

paclitaxel subgroup. 

 

The commercial assays, HercepTestTM (IHC assay) and PathVysionTM (FISH assay), are 
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appropriate assays to aid in the selection of patients for HERCEPTIN therapy. The 

comparability of either assay with regard to the ability to predict clinical benefit from 

HERCEPTIN therapy has not been prospectively studied. In addition, the utility of 

either assay in patients whose tumors would score as 0 or 1+ the Clinical Trial Assay 

(CTA) has not been established because patients with tumors that scored as 0 or 1+ were 

excluded from the clinical studies described. 

 

HER2 protein overexpression can be established by measuring expressed HER2 protein 

using IHC methodology. In the clinical trial studies described above, specimens were 

tested with the CTA and scored as 0, 1+, 2+, or 3+ with 3+ indicating the strongest 

positivity. Only patients with 2+ or 3+ positive tumors were eligible (about 33% of 

those screened). Data from the randomized trial suggest that the beneficial treatment 

effects were largely limited to patients with the highest level of HER2 protein 

overexpression (3+). In an exploratory analysis (see Table 1.2), the relative risk (rr) for 

time to progression was lower in the patients whose tumors tested as CTA 3+ (rr = 0.42 

with 95% CI: 0.33, 0. 54) than in those tested as CTA 2+ (rr = 0.76 with 95% CI: 0.50, 

1.15). The relative risk represents the risk of progression in the HERCEPTIN plus 

chemotherapy arm versus the chemotherapy arm. Therefore, a lower ratio represents 

longer time to progression in the HERCEPTIN arm. 

 

This understanding that different people metabolize certain drugs differently, or that 

their cells bind or process them differently has led to the realization that it is often 

possible to identify patients who will respond well—or badly—to certain drugs, before 

they are treated. The molecular tests used to determine the molecular targets are called 

“companion diagnostics.” Another area in which companion diagnostics are changing 
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standards of care is the field of cancer therapy. Patients will only respond to certain 

drugs (such as a monoclonal antibody) if their cancer cells carry a particular mutation or 

express a particular protein. According to the FDA’s formal definition, a companion 

diagnostic is an in vitro diagnostic test or device that “provides information that is 

essential for the safe and effective use of a corresponding therapeutic product.” (US 

FDA 2005) But because companion diagnostics are intended to be used in concert with 

specific drugs, it has not been entirely clear whether the path to FDA approval of these 

tests is different than that for other in vitro diagnostic tests. To begin to address this 

problem, in 2011 the US FDA released a document called “Draft Guidance--In Vitro 

Companion Diagnostic Devices”, describing the agency’s policies for reviewing a 

companion diagnostic and the corresponding therapy. The guidance is also intended to 

clarify when such tests will be required for regulatory approval of a drug, and to outline 

the regulatory process. 

 

1.2 Statistical Designs 

Traditionally, most randomized clinical trials (RCTs) focus on obtaining a reliable 

estimate of the average treatment effect in a broad patient population. Evaluation of 

targeted therapies (and biomarkers) often requires larger trials with more complex 

designs to provide a comprehensive assessment of the relationship between the 

biomarker and the treatment effect. However, in practice, clinical studies involve a 

delicate balance between the need for reliable evidence, the need to provide this 

evidence quickly, and feasibility. Further details can be found in “Advanced in Targeted 

Therapies Tutorial” in the Website of the US National Cancer Institute. Establishing 

clinical relevance of a biomarker test for guiding therapy decisions requires 
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demonstrating that it can classify patients into distinct subgroups with different 

recommended managements. Conventional RCTs (with no biomarker evaluation) only 

allow for estimation of the average treatment effect in the overall study population, and 

therefore, alternative designs must be considered to evaluate biomarker-guided therapy. 

In general, there are three classes of targeted clinical trials: unselected design, stratified 

design, and enrichment design. These three designs are given from Figures 1.1 to 

Figures 1.3. 

 

For the unselected design in Figure 1.1, the information of the test results for the 

molecular targets is primarily used as covariates and is not involved with randomization. 

Sometimes, only a part of the patients are tested for the molecular targets. It is useful 

when the association of the treatment effect of the drug with the results of the diagnostic 

test needs to be further explored. However, for the unselected design, one of the primary 

objectives of allocating additional resources for measuring biomarkers is to account for 

variability of the estimated treatment effects due to the biomarkers. Therefore, it is very 

important to pre-specify the analysis plan for the inference on the treatment effect with 

incorporation of the biomarkers in the protocol.  

 

The design in Figure 1.2 is a stratified randomized design and stratification factor is the 

results of the test for the molecular targets. In other words, the patients are stratified into 

two groups depending upon whether the diagnostic test is either positive or negative. 

Then a separate randomization is independently performed within each group to receive 

the test drug or concurrent control. Analysis of covariance can be employed to explore 

the patterns of the correlation of the treatment effects with the changes in the 

magnitudes of biomarkers. For example, if the estimated regression lines of the 
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responses on the biomarkers are parallel between the treatment and control groups, then 

there is no treatment-by-biomarker interaction and the estimated treatment effect is 

relatively the same across the entire range of the biomarker.  

 

The last design is the enrichment design (Chow and Liu, 2004) in which the only 

patients tested positively for identification of molecular targets are randomized either to 

receive the test drug or the concurrent control. The enrichment design is usually 

employed when there is a high degree of certainty that the drug response occurs only in 

the patients tested positively for the molecular targets and the mechanism of 

pathological pathways is clearly understood. Most of the Herceptin® phase III clinical 

trials used the enrichment design. However, as pointed out in the U.S. FDA Concept 

Paper, the description of test sensitivity and specificity will not be possible using the 

type of this design without drug and placebo data in the patients tested negative for the 

molecular targets. 

 

1.3 Aims 

From the above example, some of the patients enrolled in targeted clinical trialsunder 

the enrichment design might not have the specific targets and hence the treatment 

effects of the drug for the molecular targets could be under-estimated (Liu and Chow, 

2008). Liu, et al. (2008) and Liu and Lin (2008) proposed to apply the EM algorithm in 

conjunction with the bootstrap technique to incorporate the uncertainty on the 

inaccuracy of the diagnostic device in detection of the molecular targets for the 

inference of the treatment effects for the targeted therapy for the binary and continuous 

endpoints under the enrichment design. On the other hand, most of the current targeted 
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drugs are for the treatment of cancers such as breast cancer, lung cancer, or colorectal 

cancer. The efficacy endpoints for evaluation of targeted therapies in cancer trials are 

censored endpoints such as overall survival (OS) or progression free survival (PFS). 

Currently, literature for the statistical methods taking into account the variability and 

accuracy of the diagnostic device for molecular targets for the inference based on 

censored endpoints is scarce. Under the enrichment design, we propose using the EM 

algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997) in conjunction with 

the bootstrap technique (Efron and Tibshirani, 1993) to incorporate the uncertainty on 

the accuracy of the diagnostic device in detection of the molecular targets for the 

inference of the treatment effects.  

 

The rest of this dissertation is organized as follows. In the next chapter, the theory of 

EM algorithm, and the estimation of the standard errors will be reviewed. In Chapter 2, 

under the assumption that the probability of the patients with a positive diagnostic result 

having the desired molecular targets is 100%, the traditional procedures for inference of 

the treatment effects are reviewed. On the other hand, we apply the EM algorithm in 

conjunction with the bootstrap technique for inference of the treatment effects based on 

the censored endpoints with parametric hazard model in Chapter 3. The proposed 

procedure not only incorporates the information of PPV for estimation of the treatment 

effects and its estimated standard errors, but also to construct the confidence intervals of 

the treatment effects. In addition, procedures for hypothesis testing and practical 

example illustrate the utility of the proposed method are also presented in this chapter. 

In Chapter 4, the EM algorithm is extended to estimation of the treatment effects based 

on the Cox proportional hazard model. In Chapter 5, the simulation studies, under 

various combinations of differences in hazard ratio, variability, sample sizes, and 
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positive predicted values were conducted to empirically investigate the performance of 

the proposed procedure in terms of the bias and variability of the proposed estimation 

procedure as well as the size and power of the proposed test procedure. Discussion and 

remarks on future research are given in Chapter 6. 
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Table 1.1 Phase III Clinical Efficacy in First-Line Treatment 
Combined Results Paclitaxel Subgroup AC Subgroup 

HERCEPTIN 

+ All All HERCEPTIN HERCEPTIN 

Chemotherapy Chemotherapy + Paclitaxel Paclitaxel +AC AC 

(n = 235) (n = 234) (n = 92) (n = 96) (n = 143) (n = 138)

Primary Endpoint 

Time to Progression 

  Median (months) 7.2 4.5 6.7 2.5 7.6 5.7 

  95% confidence interval 6.9, 8.2 4.3, 4.9 5.2, 9.9 2.0, 4.3 7.2, 9.1 4.6, 7.1 

  p-value (log rank) < 0.0001 < 0.0001 0.002 

Secondary Endpoints 

Overall Response Rate 

  Rate (percent) 45 29 38 15 50 38 

  95% confidence interval 39, 51 23, 35 28, 48 8, 22 42, 58 30, 46 

  p-value (χ2-test) < 0.001 < 0.001 0.1 

Duration of Response 

  Median (months) 8.3 5.8 8.3 4.3 8.4 6.4 

  25%, 75% quartile  5.5, 14.8 3.9, 8.5 5.1, 11.0 3.7, 7.4 5.8, 14.8 4.5 , 8.5

Survival Time 

  Median Survival (months) 25.1 20.3 22.1 18.4 26.8 21.4 

  95% confidence interval 22.2, 29.5 16.8, 24.2 16.9, 28.6 12.7, 24.4 23.3, 32.9 18.3 26.6

  p-value (log rank) 0.05 0.17 0.16 
a AC = anthracycline (doxorubicin or epirubicin) and cyclophosphamide.  

b Assessed by an independent Response Evaluation Committee. 

c Kaplan-Meier Estimate. 

Source: FDA (2006). 
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Table 1.2 Treatment Effect versus Level of HER2 Expression Phase III Randomized 
Trial 

HER2 Assay Result 
Number of  
Patients (N) 

Relative Risk for  
Time to Disease 

Progression  
(95% CI) 

Relative Risk  
for Mortality  

(95% CI) 
CTA 2+ or 3+ 469 0.49 (0.40, 0.61) 0.80 (0.64, 1.00) 

FISH (+) 325 0.44 (0.34, 0.57) 0.70 (0.53, 0.91) 
FISH (-) 126 0.62 (0.42, 0.94) 1.06 (0.70, 1.63) 

CTA 2+ 120 0.76 (0.50, 1.15) 1.26 (0.82, 1.94) 
FISH (+) 32 0.54 (0.21, 1.35) 1.31 (0.53, 3.27) 
FISH (-) 83 0.77 (0.48, 1.25) 1.11 (0.68, 1.82) 

CTA 3+ 349 0.42 (0.33, 0.54) 0.70 (0.51, 0.90) 
FISH (+) 293 0.42 (0.32, 0.55) 0.67 (0.51, 0.89) 
FISH (-) 43 0.43 (0.20, 0.94) 0.88 (0.39, 1.98) 

Source: FDA (2006). 

FISH, fluorescence in situ hybridization. 
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Figure 1.1 Unselected Design for Targeted Clinical Trials 

Source: FDA (2005). 
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Figure 1.2 Stratified Design for Targeted Clinical Trials 

Source: FDA (2005). 
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Figure 1.3 Enrichment Design for Targeted Clinical Trials 

Source: FDA (2005). 

 

 

 

All Subjects 
All 

Tested 

Randomization

Treatment 

Control 

Biomarker +

Biomarker －



 

 18



 

 19

Chapter 2 Literature Review 

 

 In the following, we consider the situation where a particular molecular target 

involved with the pathway in pathogenesis of the disease has been identified and there 

is a validated diagnostic device available for detection of the identified molecular target. 

Furthermore, this device is only for detection of the molecular target and is not for 

prognosis of clinical outcomes of patients. However, this device has been evaluated in 

the diagnostic effectiveness trial and met the regulatory requirements for diagnostic 

accuracy. Also suppose that, a test drug for the particular molecular target is available 

and is currently being developed. The targeted clinical trials consist of two phases under 

the enrichment design. The first phase is the enrichment phase in which each patient is 

screened by a diagnostic device for detection of the pre-defined molecular targets. Then 

the patients with a positive result by the diagnostic device are randomized to receive 

either the targeted treatment or the untargeted concurrent control.  

 

However, in practice, no diagnostic test is perfect with 100% PPV. As a result, some of 

the patients enrolled in targeted clinical trials under the enrichment design might not 

have the specific targets and hence the treatment effects of the drug for the molecular 

targets could be under-estimated (Liu and Chow, 2008). Under the enrichment design, 

one of the objectives of targeted clinical trials is to evaluate the treatment effects of the 

molecular targeted test treatment in the patient population truly with the molecular 

target. The diagram in the FDA concept paper (U.S. FDA, 2005) for demonstration of 

this design is reproduced in the Figure 1.3. We consider a two-group parallel design in 

which patients with a positive result by the diagnostic device are randomized in a 1:1 
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ratio to receive the molecular targeted test treatment (T) or a control treatment (C). 

Following Liu and Chow (2008), we propose using the EM algorithm (Dempster et al., 

1977; McLachlan and Krishnan, 1997) in conjunction with the bootstrap technique 

(Efron and Tibshirani, 1993) to incorporate the uncertainty on the accuracy of the 

diagnostic device in detection of the molecular targets for the inference of the treatment 

effects. In this Chapter, the theory of EM algorithm, the estimation of the standard 

errors will be briefly reviewed. 

 

2.1 Efficiency of Enrichment Design 

 The analysis of an enrichment study design by Friedlin and Simon (2005) 

addresses the critical drug development issue of efficiency. The randomized 

discontinuation design is not as efficient as upfront randomization if treatment has a 

fixed effect on tumor growth rate or if treatment benefit is restricted to slower-growing 

tumors. On the other hand, the randomized discontinuation design can be advantageous 

under a model where only a subset of patients, those expressing the molecular target, is 

sensitive to the agent. To achieve efficiency, the design parameters must be carefully 

structured to provide adequate enrichment of the randomly assigned patients. Simon and 

Maitournam (2004) and Maitournam and Simon (2005) found that the efficiency of the 

enrichment design depended on the prevalence of test-positive patients and on the 

effectiveness of the new treatment in test-negative patients. For binary end point trials, 

they showed that the ratio of number of patients to be randomized for the standard trial 

(nS) compared with the number randomized in the enrichment trial (nE) is approximately 

2

S

E

n f
n prev (1 prev)

+

+ −

⎛ ⎞δ
≈ ⎜ ⎟×δ + − ×δ⎝ ⎠
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where prev is the proportion of patients who are test positive; +δ is the treatment effect 

for test-positive patients; and −δ is the treatment effectiveness for test-negative patients. 

The variable f is a constant that does not depend on the prevalence or treatment effects; 

it is generally close in value to 1 unless the control response rate is very low. When 

fewer than half of the patients are test positive and the new treatment is relatively 

ineffective in test negative patients, the number of randomized patients required for an 

enrichment design is often dramatically smaller than the number of randomized patients 

required for a standard design (Simon, 2008). However, they failed to account for the 

variability associated with the estimates of the diagnostic accuracy. Some of the patients 

enrolled in targeted clinical trials under the enrichment design might not have the 

specific targets. 

 

2.2 EM Algorithm 

 The Expectation-Maximization (EM) algorithm is used to find the maximum 

likelihood parameters of a statistical model in cases where the equations cannot be 

solved directly. Typically these models involve latent variables in addition to unknown 

parameters and known data observations. That is, either there are missing values among 

the data, or the model can be formulated more simply by assuming the existence of 

additional unobserved data points. (For example, a mixture model can be described 

more simply by assuming that each observed data point has a corresponding unobserved 

data point, or latent variable, specifying the mixture component that each data point 

belongs to.) (Dempster et al., 1977). Although the diagnostic effectiveness trials of the 

diagnostic device can provide independent estimates of the positive predictive value and 

all patients randomized under the enrichment design have a positive diagnosis, the true 
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status of the molecular target for individual patients in the target clinical trial is in fact 

unknown. We assume that 1 2, , . . . , ny y y       are a set of independent random variables 

each having a mixture proportion r of survival distributions with a vector of unknown 

parameter(s) 1 2,θ θ . Both for the patient population are truly with and without the 

molecular target. Denote Ψ contain all of the unknown parameters. Then, the 

incomplete-data log-likelihood function forΨ is given by  

{ }1 2
1

log ( ) log ( | ) (1 ) ( | )
n

I j j
j

L r rϕ ϕ
=

Ψ = + −∑ y θ y θ , 

where ( | )jϕ Ψy denotes the survival distribution. The observed-data 1( ,. . . ,  )obs n=y y y  

are regarded as being incomplete, the latent variables jx are introduced, where jx is 

defined to be one or zero according to whether jx did or did not arise from the ith  

component of mixture model. For this specification, the complete-data log likelihood is 

{ }1 2
1

log ( ) log ( | ) (1 ) log (1 ) ( | )   
n

c j j j j
j

L x r x rϕ ϕ
=

⎡ ⎤ ⎡ ⎤Ψ = + − −⎣ ⎦ ⎣ ⎦∑ y θ y θ . 

The EM algorithm is easy to program and proceeds iteratively in two steps, the E-step 

(expectation) and the M-step (maximization) (McLachlan and Krishnan, 1997). The 

algorithm converges to a local maximum of the likelihood of the observed data on the 

( 1)k st+ iteration. The current fit for the mixing proportions, the component means, and 

the variances is given explicitly by 

( 1) ( )

1

( 1) ( ) ( ) ( 1) ( ) ( )
1 2

1 1 1 1

ˆ  ;

ˆ ˆ  ;  (1 ) (1 )  ;

n
k k

j
j

n n n n
k k k k k k

j j j j j j
j j j j

r x n

x x x x

+

=

+ +

= = = =

=

= = − −

∑

∑ ∑ ∑ ∑θ y θ y
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2.3 Convergence of EM Algorithm 

 Wu (1983) discuss the convergence of an EM sequence of iterate. Two 

convergence aspects of the EM algorithm are studied: 

(1) Dose the EM algorithm find a local maximum or a stationary value of the 

(incomplete-data) likelihood function? 

(2) Dose the sequence of parameter estimates generated by EM converge? Several 

convergence results are obtained under conditions that are applicable to many practical 

situations.  

Therefore, two useful special cases are: 

(a) If the unobserved complete-data specification can be described by a curved 

exponential family with compact parameter space, all the limit points of any EM 

sequence are stationary points of the likelihood function. 

(b) If the likelihood function is unimodal and a certain differentiability condition is 

satisfied, then any EM sequence converges to the unique maximum likelihood estimate. 

 

2.4 Estimator of the Standard Error 

 The EM algorithm is a popular method for computing maximum likelihood 

estimates. However, the EM algorithm fails to automatically provide an estimate of the 

standard errors of the MLE. Basford et al. (1997) compared two methods of estimation 

of the standard errors: the standard information-based method and the computationally 

-intensive bootstrap method. The first method is based on the information in the sample. 

Asymptotic variances of the estimated parameters in the mixture model are obtained 

from the diagonal elements of the inverse of the Fisher information matrix. While the 

information-based method is asymptotically applicable, it may not provide reliable 
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estimates of the standard errors of the component means unless the sample size is very 

large or the component means are well separated. The second method involves the 

calculation of bootstrap estimates of the covariance matrix. This method will provide 

accurate standard error estimates provided that a sufficient number of bootstrap samples 

are generated. Under a normal mixture model with g components, the parametric 

bootstrap method used to obtain estimates of the standard errors of the elements of the 

component-mean vectors ˆiμ , has been developed by (Efron and Tibshirani, 1993). The 

parametric estimate of the distribution F of the observation vector is 

1

ˆ ˆˆ
g

i i
i

F r F
=

=∑ . 

Where îF is the distribution function for the p-dimensional normal distribution with 

mean ˆiμ and covariance matrix ˆ
i∑ . The parameter ˆiμ , ˆ

i∑ and îr are estimates obtained 

from fitting a normal mixture model to the original data. A Monte Carlo approximation 

to the sample covariance matrix of the bootstrap replicates of the fitted means is then 

calculated as 

( ) *( ) * *( ) * '

1

ˆ ˆ ˆ ˆ( )( ) ( 1)
B

B b b
i i i i i

b

S Bμ μ μ μ
=

= − − −∑ , 

where 

* *( )

1

ˆ ˆ
B

b
i i

b
Bμ μ

=

=∑ . 

Thus ( )B
iS is an approximation to the bootstrap covariance matrix of *ˆiμ , and Hence, to 

the covariance matrix of ˆiμ . So the standard error of the ˆiμ can be estimated by the 

positive square root of ( )B
iS . 
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Chapter 3 Statistical Inference under the 

Exponential Distribution Model 

 

3.1 Current Methods 

 In the following, based on the assumption that the probability of the patients with a 

positive diagnostic result having the desired molecular targets is 100%, the traditional 

procedures for inference of the treatment effects are reviewed. We argue in this section 

that the traditional estimator for the treatment effects of the target drugs is biased if the 

PPV is not 100%. If a predefined clinical event is observed in some subjects before the 

completion of the study, then their exact failure times are known. On the other hand, 

some subjects may withdraw prematurely without observing any occurrences of the 

event of interest due to some known or unknown reasons. Sometimes, the event does 

not occur for some subjects who completed the study. As a result, the time to the 

occurrence of the event is censored at the last known contact, and it is at least as long as 

the time from randomization to the time of the last contact. Let C’ denote the censoring 

time associated with the failure time Y. If C’ is greater than or equal to Y, then the 

survival time is actually observed. On the other hand, if the survival time is greater than 

the censoring time, then the survival time is not observed and is censored. As a result, 

the censored data for a subject consist of a pair of responses. The first response is the 

observed time and the second is an indicator identifying whether the observed time is 

the survival time or was censored at the last contact. In other words, the data for the 

time to the occurrence of a predefined event obtained from n subjects of a clinical trial 

can be arranged as (y1, δ1), ..., (yn, δn), where y, is the observed time for subject i and 
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1 if is the survival time,
1, ...,

0 if is censored.
i

i
i

y
i n

y
δ

⎧
= =⎨
⎩

 

Suppose that the probability density function of a random variable Y follows an 

exponential distribution with a mean μ = λ−1. For comparing two groups of survival 

time, suppose that the observations from n1 individuals in treatment group (T) are 

expressed as (yiT, δiT), i = 1, 2, …, nT. Let (yi’C, δi’C), i' = 1, 2, …, nC, be the observations 

from the nC individuals in control group (C). For individuals in treatment group, the 

hazard function is taken to be λ, and the probability density function and survivor 

function are given by  

( ) iTy
iTf y e λλ −= , ( ) , 1, ...,iTy

iT TS y e i nλ−= = . 

