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中文摘要

我們考慮由有限多個通過原點的曲面所組成的多相曲面C0, 其中所有的一維結線

是由三曲面兩兩夾角相同所組合形成的。 此外各曲面對原點做徑向投影所形成的

曲線也是有限長。 我們證明了以此C0做初始條件下存在一多相均曲率流的自相似

擴張解, 而這組解是由那些正規三節線和正規四結點所組合出來的曲面。
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Abstract

We consider a multiphase surface C0 in R3 consisting of a finite number of

surfaces passing through the origin , where all 1-dimensional junctions are

regular triple junctions in which three planes meet at the same angle and

each surface scales down homothetically to a limit curve of finite length. We

prove the existence of self-similar expanding solutions of the mean curvature

flow on the multiphase surface initially given by C0. For this initial C0, there

are multiple solutions that are combinations of the regular triple junctions

and regular quadruple points, where four regular triple junctions meet at an

angle of approximately 109.5◦.

iv



doi:10.6342/NTU201900823

1

Contents

1 Introduction

2 Multiphase Surfaces 3
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Relation between Poincaré ball model and Euclidean space 8

4 Self-expanding Solutions to the Multiphase Mean Curvature Flow 10
4.1 Smooth Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Singular Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Asymptotic Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Proof of Main Theorem 16
5.1 Flat 2-dimensional Chains F2(R3,Zk+1) . . . . . . . . . . . . . . . . . . . . . 16

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Existence in a Bounded Domain . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Existence in an Unbounded Domain . . . . . . . . . . . . . . . . . . . . . . . 20

6 Appendix 22
6.1 Equivalent Condition of the Skewness Property . . . . . . . . . . . . . . . . 22
6.2 First variation around the Singular Structures . . . . . . . . . . . . . . . . . 24

Bibliography 33

v



doi:10.6342/NTU201900823

Chapter 1

Introduction

Interface problems have long been studied by material scientists and mathematicians, with

various scenarios involving a collection of interfaces whose positions and shapes are con-

strained so as to minimize their total area. In 1873, Plateau [20] observed two singular

structures during soap foam experiments, and conjectured that the regular triple junction

and the regular quadruple point are the only area-minimizing singular structures in R3.

Around a century later, Taylor [23] gave a mathematical proof of this conjecture.

In the smooth case, there are many useful results for area-minimizing problems in the field

of geometric flows. A multiphase mean curvature flow for example is a popular model for the

evolution of grain boundaries in polycrystals undergoing heat treatment, which is motivated

in [19]. Extending the idea in the smooth case to the singular case, one must formulate

a weak evolution equation for the flow near the singularity, as considered by Brakke [3].

Even using Brakke’s idea, the short-time existence and long-time behavior and convergence

properties are still inevitable. Mantegazza, Novaga, and Tortorelli [15] attacked this problem

using a system of equations for curve-shortening flow with the regular initial surface . Under

certain hypotheses, they obtained some good results. Recently, Ilmanen, Neves, and Schulze

[9] dropped the requirement for a regular initial surface and proved the short-time existence

of triple points with non-regular initial surfaces. For R3 or higher-dimensional spaces, this

problem can be studied through the mean curvature flow for the graphical hypersurfaces [6]

or the local regularity on the triple junctions without higher-order junctions [22].

1
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The general flow around the singularity has been studied qualitatively by Brakke, who

also considered the resemblance between different structures (see the appendix of [3]). Re-

cently, Kim and Tonegawa [12] proved the global-in-time existence of the mean curvature flow

in the sense of Brakke’s flow, and their existence theorem does not require any parametriza-

tion and imposes no restrictions on the dimension or configuration.

This study is inspired by the work of Mazzeo and Saez [16], who took the first step in

proving the short-time existence of triple junctions with non-regular initial conditions. The

solutions are far from unique, but those that are regular for t > 0 can be clearly described.

Additionally, the global behavior of these singular structures can be well understood. The

planar network considered in [16, 9] is used to describe the interface problem in R2, so we

consider the similar structure in R3 to study the problem.

2
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Chapter 2

Multiphase Surfaces

2.1 Definition

Definition 1. A multiphase surface Γ ⊂ R3 is a finite union of embedded surfaces or prop-

erly embedded “half-planes” {αi}mi=1. For 1 ≤ i 6= j ≤ m, αi ∩ αj is either empty or a

subset of their boundaries i.e., two surfaces can intersect each other only on their bound-

ary not in their interior. In order to well define the boundary of noncompact and embed-

ded surface, we consider the compactification of R3 a union of the sets R3 and S∞ where

S∞ := limr→∞ S
r = limr→∞{(x1, x2, x3) ∈ R3|x2

1 + x2
2 + x2

3 = r2}. For each surface αi,

the boundary of αi is composed of the interior curves or (ideal) boundary curves where the

interior curves of αi are a collection of the sets containing a curve for 1 ≤ j 6= i ≤ m in

R3 and the (ideal) boundary curves of αi are a family of the sets αi ∩ S∞. Moreover, these

curves may intersect at certain points.

The multiphase surface is called regular if all 1-dimensional junctions and 0-dimensional

junctions of the multiphase surface in R3 are regular triple junctions and regular quadruple

points: the former is the intersection of three surfaces meeting at an angle of 120◦ and the

other is the point junction of four regular triple junctions with an angle of approximately

109.5◦. Specifically, there are four grains with six grain boundaries near the quadruple point,

and we say that such a point has a tetrahedral structure.

3
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Definition 2. The “half-planes” mentioned in the Definition 1 include the sets homeomor-

phic to H := {(x1, x2, x3) ∈ R3| x1 = 0, x2 ∈ R, x3 ≥ 0} or homeomorphic to the non-compact

but closed subset in H up to some rigid transformations. We take the following sets for ex-

ample

H := {(x1, x2, x3) ∈ R3| x1 = 0, x2 ∈ R, x3 ≥ 0},

U := {(x1, x2, x3) ∈ R3| x1 = 0, x2 + x3 ≥ 0, x2 − x3 ≤ 0},

V := {(x1, x2, x3) ∈ R3| x1 = 0, 2x2 + x3 ≥ 1, x2 − x3 ≤ 0}

W := {(x1, x2, x3) ∈ R3| x1 = 0, 2x2 + x3 > 1, x2 − x3 ≤ 0}

where H,U , and V are the half-planes in R3 but W is not a half-plane.

