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ᄔ要

軟體定義網路將資料平面與控制平面分開到不同的設備上以集中管

理網路。然而，配置錯誤、硬體上的錯誤或攻擊者都可能導致封包在

資料平面上的實際行為和控制平面所定義的規則不同。過去提出的方

法透過傳送測試封包來檢驗資料平面是否正確。但他們通常致力於減

少測試封包的數量或生成封包的時間以提高效能，因此只假設了簡單

的轉發錯誤。本論文識別一個新的錯誤叫做 IP前綴不符，這個錯誤沒

有辦法被過去提出的工具完全檢測到。我們提出了一個封包生成演算

法，並且證明我們的方法在最壞的情況下依然可以在每輪的檢測中找

到至少一個前綴不符。因此，只要不斷檢測並修復這些錯誤，最終所

有錯誤都可以被發現。此外，我們實驗顯示我們的方法有著較好的性

能：即使一個交換機包含 50%的錯誤規則，我們的方法也可以在平均

兩輪檢測中找到所有前綴不符。

ᜢᗖӷ：軟體定義網路，資料平面安全，測試封包生成，匹配欄位錯

誤，IP前綴
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Abstract

Software Defined Network separates the data plane and the control plane

to different devices for centralizing the network management. However, the

actual data-plane behavior of the packets may not match the control-plane

rules due to misconfiguration, hardware errors, or attacks. Prior methods

verify the data plane’s correctness by sending test packets. However, these

tools often assume simple forwarding errors, and focus on reducing the packet

counts or the packet generation time to improve performance. This thesis

identifies a new error type called IP prefix mismatch, which cannot be fully

detected by previous tools. We propose an algorithm to generate test packets

and prove that our method can find at least one prefix mismatch in each round

of detection in theworst case. Therefore, by continuously detecting and fixing

them, all errors can be found eventually. Moreover, our experiment shows

a much better average-case performance: even if a switch contains 50% of

erroneous rules, our method can find all prefix mismatches in an average of

two detection rounds.

Keywords: Software Defined Network, Data Plane Security, Test Packet

Generation, Match Field Error, IP Prefix
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Chapter 1

Introduction

Software-Defined Network (SDN) is a network architecture that separates the control

plane and data plane to different devices, which enables flexible network management.

Network devices such as switches or routers forward packets to destinations based on

routing rules installed by the network administrators. A routing rule includes a matching

header field like IP addresses or port numbers and a forwarding action deciding where

packets match this rule should go. On the data plane, network devices parse and extract the

packet header fields and then try to match the predefined rules to transfer packets. How-

ever, the actual behaviors may not follow the expected rules due to misconfigurations,

hardware errors [14], or even attacks [19]. It is challenging to verify whether network

devices violate rules because network administrators have to troubleshoot hundreds and

thousands of rules in the network manually.

Probe-based fault detection is a type of scheme to detect inconsistencies between de-

sired network states and the data plane. Its main idea is to send testing packets (probes)

with different headers to switches to check if packets match each rule correctly. These

schemes can verify the correctness of all rules by monitoring where the packets are for-

warded. There are two common optimization strategies for these schemes: the first strat-

egy is to minimize the number of probes because probes share the bandwidth with regular

traffic, reducing probe numbers can mitigate the bandwidth overhead. For example, tools

such as ATPG [25] and SDNProbe [12] try to maximize the usage of each probe, covering

as many rules as possible. The second strategy is to minimize the time to generate probes,

1
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as a fast generation algorithm is desirable for dynamic networks. Prior work likes Mono-

cle [18], RuleChecker [28], and Pronto [29] has shown that finding a unique header in IP

space to traverse multiple rules can be modeled as an NP-complete problem, meaning that

there is no polynomial solution for now to solve this optimization problem. Therefore,

they proposed approximation solutions to reduce the calculation time.

However, prior work mostly considers that forwarding actions of a rule may go wrong.

A forwarding action error is that packets match a legitimate match field but are sent to in-

correct destinations, such as misdirection and dropping. Detecting each of these errors is

an independent event because, except for packets that match the faulty rule, others would

not be sent to the wrong destination. As a result, to test if a rule is faulty, one can send a

packet that matches the rule and then track its destination. Apparently, this approach has

some limitations. When a switch is broken or controlled by attackers, not only the action

fields of rules can go wrong. For example, packets may disobey the match field installed

by users due to the vulnerability on SDN [7]. However, prior work cannot properly de-

tect errors on the match field because they only focus on forwarding action errors. We

summarize the limitations of previous work in the following aspects.

• The threat model defined by prior work is overly simplified. Their approaches only

focus on detecting simple forwarding errors on action fields.

• Unlike forwarding action errors, match field errors would affect other benign rules,

which leads to a more complex problem. Prior work did not consider this situation.

In this work, we propose a data plane testing system that verifies the correctness of a

rule and detects errors on fields that could cause incorrect forwarding behaviors. We focus

on detecting errors on IP match fields, one of the header matching fields that is wildly used

in the real world. Our solution extends the prior probe-based fault detection scheme so

that it can detect errors on both action fields (i.e., dropping and misdirection) and match

fields (i.e, IP mismatch) without installing external functions on switches. We found that it

needs three probes per rule to guarantee the IP match field of each rule is correct. Finally,

we show that our solution can detect faults with zero false negatives.

In summary, this work makes the following contributions:

2
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• We identify a data plane error called prefix mismatch, which has never been dis-

cussed in prior work.

• We design a method to detect prefix mismatch with no false negatives and show the

correctness of this method.

• We evaluate our system with real and synthetic network datasets, and the results

show that multiple prefix mismatches can be detected in two rounds on average.

• We show that our solution is easy to deploy and can be easily optimized by previous

work.

