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ABSTRACT

The primary purposes of this research are three fold: (1) to investigate the effect of a
specific heat treatment (TI: 1150°C-4h/FC/750°C-4h/WQ) on the Ni segregation, C
content dissolved in the matrix, and a value in three different graphitic cast irons, (2) to
conduct the constrained thermal cyclic tests to evaluate the dimensional stability of the
alloys studied, and (3) to employ the finite element method (ANSYS) to simulate the
temperature field, thermal stress and shape change of specimens after the thermal cyclic
tests, and further to assess the correlation among o value, thermal stress and
dimensional stability.

Regression analyses were performed to correlate the carbon content dissolved in
the matrix and/or degree of Ni segregation with a value, with the results being shown
below:

(1) a value vs. C content dissolved in the matrix: o = 1.06%C + 4.6; R®=0.03

(2) a value vs. Degree of Ni segregation: o = 1.01Nig + 2.81; R? = 0.92

(3) a value vs. both C content dissolved in the matrix and Degree of Ni

segregation: o = 0.68%C + 1.05Niy + 2.41; R%=0.96

Based upon the regression analysis results, a value can be decreased by reducing
both the carbon content dissolved in the matrix and degree of Ni segregation, with the
latter being the dominant factor.

Regarding the effect of the graphite type on a value, a value decreases according to
the following order: SG > CG > FG, in the as-cast condition. On the other hand, o value
decreases according to the following order: CG > FG > SG, in the T1 heat treatment
condition.

Shape change (AaPV) of the specimens after constrained thermal cyclic tests (500
cycles) were measured for low thermal expansion cast irons with different graphite
shape (in T1 heat treatment condition) and two other alloys, SUS 304 and regular
ductile cast iron. The results indicate that the shape changes in low thermal expansion
cast irons regardless of graphite shape are substantially lower than both SUS 304 and
regular ductile cast iron. Furthermore, among the low thermal expansion cast irons the
shape change or dimensional stability is closely related with a value, that is, the lower
the a value, the less the shape change or the better the dimensional stability. Therefore,
the order of dimensional stability is SG > CG > FG.

Keywords: Thermal expansion coefficient, Cast iron, Homogenization heat treatment,

Ni segregation, Carbon content in the matrix, Dimensional stability, Finite element
method, ANSYS
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3. ftral MG o FEAESEAYIRES A RE A v MY 0 P Ik B

F o Bl kB Tk AR F [11] -
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224 Co g &t

Codrle NiP 2§ RBH L ELELBEREERDTE*[15] Fl P HE
FOEMEOPE Gfcan(®r > ¥ oo Hoar % @ Nio Fpt A dnvar £ £ ¢ » ¥ 02 Co &
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— @ g 0 P A F R RIEART A L T A = BREE
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Table 2-1 Chemical compositions of various Invar-type alloys[wt%][ 3 ]

Material C Si Mn P S Ni Mo | Cr | Se
Regular Invar | 0.07 0.39 0.13 | 0.010 | 0.018 | 35.80 | -- -- =
Regular Invar | 0.10 0.28 0.16 | 0.008 | 0.013 | 35.13 | -- -- --
Regular Invar | 0.08 0.08 0.39 -- -- 13640| -- -- --

Invar 36 0.12 0.30 0.35 -- - 136.00| -- -- --

Indilitans 0.08 -- 0.42 -- -- | 350| -- -- --

Nilvar 0.07 0.24 0.44 -- - [36.80| -- -- --
Minvar <0.10 | 0.20~0.35 | <0.50 | -- - 136.00| -- -- --
Modulvar 0.16 0.14 0.18 -- - |3490| -- |0.12| --
™aL 12|~ |o080| ~ | - 3800 - | - |025
freemachining
Invar, free cut | 0.12 0.35 0.90 -- -- [36.00| -- - 10.23
Invar, free cut | 0.07 0.32 0.88 | 0.009 | 0.005 | 35.37 | 0.080 | -- |0.16
Invar, free cut | 0.07 0.34 0.85 | 0.016 | 0.180 | 36.37 | 0.006 | -- --
Invar, free cut | 0.11 0.40 0.75 -- -- [3599| -- - 10.23

Table 2-2 The curie temperatures of different materials[ 7 ]