Remark 1. The (ideal) boundary curves of α on S∞ are simply expressed by α ∩ S∞ in the

above argument, but it does not mean that limr→∞(α ∩ Sr); instead, we characterize the

(ideal) boundary curves by the radial projection i.e., limr→∞
1
r
(α ∩ Sr) = limr→∞Σr := Σ.

Specifically, the embeddedness in the Definition 1 guarantees the existence of limit Σ.

2.2 Examples

To clarify the relation between two surfaces αi and αj, 1 ≤ i 6= j ≤ m in the previous

section, we give two examples in R3 to describe the intersection αi ∩ αj.

Example 1. Let

H := {(x1, x2, x3) ∈ R3| x1 ∈ [0, π], x2 ∈ R, x3 = sin(x1)− 2},

U := {(x1, x2, x3) ∈ R3| x1 ∈ R, x2 ∈ R, x3 = −2},

V := {(x1, x2, x3) ∈ R3| x1 ∈ R, x2 ∈ R, x3 = −4},

we can see that H ∩U has more than one curves and the others H ∩V and U ∩V are empty

sets.

Example 2. Given four points (1, 0, −1√
2
), (−1, 0, −1√

2
), (0, 1, 1√

2
), and (0,−1, 1√

2
) which are the

vertices of the regular tetrahedron, we define the “half-planes” spanned by any two vectors

4
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of them.

R :=

{
x1

x2

x3


∣∣∣∣∣

x1

x2

x3

 =


ts

−(1− t)r
− ts+(1−t)r√

2

 , t ∈ [0, 1], s ∈ [0,∞), r ∈ [0,∞)

}

G :=

{
x1

x2

x3


∣∣∣∣∣

x1

x2

x3

 =


ts− (1− t)r

0

− ts+(1−t)r√
2

 , t ∈ [0, 1], s ∈ [0,∞), r ∈ [0,∞)

}

B :=

{
x1

x2

x3


∣∣∣∣∣

x1

x2

x3

 =


ts

(1− t)r
− ts−(1−t)r√

2

 , t ∈ [0, 1], s ∈ [0,∞), r ∈ [0,∞)

}

Y :=

{
x1

x2

x3


∣∣∣∣∣

x1

x2

x3

 =


−ts

−(1− t)r
− ts−(1−t)r√

2

 , t ∈ [0, 1], s ∈ [0,∞), r ∈ [0,∞)

}

C :=

{
x1

x2

x3


∣∣∣∣∣

x1

x2

x3

 =


−ts

(1− t)r
− ts−(1−t)r√

2

 , t ∈ [0, 1], s ∈ [0,∞), r ∈ [0,∞)

}

P :=

{
x1

x2

x3


∣∣∣∣∣

x1

x2

x3

 =


0

−ts+ (1− t)r
ts+(1−t)r√

2

 , t ∈ [0, 1], s ∈ [0,∞), r ∈ [0,∞)

}
.

In the Figure 6.1, the intersection of surfaces R and other surfaces except C contains a

curve in it. Althrough R ∩ C contains no curves, their intersection is a point set {0} 6= ∅.

Remark 2. The Figure 6.1 is the most important and schematical picture of mutiphase

surfaces in this paper and we also use the concept of Figure 6.1 to describe an initial condition

at the origin.

2.3 Existence

Let C0 be a finite union of m surfaces meeting at the origin and separating R3 into k regions

i.e., C0 =
⋃m
i=1 σi and

⋂m
i=1 σi = {0}. We impose the following conditions on C0:

5
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(A1) Each surface in C0 is simply-connected and embedded in R3.

(A2) Each region induced by C0 is enclosed by at least two surfaces σi, 2 ≤ i ≤ m,

which scales down homothetically to a limit curve Σi of finite length on S2 i.e.,

limr→∞
1
r
(σi ∩ Sr) = Σi <∞, 2 ≤ i ≤ m.

(A3) The regular triple point is the one and only type of point junction where the curves

in (ii) intersect on S2. In other words, the permitted one dimensional junctions of

surfaces are the regular triple junctions. The regular triple point is the intersection of

three curves meeting at angle 120◦ and the regular triple junction is the same aspect

for surfaces.

Remark 3. Almgren [1] introduced (M, ε, δ) minimal set to model soap films, soap bubble

clusters, and combination bubble-films which are the problems of partitioning space into

regions of prescribed volumes in such a way as to minimize total interface area. Taylor

[23] showed that (M, ε, δ) minimal surface in R3 have precisely the singularities observed

in Plateau’s problem [20]. In accordance with this minimality around the singularities,

we consider no point junctions except the regular triple point on S2. Furthermore, the

embeddedness of surface is for reasons of no interfaces created in the same region.

Remark 4. We give two conventions about the interface problem of immiscible fluids. Based

on the topological classification of a network with two triple junctions in [14], we list locally

the possible curves with no more than two triple points on S2 in Table 6.1.

� If a triple point occures, there exist three immiscible fluids concurring at a point. On

the other hand, a interface cannot be created in the interior of a fluid.

� When a curve touches the boundary, it means that this curve connects another triple

point.

We exclude the cases (i) and (ii) because the former has no singular structures and the other

violates the first convention. More specifically, the outside region in the case (ii) has an

interface in its interior. Since the cases (iii) and (iv) have the structures like the Brakke

spoon, we exclude these cases with the same reason. As the second convention is concerned,

6
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the case (vii) has no regions enclosed by two surfaces. Hence, the lens-shaped and theta-

shaped curves are the possible curves induced by a region endowed with two interfaces.