For those in control group, the hazard function is ψλ, and the probability density 

function and survivor function are given by  
'

'( ) i Cy
i Cf y e ψλψλ −= , '

'( ) , ' 1, ...,i Cy
i C TS y e i nψλ−= = . 

The joint likelihood of the nT + nC observations is 

' '

' ' ' '

' '

1 1
' '

1 ' 1

1 1

1 ' 1

1 ' 1

( , ) { ( )} { ( )} { ( )} { ( )}

{ } { } { } { }

( )

CT
iT iT i C i C

CT
iT iT iT iT i C i C i C i C

CT
iT iT i C i C

nn

iT iT i C i C
i i

nn
y y y y

i i

nn
y y

i i

L f y S y f y S y

e e e e

e e

δ δ δ δ

λ δ λ δ ψλ δ ψλ δ

δ λ δ ψλ

ψ λ

λ ψλ

λ ψλ

− −

= =

− − − − − −

= =

− −

= =

=

=

=

∏ ∏

∏ ∏

∏ ∏

. 

The log-likelihood function is 

' '
1 1 ' 1 ' 1

* *

* *

log ( , ) log log( )

log log( ) ( )

( ) log log ( )

C CT T n nn n

iT iT i C i C
i i i i

T T C C

T C C T C

L y y

r T r T

r r r T T

ψ λ λ δ λ ψλ δ ψλ

λ λ ψλ ψλ

λ ψ λ ψ

= = = =

= − + −

= − + −

= + + − +

∑ ∑ ∑ ∑
, 

where 
1

Tn

T iT
i

r δ
=

=∑  and '
' 1

Cn

C i C
i

r δ
=

=∑ are the numbers of actual death time in the two 

groups. *
1

1

Tn

iT
i

T y
=

= ∑  and *
2 '

' 1

Cn

i C
i

T y
=

= ∑ are the totals of uncensored and censored 

survival times in each group. The maximum likelihood estimators for ψ and λ are given 

respectively 
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* *
ˆ

ˆ
CT

T C

rr
T T

λ
ψ

= = , and 
*

*
ˆ C T

T C

r T
r T

ψ = . 

The estimated value of λ is the reciprocal of the average time survived by individuals in 

the treatment group, which the estimated relative hazard, ψ̂ , is the ratio of the average 

times survived by the individuals in the two groups. The asymptotic 

variance-covariance matrix of the parameter estimates is the inverse of the information 

matrix, whose elements are found from the second derivatives of the log likelihood 

function. 

The observed information matrix is given as 
2 *

* 2

/
( , )

( ) /
C C

T T C

r T
I

T r r
ψ

ψ λ
λ

⎛ ⎞
= ⎜ ⎟

+⎝ ⎠
, 

with its inverse  
2 * 2 2

*2 2 2 * 2 2 2

( )1
( )

T C C

T C C C C C

r r T
r r r T T r

ψ ψ λ
ψ λ ψ λ λ

⎛ ⎞+ −
⎜ ⎟+ − −⎝ ⎠

. 

The standard error of ψ̂  and λ̂  are given by  

2

*2 2 2

ˆ( ) 1 1ˆ ˆ ˆ( ) ˆˆ( )
T C T C

T C T CT C C C

r r r rse
r r r rr r r T

ψψ ψ ψ
ψ λ

+ +
= = = +

+ −
, and 

ˆ ˆ( ) / Tse rλ λ= . 

The standard errors of these estimates cannot be used directly in the construction of 

confidence intervals for ψ and λ. The values of both parameters must be positive and 

their estimated values will tend to have skewed distribution. The distribution of the 

logarithm of an estimate of rather ψ or λ is much more likely to be symmetric, and 

confidence limits for the logarithm of the parameter are found using the standard error 

of the logarithm of the parameter estimate. The approximate variance of ˆlogψ  is  
2ˆ ˆ ˆvar(log ) var( )ψ ψ ψ−≈ . 

Therefore the standard error of ˆlogψ  is given by  

1 1 1ˆ ˆ ˆ(log ) ( ) T C

T C T C

r rse se
r r r r

ψ ψ ψ− +
≈ = = + . 

A 100(1 − α)% confidence interval for the logarithm of the relative hazard ratio has 

limits /2ˆ ˆlog (log )z seαψ ψ± , and confidence limits for hazard ratio ψ are found by 

exponentiating these limits for logψ. 
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Under enrichment design, to evaluate the treatment effects of the targeted test treatment 

in the patient population truly with the molecular target is one of the objectives of 

targeted clinical trials. Following the enrichment design, a two-group parallel design is 

considered. The patients with a positive result by the diagnostic device are randomized 

to receive either the molecular targeted test treatment (T) or an untargeted concurrent 

control treatment (C). The primary endpoint considered here is the censored data. The 

data set that we are interested in analyzing consists of observations of the random 

vecters (Yij, δij), j = 1,…, ni; i=T, C, where Yij is the observed survival time for event or 

censored, and δij is an indicator variable that takes 1=event and 0=censored. Therefore, 

under the assumption of the one-parameter exponential distribution, the probability 

density functions of the two exponential distributions are ( ) i ijy
i ij if y e λλ −= , i=T, C with 

a mean survival time 1
i iμ λ−= , where λi is the hazard rate in the ith treatment group. 

The corresponding hazard functions are hi(yij) = λi, and the survival functions are 

( ) i ijy
i ijS y e λ−= , for 0 ≤ yij < ∞. The maximum likelihood estimators for the mean 

survival time μi are *ˆ /i i iT rμ = , wrere 
in

*
i ij

j=1

T = y∑  and 
in

i ij
j=1

r = δ∑ , i=T, C are the totals of 

uncensored and censored survival times and the numbers of actual death time in each 

group.  

 

Table 3.1 gives the expected values of Yij whether or not including censored 

observations by treatment and diagnostic result of the molecular target. In Table 3.1, μT+, 

μC+ (μT−, μC−) are the mean survival times of test and control groups for the patients with 

(without) the molecular target. The hypothesis for detection of treatment difference in 

the patient population truly with the molecular target is the hypothesis of interest: 

 0 T C a T CH :  0      vs.     H :  0+ + + +μ −μ = μ −μ ≠        (3.1) 

 

Let Ty and Cy be the sample mean survival time of test and control treatments, 

respectively. Since no diagnostic test is perfect for diagnosis of the molecular target of 

interest without error, therefore, some patients with a positive diagnostic result may in 
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fact do not have the molecular target. It follows that 

   T C T C T C

1 1 1 1
T C T C

E(y y ) ( ) (1 )( )

( ) (1 )( )
+ + − −

− − − −
+ + − −

− = γ μ −μ + − γ μ −μ

= γ λ −λ + − γ λ −λ
,             (3.2) 

where γ is the positive predicted value. 

 

The expected value of the difference in sample mean survival time consists of two parts. 

The first part is the treatment effects of the molecular target drug in patients with a 

positive diagnosis who truly have the molecular target of interest. The second part is the 

treatment effects of the patients with a positive diagnosis but in fact they do not have the 

molecular target. Note that the molecular target test drug is assumed efficacious only in 

the patient population truly with the molecular target. It is ineffective in those patients 

without the target. Since T C T C > + + − −μ −μ μ −μ , the difference in sample mean survival 

time obtained under the enrichment design for targeted clinical trials actually 

under-estimates the true treatment effects of the molecular target test drug in the patient 

population truly with the molecular target of interest. As it can be seemed from (3.2), 

the bias of the difference in sample mean survival time decreases as the positive 

predicted value increases. On the other hand, the positive predicted value of a diagnostic 

test increases as the prevalence of the disease increases (Fleiss, et al., 2003). For a 

disease which is highly prevalent, say greater than 10%, and the diagnostic accuracy is 

quite high, say both sensitivity and specificity reach 95%, the positive predicted value is 

only about 67.86%. It follows that the downward bias of the traditional difference in 

sample mean survival time could be substantial for estimation of treatment effects of the 

molecular target drug in patients truly with the target of interest. 
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The traditional hypotheses without identification of the molecular targets is given as 

0 T CH :  μ = μ  vs. a T CH :  μ ≠ μ . 

In addition, the null hypothesis can be rewritten in terms of the log of the hazard ratio, 

T C C Tθ log(λ / λ ) log(μ / μ )= = , or equivalently,  

H0: θ = 0 vs. Ha: θ ≠ 0. 

The maximum likelihood estimate θ̂  has an approximate normal distribution with 

estimated variance of 
T C

1 1
r r
+ . The traditional z-test approach is to reject the null 

hypothesis at the α significance level if  

/2
θ̂

ˆ(θ)
z z

se α= ≥  

Based on the above z-statistic, the corresponding 100(1−α)% confidence interval can 

be obtained as follows 

/2
T C

1 1θ̂
r r

zα± +  

Since T Cy y− under-estimates μT+−μC+, the planned sample size may not be sufficient 

for achieving the desired power for detecting the true treatment effects in the patients 

truly with molecular target of interest. 

 

3.2 The Proposed Procedure 

 Although the diagnostic effectiveness trials of the diagnostic device can provide 

independent estimates of the positive predictive value and all patients randomized under 

the enrichment design have a positive diagnosis, the true status of the molecular target 

for individual patients in the target clinical trial is in fact unknown. It follows that Yij 

are independently distributed as a mixture of two exponential distributions with hazard 

λi+ and λi− respectively 



 

 31

ij ij i ij ij i i
1(y , | ) (y , | )       i T,C  ;  j 1, , n+ −

γ −γϕ δ λ ϕ δ λ = = …  

where (. | .)ϕ denotes the density function of a exponential variable with events happened 

or survival function of a exponential variable with censored observations. 

 

However, γ is an unknown positive predictive value which must be estimated from the 

data. Therefore, the data obtained from the targeted clinical trials are incomplete 

because the true status of the molecular target of the patients is unknown. 

 

We apply the EM algorithm to estimate the treatment effects for the population of the 

patients truly with the molecular target by incorporating the estimates of the positive 

predictive value of the device obtained from the diagnostic effectiveness trials as the 

initial values. 

 

For each patient, we have a set of variables (Yij, δij, Xij), where Yij is observed survival 

time for event or censored, and δij is an indicator variable that takes 1=event and 

0=censored of patient j in treatment i; Xij is the latent variable indicating the true status 

of the molecular target of patient j in treatment i; j=1,…,ni, i=T,C. Therefore Xij is an 

indicator variable with value of 1 for the patients truly with the molecular target and 

with a value of 0 for the patients truly without the target. In addition, Xij are assumed 

i.i.d. Bernoulli random variables with probability with the molecular target being γ. Let 

Ψ be the vector containing all unknown parameters and obs obs(y , δ ) denote the vectors 

of the observed primary efficacy endpoints from the targeted clinical trial, where 

T T C C = ( , , , , ) '+ − + −γ λ λ λ λΨ  

and  

T Cobs T1 Tn C1 Cn= (y , , y , y , , y ) 'y … …  

T Cobs T1 Tn C1 Cn= ( , , , , , ) 'δ δ δ δ… …δ  

It follows that the complete-data log-likelihood function forΨ is given by 
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T

T

C

C

n

c Tj Tj Tj T
j 1

n

Tj Tj Tj T
j 1

n

Cj Cj Cj C
j 1

n

Cj
j 1

log L ( ) x log log (y , | )

               (1 x ) log(1 ) log (y , | )

                 + x log log (y , | )

                (1 x ) log(1 ) log

+
=

−
=

+
=

=

Ψ = γ + ϕ δ λ

+ − − γ + ϕ δ λ

γ + ϕ δ λ

+ − − γ + ϕ

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

∑

∑

∑

∑ Cj Cj C(y , | )−δ λ⎡ ⎤⎣ ⎦

. 

Furthermore, from the previous diagnostic effectiveness trials, an estimate of the PPV 

of the device is known. Therefore, at the initial step of the EM algorithm for estimation 

the treatment effects in the patients truly with the molecular target, the observed latent 

variable Xij are generated as i.i.d. Bernoulli random variables with γ estimated by that 

obtained from the diagnostic effectiveness trial. What follow are the procedures for 

implementation of the EM algorithm to estimate θ in the patient population truly with 

the molecular target. 

 

At the initial step of the EM algorithm, the observed latent variable Xij are generated as 

i.i.d. Bernoulli random variables with the positive predictive value γ estimated by that 

obtained from the diagnostic effectiveness trial. At the (k 1)st+ iteration, the E-step 

requires the calculation of the conditional expectation of the complete-data 

log-likelihood cL ( )Ψ , given the observed data obs obs( , )δy , using currently 

fitting l
(k)

Ψ forΨ . 

l { }
(k)

(k) c obs obsQ( ; ) E log L ( ) | ,= δΨΨ Ψ Ψ y  

Since clog L ( )Ψ is a linear function of the unobservable component labeled variables ijx , 

the E-step is calculated by replacing ijx , by its conditional expectation given ijy , using 

l (k)
Ψ forΨ . In other words, ijx is replaced by 
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{ }
(k) (k)
i ij ij i(k)

ij (k) ij ij ij (k) (k) (k) (k)
i ij ij i i ij ij i

ˆˆ (y , | )
x̂ E x | y ,    i T,Cˆ ˆˆ ˆ(y , | ) (1 ) (y , | )

+

+ −

γ ϕ δ λ
= δ = =

γ ϕ δ λ + − γ ϕ δ λΨ  

which is the estimate of the posterior probability of the observation ij ijy , δ with molecular 

targets after the kth iteration.  

 

The M-step requires the computation of 
(k 1)

i ,
+

γ� (k 1)
i

ˆ ,+
+λ  and (k 1)

i
ˆ ;+

−λ i = T, C, by 

maximizing clog L ( )Ψ . Since clog L ( )Ψ is linear in the ijx , it follows that ijx are replaced 

by their conditional expectations (k)
ijx̂ . On the (k 1)th+ iteration, the intent is to choose 

the value ofΨ , say l
(k 1)+

Ψ , that maximizes l (k)
Q( ; )Ψ Ψ . It follows that on the M-step of 

the (k 1)st+  iteration, the current fit for the positive predictive value of treatment group 

and control group is given by 

in
(k)
ij

(k 1) j 1
i

i

x̂

n
+ =γ =

∑
� , i = T, C. 

Under the assumption of T Cn n= , it follows that the overall positive predictive value is 

estimated by 
(k 1) (k 1) (k 1)

T C( ) 2
+ + +

γ = γ + γ� � � . 

The hazard rate of the molecularly target test drug and control can then be estimated 

respectively as   

T T

T T

n n
(k) (k)
Tj Tj Tj Tj

j 1 j 1(k 1) (k 1)
T Tn n

(k) (k)
Tj Tj Tj Tj

j 1 j 1

ˆ ˆx (1 x )
ˆ ˆ ,   

ˆ ˆx y (1 x )y

= =+ +
+ −

= =

δ − δ
λ = λ =

−

∑ ∑

∑ ∑
 

C C

C C

n n
(k) (k)
Cj Cj Cj Cj

j 1 j 1(k 1) (k 1)
C Cn n

(k) (k)
Cj Cj Cj Cj

j 1 j 1

ˆ ˆx (1 x )
ˆ ˆ , and   

ˆ ˆx y (1 x )y

= =+ +
+ −

= =

δ − δ
λ = λ =

−

∑ ∑

∑ ∑
 

Therefore, the estimator for the treatment effects in the patients truly with the molecular 

target θ obtained from the EM algorithm is given as 
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T C C T
ˆ ˆ ˆ ˆ ˆlog( / ) log( / )+ + + +θ = λ λ = μ μ . 

Following Basford, et al. (1997), we propose to apply the parametric bootstrap method 

to estimate the standard error of θ̂ . 

Step 1: Choose a large bootstrap sample size, say B = 1000 or above. For 1 ≤ b ≤ B, 

generate the bootstrap sample , δb b
obs obsy according to the probability model. The 

parameters for generating bootstrap samples , δb b
obs obsy are substituted by the 

estimators obtained from the EM algorithm based on the original observations 

of primary efficacy endpoints from the targeted clinical trial.  

Step 2: The EM algorithm is applied to the bootstrap sample , δb b
obs obsy to obtain 

estimatesl
*
bθ , b=1,..,B. 

Step 3: An estimator for the variance of θ̂ by the parametric bootstrap procedure is given 

as 
B

* * 2
b

2 b 1
B

ˆ ˆ( )
S  

B 1
=

θ − θ
=

−

∑
, 

where  
B

*
b

* b 1

ˆ
ˆ  = 

B
=

θ
θ

∑
. 

Let θ̂ be the estimator for the treatment effects in the patients truly with the molecular 

target obtained from the EM algorithm. Let 2
BS denote the estimator of the variance 

of θ̂ obtained by the bootstrap procedure. The null hypothesis is rejected and the efficacy 

of the molecular targeted test drug is different from that of the control in the patient 

population truly with the molecular target at the α significance level if  

/22
B

ˆ
z    z

S
α

θ
= ≥ , 

where zα/2 is the α/2 upper percentile of a standard normal distribution.  

The corresponding 100(1−α)% asymptotic confidence interval for T Clog( / )+ +θ = λ λ  

can be constructed as 2
/2 B

ˆ z Sαθ ± . 
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It should be noted that although the assumption that T C T C > + + − −μ −μ μ −μ is one of the 

reasons for developing the targeted treatment, this assumption is not used in the EM 

algorithm for estimation of θ. Hence, the inference for θ by the proposed procedure is 

not biased in favor of the targeted treatment. 

 

3.3 Numerical Example 

A targeted drug is developed for the treatment of the patient with a certain cancer whose 

specific biomarker is over-expressed as measured by an immunohistochemical assay. 

Suppose that the immunohistochemical assay has a PPV of 0.75. From previous studies, 

the hazard ratios for the patients truly with and without the biomarker are 0.7 and 1.26, 

respectively, and are given in Table 3.2. Under the enrichment design, 480 patients with 

positive test results were randomized in 1:1 ratio to receive either the targeted drug plus 

the standard chemotherapy or the standard chemotherapy. The censored rate is assumed 

to be 30%. Table 3.3 provides the point estimates of hazard ratio formortality between 

the two groups, and their standard error and 95% CIs for the risk when PPV is 0.75. 

 

When PPV is 0.75, the traditional approach without consideration of inaccuracy of 

diagnostic device yields the estimate of hazard ratio for mortality of 0.8097 with a 95% 

CI from 0.6550 to 1.0009. Because the 95% CI contains 1, the observed hazard ratio of 

death is not statistically significant and the targeted drug does not prove its superior 

efficacy over chemotherapy alone at the 5% level. The reason for the failure of the 

targeted drug is that 25% positive patients randomized do not have the molecular targets. 

On the other hand, our proposed EM method provides the estimated hazard ratio of 

mortality is 0.7108. The 95% CI for the hazard ratio of mortality is (0.5168, 0.9777), 

which does not contain 1. As a result, the efficacy of the targeted drug can be concluded 

superior to the control group based on the hazard ratio. 
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Table 3.1 Population mean survival time by treatment and diagnosis 
Positive 

diagnosis  

True target 

condition  

Indicator of 

diagnostic 
Test group Control group Difference 

+  +  γ  T+μ  C+μ  T C+ +μ −μ  
 −  1− γ  T−μ  C−μ  T C− −μ −μ  

γ is the positive predicted value. 
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Table 3.2 Treatment effects as a function of a specific biomarker overexpression. 
IHC assay result No. of patients Hazard ratio for mortality (95% CI) 
Test result + 469 0.80 (0.64, 1.00) 
True status − 120 1.26 (0.82, 1.94) 
True status + 349 0.70 (0.51, 0.90) 
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Table 3.3 Point and interval estimator of hazard ratio for mortality 
PPV = 0.75 

Results Traditional EM 
Hazard ratio for mortality 0.8097 0.7108 
S.E. 0.1082 0.1626 
95% L.C.I. 0.6550 0.5168 
95% U.C.I. 1.0009 0.9777 
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Chapter 4 Statistical Inference under the Parametric 

Proportional Hazard Regression Model 

 

4.1 Current Methods 

 In Chapter 3, we only consider the parametric mixture models based on the 

standard exponential distribution. However, Two-component survival mixture models, 

in both proportional hazards and accelerated failure time settings, are presented as a 

flexible method of analyzing such data. Following the diagram of the enrichment design 

given in Figure 1.3, a two-group parallel design is considered where the patients with a 

positive result by the diagnostic device are randomized in a 1:1 ratio to receive either 

the molecular targeted test treatment (T) or an untargeted concurrent control treatment 

(C). The primary endpoint considered here is the censored data. The data set that we 

have interest in analyzing consists of observations of the random vectors (Yij, δij), j = 

1,…, ni; i=T, C, where Yij is observed survival time for event or censored, and δij is an 

indicator variable that takes 1=event and 0=censored.  