Material Curie Temperature (K)
Iron (Fe) 1043
Cobalt (Co) 1400
Nickel (Ni) 631
Gadolinium (Gd) 292
Dysprosium (Dy) 88
MnBi 630
MnSh 587
CrO; 386
MnAs 318
EuO 69
Iron(111) oxide (Fe;05) 948
Iron(11,111) oxide (FeOFe,03) 858
NiOFe,03 858
CuOFe,03 728
MgOFe,0; 713
MnOFe,03 573
Y3F€5012 560
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Table 2-3 ASTM A439 specifications for chemical requirements in austenitic ductile

irons[ 2 ]
Type
Element C-24 C-28 D-2C C-2* D24 C-4 -5 -8 [-B5
Compesition, %

Total carbon, mae 2,00 2.00 280 281 280 2ED 24 241 220
Silicen 1.50-2.00 1.60-2.00 100300 1.00-2.80 100280 EOD-8.00 1.00-280 1.00-2.80 480-EED
Manganse 0.70-1.25 0.70-1.26 180240 1.00 m=e® 1.00 mae® 100 max® 1.00 mae® 1.00 m=e® 1.00 max
Phesphorus, max 008 0.08 008 0.08 0.08 008 0.08 0.08 008
Higiel 18002200 18.00-2200  21.00-2400 38002200 28002200 2B0D-2300 24002800 24002300 24002700
Chromium 1.7E=275 27400 050 maxs 280-2.50 1.00-1.80 4E0-EED 0.10 max 200200 176225

* Additions of 0.7t 1.0 % of mehbdenum will incresse the mechanical propeties sbove B00°F {425°C).
“ Mzt intenticnally added.

Table 2-4 ASTM A439 specifications for mechanical requirements in austenitic ductile

irons[ 2 ]
Type
Element C-2 C-28 022 -3 O-24 C-4 C-5 C-E8 D-E5
Propertiss

Tensile stength, min, ksi {MPa) B8{400) EB{400) EB{40D) EG(IM®) EG(IMD) 60(414) E6(3FY E5(IrD) E5{48)
Yield strength (0.2 % offset), min, ksi (MPa) 30(207) 20207y |18 W AT (AT . 20207 20 {07 20 (A7)
Elengatizn in 2 in. or 50 mm, min, % a0 7O 20 an 10.0 s 200 an 10
Brinell hardness {23000 kg) 138-202 148211 21T 138202 131183 202273 131185 138183 131183

Table 2-5 ASTM A439 for specifications for physic and mechanical properties in
austenitic ductile irons[ 2 ]

Table Vi Mechanical  Properiies  of  Spheroidal Table VIl Typlcal Physical Properties of Spheredial
Graphite Ni-Resist Alloys Graphite Ni-Resist Alloys.
Aloy Tonslle Yield  Elongation m»m-A ef  Charpy firinel Aoy Oeristy  Thesmal Theemal Clectrical  Magnetic
Strangth - Strength Elasticity  Pmpact  Handness omice  Expansion Conduttivity  Reshitivity Peemsabilzy
PRI 0.2% Offser J X ®inY Wim'c L I S
MPalksl)  MPalksl) % RPaksinid" Kgenitdn) (=in'F}
NiRosit 70480 2250 790 1210 W7 w0 NiRosist 0.2 74 87 126 o 102
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Table 2-6 JIS G5510 specifications for chemical compositions in austenitic ductile

irons[ 1]
Type Chemical compositions [wt%]
C Si Mn Ni Cr P Cu

FCDA-MiMn 137 <3.0 2.0~3.0 6.0~7.0 | 12.0~14.0 <0.2 <0.08 <05
FCDA-NiCr 20 2 <3.0 15~3.0 05~15 | 18.0~220 | 1.0~35 <0.08 <05
FCDA-NiCrNb202 | <3.0 15~24 05~15 | 18.0~220 | 1.0~35 <0.08 <05
FCDA-NiCr20 3 <3.0 15~3.0 05~15 | 18.0~220 | 2.5~35 <0.08 <05
FCDA-Ni 22 <3.0 15~3.0 15~25 | 21.0~24.0 <05 <0.08 <05
FCDA-MiMn 234 <26 15~25 | 4.0~45 | 22.0~24.0 <0.2 <0.08 <05
FCDA-NiCr 30 1 <26 15~3.0 05~15 | 28.0~320 | 1.0~15 <0.08 <05
FCDA-NiCr303 <26 15~3.0 05~15 | 28.0~320 | 25-35 <0.08 <05
FCDA-NiSiCr3055 | <2.6 5.0~6.0 05~15 | 28.0~320 | 45-55 <0.08 <05
FCDA-Ni 35 <24 15~3.0 05~15 | 34.0~-36.0 <0.2 <0.08 <05
FCDA-NICr 35 3 <24 15~3.0 15~25 | 34.0~-36.0 | 2.0-~3.0 <0.08 <05
FCDA-NiSiCr3552 | <2.0 4.0~6.0 05~15 | 34.0~-360 | 1.5-25 <0.08 <05