Define the metric

g(x) = exp
x21+x

2
2+x

2
3

4 (dx2
1 + dx2

2 + dx2
3), (2.1)

which is complete and negatively curved. In the following argument, we let Σ1, · · · ,Σm be

the prescribed boundary curves of C0 ∩ S2.

Theorem 1 (Main Theorem). Let C0 be a finite union of m surfaces meeting at the origin

and separating R3 into k regions. Suppose C0 satisfy the condition (A1), (A2), and (A3)

with its boundary curves Σ1, · · · ,Σm on S2, then there exists a regular multiphase surface

which is the connected self-expanding solution to mean curvature flow with Σ1, · · · ,Σm as its

boundary and each surface of the solution is a minimal surface for the metric g.

Remark 5. Because we use the relation in the next chapter to prove Theorem 1, the regular

connected self-expanders to mean curvature flow in R3 have a one-to-one correspondence

with the possibly disconnected regular multiphase surfaces in B3
1(0). The “one-to-one cor-

respondence” in Theorem 1 depends on the following idea: given a deformation from metric

g to the standard hyperbolic metric in the class of complete negatively curved metrics, the

regular multiphase surface found with respect to g should be continuously deformable to

the regular multiphase surface with respect to the standard hyperbolic metric. Similarly,

the regular multiphase surface in H3 should continuously produce a similar structure for g.

Because the problem regarding the deformation of the metric is difficult, we do not focus on

this here, but simply use the correspondence among similar structures in these metrics.

7
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Chapter 3

Relation between Poincaré ball model

and Euclidean space

Definition 3. The Poincaré ball model of hyperbolic space is the open submanifold

B3
1(0) := {x = (x1, x2, x3) ∈ R3 : |x| < 1}

with the Riemannian metric

gB =
4dx · dx

(1− |x|2)2
.

Besides, we introduce a hyperbolic space

H3 := {x = (x1, x2, x3, x4) ∈ R3,1 : 〈x,x〉 = x2
1 + x2

2 + x2
3 − x2

4 = −1, x4 ≥ 1}

to define a map between B3
1(0) and H3.

Definition 4. Hyperbolic stereographic projection is the map

S : H3 → B3
1(0), S((x1, x2, x3, x4)) =

1

1 + x4

(x1, x2, x3) := y,

Remark 6. We differentiate S and then obtain

dSx =
dx′

1 + x4

− x′

(1 + x4)2
dx4.

We then obtain

S∗gB =
4dy · dy

(1− |y|2)2
= 〈dx, dx〉

Therefore, S is isometric onto (B3
1(0), gB) and conformal to R3.

8
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In the following arguments, we will identify each unit tangent sphere of B3
1(0) with

∂B3
1(0), and then define a conformal diffeomorphism between S2(∞) and ∂B3

1(0) i.e., ∂B3
1(0)

is the sphere at infinity of the Poincaré ball model.

If x ∈ B3
1(0) and S2(x) ⊂ R3 is the unit sphere in the tangent space at x, we define a

boundary point from an interior point connected by the geodesic in B3
1(0) as below

B : S2(x)→ ∂B3
1(0)

B(u) = lim
t→∞

γu(t)

where γu is the geodesic in B3
1(0) starting at x in the direction u.

Proposition 1. Consider a point n = n′ + n4e4 in a subset {x ∈ R3,1 : 〈x,x〉 > 0}. Define

the map

S∞ : S2(∞)→ ∂B3
1(0), v = S∞[n] =

1

n4

n′.

It is a conformal diffeomorphism with its inverse map S−1
∞ (v) = [v + e4]

Remark 7. These two maps S and S∞ define a bijective map from H3 ∪ S2(∞) to a closed

unit ball in R3. More discussions about Minkowski space and the proof of conformal diffeo-

morphism between S2(∞) and ∂B3 can refer to the chapter 6 in [10] but we here just use

these facts. Furthermore, we can use the Figure 6.2 to know how R3 is stereographically

compactified onto B3
1(0). Because these maps are all conformal, the planes passing through

the origin are invariant and the angles between two clustering surfaces are fixed under the

stereographic compactification. More specifically, given a multiphase surface in R3, we can

find a multiphase surface in Poincaré ball B3
1(0) whose singular structures are one-to-one

correspondence and induce the same (ideal) boundary curves.

9
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Chapter 4

Self-expanding Solutions to the

Multiphase Mean Curvature Flow

4.1 Smooth Case

Definition 5. (Mean Curvature Flow)

A family of smoothly embedded hypersurfaces (αt)t∈I in Rn+1 moves according to the mean

curvature if

∂x

∂t
= ~H(x) (4.1)

for x ∈ αt and t ∈ I, where I ⊂ R2 is an open interval. Here, ~H(x) is the mean curvature

vector at x ∈ αt.

Theorem 2. Let (αt)t∈I be a family of smoothly embedded hypersurfaces in Rn+1. If (αt)t∈I

is a self-similar solution to (4.1), then

~H(x) =
Cx⊥

2λ2(t)
, (4.2)

where λ(t) =
√

1 + C(t− t0) for x ∈ αt as long as 1 + C(t − t0) > 0. This describes

expanding self-similar solutions about 0 for C > 0 and contracting self-similar solutions

about 0 for C < 0.

10
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4.2 Singular Case

We are considering the area-minimizing problem in the multiphase system and the important

results in [17, 23] state that the only area-minimizing singular structures in R3 are the regular

triple junction and regular quadruple point, so we hereafter assume that Γ contains the triple

junctions or quadruple points.

Definition 6. (Self-expanding Multiphase Solutions) A family of surfaces (αi)
l
i=1, l ≥ m,

is said to be a multiphase surface Γ =
⋃l
i=1 αi which expands homothetically under mean

curvature flow from an initial condition C0 =
⋃m
i=1 σi if they satisfy the following conditions.

