國立臺灣大學生物資源暨農學院農藝學系暨研究所

博士論文Department of Agronomy
College of BioResources and Agriculture
National Taiwan University
Doctoral Dissertation

醋栗番茄全基因體分子標誌之開發與
探究控制番茄雄蕊長度之候選基因
Development of Genome－Wide High－Density SNP Markers in Solanum pimpinellifolium and Investigation of Candidate Loci of Stamen Length in Tomato

林亞平

YA－PING LIN

指導教授：陳凱儀 博士
Advisor：KAI－YI CHEN，Dr．

中華民國108年04月
April 2019

謝辭

在博士班的求學生活中經歷許多挫折與自我懐疑，我想在論文完成之際，謝謝那些一直在身旁支持我，且願意相信我的人。首先，我想感謝我的指導老師堜凱儀博士，陳老師對研究的熱誠不㑮開拓我的研究視野，進而裏我跟進當代國際研究水平，尤其老師在學術研究上認真仔細與堅持，更影響了我追求學問的態度。

其次，我要感謝我的論文指導小組及口試委員，包括胡凱康博士，常玉強博士，鍾國芳博士，董致䩘博士，林耀正博士及李承效博士，謝謝他們對這篇論文的批評與指教，任何一項建議都促成這篇論文更加精進。我更要感謝系上許多關心我，支持我的老師，老師們不保鏵樂於與我交流學術上的意見，也願意在我迷惆的時候鼓謜我，使我常能保持對研究生活的積極與樂觀。我也要感謝系辨的行政人員，除了貼心提醒我申請獎學金補貼生活外，也在我畢業之際棒忙處理許多行政瑣事，讓我心無旁驚地準備口試。我要謝謝台大農場的大哥井，提供我許多田間操作的建議，讓我從田間菜鳥變成半個田間専家。此外，我也要感謝平常關心我的學長姐，同學及學弟妹們，他们提供我許多學業上的協助，更不吝於分享他們的生活目標或日常趣事，為外人眼中枯燥無味的研究生活增添許多樂趣。我還要感謝那些非學術圈的朋友們，缞我能在研究室以外的時間看到時代的潮流，懂得享受非學術研究的生活。

最後，我要感謝一路以來陪伴我的家人，他們都覺得「博士們」不好相處，但即便如此，仍全力支持我選探這條路，願我往後能謹記他們的叮嚎，做一個謙抙有禮的讀書人。

摘要

自達爾文提出演化論後，異型花的遺傳機制一直是植物學家感興趣的議題之

一。古典的研究認為控制自交不親和性與異花型的基因緊密連鎖，稱之為 S 基因座，這些調控相關性狀且緊密連鎖的基因稱為超級基因。一般認為植物從異交演化成自交的過程中會先失去自交不親和性，而後在超級基因內發生重組，使得異型花變成同型花，以確保自交成功的機率。然而伴隨著分子技術的進步，現今的分子證據卻顯示同型花可能是由半合子造成，而非傳統上認為的罕見重組。在農業上，研究此議題可以了解作物在馴化過程中，受到強烈選拔壓力後對基因體造成的改變。此外，也可控制作物的自交不親和性與花型，如此不僅能有效地生產雜交種子，也能藉由提高授粉率而增加產量。

醋栗番茄為野生番茄的一種，原生於秘魯與厄瓜多沿岸，是栽培番茄的近親。因為醋栗番茄具有許多抗病性狀，且可與栽培種番茄相互雜交，故為重要的番茄種原之一。目前醋栗番茄已提供番茄育種工作上一些抗病基因座，也應用於農藝性狀相關的全基因體關聯性定位中。前人研究發現醋栗番茄可分成異交，自交與中間型三種交配系統，異交的醋栗番茄不僅具有較高的遺傳歧異度，且具有較突出的雌萑。由於醋栗番茄在交配系統與花的形態上都具有多型性，故很適合利用於自交不親和性與異型花的研究。

現今分子標誌已廣泛地應用於作物育種上，伴隨著次世代定序的成本下降，開發重要種原的全基因體分子標誌已成為基礎的育種工作。本研究針對 99 個醋栗

番茄收集系進行 PstI 限制酶關聯性定序，定序範圍涵盖 12，790 個基因。我們一共得到 24,330 個單一核苷酸多型性分子標誌，其中 16,365 個分子標誌座落於 7，383個基因上。我們觀察到定序範圍與基因的分佈類似，顯示使用 PstI 限制酶來篩選基因體片段的策略適合應用於寻找候選基因的研究上。此外，該族群可以分成三個先祖次族群及四個混合基因體的次族群。主成份分析，成對 F_{st} ，AMOVA 皆支持這樣的分群，顯示這組高密度分子標誌可穩定估計族群結構。接著，我們估計該族群整體的連鎖衰變在 18 千鹼基對，意味著此族群可以在全基因體關聯性分析得到精密的解析度，甚至可以定位到單一基因。然而要霂足這樣的解析度，至少需要 50,000 個分子標誌。

在雄喜長度的全基因體關聯性定位中，我們利用 98 個醋栗番茄收集系進行混合線性模式分析，定位到三個候選基因座，但這三個基因座皆為高度錯誤發現率。由於全基因體關聯性定位的檢定力及錯誤發現率皆與研究樣本的族群大小有關，我們建議兩種增加樣本的方式，一是在各個次族群中均匀地增加取樣數目，這個方法也可能使肎見對偶基因變成一般對偶基因，故也可能增加分子標誌的數目。另一個方法是在秘魯北部增加取樣數目，因為此處是醋栗番茄的發源地，遺傳歧異度大，也可能增加對偶基因數。

另一方面，前人研究顯示 style2．1 下游附近有兩個控制雄䡯長度的基因 stamen2．2 及stamen2．3，我們利用轉錄體組定序來挑選這兩個候選基因，使用的材料是栽培種番茄品系 M82 及其滲透系 TA3178，TA3178 在 style 2.1 附近是野生番茄（潘那利番茄）的染色體片段。我們藉由單一核苷酸多型性的數量差異來界定

渗透片段的範圍。接著，依據本研究室之前的結果，我們篩選從標誌 cLED19A24到 CT9 該區間的 18 個候選基因，比較這些候選基因的表現量及多型性後，發現 Solyc02g087960．2，Solyc02g087970．1 與 Solyc02g088070．2 可能是 stamen2．2 及 stamen2．3 的候選基因。

Abstract

Botanists have been fascinated by the genetic mechanism of heterostyly since Darwin's theory of evolution. It was believed that the genes controlling self-incompatibility and floral morphology were linked tightly, so-called S-locus. According to the classical evolutionary studies, when a plant evolved from outcrossing to selfing, it was necessary to lose self-incompatibility and then adjusted the positions of male and female floral organs through the rare recombination within the S-locus. However, new evidence suggested that homostyly resulted from hemizygote rather than the rare recombination. In agriculture, studying the genetic mechanism of self-incompatibility and heterostyly can understand the changes of crop genomes under the selection forces during domestication processes. Additionally, it can accelerate the production of hybrid seeds or ensure the pollination to increase yield.

Solanum pimpinellifolium is a wild tomato originated from the coastal region of Peru and Ecuador. It serves as an important germplasm in tomato breeding programs because it displays many resistant traits and can freely cross to cultivated tomatoes. Previous studies classified this species as complete or near complete allogamy, complete autogamy and intermediate type based on its mating system. In addition, allogamous accessions displayed higher genetic diversity and more exsertion of stigma than autogamous ones. Because S. pimpinellifolium contains the variations of outcrossing rate and floral morphology within its own species, it could be an ideal material to study the genetic mechanism of self-incompatibility and heterostyly.

Nowadays, molecular markers have been applied to crop breeding extensively. Accompanying by the cost down of next generation sequencing, the development of genome-wide high-density markers for germplasm becomes essential in breeding
programs. In this research, we performed the PstI-digested associated DNA sequencing for 99 accessions of S. pimpinellifolium, resulting in 24,330 SNPs. The coverage extended to 12,790 genes, and a total of 7,383 genes were targeted directly by 16,365 SNPs. Besides, the sequencing regions and the annotated genes presented similar distributions through each chromosome. This suggested that PstI-digested associated DNA sequencing was an appropriate strategy to investigate candidate genes. This collection was divided into three subpopulations of single-ancestral genome and four subpopulations of mix-ancestral genome by ADMIXTURE. Principle component analysis, pairwise $\mathrm{F}_{\text {st }}$ and AMOVA all supported the subpopulations, implying this set of high-density markers was capable to estimate the subpopulations stably. Moreover, the overall LD decay was within 18 Kb , suggesting a fine resolution in genome-wide association study even to a single-gene level. However, to achieve such fine resolution, at least 50,000 markers were required.

Three candidate loci controlling stamen length were identified via the mixed linear model in genome-wide association study of 98 S. pimpinellifolium accessions, but all three loci presented high false discovery rate. Since the power and false positive rate of genome-wide association study depend on the sample size of a studying population, we suggest two approaches to increase sample size. One is to increasing samples in each subpopulation evenly. This approach can potentially make rare alleles to common alleles by increasing the allele frequency. The other is to sampling more individuals in the northern Peru because the accessions in the northern Peru present more genetic diversity. This approach can also increase both rare alleles and common alleles.

On the other hand, following the previous studies, stamen 2.2 and stamen 2.3 were located in the downstream interval next to style2.1. We performed a RNA sequencing
experiment of M82 and TA3178. TA3178 is an introgression line of M82 and contains a segment of Solanum pennellii near style2.1. We identified this introgression region by comparing the difference of SNPs between these two lines. Afterwards, following the previous work in our team, we screened 18 candidate genes from marker cLED19A24 to CT9 by comparing the fold change and cDNA polymorphism between M82 and TA3178. This result suggested that Solyc02g087960.2, Solyc02g087970.1 and Solyc 02 g 088070.2 should be the candidates of stamen 2.2 and stamen2.3.
Contents
謝辭 II
摘要 IV
ABSTRACT VI
LIST OF FIGURES XIII
LIST OF TABLES XIV
LIST OF SUPPLEMENTARY DATA XV
CHAPTER 1 INTRODUCTION 1
1．1 Heterostyly 1
1．1．1 Evolution of heterostyly 1
1．1．2 Heterostyly in tomato species ． 2
1．2 SoLANUM PIMPINELLIFOLIUM 3
1．2．1 The mating systems and flower characters in S．pimpinellifolium 3
1．2．2 S．pimpinellifolium is a diverse and attractive tomato germplasm 4
1．2．3 The population differentiation of S．pimpinellifolium 4
1．2．4 The genetic diversity of S．pimpinellifolium 5
1．3 GENOME－WIDE ASSOCIATION STUDY 6
1．3．1 The concept of GWAS 6
1．3．2 LD determines the resolution of GWAS 7
1．3．3 Population structure and kinship cause confounding effects in GWAS 8
1．4 Next generation sequencing（NGS）technology 10
1．4．1 Restriction－site associated DNA sequencing． 10
1．4．2 RNA sequencing 11
1．5 Development of stamen 12
1．5．1 MADS box genes determine stamen differentiation 12
1．5．2 Phytohormones regulate the stamen development 12
1．6 CONCLUSION 13
1.7 REFERENCE 14
CHAPTER 2 ASSESSMENT OF POPULATION DIFFERENTIATION AND LINKAGE DISEQUILIBRIUM IN SOLANUM PIMPINELLIFOLIUM USING GENOME-WIDE HIGH-DENSITY SNP MARKERS 25
2.1 Purpose 25
2.2 Material and Method 25
2.2.1 Plant materials 25
2.2.2 RAD sequencing 26
2.2.3 SNP calling 26
2.2.4 Population differentiation 27
2.2.5 Isolation by distance 28
2.2.6 Estimate of genetic variation and $L D$ 28
2.2.7 Analysis of SolCAP array data of S. pimpinellifolium 28
2.3 RESULT 29
2.3.1 Identification of 24,330 SNPs from PstI-digested DNA libraries 29
2.3.2 A similar distribution between genes and SNPs was identified in the vicinity of PstI cutting site throughout the genome 31
2.3.3 Genetic differentiation of S. pimpinellifolium was corresponding to the geographic area 32
2.3.4 Meta-analysis of SolCAP genotyping array resulted in 15 subpopulations. 35
2.3.5 Rapid LD decay 36
2.3.6 Heterogeneity of genetic recombination within each chromosome 37
2.4 DISCUSSION 38
2.4.1 Subpopulations clustering from north to south are expected due to the high correlation between genetic distance and geographic distance 38
2.4.2 Discrepancy of genetic clustering in SolCAP meta-analysis 40
2.4.3 More markers are required to cover through the genome of S. pimpinellifolium 41
2.5 REFERENCE 42
2.6 SUPPLEMENTARY DATA 47
CHAPTER 3 GWAS OF THE CANDIDATE GENES CONTROLLING STAMEN LENGTH IN SOLANUM PIMPINELLIFOLIUM 73
3.1 Purpose 73
3.2 Material and Method 73
3.2.1 Plant material and phenotyping 73
3.2.2 GWAS 74
3.2.3 Haplotype block. 74
3.3 Result 75
3.3.1 SSL2.50ch06_45620556 is significant among all the GLM and MLM analysis 75
3.3.2 The LD patterns of these significant loci 78
3.4 Discussion. 78
3.4.1 QTL on chromosome 2, 3 and 7 78
3.4.2 Large sample size is essential for GWAS 79
3.4.3 r^{2} or D^{\prime} as an indicator for $L D$. 81
3.4.4 A gap between the estimation of r^{2} in different softwares 82
3.4.5 Insufficient coverage makes the build of haplotypes unsuccessful 83
3.4.6 More markers or more individuals 84
3.5 Reference 84
3.6 SUPPLEMENTARY DATA 88
CHAPTER 4 THREE CANDIDATE GENES CONTROLLING STAMEN
LENGTH REVEALED VIA THE TRANSCRIPTOME PROFILES OF M82 AND ITS INTROGRESSION LINE TA3178 108
4.1 Purpose 108
4.2 Material and Method. 109
4.2.1 RNA sequencing 109
4.2.2 The boundary of introgression segment in TA3178. 109
4.2.3 Differential expression analysis 110
4.2.4 The cDNA polymorphisms of the genes from cLED19A24 to CT9 110
4.3 RESULT 111
4.3.1 The summary of $R N A$-seq 111
4.3.2 The 1.1 Mb introgression segment of S. pennellii 111
4.3.3 Only two DEGs in the introgression segment 112
4.3.4 Three candidate genes of stamen 2.2 and stamen 2.3 113
4.4 DISCUSSION 116
4.4.1 M82 presented more SNPs than TA3178 due to its deeper sequencing 116
4.4.2 Lacking biological replications may underestimate DEGs 116
4.4.2 Transcription profiles and polymorphisms in the introgression segment 117
4.4.4 Narrow down the candidate genes of stamen 2.2 and stamen 2.3 118
4.5 Reference 119
4.6 SUPPLEMENTARY DATA 121

List of Figures

Figure 2.1 The distributions of ITAG2.4 gene model, PSTI cutting Sites and SNPs THROUGH WHOLE GENOME. 32
Figure 2.2 Ancestry and geographic distribution of 98
Solanum pimpinellifolium accessions from the Tomato Genetics Resource Center 34
Figure 2.3 Visualization for LD. A) The 50 Kb interval of overall LD decay. B) The local LD of chromosome 1 37
Figure 3.1 The distribution of Stamen length 376
Figure 3.2 The geographic distribution of the stamen characters among 98 ACCESSIONS 76
Figure 4.1 The SNPs in the introgression segment in M82 and TA3178 112
List of Tables
TABLE 2.1 Summary of the markers developed with the RAD SEQuencing STRATEGY AND THE SEQUENCED GENES AS WELL 30
Table 2.2 Genetic variation of each subpopulation. 33
Table 2.3 The local LD profiles of individual chromosomes. 36
Table 3.1 Significant Loci For stamen length in TASSEL and GEMMA 77
Table 3.2 The two significant loci based on $\mathrm{P}=\mathrm{G}+\mathrm{Q}+\mathrm{E}$ model 78
TABLE 4.1 The summary of RNA-SEQ 111
TABLE 4.2 THE NUMBER OF DEGS IN EACH CHROMOSOME. 113
Table 4.3 The summary of the candidate genes from cLED19A24 to CT9 115
Table 4.4 The expressed genes and the SNP density through each chromosome 116
List of Supplementary data
SUPPLEMENTARY FIGURE
S_Fig 2.1 The cross-validation error of K value in ADMIXTURE 47
S_Fig 2.2 Pairwise ISOLATION BY DISTANCE OF 98 aCCESSIONS. 47
S_Fig 2.3 The PCA of SolCAP meta-analysis. A) The PCA plot of bi-allelic SNPs.
B) The PCA plot after removing those SNPs of reverse-complement allele DESIGNATION. 48
S_Fig 2.4 The cross-validation error of SolCAP meta-analysis 49
S_Fig 2.5 The genome patterns of 214 SAmples in SolCAP meta-Analysis 49
S_Fig 2.6 Pairwise isolation by distance of SolCAP meta-analysis. 50
S_Fig 2.7 LD decay of the whole genome. 50
S_Fig 2.850 KB INTERVAL LD DECAY OF EACH CHROMOSOME. 52
S_Fig 2.9 The local LD OF Each Chromosome 56
S_Fig 3.1 The Q-Q plots of mixed linear models. 88
S Fig 3.2 The manhattan plots of TASSEL and GEMMA RESULTS. 89
S_Fig 3.3 The heatmap of LD For each significant locus in GWAS 94
S_Fig 3.4 The heatmap of R^{2} and D' FROM SSL2.50ch03_56790852 TO SSL2.50ch03_56903592. 95
S_Fig 3.5 The difference of R^{2} between TASSEL and PLink based on 206,375 PAIR-wISE LD 96
S_Fig 3.6 The overall LD decay based on TASSEL. 96
S_Fig 4.1 The difference of SNP number between M82 and TA3178 through Each CHROMOSOME 123
S_Fig 4.2 The distribution of DEGs. 124
SUPPLEMENTARY TABLE
S_TAB 2.1 THE DETAILED INFORMATION ON EACH ACCESSION 57
S_TAB 2.2 THE STATISTICAL SUMMARIES OF EXPECTED SITES AND SEQUENCED SITES OF PSTI, THE SITES TARGETED by SNP AND THE SEQUENCED GENES. 62
S_TAB 2.3 THE INFORMATION ON 24,330 SNPS. 65
S_Tab 2.4 Pairwise Fst of Subpopulations. 66
S_Tab 2.5 The locations and genotypes of 214 SAmples of SolCAP genotyping ARRAY. 67
S_TAB 2.6 THE REMOVED 627 SNPS wITH REVERSE-COMPLEMENT ALLELE DESIGNATION. 68
S_TAB 2.7 THE IDENTITY 0F 2,307 SNP MARKERS WITHIN ACCESSIONS 72
S_Tab 3.1 The stamen lengTh of each accession 97
S_TAB 3.2 The difference of PAIr-wise R^{2} between TASSEL AND PLINK, TAKING SSL2.50ch03_56790852 TO SSL2.50ch03_ 56903592 (THE SNPS IN S_FiG 3.4) FOR EXAMPLE 98
S_Tab 3.3 The haplotype blocks estimated by the 24,330 SNPs. 106
S_TAB 3.4 THE HAPLOTYPE BLOCKS ESTIMATED BY ABOUT 68,000 SNPs 107
S_TAB 4.1 THE DETAIL INFORMATION OF 159 GENES IN THE INTROGRESSION SEGMENT. 125
S_TAB 4.2 THE DETAIL INFORMATION OF THE DEGS BASED ON THE 99.9 ${ }^{\text {TH }}$ PERCENTILE METHOD 128
S_TAB 4.3 The detail information of the DEGs based on the DEseq analysis. 130

Chapter 1 Introduction

1.1 Heterostyly

1.1.1 Evolution of heterostyly

Heterostyly is a fascinating theme that draws deep interest of many botanists. Two morphs of Primula were appreciated by Charles Darwin for its evolutionary meaning: long-styled flowers promote outcrossing and short-styled flowers tend to occur self-fertilization (Charles Darwin, M.A., P.B.S., F.L.S. \&c., 1862). Darwin proposed that heterostyly with self-incompatibility promoted the selective advantages of outcrossing because it could increase both male and female fitness through pollen transfer between inter-morph individuals, preventing pollen waste, and reducing progenies of inbreeding depression. Even in the case with self-compatibility, heterostyly could still reduce the disadvantage of producing less-fit selfing progenies (Darwin, 1877; Ganders, 1979; Keller, Thomson, \& Conti, 2014).

In dimorphic heterostyly plants, long-styled flowers (pin flowers) show an elongated style at the mouth of flowers and anthers are located within a floral tube. Short-styled flowers (thrum flowers), on the contrary, show a short style within a floral tube and anthers are exposed at a flower mouth (Darwin, 1862). The genetic mechanism of heterostyly with self-incompatibility was established as a single locus (S locus) that consisted of several functionally related genes, so-called the supergene. The S locus contained at least three genes that controlled the style length (G), pollen size (P) and anther length (A) (Muenchow, 1981). However, recent studies have revealed that the occurrence of self-fertile non-heterostyly flower may result from the mutation of
hemizygote, not the rare recombination within the supergene (Li et al., 2016; Yasui et al., 2016).

The genetic mechanism of heterostyly with self-incompatibility provides another application in agriculture. The common buckwheat (Fagopyrum esculentum) is a heteromorphic self-incompatible crop. Through whole genome sequencing of buckwheat, a segment of at least 5.4 Mb was identified as the short-styled specific allele. Nearly 75% of this hemizygous segment contained the sequences of transposon elements and the rest was annotated as 32 genes (Yasui et al., 2016). Deciphering the connection between self-incompatibility and heterostyly could increase the yield by removing the self-incompatibility and designing a homomorphic flower to guarantee self-fertilization and increase cereal crop production.

1.1.2 Heterostyly in tomato species

Tomato is a perfect material to study the relationship between mating system and floral morphology because it displays both various mating systems and floral characters (Bedinger et al., 2011; Moyle, 2008; Spooner, Peralta, \& Knapp, 2005). For example, S. pennellii is self-incompatible and has a more exserted style while S. lycopersicum is self-compatible and has a recessed style (Chen, Cong, Wing, Vrebalov, \& Tanksley, 2007; Spooner et al., 2005). The quantitative trait loci (QTL) of self-incompatibility and floral morphology have been mapped by different tomato crosses (Bernacchi \& Tanksley, 1997; Fulton et al., 1997; Georgiady, Whitkus, \& Lord, 2002; Tanksley \& Loaiza-Figueroa, 1985). According to those studies, the S locus and QTL of floral characters were not located on the same chromosome. The S locus was mapped on chromosome 1 through different tomato populations (Bernacchi \& Tanksley, 1997; Tanksley \& Loaiza-Figueroa, 1985). Meanwhile, se2.1, which was responsible for the
recessed stigma of cultivated tomatoes, was mapped on chromosome 2 (Bernacchi \& Tanksley, 1997; Chen \& Tanksley, 2004). se2.1 contained five genes: dehisence2.1 for anther dehiscence, stamen2.1, stamen2.2 and stamen2.3 for anther length, and style2.1 for the style length (Chen \& Tanksley, 2004). Other QTL controlling the floral characters included: stg2.1 and stg2.9 for stigma exsertion, sty8.1 for style length, ant3.2, atl2.1, and atl7.1 for anther length (Fulton et al., 1997; Georgiady et al., 2002; Grandillo \& Tanksley, 1996). Following Darwin's theory, the heterostyly in tomato clade is supposed to prevent from producing less-fit selfing progenies because S locus and the QTL of floral characters are not associated.

1.2 Solanum pimpinellifolium

1.2.1 The mating systems and flower characters in S. pimpinellifolium

S. pimpinellifolium is a perennial wild tomato native to Ecuador and Peru. Charles M. Rick utilized S. pimpinellifolium to illustrate the relationship between mating systems and floral characters and their impacts on genetic diversity (Rick, Fobes, \& Holle, 1977; Rick, Holle, \& Thorp, 1978). Three mating type were found within this wild tomato: complete autogamy, nearly complete allogamy and intermediate mating types (Rick et al., 1977). Because the exsertion of stigma interfered self-fertilization, both the floral morphology and the outcrossing rate were correlated to the genetic diversity (Rick et al., 1977, 1978). In addition, a F2 population derived from LA1237 (a selfing S. pimpinellifolium accession) crossing to LA1581 (an outcrossing accession) revealed QTL related to floral characters, ant3.2 and sty8.1 (Georgiady et al., 2002). In this case, the QTL controlling anther length is not associated with that of style length, suggesting that floral characters are not always inherited as a single compressed unit.

1.2.2 S. pimpinellifolium is a diverse and attractive tomato germplasm

S. pimpinellifolium is the closest relative to cultivated tomatoes; no reproductive barrier with cultivated tomatoes makes it advantageous in breeding programs (Bedinger et al., 2011; Moyle, 2008; Spooner et al., 2005). Several desired traits, such as abiotic and biotic resistances, have been revealed in some S. pimpinellifolium accessions. For example, $P h 1, P h 2, P h 3$ and $P h 5$, the QTL for late blight resistance, were identified in S. pimpinellifolium. Among them, the most effective Ph3 was further designed as DNA markers to screen the major resistance gene in tomato breeding programs (Jung et al., 2015; Panthee, Gardner, Ibrahem, \& Anderson, 2015). Recently, World Vegetable Center has developed a core collection of S. pimpinellifolium in order to conserve and utilize this germplasm efficiently (Rao, Kadirvel, Symonds, Geethanjali, \& Ebert, 2012). In addition, S. pimpinellifolium was involved in genome-wide association studies (GWAS) to increase the genetic diversity of the studying populations and to maintain the allele balance (Bauchet et al., 2017).

1.2.3 The population differentiation of S. pimpinellifolium

S. pimpinellifolium was originated from the northern Peru and then migrated to Ecuador and the southern Peru (Rick et al., 1977). The facultative allogamous S. pimpinellifolium was separated from the originated allogamous ones because the new environments might not be suitable to outcrossing (Rick et al., 1977). These regions present gradient temperature and precipitation changes from Ecuador towards southern Peru: western Ecuador is equatorial winter dry; northern Peru is a hot, arid desert; southern Peru is a cold, barren desert (Kottek, Grieser, Beck, Rudolf, \& Rubel, 2006). The selfing and adaptation to different environments created several subpopulations (Rick et al., 1977; Zuriaga et al., 2009). Previous studies have showed the Ecuadorian
and the Peruvian accessions were genetically different subpopulations (Rao et al., 2012; Zuriaga et al., 2009). Recently, with the aid of SolCAP genotyping array, S. pimpinellifolium was divided into three subpopulations: one in northern Ecuador, one in the mountains of Ecuador extending to the north of Peru, and one in Peru (Blanca et al., 2012; Blanca et al., 2015). Since the genetic distance of these subpopulations was correlated to the major climatic parameters, such as temperature and humidity, special genetic characters could be selected and maintained in differential subpopulations (Blanca et al., 2015; Zuriaga et al., 2009).