3
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Chapter 2

Background

2.1 Software Defined Network

A typical Software Defined Network (SDN) is composed of three main components: con-

troller, SDN switch, and Openflow protocol.

Controller: The controller is a device that is distinct from SDN switches. It controls

the flow of packets by installing rules into switches. Because packet routing is central-

ized to the controller, SDN switches only need to follow the instructions requested by the

controller with no additional maintenance.

OpenFlow[16]: OpenFlow is a protocol that is used to transmit information between the

controller and SDN switches. It provides a common interface for different controllers to

communicate with SDN switches. For example, the controller can install or delete rules

on switches by FLOW_MOD message defined by OpenFlow, or it can get the statistical

data of rules such as the number of packets that have matched a rule.

SDN switch: There are multiple flow tables in an SDN switch. Packets will go through

flow tables in sequence and be forwarded to different output ports by flow entries (rules)

on the flow tables. Table 2.1 shows the components of a flow entry. Each entry consists

of three main fields which directly affect the forwarding behaviors: match, priority, and

action. The match field can determine what kinds of packets a rule can match. OpenFlow

supports more than thirty types of match fields such as MAC addresses, IPv4 addresses,

TCP port numbers, etc. The action field decides how to handle the matching packets.

5
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Match field Priority Counters Instructions (Actions) Timeouts Cookie Flags

Table 2.1: Components of a flow entry.

P2

P3

R1 : 10.1.0.0/24, goto P3
R2 : 10.1.1.0/24, goto P2
R3 : 10.0.0.0/24, goto P2

P1

(a) A sample network including three rules on a
switch.

10.1.0.100

10.0.0.66

10.1.1.234

Probe headers

P1

P1

P1

R1 P3

R3 P2

R2 P2

(b) The flow direction of each probe.

Figure 2.1: An example of probe-based fault detection scheme.

These packets could be directed to other flow tables or be sent to different switches. Fi-

nally, unlike traditional switches that match packets according to longest prefix match,

SDN switches follow the priority field, which strictly defines the order of all rules. In

other words, if a packet matches multiple entries, it selects the entry with the highest

priority. According to the OpenFlow specification [3], the behavior of SDN switches is

undefined when there are multiple entries with the same priority. By default, this situation

is prevented by OFPFF_CHECK_OVERLAP bit on FLOW_MOD messages.

2.2 Probe-based Fault Detection Schemes

Probe-based solutions proactively send test packets to detect faulty flow entries in the net-

work. As we mentioned before, prior work assumes that errors are only on forwarding

actions, and match fields of all entries are benign. These schemes generate probes accord-

ing to the benign match fields and check if a rule is faulty by tracking the destination of

each test packet. Figure 2.1 shows an example of how probe-based schemes work. There

are three rules on a switch in the network. To check the correctness of rules, these tools

generate probes to cover every rule. In this case, if all probes are sent from P1, generating

6
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three test packets is enough to verify all rules respectively. If the actual behavior of R2

is goto P3 instead of goto P2, for example, this error can be detected by the probe with

header 10.1.1.234 because of the incorrect destination.

7
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Chapter 3

Problem Definition

In this work, we propose an automatic tool that extends prior probe-based schemes to

detect data plane errors. We focus on detecting rules with faulty IP match fields, which

has never been discussed in probe-based solutions. Specifically, according to CIDR [5],

an IP address is composed of a prefix that is a set of fixed values representing a unique

network block and a suffix that indicates the number of bits of the prefix. For example, the

prefix of 192.168.1.0/24 is 192.168.1 or 11000000.10101000.00000001. The remaining

8 bits after the prefix can be arbitrary values, indicating the hosts under it. We attempt

to narrow down the issue of IP field error into a prefix mismatch problem. Our goal is

to find this type of error by comparing the expected rules and the actual behaviors tested

by probes. In the rest of the sections, we will demonstrate our work can fully detect IPv4

prefix mismatch.

3.1 Threat Model

In our scenario, benign users manage the controller and already know the expected rules on

all switches in the network. They also deploy our detection system on the controller, which

means that the controller is trustworthy. Rules on a switch are assumed to be optimized.

That is, they should be reachable by packets. It is a reasonable assumption because users

should prevent unreachable rules from being installed on a switch. On the other hand, data

plane errors can occur on any switch in the network, resulting in unexpected forwarding

9
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behaviors. However, we assume that errors only occur in existing flow entries. In other

words, there is no additional rule generated by malicious switches. We leave this issue to

future work and will discuss it in Section 6.

Because IP spaces are allocated according to CIDR, IP match fields of rules are based

on prefixes in most cases. Therefore, we focus on detecting prefix mismatches on the

match field in this work. Formally, an IPv4 match field of a rule r contains a 32-bit IP

value Vr and a 32-bit maskMr that represent the bits this rule should match. If the header

of an incoming packetHi satisfies the equationHi ∧Mr = Vr ∧Mr, this packet matches

the rule r. In practice, the mask contains a continuous sequence of 1’s starting from the

left-most bit [5]. We do not discuss the case of discontinuous masks because this kind

of mask is commonly used in ACL, and prior work [29] has proposed methods to verify

ACL rules. The binary representation of r is denoted as Vr = {br0, br1, ..., br31} from left to

right, and we can define the prefix of the rule as the following equation.

Pr =

 {b
r
0, b

r
1, ..., b

r
n}, n = |Mr|, |Mr| ̸= 0

∅, |Mr| = 0

Where |Mr| is denoted as the number of consecutive 1’s from the left-most bit of Mr.

Assume that the actual match field of the rule r on the data plane is Vr′ with the prefix

Pr′ = {br
′

0 , b
r′
1 , ..., b

r′

k }. we can categorize prefix mismatches into three types:

• Wrong value: ∃i, bri ̸= br
′

i , where 0 ≤ i ≤ n and Pr, P
′
r ̸= ∅.