 

Under the proportional hazards model, the hazard of death at time t for jth individuals is 

given by  

 0( ) ( ),  1, , ,Z
j jh y e h y j nλ= = …  (4.1) 

where the covariate Z is a scalar which is the indicator of treatment group (Z = 1 if 

molecular targeted test treatment group; Z = 0 if an untargeted concurrent control 

treatment). Consequently, the hazard at time t for an individual in control group is 

0 ( )jh y . Next, we make the additional assumption that the survival times for the 

individual in control group have a Weibull distribution with scale parameter κ and shape 

parameter α. The hazard function for the individual in control group is 

 1
0 ( ) ,j jh y yακα −=  (4.2) 
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The hazard function for the individual in targeted group is 1
je yλ ακα −  for a Weibull 

distribution with scale parameter eλκ and shape parameter α. The hazard of death at time 

y for an individual in the targeted test group is proportional to that of an individual in 

the untargeted control group. The hazard of death for an individual in the targeted test 

group compared to an individual in the untargeted control group is exp(λ). Therefore, 

the probability density, survival and hazard function of a Weibull(eλZκ, α) distribution 

are given respectively 

 

1

1

( ) exp( ),

( ) exp( ),
( ) .

Z Z
j

Z

Z
j

f y e y e y

S y e y
h y e y

λ α λ α

λ α

λ α

κα κ

κ

κα

−

−

= −

= −

=

 (4.3) 

The likelihood function consisting of data (yj, δj, zj), j = 1,…, n is given by  

 
( ) ( ) ( ) ( )

( ) ( )

1

1 1

1

1

( , , ) ( ) ( ) ( ) ( )

exp( ) .

j i j

j
j j

n n

j j j j
j j

n
Z Z

j j
j

L f y S y h y S y

e y e y

δ δ δ

δλ λα α

α κ λ

κα κ

−

= =

−

=

= =

= −

∏ ∏

∏
 (4.4) 

The corresponding log-likelihood is 

 
1 1 1 1

1 1 1

log ( , , )

(log ) ( 1) log

(log ) ( 1) log .

j

j

n n n n
Z

j j j j j j
j j j j

n n n
Z

j j j j j
j j j

L L

y Z y e

r y Z y e

λα

λα

α κ λ

κα δ α δ λ δ κ

κα α δ λ δ κ

= = = =

= = =

=

= + − + −

= + − + −

∑ ∑ ∑ ∑

∑ ∑ ∑

 (4.5) 

 

where 
1

n

j
j

r δ
=

=∑ . The maximum likelihood estimates for ( , , ) 'κ α λΘ =  are obtained 

by Newton-Raphson method as the solution of the score function U( ) 0Θ = , where 

U( ) L∂
Θ =

∂Θ
. This solution is then  
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 1
1

ˆ +I ( )U( ),k k k k
−

+Θ = Θ Θ Θ  (4.6) 

where ˆ
kΘ  at k = 0 is an initial guess and the (l, m)th element of the observed 

information matrix 
2 ( )ˆI( )

l m

L−∂ Θ
Θ =

∂Θ Θ
, l = 1, 2, 3 and m = 1, 2, 3.  

Therefore, the score equation for scale parameter κ is 

 ( ) λZ
n n n

α α

1

λ

1

Z

1 1

ˆ0 ,
L

( ) δ y e δ y ej j
nset

j jj j
j j j j

κ κ κ
κ = = = =

= ⇒ =
∂ Θ

Θ = = −
∂ ∑ ∑ ∑ ∑U  (4.7) 

the score equation for shape parameter α is 

 ( ) n n n
α

1 1 1

Z
α( ) δ α δ logy (y log

α
y ,e )j

j j
j j j

j j

L λκ
= = =

∂ Θ
Θ = = − − ⋅ ⋅

∂ ∑ ∑ ∑U  (4.8) 

the score equation for the common regression coefficient λ is 

 ( ) n n
α

j
Z

1

λ
λ

1

L
( ) δ Z (y e Z ).

λ
j

j
jj

j
j κ

= =

∂ Θ
Θ = = −

∂ ∑ ∑U  (4.9) 

Then we establish the estimated covariance matrix of coefficients as 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2

2 2

(
1

2

2

)

2

2 2 2

ˆ ˆ ˆL L L

α λˆˆ ˆ ˆV cov ,α cov ,λ
ˆ ˆ ˆL L Lˆˆcov α, V α cov α,λ

α α α

ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆI( )

ˆˆ
λ

ˆ ˆ ˆ ˆ ˆ ˆˆcov λ, cov λ,α V λ L L L

α

ˆ ˆ

λ λ λ

k

κ κ κκ κ κ

κ
κ

κ

κ

−

∂ Θ ∂ Θ ∂ Θ
− − −

∂ ∂ ∂ ∂ ∂

∂ Θ ∂ Θ ∂ Θ
= − − −

∂ ∂ ∂ ∂ ∂

∂ Θ ∂ Θ ∂ Θ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥Θ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢
− − −

∂ ∂ ∂ ∂ ∂
⎣ ⎦

1−

⎥
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 (4.10) 
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The observed information matrix ˆI( )Θ is obtained by replacing ( , , ) 'κ α λΘ =  by their 

MLEs ˆˆ ˆ ˆ( , , ) 'κ α λΘ = , respectively. Wald tests and large sample confidence limits for 

the individual parameters, such as λ, are readily computed using the large sample 

variance ( ) 1

λ
ˆIλ ( )ˆˆ −Θ⎡ ⎤= ⎣ ⎦V obtained as the corresponding diagonal element of the 

estimated expected information, ˆI( )Θ . 

 

The hypotheses is analogous to 0 T CH :  S S= ,equivalently, H0: λ = 0 vs. Ha: λ ≠ 0. Test 

and interval estimates for regression parameter λ can be obtained by using the 

approximate normality of the MLE. The traditional z-test approach is to reject the null 

hypothesis at the α significance level if  

 /2

ˆ
ˆ( )

z z
se α
λ

= ≥
λ

 (4.11) 

where ˆ( )se λ is the square root of ( ) 1

λ
ˆIλ ( )ˆˆ −Θ⎡ ⎤= ⎣ ⎦V . Based on the above z-statistic, the 

corresponding 100(1−α)% confidence interval can be obtained as follows 

 /2
ˆ ˆ( )z seαλ ± λ  (4.12) 

 

4.2 The Proposed Procedure 

 All patients randomized under the enrichment design have a positive diagnosis, but 

the true status of the molecular target for individual patients in the target clinical trial is 

in fact unknown. Let Yij denote the observable failure or censoring time for the jth 

individual (j=1,…, ni; i=T, C), Zij is a vector of covariates associated with the jth 

individual. The survival function of Y is modeled by a two-component mixture model as 

 ( ; ) ( ; ) (1 ) ( ; )            1, ,j j j j j jS y S y S y j nγ γ+ −= + − = …z z z  (4.13) 

and the corresponding probability density function of Y is 
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 ( ; ) ( ; ) (1 ) ( ; )        1, ,j j j j j jf y f y f y j nγ γ+ −= + − = …z z z  (4.14) 

where γ is a positive predicted value (PPV), the proportion of patients truly with the 

molecular targets, and ( ; )g j jS y z  and ( ; )g j jf y z is the conditional survival function 

and conditional density function of the gth component (g=+, −). Under the proportional 

hazards assumption, the conditional hazard function for the gth component is given by 

 0( ) ( ) exp( ( ))g ij g ij ijh y h y η= z  (4.15) 

where 0 ( )g ijh y  is the baseline hazard function and ( )ijη z  is the linear predictor 

relating to the covariate Zij. The commonly used Weibull distribution maybe assumed 

for 0 ( )g ijh y  because it is flexible as either a monotonic increasing, constant, or 

monotonic decreasing baseline hazard. That is, 

 1
0 ( ) g

g j g g jh y yακ α −=  (4.16) 

where , 0g gκ α >  are unknown parameters 

 

Under proportional hazards model and the Weibull distribution assumption,  

 1
0( ) ( ) exp( ) exp( )   ,  ;   1, ,g

g j g j g j g g j g jh y h y y g j nαλ κ α λ−= = = + − = …z z  (4.17) 

where gλ  is the vector of regression coefficients. Under the formulation above, the 

vector of unknown parameters becomes 

( , , , , , , ) 'γ λ λ κ κ α α+ − + − + −=ψ  

On the basis of the observed data, the log-likelihood function for ψ  under the mixture 

model is given by 

 

{c

n

j j j j j j j
j 1

j j j j j j j

T
j j j j j

log L ( ) x log log f (y ; ) (1 ) logS (y ; )

+x log(1 ) log f (y ; ) (1 ) logS (y ; )

x (x , x ) and x x 1; j 1, , n

+ + +
=

− − −

+ − + −

⎡ ⎤= γ + δ + −δ⎣ ⎦

⎡ ⎤− γ + δ + − δ⎣ ⎦
= + = = …

∑Ψ z z

z z  (4.18) 

where 1jδ =  and 0jδ =  indicate a failure and a censored observation respectively. 

The best linear unbiased predictor (BLUP) estimate is obtained as a solution of the 

equation, which can be solved via the EM algorithm as presented below. 
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In order to pose the estimation procedure as an incomplete-data problem, an 

unobservable random vector Xij =(xij+, xij−)T is introduced, indicating whether the 

observation yij belongs to the positive or negative component. On the (k + 1)th iteration, 

the E-step of the EM algorithm involves the calculation of the Q-function, which is the 

expectation of the complete-data log-likelihood conditional on the current estimate of 

the parameter and the observed data. In particular, the Q-function can be decomposed as 

 ( ) ( ) ( ) ( )( , )k k k kQ Q Q Qγ ξ ξ+ −
= + +ψ ψ  (4.19) 

with respect to the parameters ,   ( , , ) ',γ λ κ α+ + + +=ξ  and ( , , ) 'λ κ α− − − −=ξ  

respectively. 

 

The E-step involves the calculation of ( ) ( ) ( ) ( )( , )k k k kQ Q Q Qγ ξ ξ+ −
= + +ψ ψ , where 

 { }

( ){ }

( ) ( )

1

( ) ( )

1

( ) ( )

1

ˆ ˆlog( ) log(1 )
ˆ1

log ( ; ) (1 ) log ( ; )

1 log ( ; ) (1 ) log ( ; )

n
k k

j
j

n
k k

j j j j j j j
j

n
k k

j j j j j j j
j

Q x

Q x f y S y

Q x f y S y

γ

ξ

ξ

γ γ
γ

δ δ

δ δ

+

−

=

+ +
=

− −
=

⎡ ⎤
= + −⎢ ⎥−⎣ ⎦

⎡ ⎤= + −⎣ ⎦

⎡ ⎤= − + −⎣ ⎦

∑

∑

∑

z z

z z

 (4.20) 

where 

 ( )

(1 )( ) ( ) ( )
( )

(1 ) (1 )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( | , )
( ) ( ) (1 )( ) ( )

j j

k
j j j j

k k k
k

j j j j k k k k k k

f Sx E x y
f S f S

δ δ

δ δ δ δψ

γ
γ γ

−
+ +

− −
+ + − −

= =
+ −

z  (4.21) 

The M-step provides the updated estimate ( 1)k+ψ  that maximizes ( )( , )kQ ψ ψ  with 

respect to ψ  and thus involves solving the non-linear equations 

 

( ) (2 ) ( ) ( 1)

1

( ) (2 ) ( ) ( 1)

1

( ) (2 ) ( ) ( 1)

( : 1;  : 2) : ( ) (1 ) log ( ; ) 0

( : 1;  : 2) : ( ) (1 ) exp( ) 0

(
( : 1;  : 2) : ( ) (1 )

g

n
k g k g

g j j j g j j j
j

n
jk g k g

g j j j j
j g

j j g gk g k g
g j j

g g x x S y z z

g g x x z y

h
g g x x

α

λ δ

δ
κ β

λ

δ δ α
α

− −

=

− −

=

− −

⎡ ⎤+ = − = − + =⎣ ⎦

⎡ ⎤
+ = − = − − =⎢ ⎥

⎢ ⎥⎣ ⎦

+ −
+ = − = −

∑

∑

1

( ; ) ) log
0

n
j j j j

j g

y z y y
α=

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
∑

 (4.22) 

and the following closed-form equation for γ : 
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 ( 1) ( )

1

n
k k

j
j

x nγ +

=

= ∑  (4.23) 

With respect to Ψ, which involves solving a set of non-linear equations and the 

MINPACK routine HYBRD1 (More, et al., 1980) is used for this purpose. 

 

The estimation procedure of the EM-based approach is summarized as follows 

1. Set initial values for (0) (0) (0),   ,   ,γ + −ξ ξ  

2. Calculate jx  using (4.21) and update ( : 1;  : 2)g g g+ = − =ξ  by (4.22), and 

update γ by (4.23). 

3. Repeat Step 2 until convergence. 

4. The standard errors of the maximum likelihood estimator ψ̂  of ψ  is assessed 

using the bootstrap methodology of Efron (1979, 1982). A number K of independent 

bootstrap samples are obtained with each being randomly drawn with replacement from 

the observed data (Yj, δj, Zj), j = 1,…, n. 

 

The null hypothesis is rejected and the efficacy of the molecular targeted test drug is 

different from that of the control in the patient population truly with the molecular target 

at the α significance level if  

/22
B

ˆ
z    z

S
α

λ
= ≥ , 

where zα/2 is the α/2 upper percentile of a standard normal distribution, and 
2
BS denote the estimator of the variance of λ̂  obtained by the bootstrap procedure.   

The corresponding 100(1 − α)% asymptotic confidence interval for λ  can be 

constructed as 2
/2 B

ˆ z Sαλ ± . 
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Chapter 5 Simulation Studies 

 

 In this section, the simulation studies were conducted to empirically investigate 

and compare performance of the proposed methods with the current methods for the 

inference of the treatment effects of the targeted treatment. FORTRAN 95 and IMSL’s 

STAT/LIBRARY FORTRAN subroutines were used in the simulation study. 

 

5.1 The Exponential Distribution Model 

5.1.1 Simulation Procedure 

 The random samples of patient units with or without the molecular target were 

generated from the Bernoulli distribution with probability γ. Then the units are 

randomized in a 1:1 ratio to the test group or control group. Exponential random 

deviates were generated with the specified parameters i iand+ −λ λ  according the status 

of molecular target, i = T, C. For the purpose of illustration, we assume that the placebo 

control is employed in the targeted clinical trial. It is presumed that it is not efficacious 

in the patients with and without the molecular target. In addition the molecularly 

targeted test drug is not effective in the patients truly without the target either. Therefore, 

for simplicity, in the simulation, λT-, λC+, and λC- are assumed equal and set to be a 

generic value of 1. To investigate the impact of the PPV, sample size, hazard ratio, and 

variability, we consider the following specifications of parameters in the simulation. 

 

The PPV is set to be 0.5, 0.6, 0.7, 0.8, and 0.8 which reflect a range of low, median, and 

high positive predicted value. We use random right censoring. Each unit has a potential 

censoring time Ci’ and a potential lifetime Ti’, which are assumed to be independent 
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random variables. Consider Yi = min{Ci’, Ti’} and an indicator δi for the type of event 

(censored or death). If T’ and C’ are independent exponential random variables with 

parameters λ1 and λ2, respectively, then P{T’ < C’} = λ2 / (λ1 + λ2). By matching 

survival and censoring times in n pairs in sequence, we generate the observed times, y = 

min(t’, c’). The censoring proportions considered in the simulation study are 0, 0.1, 0.2, 

0.3 and 0.4. To investigate the finite sample properties, the sample sizes are set as 300, 

600, and 900 per group. The power of the proposed testing procedure was investigate at 

λT+ = 0.70, 0.75, 0.80 and 0.85. For each combination, 5000 random samples were 

generated and the number of the bootstrap samples was set to be 1000. Furthermore, in 

the simulation, we employed the traditional sample mean survival time of test and 

control treatments, Ty and Cy , the inverse of hazard, as the initial values for T
ˆ

+λ  and 

C
ˆ

+λ , respectively, i=T, C. 

 

For estimation, we investigate the bias of the estimators and the coverage 

probability of the 95% confidence interval. For hypothesis testing, the performance 

measures include empirical size and power. The bias is estimated as the average of the 

differences between the estimates and the true value of θ over 5000 simulated samples. 

The coverage probability is calculated as the proportion of the 5000 95% confidence 

intervals that contain θ. The size and power were computed as the proportion of the 

5000 samples that the null hypothesis is rejected for the two-sided test at the 5% 

significance level. For a 95% confidence level, with 5000 simulation random samples 

implies that 95% of the empirical coverage probabilities will be within 0.94396 and 

0.95604 if the proposed methods provide sufficient coverage probability. The limit is 

computed as 
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0.05 2
(0.95)(0.05)0.95 (0.94396,0.95604)

5000
± =Z . 

In addition, for a 5 % nominal significance level, a simulation study with 5000 random 

samples implies that 95% of empirical sizes will be within 0.04396 and 0.05604 if the 

proposed methods can adequately control the size at the nominal level of 0.05. The limit 

is computed as 

0.05 2
(0.95)(0.05)0.05 (0.04396,0.05604)

5000
± =Z . 

The flow chart for simulation study is given in Figure 5.1. 

 

5.1.2 Simulation Results 

Relative Bias and Coverage Probability 

The simulation results on estimation are provided in Table 5.1. The results in Table 5.1 

demonstrate that the absolute relative bias of the estimator for traditional hazard ratio 

for the patients truly with the molecular target by the current method ranges from 3.1% 

to more than 17%. It increases as the PPV decreases. On the other hand, the absolute 

relative bias of the estimator for hazard ratio for the patients truly with the molecular 

target obtained by the EM algorithm does not exceed 5.0% while most of them are 

smaller than 3.0%. The variability has little impact on the bias of both methods. 

Consequently, the empirical coverage probabilities of the corresponding 95% 

confidence interval constructed by the current method can be as low as 56.1% when the 

PPV is 50%, censored rate is 20%, hazard ratio is 0.70 and n is 300. The coverage 

probability of the 95% confidence interval by the current method is an increasing 

function of the PPV. None of the coverage probabilities of the 95% confidence intervals 

by the current method in Table 5.1 exceed 0.95. On the contrary, no coverage 
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probability of the EM method is below 0.95. Therefore, the proposed procedures for 

estimation of the treatment effects in the patients population truly with the molecular 

target by the EM algorithm is not only unbiased but also provide sufficient coverage 

probability. 

 

Size and Power 

The simulation results on the empirical sizes are provided in Table 5.2. The simulation 

results on sizes reveal that all empirical sizes of both the current method and the 

proposed EM procedure for testing the hypothesis are within 0.0452 and 0.0610. These 

results demonstrate that both methods can adequately control the size at its nominal 

level of 5% under the null hypothesis. The empirical powers of the simulation for the 

hazard ratio are given in Table 5.3. In addition, Figure 5.2 presents the power curves 

when n = 300, censored rate = 10% and PPV is 0.6. From Table 5.3, we observe that the 

power of the current method is an increasing function of the PPV. For both the methods, 

the power increases as the sample size increases. However, the simulation results clearly 

demonstrate that the proposed testing procedure for the treatment effects based on the 

EM algorithm in the patient population truly with the molecular target is uniformly 

more powerful than the current method as depicted in Figure 5.2. 

 

5.2 The Parametric Proportional Hazard Regression Model 

5.2.1 Simulation Procedure 

 The random samples of patient units with or without the molecular target were 

generated from the Bernoulli distribution with probability γ. Then the units are 

randomized in a 1:1 ratio to the test group or control group. Weibull random deviates 
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are generated with the specified parameters i i i i i i, , , , and+ − + − + −λ λ κ κ α α  according the 

status of molecular target, i = T, C. We also assume that the placebo control is employed 

in the targeted clinical trial. It presumed that it is not efficacious in the patients with and 

without the molecular target. In addition the molecularly targeted test drug is not 

effective in the patients truly without the target either. Therefore, for simplicity, in the 

simulation, κ+, κ-, α+, α-, λ- are assumed equal and set to be a generic value of 1. 

 

To investigate the impact of the PPV and censored rate, we consider the following 

specifications of parameters in the simulation. The PPV is set to be 0.5, 0.6, 0.7 and 0.8 

which reflect a range of low and high positive predicted value. We use random right 

censoring. Each unit has a potential censoring time Ci’ and a potential lifetime Ti’, 

which are assumed to be independent random variables. Consider Yi = min{Ci’, Ti’} and 

an indicator δi for the type of event (censored or death). If T’ and C’ are two 

independent Weibull distributions with different scale parameters but having the same 

shape parameter, T’ and C’ follow Weibull(θ*, λ1) and Weibull(θ*, λ2) respectively, then 

P{T’ < C’} = λ2 / (λ1 + λ2). By matching survival and censoring times in n pairs in 

sequence, we generate the observed times, y = min(t’, c’). The censoring proportions 

considered in the simulation study are 0 and 0.2. The hazard ratio is set as 0.75 for bias, 

coverage probability and power. To investigate the finite sample properties, the sample 

sizes are set as 600 per group. The 5000 random samples were generated. For estimation, 

we investigate the bias of the estimators and the coverage probability of the 95% 

confidence interval. For hypothesis testing, the performance measures include empirical 

size and power. The bias is estimated as the average of the differences between the 

estimates and the true value of θ over 5000 simulated samples. The coverage probability 

is calculated as the proportion of the 5000 95% confidence intervals that contains θ. The 
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size and power were computed as the proportion of the 5000 samples that the null 

hypothesis is rejected for the two-sided test at the 5% significance level. For a 95% 

confidence level, with 5000 simulation random samples implies that 95% of the 

empirical coverage probabilities will be within 0.94396 and 0.95604 if the proposed 

methods provide sufficient coverage probability. 

 

5.2.2 Simulation Results 

Relative Bias and Coverage Probability 

The simulation results on relative bias and coverage probabilities are provided in Table 

5.4 show that the relative bias of the current approach ranges from 17.45% to 4.49%. 

On the other hand, the EM procedure is nearly unbiased with the absolute relative bias 

smaller than 5%. The relative bias is a decreasing function of PPV and censoring rate. 

The empirical coverage probability of the 95% confidence interval for the hazard ratio 

by the current method can be as low as 45.12%. It reaches to 99.88% when PPV is 0.8. 

On the other hand, the EM method provides an empirical coverage probability of the 

95% confidence interval for the hazard ratio above 95%. In summary, the proposed EM 

procedure not only is nearly unbiased but also its corresponding 95% confidence 

interval for hazard ratio provides sufficient coverage probability. 