1.2.4 The genetic diversity of S. pimpinellifolium

S. pimpinellifolium presents intermediate genetic diversity when comparing with other wild tomatoes (Moyle, 2008). However, this species still provides many attractive genetic variations, especial in resistant genes. For example, at least 26 alleles of $C f-2$, a R gene resistant to Cladosporium fulvum, were identified in a set of 138 natural individuals (Caicedo \& Schaal, 2004). Previous studies support its relatively high diversity when comparing to cultivated tomatoes (Blanca et al., 2012; Blanca et al., 2015). In addition, the higher outcrossing rate maintained the higher genetic diversity; therefore, the genetic diversity declined from the northern Peru to the south (Blanca et al., 2015; Caicedo, 2008; Rick et al., 1977; Zuriaga et al., 2009). The outcrossing could break the linkage disequilibrium of S. pimpinellifolium, suggesting faster LD decay. The LD decay of S. pimpinellifolium ranged from 73 to $2,035 \mathrm{~Kb}$, implying a finer resolution in GWAS in comparison with that from 3,178 to $15,554 \mathrm{~Kb}$ in S. lycopersicum (Bauchet et al., 2017).

1.3 Genome-wide association study

1.3.1 The concept of GWAS

GWAS is basically the association mapping of a germplasm but with markers through whole genome. A significant marker is identified when the phenotypes between different genotypes are statistical different, usually examined by t-test or ANOVA. In this process, no linkage map is required. Once a significant marker is revealed, the QTL should be located within the LD interval of this marker. That is to say, GWAS utilizes markers through whole genome to examine which markers are associated with a studying phenotype. Comparing to a bi-parental cross population, GWAS involves more alleles because a germplasm accumulates mutations and recombinant events through its whole history. Together with the cost down of sequencing that makes the genotyping of a natural population much redundant, an explosive growth of GWAS in plants is now happening (Huang \& Han, 2014; Soto-Cerda \& Cloutier, 2012; Zhu, Gore, Buckler, \& Yu, 2008). Following the concept of GWAS, number of markers and the LD between markers and QTL in a given population will determine the GWAS result (Korte \& Farlow, 2013). More markers and more individuals mean more detectable recombinant events between markers and QTL, suggesting more precise estimations of LD and QTL effects. Unfortunately, QTL controlled by small-effect alleles and/or rare alleles could not be detected in a small population due to the limitation of statistical methods (Ingvarsson \& Street, 2011; Korte \& Farlow, 2013; Visscher et al., 2017). Despite many statistical models were proposed to rescue the problem, the fundamental solution would be a population of large sample size.

1.3.2 LD determines the resolution of GWAS

LD is the non-random assortment between pairwise alleles; it is measured by allele frequency and recombination using generally two statistics, r^{2} and D^{\prime}. In brief, r^{2} summarizes the recombinant events and mutations, while D^{\prime} presents only the information of recombination. A main concern for D^{\prime} is that it is affected heavily by allele frequency, especially for a small population, because it is less possible to find a genotypic combination containing a rare allele. Meanwhile, r^{2} has a relatively small bias in a small population and additionally, it can reflect the correlation between markers and QTL. Therefore, r^{2} is utilized much more common in GWAS (Flint-Garcia, Thornsberry, \& Buckler, 2003). Since allele frequency and recombination determine LD, any factor that affects these two factors may have an influence on LD and consequently GWAS results. (Flint-Garcia et al., 2003; Slatkin, 2008). In population history, allele frequency serves as an essential parameter; therefore, migration, mutation, selection and populations with or without subdivision all reflect on LD. Generally, migration and mutation that provide new genetic materials to a population would increase genetic diversity and consequently decrease LD. Strong selection force or genetic bottleneck would decrease genetic diversity and then create LD in a population (Flint-Garcia et al., 2003; Slatkin, 2008).

Recombination is basically determined by mating system in a natural population. In selfing genomes, generally an extensive region of LD would be observed because alleles tend to be fixed after selfing (Huang et al., 2012; Yano et al., 2016). In addition, great selection force during domestication process made LD extending to hundreds Kb , leading rough resolution in GWAS (Bauchet et al., 2017; Sauvage et al., 2014). To overcome the natural disadvantages of selfing plants, discovering new materials of high
genetic diversity or designing diverse population panels have become common strategies. The population that consists of hybrid genomes, the multi-parent advanced generation intercross population or the population involving in wild relatives can increase genetic diversity and consequently improve GWAS resolution (Bauchet et al., 2017; Crowell et al., 2016; Huang et al., 2012; Ranc et al., 2012). In addition, more markers for a world-wide collection could also detect higher diversity, resulting in a better resolution as well (Kim et al., 2007).

1.3.3 Population structure and kinship cause confounding effects in GWAS

Any factor contributing to LD can inflate the significance of GWAS result because the associations between markers and phenotypes determine the results of GWAS (Huang \& Han, 2014; Soto-Cerda \& Cloutier, 2012; Korte \& Farlow, 2013). The confounding is created when LD is formed by only different allele frequency among families or among subpopulations. Two main confounding effects are the population structure, the distant common ancestry of a population, and the kinship, the existence of relatedness in a relatedness-unknown population (Astle \& Balding, 2010). So far, the mixed linear model is a standard procedure to correct both confounding factors (Astle \& Balding, 2010; Korol, Ronin, Itskovich, Peng, \& Nevo, 2001; Yu et al., 2006; Zhang et al., 2010). However, population structure and kinship actually reflect a part of the genetic nature in a studying population rather than a problem. Simply using any correction could underestimate the genetic factors (Vilhjálmsson \& Nordborg, 2013). Therefore, the correction would be strongly recommended when performing a candidate gene research but would be optional when investigating the genetic architectures of a given trait (Korte \& Farlow, 2013).

The most practical method to correct population structure into GWAS would be the
integrations of the matrix from principal component analysis (PCA) or STRUCTURE and/or ADMIXTURE. PCA transforms a large data of possibly correlated variables into a smaller set of linearly-uncorrelated principal components (PCs) (Patterson, Price, \& Reich, 2006). The first PC has the largest variance of the observation, meaning it accounts for the largest variation, and the succeeding PCs have the largest variance in a condition of orthogonal to the former components. By reducing the variables, PCs could reflect the main pattern of the genotypic data and distinguish the genetic difference among samples. Therefore, PCA is widely applied to cluster subpopulations of a studying population and PCs are added as a matrix of fixed effect into GWAS (Price, Zaitlen, Reich, \& Patterson, 2010). On the other hand, STRUCTURE and/or ADMIXTURE is an algorism that using the posterior probability to estimate the best number of subpopulations (K) (Pritchard, Stephens, \& Donnelly, 2000). It identifies the simplest haplotypes among individuals and then assigns the individuals into subpopulations as probabilities. The best K can be determined by the natural logarithm of the probability of K or delta K (Evanno, Regnaut, \& Goudet, 2005; Pritchard et al., 2000). Once K is determined, the probability of each individual assigned to each subpopulation can also reflect the portion of different genomes for each individual. And this probability matrix can be added as a fixed effect in GWAS.

Kinship refers to the degree of genetic relatedness and traditionally is estimated by identical by descent (IBD) while pedigree information is well informed (Jacquard, 1972). When incorporating to a pedigree-unknown germplasm, two identical alleles are considered as IBD or random sampling from a gene pool. Hence, the kinship can be modified by allele frequency and treated as the correlation coefficient of pairwise individuals (Anderson \& Weir, 2007). Generally, kinship would be a random effect in GWAS because traditionally the relatedness is used to estimate the variance of heritable
components (Yu et al. 2006; Astle \& Balding 2009; Zhang et al. 2010).

1.4 Next generation sequencing (NGS) technology

1.4.1 Restriction-site associated DNA sequencing

So far, the genetic characteristics for S. pimpinellifolium accessions were mainly investigated based on SSR markers and the SolCAP array what were developed based on many genetic backgrounds (Blanca et al., 2012; Blanca et al., 2015; Rao et al., 2012; Zuriaga et al., 2009). Although the SolCAP array contains 7,720 SNPs derived from cDNA and functional markers and indeed accelerates the genotyping, more SNPs are desired in GWAS (Bauchet et al., 2017; Sim et al., 2012). In reality, limited resource makes it a dilemma to choose higher marker density or greater population size. Restriction-site associated DNA sequencing (RADseq) is one of the genome-wide genotyping techniques that applies NGS technology in a selective way (Davey \& Blaxter, 2010). The advantage of RADseq is to force the sequencing resource on the vicinity of restriction enzyme cutting sites. Therefore, it provides the flexibility of experimental design regarding to the trade-off between budget saving and marker density. Choosing restrict enzymes depends on the number of cutting sites or special purposes. One can predict the sites via reference genomes to estimate the reduced coverage of a genome (Shirasawa, Hirakawa, \& Isobe, 2016). And, one can also use methylation-sensitive restriction enzymes, such as PstI, to concentrate the sequencing resource on gene-rich regions, preventing the resource from large heterochromatin on plant genomes (Bhakta, Jones, \& Vallejos, 2015; Chen et al., 2014; Hohenlohe et al., 2010).

1.4.2 RNA sequencing

RNA can be converted into cDNA libraries to perform high-throughput sequencing, so-called RNA sequencing (RNA-seq). RNA-seq profiles the transcriptome of a certain tissue or organ in a certain development process through two major evaluations: the differentially expressed genes (DEGs) between groups and the polymorphisms in the coding sequences (Wang, Gerstein, \& Snyder, 2009). However, the relative high cost of RNA-seq makes researchers struggle in the experiment design: more technical replications, more sequencing depth or more biological replications? First of all, it is recommended to prepare RNA-seq with technical replications in a balanced block design, to multiplex bar-coding samples in a single lane, because it can eliminate the confounding lane effect and simultaneously create technical replications (Auer \& Doerge 2010). Second, increasing depth can produce greater power to detect DEGs but with a reduced feedback when passing over a threshold (Liu, Zhou, \& White, 2014; Robles et al., 2012). Surprisingly, reducing depth as low as 15% did not affect false positive or true positive rates (Robles et al., 2012). Finally and most importantly, biological replications can increase power and the percentage of differentiated expressed (Robles et al., 2012). Therefore, to prepare biological replication is more essential than to increase sequencing depth. In tomato, two biological replications were often prepared and the reads ranged from 10 to 70 million per sample (Li et al., 2016; Tan et al., 2015; Zhang et al., 2016; Zhu et al., 2015; Zouari et al., 2014). This implied the quantities of reads heavily depended on the sequencing resources from case to case.

1.5 Development of stamen

1.5.1 MADS box genes determine stamen differentiation

Two main types of genes control flower development: one identifies floral organ differentiation, so-called ABC model genes; the other generally regulated by phytohormones participates in organ initiation or later development processes (Haughn \& Somerville, 1988; Song, Qi, Huang, \& Xie, 2013). In the ABC model, B- and C-class genes are responsible for stamen differentiation. Mutations of these genes can cause abnormal stamens. The B-class mutant of Tomato MADS gene 6 (TMO) and TOMATO APETALA 3 (TAP3) showed carpelloid stamen and sepaloid petal (de Martino, 2006). The C-class mutant of TOMATO AGAMOUS 1 (TAG1) displayed not only petaloid stamen but also abnormal carpels (Pnueli, 1994). Since B and C genes all belong to the MADS box, these MADS box transcription factors are heavily responsible for stamen development (Smaczniak, Immink, Angenent, \& Kaufmann, 2012).

1.5.2 Phytohormones regulate the stamen development

Previous studies have reviewed that auxin, gibberellin (GA), jasmonate (JA), brassinosteroid (BR) and cytokinin regulate the stamen development in different stages (Cardarelli \& Cecchetti, 2014; Mandaokar et al., 2006; Song et al., 2013). Therefore, genes participating in phytohormone biosynthesis and/or regulated by phytohormones affect stamen development. For example, mutants of auxin synthesis (yuc2 yuc6) and auxin response factor (arf6 arf8) display non-elongated or shorter stamen (Cheng, Dai, \& Zhao, 2006; Nagpal et al., 2005). Meanwhile, phytohormones contribute to stamen development in crosstalk manners. Taking JA-regulated mechanism for example, the jasmonate zim-domain proteins release R2R3-type MYB transcription factors (MYB21
and MYB24) to participate stamen development when JA receptor receives JA and recruits jasmonate zim-domain proteins for degradation (Wu et al., 2011). In addition, JA biosynthesis is triggered not only by ARF6 and ARF8 but also by GA via the down regulation of DELLA, which suppresses the JA biosynthesis gene DAD1 (Cheng et al., 2009; Ishiguro, Kawai-Oda, Ueda, Nishida, \& Okada, 2001; Nagpal et al., 2005; Tabata et al., 2010). The complicated mechanism of stamen development implies that many genes of small effect may be involved in the stamen length.

1.6 Conclusion

The natural variation of outcrossing rate and floral morphology within S. pimpinellifolium made it an ideal material to study the relationship between self-incompatibility and heterostyly via GWAS. In this research, we intended to identify the QTL or candidate genes controlling stamen length with different tomato materials. In chapter 2, we developed a set of genome-wide high-density SNP markers for a collection of 99 S. pimpinellifolium accessions through RADseq. Afterwards, population differentiation was investigated via this SNP set. In addition, LD analysis revealed the advantage and the weakness of this collection in GWAS. In chapter 3, we performed a GWAS to map the QTL controlling stamen length with the same S. pimpinellifolium population. We checked the false discovery rate (FDR) of the candidates and made some suggestions to reduce the high FDR. Finally, in chapter 4, a RNA-seq experiment was performed for M82 and its introgression line TA3178, which contained a segment of S. pennellii near style2.1. Based on the previous work in our team, stamen2.2 and stamen 2.3 were located in the interval from marker cLED19A24 to CT9. This interval was annotated as 18 candidate genes. We narrowed the candidate list of stamen 2.2 and stamen 2.3 by comparing the expression level and cDNA polymorphisms between M82
and TA3178.

1.7 Reference

Anderson, A. D., \& Weir, B. S. (2007). A maximum-likelihood method for the estimation of pairwise relatedness in structured populations. Genetics. https://doi.org/10.1534/genetics.106.063149

Astle, W., \& Balding, D. J. (2010). Population Structure and Cryptic Relatedness in Genetic Association Studies. Statistical Science. https://doi.org/10.1214/09-sts307

Auer, P. L., \& Doerge, R. W. (2010). Statistical design and analysis of RNA sequencing data. Genetics. https://doi.org/10.1534/genetics.110.114983

Bauchet, G., Grenier, S., Samson, N., Bonnet, J., Grivet, L., \& Causse, M. (2017). Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by Genome Wide Association study. Theoretical and Applied Genetics. https://doi.org/10.1007/s00122-017-2857-9

Bedinger, P. A., Chetelat, R. T., McClure, B., Moyle, L. C., Rose, J. K. C., Stack, S. M., ... Royer, S. (2011). Interspecific reproductive barriers in the tomato clade: Opportunities to decipher mechanisms of reproductive isolation. Sexual Plant Reproduction. https://doi.org/10.1007/s00497-010-0155-7

Bernacchi, D., \& Tanksley, S. D. (1997). An interspecific backcross of Lycopersicon esculentum X L. hirsutum: Linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics.

Bhakta, M. S., Jones, V. A., \& Vallejos, C. E. (2015). Punctuated distribution of recombination hotspots and demarcation of pericentromeric regions in Phaseolus vulgaris L. PLoS ONE. https://doi.org/10.1371/journal.pone. 0116822

Blanca, J., Cañizares, J., Cordero, L., Pascual, L., Diez, M. J., \& Nuez, F. (2012).

Variation Revealed by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato. PLoS ONE. https://doi.org/10.1371/journal.pone. 0048198 J. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics. https://doi.org/10.1186/s12864-015-1444-1

Caicedo, A. L. (2008). Geographic diversity cline of R gene homologs in wild populations of Solanum pimpinellifolium (Solanaceae). American Journal of Botany. https://doi.org/10.3732/ajb.95.3.393

Caicedo, A. L., \& Schaal, B. A. (2004). Heterogeneous evolutionary processes affect R gene diversity in natural populations of Solanum pimpinellifolium. Proceedings of the National Academy of Sciences of the United States of America, 101, 17444-17449. https://doi.org/10.1073/pnas. 0407899101

Cardarelli, M., \& Cecchetti, V. (2014). Auxin polar transport in stamen formation and development: how many actors? Frontiers in Plant Science.
https://doi.org/10.3389/fpls.2014.00333
Charles Darwin M.A., P.B.S., F.L.S., \&c. (1862). On the two forms, or dimorphic conditions in the species of Primula, and on their remarkable sexual relations. The Journal of Linn Soc Lond Bot, 6, 77-69.

Chen, A. L., Liu, C. Y., Chen, C. H., Wang, J. F., Liao, Y. C., Chang, C. H., ... Chen, K. Y. (2014). Reassessment of QTLs for late blight resistance in the tomato accession L3708 using a restriction site associated DNA (RAD) linkage map and highly aggressive isolates of Phytophthora infestans. PLoS ONE.
https://doi.org/10.1371/journal.pone. 0096417
Chen, K. Y., Cong, B., Wing, R., Vrebalov, J., \& Tanksley, S. D. (2007). Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes.

Science. https://doi.org/10.1126/science. 1148428
Chen, K. Y., \& Tanksley, S. D. (2004). High-resolution mapping and functional analysis of se2.1: A major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus lycopersicon. Genetics. https://doi.org/10.1534/genetics.103.022558

Cheng, H., Song, S., Xiao, L., Soo, H. M., Cheng, Z., Xie, D., \& Peng, J. (2009). Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genetics. https://doi.org/10.1371/journal.pgen. 1000440

Cheng, Y., Dai, X., \& Zhao, Y. (2006). Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes and Development. https://doi.org/10.1101/gad. 1415106

Crowell, S., Korniliev, P., Falcão, A., Ismail, A., Gregorio, G., Mezey, J., \& McCouch, S. (2016). Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific QTL clusters. Nature Communications. https://doi.org/10.1038/ncomms10527

Darwin, C. (1862). On the Two Forms, or Dimorphic Condition, in the Species of Priumla, and on their remarkable Sexual Relations. Journal of the Proceedings of the Linnean Society, Botany, 6, 77-96.

Darwin, C. (1877). The different forms of flowers on plants of the same Species. The Different Forms of Flowers on Plants of the Same Species. https://doi.org/10.1017/CBO9780511731419

Davey, J. W., \& Blaxter, M. L. (2010). RADseq: Next-generation population genetics. Briefings in Functional Genomics. https://doi.org/10.1093/bfgp/elq031
de Martino, G. (2006). Functional Analyses of Two Tomato APETALA3 Genes

Demonstrate Diversification in Their Roles in Regulating Floral Development. THE PLANT CELL ONLINE. https://doi.org/10.1105/tpc.106.042978

Evanno, G., Regnaut, S., \& Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Flint-Garcia, S. A., Thornsberry, J. M., \& Buckler, E. S. (2003). Structure of Linkage Disequilibrium in Plants. Annual Review of Plant Biology. https://doi.org/10.1146/annurev.arplant.54.031902.134907

Fulton, T. M., Beck-Bunn, T., Emmatty, D., Eshed, Y., Lopez, J., Petiard, V., ... Tanksley, S. D. (1997). QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theoretical and Applied Genetics. https://doi.org/10.1007/s001220050639

Ganders, F. R. (1979). The biology of heterostyly. New Zealand Journal of Botany. https://doi.org/10.1080/0028825X.1979.10432574

Georgiady, M. S., Whitkus, R. W., \& Lord, E. M. (2002). Genetic analysis of traits distinguishing outcrossing and self-pollinating forms of currant tomato, Lycopersicon pimpinellifolium (Jusl.) Mill. Genetics.

Grandillo, S., \& Tanksley, S. D. (1996). QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theoretical and Applied Genetics.
https://doi.org/10.1007/BF00224033
Haughn, G. W., \& Somerville, C. R. (1988). Genetic control of morphogenesis in Arabidopsis. Developmental Genetics, 9(2), 73-89. https://doi.org/10.1002/dvg. 1020090202

Hohenlohe, P. A., Bassham, S., Etter, P. D., Stiffler, N., Johnson, E. A., \& Cresko, W. A. (2010). Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genetics. https://doi.org/10.1371/journal.pgen. 1000862

Huang, X., \& Han, B. (2014). Natural Variations and Genome-Wide Association Studies in Crop Plants. Annual Review of Plant Biology. https://doi.org/10.1146/annurev-arplant-050213-035715

Huang, X., Zhao, Y., Wei, X., Li, C., Wang, A., Zhao, Q., ... Han, B. (2012). Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics. https://doi.org/10.1038/ng. 1018

Ingvarsson, P. K., \& Street, N. R. (2011). Association genetics of complex traits in plants. New Phytologist. https://doi.org/10.1111/j.1469-8137.2010.03593.x

Ishiguro, S., Kawai-Oda, a, Ueda, J., Nishida, I., \& Okada, K. (2001). The
DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell, 13(10), 2191-2209. https://doi.org/10.1105/tpc. 010192

Soto-Cerda, B. J., and S. Cloutier, 2012 Association mapping in plant genomes, in Genetic Diversity in Plants, edited by C. Mahmut. InTech, Rijeka.
Jacquard, A. (1972). Genetic Information Given by a Relative. Society. https://doi.org/10.2307/2528643

Jung, J., Kim, H. J., Lee, J. M., Oh, C. S., Lee, H. J., \& Yeam, I. (2015). Gene-based molecular marker system for multiple disease resistances in tomato against Tomato yellow leaf curl virus, late blight, and verticillium wilt. Euphytica. https://doi.org/10.1007/s10681-015-1442-z

Keller, B., Thomson, J. D., \& Conti, E. (2014). Heterostyly promotes disassortative pollination and reduces sexual interference in Darwin's primroses: Evidence from experimental studies. Functional Ecology. https://doi.org/10.1111/1365-2435.12274

Kim, S., Plagnol, V., Hu, T. T., Toomajian, C., Clark, R. M., Ossowski, S., ... Nordborg, M. (2007). Recombination and linkage disequilibrium in Arabidopsis thaliana. Nature Genetics. https://doi.org/10.1038/ng2115

Korol, A. B., Ronin, Y. I., Itskovich, A. M., Peng, J., \& Nevo, E. (2001). Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics. https://doi.org/10.1534/genetics.107.080101

Korte, A., \& Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: A review. Plant Methods. https://doi.org/10.1186/1746-4811-9-29

Kottek, M., Grieser, J., Beck, C., Rudolf, B., \& Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259-263. https://doi.org/10.1127/0941-2948/2006/0130

Li, J., Cocker, J. M., Wright, J., Webster, M. A., McMullan, M., Dyer, S., ... Gilmartin, P. M. (2016). Genetic architecture and evolution of the S locus supergene in Primula vulgaris. Nature Plants. https://doi.org/10.1038/nplants.2016.188

Li, J., Tao, X., Li, L., Mao, L., Luo, Z., Khan, Z. U., \& Ying, T. (2016). Comprehensive RNA-seq analysis on the regulation of tomato ripening by exogenous auxin. PLoS ONE. https://doi.org/10.1371/journal.pone. 0156453

Liu, Y., Zhou, J., \& White, K. P. (2014). RNA-seq differential expression studies: More sequence or more replication? Bioinformatics. https://doi.org/10.1093/bioinformatics/btt688

Mandaokar, A., Thines, B., Shin, B., Markus Lange, B., Choi, G., Koo, Y.J., ... Browse, J. (2006). Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant Journal. https://doi.org/10.1111/j.1365-313X.2006.02756.x

Moyle, L. C. (2008). Ecological and evolutionary genomics in the wild tomatoes (Solanum Sect. Lycopersicon). Evolution. https://doi.org/10.1111/j.1558-5646.2008.00487.x

Nagpal, P., Ellis, C. M., Weber, H., Ploense, S. E., Barkawi, L. S., Guilfoyle, T. J., ...Reed, J. W. (2005). Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development. https://doi.org/10.1242/dev. 01955

Panthee, D. R., Gardner, R. G., Ibrahem, R., \& Anderson, C. (2015). Molecular Markers Associated with Ph-3 Gene Conferring Late Blight Resistance in Tomato. American Journal of Plant Sciences, 6, 2144-2150. https://doi.org/10.4236/ajps.2015.613216

Patterson, N., Price, A. L., \& Reich, D. (2006). Population structure and eigenanalysis. PLoS Genetics. https://doi.org/10.1371/journal.pgen. 0020190

Pnueli, L. (1994). Isolation of the Tomato AGAMOUS Gene TAG1 and Analysis of Its Homeotic Role in Transgenic Plants. The Plant Cell Online, 6(2), 163-173. https://doi.org/10.1105/tpc.6.2.163

Price, A., Zaitlen, N., Reich, D., \& Patterson, N. (2010). New approaches to population stratification in genome-wide association studies. Nature Reviews Genetics, 11(7), 459-463. https://doi.org/10.1038/nrg2813.New

Pritchard, J. K., Stephens, M., \& Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics.

Ranc, N., Munos, S., Xu, J., Le Paslier, M. C., Chauveau, A., Bounon, R., ... Causse, M. (2012). Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. G3, 2(8), 853-864. https://doi.org/10.1534/g3.112.002667

Rao, E. S., Kadirvel, P., Symonds, R. C., Geethanjali, S., \& Ebert, A. W. (2012). Using SSR markers to map genetic diversity and population structure of Solanum pimpinellifolium for development of a core collection. Plant Genetic Resources: Characterisation and Utilisation. https://doi.org/10.1017/S1479262111000955

Rick, C. M., Fobes, J. F., \& Holle, M. (1977). Genetic variation in Lycopersicon pimpinellifolium: Evidence of evolutionary change in mating systems. Plant Systematics and Evolution. https://doi.org/10.1007/BF00984147

Rick, C. M., Holle, M., \& Thorp, R. W. (1978). Rates of cross-pollination in Lycopersicon pimpinellifolium: Impact of genetic variation in floral characters. Plant Systematics and Evolution. https://doi.org/10.1007/BF00988982

Robles, A., Qureshi, S. E., Stephen, S. J., Wilson, S. R., Burden, C. J., Taylor, J. M., ... Taylor, J. M. (2012). Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing. BMC Genomics, 13(1), 484. https://doi.org/10.1186/1471-2164-13-484

Sauvage, C., Segura, V., Bauchet, G., Stevens, R., Do, P. T., Nikoloski, Z., ... Causse, M. (2014). Genome-Wide Association in Tomato Reveals 44 Candidate Loci for Fruit Metabolic Traits. Plant Physiology, 165(3), 1120-1132. https://doi.org/10.1104/pp.114.241521

Shirasawa, K., Hirakawa, H., \& Isobe, S. (2016). Analytical workflow of double-digest restriction site-associated DNA sequencing based on empirical and in silico optimization in tomato. DNA Research. https://doi.org/10.1093/dnares/dsw004

Sim, S. C., van Deynze, A., Stoffel, K., Douches, D. S., Zarka, D., Ganal, M. W., Francis, D. M. (2012). High-Density SNP Genotyping of Tomato (Solanum lycopersicum L.) Reveals Patterns of Genetic Variation Due to Breeding. PLoS ONE. https://doi.org/10.1371/journal.pone. 0045520

Slatkin, M. (2008). Linkage disequilibrium - Understanding the evolutionary past and mapping the medical future. Nature Reviews Genetics. https://doi.org/10.1038/nrg2361

Smaczniak, C., Immink, R. G. H., Angenent, G. C., \& Kaufmann, K. (2012). Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development. https://doi.org/10.1242/dev. 074674

Song, S., Qi, T., Huang, H., \& Xie, D. (2013). Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis. Molecular Plant. https://doi.org/10.1093/mp/sst054

Spooner, D. M., Peralta, I. E., \& Knapp, S. (2005). Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes [Solanum L . section Lycopersicon (Mill.) Wettst.]. Taxon, 54(1), 43-61.