• Shrinkage: |P ′
r| < |Pr|, and ∀i, bri = br

′
i , where 0 ≤ i ≤ k and Pr ̸= ∅.

• Expansion: |P ′
r| > |Pr|, and ∀i, bri = br

′
i , where 0 ≤ i ≤ n.

3.2 Prefix Mismatch Examples

To simplify the description, this section will show examples of prefix mismatches on an 8-

bit field and explain how prior work fails to detect them. Assume that there is a match field

x with value Vx = 00100000 and mask Mx = 11110000. The prefix of x is Px = 0010.

10
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0  0  1  0  0  0  0  0R1 Goto p1

Single rule Multiple rules

0  0  1  0  0  0  0  0

R1 Goto p1

R2 Goto p2

0  0  1  0  1  0  0  0

Match Match ActionAction PriorityPriority

(a) Prefix shrinkage

R2 Goto p2

Prefix
Shrinkage
Expansion

R1 Goto p10  0  1  0  0  0  0  0

0  0  0  0  0  0  0  0
0  0  1  0  0  0  0  0R1 Goto p1

(b) Prefix expansion

Figure 3.1: Examples of prefix mismatches of a match field with value 00100000 and
mask 11110000.

First of all, we discuss the case of wrong prefix values. Assume that the prefix value

of x is incorrect (e.g. Px′ = 0110). Recalling the prior probe-based solutions, because

they send probes without considering the match field errors, the packet headers would

be constructed under the legitimate prefix Px = 0010. Therefore, these probes always

fail to match Px′ = 0110, which means that this error can always be detected by packets

generated by prior work. It is worth noting that the length of Px′ can be arbitrary. For

example, Px′ = 1 and Px′ = 011100 are both cases of wrong prefix values. However, this

error is still detectable by packets under Px = 0010 because there are always some bits in

Px′ that are different from Px according to the threat model.

In this work, we focus on prefix shrinkage and expansion because they may not be

detected by prior work. Figure 3.1(a) shows an example of prefix shrinkage. In this case,

Px′ shrinks to 001. Similarly, since the testing packets generated by previous tools are

11
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Unreachable Complementary

Goto p1

Goto p2

Goto p1

R1

R2

R3

Prefix
Shrinkage
Expansion

0  0  1  0  0  0  0  0

R1 Goto p1

R2 Goto p2

0  0  1  1  0  0  0  0
0  0  1  1  0  1  0  0

0  0  1  1  0  0  0  0

0  0  1  1  1  0  0  0

Match Match ActionAction PriorityPriority

Figure 3.2: Benign cases with prefix mismatches.

always under Px = 0010, it has no chance to detect the extra part 0011xxxx covered by

Px′ . In the prefix expansion example in Figure 3.1(b), Px′ = 001000. Regardless of the

number of rules in a switch, previous work cannot fully detect prefix expansion because

they do not know which part of the match field is faulty. If the probe header is 00100010,

which follows the original prefix Px and is also under Px′ , this rule will be labeled as be-

nign by the controller and thus becomes a false negative. Prefix mismatches have several

potential risks: prefix expansion would cause a black hole by reducing the available IP

range. Prefix shrinkage would affect other rules and lead to unexpected forwarding re-

sults. Moreover, because prefix shrinkage may allow more traffic to pass through than the

original match field, there might be privacy leaks.

3.3 Benign Cases

We define that rules are benign as long as the forwarding results are correct, in other

words, the prefix mismatches do not affect the actual behaviors. Therefore, instead of

finding all prefix mismatches, our goal is to find out all unexpected behaviors caused by

prefix mismatches. We show some special cases of prefix mismatches that are defined

as benign in Figure 3.2: the left side of the figure means that R2 has expanded, but the

12
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available part of R2 is still the same as before. That is,

R2′ −R1 = 0010xxxx− 0011xxxx = R2−R1 = 001xxxx− 0011xxxx = 0010xxxx

The other side of the figure indicates that the prefix shrinkage on R3 covers the prefix

expansion onR2. For example, if there is a packet with header 00110010, it would be for-

warded to p1 byR3. Although the packet matches the wrong rule, its forwarding behavior

is correct. On the other hand, because the rest of the extra part onR3 is overlapped byR1,

the prefix shrinkage does not affect the actual routing. Both of these cases can forward

all packets properly. As a result, we only consider the prefix mismatches that could affect

the forwarding behaviors in the following statements.

3.4 Desired Properties

• Zero false negative. Given multiple prefix mismatch errors in a network, a detec-

tion method should be able to detect at least one of the errors in each testing round,

and eventually, all errors can be found and fixed by the controller.

• Scalability. A detection method should find out all errors in a few testing rounds

even when the number of rules is large with a high probability.

13
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Chapter 4

System Design

In this chapter, we will introduce our probe-based detection mechanism that targets to find

out match field inconsistency in the flow entries. In the rest of the sections, we first provide

the basic idea of detecting prefix mismatches (§4.1) and then introduce the workflow of

our system and each step in details (§§4.2-4.4). Finally, we discuss the situation when

there are multiple errors and present a comprehensive analysis (§4.5).