Each multiphase surface Γt, t > 0, consists of l surfaces

αi(·, t) : Ui ⊆ R2 −→ R3 1 ≤ i ≤ l

u := (u1, u2) 7−→ (x1(u1, u2), x2(u1, u2), x3(u1, u2)) := x

� αi(u, t), 1 ≤ i ≤ l, is smooth for every time t and continuous up to t = 0.

Furthermore, each surface αi(u, t) is regular ∀t > 0 i.e.,

∂

∂uj
αi(u, t) 6= 0 j = 1, 2

uniformly up to |u| = 0

� the start curves αih(γ, t), 1 ≤ ih ≤ l , h = 1, 2, 3, coincide on a curve γ =
⋂3
h=1 ∂Uih

for all times t > 0 and the start points αjh(u0, t), 1 ≤ jh ≤ l, h = 1, · · · , 6, coincide at

a point u0 =
⋂6
h=1 ∂Ujh for all times t > 0, but these coincidences may depend on time.

� (αi(·, t))li=1 are embedded surfaces for all t ≥ 0. If three surfaces (αih)3
h=1 meet along a

curve, this curve must be a start curve. Similarly, a point clustered with six surfaces

(αjh)6
h=1 must be a start point and moreover, it is the intersection of four start curves.

The unit normal vectors νih of surfaces at the start curve satisfy the balancing condition

i.e.,

3∑
h=1

νih = 0 ∀t > 0.

11
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Around a quadruple point, there are four regions R1, · · · , R4 separated by six surfaces

{αij} for 1 ≤ i 6= j ≤ 4. Let νij be an unit normal vector to the surface αij pointing

from Ri to Rj. We impose the skewness on the nonadjacent surfaces which means

that the intersection of surfaces is at most a point set. More precisely, we require the

orthogonality on the tangent planes of the nonadjacent surfaces i.e.,

〈νij, νkl〉 = 0 for 1 ≤ i 6= j 6= k 6= l ≤ 4

� There exist m surfaces (αih(·, t))mh=1 ⊂ Γt which connect to infinity i.e., for all t ≥ 0,

lim
|u|→∞

|αih(u, t)| =∞ h = 1, 2, · · · ,m.

Each surface αih(·, t), h = 1, 2, · · · ,m and t ≥ 0, is at infinity asymptotically closed to

the surfcace σh ⊂ C0 i.e.,

dH(αih(Uih , t) ∩ (R3\Br(0)), σh ∩ (R3\Br(0))→ 0 for r →∞

where dH is the Hausdorff distance.

� Each surface flows for |u| > 0 according to mean curvature flow.(
dx

dt

)⊥
= ~H(x)

at every point x ∈ αi ⊂ Γt.

� For t = 0, Γ0 is the initial configuration C0.

� Γt expands homothetically i.e., for 0 < t1 < t2, there exists λ > 1 such that

λΓt1 = {λαi(·, t1) : αi(·, t1) ⊂ Γt1} = {αi(·, t2) : αi(·, t2) ⊂ Γt2} = Γt2

� αi is of class C0(R2 × [0,∞)) ∩ C∞(R2 × (0,∞)) for i = 1, 2, · · · , l.

12
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4.3 Asymptotic Behaviors

Lemma 1. If Γ is the regular multiphase surface in R3, then its (ideal) boundary is the

regular triple points connected by curves. More specifically, only the surfaces and the triple

junctions can connect to infinity.

Proof. As Γ is the regular multiphase surface, it contains the regular triple junctions and the

regular quadruple points. Away from these singular structures, Γ is a finite union of disjoint

surfaces that only induce curves on S2.

Around the singularities, we first consider the regular triple junction and then the regular

quadruple point. The possible structures connecting to infinity are the end of regular triple

junction and the 1-dimensional subset of regular triple junction. The end of regular triple

junction induces a triple point on S2, but the 1-dimensional subset of regular triple junction

cannot attach to S2. If this 1-dimensional subset wholly connects to infinity then we get a

bi-junction on S2; in other words, two surfaces intersect along a curve with angle 120◦. Using

the relation between the Poincaré ball model and Euclidean space, the angle between two

surfaces with the same bounday on S2 is 0◦ in the Poincaré ball model, so the degeneracy

of regular triple junction into bi-junction cannot happen.

We next consider the regular quadruple point. Because it is the intersection of four

regular triple junctions, the possible structures connecting to infinity are almost the same in

the triple junction case, but with one more structure. This one can be imagined by wholly

degenerating one of the regular triple junctions into a point on S2 until the quadruple point

coincides with the triple point on S2. We introduce the following definition to prove the

nonexistence of this case.

Definition 7. A steradian is defined in R3 as the solid angle subtended at the center of a

unit sphere by a unit area on its surface. For a sphere of radius r, any portion of its surface

with area r2 subtends one steradian.

At the regular quadruple point x, we use the point x accompanied with four unit vectors

τ1(x), τ2(x), τ3(x), and τ4(x) to represent the quadruple point with tetrahedral structure i.e.,

(x, τ1(x), τ2(x), τ3(x), τ4(x)) where τi are the unit tangent vector fields along their regular

13
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triple junctions. Without loss of generality, we argue the degeneracy in τ1 direction. Sup-

pose (x, τ1(x), τ2(x), τ3(x), τ4(x)) degenerates into (y, 0, τ2(y), τ3(y), τ4(y)). As the tetrahedral

structure is connected, we can find three points on S2 in the directions of (τ2(y) + τ3(y)),

(τ2(y) + τ4(y)), and (τ3(y) + τ4(y)). We connect these three points to y with Poincaré arcs

and denote the radii of the Poincaré arcs by r1, r2, and r3. Now, we use r = min{r1, r2, r3}
to construct a pseudosphere at y. This pseudosphere prevents a regular quadruple point

x from degenerating into y on S2 because the steradian of this pseudosphere at y is zero.

Hence, we conclude that only the end of the triple junction and the surfaces can induce the

boundaries on S2.

Remark 8. The steradian at the quadruple point with a tetrahedral structure has a lower

bound of cos−1( 1√
3
). Because the tetrahedron has an inscribed spherical cone with angle

cos−1( 1√
3
), this inscribed spherical cone serves as a barrier against degeneracy.