 

Size and Power 

Table 5.5 presents the empirical sizes for the parametric proportional hazard model. The 

results demonstrate that both the current and EM method can adequately control the size 

at the nominal level of 5% under the null hypothesis. The results of the empirical 

powers for the parametric proportional hazard model is given in Table 5.6. The results 

given in Table 5.6 reveal that the empirical power is an increasing function of PPV and 
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a decreasing function of censoring rate. However, the proposed EM procedure is more 

powerful than the current method. For PPV=0.5, the empirical power of the EM 

procedure is 20% more than that of the current method for censoring rate being either 0 

or 0.2. In summary, the proposed EM procedure not only can control the size at its 

nominal level but also is more powerful than the current method under the parametric 

proportional hazard model.
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Figure 5.1 Flow chart of the simulation study to exponential distribution 
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Figure 5.2 The empirical power curve when the PPV is 0.6, n=300 and CR=10% 

 

 

 

 

 

 

 

 



 

 56

Table 5.1 Relative bias (%) and the coverage probability to exponential distribution 
PPV 

0.5 0.6 0.7 0.8 
N HR CR Current EM Current EM Current EM Current EM 

300 0.85 0.0 8.21a -2.41 6.60 -1.87 4.92 -1.51 3.05 -1.31 
0.8316b 0.9682 0.8800 0.9648 0.9150 0.9640 0.9318 0.9562

0.1 8.01 -3.11 6.38 -2.61 4.76 -2.00 3.11 -1.54 
0.8538 0.9742 0.8804 0.9636 0.9102 0.9592 0.9318 0.9594

0.2 7.96 -3.73 6.42 -3.14 4.60 -2.52 3.13 -1.74 
0.8632 0.9768 0.8942 0.9732 0.9202 0.969 0.9360 0.9610

0.3 8.24 -4.35 6.20 -3.85 4.74 -2.88 3.19 -1.76 
0.8652 0.9758 0.9094 0.9736 0.9238 0.963 0.9396 0.9630

0.4 8.13 -4.99 6.38 -3.94 4.82 -2.88 3.19 -1.98 
0.8820 0.9758 0.9146 0.9732 0.9256 0.9662 0.9440 0.9646

0.80 0.0 11.28 -1.51 8.59 -1.60 6.29 -1.50 3.96 -1.46 
0.7386 0.9672 0.8132 0.9628 0.8772 0.9598 0.9178 0.9536

0.1 11.29 -2.41 8.70 -2.26 6.56 -1.61 4.33 -1.45 
0.7620 0.9730 0.8398 0.9684 0.8822 0.9662 0.917 0.9566

0.2 11.01 -3.78 8.52 -2.95 6.37 -2.46 4.12 -2.05 
0.7874 0.9760 0.8548 0.9732 0.8978 0.9696 0.9290 0.9604

0.3 11.05 -4.84 8.75 -3.74 6.46 -2.84 4.24 -2.26 
0.8100 0.9782 0.8602 0.9682 0.9048 0.9674 0.9322 0.9630

0.4 11.39 -5.14 8.77 -4.56 6.27 -3.64 4.30 -2.58 
0.8266 0.9752 0.8738 0.9748 0.9052 0.9660 0.927 0.9628

0.75 0.0 14.19 -0.92 11.04 -0.73 7.92 -1.04 5.16 -1.11 
0.6264 0.9648 0.7594 0.9572 0.8432 0.9610 0.9018 0.9566

0.1 14.39 -1.63 11.03 -1.88 8.07 -1.39 5.49 -1.17 
0.6494 0.9758 0.7680 0.9720 0.8510 0.9700 0.8974 0.9592

0.2 14.33 -2.93 11.13 -2.33 8.21 -2.32 5.12 -2.04 
0.6870 0.9752 0.7926 0.9724 0.8564 0.9674 0.9174 0.966

0.3 14.43 -4.29 11.13 -3.28 7.99 -2.81 5.25 -2.47 
0.7140 0.9750 0.8064 0.9738 0.8760 0.9680 0.9136 0.9662

0.4 14.24 -5.72 10.85 -4.76 7.95 -3.96 5.45 -2.80 
0.7530 0.9764 0.8352 0.9762 0.8822 0.9688 0.9162 0.9622

0.70 0.0 17.70 0.24 13.53 -0.21 9.77 -0.57 6.41 -0.73 
0.4860 0.9566 0.6498 0.9598 0.7870 0.9582 0.8796 0.9568

0.1 17.73 -1.00 13.57 -1.19 9.87 -1.07 6.47 -1.09 
0.5292 0.9676 0.6826 0.9662 0.7996 0.9630 0.8848 0.9604

0.2 17.90 -1.76 13.59 -2.13 10.17 -1.79 6.36 -1.79 
0.5610 0.9772 0.7070 0.9742 0.9096 0.9690 0.8930 0.9604

0.3 17.87 -3.76 13.61 -3.11 9.9 -2.87 6.41 -2.54 
0.6114 0.9780 0.7390 0.9766 0.8348 0.9682 0.8986 0.9616

0.4 17.67 -5.89 13.93 -4.99 9.61 -4.49 6.53 -2.86 
0.6558 0.9740 0.7648 0.9740 0.8562 0.9636 0.9020 0.9688

HR: hazard ratio; CR: censoring rate 
a: Relative bias (%); b: Coverage probability 
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Table 5.1 Relative bias (%) and the coverage probability to exponential distribution 
(continued) 

PPV 
0.5 0.6 0.7 0.8 

N HR CR Current EM Current EM Current EM Current EM 
600 0.85 0.0 8.27a -1.85 6.32 -1.72 4.76 -1.29 3.12 -1.06 

0.7118b 0.9510 0.8126 0.9504 0.8668 0.9484 0.9162 0.9470
0.1 8.12 -2.56 6.35 -2.06 5.07 -1.38 3.12 -1.22 

0.7414 0.9482 0.8228 0.9444 0.8750 0.9510 0.9246 0.9524
0.2 8.06 -2.99 6.49 -2.25 4.72 -1.95 3.08 -1.41 

0.7684 0.9488 0.8318 0.9486 0.8934 0.9482 0.9202 0.9484
0.3 8.02 -3.67 6.31 -2.86 4.72 -2.44 2.99 -1.53 

0.7972 0.9412 0.8606 0.9382 0.8990 0.9200 0.9286 0.9470
0.4 8.19 -3.92 6.29 -3.29 4.54 -2.58 3.16 -1.53 

0.8126 0.938 0.8798 0.9314 0.9090 0.9374 0.9312 0.9508
0.80 0.0 11.09 -0.93 8.67 -0.91 6.44 -0.86 4.21 -0.88 

0.5532 0.9550 0.6856 0.9494 0.8100 0.9502 0.8940 0.9522
0.1 11.1 -1.73 8.89 -1.39 6.49 -1.29 4.25 -1.03 

0.5914 0.9554 0.7094 0.9586 0.8180 0.9516 0.8944 0.9536
0.2 11.1 -2.71 8.65 -2.29 6.50 -1.63 4.05 -1.53 

0.6314 0.9532 0.7468 0.9506 0.834 0.9512 0.9084 0.9546
0.3 10.94 -3.65 8.64 -3.00 6.40 -2.54 4.04 -1.81 

0.6778 0.9460 0.7706 0.9494 0.8496 0.9446 0.9152 0.9504
0.4 10.90 -4.66 8.52 -3.89 6.30 -2.98 4.39 -1.90 

0.7158 0.9350 0.8084 0.9312 0.8690 0.9410 0.9110 0.9448
0.75 0.0 14.36 -0.12 11.2 -0.24 8.07 -0.48 5.17 -0.85 

0.3564 0.9494 0.5452 0.954 0.7340 0.9576 0.8610 0.9514
0.1 14.37 -1.12 11.28 -0.95 8.12 -1.12 5.27 -0.93 

0.3968 0.9582 0.5768 0.9514 0.7446 0.9472 0.8628 0.9474
0.2 14.39 -2.05 11.27 -1.65 8.01 -1.71 5.19 -1.37 

0.4478 0.9602 0.6164 0.9484 0.7794 0.9514 0.8762 0.9538
0.3 14.21 -3.6 11.05 -2.83 8.23 -2.19 5.35 -1.65 

0.5084 0.9478 0.6644 0.9478 0.7862 0.9432 0.8854 0.954
0.4 8.27 -1.85 6.32 -1.72 4.76 -1.29 3.12 -1.06 

0.7118 0.9510 0.8126 0.9504 0.8668 0.9484 0.9162 0.947
0.70 0.0 17.63 0.36 13.61 0.21 9.79 -0.20 6.43 -0.30 

0.2002 0.9470 0.4054 0.9464 0.6304 0.9502 0.8106 0.9478
0.1 17.59 -0.93 13.41 -0.84 9.96 -0.63 6.36 -0.81 

0.2382 0.9480 0.4554 0.9504 0.6500 0.9554 0.8260 0.9474
0.2 17.66 -1.71 13.67 -1.67 9.86 -1.50 6.36 -1.34 

0.2864 0.9572 0.4886 0.9556 0.6896 0.9516 0.8382 0.9514
0.3 17.77 -3.13 13.71 -2.63 10.13 -2.04 6.43 -1.69 

0.3426 0.9508 0.5460 0.9460 0.7146 0.9522 0.8464 0.9496
0.4 17.76 -4.84 13.56 -4.09 9.87 -3.26 6.59 -2.26 

0.4156 0.9368 0.6050 0.9344 0.7544 0.9384 0.8606 0.9474

HR: hazard ratio; CR: censoring rate 
a: Relative bias (%); b: Coverage probability 
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Table 5.1 Relative bias (%) and the coverage probability to exponential distribution 
(continued) 

PPV 
0.5 0.6 0.7 0.8 

N HR CR Current EM Current EM Current EM Current EM 
900 0.85 0.0 8.18a -1.34 6.44 -1.27 4.67 -1.16 2.99 -1.05 

0.6178b 0.9456 0.7394 0.9420 0.8416 0.9458 0.9000 0.9452
0.1 7.99 -2.27 6.49 -1.61 4.75 -1.40 3.07 -1.04 

0.6524 0.9374 0.7538 0.9374 0.8480 0.9402 0.9092 0.9406
0.2 8.02 -2.61 6.51 -2.13 4.73 -1.71 3.20 -1.06 

0.6844 0.931 0.7752 0.9286 0.8698 0.936 0.9096 0.9486
0.3 8.09 -3.25 6.32 -2.61 4.6 -1.99 3.02 -1.39 

0.7136 0.9128 0.81 0.9278 0.8748 0.9332 0.9158 0.9442
0.4 8.16 -3.56 6.46 -2.81 4.78 -2.06 3.14 -1.41 

0.748 0.9182 0.8264 0.9214 0.8786 0.9346 0.9156 0.9404
0.80 0.0 11.05 -0.88 8.67 -0.88 6.47 -0.7 4.1 -0.8 

0.3978 0.9466 0.5818 0.947 0.731 0.946 0.8624 0.949
0.1 11.09 -1.4 8.84 -1.16 6.44 -1.61 4.16 -1.03 

0.4382 0.946 0.6076 0.9488 0.777 0.9392 0.8706 0.9478
0.2 11.08 -2.18 8.65 -1.96 6.52 -1.40 4.11 -1.29 

0.4830 0.9354 0.6536 0.9358 0.796 0.9540 0.8800 0.9442
0.3 11.21 -2.86 8.69 -2.71 6.19 -2.25 4.30 -1.49 

0.5234 0.9252 0.6764 0.9238 0.8090 0.9388 0.8836 0.9476
0.4 10.93 -4.28 8.65 -3.46 6.40 -2.48 4.05 -2.04 

0.6060 0.9180 0.7236 0.9188 0.8302 0.9322 0.8996 0.9410
0.75 0.0 14.16 -0.16 11.09 -0.33 8.15 -0.33 5.27 -0.48 

0.2006 0.945 0.3938 0.9466 0.6142 0.9464 0.8042 0.9478
0.1 14.39 -0.91 11.19 -0.68 8.20 -0.81 5.28 -0.91 

0.2364 0.9416 0.4360 0.9410 0.6454 0.9506 0.828 0.9474
0.2 14.21 -1.80 11.08 -1.69 8.11 -1.41 5.19 -1.24 

0.2962 0.9372 0.4906 0.9410 0.6702 0.9466 0.8336 0.9466
0.3 14.29 -2.93 10.92 -2.65 8.08 -1.95 5.31 -1.59 

0.3436 0.9342 0.5450 0.9298 0.7128 0.9414 0.8434 0.9406
0.4 14.32 -4.15 11.08 -3.37 8.12 -2.60 5.40 -1.97 

0.4036 0.9194 0.5892 0.9170 0.7516 0.9278 0.8542 0.9388
0.70 0.0 17.56 0.26 13.61 0.19 9.79 -0.13 6.47 -0.14 

0.0720 0.9376 0.2310 0.9382 0.4928 0.9386 0.7314 0.9502
0.1 17.56 -0.79 13.64 -0.66 10.07 -0.36 6.41 -0.64 

0.1032 0.9444 0.2696 0.9492 0.5170 0.9540 0.7560 0.9496
0.2 17.71 -1.77 13.49 -1.60 9.94 -1.31 6.39 -1.19 

0.1364 0.9350 0.3300 0.9396 0.5666 0.9454 0.7824 0.944
0.3 17.6 -3.01 13.77 -2.40 9.86 -2.14 6.44 -1.53 

0.1814 0.9290 0.3798 0.9346 0.6100 0.9310 0.7938 0.9472
0.4 17.70 -4.59 13.71 -3.66 9.84 -3.01 6.36 -2.26 

0.2324 0.9130 0.4350 0.9216 0.6600 0.9314 0.8220 0.9360

HR: hazard ratio; CR: censoring rate 
a: Relative bias (%); b: Coverage probability 
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Table 5.2 Comparison of empirical sizes to exponential distribution 
PPV 

0.5 0.6 0.7 0.8 
N CR Current EM Current EM Current EM Current EM 

300 0.0 0.0490 0.0486 0.0568 0.0582 0.0488 0.0490 0.0476 0.0474
0.1 0.0504 0.0496 0.0454 0.0456 0.0506 0.0494 0.0484 0.0476
0.2 0.0550 0.0540 0.0482 0.0490 0.0524 0.0532 0.0488 0.0482
0.3 0.0536 0.0514 0.0508 0.0484 0.0514 0.0518 0.0520 0.0516
0.4 0.0534 0.0516 0.0474 0.0488 0.0480 0.0494 0.0496 0.0480

600 0.0 0.0468 0.0474 0.0518 0.0518 0.0480 0.0474 0.0534 0.0544
0.1 0.0538 0.0540 0.0502 0.0506 0.0464 0.0452 0.0540 0.0558
0.2 0.0510 0.0514 0.0492 0.0488 0.0484 0.0492 0.0540 0.0550
0.3 0.0480 0.0484 0.0520 0.0518 0.0508 0.0496 0.0506 0.0508
0.4 0.0538 0.0538 0.0610 0.0600 0.0512 0.0516 0.0478 0.0484

900 0.0 0.0500 0.0500 0.0496 0.0492 0.0512 0.0502 0.0544 0.0534
0.1 0.0564 0.0552 0.0534 0.0526 0.0502 0.0496 0.0494 0.0490
0.2 0.0464 0.0466 0.0476 0.0484 0.0506 0.0516 0.0572 0.0568
0.3 0.0536 0.0538 0.0572 0.0580 0.0526 0.0546 0.0546 0.0546
0.4 0.0526 0.0514 0.0540 0.0530 0.0560 0.0556 0.0536 0.0532

CR: censoring rate 
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Table 5.3 Comparison of empirical powers to exponential distribution 
PPV 

0.5 0.6 0.7 0.8 
N HR CR Current EM Current EM Current EM Current EM 

300 0.85 0.0 0.1808 0.2980 0.2294 0.3498 0.2840 0.3920 0.3774 0.4610
0.1 0.1626 0.2312 0.2198 0.2932 0.2662 0.3414 0.3334 0.3998
0.2 0.1586 0.1592 0.1998 0.2248 0.2492 0.2934 0.3046 0.3418
0.3 0.1412 0.1280 0.1866 0.1904 0.2214 0.2490 0.2574 0.2852
0.4 0.1290 0.0984 0.1576 0.1418 0.1996 0.2038 0.2324 0.2480

0.80 0.0 0.2964 0.4840 0.4190 0.5800 0.5110 0.6570 0.6178 0.7182
0.1 0.2712 0.3836 0.3672 0.4984 0.4546 0.5650 0.5506 0.6372
0.2 0.2626 0.2870 0.3384 0.3760 0.4242 0.4900 0.5138 0.5824
0.3 0.2262 0.2378 0.2946 0.3170 0.3724 0.4170 0.4536 0.5064
0.4 0.1956 0.1670 0.2676 0.2650 0.3382 0.3546 0.4032 0.4360

0.75 0.0 0.4764 0.6802 0.6112 0.7768 0.7372 0.8472 0.8252 0.8946
0.1 0.4288 0.5726 0.5636 0.7006 0.6722 0.7786 0.7730 0.8396
0.2 0.3930 0.4300 0.5118 0.5684 0.6268 0.6976 0.7432 0.8042
0.3 0.3500 0.3504 0.4574 0.4968 0.5774 0.6222 0.6836 0.7286
0.4 0.3100 0.2902 0.4224 0.4230 0.5144 0.5540 0.5994 0.6534

0.70 0.0 0.6558 0.8348 0.7940 0.9102 0.8970 0.9558 0.9466 0.9740
0.1 0.6166 0.7396 0.7638 0.8592 0.8556 0.9204 0.9270 0.9600
0.2 0.5552 0.5864 0.7008 0.7324 0.8056 0.8470 0.8930 0.9252
0.3 0.5044 0.5098 0.6496 0.6760 0.7600 0.7906 0.8562 0.8822
0.4 0.4560 0.4366 0.5652 0.5888 0.7100 0.7504 0.7944 0.8256

600 0.85 0.0 0.3060 0.5256 0.4202 0.6082 0.5204 0.6788 0.6292 0.7398
0.1 0.2866 0.4538 0.3846 0.5452 0.4550 0.6080 0.5796 0.6882
0.2 0.2652 0.3822 0.3364 0.4700 0.4292 0.5688 0.5340 0.6342
0.3 0.2372 0.3154 0.3106 0.4040 0.3790 0.4840 0.4914 0.5762
0.4 0.1980 0.2384 0.2738 0.3296 0.3524 0.4184 0.4210 0.4962

0.80 0.0 0.5300 0.7722 0.6690 0.8442 0.7974 0.9042 0.8864 0.9472
0.1 0.4952 0.7032 0.6174 0.8052 0.7444 0.8692 0.8486 0.9136
0.2 0.4506 0.6464 0.5838 0.7576 0.6944 0.8236 0.8138 0.8936
0.3 0.4072 0.5608 0.5264 0.6876 0.6436 0.7778 0.7540 0.8402
0.4 0.3638 0.4570 0.4732 0.5976 0.5960 0.7080 0.6706 0.7628

0.75 0.0 0.7514 0.9120 0.8830 0.9634 0.9482 0.9874 0.9834 0.9948
0.1 0.7178 0.8858 0.8430 0.9440 0.9276 0.9770 0.9704 0.9882
0.2 0.6544 0.8366 0.7982 0.9188 0.9052 0.9642 0.9530 0.9814
0.3 0.6072 0.7736 0.7450 0.8842 0.8502 0.9374 0.9278 0.9694
0.4 0.5598 0.7148 0.6756 0.823 0.7974 0.8972 0.885 0.9398

0.70 0.0 0.9194 0.9796 0.9760 0.9952 0.9954 0.9984 0.9990 1.0000
0.1 0.8952 0.9692 0.9622 0.9906 0.9886 0.9978 0.9984 0.9998
0.2 0.8534 0.9440 0.9450 0.9862 0.9814 0.9958 0.9944 0.9988
0.3 0.8000 0.9056 0.9046 0.9650 0.9670 0.9890 0.9904 0.9978
0.4 0.7298 0.8622 0.8656 0.9498 0.9410 0.9800 0.9732 0.9914

HR: hazard ratio; CR: censoring rate 
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Table 5.3 Comparison of empirical powers to exponential distribution (continued) 
PPV 

0.5 0.6 0.7 0.8 
N HR CR Current EM Current EM Current EM Current EM 

900 0.85 0.0 0.4276 0.6570 0.5654 0.7578 0.6956 0.8370 0.7986 0.8824
0.1 0.4002 0.6146 0.5158 0.6992 0.6330 0.7856 0.7568 0.8478
0.2 0.3718 0.5296 0.4772 0.6358 0.5938 0.7364 0.6986 0.7888
0.3 0.3310 0.4442 0.4308 0.5552 0.5530 0.6632 0.6488 0.7386
0.4 0.2802 0.3310 0.3674 0.4422 0.4742 0.5604 0.5722 0.6472

0.80 0.0 0.7086 0.8928 0.8374 0.9460 0.9238 0.9762 0.9710 0.9908
0.1 0.6564 0.8574 0.8014 0.9270 0.8614 0.9478 0.9508 0.9814
0.2 0.6076 0.8142 0.7582 0.9010 0.8630 0.9600 0.9340 0.9704
0.3 0.5420 0.7332 0.6914 0.8448 0.8218 0.9196 0.8962 0.9494
0.4 0.5054 0.6522 0.6354 0.7784 0.7516 0.8612 0.8536 0.9156

0.75 0.0 0.9116 0.9796 0.9720 0.9954 0.9936 0.9990 0.9982 0.9996
0.1 0.8642 0.9662 0.9510 0.9890 0.9884 0.9974 0.9972 0.9990
0.2 0.8248 0.9460 0.9272 0.9854 0.9750 0.9952 0.9946 0.9984
0.3 0.7800 0.9246 0.9004 0.9740 0.9600 0.9918 0.9852 0.9954
0.4 0.7156 0.8792 0.8504 0.9434 0.9280 0.9752 0.9714 0.9906