Tabata, R., Ikezaki, M., Fujibe, T., Aida, M., Tian, C. E., Ueno, Y., ... Ishiguro, S. (2010). Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant and Cell Physiology. https://doi.org/10.1093/pcp/pcp176

Tan, G., Liu, K., Kang, J., Xu, K., Zhang, Y., Hu, L., ... Li, C. (2015). Transcriptome analysis of the compatible interaction of tomato with Verticillium dahliae using RNA-sequencing. Frontiers in Plant Science.
https://doi.org/10.3389/fpls.2015.00428
Tanksley, S. D., \& Loaiza-Figueroa, F. (1985). Gametophytic self-incompatibility is
controlled by a single major locus on chromosome 1 in Lycopersicon peruvianum. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.82.15.5093

Vilhjálmsson, B. J., \& Nordborg, M. (2013). The nature of confounding in genome-wide association studies. Nature Reviews Genetics. https://doi.org/10.1038/nrg3382

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., \& Yang, J. (2017). 10 Years of GWAS Discovery: Biology, Function, and Translation. American Journal of Human Genetics.
https://doi.org/10.1016/j.ajhg.2017.06.005
Wang, Z., Gerstein, M., \& Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics. https://doi.org/10.1038/nrg2484

Wu, D., Liu, Y., Song, S., Chang, C., Peng, J., Peng, W., ... Qi, T. (2011). The Jasmonate-ZIM Domain Proteins Interact with the R2R3-MYB Transcription Factors MYB21 and MYB24 to Affect Jasmonate-Regulated Stamen Development in Arabidopsis. The Plant Cell, 23(3), 1000-1013.
https://doi.org/10.1105/tpc.111.083089
Yano, K., Yamamoto, E., Aya, K., Takeuchi, H., Lo, P. C., Hu, L., ... Matsuoka, M. (2016). Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genetics, 48(8), 927-934. https://doi.org/10.1038/ng.3596

Yasui, Y., Hirakawa, H., Ueno, M., Matsui, K., Katsube-Tanaka, T., Yang, S. J., ... Mori, M. (2016). Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes. DNA Research. https://doi.org/10.1093/dnares/dsw012

Yu, J., Pressoir, G., Briggs, W. H., Bi, I. V., Yamasaki, M., Doebley, J. F., ... Buckler, E. S. (2006). A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics. https://doi.org/10.1038/ng1702 Zhang, S., Xu, M., Qiu, Z., Wang, K., Du, Y., Gu, L., \& Cui, X. (2016). Spatiotemporal transcriptome provides insights into early fruit development of tomato (Solanum lycopersicum). Scientific Reports. https://doi.org/10.1038/srep23173

Zhang, Z., Ersoz, E., Lai, C. Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., ... Buckler, E. S. (2010). Mixed linear model approach adapted for genome-wide association studies. Nature Genetics. https://doi.org/10.1038/ng. 546

Zhu, B., Yang, Y., Li, R., Fu, D., Wen, L., Luo, Y., \& Zhu, H. (2015). RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening. Journal of Experimental Botany.
https://doi.org/10.1093/jxb/erv203
Zhu, C., Gore, M., Buckler, E. S., \& Yu, J. (2008). Status and Prospects of Association Mapping in Plants. The Plant Genome, 1(1), 5-20.
https://doi.org/10.3835/plantgenome2008.02.0089
Zouari, I., Salvioli, A., Chialva, M., Novero, M., Miozzi, L., Tenore, G. C., ... Bonfante, P. (2014). From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. BMC Genomics.
https://doi.org/10.1186/1471-2164-15-221
Zuriaga, E., Blanca, J. M., Cordero, L., Sifres, A., Blas-Cerdán, W. G., Morales, R., \& Nuez, F. (2009). Genetic and bioclimatic variation in Solanum pimpinellifolium. Genetic Resources and Crop Evolution. https://doi.org/10.1007/s10722-008-9340-z

Chapter 2 Assessment of population differentiation and linkage disequilibrium in Solanum pimpinellifolium using genome-wide high-density SNP markers

2.1 Purpose

Before performing a GWAS, the population structure and the LD should be investigated to understand the genetic nature of a studying population. First of all, a PstI-digested RADseq of 99 accessions was conducted to develop a genome-wide high-density SNP set. The population differentiation was examined by different approaches, including ADMIXTURE, PCA, pair-wise $\mathrm{F}_{\text {st }}$ and AMOVA. Afterwards, the LD and the marker density were evaluated to reveal the advantage and the potential weakness of this collection in GWAS. This chapter is modified based on the published paper on G3; Genes/Genomes/Genetics: Assessment of Genetic Differentiation and Linkage Disequilibrium in Solanum pimpinellifolium Using Genome-Wide High-Density SNP Markers (https://doi.org/10.1534/g3.118.200862).

2.2 Material and Method

2.2.1 Plant materials

All plant materials and their information were obtained from TGRC (S_Tab 2.1; http://tgrc.ucdavis.edu/). A total of 12 accessions from Ecuador and 87 accessions from Peru were utilized in this study. According to their mating types, 43 accessions were facultative self-compatible (FSC), and 56 accessions were autogamous self-compatible (ASC). Seeds were propagated by self-pollination for two generations using the method
of single-seed descent in a greenhouse. Young leaves collected from plants of these single-seed descendent seeds were used for DNA extraction.

2.2.2 RAD sequencing

Total genomic DNA was extracted from young leaves using a modified CTAB method (Fulton, Chunwongse, \& Tanksley, 1995) and purified with a DNeasy Blood \& Tissue Kit (QIAGEN, Venlo, Netherland) following the manufacturer's instructions. We chose PstI to select the sequencing regions because PstI is a methylation-sensitive restriction enzyme and it may cut more frequently in euchromatin regions than heterochromatin regions (Dobritsa \& Dobritsa, 1980). PstI-digested DNA libraries were prepared following the protocol of Etter et al. (Etter, Bassham, Hohenlohe, Johnson, \& Cresko, 2011). Four RADseq libraries were constructed, and each was sequenced in one lane of an Illumina HiSeq2000 flow cell (100 bp single-end reads) (Illumina Inc., San Diego, CA, USA). All the sequences of RADseq were submitted to the NCBI SRA database, and the BioProject Number is PRJNA358110.

2.2.3 SNP calling

Reads were analyzed with Stacks version 1.37 (Catchen, Hohenlohe, Bassham, Amores, \& Cresko, 2013) and with CLC Genomics Workbench software version 6.5.1 (QIAGEN, Venlo, Netherlands). First, the process_radtags command in Stacks filtered out low-quality reads with Q scores less than 20 . The remaining reads were mapped to the tomato reference genome SL2.50 (Fernandez-Pozo et al., 2015) using the "Map Reads to Reference" tool in the CLC Genomics Workbench software. Considering that genetic variation between the tomato reference genome S.lycopersicum and S. pimpinellifolium is larger than genetic variation within S. lycopersicum, mapping
parameters were set as 0.5 for the length fraction and 0.9 for the similarity fraction. The reads of the same individual in different lanes were merged. In the subsequent analyses using Stacks, the ref_map.pl command set the parameter -m (minimum read depth to create a stack) as 10 , and the populations command set the parameter -p (minimum number of populations a locus must be present) as 75 . SNPs with a minor allele frequency of less than 0.05 were further excluded, and a set of 24,330 SNP markers was obtained. This set of 24,330 SNP markers was utilized for the analyses of genetic variation, LD, $\mathrm{F}_{\text {st }}$ and AMOVA. Another SNP set without 'redundant SNP markers' was used to conduct the principal component analysis (PCA) and ADMIXTURE because these two matrices are expected to correct the structure in GWAS. To remove 'redundant SNP markers', we defined a sequencing unit as a sequencing region surrounding a PstI site, usually 186 bp long, which has at least one SNP with a minor allele frequency greater than 0.05 in the S. pimpinellifolium population. If more than one SNPs are located in a sequencing unit and they are in complete LD ($r^{2}=1$), only the first SNP is kept. This process resulted in a total of 19,993 SNP markers. ITAG2.4 gene model from SGN was used as the reference gene annotation.

2.2.4 Population differentiation

PCA was performed in TASSEL5.0 (Bradbury et al., 2007). ADMIXTURE was completed following the manual; the best K was determined following the procedure of cross-validation in the manual (Alexander, Novembre, \& Lange, 2009). Pairwise $\mathrm{F}_{\text {st }}$ (Weir \& Cockerham, 1984) and analysis of molecular variance (AMOVA) (Excoffier, Smouse, \& Quattro, 1992) were conducted in the R package StAMPP (Pembleton, Cogan, \& Forster, 2013).

2.2.5 Isolation by distance

Pairwise genetic distance was measured by Rogers' distance (Rogers, 1972). Geographic distance was calculated by the R package geosphere (Hijmans, 2016). The significance of the correlation between pairwise genetic distance and geographic distance was examined by the Mantel test in the R package adegenet with 1,000 permutations (Jombart, 2008).

2.2.6 Estimate of genetic variation and LD

Genetic variation within overall accessions and within each of the seven groups was assessed based on observed heterozygosity and the within-population gene diversity (expected heterozygosity) using the R package hierfstat (Goudet \& Jombart, 2015). Pairwise r^{2} values between SNP markers were calculated to assess overall extent of LD via plink1.9 within a $1-\mathrm{Mb}$ window (Gaunt, Rodríguez, \& Day, 2007) and fit by non-linear regression (Remington et al., 2001). The baseline of the r^{2} value was set at 0.1 (Bauchet et al., 2017). The local LD along each chromosome was assessed as following: for each pair of consecutive sequencing units (defined in the section of SNP calling), the average r^{2} was calculated between two SNPs in different sequencing units and plotted along the left PstI cutting site based on the physical position. The heterochromatin regions were marked according to the genetic map of EXPIM 2012 and the physical map of the tomato reference genome (Sim et al., 2012).

2.2.7 Analysis of SolCAP array data of S. pimpinellifolium

The SolCAP data of 214 samples of S. pimpinellifolium were downloaded from previous studies (Blanca et al., 2012; Blanca et al., 2015; Sim et al., 2012). A set of 2,934 bi-allelic polymorphic SNPs was extracted after filtered with the criteria that
minor allele frequency is more than 0.05 and the proportion of missing genotypes is less than 25%. We dropped 627 SNP markers that are reverse-complement allele designation, resulting in a set of 2,307 SNPs with consistent allele designation among these studies. This set of 2,307 SNPs was utilized in the analyses of ADMIXTURE and isolation by distance following the same procedures described in the sections of population differentiation and isolation by distance. Meanwhile, because some accessions were genotyped in more than one SolCAP studies, different suffixes_-"_2012S," "_2012B," and "_2015B,"-were added to the sample name to indicate their original references Sim et al. 2012a, Blanca et al. 2012, and Blanca et al. 2015, respectively. Also, the percentage of identical SNP genotypes of the same accessions were calculated based on the 2,307 SNP genotypes without missing values.

2.3 Result

2.3.1 Identification of 24,330 SNPs from PstI-digested DNA libraries

A total of $655,973,270$ short DNA reads were obtained from four lanes of the Illumina HiSeq2000 flow cell and were divided into 99 parts according to barcode sequences. Each part was derived from the DNA of a S. pimpinellifolium accession and contained at least 3.7 million DNA reads, except for LA2647 (S_Tab 2.1). Among the 82,814 PstI sites in the tomato reference sequence SL2.50, only 23,988 PstI sites were covered by the sequenced DNA reads (S_Tab 2.2). The sequenced regions included 0.54% of the SL2.50 reference sequences and 12,790 annotated genes (Table 2.1). Interestingly, approximately 84% of the sequenced PstI sites were located in the euchromatic regions (S_Tab 2.2). Besides, the proportion of sequenced genes in euchromatin (43.13\%) were about twice as that in heterochromatin (19.75\%) (S_Tab 2.2).

Table 2.1 Summary of the markers developed with the RAD sequencing strategy and the sequenced genes as well.

Chr.	SNPs	Genes in sequenced region	Genes with SNPs	SNPs in gene regions
0	147	62	25	57
1	3,222	1,742	1,029	2,374
2	2,401	1,400	803	1,661
3	2,522	1,389	812	1,779
4	2,121	1,054	611	1,328
5	1,680	783	437	1,049
6	2,179	1,195	673	1,422
7	1,756	902	535	1,174
8	1,929	952	599	1,304
9	1,670	877	507	1,192
10	1,616	812	444	954
11	1,563	834	466	1,054
12	1,524	788	440	1,017
Total	$\mathbf{2 4 , 3 3 0}$	$\mathbf{1 2 , 7 9 0}$	$\mathbf{7 , 3 8 1}$	$\mathbf{1 6 , 3 6 5}$

Two criteria were set to ensure the accuracy of SNP calling and genotype calling: one was that the read depth aligning to the reference sequence was equal to or greater than 10 , and the other was that at least 75% of the accessions showed genotypes associated with a defined SNP marker. A total of 67,804 SNPs were identified in the sequenced regions of 99 S. pimpinellifolium accessions, and 24,330 of them had the minor allele frequency higher than 0.05 . In the genotypic dataset of the 24,330 SNP markers (S_Tab 2.3), the missing proportion of each accession ranged from 0.72% to 15.92%, except for LA2647 of which the value was 65.68% due to a low number of sequencing reads (S_Tab 2.1). Regarding the location of these 24,330 SNPs, 16,365 SNPs were found in 7,383 annotated genes (Table 2.1), and the remaining SNPs were in the intergenic regions. Concerning the proportion of sequenced PstI sites that contained SNPs, there is no significant difference between those sites in euchromatin (68.85\%) and those in heterochromatin (60.59\%) (S_Tab 2.2). Meanwhile, the genotypic data of the LA0411 accession was dropped because the observed heterozygosity of LA0411
was inconsistent with its mating type (S_Tab 2.1).

2.3.2 A similar distribution between genes and SNPs was identified in the vicinity of PstI cutting site throughout the genome

The observation that $67.26 \%(16,365$ to 24,330$)$ of the SNPs were located in the annotated gene regions (Table 2.1) implied a correlation between the distribution of the identified SNPs in the current study and the distribution of the annotated genes. Additional observations in the current study indicated a preference for genomic DNA digestion by the PstI restriction enzyme in the euchromatic regions: only 28.97% (23,988 to 82,814) of PstI sites were found in the deep sequencing regions, and 83.55% $(20,043$ to 23,988$)$ of the deep sequencing regions were located in the euchromatic region (S_Tab 2.2). It is worth noting that the current RADseq protocol did produce low coverage of sequencing reads in some PstI sites (with a read depth less than 10), and these PstI sites were filtered by the criteria of SNP and genotype calling; therefore, the deep sequencing regions indicated that their read depths were no less than 10. Incidentally, because SNPs can be identified only in the sequenced regions, it is a reasonable deduction that most SNPs found in the current study are located in the euchromatic regions. Figure 2.1 confirms clearly that the annotated tomato genes (A layer), the PstI sites in the deep sequencing regions (C layer), and identified SNPs (D layer) are mainly located in the euchromatic regions.

Figure 2.1 The distributions of ITAG2.4 gene model, PstI cutting sites and SNPs through whole genome. Each section referred to one chromosome, labeling on the circumference. A, B, C and D circles indicated the distribution of ITAG2.4 genes, expected PstI cutting sites, PstI cutting sites in the deep sequencing regions and RADseq SNPs, respectively. The black lines in the inner of D layer indicated the heterochromatic regions.

2.3.3 Genetic differentiation of S. pimpinellifolium was corresponding to the geographic area

The collection of 98 S. pimpinellifolium accessions was divided into three single-ancestral subpopulations and four mixed-ancestral subpopulations by the ADMIXTURE software (Figure 2.2A; S_Fig 2.1). We named the red, blue, and green single-ancestral subpopulations POP S1, POP S2, and POP S3, respectively (Table 2.2). Meanwhile, the red-blue, blue-green, red-green, and red-blue-green mixed-ancestral subpopulations were named as POP M1, POP M2, POP M3, and POP M4, respectively
(Table 2.2). POP S1, POP S2, and POP S3 were clustered separately in the PCA plot, in which the first and the second principal components counted for 16.04% and 8.00% of the variance, respectively (Figure 2.2B). Moreover, pairwise $\mathrm{F}_{\text {st }}$ confirmed the genetic differentiation (S_Tab 2.4), and AMOVA revealed that the variance between subpopulations was 41.96% (p-value <0.001).

Table 2.2 Genetic variation of each subpopulation.

Subpopulation ID $^{\mathbf{a}}$	Genome pattern in ADMIXTURE	Sample size	Missing (\%)	$\mathbf{H}_{\mathbf{0}}{ }^{b}$	$\mathbf{H}_{\mathbf{s}}{ }^{\boldsymbol{c}}$
Total		$\mathbf{9 8}$	$\mathbf{5 . 7 2}$	$\mathbf{0 . 0 7 6 1}$	$\mathbf{0 . 2 7 8 6}$
POP S1	Red group	7	6.14	0.0660	0.1856
POP S2	Blue group	15	4.87	0.0558	0.1947
POP S3	Green group	21	6.70	0.0451	0.1549
POP M1	Red-Blue group	33	6.57	0.0948	0.2714
POP M2	Blue-Green group	15	3.63	0.0779	0.1913
POP M3	Red-Green group	4	4.78	0.1188	0.2133
POP M4	Red-Blue-Green	3	4.45	0.1468	0.1850

${ }^{a}$: POP S indicates single ancestral subpopulation; POP M indicates mixed ancestral subpopulation.
${ }^{b}: \mathrm{H}_{0}$ indicates the observed heterozygosity.
${ }^{c}: \mathrm{H}_{\mathrm{s}}$ indicates the within-population gene diversity (or "expected heterozygosity").

The within-population gene diversity was calculated to compare genetic variation within each subpopulation. POP S2 and POP M1 showed the highest genetic variation among the single-ancestral subpopulations and the mixed-ancestral subpopulations, respectively (Table 2.2). Both subpopulations were in northern Peru, which indicated that northern Peru is the origin of S. pimpinellifolium.

Figure 2.2 Ancestry and geographic distribution of 98 Solanum pimpinellifolium accessions from the Tomato Genetics Resource Center. A) Model-based ancestry for each accession. B) Principle component analysis of the S. pimpinellifolium population. C) Geographical distribution of the 98 S. pimpinellifolium accessions. Symbol and color codes are as follows: square symbols with red, blue and green colors indicate three single ancestral subpopulations corresponding to the same colors in the ancestry plot (POP S1, POP S2 and POP S3, respectively); triangle symbols with purple, aquamarine and goldenrod colors present the POP M1, POP M2 and POP M3, respectively; black circle symbols were the POP M4.

Interestingly, most accessions in the same subpopulation were in the same vicinity of their collection sites (Figure 2.2C). Also, POP S1, POP S2, and POP S3 spread in somewhat distinct geographic areas along the coastline from Ecuador to southern Peru (Figure 2.2C). The geographic distribution of these subpopulations appeared in the following order from north to south: POP S1, POP M1, POP S2, POP M2, and POP S3 (Figure 2.2C). This geographic distribution showed a trend in which the mixed-ancestral
subpopulations were located between their corresponding single-ancestral subpopulations. For the analysis of isolation by distance (IBD) using all pairs of samples, the correlation coefficient between the genetic distance and geographic distance was 0.34 , and this correlation was statistically significant (p-value <0.001) (S_Fig 2.2).

2.3.4 Meta-analysis of SolCAP genotyping array resulted in 15 subpopulations

To compare with our analysis of the genetic differentiation of S. pimpinellifolium in the current study, we performed a meta-analysis of the genetic differentiation of S. pimpinellifolium using combined SNP-marker genotypic data of SolCAP array from the previous studies. We downloaded the genotypes of 214 samples representing 126 accessions from three previous studies (Blanca et al., 2012; Blanca et al., 2015; Sim et al., 2012) and conducted the meta-analysis using our workflow (please see details in the "Materials and Methods" section) (S_Tab 2.7). Initially, we extracted a marker set of 2,934 bi-allelic SNPs to investigate genetic diversity between samples from different studies but tagged the same name. The samples in Blanca et al., 2012 separated from those of the other two studies in the PCA plot (S_Fig 2.3A), while most of the accessions in Blanca et al., 2012 were involved in the study of Blanca et al., 2015 (S_Tab 2.5). It suggested that the batch effect occurred when these datasets merged. Considering the SolCAP genotyping array is an Illumina bead array, which uses the TOP/BOT strand and A / B allele designation to assign the actual polymorphism of samples, data merging might introduce reverse-complement allele designation (Illumina, 2014). We resolved the problem of the batch effect after we removed the markers with inconsistent SNP assignment among these three datasets (S_Fig 2.3B). The genotypic data of 2,307 SNPs in 214 samples was remained (S_Tab 2.5 and S_Tab 2.6) and used
to conduct further analyses. ADMIXTURE suggested the best K equaled to 15 (S_Fig 2.4 and S_Fig 2.5). Also, the correlation coefficient between the genetic distance and geographic distance was 0.55 , and this correlation was statistically significant (p -value <0.001) (S_Fig 2.6).

2.3.5 Rapid LD decay

LD decay was estimated for the mapping resolution in GWAS. In this population, the non-linear regression curve dropped very quickly (S_Fig 2.7). Following the non-linear regression curve, the overall LD decay was within 18 Kb when the baseline of the r^{2} value was set at 0.1 (Table 2.3; Figure 2.3A). The fastest LD decay was within 10 Kb on chromosome 9 while the slowest LD decay was within 30 Kb on chromosome 4 (Table 2.3; S_Fig 2.8).

Table 2.3 The local LD profiles of individual chromosomes.

Chr.	LD decay (Kb)	For paired flanking sequencing units		Proportion of LD for paired flanking sequencing units (\%)
		Number of $r^{2} \geq 0.1$	Number of $r^{2}<0.1$	
1	14	632	1,130	35.87
2	12	475	881	35.03
3	15	460	927	33.17
4	30	423	687	38.11
5	21	309	514	37.55
6	20	428	750	36.66
7	21	397	581	40.59
8	28	401	618	39.35
9	10	280	617	31.22
10	19	330	525	38.60
11	19	310	535	36.69
12	17	253	539	31.94
Total	18	4,698	8,304	36.13

Figure 2.3 Visualization for LD. A) The 50 Kb interval of overall LD decay. The red curve indicated non-linear regression and black dotted line referred to the baseline of r^{2} at 0.1 . B) The local LD of chromosome 1. The red dotted line was the baseline of r^{2} and the orange line indicated the heterochromatic region.

2.3.6 Heterogeneity of genetic recombination within each chromosome

LD decay of individual chromosomes was insufficient to capture the local variations of historically accumulated recombination events because the tomato genome comprises more than 75% heterochromatin which usually suppresses recombination events (Sim et al., 2012). We assessed the local LD profile of individual chromosomes based on the average r^{2} value of flanking sequencing units that contained at least one SNP marker. We observed two main trends: marker density in the heterochromatic
regions was lower than that in the euchromatic regions (Figure 2.3B; S_Fig 2.9), and approximately two-thirds of the r^{2} values were less than 0.1 (Table 2.3). The latter observation indicated that these flanking SNP markers were not in a state of linkage disequilibrium.

2.4 Discussion

2.4.1 Subpopulations clustering from north to south are expected due to the high correlation between genetic distance and geographic distance

The genetic differentiation revealed in this study should be similar to previous findings because the collection sites of this collection cover most of recorded habitats of S. pimpinellifolium. One previous study for the genetic diversity of S. pimpinellifolium assessed 213 accessions with the genotypes of 10 SSR markers. It suggested the existence of Peruvian and Ecuadorian subpopulations (Zuriaga et al., 2009). Another study investigated a collection of 190 S. pimpinellifolium accessions using 48 SSR markers (Rao et al., 2012). It evaluated 120 accessions collected from Peru and 31 accessions from Ecuador, and divided these accessions into two single-ancestral subpopulations and one mixed-ancestral subpopulation. One of the single-ancestral subpopulations contained 93 accessions from Peru and 3 Ecuadorian accessions. These three Ecuadorian accessions were the only Ecuadorian accessions that were grouped into this single-ancestral subpopulation that contained mainly the Peruvian accessions, and the duplicated entries with the same names of these Ecuadorian accessions (LA0411, LA1246, LA1261) in the same study were grouped into the other two subpopulations. Despite of these three confounded Ecuadorian accessions, this study still inferred strong correlation between genetic diversity and geographic distance between Peruvian and Ecuadorian subpopulations (Rao et al., 2012). With the aid of SolCAP array, two
consecutive studies, one with 63 S. pimpinellifolium accessions and the other with 112 S. pimpinellifolium accessions, sorted S. pimpinellifolium into three subpopulations: one in northern Ecuador, another in the mountainous area from southern Ecuador extending to northern Peru and the third in the low-altitude areas of Peru (Blanca et al., 2012; Blanca et al., 2015). Our study also supports three single-ancestral subpopulations: one in Ecuador, one in northern Peru, and another in southern Peru. Among all the aforementioned studies, two ancestral subpopulations are confident: one includes the accessions in Ecuador; the other includes the accessions in southern Peru. The different grouping among these studies for those accessions from southern Ecuador to northern Peru may result from different markers and different genetic diversity in each study.

Previous studies suggested that genetic differentiation of S. pimpinellifolium correlated to the climatic variation (Rick et al. 1977; Zuriaga et al. 2009; Blanca et al. 2012, 2015). The analysis of genetic differentiation based on the RADseq data in the current study supported the same conclusion: most POP S1 accessions are in hot and humid Ecuador; most POP M1 scatter in northern Peru, along the western Andean slopes, in which is a warm desert; most POP S2 are located in the Andean Mountains; most POP M2 are in a warm semi-arid region; most POP S3 spread along the coastal region from central to southern Peru, in which is a relatively cold desert (S_Tab 2. 1 and Figure 2.2C). Since these subpopulations are located in the environments with different climates, and $\mathrm{F}_{\text {st }}$ as well as AMOVA support these subpopulations (S_Tab 2.4), the genetic differentiation of S. pimpinellifolium is observed evidently with the aid of RADseq SNP markers.