Lemma 2. Suppose Γ is a area-minimizing multiphase surface in R3 and all triple junctions

in Γ connect to each other by surfaces. Let τ : U ⊂ R2 → R3 be a regular triple junction

in Γ connecting to infinity. If τ locally induces its (ideal) boundary, a triple point with three

curves, on S2, then τ is at infinity asymptotically closed to a half-line l passing through the

origin i.e.,

dH(τ(U) ∩ (R3\Br(0)), l(x) ∩ (R3\Br(0))→ 0 for r →∞.

In other words, a triple point induced by τ is in fact a regular triple point on S2.

Proof. Let α ⊂ Γ be a surface connecting two regular triple junctions which connect to

infinity, it induces a boundary curve Σ on S2 with triple points as its endpoints. We choose

M1 → S2

as a smooth immersion of simple closed oriented curve containing Σ. Before continuing the

arguments, we need to check Σ is a simple curve so that the choice of M1 is feasible: Suppose

Σ is not a simple curve on S2, we choose an open neighborhood U in a Poincaré ball such that

U containing a self-intersection or corner of Σ. Besides, we can find in U a four-junction or

bi-junction generating Σ on S2. After taking the inverse hyperbolic stereographic projection

on U , we obtain a four-junction or bi-junction locally existing in α ⊂ R3. However, the

14



doi:10.6342/NTU201900823

results in [23, 17] show that the 1-dimensional area-minimizing singular structure in R3 is

the regular triple junction. If the surface α ⊂ Γ induces a non-simple curve Σ on S2, then Γ

cannot be the area-minimizer in R3.

By applying theorem 3 in [2] to this simple closed oriented curve M1, we obtain a com-

plete area-minimizing locally integral 2-current σM1 in B3 with asymptotic boundary M1.

Then using the remark of theorem 3 in [2], we can determine that σM1 is a smooth and

properly embedded complete hypersurface in B3. Because σM1 is a complete surface of finite

topological type and with well-defined limiting normal planes on its ends, the inverse image

σ of the projection on σM1 is also a complete surface of finite topological type and with

well-defined normal planes on each end. Applying theorem 3 in [11] to the inverse image σ,

it looks from infinity like a plane passing through the origin. Because Σ and σ induce the

same boundary α ∩M1 on S2, Σ is asymptotic to a plane passing through the origin in R3.

Hence, the asymptote of the regular triple junction is a line emanating from the origin, i.e.,

the regular triple junction intersects S2 orthogonally.

Remark 9. In Lemma 2, we impose the balancing condition on the triple junction τ :=
⋂3
i=1 σi

without further assumptions on the surfaces σi away from the singularity τ , so the regular

triple junction τ may not have the well-defined limiting normal planes on its whole ends.

Nevertheless, the balancing condition on τ locally guarantees the normal plane of each surface

σi near τ is well-defined; namely, the (ideal) boundary of σi behaves well near a triple point

induced by τ on S2. Therefore, we may not have a simple closed oriented curve containing

the whole (ideal) boundary of σi but a circle on S2 containing a triple point and a portion of

the (ideal) boundary of σi. Following the arguments in the proof of Lemma 2, we know that

a portion of the surface σi near τ approaches to a flat plane through the origin. Hence, the

triple junction τ is the intersection of three flat planes through the origin and then we finish

the proof. If each surface σi behaves well at infinity, for instance,“regular at infinity” which

is given as a definition in [21], we can choose a great circle on S2 as simple closed oriented

curve containing the (ideal) boundary of σi

15
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Chapter 5

Proof of Main Theorem

5.1 Flat 2-dimensional Chains F2(R3,Zk+1)

5.1.1 Introduction

Let C0 be a finite union of m surfaces meeting at the origin and separating R3 into k regions.

Each surface or region induced by C0 satisfies the conditions (A1), (A2), and (A3) in the

section 2.3. The main theorem proves the existence of a regular multiphase surface Γ in R3

where each surface α is a minimal surface for the metric g with C0 as an initial condition.

Specifically, Γ spans tha same boundary as C0 on S2. When m equals to two or three, the

existence and uniqueness are clear. However, the existence and uniqueness become more

complicated as m is greater than three. For instance, given the four boundary curves Σ1,

Σ2, Σ3, and Σ4, there exist two surfaces αi connecting Σi and Σi+2, i = 1, 2, but there exists

no surface σi with the triple junction or quadruple point. Hence, the main argument here

is to instead prove the existence of at least one connected regular multiphase surface that

induces the specified boundary curves.

We consider the minimizing problem in the class F2(R3,Zk+1) of flat 2-dimensional chains

in R3 with coefficients in Zk+1 and the norm on each nonzero element in Zk+1 equals to one.

For a complete discussion of flat chain and multiplicity, refer to [24, 18]. In the following,

we briefly describe how the flat chains in F2(R3,Zk+1) representing the multiphase surface

problem in R3.
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� The space of flat 2-dimensional chains is the completion of the space of polygons with

respect to the flat norm.

� The interior of each region in R3 is assigned to a nonzero element in Zk+1 and the zero

element in Zk+1 represents the points not belonging to the interior of any regions in

R3.

� The norm equals to 1 on each nonzero coefficient aα ∈ Zk+1, which is part of the

definition of the size of a flat chain, i.e.,

S(Σ) =
∑
α

|aα|M(α) =
∑
α

M(α),

where M(α) is the mass with respect to g. The mass is equal to the area when α is

the surface of class C1.

5.1.2 Example

Let Σ be a multiphase surface mentioned in Example 2. Using the flat 2-dimensional chains

in F2(R3,Z5), we give a representation of Σ as below. Let R,G,B, Y, C, and P be the

surfaces defined in Example 2, we call (·, ·, ·) the region enclosed by three surfaces and define

a norm on Z5 by

|[z]| =

1, [z] ∈ Z5\{[0]}

0, [z] = [0].