0.70 0.0 0.9836 0.9980 0.9982 1.0000 1.0000 1.0000 1.0000 1.0000
0.1 0.9734 0.9942 0.9980 0.9998 1.0000 1.0000 0.9998 1.0000
0.2 0.9536 0.9902 0.9932 0.9990 0.9990 1.0000 0.9998 1.0000
0.3 0.9254 0.9810 0.9786 0.9958 0.9960 0.9996 0.9992 1.0000
0.4 0.8890 0.9686 0.9646 0.9918 0.9894 0.9984 0.9978 0.9996

HR: hazard ratio; CR: censoring rate 
 



 

 62

 

 

Figure 5.3 Flow chart of the simulation study to parametric proportional hazard 

regression model 

Mixture 

Distributions 
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distribution with probability γ. 
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λ+, λ-, κ+, κ-, α+, α-, and Z=1 
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n, λ+, λ-, κ+, κ-, α+, α-,γ 

3. EM algorithm 

4. Bootstrap (1,000 times) 

Repeat 

5,000 times 

Control group: 

Generate Weibull random 
deviates with parameter 

λ+, λ-, κ+, κ-, α+, α-, and Z=0 

4. Empirical relative bias 

5. Empirical coverage probability 

6. Empirical Power 
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Table 5.4 Relative bias (%) and coverage probability under the parametric proportional 
hazard model 

PPV 
0.5 0.6 0.7 0.8 

N HR CR Current EM Current EM Current EM Current EM 
600 0.8 0.0 11.95a -0.86 8.6 -0.95 6.34 -0.86 4.95 -0.88 

0.5832b 0.9492 0.6856 0.9494 0.8174 0.9504 0.8962 0.9446
0.8 0.2 11.31 -2.17 8.79 -2.06 6.55 -1.71 4.49 -1.41 

0.6190 0.9540 0.7628 0.9576 0.8376 0.9506 0.9062 0.9532
0.75 0.0 14.39 -0.09 11.28 -0.26 8.54 -0.48 5.60 -0.02 

0.3306 0.9530 0.5060 0.9594 0.7602 0.9616 0.8938 0.9592
0.75 0.2 16.09 -2.15 11.62 -1.54 8.36 -1.78 6.22 -2.00 

0.4724 0.9548 0.6292 0.9479 0.7930 0.9544 0.8538 0.9526
0.7 0.0 17.31 0.52 13.87 0.26 9.07 -0.19 6.27 -0.23 

0.2224 0.9428 0.4234 0.9438 0.6458 0.9522 0.8284 0.9414
0.7 0.2 17.45 -1.65 13.76 -1.64 9.39 -1.59 6.45 -1.28 

0.2472 0.9548 0.4536 0.9572 0.6546 0.9522 0.8356 0.9534

HR: hazard ratio; CR: censoring rate 
a: Relative bias (%); b: Coverage probability 
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Table 5.5 Comparison of empirical sizes under the parametric proportional hazard 
model 

PPV 
0.5 0.6 0.7 0.8 

N CR Current EM Current EM Current EM Current EM 
600 0.0 0.0516 0.0478 0.0474 0.0506 0.0498 0.0488 0.0536 0.0544

0.1 0.0498 0.0574 0.0492 0.0528 0.0488 0.0478 0.0542 0.0592
0.2 0.0524 0.0542 0.0496 0.0502 0.0492 0.0458 0.0544 0.0584
0.3 0.0498 0.0518 0.0516 0.0486 0.0516 0.0496 0.0546 0.0526
0.4 0.0526 0.0514 0.0546 0.0540 0.0522 0.0512 0.0498 0.0488

CR: censoring rate 
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Table 5.6 Comparison of empirical power under the parametric proportional hazard 
model 

PPV 
0.5 0.6 0.7 0.8 

N HR CR Current EM Current EM Current EM Current EM 
600 0.80 0.0 0.5494 0.7614 0.6696 0.8642 0.7858 0.8954 0.8934 0.9426

0.80 0.2 0.4512 0.6676 0.5704 0.7394 0.6932 0.8524 0.8506 0.8914
0.75 0.0 0.7352 0.9390 0.8734 0.9602 0.9476 0.9754 0.9836 0.9876
0.75 0.2 0.6336 0.8390 0.7832 0.9104 0.9236 0.9636 0.9566 0.9850
0.70 0.0 0.9162 0.9726 0.9738 0.9944 0.9962 0.9982 0.9988 1.0000
0.70 0.2 0.8714 0.9476 0.9436 0.9758 0.9746 0.9924 0.9918 0.9970

CR: censoring rate 
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Chapter 6 Discussion 

 

 Under the enrichment design, all patients must have a positive diagnosis for the 

molecular targets by the diagnostic device to be randomized to receive either the 

targeted drug or the control treatment in the targeted clinical trials. However, no 

diagnostic device is perfect with 100% PPV. The positive predictive value is an 

increasing function of prevalence. For example, the molecular target Xalkori is 

approved by the US FDA issued guidance Draft Guidance on In Vitro Companion 

Diagnostic Devices 2011 for the treated of non-small-cell lung cancer. However, the 

prevalence rate of each patient with the target is only 5%. The PPV of the diagnostic 

devices for the target will be low. Therefore, the treatment effect of Xalkori may be 

underestimated. Since the PPV of the in vitro companion devices will not be high if the 

prevalence rate of the molecular target is low even the device is approved by the US 

FDA. The treatment effect of the patients truly with the molecular target is 

underestimated. The magnitude of underestimation is inversely proportional to the 

magnitude of the PPV.  

 

As a result, the current estimation method may produce a biased estimator for the 

treatment effects of the targeted test drug in the patients truly with molecular target. 

Hence, we propose estimation and testing procedures by application of the EM 

algorithm to incorporate information of the PPV for inference of the treatment effects in 

the patient population truly with the molecular target. The results of our simulations 

show that the proposed estimation method can provide a sufficient coverage probability. 

The proposed testing procedure also can adequately control the type I error rate at the 



 

 68

nominal level and is uniformly more powerful than the current method. 

 

In the application of the EM algorithm, selection of initial values for μi+ and μi−, i = T, C 

is important. The estimates of efficacy for the current available therapies (control) are 

known for most of diseases. In addition, the expected magnitude of increment of 

efficacy over the control provided by the targeted drug is also specified in the protocol 

for the sample size determination. Therefore, a range of reasonable initial values can be 

determined for the EM algorithm from this information. One method for selection of 

initial values to generate μi+ and μi− from a exponential distribution is to employ the 

sample mean survival time of the observed data, Ty  and Cy . In other words, the 

traditional sample mean survival times, Ty  and Cy , of the test and control treatments 

are reasonable initial values for the proposed method. 

 

We consider the exponential parametric model that satisfies the proportional hazard 

assumption. However, the proportionality assumption may not hold in practice. We 

conducted an additional simulation study to investigate the impact of violation of the 

proportional hazard assumption on performance of our proposed method. Because the 

hazard function of the lognormal distribution is nonmonotonic and changes over time, 

we generated the survival times from the log-normal distribution for the situation when 

the proportional hazard assumption is violated. We further consider the following two 

cases in the simulation study: 

Case 1: Because we assume that the molecular targeted test drug is ineffective in 

the patients truly without the target and the placebo is ineffective in the 

patients truly with and without the target either. Therefore, the survival 
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times of the test drug group for the patients truly with the molecular 

target are generated from the exponential distribution. However, the 

survival times of the test drug group for the patients truly without the 

molecular target are generated from the log-normal distribution, and 

those of the control group are also generated from the log-normal 

distribution. 

Case 2: The survival times of the patients truly with and without the target 

assigned either to the molecular target test drug or to placebo were all 

generated from the log-normal distribution. 

 

The sample size for the additional simulation study is 600 per group with a censoring 

proportion of 0.2. The hazard ratios are 1.0, 0.80, and 0.75 and the PPVs are 0.5, 0.6, 

0.7, and 0.8. The results of this additional simulation are given in Tables 6.1 and 6.2. 

Table 6.1 presents the relative bias and coverage probability of the current and the 

proposed EM method. The results in Table 6.1 reveal that both the current and EM 

methods are biased. 

 

For Case 1, when the hazard ratio is 1, both methods underestimate the true hazard ratio 

with a relative bias ranging from –3.16% to –4.8%. When the hazard ratio is 0.8 or 0.75, 

the current method over-estimates the true hazard ratios, whereas the EM method 

produces under-estimated estimates. The relative bias of the two methods increases as 

the PPV decreases. The magnitude of the bias of the current method decreases from 

around 10.0% when PPV is 0.5 to around 1.0% when PPV is 0.8. On the other hand, the 

bias of the EM method changes from –15.1% when PPV is 0.5 to –8.44% when PPV is 

0.8. 
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For Case 2, when the hazard ratio is 1, the absolute relative biases of the both methods 

do not exceed 0.26%. When the hazard ratio is 0.8 or 0.75, the current method provides 

overestimated estimates, whereas the EM method under-estimates the true hazard ratios. 

The relative bias of the two methods increases as the PPV decreases. The magnitude of 

the bias of the current method decreases from 14.43% when PPV is 0.5 to around 4.0% 

when PPV is 0.8 On the other hand, the bias of the EM method changes from –38.77% 

when PPV is 0.5 to -12.93% when PPV is 0.8. 

 

For case 1, when the hazard ratio is 1, the fluctuation of the magnitude of the empirical 

coverage probability over PPV is quite small. However, when the hazard ratio is 0.75 or 

0.8, the empirical coverage probability of both methods is an increasing function of 

PPV. For the current method, the empirical coverage probability increase from around 

0.65 when PPV is 0.5 to 0.94 when PPV is 0.8. On the other hand, the empirical 

coverage probability of the EM method increases from about 0.77 for PPV being 0.5 to 

0.81 for PPV being 0.8. 

 

For case 2, when the hazard ratio is 1, the empirical coverage probabilities of the both 

methods range from 0.9314 to 0.9422 with very minor fluctuations. When the hazard 

ratio is 0.8 or 0.75, the empirical coverage probability of both methods is again an 

increasing function of PPV. However, the empirical coverage probabilities of the both 

methods are comparable for different values of PPVs. 

 

Table 6.2 presents the empirical powers of the current and the proposed EM method. 

For Case 1, when the hazard ratio is 1, all empirical sizes of both the current method 
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and the proposed EM procedure are inflated with a range from 0.0858 to 0.1288. These 

results demonstrate that both methods cannot control the size at its nominal level. Both 

of the empirical sizes and powers are increasing functions of the PPV. For Case 2, when 

the hazard ratio is 1, all empirical sizes of both the current method and the proposed EM 

procedure are from 0.0578 to 0.0686. The sizes of both methods are slightly inflated. 

Similar to Case 1, the empirical sizes and powers are increasing functions of the PPV. 

In summary, when the proportional hazard assumption is violated, both the current and 

EM methods produce biased estimates. The magnitude of the bias of the EM method 

seems to be larger than that of the current method. In addition, both methods can not 

control the empirical size. 

 

The most popular survival data regression model is the Cox (1972) proportional hazards 

model, in which the hazard function h(y|z) for an individual with covariate vector z  

P\  is modeled as 

h(y|z) = h0(y) exp(βTZ) 

where Z is the p-vector of true covariate values. The function h0(t) is a baseline hazard 

function of unspecified form, so that the model is semi-parametric. There might be two 

approaches to hazard ratio under the Cox’s proportional hazard model when the true 

status of the molecular target is not completely known. The first approach is to employ 

the observed status of the molecular target as a covariate Z2 in the Cox’s proportional 

hazard model. However, the observed Z2 is a surrogate measure for the true but latent 

covariate X. The second approach is to apply the EM algorithm to the produce of the 

partial likelihood. Under the assumption of the proportional hazards, the partial 

likelihoods can be formulated for the patients truly with the molecular target and truly 

without the molecular target, respectively. Then the latent variable for the true status of 
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the molecular target may be introduced to form the complete-data partial likelihood. Let 

h+(y| z) be the hazard rate for the patients truly with the molecular target and h–(y| z) for 

those truly without the molecular target, respectively. 

0

0

( | ) ( | ) exp( )
( | ) ( | ) exp( )

h y z h y z X
h y z h y z X

λ
λ

+ + +

− − −

=
=

 

where h0+(y| z) and h0–(y| z) are an arbitrary baseline hazard rates and Z is an indicator 

variable for the treatment. The likelihood based on the hazard function as specified 

above is expressed by 

{ } { }(1 )
0 0( | ) exp( ) (1 ) ( | ) exp( )i ix xL h y z X h y z Xγ λ γ λ −
+ + − −= −∏  

where xi is the latent variable indicating the true status of the molecular target for patient 

i. 

The partial likelihood may be formulated as 

(1 )

1

exp( ) (1 )exp( )
exp( ) exp( )

i ix x
n

i

X XL
X X

γ λ γ λ
λ λ

−

+ −

= + −

⎧ ⎫ ⎧ ⎫−⎪ ⎪ ⎪ ⎪= ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∏ ∑ ∑
 

 

The inferential procedures for the treatment effects of the targeted drug based on the 

censored endpoints such as overall survival (OS) or progression free survival (PFS) in 

the patients truly with the molecular target with the Cox’s proportional hazard model 

require further research. 
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Table 6.1 Relative bias and the coverage probability when censored rate = 20%, n = 600 
PPV 

0.5 0.6 0.7 0.8 

HR Current EM Current EM Current EM Current EM 

Case 1 

1.00 RB -3.16 -3.22 -3.37 -3.42 -4.18 -4.21 -4.77 -4.80 

CP 0.9142 0.9114 0.9052 0.9056 0.889 0.8872 0.8732 0.8712

0.80 RB 7.74 -15.10 4.58 -11.88 1.75 -9.70 -1.03 -8.44 

CP 0.7770 0.7782 0.8838 0.7932 0.9280 0.8068 0.9374 0.8116

0.75 RB 10.45 -15.03 6.57 -11.92 3.28 -9.64 0.09 -8.57 

CP 0.6562 0.7956 0.8202 0.8012 0.9116 0.8122 0.9458 0.8054

Case 2 

1.00 RB 0.26 0.19 -0.03 -0.09 0.16 0.12 0.05 0.02 

CP 0.9422 0.9418 0.9360 0.9340 0.9330 0.9314 0.9362 0.9350

0.80 RB 11.24 -38.66 8.90 -28.86 6.44 -20.31 4.18 -13.03

CP 0.6172 0.6676 0.7338 0.7250 0.8262 0.7918 0.8854 0.8344

0.75 RB 14.43 -38.77 11.16 -29.59 8.28 -22.23 5.32 -12.93

CP 0.4520 0.6632 0.6262 0.7376 0.7538 0.7900 0.8628 0.8484

RB: Relative bias (%); CP: Coverage probability; 
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Table 6.2 Comparison of empirical powers when censored rate = 20%, n = 600 
 PPV 

 0.5 0.6 0.7 0.8 

 HR Current EM Current EM Current. EM Current EM 

Case 1 1.00 0.0858 0.0886 0.0948 0.0944 0.1110 0.1128 0.1268 0.1288

 0.80 0.6270 0.8074 0.7828 0.8978 0.8780 0.9374 0.9454 0.9686

 0.75 0.8250 0.9424 0.9234 0.9760 0.9742 0.9908 0.9906 0.997 

Case 2 1.00 0.0578 0.0582 0.0640 0.0660 0.0670 0.0686 0.0638 0.0650

 0.80 0.4380 0.7400 0.5694 0.7834 0.6960 0.8286 0.7902 0.8574

 0.75 0.6542 0.8722 0.7922 0.9126 0.8870 0.9542 0.9458 0.9728
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Appendix A Fortran Codes for Simulation 

 

Fortran Codes to the Exponential Distribution Model 

PROGRAM EMEXP 
PARAMETER (MN = 2000) 
PARAMETER (MM = 1000) 
PARAMETER (N1 = 300) 
!PARAMETER (BB = 1000) 
PARAMETER (W1 = 0.8) ! PPV 
PARAMETER (W2 = 0.8) ! EVENT RATE = 1 - CENSORED RATE 
PARAMETER (A1 = 0.75) ! LAMBDA = 0.75 = 1/MEAN 
PARAMETER (A2 = 1) ! LAMBDA = 0.75 = 1/MEAN 
 
IMPLICIT DOUBLE PRECISION (a-h, o-Z) 
DOUBLE PRECISION IT 
INTEGER ISEED, IPER(MN), IB(MN) 
 
REAL P, PD, XTM1, XTM2, XCM1, XCM2, D, PDT, PDC, & 
     TXT1, CXT1, TXT2, CXT2, TXC1, CXC1, TXC2, CXC2, TXX(MN), 
CXX(MN), & 
     TUT(2), TDT(2), TUC(2), TDC(2), TROU(2), TSE(2), TOT(2), & 
     OUT(2), ODT(2), OUC(2), ODC(2), ROU(2), OSE(2), OT(2), OLCI(2), 
OUCI(2), OCI(2), & 
     SOUT(2), SOUC(2), SROU(2), SOSE(2), SOLCI(2), SOUCI(2), & 
     SUT(2), SUC(2), SPT(2), SPC(2), SRU(1), & 
     T(1), CI(2), LCI(1), UCI(1), SEB(2), SUSE(2) 
 
COMMON U1(2), U2(2), P1(2), P2(2), R1(2), R2(2), XX(MN), ID(MN), IR(MN), & 
       DXT(MN), XXT(MN), DXC(MN), XXC(MN), & 
    XM1(4,2), XM2(4,2), PROB1(2), PROB2(2), PC(2), DV1(2), DV2(2), XLNT, 
& 
       BXXT(MN), BXXC(MN), BDXT(MN), BDXC(MN), BR(1), BJ, DLIM, & 
       DU(1), SE(1), BD, BOT(1), BUT(2), BUC(2), SUUT(2), SUUC(2), ODTT, 
NS, NC, NEWF, N, NR, KB 
 
 
EXTERNAL RNPER, RNEXP, RNSET, FIN, DRNUN, RNBIN 
 
NR1 = N1+N1 
N = N1 
NR = NR1 
ND = N1 
 
 
 OPEN(8, FILE='emd11.txt') 
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ISEED=0 
 
CALL RNSET(ISEED) 
 
!---------- BERNOULLI ---------- 
P = W1 
PD = W2 
!---------- EXPONENTIAL DATA T1 ---------- 
XTM1 = 1/A1 
!---------- EXPONENTIAL DATA T2 ---------- 
XTM2 = 1/A2 
!---------- EXPONENTIAL DATA C1 ---------- 
XCM1 = 1/A2 
!---------- EXPONENTIAL DATA C2 ---------- 
XCM2 = 1/A2 
!---------- "INVERSE" HAZARD RATIO ---------- 
D = LOG(XCM1 / XTM1) 
!================================================== 
 CALL EXPMIN(DLIM) 
!---------- SIMULATION LOOP START ---------- 
DO 11 L = 1, MM 
WRITE(*,139) L 
139 FORMAT(6X, 'SIMUL_C1', 4X, I6) 
!-------------------- 
U1(1) = XTM1 
U1(2) = XTM2 
U2(1) = XCM1 
U2(2) = XCM2 
P1(1) = P 
P1(2) = 1-P 
P2(1) = P 
P2(2) = 1-P 
!---------- DATA SET ---------- 
CALL RNBIN(NR, 1, P, IR) 
!---------- PSEUDORANDOM PERMUTATION ---------- 
CALL RNPER(NR, IPER) 
!---------- SORT RANDOM NUMBERS ---------- 
CALL SVIGP(NR, IPER, IB, IR) 
!-------------------- 
!---------- Generate pseudorandom numbers from a standard exponential distribution 
---------- 
!---------- Deviates from the exponential distribution with mean THETA ---------- 
 
PDT = 1 / (A1 * (1-W2) / W2) 
PDC = 1 / (A2 * (1-W2) / W2) 
 
DO 701 I = 1, NR 
!---------- TEST ---------- 
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IF (I .LE. N .AND. IR(I) .EQ. 1) THEN  
CALL RNEXP(1, TXT1) 
CALL SSCAL(1, XTM1, TXT1, 1) 
TXX(I) = TXT1 
CALL RNEXP(1, CXT1) 
CALL SSCAL(1, PDT, CXT1, 1) 
CXX(I) = CXT1 
!-------------------- 
   IF ( TXT1 .LE. CXT1 ) THEN 
   XX(I) = TXT1 
   ID(I) = 1 
   ELSE IF ( TXT1 .GT. CXT1 ) THEN 
   XX(I) = CXT1 
   ID(I) = 0 
   END IF 
!-------------------- 
ELSE IF (I .LE. N .AND. IR(I) .EQ. 0) THEN  
CALL RNEXP(1, TXT2) 
CALL SSCAL(1, XTM2, TXT2, 1) 
TXX(I) = TXT2 
CALL RNEXP(1, CXT2) 
CALL SSCAL(1, PDC, CXT2, 1) 
CXX(I) = CXT2 
!-------------------- 
   IF ( TXT2 .LE. CXT2 ) THEN 
   XX(I) = TXT2 
   ID(I) = 1 
   ELSE IF ( TXT2 .GT. CXT2 ) THEN 
   XX(I) = CXT2 
   ID(I) = 0 
   END IF 
!---------- CONTROL ---------- 
ELSE IF (I .GT. N .AND. IR(I) .EQ. 1) THEN  
CALL RNEXP(1, TXC1) 
CALL SSCAL(1, XCM1, TXC1, 1) 
TXX(I) = TXC1 
CALL RNEXP(1, CXC1) 
CALL SSCAL(1, PDC, CXC1, 1) 
CXX(I) = CXC1 
!-------------------- 
   IF ( TXC1 .LE. CXC1 ) THEN 
   XX(I) = TXC1 
   ID(I) = 1 
   ELSE IF ( TXC1 .GT. CXC1 ) THEN 
   XX(I) = CXC1 
   ID(I) = 0 
   END IF 
!-------------------- 
ELSE IF (I .GT. N .AND. IR(I) .EQ. 0) THEN  
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CALL RNEXP(1, TXC2) 
CALL SSCAL(1, XCM2, TXC2, 1) 
TXX(I) = TXC2 
CALL RNEXP(1, CXC2) 
CALL SSCAL(1, PDC, CXC2, 1) 
CXX(I) = CXC2 
!-------------------- 
   IF ( TXC2 .LE. CXC2 ) THEN 
   XX(I) = TXC2 
   ID(I) = 1 
   ELSE IF ( TXC2 .GT. CXC2 ) THEN 
   XX(I) = CXC2 
   ID(I) = 0 
   END IF 
!-------------------- 
END IF 
701 CONTINUE 
 