Isolation by distance (IBD) is a common tool to access genetic differentiation that expect a positive correlation between genetic variation and geographic distance (Wright,
1943). We conducted this analysis for both datasets, the RADseq data and the SolCAP array data, and made comparisons. The former data had the correlation coefficient equal to 0.34 , and the latter one was 0.55 (S_Fig 2; S_Fig 6). It seems that the RADseq data showed less genetic differentiation than the SolCAP array data. However, it has been argued that IBD test can be severely biased in two situations: unequal migration among all populations in a system, and the detection of loci under selection (Meirmans, 2012). We do not know whether the investigated accessions were equally migrated, but we do know that the SolCAP array was designed mainly on the SNP sites of coding sequences within cultivated tomatoes or between cultivated tomato and wild tomatoes (Sim et al., 2012). Therefore, the SNPs on the SolCAP array had higher chances under selection in domestication. Under this premise, the comparisons of the IBD test between the RADseq data and the SolCAP array data could be confounded by the differences in selection strength.

2.4.2 Discrepancy of genetic clustering in SolCAP meta-analysis

Our meta-analysis concluded that the genetic compositions of 214 samples came from 15 ancestral populations. This conclusion is different from the conclusion of Blanca et al. (2012) and our RADseq data, both of which suggested that there were three ancestral populations of S. pimpinellifolium. It implied an unclear structure; especially the cross validation error has an ambiguous minimal value (S_Fig 2.4). It is possible that genetic diversity between wild tomatoes are underestimated because the polymorphisms of SolCAP array are selected between cultivars and wild tomatoes (Sim et al., 2012). We noticed that two samples of LA0373 with 76% identity display different genome patterns in ADMIXTURE, while two samples of LA1478 with 71\% identity present different patterns as well (S_Tab 2.7; S_Fig 2.5). Since two samples of
the same accession demonstrate dissimilar genome patterns, the SolCAP may be less appropriate to quantize the population structure of S. pimpinellifolium, especially when more samples are involved. Also, for the same reason, we cannot validate the genetic differentiation in the SolCAP meta-analysis by $\mathrm{F}_{\text {st }}$ or AMOVA nor achieve a stable estimation of genetic differentiation in a scenario of more accessions via the SolCAP meta-analysis.

2.4.3 More markers are required to cover through the genome of S. pimpinellifolium

The observed and expected heterozygosity of this population were 0.0761 and 0.2786 , respectively, slightly higher than those in previous researches (Blanca et al., 2012; Blanca et al., 2015). Since S. pimpinellifolium was detected with up to a 40% outcrossing rate (Rick et al., 1977) and demonstrated high genetic variation, it is expected to cause rapid LD decay. In this study, LD decay was within 18 Kb throughout the genome, which was much shorter than cultivated tomatoes (Bauchet et al., 2017; Sim et al., 2012). However, to put at least one SNP marker within each of 18 Kb intervals in this genome, the $900-\mathrm{Mb}$ tomato genome would require at least 50,000 markers to fulfill QTL detection in GWAS. Therefore, acquiring many SNPs using different methods is essential to conduct a GWAS in the S. pimpinellifolium population. Here, we proposed three possible approaches to increase markers. One is to increase the sample size evenly for each subpopulation (Brachi, Morris, \& Borevitz, 2011). Since approximately 64% of alleles were rare in this population, the augmentation of the subpopulation size may adjust rare alleles to common alleles, potentially increasing the SNPs without extending coverage. One is to construct DNA libraries with a frequently cutting restriction enzyme. This approach can be simulated and optimized in silico to
balance sequencing resource between sample sizes and sequencing coverage (Shirasawa et al., 2016). Another is exome sequencing, a selective genome sequencing technology that selects desired sequencing regions by the hybridization of designed probes (Kaur \& Gaikwad, 2017). Based on tomato genome sequence information, such as the gene model or EST database, one could design different sets of probes to limit sequencing regions (Ruggieri et al., 2017). Given the approximately 110 Mb total gene length in the ITAG2.4 gene model, the potential coverage could reach 12% and all target the gene region. This exome sequencing strategy may be able to increase SNPs without increasing population size.

2.5 Reference

Alexander, D. H., Novembre, J., \& Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research. https://doi.org/10.1101/gr.094052.109

Bauchet, G., Grenier, S., Samson, N., Bonnet, J., Grivet, L., \& Causse, M. (2017). Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by Genome Wide Association study. Theoretical and Applied Genetics. https://doi.org/10.1007/s00122-017-2857-9

Blanca, J., Cañizares, J., Cordero, L., Pascual, L., Diez, M. J., \& Nuez, F. (2012). Variation Revealed by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato. PLoS ONE. https://doi.org/10.1371/journal.pone. 0048198

Blanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Díez, M. J., ... Cañizares, J. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics. https://doi.org/10.1186/s12864-015-1444-1 Brachi, B., Morris, G. P., \& Borevitz, J. O. (2011). Genome-wide association studies in
plants: The missing heritability is in the field. Genome Biology. https://doi.org/10.1186/gb-2011-12-10-232

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., \& Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics. https://doi.org/10.1093/bioinformatics/btm308

Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., \& Cresko, W. A. (2013). Stacks: An analysis tool set for population genomics. Molecular Ecology. https://doi.org/10.1111/mec. 12354

Dobritsa, A. P., \& Dobritsa, S. V. (1980). DNA protection with the DNA methylase M • BbvI from Bacillus brevis var. GB against cleavage by the restriction endonucleases PstI and PvuII. Gene. https://doi.org/10.1016/0378-1119(80)90128-6

Etter, P. D., Bassham, S., Hohenlohe, P. A., Johnson, E. A., \& Cresko, W. A. (2011). SNP Discovery and Genotyping for Evoultionary Genetics Using RAD Sequencing. Molecular Methods for Evolutionary Genetics, 772(2), 1-19. https://doi.org/10.1007/978-1-61779-228-1

Excoffier, L., Smouse, P. E., \& Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics.

Fernandez-Pozo, N., Menda, N., Edwards, J. D., Saha, S., Tecle, I. Y., Strickler, S. R., ... Mueller, L. A. (2015). The Sol Genomics Network (SGN)-from genotype to phenotype to breeding. Nucleic Acids Research.
https://doi.org/10.1093/nar/gku1 195
Fulton, T. M., Chunwongse, J., \& Tanksley, S. D. (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Molecular

Biology Reporter, 13(3), 207-209. https://doi.org/10.1007/BF02670897
Gaunt, T. R., Rodríguez, S., \& Day, I. N. M. (2007). Cubic exact solutions for the estimation of pairwise haplotype frequencies: Implications for linkage disequilibrium analyses and a web tool "CubeX." BMC Bioinformatics. https://doi.org/10.1186/1471-2105-8-428

Goudet, J., \& Jombart, T. (2015). hierfstat: Estimation and Tests of Hierarchical F-Statistics.

Hijmans, R. J. (2016). geosphere: Spherical Trigonometry. R package version 1.5-5. Illumina. (2014). Infinium ${ }^{\circledR}$ Genotyping Data Analysis. Technical Note, 10p. https://doi.org/10.1111/j.1532-950X.2005.00092.x

Jombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics. https://doi.org/10.1093/bioinformatics/btn129

Kaur, P., \& Gaikwad, K. (2017). From Genomes to GENE-omes: Exome Sequencing Concept and Applications in Crop Improvement. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2017.02164

Meirmans, P. G. (2012). The trouble with isolation by distance. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2012.05578.x

Pembleton, L. W., Cogan, N. O. I., \& Forster, J. W. (2013). StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.12129

Rao, E. S., Kadirvel, P., Symonds, R. C., Geethanjali, S., \& Ebert, A. W. (2012). Using SSR markers to map genetic diversity and population structure of Solanum pimpinellifolium for development of a core collection. Plant Genetic Resources: Characterisation and Utilisation. https://doi.org/10.1017/S1479262111000955

Remington, D. L., Thornsberry, J. M., Matsuoka, Y., Wilson, L. M., Whitt, S. R., Doebley, J. F., ... Buckler, E. S. (2001). Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.201394398

Rick, C. M., Fobes, J. F., \& Holle, M. (1977). Genetic variation in Lycopersicon pimpinellifolium: Evidence of evolutionary change in mating systems. Plant Systematics and Evolution. https://doi.org/10.1007/BF00984147

Rogers, J. S. (1972). Measures of similarity and genetic distance. In In Studies in Genetics VII (pp. 145-153). Austin, Texas: University of Texas Publication 7213.

Ruggieri, V., Anzar, I., Paytuvi, A., Calafiore, R., Cigliano, R. A., Sanseverino, W., \& Barone, A. (2017). Exploiting the great potential of Sequence Capture data by a new tool, SUPER-CAP. DNA Research : An International Journal for Rapid Publication of Reports on Genes and Genomes. https://doi.org/10.1093/dnares/dsw050

Shirasawa, K., Hirakawa, H., \& Isobe, S. (2016). Analytical workflow of double-digest restriction site-associated DNA sequencing based on empirical and in silico optimization in tomato. DNA Research. https://doi.org/10.1093/dnares/dsw004

Sim, S. C., Durstewitz, G., Plieske, J., Wieseke, R., Ganal, M. W., van Deynze, A., ... Francis, D. M. (2012). Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS ONE. https://doi.org/10.1371/journal.pone. 0040563

Sim, S. C., van Deynze, A., Stoffel, K., Douches, D. S., Zarka, D., Ganal, M. W., ... Francis, D. M. (2012). High-Density SNP Genotyping of Tomato (Solanum lycopersicum L.) Reveals Patterns of Genetic Variation Due to Breeding. PLoS ONE. https://doi.org/10.1371/journal.pone. 0045520

Weir, B. S., \& Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population Structure. Evolution, 38(6), 1358-1370.

Wright, S. (1943). Isolation by distance. Genetics, 28, 114-138. https://doi.org/10.5194/isprs-Archives-XLII-5-W1-419-2017

Zuriaga, E., Blanca, J. M., Cordero, L., Sifres, A., Blas-Cerdán, W. G., Morales, R., \& Nuez, F. (2009). Genetic and bioclimatic variation in Solanum pimpinellifolium. Genetic Resources and Crop Evolution.
https://doi.org/10.1007/s10722-008-9340-z

2.6 Supplementary data

S_Fig 2.1 The cross-validation error of K value in ADMIXTURE.

S_Fig 2.2 Pairwise isolation by distance of 98 accessions.
Colors present the density from low (blue) to high (red).

A
PCA of SolCAP meta-data with 2,934 SNPs

B
PCA of SolCAP meta-data with 2,307 SNPs

S_Fig 2.3 The PCA of SolCAP meta-analysis. A) The PCA plot of bi-allelic SNPs. B) The PCA plot after removing those SNPs of reverse-complement allele designation.

Determination of K value

S_Fig 2.4 The cross-validation error of SolCAP meta-analysis

S_Fig 2.5 The genome patterns of 214 samples in SolCAP meta-analysis.
The labels on the top indicate the accessions; the labels on the bottom indicate the sample ID in this meta-analysis.

S_Fig 2.6 Pairwise isolation by distance of SolCAP meta-analysis.
Colors present the density from low (blue) to high (red).

Overall LD decay

S_Fig 2.7 LD decay of the whole genome.
The red curve indicates non-linear regression. The dotted line indicates the fixed r^{2} on 0.1.

Chr. 1

Chr. 3

Chr. 5

Chr. 2

Chr. 4

Chr. 6

S_Fig 2.8 (page 1/2)

Chr. 7

Chr. 9

Chr. 11

Chr. 8

Chr. 10

Chr. 12

S_Fig 2.850 kb interval LD decay of each chromosome.
The red curves indicate non-linear regression. Black dotted lines indicate the fixed r^{2} on 0.1.

Chr. 2

Chr. 3

S_Fig 2.9 (page 1/4)

S_Fig 2.9 (page 2/4)

Chr. 8

S_Fig 2.9 (page 3/4)

S_Fig 2.9 The local LD of each chromosome.
The red dotted line was the baseline of r^{2} and the orange line indicated the heterochromatic region.

S_Tab 2.1 The detailed information on each accession.

Accession	Reads	Missing proportion	Heterozygosity	Latitude	Longitude	Province/Department	Country		Mating type
LA0114	5,349,688	0.0313	0.0500	-7.4000	-79.5667	La Libertad	Peru	FSC	
LA0373	7,025,393	0.0247	0.0509	-9.9400	-78.2300	Ancash	Peru	ASC	
LA0391	5,003,706	0.0438	0.0471	-7.2442	-78.6817	Cajamarca	Peru	ASC	
LA0397	3,814,682	0.0805	0.0647	-6.7500	-79.7167	Lambayeque	Peru	FSC	
LA0400	11,180,073	0.0156	0.1039	-5.2608	-79.9642	Piura	Peru	FSC	
LA0411	8,561,463	0.0197	0.4025	-1.1000	-79.4833	Los Rios	Ecuador	ASC	
LA0417	3,975,053	0.1014	0.1043	-2.7333	-79.9167	Guayas	Ecuador	ASC	
LA0442	10,903,757	0.0148	0.0494	-9.4817	-78.2592	Ancash	Peru	FSC	
LA1236	7,911,580	0.0237	0.0649	-0.2500	-79.1500	Pichincha	Ecuador	ASC	
LA1237	4,280,319	0.1362	0.0262	0.8667	-79.8500	Esmeraldas	Ecuador	ASC	
LA1245	12,636,210	0.0163	0.2044	-3.4583	-79.9667	El Oro	Ecuador	ASC	
LA1246	6,278,827	0.0386	0.0412	-3.9900	-79.3600	Loja	Ecuador	ASC	
LA1256	6,005,267	0.0433	0.0397	-2.6667	-79.6167	Guayas	Ecuador	ASC	
LA1261	6,385,191	0.0413	0.0444	-1.8167	-79.5167	Los Rios	Ecuador	ASC	
LA1279	4,454,138	0.0611	0.0380	-12.1333	-76.8167	Lima	Peru	ASC	
LA1280	6,781,216	0.0312	0.2068	-12.0333	-76.7167	Lima	Peru	ASC	
LA1301	6,577,016	0.0303	0.0516	-13.7333	-75.9167	Ica	Peru	ASC	
LA1335	5,784,776	0.0330	0.2336	-16.4000	-73.2500	Arequipa	Peru	ASC	
LA1348	7,482,737	0.0273	0.0514	-7.4500	-79.5000	La Libertad	Peru	FSC	
LA1349	8,285,652	0.0264	0.0543	-6.7436	-79.4997	Lambayeque	Peru	ASC	
LA1371	7,521,506	0.0866	0.0465	-11.8894	-76.6539	Lima	Peru	ASC	
LA1375	11,219,496	0.0189	0.1784	-13.0747	-76.4025	Lima	Peru	ASC	

S_Tab 2.1 (Continued)

Accession	Reads	Missing proportion	Heterozygosity	Latitude	Longitude	Province/Department	Country		Mating type	
LA1380	3,781,668	0.0801	0.0698	-5.2525	-80.0506	Piura	Peru	FSC		
LA1381	6,410,608	0.0241	0.0667	-5.5667	-79.9667	Lambayeque	Peru	ASC		
LA1382	4,068,859	0.0714	0.0968	-6.8449	-78.0293	Amazonas	Peru	FSC		
LA1466	4,210,180	0.0581	0.2282	-6.6333	-79.3833	Lambayeque	Peru	FSC		
LA1469	4,448,552	0.0550	0.1639	-5.8600	-79.7900	Lambayeque	Peru	ASC		
LA1471	5,445,081	0.0433	0.0782	-6.3167	-79.7500	Lambayeque	Peru	FSC		
LA1478	4,860,773	0.0547	0.2351	-5.2167	-80.0833	Piura	Peru	FSC		
LA1514	4,219,105	0.0634	0.0500	-11.0453	-77.1189	Lima	Peru	ASC		
LA1521	10,311,260	0.0323	0.0470	-12.7647	-76.5053	Lima	Peru	ASC		
LA1547	7,508,178	0.0200	0.0479	0.5833	-77.9333	Carchi	Ecuador	ASC		
LA1576	6,922,139	0.0228	0.0573	-12.1667	-76.8667	Lima	Peru	ASC		
LA1577	4,269,250	0.0492	0.0485	-7.8100	-79.1800	La Libertad	Peru	FSC		
LA1578	3,874,621	0.0742	0.0522	-7.3333	-79.5833	La Libertad	Peru	FSC		
LA1579	6,100,130	0.0275	0.1024	-6.5900	-79.8700	Lambayeque	Peru	FSC		
LA1580	3,870,654	0.0630	0.1883	-6.5900	-79.8700	Lambayeque	Peru	FSC		
LA1581	11,660,990	0.0163	0.1130	-6.6000	-79.8900	Lambayeque	Peru	FSC		
LA1582	7,891,018	0.0258	0.0495	-6.1500	-79.7333	Lambayeque	Peru	FSC		
LA1583	7,797,420	0.0182	0.1547	-6.2300	-79.7200	Lambayeque	Peru	FSC		
LA1584	10,578,595	0.0162	0.1131	-6.3700	-79.7900	Lambayeque	Peru	FSC		
LA1585	9,000,344	0.0186	0.0511	-6.6922	-79.4664	Lambayeque	Peru	FSC		
LA1586	5,352,344	0.0334	0.0848	-8.3600	-78.7300	La Libertad	Peru	FSC		
LA1587	5,799,426	0.0277	0.0992	-7.4333	-79.5167	La Libertad	Peru	FSC		

S_Tab 2.1 (Continued)

Accession	Reads	Missing proportion	Heterozygosity	Latitude	Longitude	Province/Department	Country	Mating type	ASC
LA1589	$9,790,673$	0.0134	0.0468	-8.3900	-78.7400	La Libertad	Peru	PSC	Peru

S_Tab 2.1 (Continued)

S_Tab 2.1 (Continued)

Accession	Reads	Missing proportion	Heterozygosity	Latitude	Longitude	Province/Department	Country	Mating type	Peru
LA2645	$9,438,437$	0.0245	0.0964	-5.1667	-80.1833	Piura	FSC	FSC	Peru
LA2646	$6,525,332$	0.1592	0.1357	-5.0500	-79.8000	Piura	FSC		
LA2647	615,835	0.6568	0.0416	-5.1750	-79.9833	Piura	Peru	FSC	
LA2652	$7,698,150$	0.0281	0.0752	-4.9031	-80.6842	Piura	Peru	FSC	
LA2653	$4,012,161$	0.0730	0.0453	-4.7500	-80.5833	Piura	Peru	ASC	
LA2655	$9,642,583$	0.0409	0.0856	-4.9083	-80.8250	Piura	Peru	FSC	
LA2656	$7,178,813$	0.0270	0.1070	-3.8000	-80.7000	Tumbes	Peru	FSC	
LA2659	$9,031,421$	0.0253	0.0533	-5.2167	-80.6250	Piura	Ecuador	ASC	
LA2852	$6,145,708$	0.0499	0.0308	-0.8333	-80.4833	Manabi	Peru	FSC	
LA2915	$5,019,946$	0.0737	0.0521	-5.9847	-79.7453	Lambayeque	Peru	ASC	
LA3638	$4,059,256$	0.1141	0.0410	-12.5667	-76.3167	Lima			

S_Tab 2.2 The statistical summaries of expected sites and sequenced sites of PstI, the sites targeted by SNP and the sequenced genes.

Chr.	Expected sites			Sequenced sites			Proportion of sequenced sites (\%)		
	$\mathbf{A l l}^{\text {a }}$	$\mathbf{H}^{\text {a }}$	$\mathbf{E}^{\text {a }}$	All	H	E	All	H	E
0	2,276	NA	NA	124	NA	NA	5.45	NA	NA
1	9,745	4,680	5,065	3,197	312	2,885	32.81	6.67	56.96
2	5,746	1,826	3,920	2,599	244	2,355	45.23	13.36	60.08
3	7,391	2,670	4,721	2,522	231	2,291	34.12	8.65	48.53
4	6,525	3,716	2,809	2,032	399	1,633	31.14	10.74	58.13
5	6,561	4,343	2,218	1,488	363	1,125	22.68	8.36	50.72
6	5,380	1,943	3,437	2,149	273	1,876	39.94	14.05	54.58
7	6,779	3,853	2,926	1,698	241	1,457	25.05	6.25	49.79
8	6,585	3,875	2,710	1,779	344	1,435	27.02	8.88	52.95
9	7,054	3,818	3,236	1,697	256	1,441	24.06	6.71	44.53
10	6,408	4,188	2,220	1,541	395	1,146	24.05	9.43	51.62
11	5,911	3,377	2,534	1,672	361	1,311	28.29	10.69	51.74
12	6,453	3,389	3,064	1,490	402	1,088	23.09	11.86	35.51
Total	82,814	41,678	38,860	23,988	3,821	20,043	28.97	9.17	51.58

Chr.	Sites containing SNP			Proportion of sites with SNP (\%)		Expected genes in expected PstI RADseq regions
	All	H	E	H	E	
0	76	NA	NA	NA	NA	216
1	2,178	198	1,980	63.46	68.63	1,914
2	1,737	127	1,610	52.05	68.37	1,501
3	1,665	113	1,552	48.92	67.74	1,526
4	1,354	246	1,108	61.65	67.85	1,152
5	999	231	768	63.64	68.27	889
6	1,435	170	1,265	62.27	67.43	1,290
7	1,182	160	1,022	66.39	70.14	1,020
8	1,195	208	987	60.47	68.78	1,077
9	1,121	122	999	47.66	69.33	1,003
10	1,062	247	815	62.53	71.12	952
11	1,142	217	925	60.11	70.56	941
12	1,045	276	769	68.66	70.68	936
Total	16,191	2,315	13,800	60.59	68.85	14,417

Chr.	Genes in sequenced regions			Genes with SNP			Proportion of sequenced genes (\%)		
	All ${ }^{\text {a }}$	$\mathbf{H}^{\text {a }}$	\mathbf{E}^{a}	All	H	E	All	H	E
0	62	NA	NA	25	NA	NA	6.99	NA	NA
1	1,742	120	1,622	1,029	55	974	40.58	13.78	47.40
2	1,400	91	1,309	803	35	768	41.82	19.04	45.61
3	1,389	96	1,293	812	42	770	41.46	20.21	44.97
4	1,054	157	897	611	90	521	38.44	22.89	43.63
5	783	141	642	437	73	364	32.38	18.58	38.70
6	1,195	145	1,050	673	80	593	42.48	28.83	45.45
7	902	100	802	535	54	481	36.18	18.62	41.00
8	952	143	809	599	80	519	38.70	22.03	44.67
9	877	105	772	507	25	482	34.94	17.77	40.23
10	812	163	649	444	71	373	31.89	17.58	40.09
11	834	138	696	466	48	418	34.97	18.75	42.21
12	788	179	609	440	81	359	31.77	23.07	35.74
Total	12,790	1,578	11,150	7,381	734	6,622	36.83	19.75	43.13

${ }^{a}$: All, H and E indicated each chromosome, the heterochromatin region and the euchromatin region.

S_Tab 2.3 The information on 24,330 SNPs.
This supplementary material is a table of 24,330 rows (SNPs) x 98 columns (Accessions). We listed only the first 20 SNPs x 10 accessions of this table for readers to glimpse the data. The full table is published on https://doi.org/10.1534/g3.118.200862.

Marker	Major allele	Minor allele	LA0114	LA0373	LA0391	LA0397	LA0400	LA0417	LA0442	LA1236	LA1237	LA1245
SSL2.50ch00_1143661	T	A	TT	NN	TT	AT						
SSL2.50ch00_3086004	C	T	NN	CC	CC	TT	TT	CC	CC	CC	NN	CC
SSL2.50ch00_3641105	A	T	AA	AA	AA	AA	AA	TT	AA	AA	TT	TT
SSL2.50ch00_4263006	C	T	NN	TT	CC	NN	CC	NN	NN	CC	NN	NN
SSL2.50ch00_4310217	G	T	GG	GG	TT	GG						
SSL2.50ch00_4313972	T	C	CC	TT	CC	TT	CC	CC	TT	CC	CC	CC
SSL2.50ch00_4427214	C	G	CC	CC	CC	CC	GC	GC	CC	CC	CC	GC
SSL2.50ch00_4427220	C	A	CC	CC	CC	CC	CC	CC	CA	CC	CC	CC
SSL2.50ch00_4427223	C	T	CC	CC	TC	CC	TC	TC	TC	CC	TC	TC
SSL2.50ch00_4427226	T	C	CC	CC	TC	CC	TT	TT	TC	TT	TT	TT
SSL2.50ch00_4427229	A	G	AA	AA	GA	AA	GA	GA	GA	AA	GA	GA
SSL2.50ch00_4427230	G	A	GG	GG	GG	GG	GA	GG	GG	GG	GG	GA
SSL2.50ch00_4427233	C	T	TT	TT	TC	TT	CC	CC	TC	CC	CC	CC
SSL2.50ch00_4427239	T	G	TT	TT	TG	TT	TG	TG	TG	TT	TG	TG
SSL2.50ch00_4427250	G	A	AA	AA	GA	AA	GG	GG	GA	GG	GG	GG
SSL2.50ch00_4427255	C	T	CC	CC	TC	CC	TC	TC	TC	CC	TC	TC
SSL2.50ch00_4427265	C	T	CC	CC	CT	CC	CC	NN	CT	CC	CC	NN
SSL2.50ch00_6550092	A	G	AA									
SSL2.50ch00_6556529	T	G	TT	TT	NN	GG	TT	TT	TT	TT	TT	TT
SSL2.50ch00_6556632	T	C	TT	CC	TT	TT	TT	TT	TT	TT	NN	TT

S_Tab 2.4 Pairwise $\mathrm{F}_{\text {st }}$ of subpopulations.

Group Name	POP S1	POP S2	POP S3	POP M1	POP M2	
POP S2	$0.0521^{* * *}$					
POP S3	$0.0638^{* * *}$	$0.0198^{* * *}$				
POP M1	$0.0266^{* * *}$	$0.0075^{* * *}$	$0.0229^{* * *}$			
POP M2	$0.0552^{* * *}$	$0.0046^{* * *}$	$0.0109^{* * *}$	$0.0112^{* * *}$		
POP M3	$0.0127^{* * *}$	$0.0262^{* * *}$	$0.0259^{* * *}$	$0.0118^{* * *}$	$0.0234^{* * *}$	
POP M4	$0.0252^{* * *}$	$0.0021^{* * *}$	$0.0191^{* * *}$	-0.004	$0.0020^{* * *}$	-0.0023

S_Tab 2.5 The locations and genotypes of 214 samples of SolCAP genotyping array.
This supplementary material is a table of 214 rows (samples) x 2,312 columns (SNPs). We listed only the first 10 samples $\times 5$ SNPs of this table for readers to glimpse the data. The full table is published on https://doi.org/10.1534/g3.118.200862.