4.1 Detection Method

4.1.1 Prefix expansion

To detect prefix expansion, we generate two probes under each half of the target match

field. The main idea of this method is to ensure that at least one of the probes will go

wrong when the prefix of an entry expands. As shown in Figure 4.1, for example, to

test an entry with match field 10.0.0.0/28, we choose two disjointed parts of IP ranges:

10.0.0.0/29 and 10.0.0.8/29 to generate test packet headers. Because the faulty IP range

can be any part smaller than the original one when a prefix expands, we have no idea

which part of the match field becomes incorrect. Therefore, we test twomaximum subnets

of the target so that if the prefix expands to one side, the packet on the other side must

experience a faulty behavior. To be more precise, the prefix of 10.0.0.0/28 denotes as

P10.0.0.0/28 = 00001010...00, where |P10.0.0.0/28| = 28. The minimum prefix expansion

15
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Test expansion
(Should goto p1)

10.0.0.0/28, goto p1
00001010.00000000.00000000.0000 0000

00001010.00000000.00000000.00000 000

00001010.00000000.00000000.00001 000

00001010.00000000.00000000.0001 0000

Test shrinkage
(Depends on other rules)Target rule

10.0.0.0/29

Testing IP range
10.0.0.8/29

10.0.0.16/28

Figure 4.1: An example of our detection mechanism. Detect prefix mismatches on
10.0.0.0/28.

of the rule can be either P l
10.0.0.0/28′ = 00001010...000 or P r

10.0.0.0/28′ = 00001010...001,

where |P l
10.0.0.0/28′| = |P r

10.0.0.0/28′| = 29. Because all other prefix expansions are subnets

ofP l
10.0.0.0/28′ orP r

10.0.0.0/28′ , we can detect the error by the probe under one of theminimum

prefix expansion.

4.1.2 Prefix shrinkage

When the prefix of an entry shrinks, the size of the IP range is at least two times larger

than before because the number of arbitrary bits in the match field increases at least by

one. Our target is to find the minimum prefix shrinking range so that no matter how large

the extra IP range is, we can always send probes under faulty parts. In Figure 4.1, because

the minimum prefix shrinkage of this entry is 10.0.0.0/27, or denoted as P10.0.0.0/28′ =

00001010...0, |P10.0.0.0/28′| = 27, all prefix shrinkages are supernets of P10.0.0.0/28′ . There-

fore, the probe under 10.0.0.16/28, which is the other half of the target rule 10.0.0.0/28

and in the range of the minimum prefix shrinkage, can always detect the fault when the

prefix shrinks. It is worth noting that when we test prefix shrinkage, the expected be-

havior depends on other entries with lower priority. If the test packet under 10.0.0.16/28

matches an entry that also forwards packets to p1, we cannot detect the prefix shrinkage

by comparing the different forwarding behaviors. As a result, we need to ensure that when
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Install testing rules 
on switches.

Preprocessing Rule installation Verification

Input:

Flow entries

For each rule, 
generate 3 probes.

Prefix expansion

Prefix expansion

Prefix shrink

If it is a probe,
goto Controller

Wait for probes to 
be sent back.

Probes

Figure 4.2: Workflow of our detection system.

testing prefix shrinkage, the expected behavior of the probe must not be the same as the

action field of the target rule. We will describe more details in Section 4.3.

4.2 System Overview

As Figure 4.2 shows, there are three steps in our system, namely, preprocessing, rule

installation, and verification. In the preprocessing step, the system generates test packets

according to flow entries on each switch. Because the IP ranges of flow entries with higher

priorities may overlap with lower ones, it is difficult to find an available header that avoids

other rules and exactlymatches the target rule. We leverage an SAT solver, which is widely

used in previous work [12], [18], [28], to find available headers. After generating test

packets, the next step is to check the forwarding behaviors of these packets by installing

testing rules on switches. The purpose of testing rules is to catch the probes that behave

correctly and then send them back to the controller. If test packets are forwarded to the

wrong destination or dropped by switches because of faulty entries, these misdirected

packets cannot go back to the controller. In the end, the controller can check whether all

entries work properly by waiting for test packets to be sent back.
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4.3 Preprocessing

Preprocessing is the most important step in our system. The purpose of this step is to

generate packets for each entry to test prefix expansion and shrinkage. However, the

problem of finding an available header for an entry is hard to solve because we need to

avoid matching rules with higher priorities. It is proven to be a well-known NP-complete

problem [23]. In practice, we can use an SAT solver such as PicoSAT [4] to calculate

available headers for each rule.

Algorithm 1 Generate headers (prefix expansion)
Input: A set of rules of a switch R = {r1, r2...rn}
Output: A set of headers, Hexpand, used to test prefix expansion.
1: function Gൾඇൾඋൺඍൾ_Hൾൺൽൾඋඌ(header,Htotal)
2: if header.mask = 32 then
3: return header, null
4: end if
5: headerl, headerr ← Split(header) ▷ split the header into 2 maximum subnets
6: hsolved

l ← (headerl ∧ ¬Htotal).solveSAT () ▷ get a header by SAT solver
7: hsolved

r ← (headerr ∧ ¬Htotal).solveSAT ()
8: if hsolved

l = null ∧ hsolved
r = null then

9: return null, null
10: else if hsolved

l = null then
11: return Gൾඇൾඋൺඍൾ_Hൾൺൽൾඋඌ(headerr, Htotal)
12: else if hsolved

r = null then
13: return Gൾඇൾඋൺඍൾ_Hൾൺൽൾඋඌ(headerl, Htotal)
14: else
15: return hsolved

l , hsolved
r

16: end if
17: end function
18: sort R in decreasing priority order
19: Htotal ← null
20: for each r ∈ R do
21: hl, hr ← Gൾඇൾඋൺඍൾ_Hൾൺൽൾඋඌ(r.header,Htotal)
22: Hexpand.add((hl, hr))
23: Htotal ← Htotal ∨ r.header
24: end for

Algorithm 1 shows the process to generate headers to test prefix expansion. The input

is a ruleset of a switch; the output is a set of packet headers. The algorithm first sorts

all rules by priority (line 18) and initializes an empty set Htotal to store rules that have

been processed (line 19). Line 20-25 iterates each rule to generate two available headers
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by function GENERATE_HEADERS. In this function, we first split the target rule into

two equal subnets (line 5) to obtain minimum prefix expansion ranges, and then obtain

headers for each subnet by an SAT solver (line 6-7), where header ∧ ¬Htotal is a set that

avoids any IP range with higher priority but matches the target range header. If both

hsolved
l and hsolved

r are unsatisfiable, it means that the target rule is unreachable (line 8-9).