Hence, we have four regions (R,B, P ), (G,B,C), (Y,C, P ), and (R, Y,G) separated by

surfaces R,G,B, Y, C, and P . We assign a nonzero element in Z5 to each region i.e.,

(R,B, P ) = [1] (G,B,C) = [3] (Y,C, P ) = [2] (R, Y,G) = [4],

and then the coefficient aα of surface α ∈ {R,G,B, Y, C, P} is defined by the following two

steps.

For 1 ≤ i 6= j ≤ 4,

� The identities eij represent the surfaces separating the regions i and j where eij equals

to eji.

17
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� We assign an element [j − i] ∈ Z5 to the identities eij and eji.

According to the above arguments, the correspondences between the surfaces and elements

in Z5 are given by

R = [4]− [1] = [3] G = [4]− [3] = [1] B = [3]− [1] = [2]

Y = [4]− [2] = [2] C = [3]− [2] = [1] P = [2]− [1] = [1].

Althrough there may be some surfaces assigned literally to the same element in Z5, it rep-

resents the different things. Nevertheless, it is independent of the assignments that the size

of Σ is always defined by

S(Σ) = M(R) + M(G) + M(B) + M(Y ) + M(C) + M(P ).

5.2 Existence in a Bounded Domain

Theorem 3. Let C0 be a finite union of m surfaces meeting at the origin and separating

R3 into k regions. Each surface or region induced by C0 satisfies the conditions (A1), (A2),

and (A3). Suppose a surface σ ∈ C0 connects to infinity, we define the boundary of σ on a

sphere of radius R as

ΣR = σ ∩ S2
R(0).

Given the boundary curves ΣR
1 , · · · ,ΣR

m, there exists a connected flat 2-dimensional chain

ΓR with coefficients in Zk+1 such that

S(ΓR) = inf{S(c) : c ∈ F2(B3
R(0),Zk+1), ∂c = {ΣR

1 , · · · ,ΣR
m}}.

Moreover, each surface of ΓR is a minimal surface with respect to g, and all 1-dimensional

and 0-dimensional junctions are the regular triple junctions and the regular quadruple points.

Proof. We use the compactness of flat chains to prove the existence of area-minimizer. The

argument for applying the compactness theorem is standard, so we check the boundedness

on the sizes of flat chain and its boundary. More precise discussions about the compactness

theorem can refer to [24, 18, 5]

Let {Γj} be an area-minimizing sequence in F2(B3
R(0),Zk+1) with connected supports

and Γj spans the boundary curves ΣR
1 , · · · ,ΣR

m on S2
R(0) for all j.

18
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� S(Γj) ≤ c1, 0 < c1 <∞:

Because {Γj} is a area-minimizing sequence in F2(B3
R(0),Zk+1), S(Γj) is bounded for

all j.

� S(∂Γj) ≤ c2, 0 < c2 <∞:

Let {σi}mi=1 ⊂ C0 be the surfaces connecting to infinity. The size of ∂Γj is controlled

by the sum of the length of γi with a constant C(R) i.e.,

S(∂Γj) ≤ C(R)
m∑
i=1

|γi|,

where γi = limR→∞(ΣR
i /R).

Using the assumption (ii) on an initial condition C0 and the above inequality, we can

conclude that S(∂Γj) is finite for each fixed R > 0.

The compactness theorem implies that there is a convergent subsequence Γjl ⊂ Γj with limit

ΓR that spans the boundary curves {ΣR
1 , · · · ,ΣR

m}. Furthermore, the lower semicontinuity

of the area functional implies that

S(ΓR) ≤ lim
l→∞

S(Γjl).

That is, ΓR is an area-minimizer in F2(B3
R(0),Zk+1).

Regarding the regularity of the minimizer ΓR, we use regularity theorem 2.6 in [17]

for m = 2 and n = 3. The locally area-minimizing singular structures in a bounded set

are Hölder-continuously differentiable curves along which three sections of surfaces meet

at equal 120◦ and points at which four such curves and six sections of surfaces meet at

cos−1(−1
3
) ≈ 109.5◦. For details on area-minimizing singular structures in R3, refer to

[23, 17].

Convergence in the flat norm implies convergence as currents:∫
Γjl

f dH2 →
∫

ΓR
f dH2

for all f ∈ C∞0 (B3
R(0)).

Suppose that supp(ΓR) is not connected, there exists a surface M in B3
R(0) such that

B3
R(0)\M has two nontrivial components, and we can take an ε-neighborhood Uε of M
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such that Uε ∩ supp(ΓR) = ∅.
Consider a nonnegative f ∈ C∞0 (B3

R(0)) given by

f(x) =

1, x ∈ Uε/2

0, x /∈ Uε

As {Γjl} is an area-minimizing sequence in F2(B3
R(0),Zk+1) with connected supports in

B3
R(0), we have

0 < H2(Uε/2 ∩ Γjl) ≤
∫

Γjl

f dH2 9
∫

ΓR
f dH2 = 0.

This inequality contradicts the convergence as currents. Hence, the limit ΓR must be con-

nected.

5.3 Existence in an Unbounded Domain

Proof of Main Theorem. Let {Rj}∞j=1 be a sequence of numbers diverging to infinity. We

apply Theorem 3 to each bounded set B3
Rj

(0) and then obtain a subsequence of flat chains

{ΓRjl }∞l=1 converging to a limit ΓRj which is the area-minimizer in the class of flat chains

spanning the boundary curves Σ
Rj
1 , · · · ,ΣRj

m with connected support in B3
Rj

(0). When j

goes to infinity, we have a family of convergent subsequences {ΓRjl }∞l=1, j ∈ N. Next, we take

a diagonal process to derive a convergent subsequence {ΓRjj }∞j=1 which satisfies the following

results

� Γ
Rj
j converges to Γ in R3, where Γ := limj→∞ Γ

Rj
j .

� Γ is the area-minimizer with connected support in R3.