ID ${ }^{\text {a }}$	Sample ${ }^{\text {b }}$	Accession ${ }^{\text {c }}$	Latitude	Longitude	$\begin{aligned} & \text { solcap_snp_sl } \\ & \text { _10194 } \end{aligned}$	$\begin{aligned} & \hline \text { solcap_snp_sl } \\ & \text { _10195 } \end{aligned}$	$\begin{aligned} & \text { solcap_snp_sl } \\ & \text { _10247 } \end{aligned}$	$\begin{aligned} & \hline \text { solcap_snp_sl } \\ & _10552 \end{aligned}$	$\begin{aligned} & \hline \text { solcap_snp_sl } \\ & \text { _10557 } \end{aligned}$
BGV006129_2012B	BGV006129	BGV006129	-3.9519	-79.4356	CC	TT	AA	GG	CC
BGV006129_2015B	BGV006129	BGV006129	-3.9519	-79.4356	CC	TT	AA	GG	CC
BGV006187_2012B	BGV006187	BGV006187	-3.3122	-79.6286	CC	TT	GG	TT	CC
BGV006187_2015B	BGV006187	BGV006187	-3.3122	-79.6286	CC	TT	GG	TT	CC
BGV006327_2012B	BGV006327	BGV006327	-4.8922	-80.3753	CC	TT	AA	GG	AA
BGV006327_2015B	BGV006327	BGV006327	-4.8922	-80.3753	CC	TT	AA	GG	AA
BGV006328_2012B	BGV006328	BGV006328	-4.9339	-80.5394	CT	TT	AA	GT	AC
BGV006328_2015B	BGV006328	BGV006328	-4.9339	-80.5394	CT	TT	AA	GT	AC
BGV006331_2012B	BGV006331	BGV006331	-4.9339	-80.5394	CC	TT	AA	GG	CC
BGV006331_2015B	BGV006331	BGV006331	-5.2872	-79.9581	CC	TT	AA	GG	CC

a: ID indicates the index, its original sample ID plus its original study, in this SolCAP meta-analysis.
b: Sample indicates the original sample ID in the original study.
c: Accession indicates the accession of each sample.

S_Tab 2.6 The removed 627 SNPs with reverse-complement allele designation.
solcap_snp_sl_10196
solcap_snp_sl_10236
solcap_snp_sl_10246
solcap_snp_sl_10377
solcap_snp_sl_10516
solcap_snp_sl_10563
solcap_snp_sl_10569
solcap_snp_sl_10596
solcap_snp_sl_10686
solcap_snp_sl_10796
solcap_snp_sl_10904
solcap_snp_sl_10928
solcap_snp_sl_10946
solcap_snp_sl_10961
solcap_snp_sl_11221
solcap_snp_sl_11232
solcap_snp_sl_11509
solcap_snp_sl_11532
solcap_snp_sl_11539
solcap_snp_sl_11569
solcap_snp_sl_11670
solcap_snp_sl_11736 solcap_snp_sl_11751 solcap_snp_sl_11805 solcap_snp_sl_11982 solcap_snp_sl_12101 solcap_snp_sl_12135 solcap_snp_sl_12261 solcap_snp_sl_12268 solcap_snp_sl_12289 solcap_snp_sl_12372 solcap_snp_sl_12414 solcap_snp_sl_12501 solcap_snp_sl_12664 solcap_snp_sl_12718 solcap_snp_sl_12769 solcap_snp_sl_12841 solcap_snp_sl_12878 solcap_snp_sl_12913
solcap_snp_sl_20361
solcap_snp_sl_20409
solcap_snp_sl_20499 solcap_snp_sl_20500 solcap_snp_sl_20585 solcap_snp_sl_20719 solcap_snp_sl_20723 solcap_snp_sl_20752 solcap_snp_sl_20809 solcap_snp_sl_20883 solcap_snp_sl_20932 solcap_snp_sl_20936 solcap_snp_sl_20952 solcap_snp_sl_20958 solcap_snp_sl_20981 solcap_snp_sl_20988 solcap_snp_sl_21014 solcap_snp_sl_21039 solcap_snp_sl_21070 solcap_snp_sl_21102 solcap_snp_sl_21280 solcap_snp_sl_21317 solcap_snp_sl_21323 solcap_snp_sl_21363 solcap_snp_sl_21390 solcap_snp_sl_21400 solcap_snp_sl_21401 solcap_snp_sl_21429 solcap_snp_sl_21430 solcap_snp_sl_21456 solcap_snp_sl_21677 solcap_snp_sl_21714 solcap_snp_sl_2172 solcap_snp_sl_21966 solcap_snp_sl_21971 solcap_snp_sl_22017 solcap_snp_sl_221 solcap_snp_sl_22130 solcap_snp_sl_222
solcap_snp_sl_25267 solcap_snp_sl_25270 solcap_snp_sl_25277 solcap_snp_sl_25278 solcap_snp_sl_25283 solcap_snp_sl_25296 solcap_snp_sl_25297 solcap_snp_sl_25304 solcap_snp_sl_25305 solcap_snp_sl_25313 solcap_snp_sl_25322 solcap_snp_sl_25336 solcap_snp_sl_25362 solcap_snp_sl_25414 solcap_snp_sl_25429 solcap_snp_sl_25485 solcap_snp_sl_2565
solcap_snp_sl_25696 solcap_snp_sl_25735 solcap_snp_sl_25745 solcap_snp_sl_258
solcap_snp_sl_25879 solcap_snp_sl_25918 solcap_snp_sl_25951 solcap_snp_sl_2604 solcap_snp_sl_26129 solcap_snp_sl_2614 solcap_snp_sl_26438 solcap_snp_sl_26551 solcap_snp_sl_26780 solcap_snp_sl_26791 solcap_snp_sl_2686 solcap_snp_sl_2691 solcap_snp_sl_2695 solcap_snp_sl_2701 solcap_snp_sl_27107 solcap_snp_sl_27162 solcap_snp_sl_27482 solcap_snp_sl_2797
solcap_snp_sl_3853 solcap_snp_sl_38945 solcap_snp_sl_38987 solcap_snp_sl_3924 solcap_snp_sl_39725 solcap_snp_sl_3980 solcap_snp_sl_39868 solcap_snp_sl_39959 solcap_snp_sl_3997 solcap_snp_sl_4016 solcap_snp_sl_4024 solcap_snp_sl_4029 solcap_snp_sl_4034 solcap_snp_sl_4055 solcap_snp_sl_4099 solcap_snp_sl_4121 solcap_snp_sl_42919 solcap_snp_sl_42933 solcap_snp_sl_42942 solcap_snp_sl_42961 solcap_snp_sl_43 solcap_snp_sl_43894 solcap_snp_sl_43920 solcap_snp_sl_44932 solcap_snp_sl_4518 solcap_snp_sl_47660 solcap_snp_sl_48910 solcap_snp_sl_48911 solcap_snp_sl_4926 solcap_snp_sl_4932
solcap_snp_sl_49752
solcap_snp_sl_5050
solcap_snp_sl_5051
solcap_snp_sl_50871
solcap_snp_sl_5094
solcap_snp_sl_5095
solcap_snp_sl_5103
solcap_snp_sl_5113
solcap_snp_sl_5115
solcap_snp_sl_1295
solcap_snp_sl_13098 solcap_snp_sl_13147 solcap_snp_sl_13193 solcap_snp_sl_13200 solcap_snp_sl_1325 solcap_snp_sl_13398 solcap_snp_sl_1345 solcap_snp_sl_13455 solcap_snp_sl_13464 solcap_snp_sl_13590 solcap_snp_sl_13594 solcap_snp_sl_13604 solcap_snp_sl_13621 solcap_snp_sl_13842 solcap_snp_sl_13958 solcap_snp_sl_14155 solcap_snp_sl_14354 solcap_snp_sl_14415 solcap_snp_sl_14428 solcap_snp_sl_14672 solcap_snp_sl_14759 solcap_snp_sl_14845 solcap_snp_sl_14865 solcap_snp_sl_14874 solcap_snp_sl_1499 solcap_snp_sl_15039 solcap_snp_sl_15173 solcap_snp_sl_1519 solcap_snp_sl_1527 solcap_snp_sl_15289 solcap_snp_sl_15417 solcap_snp_sl_15446 solcap_snp_sl_15515 solcap_snp_sl_15641 solcap_snp_sl_15690 solcap_snp_sl_15728 solcap_snp_sl_15757 solcap_snp_sl_15879 solcap_snp_sl_15885
solcap_snp_sl_22259
solcap_snp_sl_22594 solcap_snp_sl_22604 solcap_snp_sl_22831 solcap_snp_sl_22839 solcap_snp_sl_22845 solcap_snp_sl_22846 solcap_snp_sl_22858 solcap_snp_sl_22869 solcap_snp_sl_22877 solcap_snp_sl_22878 solcap_snp_sl_22880 solcap_snp_sl_22882 solcap_snp_sl_22889 solcap_snp_sl_22891 solcap_snp_sl_22892 solcap_snp_sl_22894 solcap_snp_sl_22897 solcap_snp_sl_22898 solcap_snp_sl_229 solcap_snp_sl_22906 solcap_snp_sl_22911 solcap_snp_sl_22916 solcap_snp_sl_22917 solcap_snp_sl_22924 solcap_snp_sl_22956 solcap_snp_sl_22957 solcap_snp_sl_22959 solcap_snp_sl_22963 solcap_snp_sl_22973 solcap_snp_sl_22975 solcap_snp_sl_22979 solcap_snp_sl_22986 solcap_snp_sl_22988 solcap_snp_sl_22994 solcap_snp_sl_22996 solcap_snp_sl_23004 solcap_snp_sl_23010 solcap_snp_sl_23011 solcap_snp_sl_23014
solcap_snp_sl_282 solcap_snp_sl_28295 solcap_snp_sl_28404 solcap_snp_sl_28407 solcap_snp_sl_28409 solcap_snp_sl_28425 solcap_snp_sl_2879 solcap_snp_sl_28826 solcap_snp_sl_28914 solcap_snp_sl_29043 solcap_snp_sl_29326 solcap_snp_sl_29332 solcap_snp_sl_29351 solcap_snp_sl_29357 solcap_snp_sl_29388 solcap_snp_sl_2939 solcap_snp_sl_29394 solcap_snp_sl_29398 solcap_snp_sl_29506 solcap_snp_sl_29549 solcap_snp_sl_29565 solcap_snp_sl_2959 solcap_snp_sl_2971 solcap_snp_sl_2974 solcap_snp_sl_298 solcap_snp_sl_2984 solcap_snp_sl_2990 solcap_snp_sl_29911 solcap_snp_sl_29920 solcap_snp_sl_29932 solcap_snp_sl_29934 solcap_snp_sl_30046 solcap_snp_sl_3008 solcap_snp_sl_301 solcap_snp_sl_30133 solcap_snp_sl_3035 solcap_snp_sl_30380 solcap_snp_sl_30408 solcap_snp_sl_306
solcap_snp_sl_30819
solcap_snp_sl_51601 solcap_snp_sl_5179 solcap_snp_sl_521 solcap_snp_sl_5256 solcap_snp_sl_5266 solcap_snp_sl_5268 solcap_snp_sl_52783 solcap_snp_sl_5280 solcap_snp_sl_53 solcap_snp_sl_53173 solcap_snp_sl_535 solcap_snp_sl_53552 solcap_snp_sl_53870 solcap_snp_sl_53877 solcap_snp_sl_54547 solcap_snp_sl_55020 solcap_snp_sl_55037 solcap_snp_sl_55409 solcap_snp_sl_5547 solcap_snp_sl_55475 solcap_snp_sl_55514 solcap_snp_sl_55837 solcap_snp_sl_55906 solcap_snp_sl_5791 solcap_snp_sl_5795 solcap_snp_sl_5800 solcap_snp_sl_5807 solcap_snp_sl_58447 solcap_snp_sl_5875 solcap_snp_sl_58920 solcap_snp_sl_59437 solcap_snp_sl_5973 solcap_snp_sl_6003 solcap_snp_sl_6022 solcap_snp_sl_60360 solcap_snp_sl_6038 solcap_snp_sl_6051 solcap_snp_sl_60513 solcap_snp_sl_6073
solcap_snp_sl_60831
solcap_snp_sl_16096
solcap_snp_sl_16099 solcap_snp_sl_16133 solcap_snp_sl_16141 solcap_snp_sl_16162 solcap_snp_sl_16196 solcap_snp_sl_16421 solcap_snp_sl_16424 solcap_snp_sl_16499 solcap_snp_sl_16501 solcap_snp_sl_16576 solcap_snp_sl_16579 solcap_snp_sl_16584 solcap_snp_sl_16642 solcap_snp_sl_16650 solcap_snp_sl_16840 solcap_snp_sl_16920 solcap_snp_sl_1701 solcap_snp_sl_17063 solcap_snp_sl_17239 solcap_snp_sl_17289 solcap_snp_sl_17448 solcap_snp_sl_17476 solcap_snp_sl_17496 solcap_snp_sl_17507 solcap_snp_sl_17524 solcap_snp_sl_17536 solcap_snp_sl_17544 solcap_snp_sl_17563 solcap_snp_sl_17581 solcap_snp_sl_17643 solcap_snp_sl_17645 solcap_snp_sl_17649 solcap_snp_sl_17717 solcap_snp_sl_1772
solcap_snp_sl_17751 solcap_snp_sl_17839 solcap_snp_sl_18055 solcap_snp_sl_18057 solcap_snp_sl_1815
solcap_snp_sl_23015 solcap_snp_sl_23020 solcap_snp_sl_23021 solcap_snp_sl_23028 solcap_snp_sl_23044 solcap_snp_sl_23045 solcap_snp_sl_23051 solcap_snp_sl_23055 solcap_snp_sl_23059 solcap_snp_sl_23061 solcap_snp_sl_23062 solcap_snp_sl_23064 solcap_snp_sl_23068 solcap_snp_sl_23088 solcap_snp_sl_23096 solcap_snp_sl_23099 solcap_snp_sl_23145 solcap_snp_sl_23192 solcap_snp_sl_23195 solcap_snp_sl_23344 solcap_snp_sl_234 solcap_snp_sl_23453 solcap_snp_sl_23561 solcap_snp_sl_23591 solcap_snp_sl_23608 solcap_snp_sl_23702 solcap_snp_sl_23734 solcap_snp_sl_23763 solcap_snp_sl_23787 solcap_snp_sl_23811 solcap_snp_sl_23823 solcap_snp_sl_23882 solcap_snp_sl_23975 solcap_snp_sl_24001 solcap_snp_sl_24081 solcap_snp_sl_24251 solcap_snp_sl_24255 solcap_snp_sl_2438 solcap_snp_sl_24383 solcap_snp_sl_24384
solcap_snp_sl_30911 solcap_snp_sl_3094 solcap_snp_sl_31119 solcap_snp_sl_3112 solcap_snp_sl_31275 solcap_snp_sl_31277 solcap_snp_sl_31280 solcap_snp_sl_3130 solcap_snp_sl_3159 solcap_snp_sl_31671 solcap_snp_sl_31687 solcap_snp_sl_31723 solcap_snp_sl_31730 solcap_snp_sl_31775 solcap_snp_sl_31777 solcap_snp_sl_31884 solcap_snp_sl_31953 solcap_snp_sl_31971 solcap_snp_sl_31973 solcap_snp_sl_31978 solcap_snp_sl_32032 solcap_snp_sl_32093 solcap_snp_sl_32147 solcap_snp_sl_32389 solcap_snp_sl_32425 solcap_snp_sl_32529 solcap_snp_sl_32703 solcap_snp_sl_330 solcap_snp_sl_33136 solcap_snp_sl_33139 solcap_snp_sl_33547 solcap_snp_sl_3355 solcap_snp_sl_33642 solcap_snp_sl_33736 solcap_snp_sl_33817 solcap_snp_sl_33822 solcap_snp_sl_33830 solcap_snp_sl_34143 solcap_snp_sl_34165 solcap_snp_sl_34177
solcap_snp_sl_6086 solcap_snp_sl_6092 solcap_snp_sl_6112 solcap_snp_sl_61192 solcap_snp_sl_6152 solcap_snp_sl_6186 solcap_snp_sl_6226 solcap_snp_sl_62495 solcap_snp_sl_6255 solcap_snp_sl_62616 solcap_snp_sl_62666 solcap_snp_sl_62695 solcap_snp_sl_6370 solcap_snp_sl_63704 solcap_snp_sl_6372 solcap_snp_sl_64263 solcap_snp_sl_64662 solcap_snp_sl_6524 solcap_snp_sl_65244 solcap_snp_sl_6526 solcap_snp_sl_65262 solcap_snp_sl_6568 solcap_snp_sl_65880 solcap_snp_sl_66569 solcap_snp_sl_67010 solcap_snp_sl_67119 solcap_snp_sl_67772 solcap_snp_sl_67805 solcap_snp_sl_6902 solcap_snp_sl_69255 solcap_snp_sl_69262 solcap_snp_sl_69276 solcap_snp_sl_6934 solcap_snp_sl_69429 solcap_snp_sl_7042 solcap_snp_sl_7045 solcap_snp_sl_7046 solcap_snp_sl_70737 solcap_snp_sl_70781
solcap_snp_sl_7123
solcap_snp_sl_18185 solcap_snp_sl_24445 solcap_snp_sl_1819 solcap_snp_sl_18196 solcap_snp_sl_1824 solcap_snp_sl_18256 solcap_snp_sl_1827 solcap_snp_sl_18272 solcap_snp_sl_18306 solcap_snp_sl_18313 solcap_snp_sl_18398 solcap_snp_sl_18634 solcap_snp_sl_18755 solcap_snp_sl_18756 solcap_snp_sl_18757 solcap_snp_sl_18943 solcap_snp_sl_18944 solcap_snp_sl_18949 solcap_snp_sl_18995 solcap_snp_sl_19032 solcap_snp_sl_19513 solcap_snp_sl_19569 solcap_snp_sl_19636 solcap_snp_sl_19643 solcap_snp_sl_19652 solcap_snp_sl_19657 solcap_snp_sl_19660 solcap_snp_sl_19759 solcap_snp_sl_19782 solcap_snp_sl_19899 solcap_snp_sl_19981 solcap_snp_sl_20051 solcap_snp_sl_20064 solcap_snp_sl_20088 solcap_snp_sl_2011 solcap_snp_sl_20228
solcap_snp_sl_20229 solcap_snp_sl_20241 solcap_snp_sl_20256
solcap_snp_sl_24560 solcap_snp_sl_24562 solcap_snp_sl_24604 solcap_snp_sl_24609 solcap_snp_sl_24755 solcap_snp_sl_24787 solcap_snp_sl_24973 solcap_snp_sl_24987 solcap_snp_sl_24990 solcap_snp_sl_25015 solcap_snp_sl_25082 solcap_snp_sl_25150 solcap_snp_sl_25167 solcap_snp_sl_25168 solcap_snp_sl_25171 solcap_snp_sl_2518 solcap_snp_sl_25187 solcap_snp_sl_25188 solcap_snp_sl_25195 solcap_snp_sl_25201 solcap_snp_sl_25207 solcap_snp_sl_25208 solcap_snp_sl_25210 solcap_snp_sl_25211 solcap_snp_sl_25213 solcap_snp_sl_25220 solcap_snp_sl_25232 solcap_snp_sl_25236 solcap_snp_sl_25242 solcap_snp_sl_2525 solcap_snp_sl_25251 solcap_snp_sl_25255 solcap_snp_sl_25256 solcap_snp_sl_25258 solcap_snp_sl_25260 solcap_snp_sl_25261 solcap_snp_sl_25262
solcap_snp_sl_34186 solcap_snp_sl_34221 solcap_snp_sl_3424 solcap_snp_sl_34253 solcap_snp_sl_34373 solcap_snp_sl_34684 solcap_snp_sl_34742 solcap_snp_sl_34762 solcap_snp_sl_3480 solcap_snp_sl_35063 solcap_snp_sl_35139 solcap_snp_sl_35382 solcap_snp_sl_35693 solcap_snp_sl_357 solcap_snp_sl_35757 solcap_snp_sl_35777 solcap_snp_sl_35779 solcap_snp_sl_360 solcap_snp_sl_36050 solcap_snp_sl_36135 solcap_snp_sl_36141 solcap_snp_sl_36157 solcap_snp_sl_36165 solcap_snp_sl_36203 solcap_snp_sl_36224 solcap_snp_sl_36548 solcap_snp_sl_36568 solcap_snp_sl_36725 solcap_snp_sl_37054 solcap_snp_sl_37057 solcap_snp_sl_37198 solcap_snp_sl_3723 solcap_snp_sl_37399 solcap_snp_sl_37400 solcap_snp_sl_3746 solcap_snp_sl_37808 solcap_snp_sl_38 solcap_snp_sl_3849
solcap_snp_sl_7322
solcap_snp_sl_75
solcap_snp_sl_7737
solcap_snp_sl_7816
solcap_snp_sl_7940
solcap_snp_sl_8064
solcap_snp_sl_8120
solcap_snp_sl_8121
solcap_snp_sl_8464
solcap_snp_sl_8514
solcap_snp_sl_8526
solcap_snp_sl_8659
solcap_snp_sl_8697
solcap_snp_sl_8795
solcap_snp_sl_8813
solcap_snp_sl_9125
solcap_snp_sl_9136
solcap_snp_sl_9235
solcap_snp_sl_9260
solcap_snp_sl_9292
solcap_snp_sl_9447
solcap_snp_sl_9512
solcap_snp_sl_9513
solcap_snp_sl_9531
solcap_snp_sl_9533
solcap_snp_sl_9536
solcap_snp_sl_9546
solcap_snp_sl_9550
solcap_snp_sl_9558
solcap_snp_sl_9560
solcap_snp_sl_9690
solcap_snp_sl_9751
solcap_snp_sl_9752
solcap_snp_sl_9798
solcap_snp_sl_9814
solcap_snp_sl_9816
solcap_snp_sl_9832

S_Tab 2.7 The identity 0f 2,307 SNP markers within accessions.

Accession	Individuals	Identity (\%)	Accession	Individuals	Identity (\%)
BGV006129	2	100	BGV007155	2	100
BGV006187	2	100	BGV007161	2	100
BGV006327	2	100	BGV007168	2	100
BGV006328	2	100	BGV007208	2	100
BGV006331	2	100	BGV007222	2	- 100
BGV006333	2	100	BGV007225	2	100
BGV006336	2	100	BGV007348	2	100
BGV006341	2	100	BGV007355	2	100
BGV006343	2	100	BGV007366	2	100
BGV006344	2	100	BGV007946	2	100
BGV006345	2	100	BGV007947	2	100
BGV006347	2	100	BGV015381	2	100
BGV006360	2	100	BGV015382	2	100
BGV006369	2	100	LA0373	2	76
BGV006370	2	100	LA0400	2	91
BGV006452	2	100	LA0722	2	100
BGV006457	2	100	LA121_1	2	100
BGV006468	2	100	LA1269	3	95
BGV006476	2	100	LA1301	3	99
BGV006478	2	100	LA1371	2	98
BGV006484	2	100	LA1429	3	97
BGV006492	2	100	LA1478	2	71
BGV006504	2	100	LA1547	4	56
BGV006507	2	100	LA1578	2	100
BGV006514	2	100	LA1582	3	81
BGV006639	2	100	LA1589	3	98
BGV006640	2	100	LA1617	2	100
BGV006642	2	100	LA1689	3	90
BGV006690	2	100	LA1923	2	100
BGV006691	2	100	LA1936	2	100
BGV006712	2	100	LA2093	2	100
BGV007095	2	100	LA2181	3	66
BGV007100	2	100	LA2184	2	100
BGV007104	2	100	LA2188	2	100
BGV007109	2	100	LA2533	3	99
BGV007111	2	100	LA2725	2	100
BGV007137	2	100	LA2854	2	100
BGV007145	2	100	PI 128216	2	100
BGV007151	2	100	PI 365914	2	100

Chapter 3 GWAS of the candidate genes controlling stamen length in Solanum pimpinellifolium

3.1 Purpose

In this chapter, we performed a GWAS with the 98 S. pimpinellifolium accessions to identify the candidate genes controlling stamen length. Following the results in Chapter 2, we conducted three models in TASSEL using the set of genome-wide high-density SNPs from RADseq. The first model is the general linear model (GLM) with the correction of ADMIXTURE structure; the second one is the mixed linear model (MLM) with a matrix of kinship as a random effect; the third one is the MLM with the correction of both ADMIXTURE structure and kinship. In addition, Genome-wide Efficient Mixed Model Association (GEMMA) was also used to run MLM.

3.2 Material and Method

3.2.1 Plant material and phenotyping

The collection of 98 S. pimpinellifolium accessions from TGRC was propagated by the way of single seed descent for two generations. Four individuals per accession were planted in the field by conventional agriculture practice from 2013 to 2014 in the farm of National Taiwan University, Taipei. Five flowers per plant were gathered in 2013 November, 2014 January and 2014 April. The stamen was scanned and measured by ImageJ software (Schneider, Rasband, \& Eliceiri, 2012).

3.2.2 GWAS

GWAS was performed with the non-redundant dataset of 19,993 SNPs as we described in Chapter 2. Three models, $\mathrm{P}=\mathrm{G}+\mathrm{Q}+\mathrm{E}, \mathrm{P}=\mathrm{G}+\mathrm{K}+\mathrm{E}$ and $\mathrm{P}=\mathrm{G}+\mathrm{Q}+\mathrm{K}$ + E, were completed in TASSEL (Bradbury et al., 2007). P, G, Q, K and E indicated phenotype, genotype, Q matrix of ADMIXTURE, kinship and error, respectively. The kinship was the only random effect. The $\mathrm{P}=\mathrm{G}+\mathrm{K}+\mathrm{E}$ model was also performed with GEMMA following the manual (Zhou \& Stephens, 2012). Q-Q plots and manhattan plots were presented by the R package qqman (Turner, 2014). For the GLM, the significant locus is determined by the permutation p value less than 0.05 . For the MLM in TASSEL, the adjusted p value (FDR) was not provided; therefore R function p.adjust ('BH') was served as an alternative. A significant locus is determined if its p-value is less than 0.001. A candidate locus is defined if its false discovery rate (FDR) is less than 0.05 (Storey \& Tibshirani, 2003).

3.2.3 Haplotype block

We built phased haplotypes with the 24,330 SNPs via BEAGLE and then estimated haplotype blocks via plink (Browning \& Browning, 2007; Gaunt et al., 2007). The haplotype block was estimated by SNPs within $100-\mathrm{Mb}$ interval considering there is a large proportion of heterochromatin in each chromosome. All the haplotypes are summarized without the data of chromosome 0 . The LD heatmap was plotted by the R package LDheatmap (Shin, Blay, Graham, \& McNeney, 2015).