On the contrary, if there are solutions under both subnets (line 14-15), the results will be

returned. Note that the function must obtain two available headers before returning the

results except for the case of header.mask = 32 (line 2-4). As we mentioned above, an

IP range is unreachable if header ∧ ¬Htotal is unsatisfiable. When we send a probe to

an unreachable subnet, this packet never matches the target rule. In this case, the probe

becomes useless to detect prefix expansion, which leads to false negatives. Therefore, we

have to avoid the unreachable part and split the reachable subnet again (line 10-13). In

the worst case, the function runs at most 32 times for an IPv4 rule.

Algorithm 2 Generate headers (prefix shrinkage)
Input: A set of rules of a switch R = {r1, r2...rn}, an arrayHP storing the union of rules
of each output port
Output: A set of headers Hshrink, used to test prefix shrinkage.
1: function Gൾඇൾඋൺඍൾ_Hൾൺൽൾඋඌ(header,Htotal, Hport)
2: if header.mask = 0 then
3: return null
4: end if
5: he ← Flip(header) ▷ flip the right most bit covered by mask
6: hsolved

e ← (he ∧ ¬Hport ∧ ¬Htotal).solveSAT ()
7: if hsolved

e = null then
8: return Gൾඇൾඋൺඍൾ_Hൾൺൽൾඋඌ(header ∨ he, Htotal, Hport)
9: else
10: return hsolved

e

11: end if
12: end function
13: sort R in decreasing priority order
14: Htotal ← null
15: for each r ∈ R do
16: he ← Gൾඇൾඋൺඍൾ_Hൾൺൽൾඋඌ(r.header,Htotal, HP [r.port])
17: Hshrink.add(he)
18: Htotal ← Htotal ∨ r.header
19: end for

The algorithm of generating headers to check prefix shrinkage is shown in Algorithm
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2. The input of this algorithm includes a ruleset of a switch and an array HP that stores

the union of rules of the different output ports. HP can be obtained in linear time by

iterating all rules once. Line 13-19 is the same as Algorithm 1, in each loop, we calculate

a unique header for a rule and then store the rule intoHtotal. In the function, line 5 flips the

rightmost bit of the rule covered by the mask to get the minimum prefix shrinkage range.

Before solving SAT, we define our constraints as finding a header that avoids rules with

higher priority and whose expected behavior (output port) is not the same as the target’s

(line 6). If the formula is unsatisfiable, the extra IP range from the prefix shrinkage either

is unreachable or has the same behavior as the target. Line 7-10 keeps shrinking the prefix

until getting a header under a minimum available prefix that the target rule can shrink.

If a prefix is equal to zero, it means that there is no extra IP range that can be caused by

prefix shrinkages. Therefore, We do not have to generate packets for this rule (line 2-4).

4.4 Rule Installation & Verification

To track where test packets are forwarded, we install additional testing rules [12, 28] to

collect packets back to the controller, which has the ability to analyze the network and

make decisions. In practice, some prior work [25, 29] requires benign hosts to send and

receive test packets. In this work, we simulate this scenario by sending packets from the

controller and installing testing rules on switches to receive packets. Therefore, we do not

consider errors in testing rules. Though we do not simulate benign hosts, our method can

still detect prefix mismatches properly. We discuss the rule installation and verification

process in the following two aspects:

• Prefix expansion. To check whether a prefix expands, we need to ensure both pack-

ets generated by Algorithm 1 are forwarded to the correct destination. Therefore,

we install the testing rule on the destination switch so that if probes are sent to the

wrong switch, the controller would not receive them from the testing rule.

• Prefix shrinkage. When testing the prefix shrinkage of a rule, we send a probe

whose destination is different from the target rule. We install the testing rule on
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the destination switch of the target rule so that if the controller receives the probe

from this switch, we know that the probe is directed to the wrong destination by the

expanded prefix.

4.5 Multiple Errors

In this section, we will prove that our solution can always detect at least an error even

if there are multiple prefix mismatches. Assume that there are N rules with decreasing

priority order on a switch denoted as {r1, r2, ..., rN}.

Theorem 1 The first prefix shrinkage (with the highest priority) on a switch is always

detectable by our solution.

Proof: We denote the first prefix shrinkage as r′s, where 1 ≤ s ≤ N . If there is no other

errors (i.e. prefix expansions) above r′s, Algorithm 1 guarantees that the generated probe

pkt can avoid all other rules with higher priorities and match r′s, denoted as,

pkt ∈ H = r′s ∧ ¬
s−1∪
i=1

ri

Therefore, our system can detect r′s as if the switch contains only one error. On the other

hand, assume that a set of rules containing prefix expansions is above the first prefix

shrinkage, denoted asE. The actual available IP space for the probe of testing r′s becomes,

H ′ = r′s ∧ ¬(
s−1∪

i=1,i ̸∈E

ri ∨
∪
j∈E

r′j)

According to the threat model, if a prefix P expands, the expanded prefix P ′ always sat-

isfies two conditions: the first condition is |P ′| > |P |. The second one is that all bits from

the left-most bit to the |P |-th bit in P ′ are the same as P . These conditions guarantee that

the IP range of the expanded prefix is always a subset of the original one. Therefore,

(
∪s−1

i=1,i ̸∈E ri ∨
∪

j∈E r′j) ⊂
∪s−1

i=1 ri

⇒ H ′ = [r′s ∧ ¬(
∪s−1

i=1,i ̸∈E ri ∨
∪

j∈E r′j)] ⊃ (r′s ∧ ¬
∪s−1

i=1 ri) = H
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Because the IP range ofH ′ is a superset ofH , our algorithm can still generate test packets

to detect the first prefix shrinkage by H without being affected by the prefix expansions

with higher priorities.