!---------- END NR ---------- 
DO I = 1, N 
XXT(I) = XX(I) 
XXC(I) = XX(I+N) 
DXT(I) = ID(I) 
DXC(I) = ID(I+N) 
END DO 
!================================================== 
 
!================================================== 
!---------- TRUE TEST GROUP SAMPLE MEAN ---------- 
TUT(1) = 0. 
TDT(1) = 0. 
DO I = 1, N 
TUT(1) = TUT(1) + XXT(I) * IR(I) 
TDT(1) = TDT(1) + DXT(I) * IR(I) 
END DO 
TUT(1) = TUT(1) / TDT(1) 
!---------- TRUE CONTROL GROUP SAMPLE MEAN ---------- 
TUC(1) = 0. 
TDC(1) = 0. 
DO I = 1, N 
TUC(1) = TUC(1) + XXC(I) * IR(I+N) 
TDC(1) = TDC(1) + DXC(I) * IR(I+N) 
END DO 
TUC(1) = TUC(1) / TDC(1) 
!---------- TRUE MEAN RATE ---------- 
TROU(1) = TUC(1) / TUT(1) 
TSE(1) = (TDT(1) + TDC(1)) / (TDT(1) * TDC(1)) 
TOT(1) = ( LOG(TROU(1) ) / SQRT(TSE(1)) ) 
TOT(1) = ABS(TOT(1)) 
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!---------- ALL TEST GROUP SAMPLE MEAN ---------- 
OUT(1) = 0. 
ODT(1) = 0. 
DO I = 1, N 
OUT(1) = OUT(1) + XXT(I) 
ODT(1) = ODT(1) + DXT(I) 
END DO 
OUT(1) = OUT(1) / ODT(1) 
!WRITE(*,*) OUT(1) 
!---------- ALL CONTROL GROUP SAMPLE MEAN ---------- 
OUC(1) = 0. 
ODC(1) = 0. 
DO I = 1, N 
OUC(1) = OUC(1) + XXC(I) 
ODC(1) = ODC(1) + DXC(I) 
END DO 
OUC(1) = OUC(1) / ODC(1) 
ODTT = ODT(1) + ODC(1) 
ODTT = ODTT / NR 
!---------- MEAN RATE ---------- 
ROU(1) = OUC(1) / OUT(1) 
OSE(1) = ((ODT(1) + ODC(1)) / (ODT(1) * ODC(1))) 
OT(1) = ( LOG(ROU(1)) / SQRT(OSE(1)) ) 
OT(1) = ABS(OT(1)) 
 
II=0 
IF (OT(1) .GE. 1.96) II=1 
OCI(1) = OCI(1) + II 
!-------------------- 
CC1 = 0 
OLCI(1) = EXP( LOG(ROU(1)) - 1.96 * SQRT( OSE(1) ) ) 
OUCI(1) = EXP( LOG(ROU(1)) + 1.96 * SQRT( OSE(1) ) ) 
IF ((OLCI(1) .LE. EXP(D)) .AND. (OUCI(1) .GE. EXP(D))) CC1 = 1 
OCI(2) = OCI(2) + CC1 
!-------------------- 
ROU(1) = LOG(ROU(1)) 
OSE(1) = SQRT(OSE(1)) 
SOUT(1) = SOUT(1) + OUT(1) 
SOUC(1) = SOUC(1) + OUC(1) 
SROU(1) = SROU(1) + ROU(1) 
SOSE(1) = SOSE(1) + OSE(1) 
SOLCI(1) = SOLCI(1) + OLCI(1) 
SOUCI(1) = SOUCI(1) + OUCI(1) 
!================================================== 
 
!---------- EM METHOD ---------- 
!---------- CALL NOCO ---------- 
CALL NOCOT 
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!---------- EM METHOD END ---------- 
DO J=1,2 
SUT(J) = SUT(J) + U1(J) 
SUC(J) = SUC(J) + U2(J) 
SPT(J) = SPT(J) + PC(J) 
SPC(J) = SPT(J) 
END DO 
!---------- R(+) RATIO ---------- 
DU(1) = LOG(U2(1) / U1(1)) 
SRU(1) = SRU(1) + DU(1) 
!-------------------- 
!================================================== 
!---------- CALL BOOTSTRAPS ---------- 
CALL BOOT 
!---------- HOP TEST ---------- 
SEB(1) = SQRT(SE(1)) 
SUSE(1) = SUSE(1) + SEB(1) 
T(1) = (DU(1)) / SEB(1) 
T(1) = ABS(T(1)) 
 
JJ1 = 0 
IF (T(1) .GE. 1.96)  JJ1 = 1 
CI(1) = CI(1) + JJ1 
!---------- CONFERENCE INTERVAL ---------- 
CC2 = 0 
UCI(1) = DU(1) + (1.96 * SEB(1)) 
LCI(1) = DU(1) - (1.96 * SEB(1)) 
IF( (UCI(1) .GE. D) .AND. (LCI(1) .LE. D) )  CC2=1 
CI(2) = CI(2) + CC2 
!-------------------- 
11 CONTINUE 
!-------------------- 
 
!---------- SIMULATION LOOP END ---------- 
!---------- SIMULATION MEAN ---------- 
DO J = 1, 2 
SUT(J) = SUT(J) / MM 
SUC(J) = SUC(J) / MM 
SPT(J) = SPT(J) / MM 
END DO 
 
SRU(1) = SRU(1) / MM 
 
SOUT(1) = SOUT(1) / MM 
SOUC(1) = SOUC(1) / MM 
SROU(1) = SROU(1) / MM 
SOSE(1) = SOSE(1) / MM 
SUSE(1) = SUSE(1) / MM 
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CI(1) = CI(1) / MM 
CI(2) = CI(2) / MM 
OCI(1) = OCI(1) / MM 
OCI(2) = OCI(2) / MM 
 
SRU(1) = EXP(SRU(1)) 
SROU(1) = EXP(SROU(1)) 
 
WRITE(8, "(1X, A79)") '   SUT(1)    SUC(1)    SRU(1)      RB      
SUSE(1)   CI(1)     CI(2)     SPT(1)' 
WRITE(8, "(3F10.4, F10.2, 4F10.4)") SUT(1), SUC(1), SRU(1), (SRU(1)-A1)/A1*100, 
SUSE(1), CI(1), CI(2), SPT(1) 
WRITE(8, *) 
'------------------------------------------------------------------------------------------------' 
WRITE(8, "(1X, A69)") '   SOUT(1)   SOUC(1)   SROU(1)     RB      
SOSE(1)   OCI(1)    OCI(2)' 
WRITE(8, "(3F10.4, F10.2, 3F10.4)") SOUT(1), SOUC(1), SROU(1), 
(SROU(1)-A1)/A1*100, SOSE(1), OCI(1), OCI(2) 
WRITE(8, *) 
'------------------------------------------------------------------------------------------------' 
WRITE(8, "(1X, A29)") '   SUT(2)    SUC(2)    SPT(2)' 
WRITE(8, "(7F10.4)") SUT(2), SUC(2), SPT(2) 
 
WRITE(*, "(1X, A77)") '   SUT(1)    SUC(1)    SRU(1)    RB      SUSE(1)   
CI(1)     CI(2)     SPT(1)' 
WRITE(*, "(3F10.4, F8.2, 4F10.4)") SUT(1), SUC(1), SRU(1), (SRU(1)-A1)/A1*100, 
SUSE(1), CI(1), CI(2), SPT(1) 
WRITE(*, *) '-------------------------------------------------------------------------------' 
WRITE(*, "(1X, A67)") '   SOUT(1)   SOUC(1)   SROU(1)   RB      SOSE(1)   
OCI(1)    OCI(2)' 
WRITE(*, "(3F10.4, F8.2, 3F10.4)") SOUT(1), SOUC(1), SROU(1), 
(SROU(1)-A1)/A1*100, SOSE(1), OCI(1), OCI(2) 
WRITE(*, *) '-------------------------------------------------------------------------------' 
WRITE(*, "(1X, A29)") '   SUT(2)    SUC(2)    SPT(2)' 
WRITE(*, "(7F10.4)") SUT(2), SUC(2), SPT(2) 
 
!================================================== 
 
END 
 
!-------------------- 
!-------------- SUBROUTINE -------------- 
!-------------------- 
SUBROUTINE EXPMIN(rrmax) 
implicit double precision (a-h, o-z) 
rrmax = 1.0 
120 rrmax = rrmax + 1.0 
if (exp(-rrmax) .eq. 0.0) go to 130 
go to 120 
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130 rrmax = rrmax - 1.0 
return 
end  
!============================================================== 
 
!================================================== 
!================================================== 
! SUBROUTINE BOOTSTRAPS METHOD FOR STANDARD ERROR 
!================================================== 
!================================================== 
SUBROUTINE BOOT 
PARAMETER( MN = 2000 ) 
PARAMETER (BB = 1000 ) 
implicit double precision (a-h, o-Z) 
INTEGER BIR(MN), BIPER(MN), ISEED, KK, NRN, BIB(MN) 
INTEGER I, BL 
REAL BPP  
REAL P, PD, BXTM1, BXTM2, BXCM1, BXCM2, D, PDT, PDC, & 
     TXT1, CXT1, TXT2, CXT2, TXC1, CXC1, TXC2, CXC2, TXX(MN), 
CXX(MN), & 
     TUT(2), TDT(2), TUC(2), TDC(2), TROU(2), TSE(2), TOT(2), & 
     OUT(2), ODT(2), OUC(2), ODC(2), ROU(2), OSE(2), OT(2), OLCI(2), 
OUCI(2), OCI(2), & 
     SOUT(2), SOUC(2), SROU(2), SOSE(2), SOLCI(2), SOUCI(2), & 
     SUT(2), SUC(2), SPT(2), SPC(2), SRU(1), & 
     T(1), CI(2), LCI(1), UCI(1), SEB(2), SUSE(2), SSE1(1) 
 
COMMON U1(2), U2(2), P1(2), P2(2), R1(2), R2(2), XX(MN), ID(MN), IR(MN), & 
       DXT(MN), XXT(MN), DXC(MN), XXC(MN), & 
    XM1(4,2), XM2(4,2), PROB1(2), PROB2(2), PC(2), DV1(2), DV2(2), XLNT, 
& 
       BXXT(MN), BXXC(MN), BDXT(MN), BDXC(MN), BR(1), BJ, DLIM, & 
       DU(1), SE(1), BD, BOT(1), BUT(2), BUC(2), SUUT(2), SUUC(2), ODTT, 
NS, NC, NEWF, N, NR, KB 
 
EXTERNAL RNPER, DRNNOA, RNSET, TIN, EQTIL, DRNUN, RNBIN 
!-------------------- 
DO J = 1,2 
BUT(J) = 0 
BUC(J) = 0 
SUUT(J) = 0 
SUUC(J) = 0 
END DO  
KB = 0 
!================================================== 
!---------- BERNOULLI ---------- 
BPP = PC(1) 
!---------- EXPONENTIAL DATA ---------- 
BXTM1 = U1(1) 
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BXTM2 = U1(2) 
BXCM1 = U2(1) 
BXCM2 = U2(2) 
!-------------------- 
BD = LOG(BXCM1 / BXTM1) 
!-------------------- 
CALL EXPMIN(DLIM) 
PDT = 1 / ((1 / BXTM1) * (1-ODTT) / ODTT) 
PDC = 1 / ((1 / BXCM1) * (1-ODTT) / ODTT) 
!---------- SIMULATION LOOP START ---------- 
DO 12 BL = 1, BB 
 
CALL RNBIN(NR, 1, BPP, BIR) 
!---------- PSEUDORANDOM PERMUTATION ---------- 
CALL RNPER(NR, BIPER) 
!---------- SORT RANDOM NUMBERS ---------- 
CALL SVIGP(NR, BIPER, BIB, BIR) 
!-------------------- 
 
DO 706 I = 1, NR 
!---------- TEST ---------- 
IF (I .LE. N .AND. BIR(I) .EQ. 1) THEN  
CALL RNEXP(1, TXT1) 
CALL SSCAL(1, BXTM1, TXT1, 1) 
TXX(I) = TXT1 
CALL RNEXP(1, CXT1) 
CALL SSCAL(1, PDT, CXT1, 1) 
CXX(I) = CXT1 
!-------------------- 
   IF ( TXT1 .LE. CXT1 ) THEN 
   XX(I) = TXT1 
   ID(I) = 1 
   ELSE IF ( TXT1 .GT. CXT1 ) THEN 
   XX(I) = CXT1 
   ID(I) = 0 
   END IF 
!-------------------- 
ELSE IF (I .LE. N .AND. BIR(I) .EQ. 0) THEN  
CALL RNEXP(1, TXT2) 
CALL SSCAL(1, BXTM2, TXT2, 1) 
TXX(I) = TXT2 
CALL RNEXP(1, CXT2) 
CALL SSCAL(1, PDC, CXT2, 1) 
CXX(I) = CXT2 
!-------------------- 
   IF ( TXT2 .LE. CXT2 ) THEN 
   XX(I) = TXT2 
   ID(I) = 1 
   ELSE IF ( TXT2 .GT. CXT2 ) THEN 
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   XX(I) = CXT2 
   ID(I) = 0 
   END IF 
!---------- CONTROL ---------- 
ELSE IF (I .GT. N .AND. BIR(I) .EQ. 1) THEN  
CALL RNEXP(1, TXC1) 
CALL SSCAL(1, BXCM1, TXC1, 1) 
TXX(I) = TXC1 
CALL RNEXP(1, CXC1) 
CALL SSCAL(1, PDC, CXC1, 1) 
CXX(I) = CXC1 
!-------------------- 
   IF ( TXC1 .LE. CXC1 ) THEN 
   XX(I) = TXC1 
   ID(I) = 1 
   ELSE IF ( TXC1 .GT. CXC1 ) THEN 
   XX(I) = CXC1 
   ID(I) = 0 
   END IF 
!-------------------- 
ELSE IF (I .GT. N .AND. BIR(I) .EQ. 0) THEN  
CALL RNEXP(1, TXC2) 
CALL SSCAL(1, BXCM2, TXC2, 1) 
TXX(I) = TXC2 
CALL RNEXP(1, CXC2) 
CALL SSCAL(1, PDC, CXC2, 1) 
CXX(I) = CXC2 
!-------------------- 
   IF ( TXC2 .LE. CXC2 ) THEN 
   XX(I) = TXC2 
   ID(I) = 1 
   ELSE IF ( TXC2 .GT. CXC2 ) THEN 
   XX(I) = CXC2 
   ID(I) = 0 
   END IF 
!-------------------- 
END IF 
706 CONTINUE 
!---------- END NR ---------- 
DO I = 1, N 
XXT(I) = XX(I) 
XXC(I) = XX(I+N) 
DXT(I) = ID(I) 
DXC(I) = ID(I+N) 
END DO 
!================================================== 
 
!================================================== 
!-------------- EM METHOD ---------------- 
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U1(1) = BXTM1 
U1(2) = BXTM2 
U2(1) = BXCM1 
U2(2) = BXCM2 
P1(1) = BPP 
P1(2) = (1-BPP) 
P2(1) = BPP 
P2(2) = (1-BPP)       
!-------------- CALL NOCO ---------------- 
CALL NOCOB 
!-------------- EM METHOD END ---------------- 
BOT(1) = LOG(U2(1) / U1(1)) 
!-------------------- 
BUT(1) = BUT(1) + BOT(1) 
SUUT(1) = SUUT(1) + ( BOT(1) * BOT(1) ) 
!-------------------- 
KB = KB + 1 
!-------------------- 
12 CONTINUE 
!-------------- SIMULATION LOOP END ---------------- 
!-------------- SIMULATION MEAN -------------- 
BUT(1) = BUT(1) / BB 
!-------------------- 
BBIS = BUT(1) - BD 
!-------------- STANDARD ERROR -------------- 
SSE1(1) = (SUUT(1) - BB * BUT(1) * BUT(1)) / (BB - 1) 
SE(1) = SSE1(1) 
!-------------------- 
RETURN 
END           
 
 
!-------------------- 
!-------------- NOCOT -------------- 
!-------------------- 
SUBROUTINE NOCOT 
PARAMETER( MN = 2000 ) 
implicit double precision (a-h, o-z) 
!LOGICAL FOUT 
REAL XT1(1), XT2(1), PS(2), PS1(2), PS2(2), XLNC, D, BBIS 
COMMON U1(2), U2(2), P1(2), P2(2), R1(2), R2(2), XX(MN), ID(MN), IR(MN), & 
       DXT(MN), XXT(MN), DXC(MN), XXC(MN), & 
    XM1(4,2), XM2(4,2), PROB1(2), PROB2(2), PC(2), DV1(2), DV2(2), XLNT, 
& 
       BXXT(MN), BXXC(MN), BDXT(MN), BDXC(MN), BR(1), BJ, DLIM, & 
       DU(1), SE(1), BD, BOT(1), BUT(2), BUC(2), SUUT(2), SUUC(2), ODTT, 
NS, NC, NEWF, N, NR, KB 
 
DATA TT, IEND /.01, 200/ 
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XL1 = -1.0E30 
ITT = 0 
 
101 IF (ITT .NE. 0) GO TO 275 
    GO TO 301 
275 DO J = 1, 2 
       P1(J) = XM1(3,J) / N 
       P2(J) = XM2(3,J) / N 
       PC(J) = (P1(J) + P2(J)) / 2 
       U1(J) = XM1(1,J) / XM1(2,J) 
       U2(J) = XM2(1,J) / XM2(2,J) 
    R1(J) = XM1(2,J) 
    R2(J) = XM2(2,J) 
    END DO    
 
DO 287 I = 1, 3 
   DO 287 J = 1, 2 
      XM1(I, J) = 0. 
      XM2(I, J) = 0. 
287 CONTINUE 
!-------------- COMPUTE LIKELIHOOD -------------- 
301 CALL LNKLT 
    T1 = ABS(XL1 - XLNT) 
    IF (T1 .LE. TT) GO TO 326 
304 XL1 = XLNT 
    ITT = ITT + 1 
 
    IF( (ITT - IEND) .LT. 0) GOTO 101 
!    GO TO 101 
 
326 IF( (T1 - TT) .LE. 0 ) GOTO 601 
    IF( (ITT - IEND) .LT. 0) GOTO 304 
 
601 DO 296 I = 1, 3 
    DO 296 J = 1, 2 
    XM1(I, J) = 0. 
    XM2(I, J) = 0. 
296 CONTINUE 
RETURN 
END 
!============================================================== 
 
 
!============================================================== 
!-------------------- 
!-------------- LNKLT -------------- 
!-------------------- 
SUBROUTINE LNKLT 
PARAMETER( MN = 2000 ) 
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implicit double precision (a-h, o-z) 
REAL PS(2), PS1(2), PS2(2), XLNC, D, BBIS 
COMMON U1(2), U2(2), P1(2), P2(2), R1(2), R2(2), XX(MN), ID(MN), IR(MN), & 
       DXT(MN), XXT(MN), DXC(MN), XXC(MN), & 
    XM1(4,2), XM2(4,2), PROB1(2), PROB2(2), PC(2), DV1(2), DV2(2), XLNT, 
& 
       BXXT(MN), BXXC(MN), BDXT(MN), BDXC(MN), BR(1), BJ, DLIM, & 
       DU(1), SE(1), BD, BOT(1), BUT(2), BUC(2), SUUT(2), SUUC(2), ODTT, 
NS, NC, NEWF, N, NR, KB 
 
XLNT=0 
 
DO 271 K = 1, N 
 
DMI1=1.E+30 
DMI2=1.E+30 
 
DO 210 J = 1, 2 
D1 = -(LOG(P1(J)) - DXT(K) * LOG(U1(J)) - XXT(K) / U1(J)) 
IF(D1 .GE. DMI1) GO TO 210 
DMI1 = D1 
JJ1 = J 
210 DV1(J) = D1 
 
DO 211 J = 1, 2 
D2 = -(LOG(P2(J)) - DXC(K) * LOG(U2(J)) - XXC(K) / U2(J)) 
IF(D2 .GE. DMI2) GO TO 211 
DMI2 = D2 
JJ2 = J 
211 DV2(J) = D2 
 
 
PTOT1=0. 
PTOT2=0. 
 