3.3 Result

3.3.1 SSL2.50ch06_45620556 is significant among all the GLM and MLM analysis

The phenotype was the mean of stamen length among three measurements (Figure 3.1; S_Tab 3.1). The accessions with long stamen were clustered in the north of Peru, which was the same as the previous finding (Figure 3.2) (Rick et al., 1977). We first observed the $\mathrm{Q}-\mathrm{Q}$ plots, and the $\mathrm{P}=\mathrm{G}+\mathrm{K}+\mathrm{E}$ model showed the least deviation from the expectation among the three models (S_Fig 3.1); therefore, we continued a series of analyses following the result of $\mathrm{P}=\mathrm{G}+\mathrm{K}+\mathrm{E}$. In TASSEL, five significant loci were detected but with high FDR of 0.8382 (Table 3.1; S_Fig 3.2); the heritability was 0.54 . In GEMMA, 22 significant loci were detected also with high FDR; the heritability was 0.65 (Table 3.1; S_Fig 3.2). SSL2.50ch01_18302427, SSL2.50ch03_70083752 and SSL2.50ch06_45620556, were detected both in TASSEL and in GEMMA. Because high FDR suggested the high possibility of false association between these significant loci and the stamen length, more evidence is necessary to confirm these loci. In addition, we also listed the two significant loci based on the model of $\mathrm{P}=\mathrm{G}+\mathrm{Q}+\mathrm{E}$. The correction for only population structure was more reasonable because little kinship would occur in our sample (an individual standing for an accession) (Table 3.2; S_Fig 3.2). As a result, SSL2.50ch06_45620556 and SSL2.50ch12_301545 were significant. SSL2.50ch06_45620556 showed a conserved significance in $\mathrm{P}=\mathrm{G}+\mathrm{K}+\mathrm{E}$ and $\mathrm{P}=\mathrm{G}+$ $\mathrm{Q}+\mathrm{E}$ models.

Distribution

Figure 3.1 The distribution of stamen length.

Figure 3.2 The geographic distribution of the stamen characters among 98 accessions. The black dotted line is the equator.

Table 3.1 Significant loci for stamen length in TASSEL and GEMMA.

Significant locus	Allele ${ }^{\text {a }}$	p value	FDR	$\mathbf{R}^{2}{ }^{\text {b }}$
TASSEL				
SSL2.50ch01_18302427 ${ }^{\text {c }}$	A/C	0.0003	0.8382	0.1998
SSL2.50ch03_70083752 ${ }^{\text {c }}$	T/C	0.0008	0.8382	0.2729
SSL2.50ch06_45620556 ${ }^{\text {c }}$	A/G	0.0003	0.8382	0.2394
SSL2.50ch08_2088583	C/T	0.0003	0.8382	0.2407
SSL2.50ch08_61447940	A/T	0.0009	0.8382	0.2000
GEMMA				
SSL2.50ch01_18302427 ${ }^{\circ}$	A/C	0.0002	0.5795	-
SSL2.50ch01_21314184	G/A	0.0002	0.5795	-
SSL2.50ch01_87989387	G/A	0.0009	0.7214	-
SSL2.50ch01_88015076	G/A	0.0003	0.6075	-
SSL2.50ch02_45035168	G/C	0.0002	0.5795	-
SSL2.50ch02_52704387	C/T	0.0002	0.5795	-
SSL2.50ch03_56810075	G/C	0.0005	0.7214	-
SSL2.50ch03_56828245	G/T	0.0002	0.5795	-
SSL2.50ch03_68538664	C/T	0.0008	0.7214	-
SSL2.50ch03_70083752 ${ }^{\text {c }}$	T/C	0.0005	0.7214	-
SSL2.50ch04_5128555	T/A	0.0008	0.7214	-
SSL2.50ch04_63808596	G/A	0.0009	0.7214	-
SSL2.50ch05_8922097	A/G	0.0003	0.6075	-
SSL2.50ch05_8922110	G/A	0.0002	0.5795	-
SSL2.50ch06_45620556 ${ }^{\text {c }}$	A/G	0.0002	0.5795	-
SSL2.50ch07_7730187	T/A	0.0001	0.7214	-
SSL2.50ch07_58342891	A/G	0.0005	0.5795	-
SSL2.50ch09_48896331	C/T	0.0010	0.7214	-
SSL2.50ch09_70184736	C/T	0.0005	0.7214	-
SSL2.50ch09_72338057	A/G	0.0008	0.7214	-
SSL2.50ch10_516364	C/G	0.0008	0.7214	-
SSL2.50ch11_54726695	G/A	0.0008	0.7214	-

[^0]Table 3.2 The two significant loci based on $\mathrm{P}=\mathrm{G}+\mathrm{Q}+\mathrm{E}$ model.

Significant locus	Allele $^{\boldsymbol{a}}$	p value	Permutation p value	\mathbf{R}^{2}
SSL2.50ch06_45620556	A/C	$3.3087 * 10^{-7}$	0.0146	0.2099
SSL2.50ch12_301545	T/C	$2.9833 * 10^{-7}$	0.0133	0.2084

${ }^{a}$: Minor/ Major allele

3.3.2 The LD patterns of these significant loci

We screened the LD patterns of these significant loci to confirm if the candidate loci were supported by their flanking significant SNPs. The LD blocks were defined in two methods; one was to utilize the significant SNPs as starting points and extended the LD decay of each chromosome to their upstream and downstream; this method resulted in decades-Kb LD blocks that contained 0 to 19 flanking SNPs (S_Fig 3.3). The other was the haplotype blocks estimated by plink; this method revealed only six haplotype blocks and one of them extended to about 215 Kb (S_Fig 3.3). However, none of the significant loci was supported by their flanking SNPs in these LD blocks, except for SSL2.50ch03_56810075 and SSL2.50ch03_56828245, which were supported by each other in haplotype block 2 (Table 3.1; S_Fig 3.3). Because the haplotype block 2 extended only nearly 20 Kb and consisted of two significant markers, this locus may be a relatively confident candidate. Nevertheless, considering these significant SNPs presented high FDR, further investigation is necessary to confirm the candidate loci of stamen length.

3.4 Discussion

3.4.1 QTL on chromosome 2, 3 and 7

Previous studies have revealed three QTL controlling the stamen length in S. pimpinellifolium: atl2.1 and atl7.1 were mapped via a backcross population derived
from S. lycopersicum crossing to S. pimpinellifolium LA1589; ant3.2 was mapped via a F_{2} population derived from S. pimpinellifolium LA1237 crossing to S. pimpinellifolium LA1581 (Georgiady et al., 2002; Grandillo \& Tanksley, 1996). atl2.1, atl7.1 and ant3.2 explained $6.5 \%, 17.5 \%$ and 35.2% phenotypic variation, respectively, suggesting the confidence intervals extended from 10 to 32 cM (Darvasi \& Soller, 1997). However, due to the large confidence intervals from those previous studies, we could not conclude if they were the same QTL as ours, though we indeed identified the QTL on chromosome 2, 3 and 7 as well.

3.4.2 Large sample size is essential for GWAS

GWAS is never successful unless a marker is linked with the real QTL contributed to a studying trait. Hence, saturated marker density seems to be the most important factors in GWAS. However, a small population size can lead to the decrease of marker density because many alleles will be excluded due to allele frequency if a studying population is not large enough. Rare alleles were removed in GWAS because of insufficient detecting power (Hamblin, Buckler, \& Jannink, 2011; Ingvarsson \& Street, 2011; Visscher et al., 2017). This phenomenon was also observed in this study, resulting in only one third SNPs passed the threshold of minor allele frequency. Another reason for large sampling is to detect the loci with small effect size. For a complex trait, generally controlled by many genes with small effects, a larger sample can increase detecting power and decrease FDR (Ingvarsson \& Street, 2011; Korte \& Farlow, 2013). In this study, all the significant loci revealed high FDR, suggesting a larger sample size was required. We estimated the obligatory sample size based on the heritability and detecting power. The heritability of the stamen length was 0.54 and 0.65 in TASSEL and GEMMA, respectively. To achieve 80% power, at least 1,400 samples are required
(Visscher et al., 2014). Unfortunately, only 5\% power was achieved based on our sample size.

Another factor also affects the sample size is the successful phenotyping. Some S. pimpinellifolium accessions postponed the flowering in long-day condition (Soyk et al., 2017). It is possible that some accessions in this study are sensitive to photoperiod, resulting in only 79 accessions phenotyped (S_Tab 3.1). Even with a larger sample size, this sensitivity of photoperiod is still an uncertain factor until a full phenotyping survey for each S. pimpinellifolium accession is completed.

It should be noted that increasing population size generally affects GWAS results because allele frequency and population structure are evaluated based on studying populations (Brachi et al., 2011). Although a wild germplasm is generally utilized in GWAS, it should be treated with caution that this material may introduce more rare alleles rather than common alleles, potentially limiting the detection of rare SNPs. We recommend two sampling strategies to increase sampling size for this study. One is to gather more facultative autogamous accessions in the northern Peru because those are higher outcrossing rate and highly diverse (Rick et al., 1977). The higher outcrossing rate can accelerate the breakdown of population structure and maintain genetic diversity simultaneously. This is supported by our result that several highly diverse accessions and also admixture genomes are revealed in the northern Peru. Moreover, the accessions in the north of Peru would maintain as many alleles as their ancestries because S. pimpinellifolium originated in the northern Peru. The other is to sample evenly in each subpopulation because it could increase the frequency of rare alleles (Brachi et al., 2011). Although this strategy would probably increase population structure due to the differential subpopulations (S_Tab 2.6), it could focus on the genes related to local
adaption via several statistical methods designed to eliminate the structure (Brachi et al., 2015; Fournier-Level et al., 2011; Korte \& Farlow, 2013).

3.4.3 r^{2} or D^{\prime} as an indicator for LD

Generally r^{2} or D' are used to describe the LD of a given population for different purposes (Flint-Garcia et al., 2003; Soto-Cerda \& Cloutier, 2012). r^{2} incorporates the history of recombination and mutation. Scientists utilize r^{2} to present LD in GWAS because it presents the correlation between markers and QTL. However, r^{2} is easily inflated by mutations or genetic heterogeneity (Korte \& Farlow, 2013). To observe only the recombinant events, D' was also estimated (S_Fig 3.4). According to S_Fig 3.4, the interval from SSL2.50ch03_56799394 to SSL2.50ch03_56828279 did not form a clear LD block if based on the heatmap of r^{2}. SSL2.50ch03_56799394 is randomly associated with SSL2.50ch03_56809044, SSL2.50ch03_56809050 and SSL2.50ch03_56810075; SSL2.50ch03_56810088 is randomly associated with SSL2.50ch03_56828146, SSL2.50ch03_56828151 and SSL2.50ch03_56828153. However, considering this interval from SSL2.50ch03_56799394 to SSL2.50ch03_56828279 is less than 30 Kb , and a haplotype is detected within this interval, this interval should be a LD block. The contrast may result from the overestimation of r^{2} that includes all the mutations. This contrast diminished when D' served as the indicator of LD; most of D' in this interval were greater than 0.5 (S_Fig 3.4). D' accounts only the recombinant history, making it appropriate to build LD blocks that reflect inherited units (Flint-Garcia et al., 2003). Despite D' actually supports the LD decay and the haplotype block in our example, we prefer r^{2} because it describes the genetic diversity of this collection. Besides, the estimation of r^{2} could be more stable when sample size and marker increase; consequently it can build haplotype blocks more precisely (Gaunt et al., 2007).

Therefore, we expect an estimation of r^{2} corresponding to LD decay or haplotypes in an experiment with a larger sample size and more markers.

3.4.4 A gap between the estimation of r^{2} in different softwares

When we demonstrated the pattern of D' and r^{2} for the interval in S_Fig 3.4, we used TASSEL to estimate both because the calculation of genome-wide pairwise D^{\prime} is more practical in TASSEL than in plink. However, we noticed the r^{2} in TASSEL was not always equal to that in plink for the same pair SNPs, such as the example listed in S_Tab 3.2. In plink, haplotype frequency is first estimated and then applied it to the standard r^{2} calculation. For a locus with a small sample size or rare allele frequency, the haplotype frequency has multiple solutions, which implies an unstable estimation of r^{2} (Gaunt et al., 2007). Meanwhile, in TASSEL, heterozygous genotypes are removed at the beginning and the residual genotypes are applied to the standard r^{2} calculation (Bradbury et al., 2007). Therefore, for the loci with high heterozygosity, many genotypes are removed. Among the r^{2} of 206,375 pairwise SNPs, a total of 8,397 pairs (4.07\%) present equal r^{2} in TASSEL and in plink. A total of 1,984 pairs (0.96%) have the difference of r^{2} more than 0.1 (S_Fig 3.5). Considering only the LD decay and required markers were estimated by r^{2} in this study, the consequence of the different r^{2} could be shown. The overall LD decay based on TASSEL was 22 Kb (S_Fig 3.6), resulting in about 40,900 markers to cover through the whole tomato genome. Nevertheless, the r^{2} in plink was preferred because the elimination of heterozygosity in TASSEL could cause an uncertain bias, especially when accessions with high outcrossing rates were involved in this study.

3.4.5 Insufficient coverage makes the build of haplotypes unsuccessful

Haplotype-block based GWAS that takes the advantage of the linkage between nearby alleles and the significant loci has been proved successful in plant genomes (N'Diaye et al., 2017; Qian et al., 2017; Yano et al., 2016). Haplotype has a better biological interpretation than SNP in GWAS because it is inherited as an unit in the same chromosomal block in a giving population (Qian et al., 2017). Additionally, it provides another solution for rare alleles that lack statistic detecting power in GWAS via the formation of haplotype blocks with common alleles (Slatkin, 2008). Despite our common SNPs could not cover the whole genome, we tried to estimate the haplotype blocks using 24,330 SNPs. As a result, a total of 2,928 blocks were built by 11,729 SNPs (S_Tab 3.3). These haplotypes extended to an average interval of 3 Kb . Since the haplotype could link rare alleles with common ones, about 68,000 SNPs that include the rare alleles in this population were also used to build haplotype blocks. A total of 3,148 blocks were formed by 11,872 SNPs, also with an average interval of 3 Kb (S_Tab 3.4). These two datasets shared the same 2,385 haplotypes created by 8,510 SNPs. This result suggested that most of the rare alleles assembled haplotypes unsuccessfully. Two reasons may be responsible for the unsuccessful haplotype building. One is the insufficient coverage of these SNPs through the whole genome because the rare SNPs are still at the vicinity of PstI cutting site (Browning \& Browning, 2007). The other is the overestimation of r^{2} due to the small sample size and the genetic heterogeneity (Gaunt et al., 2007; Korte \& Farlow, 2013). More local sampling may provide a more stable estimation of r^{2} and also haplotypes (Korte \& Farlow, 2013).

3.4.6 More markers or more individuals

Researchers usually struggle to accomplish more markers or more individuals when designing a limited-budget GWAS. Indeed, the result of GWAS relies on LD, and the LD is affected by marker density. Insufficient markers are not capable to cover through whole genome, resulting in undetectable regions. However, in our case, the confidence of the significant loci and overestimation of r^{2} could be improved by a larger sample size. For a complex trait involved in many genes, if we dedicate on more markers, we may detect more loci but with less confidence. If we focus on more sample sizes, we may detect fewer loci but with higher confidence. Therefore, a larger sample size should take priority over a greater number of markers for a reliable GWAS result, especially when a complex trait is involved.

3.5 Reference

Brachi, B., Meyer, C. G., Villoutreix, R., Platt, A., Morton, T. C., Roux, F., \& Bergelson, J. (2015). Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas. 1421416112

Brachi, B., Morris, G. P., \& Borevitz, J. O. (2011). Genome-wide association studies in plants: The missing heritability is in the field. Genome Biology. https://doi.org/10.1186/gb-2011-12-10-232

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., \& Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics. https://doi.org/10.1093/bioinformatics/btm308

Browning, S. R., \& Browning, B. L. (2007). Rapid and Accurate Haplotype Phasing
and Missing-Data Inference for Whole-Genome Association Studies By Use of Localized Haplotype Clustering. The American Journal of Human Genetics. https://doi.org/10.1086/521987

Darvasi, A., \& Soller, M. (1997). A simple method to calculate resolving power and confidence interval of QTL map location. Behavior Genetics. https://doi.org/10.1023/A:1025685324830

Flint-Garcia, S. A., Thornsberry, J. M., \& Buckler, E. S. (2003). Structure of Linkage Disequilibrium in Plants. Annual Review of Plant Biology. https://doi.org/10.1146/annurev.arplant.54.031902.134907

Fournier-Level, A., Korte, A., Cooper, M. D., Nordborg, M., Schmitt, J., \& Wilczek, A. M. (2011). A map of local adaptation in Arabidopsis thaliana. Science, 334(6052), 86-89. https://doi.org/10.1126/science. 1209271

Gaunt, T. R., Rodríguez, S., \& Day, I. N. M. (2007). Cubic exact solutions for the estimation of pairwise haplotype frequencies: Implications for linkage disequilibrium analyses and a web tool "CubeX." BMC Bioinformatics. https://doi.org/10.1186/1471-2105-8-428

Georgiady, M. S., Whitkus, R. W., \& Lord, E. M. (2002). Genetic analysis of traits distinguishing outcrossing and self-pollinating forms of currant tomato, Lycopersicon pimpinellifolium (Jusl.) Mill. Genetics.

Grandillo, S., \& Tanksley, S. D. (1996). QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theoretical and Applied Genetics.
https://doi.org/10.1007/BF00224033
Hamblin, M. T., Buckler, E. S., \& Jannink, J. L. (2011). Population genetics of genomics-based crop improvement methods. Trends in Genetics.
https://doi.org/10.1016/j.tig.2010.12.003
Ingvarsson, P. K., \& Street, N. R. (2011). Association genetics of complex traits in plants. New Phytologist. https://doi.org/10.1111/j.1469-8137.2010.03593.x

Korte, A., \& Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: A review. Plant Methods. https://doi.org/10.1186/1746-4811-9-29

N'Diaye, A., Haile, J. K., Cory, A. T., Clarke, F. R., Clarke, J. M., Knox, R. E., \& Pozniak, C. J. (2017). Single marker and haplotype-based association analysis of semolina and pasta colour in elite durum wheat breeding lines using a high-density consensus map. PLoS ONE. https://doi.org/10.1371/journal.pone. 0170941

Qian, L., Hickey, L. T., Stahl, A., Werner, C. R., Hayes, B., Snowdon, R. J., \& Voss-Fels, K. P. (2017). Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops. Frontiers in Plant Science, 8, 1-11. https://doi.org/10.3389/fpls.2017.01534

Rick, C. M., Fobes, J. F., \& Holle, M. (1977). Genetic variation in Lycopersicon pimpinellifolium: Evidence of evolutionary change in mating systems. Plant Systematics and Evolution. https://doi.org/10.1007/BF00984147

Schneider, C. A., Rasband, W. S., \& Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods. https://doi.org/10.1038/nmeth. 2089

Shin, J. H., Blay, S., Graham, J., \& McNeney, B. (2015). LDheatmap : An R Function for Graphical Display of Pairwise Linkage Disequilibria Between Single Nucleotide Polymorphisms . Journal of Statistical Software. https://doi.org/10.18637/jss.v016.c03

Slatkin, M. (2008). Linkage disequilibrium - Understanding the evolutionary past and mapping the medical future. Nature Reviews Genetics. https://doi.org/10.1038/nrg2361

Soto-Cerda, B. J., \& Cloutier, S. 2012 Association mapping in plant genomes, in Genetic Diversity in Plants, edited by C. Mahmut. InTech, Rijeka.

Soyk, S., Müller, N. A., Park, S. J., Schmalenbach, I., Jiang, K., Hayama, R., Lippman, Z. B. (2017). Variation in the flowering gene SELF PRUNING $5 G$ promotes day-neutrality and early yield in tomato. Nature Genetics. https://doi.org/10.1038/ng. 3733

Storey, J. D., \& Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas. 1530509100

Turner, S. D. (2014). qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. https://doi.org/10.1101/005165

Visscher, P. M., Hemani, G., Vinkhuyzen, A. A. E., Chen, G. B., Lee, S. H., Wray, N. R., ... Yang, J. (2014). Statistical Power to Detect Genetic (Co)Variance of Complex Traits Using SNP Data in Unrelated Samples. PLoS Genetics. https://doi.org/10.1371/journal.pgen. 1004269

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., \& Yang, J. (2017). 10 Years of GWAS Discovery: Biology, Function, and Translation. American Journal of Human Genetics. https://doi.org/10.1016/j.ajhg.2017.06.005

Yano, K., Yamamoto, E., Aya, K., Takeuchi, H., Lo, P. C., Hu, L., ... Matsuoka, M. (2016). Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genetics, 48(8), 927-934. https://doi.org/10.1038/ng. 3596

Zhou, X., \& Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association studies. Nature Genetics. https://doi.org/10.1038/ng. 2310

3.6 Supplementary Data

TASSEL, $\mathbf{P}=\mathbf{G}+\mathbf{K}+\mathbf{E}$

TASSEL, $\mathbf{P}=\mathbf{G}+\mathbf{Q}+\mathbf{K}+\mathbf{E}$

GEMMA, $\mathbf{P}=\mathbf{G}+\mathbf{K}+\mathbf{E}$

S_Fig 3.1 The Q-Q plots.

TASSEL, $\mathbf{P}=\mathbf{G}+\mathbf{K}+\mathbf{E}$

TASSEL, $\mathbf{P}=\mathbf{G}+\mathbf{Q}+\mathbf{E}$

GEMMA, $\mathbf{P}=\mathbf{G}+\mathbf{K}+\mathbf{E}$

S_Fig 3.2 The manhattan plots.

SSL2.50ch01_18302427

SSL2.50ch01_87989387

SSL2.50ch02_45035168

SSL2.50ch02_52704387

S_Fig 3.3 (page 1/4)

SSL2.50ch03_70083752

SSL2.50ch04_63808596

SSL2.50ch03_68538664

SSL2.50ch04_5128555

SSL2.50ch05_8922097 \& SSL2.50ch05_8922110

S_Fig 3.3 (page 2/4)

SSL2.50ch06_45620556

SSL2.50ch07_58342891

SSL2.50ch08_61447940

SSL2.50ch08_2088583

SSL2.50ch09_48896331

S_Fig 3.3 (page 3/4)

SSL2.50ch09_70184736

SSL2.50ch10_516364

SSL2.50ch12_301545

S_Fig 3.3 The heatmap of LD for each significant locus in GWAS.
For each locus, the heatmap shows the r^{2} of the flanking SNPs within 100 Kb to the left and to the right. The dotted lines indicate the intervals of LD decay of each chromosome. The horizontal lines extended on the top of the SNPs indicate the haplotype blocks predicted by plink. For haplotype 4, the bold dotted lines labelled on the physical map indicateds this haplotype extends more than 100 Kb from SSL2.50ch07_7730187. Taking SSL2.50ch01_21314184 for example, its $100-\mathrm{Kb}$ interval spans from 21214185 to 21414184 . Therefore, all SNPs within this interval are included in this heatmap, resulting in only seven SNPs, SSL2.50ch01_21231906, SSL2.50ch01_21231927, SSL2.50ch01_21232013, SSL2.50ch01_21314165, SSL2.50ch01_21314184, SSL2.50ch01_21314322 and

SSL2.50ch01_21397188. The LD decay of chromosome 1 is 14 Kb . Hence, from 21300185 to 21328184, there are three pair-wise LD labelled by the dotted lines.

S_Fig 3.4 The heatmap of r^{2} and D' from SSL2.50ch03_56790852 to SSL2.50ch03_56903592.
The r^{2} and D^{\prime} are plotted on the lower and upper triangle, respectively, sharing the same color key. The red line and dotted line indicate the interval of the haplotype 3 and that of the LD decay of chromosome 3, respectively. The parentheses labelled on the y-axis indicate, from left to right, the sample size, the heterozygous size, the minor allele frequency based on the sample size and that without heterozygosity.

S_Fig 3.5 The difference of r^{2} between TASSEL and plink based on 206,375 pair-wise LD.

Overall LD decay based on TASSEL

S_Fig 3.6 The overall LD decay based on TASSEL.
The red curve indicates non-linear regression and black dotted line refers to the baseline of r^{2} at 0.1 .

S_Tab 3.1 The stamen length of each accession.