At this point, we have proved that our method can at least detect the first prefix shrink-

age on a faulty switch. We can repeat the detection process and keep repairing the first

prefix shrinkage until fixing them all. The next step is to prove that we can properly detect

prefix expansions. Assume that we already fix all detected prefix shrinkages.

Theorem 2 If a switch only contains prefix expansions, the last prefix expansion (with

the lowest priority) is always detectable by our solution.

Proof: Assume the last prefix expansion as r′e, where 1 ≤ e ≤ N . Algorithm 2 generates

probes under the following constraint,

H = r′e ∧ ¬
e−1∪
i=1

ri

We denote the set of prefix expansions above the last prefix expansion as E. The actual

IP range affected by other prefix expansions can be denoted asH ′ = r′e ∧¬(
∪e−1

i=1,i ̸∈E ri ∨∪
j∈E rj). Because Theorem 1 shows that the IP range of a prefix expansion is a subset

of the original one, H ′ is a superset of H . Therefore, we can still detect the last prefix

expansion by probes under H .

The above proofs show that, in any case, our solution can detect at least one prefix

mismatch. Therefore, we can gradually find out prefix mismatches on a switch by repair-

ing some detected errors in each testing round and apply our solution again. Eventually,

all errors can be fixed. Chapter 5 will show detailed performance evaluation.
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Chapter 5

Evaluation

5.1 Implementation

We implement our system on a Ryu controller [6], and all modules are written in Python.

The SAT solver we use in the packet generation module is PicoSAT [4]. To simulate the

SDN network, we generate and manage Open vSwitch [2] instances by Mininet [1] on a

server with a 2.53 GHz Intel Xeon CPU.

Dataset. We run the experiments on two datasets to demonstrate that our system can apply

to real networks and satisfy scalability. The first one is the Stanford backbone network,

which includes configurations of 16 backbone switches. It is a public dataset that was

widely used in previous work [11, 18, 24, 25, 28, 29]. To evaluate the scalability of our

system, we leverage Classbench [22], a tool to generate synthetic rule sets according to

real flow distributions and configurations. However, because Classbench was no longer

maintained years ago, in practice, we test our system by a recently published tool called

Classbench-ng [15], which is based on Classbench but can generate rules closer to recent

network configurations.

Evaluation metrics. We do not evaluate the performance of our system by the detection

delay of finding all errors because the delay strongly depends on the packet sending rate

and the network bandwidth. Evaluating delay time on a virtual network environment gen-

erated by Mininet is biased. Therefore, we define an evaluation metric as the number

of rounds to detect all prefix mismatches. Although prefix mismatches could overlap
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Figure 5.1: False-negative rates of detection of prefix mismatches.

each other and result in false negatives on some rules, we have shown in Section 4.5 that

our method can always detect at least one error. We assume that the users can fix detected

errors in each detection round. Eventually, all prefix mismatches will be found. The re-

pairing process is defined as that users would collect information of misdirected probes

in each round and attempt to fix the corresponding rules no matter they are true or false

positives. After fixing all detected faults, users can start the next detection round. On the

other hand, we also evaluate packet generation time to show the delay the system needs

to prepare for the detection.

5.2 Comparison with Prior Schemes

We implement a naive method to detect forwarding action errors by testing each rule by a

probe. To test a rule, this method randomly generates a packet under the legitimate match

field. We compare this method with our approach in the following two experiments. We

test these methods on a ruleset with about 200 rules. Each data point is an average of 100

tests.

False negative rates: In this experiment, there are both prefix shrinkages and prefix
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Figure 5.2: Detection rounds for different error rates on a switch containing only prefix
expansions.

expansions on a switch. In each test, we repeat the detection process until all errors are

detected or none can be detected. The result in Figure 5.1 shows that our method can

detect all prefix mismatches with zero false negative rates. It is worth noting that the naive

method has lower false negative rates of detection for higher error rates. It is because that

when there are more errors, the chance of a probe experiencing a fault also increases.

However, this method still cannot detect all prefix mismatches.

Detection rounds: Section 3.2 shows that prior work cannot fully detect prefix expan-

sions because the generated probe may test under the benign IP range of a rule instead

of the faulty part. That is, prior schemes cannot guarantee that errors would be detected

in every round. In this experiment, we assume that there are only prefix expansions on

a switch. We evaluate the average detection rounds a method needs to detect and fix all

prefix expansions. Figure 5.2 shows that our approach costs 2 times fewer rounds than

the prior method to detect and fix all prefix expansions.
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Figure 5.3: Detection rounds for different error rates.

5.3 Performance Evaluation

Different numbers of errors: To show the scalability, we test our method with larger

rulesets. We randomly make the prefix of some rules shrink or expand and use the re-

pairing process mentioned above to fix detected errors. As shown in Figure 5.3, we can

see that even if the error rate is up to 50%, all errors can be repaired in an average of

two rounds, which means that most of the time, false negatives caused by multiple prefix

mismatches can be detected and fixed in a few detection rounds. Even when the number

of rules is up to 2000, the average detection rounds is not greater than 2.