Table 2-7 JIS G5510 specifications for mechanical requirements in austenitic ductile

irons[ 2 ]
Tensile Yield strength Impact strength, J/m?
Type (0.2% offset), | Elongation, %
strength, MPa V notch U notch
MPa
FCDA-MiMn 13 7 >390 >210 >15 >16 -
FCDA-NICr 20 2 >370 >210 >7 >13 >16
FCDA-NICrNb 20 2 >370 >210 >7 >13 >16
FCDA-NICr 20 3 >390 >210 >7 = ~
FCDA-Ni 22 >370 >170 >20 >20 >24
FCDA-MiMn 23 4 >440 >210 >25 >24 >28
FCDA-NiCr 30 1 >370 >210 >13 = ~
FCDA-NICr 30 3 >370 >210 >7 = ~
FCDA-NiSiCr3055 >390 >240 - = ~
FCDA-Ni 35 >370 >210 >20 - -
FCDA-NiCr 353 >370 >210 >7 - -
FCDA-NiSiCr 355 2 >370 >200 >10 - -

*: Thickness of rectangular casting

22

**: Diameter of cylinder casting

doi:10.6342/NTU201600327



Table 2-8 The correlations among casting thickness, carbon equivalent and pouring

temperature[ 26 |

Pouring temp. (°C) | 10mm*(20mm)** | 15mm(30mm) | 25mm(50mm) | 40mm(80mm)
1315 4.56 4.52 4.44 431
1340 4.53 4.49 4.41 4.27
1370 4.50 4.46 4.38 4.24
1400 4.47 4.43 4.35 421
1425 4.45 4.4 4.32 4.19
1455 4.42 4.37 4.29 4.15

Table 2-9 The range of compositions for calculation of SN value

Metarial Cr Mn P
wit% 0~4.5% 0.19~2.0% 0.015~0.17%
16
§ 12 \ R e SRS
2 \ /
SE 4 .
0
20 a0 60 80 100
Nickel, %

Fig. 2-1 Coefficient of linear expansion at 20 °C vs. nickel content for Fe-Ni alloys

containing 0.4%Mn and 0.1%C.[ 2]
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Fig. 2-16 Schematic drawing of the axial heat transfer.
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Fig. 2-17 The initial condition and boundary condition of a half specimen.
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Fig. 2-18 Heat transfer of a 2-D element.

T
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Fig. 2-19 Temperature gradients of a 2-D element.
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Fig. 2-20 The line integral path in a 2-D element.
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Table 3-1 The alloy design [wt%]

Chemical composition
Heat

C Si Ni Co Fe

A (FG) 20| 1.8 | 30 5 bal.

B (CG) 20| 1.8 | 30 5 bal.

Table 3-2 The homogenization heat treatment conditions

Heat
TO As-cast
T1 1150°C /4hr/750°C /4hr/WQ

Table 3-3 Chemical compositions of the charge materials and the treating alloys [wt%)]

Size C Si Mn S P Mg | RE | Ca | Al Ni Zr Sr Fe
[mm]
QIT ~ |a00]010|0012]0012]0033| ~ | - | - | = | | = | = |pa
pig iron
Ferro-silicon| -- - | 75.0| -- -- -- -- -- -- -- -- -- -- bal.
Steel Scarp -- 02 | 0.3
Nodularizer | 0.5-5 - 0.45 - - -- 5.57 - - - - - - bal.
Inoculant 1-3 -- | 75.0] -- -- -- -- -- |<01|<05| -- |1.25| 0.8 | bal.
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Table 3-4 The make-up of the change materials and the treating alloys (Kg)

Heat
A B

QIT pig iron 10.39 11.71
Steel Scarp 2.153 0.86
Ferro-silicon 0.377 0.339

Nickel 6.0 6.0

Cobalt 1.0 1.0
Nodularizer Nil 0.055
Inoculant 0.08 0.04

Table 3-5 The mechanical and physical properties of various alloys.