Since we mainly care about the structures of regular triple junction and regular quadru-

ple point in the multiphase problem, we need to determine whether there is any structure

vanishes in the above process as j → ∞. Suppose that there is a structure vanishing as

j → ∞, we use the relation between Poincaré ball model and Euclidean space to have a

corresponding structure vanishing in Poincaré ball model. Using the arguments in the proof

of Lemma 1, we can construct the barriers to stay them away from infinity. Therefore, it is
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impossible that vanishing in Poincaré ball model. Combining the hypothesis (ii) on C0 and

Lemma 2, Γ is at infinity asymptotically closed to a initial condition C0.
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Chapter 6

Appendix

6.1 Equivalent Condition of the Skewness Property

In the next two sections, we give the equivalent condition of skewness property at a quadruple

point and also demonstrate the first variation to entropy functional defined by g.

Lemma 3. At a quadruple point O, the skewness property on the nonadjacent surfaces is

equivalent to the balancing condition in [13] i.e., for 1 ≤ i 6= j 6= k 6= l ≤ 4,

〈νij, νkl〉 = 0⇐⇒ νij + νjk + νkl + νli = 0, |νij + νjk + νkl| ≤ 1

where νij is an unit normal vector pointing from the region Ri to Rj.

Proof. Let O be a quadruple point in R3 where four triple junctions (curves) and six surfaces

clustering. Because we study the local structure around O, without loss of generality, we as-

sume the curves and surfaces to be the lines and planes clustering at the origin in a unit ball.

Given one of the regions near O, there exist three half-planes and triple junctions en-

closing this region. Let u, v, and w be the outward-pointing unit tangent vectors along the

triple-junctions. See Figure 6.3, for example.

Suppose we have the skewness property on the nonadjacent surfaces. The unit normal

vectors of three halfplanes are given by

νuv :=
u× v
|u× v|

νvw :=
v × w
|v × w|

νwu :=
w × u
|w × u|

.

22



doi:10.6342/NTU201900823

and their skewed unit normal vectors are defined respectively as follows

ν̃uv :=
(u× v)× w
|(u× v)× w|

ν̃vw :=
(v × w)× u
|(v × w)× u|

ν̃wu :=
(w × u)× v
|(w × u)× v|

.

Consider the sum of unit normal vectors going throught each region once and back to the

original one. For example, ν̃vw + ν̃wu+νvw +νuw = ~a. To determine ~a, we take inner product

both sides of this equation and use the balancing condition on each triple juntion i.e.,

0 = 〈νvw, ν̃vw + ν̃wu + νvw + νuw〉 = 〈νvw, ~a〉,

0 = 〈νwu, ν̃vw + ν̃wu + νvw + νuw〉 = 〈νwu, ~a〉,

0 = 〈νuv, ν̃vw + ν̃wu + νvw + νuw〉 = 〈νuv, ~a〉.

Owing to the linear independence of u, v, and w, the normal vectors νuv, νvw, and νwu form

a basis in R3. Therefore, the above equations imply that ~a must equal to ~0. Using the

same argument, it is obvious that the length of sum of three consecutive vectors is less than

one. Because the region is arbitrarily chosen from four regions surrounding O, we obtain the

balancing condition in [13]. Conversely, if we have the balancing condition in [13] around a

quadruple point i.e.,

νij + νjk + νkl + νli = 0 1 ≤ i 6= j 6= k 6= l ≤ 4.

Take the inner product both sides of the above equation with νij and use the balancing

condition of triple junction, we obtain the skewness property 〈νij, νkl〉 = 0.

Remark 10. Let Λijk, Λjlk, Λkli, and Λilj be the four regular triple junctions clustering at O

and for each regular triple junction, say Λijk, there are three halfplanes σij, σjk, and σki that

meet along Λijk with the balancing condition

νij · νjk = νjk · νki = νki · νij = −1

2

on each point of Λijk. In terms of these normal vectors, we can derive the tangent vector

field along Λijk as

τ ijk =
νij × νjk
|νij × νjk|

=
2√
3
νij × νjk.
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Next, we compute the inner product of any two tangent vectors at the quadruple point O

as bellow

τ ijk · τ jlk =
4

3
[(νij · νjl)(νjk · νlk)− (νij · νlk)(νjk · νjl)],

and by using the balancing condition on the triple junctions, we obtain

τ ijk · τ jlk =
4

3
(−1

4
− 0) = −1

3
.

The above argument and Lemma 3 imply that the geometry near a quadruple point is already

determined by the geometry of each triple junction around O.

6.2 First variation around the Singular Structures

Given x = (x1, x2, x3) ∈ Γt ⊂ R3, we consider the entropy-type functional with respect to

the metric g.

Fg(Γt) =

∫
Γt

exp
C|x|2

4λ2(t)t dH2(x), (6.1)

where

g(x) = exp
C|x|2

4λ2(t)t dx2 = exp
C(x21+x

2
2+x

2
3)

4λ2(t)t (dx2
1 + dx2

2 + dx2
3).

For the general and related arguments about the entropy-type functional, refer to [4, 7, 8].

Lemma 4. If a multiphase surface Γ is a regular self-expanding solution to the mean cur-

vature flow, then it is a critical point of the entropy-type functional (6.1).

Proof. Consider a surface α ⊂ Γ that is smoothly embedded in R3. We define a smooth

family of diffeomorphisms {Φs}s∈[0,1] on an open neighborhood U ⊂ α.

Fix s ∈ [0, 1].

Φs : U → α

(u1, u2) 7→ Φs(u1, u2) = (Φs
1(u1, u2),Φs

2(u1, u2),Φs
3(u1, u2)) := x

with the conditions

K ⊂⊂ U ⊂ α,
dx

ds
= ~X(x) = ~X

Φ0(x) = x ,x ∈ U

Φs(x) = x , s ∈ (0, 1), x ∈ U\K.
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The area functional is

H2(Φs(α ∩K)) =

∫
α∩K

JΦs
gdH2,

where

JΦs
g =

√√√√√√√det

(
exp

C|x|2
4λ2(t)t

[
∂Φs1
∂u1

∂Φs2
∂u1

∂Φs3
∂u1

∂Φs1
∂u2

∂Φs2
∂u2

∂Φs3
∂u2

]
∂Φs1
∂u1

∂Φs1
∂u2

∂Φs2
∂u1

∂Φs2
∂u2

∂Φs3
∂u1

∂Φs3
∂u2


)

= exp
C|x|2

4λ2(t)t JΦs

is the Jacobian of the metric g, JΦs is the Jacobian of the Euclidean metric, and H2 is the

2-dimensional Hausdorff measure.