Accession	$\begin{gathered} \hline \text { Stamen length } \\ (\mathrm{mm}) \end{gathered}$	Accession	$\begin{gathered} \text { Stamen length } \\ (\mathrm{mm}) \end{gathered}$	Accession	Stamen length (mm)	Accession	Stamen length (mm)	Accession	Stamen length (mm)
LA0114	9.3061	LA1380	NA	LA1587	10.1708	LA1686	13.1162	LA2390	8.6951
LA0373	7.6795	LA1381	8.3840	LA1589	8.7391	LA1687	11.4246	LA2401	8.0174
LA0391	7.6177	LA1382	11.0898	LA1590	8.8334	LA1688	12.3323	LA2533	7.0001
LA0397	11.0742	LA1466	11.5480	LA1591	8.1812	LA1689	8.7704	LA2645	10.3808
LA0400	NA	LA1469	10.4435	LA1593	9.4802	LA1690	NA	LA2646	10.2892
LA0417	NA	LA1471	NA	LA1595	7.9726	LA1720	NA	LA2647	NA
LA0442	7.5946	LA1478	9.5352	LA1596	7.9768	LA1729	7.1697	LA2652	10.2621
LA1236	NA	LA1514	7.0176	LA1599	7.4394	LA1921	6.9633	LA2653	9.3440
LA1237	6.7490	LA1521	6.9549	LA1601	7.6334	LA1923	7.0323	LA2655	10.3550
LA1245	8.9332	LA1547	11.0033	LA1602	6.7187	LA1924	7.9733	LA2656	10.9326
LA1246	NA	LA1576	7.4378	LA1606	7.9248	LA1933	5.9647	LA2659	NA
LA1256	NA	LA1577	8.3659	LA1615	NA	LA1936	6.6613	LA2852	8.5201
LA1261	7.7446	LA1578	8.8759	LA1617	NA	LA2097	8.9033	LA2915	11.7484
LA1279	NA	LA1579	11.0729	LA1628	9.3352	LA2102	NA	LA3638	NA
LA1280	8.4673	LA1580	11.4193	LA1629	7.4897	LA2146	10.6952		
LA1301	7.8352	LA1581	10.9539	LA1645	7.5196	LA2149	8.6963		
LA1335	6.5901	LA1582	11.0642	LA1659	8.8385	LA2173	8.5997		
LA1348	10.0666	LA1583	11.6203	LA1670	8.6164	LA2181	9.4307		
LA1349	11.1413	LA1584	11.2812	LA1683	9.5078	LA2183	9.2328		
LA1371	NA	LA1585	9.4693	LA1684	NA	LA2186	NA		
LA1375	8.2370	LA1586	10.2029	LA1685	11.2306	LA2389	8.4093		

S_Tab 3.2 The difference of pairwise r^{2} between TASSEL and plink, taking SSL2.50ch03_56790852 to SSL2.50ch03_ 56903592 (the SNPs in S_Fig 3.4) for example

SNP_A	SNP_B	r^{2} (plink)	r^{2} (TASSEL)	D'	Difference of \boldsymbol{r}^{2} (TASSEL-plink)
SSL2.50ch03_56790852	SSL2.50ch03_56793015	0.1382	0.1291	1.0000	-0.0091
SSL2.50ch03_56790852	SSL2.50ch03_56799394	0.1792	0.1914	1.0000	0.0122
SSL2.50ch03_56790852	SSL2.50ch03_56808973	0.2527	0.2626	0.8787	0.0099
SSL2.50ch03_56790852	SSL2.50ch03_56809014	0.1588	0.1403	0.8140	-0.0185
SSL2.50ch03_56790852	SSL2.50ch03_56809044	0.0321	0.0079	0.1162	-0.0242
SSL2.50ch03_56790852	SSL2.50ch03_56809050	0.0321	0.0079	0.1162	-0.0242
SSL2.50ch03_56790852	SSL2.50ch03_56809061	0.1661	0.1543	1.0000	-0.0118
SSL2.50ch03_56790852	SSL2.50ch03_56810075	0.2465	0.2737	1.0000	0.0272
SSL2.50ch03_56790852	SSL2.50ch03_56810088	0.1680	0.1434	0.8111	-0.0246
SSL2.50ch03_56793015	SSL2.50ch03_56799394	0.0364	0.0254	1.0000	-0.0109
SSL2.50ch03_56793015	SSL2.50ch03_56808973	0.0422	0.0357	1.0000	-0.0065
SSL2.50ch03_56793015	SSL2.50ch03_56809014	0.0267	0.0216	1.0000	-0.0051
SSL2.50ch03_56793015	SSL2.50ch03_56809044	0.0386	0.0876	0.5632	0.0490
SSL2.50ch03_56793015	SSL2.50ch03_56809050	0.0386	0.0876	0.5632	0.0490
SSL2.50ch03_56793015	SSL2.50ch03_56809061	0.0192	0.0163	1.0000	-0.0029
SSL2.50ch03_56793015	SSL2.50ch03_56810075	0.6702	0.6735	1.0000	0.0033
SSL2.50ch03_56793015	SSL2.50ch03_56810088	0.0299	0.0230	1.0000	-0.0069
SSL2.50ch03_56793015	SSL2.50ch03_56828146	0.5048	0.5261	0.8811	0.0213
SSL2.50ch03_56799394	SSL2.50ch03_56808973	0.3019	0.3012	0.6400	-0.0007
SSL2.50ch03_56799394	SSL2.50ch03_56809014	0.5264	0.5697	0.8563	0.0433
SSL2.50ch03_56799394	SSL2.50ch03_56809044	0.0593	0.0210	0.4861	-0.0383
SSL2.50ch03_56799394	SSL2.50ch03_56809050	0.0593	0.0210	0.4861	-0.0383

S_Tab 3.2 (Continued)

SNP_A	SNP_B	r^{2} (plink)	r^{2} (TASSEL)	\mathbf{D}^{\prime}	Difference of \boldsymbol{r}^{2} (TASSEL-plink)
SSL2.50ch03_56799394	SSL2.50ch03_56809061	0.4181	0.4167	0.8333	-0.0014
SSL2.50ch03_56799394	SSL2.50ch03_56810075	0.0043	0.0018	0.1889	-0.0025
SSL2.50ch03_56799394	SSL2.50ch03_56810088	0.5287	0.5677	0.8555	- 0.0390
SSL2.50ch03_56799394	SSL2.50ch03_56828146	0.0029	0.0011	0.1590	-0.0018
SSL2.50ch03_56799394	SSL2.50ch03_56828151	0.0029	0.0011	0.1590	-0.0018
SSL2.50ch03_56808973	SSL2.50ch03_56809014	0.6851	0.6751	1.0000	-0.0100
SSL2.50ch03_56808973	SSL2.50ch03_56809044	0.2287	0.1500	1.0000	-0.0787
SSL2.50ch03_56808973	SSL2.50ch03_56809050	0.2287	0.1500	1.0000	-0.0787
SSL2.50ch03_56808973	SSL2.50ch03_56809061	0.5106	0.5404	1.0000	0.0298
SSL2.50ch03_56808973	SSL2.50ch03_56810075	0.0758	0.0656	1.0000	-0.0102
SSL2.50ch03_56808973	SSL2.50ch03_56810088	0.6453	0.6723	1.0000	0.0270
SSL2.50ch03_56808973	SSL2.50ch03_56828146	0.0714	0.0533	1.0000	-0.0181
SSL2.50ch03_56808973	SSL2.50ch03_56828151	0.0714	0.0533	1.0000	-0.0181
SSL2.50ch03_56808973	SSL2.50ch03_56828153	0.0550	0.0507	1.0000	-0.0043
SSL2.50ch03_56809014	SSL2.50ch03_56809044	0.1242	0.0750	1.0000	-0.0492
SSL2.50ch03_56809014	SSL2.50ch03_56809050	0.1242	0.0750	1.0000	-0.0492
SSL2.50ch03_56809014	SSL2.50ch03_56809061	0.8639	1.0000	1.0000	0.1361
SSL2.50ch03_56809014	SSL2.50ch03_56810075	0.0497	0.0397	1.0000	-0.0100
SSL2.50ch03_56809014	SSL2.50ch03_56810088	0.9475	1.0000	1.0000	0.0525
SSL2.50ch03_56809014	SSL2.50ch03_56828146	0.0498	0.0323	1.0000	-0.0175
SSL2.50ch03_56809014	SSL2.50ch03_56828151	0.0498	0.0323	1.0000	-0.0175
SSL2.50ch03_56809014	SSL2.50ch03_56828153	0.0526	0.0333	1.0000	-0.0193

S_Tab 3.2 (Continued)

SNP_A	SNP_B	$r^{2}($ plink $)$	$r^{2}($ TASSEL)	\mathbf{D}^{\prime}

S_Tab 3.2 (Continued)

SNP_A	SNP_B	$r^{2} \text { (plink) }$	$r^{2} \text { (TASSEL) }$	D'	Difference of \boldsymbol{r}^{2} (TASSEL-plink)
SSL2.50ch03_56809061	SSL2.50ch03_56828151	0.0301	0.0244	1.0000	- -0.0057
SSL2.50ch03_56809061	SSL2.50ch03_56828153	0.0320	0.0252	1.0000	-0.0069
SSL2.50ch03_56809061	SSL2.50ch03_56828245	0.1800	0.1692	1.0000	-0.0108
SSL2.50ch03_56809061	SSL2.50ch03_56828253	0.5275	0.6084	0.8401	0.0809
SSL2.50ch03_56809061	SSL2.50ch03_56828269	0.1513	0.1407	0.7872	-0.0106
SSL2.50ch03 56809061	SSL2.50ch03_56828274	0.4701	0.5297	0.8377	0.0596
SSL2.50ch03_56810075	SSL2.50ch03_56810088	0.0393	0.0361	1.0000	-0.0032
SSL2.50ch03_56810075	SSL2.50ch03_56828146	0.8856	0.9143	1.0000	0.0287
SSL2.50ch03_56810075	SSL2.50ch03_56828151	0.8856	0.9143	1.0000	0.0287
SSL2.50ch03_56810075	SSL2.50ch03_56828153	0.8647	0.9141	1.0000	0.0493
SSL2.50ch03_56810075	SSL2.50ch03_56828245	0.3240	0.3422	1.0000	0.0182
SSL2.50ch03_56810075	SSL2.50ch03_56828253	0.0194	0.0135	0.5515	-0.0059
SSL2.50ch03_56810075	SSL2.50ch03_56828269	0.4228	0.4556	1.0000	0.0328
SSL2.50ch03_56810075	SSL2.50ch03_56828274	0.0233	0.0171	0.5889	-0.0062
SSL2.50ch03_56810075	SSL2.50ch03_56828278	0.8665	0.9145	1.0000	0.0480
SSL2.50ch03_56810088	SSL2.50ch03_56828146	0.0442	0.0333	1.0000	-0.0109
SSL2.50ch03_56810088	SSL2.50ch03_56828151	0.0442	0.0333	1.0000	-0.0109
SSL2.50ch03_56810088	SSL2.50ch03_56828153	0.0471	0.0344	1.0000	-0.0127
SSL2.50ch03_56810088	SSL2.50ch03_56828245	0.2501	0.2408	1.0000	-0.0093
SSL2.50ch03 56810088	SSL2.50ch03_56828253	0.6531	0.6993	0.8836	0.0462
SSL2.50ch03_56810088	SSL2.50ch03_56828269	0.2225	0.2191	0.8479	-0.0034
SSL2.50ch03_56810088	SSL2.50ch03_56828274	0.5944	0.6289	0.8818	0.0345

S_Tab 3.2 (Continued)

$\mathbf{S N P} \mathbf{S}_{-} \mathbf{A}$	SNP_B	r^{2} (plink)	r^{2} (TASSEL)	D'	Difference of r^{2} (TASSEL-plink)
SSL2.50ch03_56810088	SSL2.50ch03_56828278	0.0345	0.0323	1.0000	-0.0023
SSL2.50ch03_56810088	SSL2.50ch03_56828279	0.0345	0.0323	1.0000	-0.0023
SSL2.50ch03_56828146	SSL2.50ch03_56828151	1.0000	1.0000	1.0000	0.0000
SSL2.50ch03_56828146	SSL2.50ch03_56828153	0.9813	1.0000	1.0000	0.0187
SSL2.50ch03_56828146	SSL2.50ch03_56828245	0.2580	0.2650	1.0000	0.0070
SSL2.50ch03_56828146	SSL2.50ch03_56828253	0.0661	0.0473	1.0000	-0.0189
SSL2.50ch03_56828146	SSL2.50ch03_56828269	0.3580	0.3717	1.0000	0.0137
SSL2.50ch03_56828146	SSL2.50ch03_56828274	0.0704	0.0512	1.0000	-0.0192
SSL2.50ch03_56828146	SSL2.50ch03_56828278	0.9821	1.0000	1.0000	0.0179
SSL2.50ch03_56828146	SSL2.50ch03_56828279	0.9821	1.0000	1.0000	0.0179
SSL2.50ch03_56828146	SSL2.50ch03_56883090	0.0172	0.0127	1.0000	-0.0045
SSL2.50ch03_56828151	SSL2.50ch03_56828153	0.9813	1.0000	1.0000	0.0187
SSL2.50ch03_56828151	SSL2.50ch03_56828245	0.2580	0.2650	1.0000	0.0070
SSL2.50ch03_56828151	SSL2.50ch03_56828253	0.0661	0.0473	1.0000	-0.0189
SSL2.50ch03_56828151	SSL2.50ch03_56828269	0.3580	0.3717	1.0000	0.0137
SSL2.50ch03_56828151	SSL2.50ch03_56828274	0.0704	0.0512	1.0000	-0.0192
SSL2.50ch03_56828151	SSL2.50ch03_56828278	0.9821	1.0000	1.0000	0.0179
SSL2.50ch03_56828151	SSL2.50ch03_56828279	0.9821	1.0000	1.0000	0.0179
SSL2.50ch03_56828151	SSL2.50ch03_56883090	0.0172	0.0127	1.0000	-0.0045
SSL2.50ch03_56828151	SSL2.50ch03_56892686	0.0382	0.0471	0.2750	0.0089
SSL2.50ch03_56828153	SSL2.50ch03_56828245	0.2735	0.2761	1.0000	0.0027
SSL2.50ch03_56828153	SSL2.50ch03_56828253	0.0599	0.0473	1.0000	-0.0126

S_Tab 3.2 (Continued)

SNP_A	SNP_B	$r^{2}($ plink $)$	$r^{2}($ TASSEL)	\mathbf{D}^{\prime}

S_Tab 3.2 (Continued)

SNP_A	SNP_B	$r^{2}($ plink $)$	$r^{2}($ TASSEL)	\mathbf{D}^{\prime}

S_Tab 3.2 (Continued)

SNP_A	SNP_B	r^{2} (plink)	r^{2} (TASSEL)	\mathbf{D}^{\prime}	Difference of r^{2} (TASSEL-plink)
SSL2.50ch03_56828279	SSL2.50ch03_56892705	0.0000	0.0000	0.0077	0.0000
SSL2.50ch03_56828279	SSL2.50ch03_56903592	0.0086	0.0163	0.2398	0.0077
SSL2.50ch03_56883090	SSL2.50ch03_56892686	0.0019	0.0035	0.0914	0.0016
SSL2.50ch03_56883090	SSL2.50ch03_56892705	0.0130	0.0093	0.4914	-0.0036
SSL2.50ch03_56883090	SSL2.50ch03_56903592	0.0336	0.0361	1.0000	0.0026
SSL2.50ch03_56892686	SSL2.50ch03_56892705	0.2284	0.2281	1.0000	-0.0002
SSL2.50ch03_56892686	SSL2.50ch03_56903592	0.1701	0.1810	0.8552	0.0109
SSL2.50ch03_56892705	SSL2.50ch03_56903592	0.4899	0.5275	0.7446	0.0375

S_Tab 3.3 The haplotype blocks estimated by the 24,330 SNPs.
We listed the first 12 haplotypes for readers to glimpse the data and the full table is provided on the following link https://goo.gl/8hUcy3.

Chr.	Position 1	Position 2	Interval (Kb)	$\begin{gathered} \hline \text { Number of } \\ \text { SNPs } \end{gathered}$	Lists of SNPs in this haplotype			
1	32,607	52,465	19.859	5	SSL2.50ch01_32607\|SSL2.50ch01_32987	SSL2.50ch01_50106	SSL2.50ch01_52415	
					SSL2.50ch01_52465			
1	92,041	92,053	0.013	2	SSL2.50ch01_92041\|SSL2.50ch01_92053			
1	142,357	142,477	0.121	2	SSL2.50ch01_142357\|SSL2.50ch01_142477			
1	197,948	197,964	0.017	3	SSL2.50ch01_197948\|SSL2.50ch01_197960	SSL2.50ch01_197964		
1	243,659	243,824	0.166	5	SSL2.50ch01_243659\|SSL2.50ch01_243669	SSL2.50ch01_243696	SSL2.50ch01_243716	
					SSL2.50ch01_243824			
1	352,731	352,758	0.028	4	SSL2.50ch01_352731\|SSL2.50ch01_352732	SSL2.50ch01_352733	SSL2.50ch01_352758	
1	422,672	422,692	0.021	2	SSL2.50ch01_422672\|SSL2.50ch01_422692			
1	448,310	452,893	4.584	5	SSL2.50ch01_448310\|SSL2.50ch01_448336	SSL2.50ch01_449409	SSL2.50ch01_452890	
					SSL2.50ch01_452893			
1	505,564	507,033	1.470	2	SSL2.50ch01_505564\|SSL2.50ch01_507033			
1	530,449	530,453	0.005	2	SSL2.50ch01_530449\|SSL2.50ch01_530453			
1	591,036	597,515	6.480	8	SSL2.50ch01_591036\|SSL2.50ch01_591098	SSL2.50ch01_596697	SSL2.50ch01_596724	
					SSL2.50ch01_596727\|SSL2.50ch01_596736	SSL2.50ch01_596747	SSL2.50ch01_597515	
1	612,723	612,796	0.074	9	SSL2.50ch01_612723\|SSL2.50ch01_612728	SSL2.50ch01_612744	SSL2.50ch01_612750	
					SSL2.50ch01_612753\|SSL2.50ch01_612776	SSL2.50ch01_612779	SSL2.50ch01_612794	
					SSL2.50ch01_612796			

S_Tab 3.4 The haplotype blocks estimated by about 68,000 SNPs
We listed the first 12 haplotypes for readers to glimpse the data and the full table is provided on the following link https://goo.gl/8hUcy3.

Chr.	Position 1	Position 2	Interval (Kb)	Number of SNPs	Lists of SNPs in this haplotype			
1	32,607	52,465	19.859	5	SSL2.50ch01_32607\|SSL2.50ch01_32987	SSL2.50ch01_50106	SSL2.50ch01_52415	
					SSL2.50ch01_52465			
1	92,041	92,053	0.013	2	SSL2.50ch01_92041\|SSL2.50ch01_92053			
1	142,357	142,477	0.121	2	SSL2.50ch01_142357\|SSL2.50ch01_142477			
1	197,948	197,964	0.017	3	SSL2.50ch01_197948\|SSL2.50ch01_197960	SSL2.50ch01_197964		
1	243,659	243,824	0.166	5	SSL2.50ch01_243659\|SSL2.50ch01_243669	SSL2.50ch01_243696	SSL2.50ch01_243716	
					SSL2.50ch01_243824			
1	352,731	352,758	0.028	4	SSL2.50ch01_352731\|SSL2.50ch01_352732	SSL2.50ch01_352733	SSL2.50ch01_352758	
1	422,672	422,692	0.021	2	SSL2.50ch01_422672\|SSL2.50ch01_422692			
1	448,310	452,893	4.584	5	SSL2.50ch01_448310\|SSL2.50ch01_448336	SSL2.50ch01_449409	SSL2.50ch01_452890	
					SSL2.50ch01_452893			
1	530,449	530,453	0.005	2	SSL2.50ch01_530449\|SSL2.50ch01_530453			
1	591,036	597,515	6.480	8	SSL2.50ch01_591036\|SSL2.50ch01_591098	SSL2.50ch01_596697	SSL2.50ch01_596724	
					SSL2.50ch01_596727\|SSL2.50ch01_596736	SSL2.50ch01_596747	SSL2.50ch01_597515	
1	612,723	612,796	0.074	9	SSL2.50ch01_612723\|SSL2.50ch01_612728	SSL2.50ch01_612744	SSL2.50ch01_612750	
					SSL2.50ch01_612753\|SSL2.50ch01_612776	SSL2.50ch01_612779	SSL2.50ch01_612794	
					SSL2.50ch01_612796			
1	798,465	798,475	0.011	2	SSL2.50ch01_798465\|SSL2.50ch01_798475			

Chapter 4 Three candidate genes controlling stamen length revealed via the transcriptome profiles of M82 and its introgression line TA3178

4.1 Purpose

The QTL responsible for the transmission of allogamy to autogamy in tomatoes, se2.1, contained five loci: stamen2.1, dehiscence2.1, style2.1, stamen2.2 and stamen2.3. Among them, style2.1 has been proved its regulation of style elongation due to the InDel in its promoter region. The two candidate genes for stamen length, stamen2.2 and stamen 2.3 , were tightly linked to style2.1, and they have been mapped between marker cLED19A24 and CT9 (Chen \& Tanksley, 2004).

M82 belongs to S. lycopersicum and has a thrum type flower. TA3178 is an introgression line of M82; it contains a segment of S. pennellii genome around style2.1. The stamen of homozygous TA3178 was as long as that of M82 because stamen2.2 and stamen 2.3 had the opposite effect on the stamen length (Chen \& Tanksley, 2004). In this chapter, we performed a RNA-seq experiment of M82 and TA3178 to investigate the differentially expressed genes (DEGs) in the introgression segment. The boundary of this segment is defined by comparing the SNP number between M82 and TA3178 because the later has an introgression segment of wild tomato. We expect to narrow down the candidate genes by comparing the expression level and cDNA polymorphism in the interval from cLED19A24 to CT9.

4.2 Material and Method

4.2.1 RNA sequencing

Plants were cultivated one plant per plot in nature-light greenhouses with day/night temperature $20^{\circ} \mathrm{C} / 15^{\circ} \mathrm{C}$. The RNA was extracted from flower buds using TRIzol® Reagent (Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer manual. The RNA library and RNA sequencing with the Illumina Hiseq2000 platform were conducted by the Genome Research Center at National Yang-Ming University, Taiwan.

The reads were trimmed and filtered by the R package ShortRead with a threshold of quality score greater than 20 and length longer than 20 bp (Morgan et al., 2009). We aligned the reads to the tomato reference genome SL2.50 by the subjunc function in the R package Rsubread (Liao, Smyth, \& Shi, 2013). The counts were obtained by the featureCounts function in Rsubread with ITAG2.4 gene model and then normalized to reads per kilobase per million mapped reads (RPKM) by the R package edgeR (Robinson, McCarthy, \& Smyth, 2009). A gene was expressed if its RPKM was greater than 1. Fold change was calculated by the formula $\log _{2}\left(\mathrm{RPKM} \mathrm{M}_{82}+1\right)-\log _{2}$ $\left(\right.$ RPKM $\left._{\text {TA3178 }}+1\right)$ for visualization. All the sequences were uploaded to NCBI SRA database and this BioProject is PRJNA358109.

4.2.2 The boundary of introgression segment in TA3178

We used exactSNP function in Rsubread to obtain SNPs and filtered with quality score greater than 20 . The differences of SNPs per 100 Kb were plotted along each
chromosome to identify the segment. The precise boundary was defined by the physical positions of the marginal SNPs in this segment. The effects of SNP in the introgression segment were detected by SNPEff if the SNP quality score was larger than 20 (Cingolani et al., 2012).

4.2.3 Differential expression analysis

Since there was no biological replication in this RNA-seq experiment, we identified the DEGs via two methods. The first one depended on the distribution of the fold changes of both lines; DEGs were defined as the genes whose fold changes were outside the $99.9^{\text {th }}$ percentile. The other was based on the differentially expression analysis in the R package DEseq because it provided a differential expression analysis in a condition without any replication (Anders et al., 2010). The gene annotations and gene ontology terms of DEGs were obtained from ITAG2.4 gene model downloaded from SGN (Fernandez-Pozo et al., 2015).

4.2.4 The cDNA polymorphisms of the genes from cLED19A24 to CT9

For the genes from cLED19A24 to CT9, each consensus sequence was extracted by CLC Genomics Workbench version 10.0.1 (QIAGEN, Venlo, Netherlands) and aligned by MEGA7.0 (Kumar, Stecher, \& Tamura, 2016). If the coverage of a gene is partially less than 50 , the gene is defined as an undetermined polymorphism; if it is entirely less than 50 , the gene is defined as no expression.

4.3 Result

4.3.1 The summary of RNA-seq

We obtained approximately 450 million raw reads and 91% of them were mapped to SL2.50 (Table 4.1). Following Table 4.1, M82 contained 22,741 SNPs and 282,877 InDels; TA3178 contained 17,614 SNPs and 181,551 InDels. Nearly 80\% SNPs passed the quality control, leaving 17,802 and 13,963 SNPs in M82 and TA3178, respectively. A total of 19,225 genes were expressed in M82 while 15,794 genes in TA3178. In addition, 3,701 genes expressed only in M82 while 270 genes in TA3178.

Table 4.1 The summary of RNA-seq

RNA-seq	M82	TA3178
Original reads	$249,647,418$	$201,368,484$
Reads after trimming	$239,854,220(96.08 \%)^{a}$	$194,310,543(96.05 \%)$
Reads after filtering	$231,959,989(92.92 \%)$	$187,837,372(93.28 \%)$
Mapped reads	$227,643,933(91.19 \%)$	$183,381,349(91.07 \%)$
Counts (34,725 genes)	$208,594,221$	$167,330,172$
Numbers of SNP	22,741	17,614
SNP quality score >20	17,802	13,963
Numbers of InDel	282,877	181,551
Expressed genes	19,225	15,794
Uniquely expressed genes	3,701	270

${ }^{a}$: The percentage was based on the original reads.

4.3.2 The 1.1 Mb introgression segment of S. pennellii

Since S. pennellii is relatively distant from the tomato reference genome, the introgression segment in TA3178 would be revealed more SNPs than that in M82. As a result, the SNP numbers were extremely different between these two lines at the position about 50 Mb in chromosome 2 (S_Fig 4.1; Figure 4.1). Therefore, the marginal

SNPs of TA3178 in this interval, $49,946,234 \mathrm{bp}$ and $51,013,830 \mathrm{bp}$, were marked as the boundary of the introgression segment (Figure 4.1). This 1.1 Mb segment contained 159 genes (S_Tab 4.1).

Bounary of introgression segment

Figure 4.1 The SNPs in the introgression segment in M82 and TA3178.

In this introgression segment, M82 and TA3178 expressed 116 and 91 genes, respectively. The fold changes ranged from -1.97 to 4.27 . A total of 134 genes contained SNPs (S_Tab 4.1). Among them, Solyc02g087730.2, Solyc02g087900.2, Solyc02g088610.2, Solyc02g088620.2 and Solyc02g089050.2 contained high-effect SNPs causing different splicing patterns. Most of the other genes with low-effect SNPs would unlikely change their functions due to synonymous mutations (S_Tab 4.1).

4.3.3 Only two DEGs in the introgression segment

According to the $99.9^{\text {th }}$ percentile method, we obtained 324 DEGs whose fold changes ranged from -7.02 to 9.57 (S_Tab 4.2). Meanwhile, based on DEseq analysis, a total of 140 DEGs were detected and their fold changes based on edgeR also ranged 112
from -7.02 to 9.57 , suggesting the most differentially expressed genes were detected by both methods (S_Tab 4.3). Totally 90 DEGs were detected in both methods. It was interesting that the DEGs were distributed through the whole genome while the introgression segment was located on chromosome 2 (Table 4.2). In addition, among these 159 genes in the introgression segment, only Solyc02g087650.2 and Solyc02g088710.2 were identified as the DEGs (S_Tab 4.1-3).

Table 4.2 The number of DEGs in each chromosome.

Chr.	$\mathbf{9 9 . 9}^{\text {th }}$ percentile method	DEseq analysis	Both
0	4	4	3
1	34	21	13
2	21	10	7
3	34	17	11
4	18	5	4
5	24	11	7
6	29	17	9
7	32	10	6
8	19	3	2
9	30	11	6
10	25	15	9
11	27	5	4
12	27	11	9
Total	$\mathbf{3 2 4}$	$\mathbf{1 4 0}$	$\mathbf{9 0}$

4.3.4 Three candidate genes of stamen 2.2 and stamen 2.3

The result of the 18 candidate genes from cLED19A24 to CT9, including gene annotation, RPKM, fold changes and cDNA polymorphisms, were summarized in Table 4.3. First of all, Solyc02g087990.2, Solyc02g088020.1, Solyc02g088030.1, Solyc 02 g 088050.1 and Solyc02g088060.1 expressed little in both lines (RPKM less than 1); therefore, they were removed from the candidates. For the other genes, we obtained 13 sequences in M82: 2 partial sequences and 11 full sequences without any
polymorphism when comparing to SL2.50. Meanwhile, 12 sequences were extracted in TA3178: 4 partial sequences, 7 full sequences with nonsynonymous mutations and 1 full sequence without any polymorphism. Because the five genes with partial sequences, Solyc02g087950.2, Solyc02g087970.1, Solyc02g087980.2, Solyc02g088010.2 and Solyc02g088080.1, all expressed higher in M82 and their RPKM were all greater than 1, we classified them as different expression. Solyc 02 g 087930.2 displayed only different expression; Solyc02g087960.2 and Solyc02g088100.2 were detected only polymorphisms; the other five genes presented both differential expression and polymorphisms.

We emphasized on transcription factor since it played an important role on flower development. Solyc02g087960.2, Solyc02g087970.1, Solyc02g088030.1 and Solyc02g088070.2, which coded for MYB transcription factor, zinc finger protein, ring finger protein and Dof zinc finger protein, respectively, were transcription factors (Table 4.3). Solyc 02 g 087960.2 expressed almost equally in both lines but was revealed five nonsynonymous mutations and one InDel. Solyc02g087970.1 expressed only in M82. Solyc 02 g 088030.1 did not express in both lines and therefore was unlikely a candidate. Solyc02g088070.2 expressed slightly higher in TA3178 and was revealed 15 nonsynonymous mutations. Therefore, Solyc02g087960.2, Solyc02g087970.1 and Solyc 02 g 088070.2 could be the candidates of stamen2.2 and stamen2.3.