Material Young's modulus | « vgﬁlue Conductivity | Poisson's ratio
E (GPa) (x10°/C) | K(W/m-K) \
SUS-304 197 17 24.5 0.27
Ductile cast iron 162 12.2 32.3 0.275
Low thermal expansion cast iron
type D-5 (SG) 5.89
(As-cast)
Low thermal expansion cast iron 112 12.6
type D-5 (SG) 2.85
(1150°C/4hr/FC/750/4hr/WQ)
Low thermal expansion 0.27
compacted graphite cast iron
(CG) 93 4.33 30
(1150°C/4hr/FC/750/4hr/WQ)
Low thermal expansion flake
graphite cast iron type 5 (FG) 74 4.92 42
(1150°C/4hr/FC/750/4hr/WQ)
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Fig. 3-1 The flow chart of the experiment.
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Fig. 3-2 Configurations and dimensions of the Y-block pattern as per ASTM A439

specification.

deslagging
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Fig. 3-3 A schematic drawing of the casting process.
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Specimens for thermal expansion coeflicient
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............. > -

3

20%25+10

Specimens for thermal cyclic test

Sections from Y-block 70x18%2

Fig. 3-4 Specimens obtained from Y-block castings for heat treatments, microstructure

analyses and thermal expansion coefficient measurements.

1400

1200

1000

800

600

Temperature(°C)

400 A

200

O T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Time(hr)

Fig. 3-5 A schematic diagram of heat treatment procedure of T1.
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Fig. 3-7 The schematic drawing of the thermal cyclic test apparatus.
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Fig. 3-8 The temperature-time cycle in the thermal cyclic test.
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Fig. 3-9 The the positions and routes (@&@) for dimensions and surface profile

measurements.

48

doi:10.6342/NTU201600327



Fig. 3-10 The photo showing the instrument for the measurements of specimen

dimensions.

1 @2 &3 @24 @5 ©6 ©7 O 8

35 mm

Fig. 3-11 The specimen was divided into 7 elements and 8 nodes for temperature and

stress analyses.
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Table 4-1 Chemical compositions of Heats A, B and C [wt%]

Table 4-2 The C.E. and S.N. values of Heats A, B and C
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Table 4-3 Analysis results of the carbon content in the matrix at both as-cast(T0) and

heat-treated condition (T1) [wt%]

Heat

Heat
treatment
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Table 4-4 Results of the degree of Nickel segregation in dimensionless value for Heats

A, B and C at both as-cast (T0) and heat-treated condition (T1).

(ssajuoisuswip)
uonebiaibas

Table 4-5 Results of a value at different temperatures or temperature ranges for Heats A,

B and C at both as-cast (T0) and heat-treated condition (T1). [ x10°/°C]

Heat
Heat )l ootment | %50 %oo | %50 | %00 | *s0-100 | %30-100 | *s0-150 | %100-200
A
B
C
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Table 4-6 Results of changes in shape after thermal cyclic test for Heats A, B and C at
both as-cast (TO) and heat-treated condition (T1).

treatment

“Note: APV=| PVg- PV, |
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Table 4-7 Simulated temperatures and thermal stresses at different nodes for Heats A, B

and C

Heat A (FG) Heat B (CG) Heat C (SG)

Temp. Thermal stress Temp. Thermal stress Temp. Thermal stress
(C) (Mpa) (C) (Mpa) (C) (Mpa)

200.0 129.4 200.0 150.1 200.0 116.0

1955 126.4 191.6 143.7 189.2 108.8

186.1 119.3 178.0 131.3 167.5 94.4

172.0 109.3 155.8 112.2 134.8 72.8

162.7 102.5 141.1 99.5 113.1 58.4

158.0 98.2 133.7 931 102.2 51.2

Table 4-8 Simulated temperature and thermal stresses at nodes in SUS304 and SG

SUS304 SG

Temperature Thermal stress Temperature Thermal stress
() (Mpa) (C) (Mpa)

200.0 802.8 200.0 477.1

182.4 722.2 191.7 454.4

171.4 671.9 185.8 438.4

163.1 633.2 181.7 427.0

158.7 613.2 179.1 420.1

156.9 605.0 178.4 418.3
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Table 4-9 The APV values and thermal stresses for various alloys