DO 250 J = 1, 2 
IF (J - JJ1) 220, 230, 220 
220 D1 = DMI1 - DV1(J) 
IF (D1 + DLIM) 222, 225, 225 
222 PROB1(J) = 0. 
GO TO 250 
225 PROB1(J) = EXP(D1) 
GO TO 240 
230 PROB1(J) = 1.0 
240 PTOT1 = PTOT1 + PROB1(J) 
250 CONTINUE 
 
DO 251 J = 1, 2 
IF (J - JJ2) 221, 231, 221 
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221 D2 = DMI2 - DV2(J) 
IF (D2 + DLIM) 223, 226, 226 
223 PROB2(J) = 0. 
GO TO 251 
226 PROB2(J) = EXP(D2) 
GO TO 241 
231 PROB2(J) = 1.0 
241 PTOT2 = PTOT2 + PROB2(J) 
251 CONTINUE 
 
XLNT = XLNT + ( LOG(PTOT1) - DMI1 ) + ( LOG(PTOT2) - DMI2 )  
 
DO 271 J = 1, 2 
XP1 = PROB1(J) / PTOT1 
XP2 = PROB2(J) / PTOT2 
XM1(1,J) = XM1(1,J) + XP1 * XXT(K) 
XM1(2,J) = XM1(2,J) + XP1 * DXT(K) 
XM1(3,J) = XM1(3,J) + XP1 
XM2(1,J) = XM2(1,J) + XP2 * XXC(K) 
XM2(2,J) = XM2(2,J) + XP2 * DXC(K) 
XM2(3,J) = XM2(3,J) + XP2 
271 CONTINUE 
 
RETURN 
END 
!============================================================== 
 
 
!-------------------- 
!-------------- NOCOB -------------- 
!-------------------- 
SUBROUTINE NOCOB 
PARAMETER( MN = 2000 ) 
implicit double precision (a-h, o-z) 
!LOGICAL FOUT 
REAL XT1(1), XT2(1), PS(2), PS1(2), PS2(2), XLNC, D, BBIS 
COMMON U1(2), U2(2), P1(2), P2(2), R1(2), R2(2), XX(MN), ID(MN), IR(MN), & 
       DXT(MN), XXT(MN), DXC(MN), XXC(MN), & 
    XM1(4,2), XM2(4,2), PROB1(2), PROB2(2), PC(2), DV1(2), DV2(2), XLNT, 
& 
       BXXT(MN), BXXC(MN), BDXT(MN), BDXC(MN), BR(1), BJ, DLIM, & 
       DU(1), SE(1), BD, BOT(1), BUT(2), BUC(2), SUUT(2), SUUC(2), ODTT, 
NS, NC, NEWF, N, NR, KB 
 
DATA TT, IEND /.01, 200/ 
XL1 = -1.0E30 
ITT = 0 
 
101 IF (ITT .NE. 0) GO TO 275 
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    GO TO 301 
275 DO J = 1, 2 
       P1(J) = XM1(3,J) / N 
       P2(J) = XM2(3,J) / N 
       PC(J) = (P1(J) + P2(J)) / 2 
       U1(J) = XM1(1,J) / XM1(2,J) 
       U2(J) = XM2(1,J) / XM2(2,J) 
    R1(J) = XM1(2,J) 
    R2(J) = XM2(2,J) 
    END DO    
 
DO 287 I = 1, 3 
   DO 287 J = 1, 2 
      XM1(I, J) = 0. 
      XM2(I, J) = 0. 
287 CONTINUE 
!-------------- COMPUTE LIKELIHOOD -------------- 
301 CALL LNKLB 
    T1 = ABS(XL1 - XLNT) 
    IF (T1 .LE. TT) GO TO 326 
304 XL1 = XLNT 
    ITT = ITT + 1 
 
    IF( (ITT - IEND) .LT. 0) GOTO 101 
!    GO TO 101 
 
326 IF( (T1 - TT) .LE. 0 ) GOTO 601 
    IF( (ITT - IEND) .LT. 0) GOTO 304 
 
601 DO 296 I = 1, 3 
    DO 296 J = 1, 2 
    XM1(I, J) = 0. 
    XM2(I, J) = 0. 
296 CONTINUE 
RETURN 
END 
!============================================================== 
 
 
!============================================================== 
!-------------------- 
!-------------- LNKLB -------------- 
!-------------------- 
SUBROUTINE LNKLB 
PARAMETER( MN = 2000 ) 
implicit double precision (a-h, o-z) 
REAL PS(2), PS1(2), PS2(2), XLNC, D, BBIS 
COMMON U1(2), U2(2), P1(2), P2(2), R1(2), R2(2), XX(MN), ID(MN), IR(MN), & 
       DXT(MN), XXT(MN), DXC(MN), XXC(MN), & 
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    XM1(4,2), XM2(4,2), PROB1(2), PROB2(2), PC(2), DV1(2), DV2(2), XLNT, 
& 
       BXXT(MN), BXXC(MN), BDXT(MN), BDXC(MN), BR(1), BJ, DLIM, & 
       DU(1), SE(1), BD, BOT(1), BUT(2), BUC(2), SUUT(2), SUUC(2), ODTT, 
NS, NC, NEWF, N, NR, KB 
 
XLNT=0 
 
DO 271 K = 1, N 
 
DMI1=1.E+30 
DMI2=1.E+30 
 
DO 210 J = 1, 2 
D1 = -(LOG(P1(J)) - DXT(K) * LOG(U1(J)) - XXT(K) / U1(J)) 
IF(D1 .GE. DMI1) GO TO 210 
DMI1 = D1 
JJ1 = J 
210 DV1(J) = D1 
 
DO 211 J = 1, 2 
D2 = -(LOG(P2(J)) - DXC(K) * LOG(U2(J)) - XXC(K) / U2(J)) 
IF(D2 .GE. DMI2) GO TO 211 
DMI2 = D2 
JJ2 = J 
211 DV2(J) = D2 
 
PTOT1=0. 
PTOT2=0. 
 
DO 250 J = 1, 2 
IF (J - JJ1) 220, 230, 220 
220 D1 = DMI1 - DV1(J) 
IF (D1 + DLIM) 222, 225, 225 
222 PROB1(J) = 0. 
GO TO 250 
225 PROB1(J) = EXP(D1) 
GO TO 240 
230 PROB1(J) = 1.0 
240 PTOT1 = PTOT1 + PROB1(J) 
250 CONTINUE 
 
DO 251 J = 1, 2 
IF (J - JJ2) 221, 231, 221 
221 D2 = DMI2 - DV2(J) 
IF (D2 + DLIM) 223, 226, 226 
223 PROB2(J) = 0. 
GO TO 251 
226 PROB2(J) = EXP(D2) 
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GO TO 241 
231 PROB2(J) = 1.0 
241 PTOT2 = PTOT2 + PROB2(J) 
251 CONTINUE 
 
XLNT = XLNT + ( LOG(PTOT1) - DMI1 ) + ( LOG(PTOT2) - DMI2 )  
 
DO 271 J = 1, 2 
XP1 = PROB1(J) / PTOT1 
XP2 = PROB2(J) / PTOT2 
XM1(1,J) = XM1(1,J) + XP1 * XXT(K) 
XM1(2,J) = XM1(2,J) + XP1 * DXT(K) 
XM1(3,J) = XM1(3,J) + XP1 
XM2(1,J) = XM2(1,J) + XP2 * XXC(K) 
XM2(2,J) = XM2(2,J) + XP2 * DXC(K) 
XM2(3,J) = XM2(3,J) + XP2 
271 CONTINUE 
 
RETURN 
END 
!============================================================== 
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Statistical inference on censored data for
targeted clinical trials under
enrichment design
Chen-Fang Chen,a† Jr-Rung Lin,c† and Jen-Pei Liua,b,d*

For the traditional clinical trials, inclusion and exclusion criteria are usually based on some clinical endpoints; the genetic or
genomic variability of the trial participants are not totally utilized in the criteria. After completion of the human genome
project, the disease targets at the molecular level can be identified and can be utilized for the treatment of diseases.
However, the accuracy of diagnostic devices for identification of such molecular targets is usually not perfect. Some of the
patients enrolled in targeted clinical trials with a positive result for the molecular target might not have the specific molecular
targets. As a result, the treatment effect may be underestimated in the patient population truly with the molecular target.
To resolve this issue, under the exponential distribution, we develop inferential procedures for the treatment effects of the
targeted drug based on the censored endpoints in the patients truly with the molecular targets. Under an enrichment design,
we propose using the expectation–maximization algorithm in conjunction with the bootstrap technique to incorporate the
inaccuracy of the diagnostic device for detection of the molecular targets on the inference of the treatment effects. A
simulation study was conducted to empirically investigate the performance of the proposed methods. Simulation results
demonstrate that under the exponential distribution, the proposed estimator is nearly unbiased with adequate precision,
and the confidence interval can provide adequate coverage probability. In addition, the proposed testing procedure can
adequately control the size with sufficient power. On the other hand, when the proportional hazard assumption is violated,
additional simulation studies show that the type I error rate is not controlled at the nominal level and is an increasing
function of the positive predictive value. A numerical example illustrates the proposed procedures. Copyright © 2013 John
Wiley & Sons, Ltd.

Keywords: targeted clinical trials; enrichment design; exponential hazard; EM algorithm

1. INTRODUCTION

The disease targets at the molecular level can be identified
using the state-of-the-art biotechnology such as microarray, sin-
gle nucleotide polymorphisms, or next-generation sequencing.
Treatments specific for the patients with the identified molecular
targets can be developed and patients benefit from the treat-
ment without suffering serious or even fatal toxicity. As a result,
personalized medicines finally become a reality. Development
of targeted treatments is a translational science, which involves
translation from the accuracy of diagnostic devices for the molec-
ular targets to the effectiveness and safety of the treatment
modality for the patient population with the targets. There-
fore, evaluation of targeted treatments consists of evaluation not
only the efficacy and safety of the treatment modality but also
the accuracy of diagnostic device for the molecular targets. To
address these issues, the United States Food and Drug Admin-
istration (US FDA) issued Draft Drug-Diagnostic Co-Development
Concept Paper and Draft Guidance In Vitro Diagnostic Multivariate
Index Assays, respectively, in April 2005 and in July 2007 [1, 2].

One of the designs introduced in the US FDA Drug-Diagnostic
Co-development Concept Paper for evaluation of the targeted
treatments is the enrichment design [3]. Unlike the traditional
trials, under the enrichment design, the targeted clinical trials

consist of two phases. The first phase is the enrichment phase
in which in addition to the inclusion/exclusion criteria based
on some clinical endpoints, signs or symptoms, each patient is
screened by a diagnostic device for detection of the predefined
molecular targets. Then, the patients with a positive result by the
diagnostic device are randomized to receive either the targeted
treatment or the concurrent control.

However, no diagnostic test is perfect with 100% positive pre-
dictive value (PPV). In addition, measures for diagnostic accuracy
such as PPV are in fact estimators with variability. Liu and Chow
[4] pointed out that some patients enrolled in targeted clinical
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trials under the enrichment design might not have the specific
targets and hence the treatment effects of the drug for the molec-
ular targets could be underestimated. Liu, Lin and Chow [5] and
Liu and Lin [6] proposed to apply the expectation–maximization
(EM) algorithm in conjunction with the bootstrap technique to
incorporate the uncertainty on the inaccuracy of the diagnostic
device in detection of the molecular targets for the inference of
the treatment effects for the targeted therapy for the binary and
continuous endpoints under the enrichment design. On the other
hand, most of the current targeted drugs are for the treatment
of cancers such as breast cancer, lung cancer, or colorectal can-
cer. The efficacy endpoints for evaluation of targeted therapies
in cancer trials are censored endpoints such as overall survival
or progression free survival. Currently, literature for the statistical
methods taking into account the variability and accuracy of the
diagnostic device for molecular targets for the inference based on
censored endpoints is scarce.

Therefore, under the assumptions enrichment design and one-
parameter exponential distribution, we propose to apply EM
algorithm [7, 8] with the bootstrap method [9] to incorporate
the uncertainty of the PPV of the diagnostic device for statistical
inference of the treatment effect of the targeted drugs based on
the censored data. In the next section, under the one-parameter
exponential distribution, the currents method for the infer-
ence of the treatment effect between the targeted therapy and
control based on censored data are reviewed. Our proposed EM-
bootstrap method for incorporation of the variability and inaccu-
racy of the diagnostic devices for molecular targets are provided
in Section 3. A simulation study was conducted to empirically
investigate the performance of the proposed procedures in terms
of the bias and coverage probability of confidence intervals (CIs)
for estimation, and size and power for testing procedures. The
results of the simulation study are given in Section 4. Section 5
provides a numerical example to illustrate the proposed method.
Discussion and final remarks are provided in the last section.

2. CURRENT METHODS

In the following, the situation where a particular molecular tar-
get involved with the pathway in pathogenesis of the disease has
been identified, and a validated diagnostic device is available for
detection of the identified molecular target is considered. Fur-
thermore, we suppose that (i) this device is only for detection
of the molecular target and is not for prognosis of clinical out-
comes of patients, (ii) and a test drug for the particular molecular
target is available and is currently being developed. Under enrich-
ment design, to evaluate the treatment effects of the targeted test
treatment in the patient population truly with the molecular tar-
get is one of the objectives of targeted clinical trials. Following

the enrichment design, a two-group parallel design is considered.
The patients with a positive result by the diagnostic device are
randomized to receive either the molecular targeted test treat-
ment (T) or an untargeted concurrent control treatment (C). The
primary endpoint considered here is the censored data. The data
set that we have interest in analyzing consists of observations of
the random variables (Yij , ıij), jD 1, : : : , ni ; iD T , C, where Yij is the
observed survival time for the event or censored, and ıij is an indi-
cator variable that takes 1D event and 0D censored. Therefore,
under the assumption of the one-parameter exponential distri-
bution, the probability density functions of the two exponential
distributions are fi.yij/ D �ie��i yij , i D T , C with a mean survival
time �i D ��1

i , where �i is the hazard rate in the ith treatment
group. The corresponding hazard functions are hi.yij/ D �i , and

the survival functions are Si.yij/ D e��i yij , for 0 6 yij < 1.
The maximum likelihood estimators for the mean survival time

�i are O�i D T�i =ri , where T*
i D

niP
jD1

yij and ri D
niP

jD1
ıij , i D T , C

are the totals of uncensored and censored survival times and the
numbers of actual death time in each group [10]. Table I gives
the expected values of Yij by treatment and diagnostic result of
the molecular target. In Table I, �TC, �CC (�T�, �C�) are the
mean survival times of test and control groups for the patients
with (without) the molecular target. The hypothesis for detection
of treatment difference in the patient population truly with the
molecular target is the hypothesis of interest:

H0 : �TC ��CC D 0 versus Ha : �TC ��CC ¤ 0 (1)

Let NyT and NyC be the sample mean survival time of test and con-
trol treatments, respectively. In addition, some patients with a
positive diagnostic result may not have the molecular target, in
fact, because no diagnostic test is perfect for diagnosis of the
molecular target of interest without error. It follows that

E .NyT � NyC/D �.�TC ��CC/C .1� �/.�T� ��C�/

D �
�
��1

TC � �
�1
CC

�
C .1� �/

�
��1

T� � �
�1
C�

� (2)

where � is the PPV.
The expected values of the difference in sample mean survival

time consists of two parts. The first part is the treatment effects
of the molecular target drug in the positive diagnosis patients
who truly have the molecular target of interest. The second part
is the treatment effects of the patients with a positive diagnosis,
but they do not have the molecular target in fact. The assump-
tion based on that the efficacy of the targeted treatment in the
patients truly with the molecular target is greater than those with-
out the target is the reason for developing the targeted treat-
ment. Moreover, the targeted treatment is also expected to be

Table I. Population mean survival time by treatment and diagnosis.

Positive True target Indicator of Test Control
diagnosis condition diagnostic group group Difference

C C � �TC �CC �TC ��CC

� 1� � �T� �C� �T� ��C�

� is the positive predictive value.
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more efficacious than the untargeted control in the patient popu-
lation truly with the molecular targets. It follows that�TC��CC >

�T� � �C�. As a result, the difference in sample mean survival
times obtained under the enrichment design for targeted clini-
cal trials actually underestimates the true treatment effect of the
molecular targeted drug in the patient population truly with the
molecular target of interest. As it can be seemed from (2), the bias
of the difference in sample mean survival times decreases as the
PPV increases.

The current approach without considering the PPV and the
variability of its estimate is based on the following hypothesis
in terms of the log of the hazard ratio, � D log.�T=�C/ D

log.�C=�T /:

H0 : ™D 0 versus Ha : ™¤ 0.

The maximum likelihood estimate O� has an approximate normal
distribution with estimated variance of 1

rT
C 1

rC
. The traditional z-

test approach is to reject the null hypothesis at the ’ significance
level if

zD

ˇ̌̌̌
ˇ̌ O�

se
�
O�
�
ˇ̌̌̌
ˇ̌> z˛=2

On the basis of the aforementioned z-statistic, the corresponding
100 .1� ’/% CI can be obtained as follows

O� ˙ z˛=2

s
1

rT
C

1

rC

3. THE PROPOSED PROCEDURE

All patients randomized under the enrichment design have a pos-
itive diagnosis, but the true status of the molecular target for
individual patients in the target clinical trial is in fact unknown. It
follows that Yij are independently distributed as a mixture of two
exponential distributions with hazard �iC and �i�, respectively

'.yij , ıijj�iC/
�'.yij , ıijj�i�/

1�� iD T , C ; jD 1, : : : , ni

where '..j./ denotes the density function of an exponential vari-
able with events happened or survival function of an exponen-
tial variable with events censored. However, � is an unknown
PPV that must be estimated from the data. Therefore, the data
obtained from the targeted clinical trials are incomplete because
the true status of the molecular target of the patients is unknown.
We apply the EM algorithm to estimate the treatment effects for
the patients truly with the molecular target by incorporating the
estimates of the PPV of the device obtained from the diagnostic
effectiveness trials as the initial values.

For each patient, we have a set of variables (Yij , ıij , Xij), where
Yij is the observed survival time for the event or the censored
time and ıij is an indicator variable that takes 1D event and
0D censored for patient j in treatment i; Xij is the latent variable
indicting the true status of the molecular target of patient j in
treatment i; j D 1, : : : , ni , i D T , C. Xij is an indicator variable with
value of 1 for the patients with the molecular target and with a
value of 0 for the patients without the target. In addition, Xij are
assumed i.i.d. Bernoulli random variables with probability with
the molecular target being � . Let ‰ be the vector containing all
unknown parameters and .yobs, ıobs/ denote the vectors of the

observed primary efficacy endpoints from the targeted clinical
trial, where

‰ D .� ,�TC,�T�,�CC,�C�/
0

and

yobs D
�

yT1, : : : , yTnT , yC1, : : : , yCnC

�0
ıobs D

�
ıT1, : : : , ıTnT , ıC1, : : : , ıCnC

�0
It follows that the complete-data log-likelihood function for ‰ is
given by

log Lc.‰/D

nTX
jD1

xTj
�
log � C log'.yTj , ıTjj�TC/

�

C

nTX
jD1

.1� xTj/
�
log.1� �/C log'.yTj , ıTjj�T�/

�

C

nCX
jD1

xCj
�
log � C log'.yCj , ıCjj�CC/

�

C

nCX
jD1

.1� xCj/
�
log.1� �/C log'.yCj , ıCjj�C�/

�

.

Furthermore, from the previous diagnostic effectiveness trials, an
estimate of the PPV of the device is known. Therefore, at the initial
step of the EM algorithm for estimation, the treatment effects in
the patients truly with the molecular target, the observed latent
variable Xij are generated as i.i.d. Bernoulli random variables with
� estimated from the diagnostic effectiveness trial. The proce-
dures for implementation of the EM algorithm in conjunction
with the bootstrap procedure for inference of ™ in the patient
population truly with the molecular target are provided in the
Appendix.

Let O� be the estimator for the treatment effects in the patients
truly with the molecular target obtained from the EM algorithm.
Let S2

B denote the estimator of the variance of O� obtained by the
bootstrap procedure as demonstrated in the Appendix. It follows
that the null hypothesis is rejected and the efficacy of the molec-
ular targeted test drug is different from that of the control in the
patient population truly with the molecular target at the ’ level if

zD

ˇ̌̌̌
ˇ̌̌ O�q

S2
B

ˇ̌̌̌
ˇ̌̌> z˛=2

where z˛=2 is the upper 100 .˛=2/ percentile of a standard nor-
mal distribution. The corresponding 100 .1 � ˛/% asymptotic CI
for � D log.�TC=�CC/ can be constructed as

O� ˙ z1�˛=2

q
S2

B

4. SIMULATION STUDY

The random samples of patients with or without the molecular
target were generated from the Bernoulli distribution with prob-
ability � . Then, the units are randomized in a 1:1 ratio to the test
group or control group. We generate the survival times of the
groups from exponential distributions with the specified param-
eters �iC and �i� according to the status of the molecular target,
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Table II. Relative bias and the coverage probability.

PPV

0.5 0.6 0.7 0.8

n CR HR Current EM Current EM Current EM Current EM

300 20% 0.85 7.96� �3.73 6.42 �3.14 4.60 �2.52 3.13 �1.74
0.8632� 0.9768 0.8942 0.9732 0.9202 0.9690 0.9360 0.9610

0.80 11.01 �3.78 8.52 �2.95 6.37 �2.46 4.12 �2.05
0.7874 0.9760 0.8548 0.9732 0.8978 0.9696 0.9290 0.9604

0.75 14.33 �2.93 11.13 �2.33 8.21 �2.32 5.12 �2.04
0.6870 0.9752 0.7926 0.9724 0.8564 0.9674 0.9174 0.9660

0.70 17.90 �1.76 13.59 �2.13 10.17 �1.79 6.36 �1.79
0.5610 0.9772 0.7070 0.9742 0.9096 0.9690 0.8930 0.9604

30% 0.85 8.24 �4.35 6.20 �3.85 4.74 �2.88 3.19 �1.76
0.8652 0.9758 0.9094 0.9736 0.9238 0.9630 0.9396 0.9630

0.80 11.05 �4.84 8.75 �3.74 6.46 �2.84 4.24 �2.26
0.8100 0.9782 0.8602 0.9682 0.9048 0.9674 0.9322 0.9630

0.75 14.43 �4.29 11.13 �3.28 7.99 �2.81 5.25 �2.47
0.7140 0.9750 0.8064 0.9738 0.8760 0.9680 0.9136 0.9662

0.70 17.87 �3.76 13.61 �3.11 9.90 �2.87 6.41 �2.54
0.6114 0.9780 0.7390 0.9766 0.8348 0.9682 0.8986 0.9616

PPV, positive predictive value; CR, censored rate; HR, hazard ratio; EM, expectation–maximization.
� Relative bias (%).
� Coverage probability.

iD T , C, respectively, and also the censoring times from exponen-
tial distributions with hazards corresponding to a common cen-
soring proportion. We assume the placebo control is employed
in the targeted clinical trial. In addition, the molecularly targeted
test drug is not effective in the patients truly without the tar-
get either. Therefore, in the simulation, �T�, �CC, and �C� are
assumed equal and set to be a generic value of 1. The PPV is set
to be 0.5, 0.6, 0.7, and 0.8. We employed random right-censoring
mechanism in the simulation study. Each unit has a potential cen-
soring time C0i and a potential lifetime T 0i , which are assumed to
be independent random variables. Consider Yi DminfC0i , T 0i g and

an indicator ıi for the type of event (censored or death). If T 0 and
C0 are independent exponential random variables with parame-
ters �1 and �2, respectively, then PfT 0 < C0g D �1=.�1 C �2/.
By matching survival and censoring times in n pairs in sequence,
we generated the observed times, y D min.t0, c0/. The censoring
proportions considered in the simulation study are 0, 0.1, 0.2, 0.3,
and 0.4. The sample sizes are set as 300, 600, and 900 per group.
The power of the proposed testing procedure was investigate at
�TC D 0.70, 0.75, 0.80, and 0.85. The bias of the estimators and
the coverage probability of the 95% CI were investigated. A total
of 5000 random samples were generated, and the number of the

Table III. Comparison of empirical powers when censored rate D 20%.