Table 4.3 The summary of the candidate genes from cLED19A24 to CT9

Gene ID	Gene Annotation	RPKM ${ }_{\text {M82 }}$	RPKM ${ }_{\text {TA3178 }}$	Fold Change	$\begin{gathered} \hline \text { M82 vs. } \\ \text { SL2.50 } \end{gathered}$	$\begin{gathered} \text { TA3178 vs. } \\ \text { SL2.50 } \end{gathered}$	M82 vs. TA3178
Solyc02g087930.2	Ribosomal protein L34e	96.23	300.35	-1.63	None	None	None
Solyc02g087940.2	Unknown Protein	3.86	2.13	0.63	None	$2 \mathrm{NSYN}^{\text {b }}$	2 NSYN
Solyc02g087950.2	Unknown Protein	3.70	0.74	1.43	Undetermined	Undetermined	Undetermined
Solyc02g087960.2	MYB transcription factor	9.31	9.58	-0.04	None	5 NSYN \& 1 InDel	5 NSYN \& 1 InDel
Solyc02g087970.1	Zinc finger-homeodomain protein	4.36	0.38	1.96	Undetermined	-	Undetermined
Solyc02g087980.2	RecF/RecN/SMC protein	2.59	0.59	1.17	None	Undetermined	Undetermined
Solyc02g087990.2	Unknown Protein	0.07	0.05	0.03	$-^{a}$	-	-
Solyc02g088000.2	Glycogen synthase	14.25	16.75	-0.22	None	11 NSYN	11 NSYN
Solyc02g088010.2	DCN1-like protein	4.59	0.97	1.50	None	Undetermined	Undetermined
Solyc02g088020.1	Unknown Protein	0.03	0.00	0.04	-	-	-
Solyc02g088030.1	RING finger protein, C3HC4 type	0.99	0.67	0.25	-	-	-
Solyc02g088040.1	Ribosomal protein L34e	7.94	14.45	-0.79	None	1 NSYN	1 NSYN
Solyc02g088050.1	ATPase, P-type	0.06	0.04	0.03	-	-	-
Solyc02g088060.1	ATPase, P-type	0.12	0.01	0.15	-	-	-
Solyc02g088070.2	Dof zinc finger protein	5.93	6.91	-0.19	None	15 NSYN	15 NSYN
Solyc02g088080.1	Unknown Protein	7.15	1.31	1.82	None	Undetermined	Undetermined
Solyc02g088090.1	Calmodulin-like protein	15.22	27.95	-0.84	None	3 NSYN	3 NSYN
Solyc02g088100.2	Pollen allergen/expansin	29.27	28.93	-0.02	None	2 NSYN	2 NSYN

[^1]
4.4 Discussion

4.4.1 M82 presented more SNPs than TA3178 due to its deeper sequencing

Theoretically TA3178 should have more polymorphisms than M82 due to its introgression segment of wild tomato. However, on the contrary, M82 presented more SNPs than TA3178 in this study (Table 4.1). The SNP density of chromosome 2 in TA3178 was actually the highest but those of the other chromosomes were higher in M82 except for chromosome 7 (Table 4.4). The higher SNP density in M82 and more uniquely expressed genes in M82 suggested more reads can reveal more polymorphisms and also more expressed genes (Table 4.1; Table 4.4).

Table 4.4 The expressed genes and the SNP density through each chromosome

Chr.	M82			TA3178		
	Gene	Gene with SNP	Density	Gene	Gene with SNP	Density
0	135	55	2.93	118	42	2.71
1	2,488	397	2.36	2,065	262	2.10
2	2,065	362	2.91	1,707	335	6.48
3	2,052	439	3.18	1,716	310	2.65
4	1,557	519	4.26	1,274	364	3.38
5	1,251	454	4.67	1,026	348	3.53
6	1,715	214	1.96	1,438	133	1.89
7	1,416	234	1.65	1,135	132	1.67
8	1,375	215	2.00	1,137	132	1.70
9	1,374	211	2.80	1,132	161	2.77
10	1,287	193	2.19	1,088	141	1.83
11	1,267	328	2.94	987	216	2.40
12	1,243	175	1.99	971	108	1.69
Total	19,225	3,796	3.01	15,794	2,684	3.06

4.4.2 Lacking biological replications may underestimate DEGs

The most important factor in RNA-seq is the biological replication because the DEGs between samples can result from the comparison with the variation of the genes
within samples. Since the biological replication was not available in this study, we used the $99.9^{\text {th }}$ percentile of the fold change distribution as a threshold to identify DEGs. Meanwhile, DEseq provides a test under a circumstance of lacking biological replications by treating different samples as replications under the assumption that most genes are not DEGs. In that case, the variance between samples would be greater than that between real replications, consequently underestimating DEGs (Anders et al., 2010). In our study, the $99.9^{\text {th }}$ percentile method identified 324 DEGs while DEseq analysis obtained only 140 DEGs. In addition, the DEseq seemed to identify DEGs that presented higher fold changes (S_Fig 4.2). These two observations supported the underestimation of DEGs in DEseq without real biological replications. One thing interesting was that style2.1 (Solyc02g087860.2), which has been proved to regulate the style length via a different expression level, displayed -1.10 fold changes and it was not identified as the DEG in both differential expression analyses (S_Tab 4.1). Despite high sequencing reads in this study, the $99.9^{\text {th }}$ percentile method did not detect the known functional gene. This suggested that without biological replications, the expression level could not be compared properly even in a deep sequencing study, potentially resulting in underestimating DEGs as well. Therefore, the reliability of the differential expression analysis should be examined through biological replications.

4.4.2 Transcription profiles and polymorphisms in the introgression segment

In the introgression segment, two DEGs, Solyc02g087650.2 and Solyc02g088710.2, and five genes with high-effect SNPs , Solyc02g087730.2, Solyc02g087900.2, Solyc02g088610.2, Solyc02g088620.2 and Solyc02g089050.2, may affect or regulate the phenotypic difference between M82 and TA3178 (S_Tab 4.1). It was very
interesting that only a small number of DEGs and high-effect SNPs located in the introgression region (Table 4.2), suggesting that other DEGs in other regions may be regulated through complex mechanisms. However, we could not rule out the possibility of underestimation of DEGs because totally 45 genes were differentially expressed if the threshold was the fold change of style2.1 (1.10).

4.4.4 Narrow down the candidate genes of stamen 2.2 and stamen 2.3

In the interval from cLED19A24 to CT9, 18 candidates were narrowed to 3 candidates via the transcription profiles and cDNA polymorphisms. We surveyed the related studies of these transcription factors. Solyc02g087960.2 belongs to R2R3-MYB transcription factor 94 and is involved in sequence-specific DNA binding. Previous studies have showed that it could be regulated by auxin response factor (SlARF3) or by DELLA-dependent GA mechanisms in tomato (Livne et al., 2015; Zhang et al., 2015). It might contribute to the stamen length in the crosstalk of auxin and GA since GA could promote cell elongation in a manner of degradation of DELLA, which inhibited ARF and then modulated the expression of ARF-targeted genes (Oh et al., 2014). In addition, Solyc02g087960.2 might contribute to the stamen length by the change of protein function because it expressed almost equally in both lines (Table 4.3). Solyc02g087970.1 is a mini zinc finger protein and involves in multiple phytohormone regulations (Hu \& Ma, 2006). An overexpression line of its homolog in Arabidopsis thaliana showed the inhibition of cell elongation and shortened the stamen via the auxin, GA and brassinosteroid signaling (Hu \& Ma, 2006). Since Solyc02g087970.1 only expressed in M82, it might potentially shorten the stamen length through inhibiting cell elongation. Solyc02g088070.2 is a Dof zinc finger protein but did not participate in
stamen development to our knowledge. It expressed slightly higher in TA3178 but displayed 15 nonsynonymous mutations between M82 and TA3178 (Table 4.3). This implied Solyc02g088070.2 might regulate the stamen length through different protein functions.

4.5 Reference

Anders, S., Huber, W., Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., ... Salzberg, S. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(R106). https://doi.org/10.1186/gb-2010-11-10-r106

Chen, K. Y., \& Tanksley, S. D. (2004). High-resolution mapping and functional analysis of se2.1: A major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus lycopersicon. Genetics. https://doi.org/10.1534/genetics.103.022558

Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., ... Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 6(2), 80-92. https://doi.org/10.4161/fly. 19695

Hu, W., \& Ma, H. (2006). Characterization of a novel putative zinc finger gene MIF 1: Involvement in multiple hormonal regulation of Arabidopsis development. Plant Journal. https://doi.org/10.1111/j.1365-313X.2005.02626.x

Kumar, S., Stecher, G., \& Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msw054

Liao, Y., Smyth, G. K., \& Shi, W. (2013). The Subread aligner: Fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Research.
https://doi.org/10.1093/nar/gkt214
Livne, S., Lor, V. S., Nir, I., Eliaz, N., Aharoni, A., Olszewski, N. E., ... Weiss, D. (2015). Uncovering DELLA-Independent Gibberellin Responses by Characterizing New Tomato procera Mutants. The Plant Cell. https://doi.org/10.1105/tpc.114.132795

Morgan, M., Anders, S., Lawrence, M., Aboyoun, P., Pagès, H., \& Gentleman, R. (2009). ShortRead: A bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics. https://doi.org/10.1093/bioinformatics/btp450

Oh, E., Zhu, J. Y., Bai, M. Y., Arenhart, R. A. ugusto, Sun, Y., \& Wang, Z. Y. (2014). Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. ELife, 3, 1-19. https://doi.org/10.7554/eLife. 03031

Robinson, M. D., McCarthy, D. J., \& Smyth, G. K. (2009). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. https://doi.org/10.1093/bioinformatics/btp616

Zhang, X., Yan, F., Tang, Y., Yuan, Y., Deng, W., \& Li, Z. (2015). Auxin Response Gene SlARF3 Plays Multiple Roles in Tomato Development and is Involved in the Formation of Epidermal Cells and Trichomes. Plant and Cell Physiology. https://doi.org/10.1093/pcp/pcv136

4.6 Supplementary data

Chromosome 1

Chromosome 2

Chromosome 3

Chromosome 4

S_Fig 4.1 (page 1/3)

Chromosome 5

Chromosome 6

Chromosome 7

Chromosome 8

S_Fig 4.1 (page 2/3)

Chromosome 9

Chromosome 10

Chromosome 11

Chromosome 12

S_Fig 4.1 The difference of SNP number between M82 and TA3178 through each chromosome.

Distribution of DEGs

S_Fig 4.2 The distribution of DEGs.
Red indicated the fold changes of DEGs from the $99.9^{\text {th }}$ percentile method and blue indicated those from the DEseq analysis. The black ticks above the x -axis showed the common DEGs in these two methods.

S_Tab 4.1 The detail information of 159 genes in the introgression segment.
This supplementary material contains Basic information, Result in edgeR, Result in DEseq, SNP number and effects in M82 as well as TA3178 and Detail information of 159 genes. We listed 20 genes for readers to glimpse the data and the full table is provided on the following link https://goo.gl/8hUcy3.

ID	Basic information					Result in edgeR		岛
	Start Position	End Position	Gene Width	Counts of M82	Counts of TA3178	$\begin{gathered} \text { RPKM of } \\ \text { M82 } \end{gathered}$	RPKM of TA3178	$\begin{aligned} & \text { Fold } \\ & \text { Change } \end{aligned}$
Solyc02g087550.2	49,956,733	49,960,809	4,077	8,839	8,179	10.1395	11.6098	-0.1789
Solyc02g087560.1	49,964,967	49,966,964	1,998	3,017	1,223	7.0621	3.5424	0.8277
Solyc02g087570.1	49,967,581	49,967,952	372	28	30	0.3520	0.4667	-0.1175
Solyc02g087580.2	49,970,650	49,974,563	3,914	1,203	698	1.4375	1.0320	0.2625
Solyc02g087590.1	49,974,938	49,975,570	633	3	1	0.0222	0.0091	0.0185
Solyc02g087600.2	49,976,320	49,978,863	2,544	4,680	484	8.6036	1.1010	2.1925
Solyc02g087610.1	49,979,769	49,981,307	1,539	688	682	2.0908	2.5645	-0.2058
Solyc02g087620.2	49,985,370	50,005,010	19,641	13,650	2,453	3.2503	0.7228	1.3028
Solyc02g087630.2	50,005,692	50,006,645	954	9,142	19,239	44.8174	116.7073	-1.3612
Solyc02g087640.2	50,007,440	50,012,157	4,718	2,234	857	2.2145	1.0512	0.6481
Solyc02g087650.2	50,016,855	50,017,612	758	2,564	8,528	15.8199	65.1091	-1.9747
Solyc02g087660.2	50,018,064	50,020,570	2,507	541	320	1.0092	0.7387	0.2087
Solyc02g087670.2	50,023,499	50,025,492	1,994	1,416	87	3.3212	0.2525	1.7866
Solyc02g087680.1	50,026,966	50,027,599	634	6	1	0.0443	0.0091	0.0494
Solyc02g087690.1	50,027,724	50,027,930	207	3	0	0.0678	0.0000	0.0946
Solyc02g087700.2	50,027,852	50,028,463	612	3	3	0.0229	0.0284	-0.0077
Solyc02g087710.2	50,029,205	50,036,081	6,877	45,239	15,537	30.7658	13.0747	1.1744
Solyc02g087720.1	50,037,542	50,039,578	2,037	5,292	3,836	12.1502	10.8981	0.1443
Solyc02g087730.2	50,041,595	50,050,438	8,844	6,941	2,745	3.6705	1.7962	0.7401
Solyc02g087740.2	50,051,845	50,054,725	2,881	1,791	1,539	2.9074	3.0914	-0.0664

S_Tab 4.1 (Continued)

ID	Result in DEseq		M82		TA3178	
	p value	p adjusted	SNP number	SNP Effect (Level)	SNP number	SNP Effect (Level)
Solyc02g087550.2	0.5111	1	0	-	21	Synonymous variant (low)
Solyc02g087560.1	0.8379	1	0	-	15	Synonymous variant (low)
Solyc02g087570.1	0.6275	1	0	-	0	-
Solyc02g087580.2	0.8678	1	0	-	35	Synonymous variant (low)
Solyc02g087590.1	1	1	0	-	15	-
Solyc02g087600.2	0.1104	1	0	-	11	Synonymous variant (low)
Solyc02g087610.1	0.4794	1	0	-	15	Synonymous variant (low)
Solyc02g087620.2	0.2904	1	1	-	35	Synonymous variant (low)
Solyc02g087630.2	0.1386	1	0	-	4	Splice region variant (low)
Solyc02g087640.2	0.7942	1	0	-	17	Splice region variant (low)
Solyc02g087650.2	0.0562	1	0	-	2	-
Solyc02g087660.2	0.8570	1	2	-	10	Synonymous variant (low)
Solyc02g087670.2	0.0435	1	0	-	0	-
Solyc02g087680.1	0.9341	1	0	-	3	-
Solyc02g087690.1	0.9646	1	0	-	0	-
Solyc02g087700.2	0.9453	1	0	-	0	-
Solyc02g087710.2	0.7017	1	1	Splice region variant \& intron variant (low)	29	Splice region variant \& synonymous variant (low)
Solyc02g087720.1	0.6870	1	0	-	16	Synonymous variant (low)
Solyc02g087730.2	0.8162	1	1	Splice donor variant \& intron variant (high)	23	Synonymous variant (low)
Solyc02g087740.2	0.5657	1	0	-	32	Synonymous variant (low)

S_Tab 4.1 (Continued)

ID	Detail information	
	Gene Annotation	GO term ${ }^{\text {* }}$
Solyc02g087550.2	Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase 4	GO:0016757
Solyc02g087560.1	Pentatricopeptide repeat-containing protein	-
Solyc02g087570.1	LOB domain protein 4	GO:0005515
Solyc02g087580.2	Unknown Protein	-
Solyc02g087590.1	Serine/threonine protein kinase	GO:0005515; GO:0016301
Solyc02g087600.2	DTW domain-containing protein	-
Solyc02g087610.1	Pentatricopeptide repeat-containing protein	GO:0004519; GO:0008116
Solyc02g087620.2	Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2	GO:0033187
Solyc02g087630.2	Thioredoxin H	GO:0045454
Solyc02g087640.2	Protein midA homolog, mitochondrial	GO:0005515; GO:0008270
Solyc02g087650.2	Unknown Protein	-
Solyc02g087660.2	Auxin efflux carrier protein	GO:0009672
Solyc02g087670.2	Pectate lyase family protein	GO:0016829
Solyc02g087680.1	FACT complex subunit SSRP1	GO:0005634
Solyc02g087690.1	Unknown Protein	-
Solyc02g087700.2	FACT complex subunit SSRP1	GO:0005634
Solyc02g087710.2	FACT complex subunit SSRP1	GO:0042393
Solyc02g087720.1	At3g28720-like protein	GO:0032259
Solyc02g087730.2	Katanin p80 WD40-containing subunit B1	-
Solyc02g087740.2	Cupin RmlC-type	GO:0055114

S_Tab 4.2 The detail information of the DEGs based on the $99.9^{\text {th }}$ percentile method.
This supplementary material contains Basic information, Result in edgeR, Result in DEseq and Detail information of 324 DEG genes. We listed 20 genes for readers to glimpse the data and the full table is provided on the following link https://goo.gl/8hUcy3.

ID	Basic information					Result in edgeR		
	Start Position	End Position	Gene Width	Counts of M82	Counts of TA3178	RPKM of M82	RPKM of TA3178	Fold Change
Solyc00g009070.1	8,775,151	8,775,537	387	1,658	5	20.0367	0.0748	4.2908
Solyc00g171710.1	18,049,090	18,050,010	921	4,902	4	24.8924	0.0251	4.6586
Solyc00g228260.1	19,569,553	19,569,864	312	22	190	0.3298	3.5242	-1.7665
Solyc00g257110.2	20,272,521	20,276,002	3,482	3,659	5	4.9146	0.0083	2.5523
Solyc01g005510.2	346,845	349,013	2,169	7,028	5	15.1539	0.0133	3.9947
Solyc01g006070.2	739,814	740,772	959	3,484	119	16.9908	0.7181	3.3884
Solyc01g006390.2	1,017,309	1,018,640	1,332	12,158	37,114	42.6886	161.2491	-1.8929
Solyc01g010390.2	5,254,174	5,260,994	6,821	23,427	546	16.0628	0.4632	3.5436
Solyc01g010530.1	5,548,702	5,550,171	1,470	5,959	67	18.9587	0.2638	3.9812
Solyc01g056310.2	53,293,891	53,295,912	2,022	49,001	34	113.3385	0.0973	6.7032
Solyc01g056360.2	53,737,447	53,737,872	426	1,898	0	20.8372	0.0000	4.4487
Solyc01g066620.2	74,760,560	74,766,184	5,625	13,544	70	11.2610	0.0720	3.5157
Solyc01g066810.2	74,989,661	74,991,710	2,050	2,181	9	4.9757	0.0254	2.5429
Solyc01g067350.2	75,812,003	75,813,413	1,411	9,193	69	30.4708	0.2830	4.6164
Solyc01g068080.2	77,121,171	77,124,462	3,292	51,579	4,156	73.2768	7.3060	3.1607
Solyc01g068110.2	77,233,578	77,234,566	989	1,386	1	6.5542	0.0059	2.9089
Solyc01g068120.2	77,234,467	77,235,354	888	1,233	1	6.4939	0.0065	2.8963
Solyc01g079890.2	79,070,877	79,072,892	2,016	38,155	196	88.5145	0.5626	5.8401
Solyc01g090350.2	84,055,544	84,056,304	761	61,031	95	375.0761	0.7224	7.7704
Solyc01g090600.2	84,269,539	84,271,141	1,603	66,309	3,689	193.4606	13.3180	3.7636

S_Tab 4.2 (Continued)

ID	Result in DEseq		Detail information	
	p value	p adjusted	Gene Annotation	GO term
Solyc00g009070.1	0.0001	0.0174	Unknown Protein	-
Solyc00g171710.1	0.0000	0.0019	F-box associated type 1	-
Solyc00g228260.1	0.0181	1.0000	Unknown Protein	-
Solyc00g257110.2	0.0000	0.0035	ATPase, P type	GO:0008553
Solyc01g005510.2	0.0000	0.0013	Multicopper oxidase, type 3	GO:0055114
Solyc01g006070.2	0.0101	0.8811	Protein of unknown function DUF716	-
Solyc01g006390.2	0.0665	1.0000	Cysteine-rich extensin-like protein-4	-
Solyc01g010390.2	0.0034	0.3979	Glycoside hydrolase	GO:0005975
Solyc01g010530.1	0.0006	0.1025	Sugar/inositol transporter	GO:0016020; GO:0016021
Solyc01g056310.2	0.0000	0.0007	Multicopper oxidase, type 3	GO:0055114
Solyc01g056360.2	0.0000	0.0015	Unknown Protein	-
Solyc01g066620.2	0.0001	0.0206	3-hydroxyacyl-CoA dehydrogenase	GO:0006631; GO:0050662; GO:0008152; GO:0016491
Solyc01g066810.2	0.0001	0.0231	Universal stress protein	GO:0006950
Solyc01g067350.2	0.0002	0.0438	UDP-glucuronosyl/UDP-glucosyltransferase	GO:0016757
Solyc01g068080.2	0.0637	1.0000	NAD(P)-binding domain	GO:0044237; GO:0008152
Solyc01g068110.2	0.0000	0.0050	Unknown Protein	-
Solyc01g068120.2	0.0000	0.0066	Pectinesterase	GO:0005618
Solyc01g079890.2	0.0001	0.0188	Aquaporin	GO:0016020
Solyc01g090350.2	0.0000	0.0025	Plant lipid transfer protein and hydrophobic protein	GO:0006869
Solyc01g090600.2	0.0280	1.0000	Chalcone synthase 3 protein	GO:0005576; GO:0008415; GO:0008152; GO0009058

S_Tab 4.3 The detail information of the DEGs based on the DEseq analysis.
This supplementary material contains Basic information, Result in edgeR, Result in DEseq and Detail information of 140 DEG genes. We listed 20 genes for readers to glimpse the data and the full table is provided on the following link https://goo.gl/8hUcy3.

ID	Basic information					Result in edgeR		4
	Start Position	End Position	Gene Width	Counts of M82	Counts of TA3178	RPKM of M82	RPKM of TA3178	Fold Change
Solyc00g009070.1	8,775,151	8,775,537	387	1,658	5	20.0367	0.0748	- 4.2908
Solyc00g058900.1	14,062,470	14,064,603	2,134	1,517	4	3.3246	0.0108	2.0970
Solyc00g171710.1	18,049,090	18,050,010	921	4,902	4	24.8924	0.0251	4.6586
Solyc00g257110.2	20,272,521	20,276,002	3,482	3,659	5	4.9146	0.0083	2.5523
Solyc01g005510.2	346,845	349,013	2,169	7,028	5	15.1539	0.0133	3.9947
Solyc01g005650.1	455,379	456,988	1,610	707	0	2.0537	0.0000	1.6106
Solyc01g008240.2	2,369,175	2,373,387	4,213	3,480	4	3.8631	0.0055	2.2740
Solyc01g010500.1	5,446,120	5,450,141	4,022	2,972	2	3.4559	0.0029	2.1516
Solyc01g011050.2	7,014,098	7,016,194	2,097	386	0	0.8609	0.0000	0.8960
Solyc01g056310.2	53,293,891	53,295,912	2,022	49,001	34	113.3385	0.0973	6.7032
Solyc01g056360.2	53,737,447	53,737,872	426	1,898	0	20.8372	0.0000	4.4487
Solyc01g066620.2	74,760,560	74,766,184	5,625	13,544	70	11.2610	0.0720	3.5157
Solyc01g066810.2	74,989,661	74,991,710	2,050	2,181	9	4.9757	0.0254	2.5429
Solyc01g067350.2	75,812,003	75,813,413	1,411	9,193	69	30.4708	0.2830	4.6164
Solyc01g068110.2	77,233,578	77,234,566	989	1,386	1	6.5542	0.0059	2.9089
Solyc01g068120.2	77,234,467	77,235,354	888	1,233	1	6.4939	0.0065	2.8963
Solyc01g079890.2	79,070,877	79,072,892	2,016	38,155	196	88.5145	0.5626	5.8401
Solyc01g087280.1	82,215,602	82,219,911	4,310	1,321	2	1.4334	0.0027	1.2791
Solyc01g090350.2	84,055,544	84,056,304	761	61,031	95	375.0761	0.7224	7.7704
Solyc01g094910.2	86,314,679	86,317,951	3,273	2,513	15	3.5909	0.0265	2.1610

S_Tab 4.3 (Continued)

ID	Result in DEseq		Detail information		
	p value	p adjusted	Gene Annotation	GO term	$\stackrel{\square}{\square}$
Solyc00g009070.1	0.0001	0.0174	Unknown Protein	-	
Solyc00g058900.1	0.0000	0.0157	GDSL esterase/lipase At2g31540	GO:0004091	
Solyc00g171710.1	0.0000	0.0019	Unknown Protein	-	
Solyc00g257110.2	0.0000	0.0035	H-ATPase	GO:0008553	
Solyc01g005510.2	0.0000	0.0013	Laccase-2	GO:0055114	
Solyc01g005650.1	0.0000	0.0106	Ariadne-like ubiquitin ligase	GO:0004842	
Solyc01g008240.2	0.0000	0.0031	Solute carrier family 2, facilitated glucose transporter member	GO:0016020; GO:0016021	
Solyc01g010500.1	0.0000	0.0023	Ein3-binding f-box protein 3	-	
Solyc01g011050.2	0.0002	0.0492	LRR receptor-like serine/threonine-protein kinase, RLP	GO:0004675	
Solyc01g056310.2	0.0000	0.0007	Laccase-2	GO:0055114	
Solyc01g056360.2	0.0000	0.0015	Unknown Protein	-	
Solyc01g066620.2	0.0001	0.0206	Fatty acid oxidation complex subunit alpha	GO:0006631; GO:0050662; GO:0008	8152; GO:0016491
Solyc01g066810.2	0.0001	0.0231	Universal stress protein	GO:0006950	
Solyc01g067350.2	0.0002	0.0438	UDP-glucosyltransferase	GO:0016757	
Solyc01g068110.2	0.0000	0.0050	Unknown Protein	-	
Solyc01g068120.2	0.0000	0.0066	Pectinesterase	GO:0005618	
Solyc01g079890.2	0.0001	0.0188	Aquaporin	GO:0016020	
Solyc01g087280.1	0.0000	0.0103	Polygalacturonase A	GO:0004650	
Solyc01g090350.2	0.0000	0.0025	Non-specific lipid-transfer protein	GO:0006869	
Solyc01g094910.2	0.0002	0.0401	Ferric reductase oxidase	GO:0000293	

[^0]: ${ }^{a}$: Minor/ Major allele
 ${ }^{b}$: Individual R^{2} was not available in GEMMA.
 ${ }^{c}$: The SNP was detected in both TASSEL and GEMMA.

[^1]: ${ }^{a}$: - indicated no expression.
 ${ }^{b}$: NSYN indicated nonsynonymous mutations.