The entropy of output ports: The other factor that could affect the performance is the

output ports of rules. Our method detects errors by comparing the difference between the

actual behaviors and the expected rules. The probes may experience a false negative when

two errors with the same output ports overlap each other. On the contrary, our method

can detect all errors in one round when all rules on a switch have different output ports

because overlap parts caused by faulty rules would always have different behaviors from

the original rules. Figure 5.4 shows the rounds to detect errors on a fixed size ruleset with

varying entropy values of output ports. We can see that the lower the entropy value is, the

higher the detection rounds are, which means that the probability of false negatives in one

round increases when the output ports of rules are mostly the same. However, we can see

26



doi:10.6342/NTU202101229

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e
te

c
ti
o
n
 r

o
u
n
d
s

The entropy of output ports

Figure 5.4: Detection rounds for varying entropy values of output ports. (200 rules, 10 %
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Prefix expansion Prefix shrinkage
Number Generation Avg. number of Generation Avg. number of
of rules time recursions time recursions
2458 13.05 1.02 11.86 2.10
869 4.87 1.00 4.70 1.82
203 1.34 1.00 1.86 4.37
202 1.18 1.00 0.81 1.39
145 0.95 1.01 0.57 1.35

Table 5.1: Packet generation time (sec).

that our method can still detect and fix all errors in 2 rounds on average.

Packet generation: Table 5.1 summarizes the packet generation time and the average

number of recursions to generate probes. We can see that it takes about one recursion on

average to generate probes for prefix expansions per rule. As we mentioned before, only

when one of the split subnets is unreachable, Algorithm 1 repeats the recursion function

to find two reachable headers. Therefore, if the average number of recursions is close to

one, it means that rules seldom overlap each other. On the other hand, generating headers

to test prefix shrinkage should ensure the expected output of probes is different from the

target action. If too many adjacent rules have the same output, it will slow down the
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packet generation process of Algorithm 2 to find an available probe. As shown in the

third and fourth rows of Table 5.1, the number of recursions would directly affect the time

to generate packets. Although packet generation is time-consuming, we can reuse the

result in each detection round to reduce the time overhead.
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Chapter 6

Discussion

6.1 Optimization

In this work, we propose a novel approach to detect prefix mismatches on switches. How-

ever, the number of probes is three times larger than the ruleset, which is heavy overhead in

the network. Though we leave the optimization to future work, we show that our solution

can still be optimized by previous work. To reduce the number of test packets, we need

to consider the topology information. Section 2.2 has shown the basic method of prior

probe-based schemes [12, 28, 29]. In practice, these schemes calculate a path for each

probe to travel as many rules as possible to reduce duplicated testing. To take advantage

of these tools, we provide the network topology and a composite ruleset for each switch.

This ruleset is used to make prior work generate three probes for each rule as if there were

three rules. To generate a composite ruleset, we preprocess the original ruleset by split-

ting each rule into three rules. Two of them are used to test prefix expansions, and the

other is used to test prefix shrinkages. We can leverage Algorithm 1 to find the maximum

available subnets for each rule. These subnets can be converted to two disjointed rules

with the same output as the original one. On the other hand, to generate rules for prefix

shrinkages, we can use Algorithm 2 to generate a header set that can probe the extra part

caused by prefix shrinkages. We can leverage Hport mentioned in Algorithm 2 to decide

the output of the header set. With this ruleset, the number of packets can be optimized by

prior probe-based tools.
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6.2 Other Errors

6.2.1 Forwarding action errors

As discussed in Section 1, forwarding action fields are frequently considered and detected

in the prior probe-based work [18, 20, 29]. In general, forwarding errors mean that packets

match a legal match field but the destination is unexpected. Prior tools detect this error by

sending a test packet that matches the target rule. If this packet does not go to the expected

destination, there are forwarding errors on the rule. Because packets generated by Algo-

rithm 1 are always under the match field of the target rule, we can detect all forwarding

errors on a switch. To show that our system can find hybrid errors without false negatives,

we need to ensure the theorems mentioned in Section 4.5 still work even with the interfer-

ence of forwarding errors. Assume that there are N rules with decreasing priority order

on a switch denoted as {r1, r2, ..., rN}.

The first prefix shrinkage on a switch is detectable. According to Theorem 1, the

available IP range of detecting the first prefix shrinkage r′s can be denoted as H = r′s ∧

¬
∪s−1

i=1 ri. We define the set of all other errors (i.e. prefix expansions, forwarding errors)

above the first prefix shrinkage as E ′. Because the match field of a rule with forwarding

errors remains the same and the IP range of an expanded prefix is shown to be a subset of

the original one in Theorem 1, the IP range of testing r′s affected by E ′ can be denoted as,

H ′ = r′s ∧ ¬(
s−1∪

i=1,i ̸∈E′

ri ∨
∪
j∈E′

rj) ⊇ H

Therefore, our method can still detect the first prefix shrinkage byH . On the other hand, if

the first prefix shrinkage also contains forwarding errors, it can be easily detected because

probes generated by Algorithm 1 would be forwarded to incorrect destinations.

If a switch only contains prefix expansions and forwarding errors, the last prefix

expansion is detectable. Assume that the last prefix expansion is r′e and the set of errors

above r′e is E ′. E ′ includes both prefix expansions and forwarding errors. The IP range

affected by E ′ has been proven to be a superset of H . Therefore, we can still detect the
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last prefix expansion by probes generated by Algorithm 2.

As a result, our system can still gradually fix all prefix mismatches even if there are

hybrid faults.

6.2.2 Priority reordering & rule missing

Priority reordering and rule missing have been discussed in [28]. We can see that rule

missing is a special case of prefix expansion because both reduce the available IP range of

a rule. Therefore, probes generated by Algorithm 1 can detect rule missing. Even when

there are multiple errors, the properties discussed in Section 4.5 remain the same.

Priority reordering changes the order of rule matching, which would make rules par-

tially faulty. To detect this error, the system needs to consider the dependency between

rules to avoid false negatives. However, we show that if priority reordering only occurs

in a prefix-based ruleset, our solution can detect it without false negatives. A prefix-based

ruleset is a set that every rule follows the CIDR [5], dividing IP blocks by prefixes. As-

sume that some rules swap on a switch. Because the total number of rules is the same as

before, we can consider all affected rules as hybrid errors that include prefix mismatches

and forwarding errors. When two rules swap, the match field of these rules should be-

come wrong prefix value, prefix expansion, or prefix shrinkage. The action fields could

be incorrect either. We have already proved that we can detect hybrid errors without false

negatives in the previous section. Therefore, our method can properly detect priority re-

ordering in a prefix-based ruleset.