PPV

0.5 0.6 0.7 0.8

n HR Current EM Current EM Current EM Current EM

300 0.85 0.1586 0.1592 0.1998 0.2248 0.2492 0.2934 0.3046 0.3418
0.80 0.2626 0.2870 0.3384 0.3760 0.4242 0.4900 0.5138 0.5824
0.75 0.3930 0.4300 0.5118 0.5684 0.6268 0.6976 0.7432 0.8042
0.70 0.5552 0.5864 0.7008 0.7324 0.8056 0.8470 0.8930 0.9252

600 0.85 0.2652 0.3822 0.3364 0.4700 0.4292 0.5688 0.5340 0.6342
0.80 0.4506 0.6464 0.5838 0.7576 0.6944 0.8236 0.8138 0.8936
0.75 0.6544 0.8366 0.7982 0.9188 0.9052 0.9642 0.9530 0.9814
0.70 0.8534 0.9440 0.9450 0.9862 0.9814 0.9958 0.9944 0.9988

900 0.85 0.3718 0.5296 0.4772 0.6358 0.5938 0.7364 0.6986 0.7888
0.80 0.6076 0.8142 0.7582 0.9010 0.8630 0.9600 0.9340 0.9704
0.75 0.8248 0.9460 0.9272 0.9854 0.9750 0.9952 0.9946 0.9984
0.70 0.9536 0.9902 0.9932 0.9990 0.9990 1.0000 0.9998 1.0000

HR, hazard ratio; EM, expectation–maximization; PPV, positive predictive value.1
6
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Figure 1. The empirical power curve when the PPV is 0.6, n D 300 and CR D 10%.

bootstrap samples was set to be 1000. FORTRAN 95 and IMSL’s
STAT/LIBRARY FORTRAN subroutines were used in the simulation
study.

For estimation, we investigate the relative bias of the estimators
and the coverage probability of the 95% CI. For hypothesis test-
ing, the performance measures include empirical size and power.
The relative bias is estimated as the average of 100 times the dif-
ferences between the estimates and the true value of ™ divided by
the true value over 5000 simulated samples. The coverage prob-
ability is calculated as the proportion of the 5000 95% CIs that
contain ™. The size and power were computed as the propor-
tion of the 5000 samples that the null hypothesis is rejected for
the two-sided test at the 5% significance level. For a 95% confi-
dence level, with 5000 simulation random samples implies that
95% of the empirical coverage probabilities will be within 0.94396
and 0.95604 if the proposed methods provide sufficient cover-
age probability. In addition, for a 5% nominal significance level, a
simulation study with 5000 random samples implies that 95% of
empirical sizes will be within 0.04396 and 0.05604 if the proposed
methods can adequately control the size at the nominal level
of 0.05.

The simulation results on estimation for censored rate of 20%
and 30% for sample size of 300 are provided in Table II. The sim-
ulation results of other combinations are similar. Hence, they are
not presented here. The results in Table II demonstrate that the
absolute relative bias of the estimator for traditional hazard ratio
for the patients truly with the molecular target by the current

method ranges from 3.1% to more than 17%. It increases as
the PPV decreases. On the other hand, the absolute relative bias
of the estimator for hazard ratio for the patients truly with the
molecular target obtained by the EM algorithm does not exceed
5.0%, although most of them are smaller than 3.0%. The variabil-
ity has little impact on the bias of both methods. Consequently,
the empirical coverage probabilities of the 95% CI of the current
method can be as low as 56.1% when the PPV is 50%, censored
rate is 20%, hazard ratio is 0.70 and n is 300. The coverage proba-
bility of the 95% CI by the current method is an increasing func-
tion of the PPV. None of the 32 coverage probabilities of the 95%
CIs by the current method in Table II exceed 0.95. On the con-
trary, no coverage probability of the EM method is below 0.95.
Therefore, the proposed procedures for estimation of the treat-
ment effects in the patients population truly with the molecular
target by the EM algorithm is not only nearly unbiased but also
provide sufficient coverage probability.

The simulation results on sizes reveal that all empirical sizes
of both the current method and the proposed EM procedure for
testing the hypothesis are within 0.0452 and 0.0610. These results
demonstrate that both methods can adequately control the size
at its nominal level of 5% under the null hypothesis. The empirical
powers of the simulation for the hazard ratio when the censored
rate is 20% are given in Table III. The results of power for the other
combinations are consistent with the other presented in Table III.
They are not provided here. In addition, Figure 1 presents the
power curves when n = 300, censored rate = 10%, and PPV is
0.6. In Table III, we observe that the power of the current method
is an increasing function of the PPV. For both the methods, the
power increases as the sample size increases. However, the simu-
lation results clearly demonstrate that the proposed testing pro-
cedure for the treatment effects based on the EM algorithm in
the patient population truly with the molecular target is uniformly
more powerful than the current method as depicted in Figure 1.

5. NUMERIC EXAMPLE

A targeted drug is developed for the treatment of the patient with
a certain cancer whose specific biomarker is over-expressed as
measured by an immunohistochemical assay. Suppose that the
immunohistochemical assay has a PPV of 0.75. From previous
studies, the hazard ratios for the patients truly with and with-
out the biomarker are 0.7 and 1.26, respectively, and are given
in Table IV. Under the enrichment design, 480 patients with posi-
tive test results were randomized in 1:1 ratio to receive either the
targeted drug plus the standard chemotherapy or the standard
chemotherapy. The censored rate is assumed to be 30%. Table V
provides the point estimates of hazard ratio for mortality between
the two groups, and their standard error and 95% CIs for the risk
when PPV is 0.75.

Table IV. Treatment effects as a function of a specific biomarker overexpression.

IHC assay result No. of patients Hazard ratio for mortality (95% CI)

Test result + 469 0.80 (0.64, 1.00)
True status� 120 1.26 (0.82, 1.94)
True status + 349 0.70 (0.51, 0.90)

IHC, immunohistochemical.

Pharmaceut. Statist. 2013, 12 165–173 Copyright © 2013 John Wiley & Sons, Ltd.
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Table V. Point and interval estimator of hazard ratio
for mortality.

PPV = 0.75

Results Current EM

Hazard ratio for mortality 0.8097 0.7108
SE 0.1082 0.1626
95% Lower confidence limit 0.6550 0.5168
95% Upper confidence limit 1.0009 0.9777

PPV, positive predictive value; EM, expectation–maximization.

When PPV is 0.75, the traditional approach without consider-
ation of inaccuracy of diagnostic device yields the estimate of
hazard ratio for mortality of 0.8097 with a 95% CI from 0.6550
to 1.0009. Because the 95% CI contains 1, the observed hazard
ratio of death is not statistically significant and the targeted drug
does not prove its superior efficacy over chemotherapy alone at
the 5% level. The reason for the failure of the targeted drug is
that 25% positive patients randomized do not have the molec-
ular targets. On the other hand, our proposed EM method pro-
vides the estimated hazard ratio of mortality is 0.7108. The 95%
CI for the hazard ratio of mortality is (0.5168, 0.9777), which
does not contain 1. As a result, the efficacy of the targeted drug
can be concluded superior to the control group based on the
hazard ratio.

6. DISCUSSION

Under the enrichment design, all patients must have a positive
diagnosis for the molecular target by the diagnostic device to
be randomized to receive either the targeted drug or the control
treatment in the targeted clinical trials. However, no diagnostic
device is perfect with 100% PPV. The PPV is an increasing function
of prevalence. For example, the molecular targeted drug Xalkori
is approved by the US FDA for the treatment of non-small cell
lung cancer according to the Draft Guidance on In Vitro Companion
Diagnostic Devices [11]. However, the prevalence rate for patients
with the target is only 5%. The PPV of the diagnostic devices for
the target will be low. Therefore, the treatment effect of Xalkori
may be underestimated. Because the PPV of the in vitro compan-
ion devices will not be high if the prevalence rate of the molecular
target is low even the device is approved by the US FDA. The
treatment effect of the patients truly with the molecular target is
underestimated. The magnitude of underestimation is inversely
proportional to the magnitude of the PPV.

As a result, the current estimation method may produce a
biased estimator for the treatment effects of the targeted test
drug in the patients truly with the molecular target. Hence, we
propose estimation and testing procedures by application of the
EM algorithm to incorporate information of the PPV for inference
of the treatment effects in the patient population truly with the
molecular target. On the results of our simulations, the proposed
estimation method is nearly unbiased and can provide a sufficient
coverage probability. The proposed testing procedure also can
adequately control the type I error rate at the nominal level and is
uniformly more powerful than the current method.

In the application of the EM algorithm, selection of initial values
for �iC and �i�, i D T , C is important. However, the estimates of

efficacy for the current available therapies (control) are known for
most of diseases. In addition, the expected magnitude of incre-
ment of efficacy over the control provided by the targeted drug
is also specified in the protocol for the sample size determination.
Therefore, a range of reasonable initial values can be determined
for the EM algorithm from this information. One method for selec-
tion of initial values to generate �iC and �i� from a exponential
distribution is to employ the sample mean survival time of the
observed data, NyT and NyC . In other words, the traditional sample
mean survival times, NyT and NyC , of the test and control treatments
are reasonable initial values for the proposed method.

We consider the exponential parametric model that satisfies
the proportional hazard assumption. However, the proportion-
ality assumption may not hold in practice. We conducted an
additional simulation study to investigate the impact of viola-
tion of the proportional hazard assumption on performance of
our proposed method. Because the hazard function of the log-
normal distribution is nonmonotonic and changes over time,
we generated the survival times from the log-normal distribu-
tion for the situation when the proportional hazard assumption
is violated. We further consider the following two cases in the
simulation study:

Case 1: Because we assume that the molecular targeted test drug
is ineffective in the patients truly without the target and
the placebo is ineffective in the patients truly with and
without the target either. Therefore, the survival times of
the test drug group for the patients truly with the molec-
ular target are generated from the exponential distribu-
tion. However, the survival times of the test drug group
for the patients truly without the molecular target are
generated from the log-normal distribution, and those of
the control group are also generated from the log-normal
distribution.

Case 2: The survival times of the patients truly with and with-
out the target assigned either to the molecular target
test drug or to placebo were all generated from the
log-normal distribution.

The sample size for the additional simulation study is 600 per
group with a censoring proportion of 0.2. The hazard ratios are
1.0, 0.80, and 0.75 and the PPVs are 0.5, 0.6, 0.7, and 0.8. The results
of this additional simulation are given in Tables VI and VII. Table VI
presents the relative bias and coverage probability of the current
and the proposed EM method. The results in Table VI reveal that
both the current and EM methods are biased.

For Case 1, when the hazard ratio is 1, both methods under-
estimate the true hazard ratio with a relative bias ranging from
�3.16% to�4.8%. When the hazard ratio is 0.8 or 0.75, the current
method over-estimates the true hazard ratios, whereas the EM
method produces under-estimated estimates. The relative bias of
the two methods increases as the PPV decreases. The magnitude
of the bias of the current method decreases from around 10.0%
when PPV is 0.5 to around 1.0% when PPV is 0.8. On the other
hand, the bias of the EM method changes from�15.1% when PPV
is 0.5 to�8.44% when PPV is 0.8.

For Case 2, when the hazard ratio is 1, the absolute relative
biases of the both methods do not exceed 0.26%. When the
hazard ratio is 0.8 or 0.75, the current method provides over-
estimated estimates, whereas the EM method under-estimates
the true hazard ratios. The relative bias of the two methods
increases as the PPV decreases. The magnitude of the bias of1
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Table VI. Relative bias and the coverage probability when censored rateD 20%, nD 600.

PPV

0.5 0.6 0.7 0.8

HR Current EM Current EM Current EM Current EM

Case 1

1.00 Relative bias �3.16 �3.22 �3.37 �3.42 �4.18 �4.21 �4.77 �4.80
Coverage probability 0.9142 0.9114 0.9052 0.9056 0.8890 0.8872 0.8732 0.8712

0.80 Relative bias 7.74 �15.10 4.58 �11.88 1.75 �9.70 �1.03 �8.44
Coverage probability 0.7770 0.7782 0.8838 0.7932 0.9280 0.8068 0.9374 0.8116

0.75 Relative bias 10.45 �15.03 6.57 �11.92 3.28 �9.64 0.09 �8.57
Coverage probability 0.6562 0.7956 0.8202 0.8012 0.9116 0.8122 0.9458 0.8054

Case 2

1.00 Relative bias 0.26 0.19 �0.03 �0.09 0.16 0.12 0.05 0.02
Coverage probability 0.9422 0.9418 0.9360 0.9340 0.9330 0.9314 0.9362 0.9350

0.80 Relative bias 11.24 �38.66 8.90 �28.86 6.44 �20.31 4.18 �13.03
Coverage probability 0.6172 0.6676 0.7338 0.7250 0.8262 0.7918 0.8854 0.8344

0.75 Relative bias 14.43 �38.77 11.16 �29.59 8.28 �22.23 5.32 �12.93
Coverage probability 0.4520 0.6632 0.6262 0.7376 0.7538 0.7900 0.8628 0.8484

PPV, positive predictive value; HR, hazard ratio; EM, expectation–maximization; RB, Relative bias; CP, Coverage probability.

Table VII. Comparison of empirical powers when censored rate = 20%, n = 600.

PPV

0.5 0.6 0.7 0.8

HR Current EM Current EM Current. EM Current EM

Case 1 1.00 0.0858 0.0886 0.0948 0.0944 0.1110 0.1128 0.1268 0.1288
0.80 0.6270 0.8074 0.7828 0.8978 0.8780 0.9374 0.9454 0.9686
0.75 0.8250 0.9424 0.9234 0.9760 0.9742 0.9908 0.9906 0.9970

Case 2 1.00 0.0578 0.0582 0.0640 0.0660 0.0670 0.0686 0.0638 0.0650
0.80 0.4380 0.7400 0.5694 0.7834 0.6960 0.8286 0.7902 0.8574
0.75 0.6542 0.8722 0.7922 0.9126 0.8870 0.9542 0.9458 0.9728

PPV, positive predictive value; HR, hazard ratio; EM, expectation–maximization.

the current method decreases from 14.43% when PPV is 0.5 to
around 4.0% when PPV is 0.8 On the other hand, the bias of the
EM method changes from �38.77% when PPV is 0.5 to -12.93%
when PPV is 0.8.

For case 1, when the hazard ratio is 1, the fluctuation of the
magnitude of the empirical coverage probability over PPV is quite
small. However, when the hazard ratio is 0.75 or 0.8, the empirical
coverage probability of both methods is an increasing function of
PPV. For the current method, the empirical coverage probability
increase from around 0.65 when PPV is 0.5 to 0.94 when PPV is
0.8. On the other hand, the empirical coverage probability of the
EM method increases from about 0.77 for PPV being 0.5 to 0.81
for PPV being 0.8.

For case 2, when the hazard ratio is 1, the empirical coverage
probabilities of the both methods range from 0.9314 to 0.9422
with very minor fluctuations. When the hazard ratio is 0.8 or
0.75, the empirical coverage probability of both methods is again
an increasing function of PPV. However, the empirical coverage

probabilities of the both methods are comparable for different
values of PPVs.

Table VII presents the empirical powers of the current and the
proposed EM method. For Case 1, when the hazard ratio is 1, all
empirical sizes of both the current method and the proposed EM
procedure are inflated with a range from 0.0858 to 0.1288. These
results demonstrate that both methods cannot control the size
at its nominal level. Both of the empirical sizes and powers are
increasing functions of the PPV. For Case 2, when the hazard ratio
is 1, all empirical sizes of both the current method and the pro-
posed EM procedure are from 0.0578 to 0.0686. The sizes of both
methods are slightly inflated. Similar to Case 1, the empirical sizes
and powers are increasing functions of the PPV. In summary, when
the proportional hazard assumption is violated, both the current
and EM methods produce biased estimates. The magnitude of
the bias of the EM method seems to be larger than that of the
current method. In addition, both methods can not control the
empirical size.

Pharmaceut. Statist. 2013, 12 165–173 Copyright © 2013 John Wiley & Sons, Ltd.
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The Cox proportional hazard model is a semi-parametric
method which does not need to assume a particular form of
probability distribution for the survival data. As a result, the haz-
ard function is not restricted to a specific functional form, and
hence the model has flexibility and widespread applications. On
the other hand, if the assumption of a particular probability distri-
bution for the data is valid, inference based on such an assump-
tion will be more precise. In particular, estimates of relative
hazards will tend to have smaller standard errors than they would
in the absence of a distribution assumption. The exponential
distribution is the simplest parametric model that satisfied the
assumption of proportional hazard. This is one of the seasons
why the exponential distribution is considered in this paper. How-
ever, the inference procedures for the treatment effects for the
patients truly with the molecular targets based on the Cox semi-
parametric proportional hazard model requires further research.
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APPENDIX

At the initial step of the EM algorithm, the observed latent vari-
able Xij are generated as i.i.d. Bernoulli random variables with
the PPV � estimated by that obtained from the diagnostic effec-
tiveness trial. At the .k C 1/st iteration, the E-step requires the
calculation of the conditional expectation of the complete-data
log-likelihood Lc.‰/, given the observed data .yobs, ıobs/, using

currently fitting b‰.k/ for‰ .

Q
�
‰ ;b‰.k/�D E‰.k/flog Lc.‰/jyobs, •obsg

Because log Lc.‰/ is a linear function of the unobservable com-
ponent labeled variables xij , the E-step is calculated by replacing

xij , by its conditional expectation given yij , using b‰.k/ for ‰ . That

is, xij is replaced by

Ox.k/ij D E‰.k/fxijjyij , ıijg

D
O�
.k/
i '

�
yij , ıij

ˇ̌̌
O�
.k/
iC

�
O�
.k/
i '

�
yij , ıij

ˇ̌̌
O�
.k/
iC

�
C
�

1� O� .k/i

�
'
�

yij , ıij

ˇ̌̌
O�
.k/
i�

�
iD T , C

which is the estimate of the posterior probability of the obser-
vation yij , ıij with molecular targets after the kth iteration . The

M-step requires the computation of O� .kC1/
i , O�.kC1/

iC , and O�.kC1/
i� ;

i D T , C, by maximizing log Lc.‰/. Because log Lc.‰/ is linear in
the xij , it follows that xij are replaced by their conditional expec-

tations Ox.k/ij . On the .kC 1/th iteration, the intent is to choose the

value of‰ , say b‰.kC1/, that maximizes Q
�
‰ ;b‰.k/�. It follows that

on the M-step of the .kC 1/st iteration, the current fit for the PPV
of test drug group and control group is given by

O”
.kC1/
i D

niP
jD1
Ox.k/ij

ni
, iD T , C.

Under the assumption of nT D nC , it follows that the overall PPV
is estimated by

O”.kC1/ D
�
O”
.kC1/
T C O”

.kC1/
C

�.
2.

The hazard rates of the molecularly target test drug and control
can then be estimated respectively as

O�
.kC1/
TC D

nTP
jD1
Ox.k/Tj ıTj

nTP
jD1
Ox.k/Tj yTj

, O�.kC1/
T� D

nTP
jD1

�
1� Ox.k/Tj

�
ıTj

nTP
jD1

�
1� Ox.k/Tj

�
yTj

O�
.kC1/
CC D

nCP
jD1
Ox.k/Cj ıCj

nCP
jD1
Ox.k/Cj yCj

, and O�.kC1/
C� D

nCP
jD1

�
1� Ox.k/Cj

�
ıCj

nCP
jD1

�
1� Ox.k/Cj

�
yCj

Therefore, the estimator for the treatment effect in the patients
with the molecular target ™ obtained from the EM algorithm is
given as

O™D log
�
O�TC= O�CC

�
D log . O�CC= O�TC/ .

We propose to apply the parametric bootstrap method to esti-
mate the standard error of O™.

Step 1: Choose a large bootstrap sample size, say B D 1000 or
above. For 16 b6 B, generate the bootstrap sample yb

obs,

ıb
obs according to the probability model. The parameters

for generating bootstrap samples yb
obs and ıb

obs are substi-
tuted by the estimators obtained from the EM algorithm
based on the original observations of primary efficacy
endpoints from the targeted clinical trial.

Step 2: The EM algorithm is applied to the bootstrap sample yb
obs

and ıb
obs to obtain estimatesb™�b , bD 1, .., B.1
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Step 3: An estimator for the variance of O™ by the parametric
bootstrap procedure is given as

S2
B D

BP
bD1

�
O™�b �

NO™�
�2

B� 1
,

where

NO™� D

BP
bD1

O™�b

B
.

Let O™ be the estimator for the treatment effects in the
patients truly with the molecular target obtained from
the EM algorithm. Let S2

B denote the estimator of the vari-

ance of O™ obtained by the bootstrap procedure. The null
hypothesis is rejected and the efficacy of the molecular
targeted test drug is different from that of the control in
the patient population truly with the molecular target at
the ˛ significance level if

zD

ˇ̌̌̌
ˇ̌̌ O™q

S2
B

ˇ̌̌̌
ˇ̌̌> z˛=2,

where z˛=2 is the ˛=2 upper percentile of a standard
normal distribution.

The corresponding 100 .1 � ˛/% asymptotic CI for ™ D

log.�TC=�CC/ can be constructed as O™˙ z1�˛=2

q
S2

B.
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