Thermal Stress

(Mpa)

SUS304

SG

Heat A(FG)
T1 (1150°C/4hr/750°C /4hr/WQ)

Heat B(CG)
T1(1150°C/4hr/750°C/4hr/WQ)

Heat C(SG)
T1(1150°C /4hr/750°C /4hr/WQ)

Table 4-10 The simulated APV values of Heats A, B and C at both as-cast (T0) and heat-

treated conditions (T1)

Al on APV imulated (m)

Heat A (FG)
T1(1150°C/4hr/750°C /4hr/WQ)

Heat B (CG)
T1(1150°C/4hr/750°C /4hr/WQ)

Heat C (SG)
T1(1150°C/4hr/750°C /4hr/WQ)
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Fig. 4-1 The microstructures of Heat A, (a) & (b) for TO, and (¢) & (d) for T1.
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2 The microstructures of Heat B, (a) & (b) for TO, and (¢) & (d) for T1.

Fig. 4
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Fig. 4-4 Comparisons in carbon content in the matrix of Heat A(FG), Heat B(CG) and

Heat C(SG) at as-cast(T0) and heat-treated condition (T1),
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Fig. 4-5 Ni distribution curves in the matrix of Heat A, by EPMA line scanning, (a)

As-cast (T0), and (b) Heat-treated condition (T1).

(a)

(b)

Fig. 4-6 Ni distribution curves in the matrix of Heat B by EPMA line scanning, (a)

As-cast (T0), and (b) Heat-treated condition (T1).
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Fig. 4-7 Ni distribution curves in the matrix of Heat C by EPMA line scanning, (2)

As-cast (T0), and (b) Heat-treated condition (T1).
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Fig. 4-8 Ni segregation (dimensionless) in the matrix of Heat A(FG) ~ Heat B(CG) and
Heat C(SG) for both as-cast(T0) and heat-treated condition(T1).
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Fig. 4-10 Comparisons of a value among Heats A, B and C, () aso’c, (b) 0100°c, (C)aaso’c,

and (d)aso-150°c.

a =1.06%C +4.6;R* =0.03

alpha value a, 10%°¢
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o
o
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Carbon content in the matrix, %

Fig. 4-11 The correlation between the carbon content in the matrix and o value in Heats
A, BandC.
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Ni segregation (dimensionless)

Fig. 4-12 The correlation between the degree of Ni segregation and a value in Heats A,

B and C.

0.96

0.68%C +1.05Ni,;R?

o=

Fig. 4-13 Combined effects of carbon content in the matrix and degree of Ni segregation

(dimensionless) on o value of Heats A, B and C.
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5.14.6.24 Taylor Hobson

Raw Profile B5 - 68.1mm/Admin/NTU 03/01/2014 12:04:36
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-0 f—-o
10 J UARRAN AN RARSS LRSS RAREE AR RSN SAREY \LRARSS R BAL NS RALEN N | BAENBRRRE | L RAREE T :_'10
85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185
millimetres
Current Point Reference Point Difference
X 134.6660 mm X 0.0000 mm AX 134.6660 mm
Z 38.2794 um Z 0.0000 pm AZ 38.2794 um /f\
PV 46.9071 pm Pitch 134.6660 mm
Fig. 4-14 The profile of specimen in thermal cyclic test measured by Taylor
Hobon-From Taylorsurf PGl 1240.
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Fig. 4-15 The APV values of Heats A, B and C at both as-cast (T0) and heat-treated

condition (T1).
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Fig. 4-16 The comparison of APV value of different alloys.
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Fig. 4-17 The correlation between the A PV value and o value.
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Fig. 4-18 The simulation of temperature field in Heat A (FG).
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Fig. 4-19 The simulation of temperature field in Heat B (CG).
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Fig. 4-20 The simulation of temperature field in Heat C (SG).
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Fig. 4-21 The temperature at different nodes in Heats A (FG), B (CG) and C (SG).
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Fig. 4-22 The simulation of APV of Heat A (FG) after thermal cyclic test.
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Fig. 4-23 The simulation of APV of Heat B (CG) after thermal cyclic test.
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Fig. 4-24 The simulation of APV of Heat C (SG) after thermal cyclic test.
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Fig. 4-25 The correlation between the measured APV and simulated APV.
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