6.2.3 Other match field errors

OpenFlow supports match fields for protocols such as TCP, UDP, VLAN, and ARP. In this

work, we only focus on detecting errors on the IP match field. Because the IPv6 network

space is also classified by prefixes, we can extend our solution to support IPv6 prefix

mismatches detection. To detect IPv6 match fields, two parts of the algorithms would be

affected. The first part is the SAT solving time will increase because we need to satisfy

the formula with 128 instead of 32 variables. The second part is the maximum number of
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recursions in Algorithms 1 and 2 will become 128 in the worst case. Despite the reduced

performance of packet generation, we can still detect IPv6 prefix mismatches without false

negatives.

6.2.4 Additional rules

Rule insertion is not discussed in this work because it is quite difficult for test packets to

probe an additional rule within the 32-bit IP field. For example, if a malicious rule inserted

in a switch only reroutes a specific IP address to different destinations, the only chance

we detect the rule is to send probes with the same address. To solve this issue, a possible

solution is to gather statistical data on switches and track whether the traffic is as expected

[27].

6.2.5 More complex settings

The OpenFlow specification [3] provides several sophisticated functions for users to dy-

namically adjust their networks. One can design a complex flow control on multiple flow

tables in a switch. For example, the set-field action can modify the packet headers. These

functions make probe-based solutions more difficult to detect inconsistency on the data

plane. One of the limitations of this work is that we cannot detect rules with arbitrary

bitmasks. It is because that prefix-based bitmasks align every network block and thus

simplifies the detection process. To address this issue, instead of probe-based solutions,

static analysis [17] can reach better performance on detecting misconfiguration of rules

with arbitrary bitmasks.
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Chapter 7

Related Work

There are several related studies of securing the data plane by proactively sending test

packets. Most of those studies aims to optimize the detecting process by reducing the net-

work overhead or speeding up the packet generation. For example, SDNProbe [12] min-

imizes the packet numbers by solving the packet generation problem on directed acyclic

graphs. To lower the traffic caused by probes, the work proposed by Chi et al. [20] periodi-

cally sends test packets instead of testing all flow entries at once. Pronto [29] encodes flow

entries as Atomic Predicates [24] to reduce the time to generate test packets. Because these

tools assume that only forwarding actions of packets could be wrong, they cannot properly

detect the header mismatching. RuleChecker [28] focuses on detecting rule missing and

swapping, which eliminates false negatives by considering the dependency between rules.

However, because prefix mismatches would result in IP ranges never seen before, probes

generated according to original rule sets cannot detect them.

Some studies discover unexpected network behaviors by collecting statistical data

from network devices. They model the current network states with some mathematical

metrices. By comparing the calculated result with a pre-defined threshold, they can deter-

mine whether traffic is abnormal or not. The additional bandwidth caused by this kind of

work is less than the bandwidth caused by sending probes. However, their threat models

have additional constraints. For example, forging statistical data is not allowed so that the

calculated results would not be affected by attackers. Moreover, to define a reasonable

threshold, these tools require some trusted data as ground truth first. SPHINX [8] assumes
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that there are a set of honest switches in the network and uses a similarity metrix to detect

malicious devices. FlowMon [9] shows that the critical parameters should be computed

when the network contains no faults. FOCES [27] also defines the benign volume vec-

tors before anomalies occur in the network. In short, comparing to probe-based schemes,

threshold-based solutions need more requirements to reach better performance.

Instead of monitoring the network to detect anomalies, some work attempts to enforce

routing rules by cryptographic operations. [21] installs Path Validation Component on

each switch, which uses symmetric keys to verify forwarding information embedded in

the headers. By checking the MAC values, switches can notify the controller if packets

are invalid. REV [26] leverages a similar approach to enforce rules, but it proposes the

compressive MAC to reduce the bandwidth between the controller and switches. The

crypto-based solution can avoid spoofing information by adversaries. However, to deploy

this solution to the network, one needs to install additional functions on each network

device, which is hard to complete in a relatively large network.

Another research area statically analyzes rules and finds the potential risks within

them. For example, HSA [11] checks rule headers to detect loops and black holes in

networks and to verify the reachability between hosts. To apply to rapidly changing net-

works, several real-time checking tools have been proposed [10, 13, 24]. NetPlumber [10]

is a tool based on HSA. It maintains plumbing graphs and dynamically updates them to

check network policy in real-time. VeriFlow [13] generates Equivalence Classes (ECs) by

slicing the network. It shows that when the network updates, only a small number of ECs

would be affected. Therefore, it can track the network policy even if there are dynamic

updates. Yang et al. [24] reduce the time and space to analyze rules by dividing rules

into Atomic Predicates. Pan et al. [17] define a stronger threat model that can check the

misconfiguration on IP match fields with arbitrary bitmasks. Although static analysis can

detect misconfiguration, which is efficient and never affects the network traffic, this work

cannot detect the inconsistency between rules and actual behaviors.
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Chapter 8

Conclusion

Sending test packets effectively detects the inconsistency between actual forwarding be-

haviors and expected routing rules on the data plane. To simplify testing the data plane,

prior work could only detect limited types of errors. In this work, we identify a new type

of error called prefix mismatches, which cannot be fully detected by prior probe-based

schemes. Our solution can efficiently detect this error without false negatives even in a

large ruleset. Furthermore, we conduct a comprehensive analysis of the correctness of our

approach. We show that our method complements prior approaches that detect forwarding

action errors and priority reordering.
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