On each surface,

d

ds

∣∣∣
s=0
H2(Φs(α ∩K))

=

∫
α∩K
〈D(exp

C|x|2

4λ2(t)t ) · ~X〉dH2 +

∫
α∩K

exp
C|x|2

4λ2(t)t divα ~X dH2

=

∫
∂(α∩K)

exp
C|x|2

4λ2(t)t 〈 ~X, ~T 〉dH2 +

∫
α∩K
〈∇⊥(exp

C|x|2

4λ2(t)t )− exp
C|x|2

4λ2(t)t ~H(x), ~X〉dH2, (6.2)

where ~T is the unit tangent vector at point x.

If a variational vector ~X has a compact support on each surface, then the first integral

in (6.2) obviously equals to zero and the second integral vanishes since α is a self-expanding

solutions to the mean curvature flow i.e., ~H = Cx⊥

2λ(t)
for every point x ∈ α. If ~X is compactly

supported on a neighborhood of each triple junction (αi(0, t))
3
i=1, then the second integral

vanishes for the same reason mentioned above and the first one equals to zero which is

guaranteed by the balancing condition i.e.,

3∑
i=1

νi = 0

where νi is an unit normal vector to the surface αi.

If ~X is compactly supported around a regular quadruple point (αi(0, t))
6
i=1 = O, then

the skewness in Definition 6 or the balancing condition in [13] i.e.,

νij + νjk + νkl + νli = 0 1 ≤ i 6= j 6= k 6= l ≤ 4

25



doi:10.6342/NTU201900823

is enough to make the first integral zero and the second one vanishes for the self-similarity

of each surface around the point.

Remark 11. In one dimensional case, the balancing condition at the triple point provides a

sufficient relation on any two curves clustering at the triple point. In two dimensional case,

we take Figure 6.1 for example. When we consider the surface G, the balancing condition

on the triple junction curves enclosing the surface G offers the direct information of the sur-

faces R,B, Y , and C. After we finish the following argument, the skewness property at the

quadruple point provides a direct connection between the surfaces G and P and a interaction

between triple junctions and subregions around a quadruple point.

Consider a region near the quadruple point O, there exist three half-planes and triple

junctions enclosing this region. See Figure 6.3 for example, we let u, v, and w be the outward-

pointing unit tangent vectors along the triple-junctions and denote the angles between any

two of them by

θ1 = ∠(u, v) θ2 = ∠(v, w) θ3 = ∠(w, u).

With the same argument in the proof of Lemma 3, we impose the balancing condition on

the triple junction which is the intersection of half-planes determined by the unit normal

vectors ν̃uv, ν̃vw, and ν̃wu. The balancing condition shows that

ν̃uv + ν̃vw + ν̃wu = 0.

Applying the triple product expansion of cross product to the above equation, we derive the

following equalities

cos2 θ1 = cos2 θ2 = cos2 θ3.

Using the balancing condition again, it forces that all angles are all equal and they belong

to one of the intervals (0, π
2
) or (π

2
, π). Because the same argument is valid for the other

regions, we can conclude that the angles between any two unit tangent vectors are all the

same i.e.,

∠(u, v) = ∠(v, w) = ∠(w, u) = ∠(z, u) = ∠(z, v) = ∠(z, w) := θ. (6.3)
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Since the region around O is separated into four equal subregions, the angle θ in (6.3) must

belong to an interval (π
2
, π). In addition, each subregion has the regular spherical triangle

as its boundary on S2. These results implies that the quadruple point O clustered by the

triple junctions determined by u, v, w, and z is a regular quadruple point.
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Figure 6.1: Six half-planes
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(i) Smooth (ii) Brakke spoon (iii) Island

(iv) Eyeglasses

(v) Lens (vi) Theta (vii) Tree

Table 6.1: Classification.

29



doi:10.6342/NTU201900823

Figure 6.2: The stereographic compactification
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(i) Pseudosphere at the origin.

(ii) The inscribed tangent cone at some point above the origin.

Table 6.2: Schematical pictures
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Figure 6.3:
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forces moléculaires. Gauthier-Villars, 2

[21] Schoen, R.M., 1983. Uniqueness, symmetry, and embeddedness of minimal surfaces.

Journal of Differential Geometry, 18(4), pp.791-809.

[22] Schulze, F. and White, B., 2018. A local regularity theorem for mean curvature flow

with triple edges. Journal für die reine und angewandte Mathematik (Crelles Journal).

34



doi:10.6342/NTU201900823

[23] Taylor, J.E., 1976. The structure of singularities in solutions to ellipsoidal variational

problems with constraints in R3. Annals of Mathematics, pp.541-546.

[24] White, B., 1996. Existence of least-energy configurations of immiscible fluids. Journal

of Geometric Analysis, 6(1), pp.151-161.

35


	THESISSAMPLE
	img001
	thesis
	Table of Contents
	Introduction
	Multiphase Surfaces
	Definition
	Examples
	Existence

	Relation between Poincaré ball model and Euclidean space
	Self-expanding Solutions to the Multiphase Mean Curvature Flow
	Smooth Case
	Singular Case
	Asymptotic Behaviors

	Proof of Main Theorem
	Flat 2-dimensional Chains F2(R3, Zk+1)
	Introduction
	Example

	Existence in a Bounded Domain
	Existence in an Unbounded Domain

	Appendix
	Equivalent Condition of the Skewness Property
	First variation around the Singular Structures

	Bibliography




