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Abstract

Empirical mode decomposition (EMD) is an extensively utilized tool in time-
frequency analysis. However, disturbances such as impulse noise can result in both mode-
mixing and mode-splitting effect, in which one physically meaningful component is split in
two or more intrinsic mode functions (IMFs). In this work, we provide a mathematical
explanation for the cause of mode-mixing and mode-splitting by spikes in EMD, and propose
a novel method, the minimum arclength EMD (MA-EMD), to robustly decompose time
series data with spikes. To further isolate the spike in a previously non-existed IMF, the
masking-aided MA-EMD (MAMA-EMD) is provided. The mathematical foundations and
limitations for these two methods are provided. The MAMA-EMD is utilized to deal with
four real-world data including electrical current, vibration signals, cyclic alternating pattern
in sleep EEG (Electroencephalography), and circadian of core body temperature. In addition,
this work developed a tool for P-wave isolation in electrocardiogram (ECG) by the MAMA-
EMD method, and showed that the P-wave related features can be used to identify potential
atrial fibrillation patients. Finally, we extend our application to the Heaviside step function

and propose a general algorithm for signals whose Nth order derivative is a spike function.
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Chapter 1. Introduction

1.1  Statement of purpose

Empirical mode decomposition (EMD) is a powerful and popular tool to decompose
a time series into several intrinsic mode functions (IMFs), and has been widely utilized for
non-linear and non-stationary signals. Spikes are extremely high/low values in very short
periods in time-domain but contain wide spectrums of frequency. When decomposed by
EMD, the energy of a single spike would propagate to nearby signal and be scattered in
several IMFs with different frequencies. Even though locality characteristic of EMD permits
its effect to decay exponentially [1], the relatively strong magnitude of spike still results in
perturbation of the IMF. Fig. 1-1(a-b) shows an example of Duffing wave with spikes
decomposed by EMD. Compared to the IMFs from the same Duffing wave without spikes,
the ~0.1 Hz signal is split into IMF 1 and 2. This is called the mode-splitting effect.

In this work, we provide a novel method, MA-EMD to solve the spike problem in
EMD. Combining with masking signal to become masking-aided MA-EMD (MAMA-EMD),
we successfully isolate the spikes in the first IMF, and leave the later decomposition free
from interferences (Fig. 1-1(c)). In another aspect, we can regard spikes as information to be
extracted, such as the delta waves in EEG and the P-wave in ECG, and further analyze the

extracted waves.
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Figure 1- 1. Surrogated nonstationary Duffing signal contaminated by triangular spikes, and
its decomposition by EMD and our proposed MAMA-EMD, respectively.

(a) Duffing wave. (b) The spike signal as a perturbation. (c) The spike-contaminated signal as the
input for EMD and MAMA-EMD. (d-f) The blue lines are results of EMD on (c), and the black lines
are from EMD on pure Duffing wave in (a) as the ground truth. (g-h) The red lines are MAMA-EMD
on (c). The black lines in (h-j) are the same as the black lines in (d-f) but in different scales. Note that
with MAMA-EMD method, the triangles are extracted, and the mode-splitting effect in (d-e), in
which the 0.1Hz component in the first IMF of black line is split into IMF 1 and 2, is alleviated.

1.2  Contribution

e A novel method, named minimum-arclength EMD (MA-EMD) is proposed
to solve the effect of spikes in EMD.

e The effect of spike and the cause of mode-mixing and mode-splitting in EMD
is analyzed mathematically by recently developed impulse response theory.

e The theoretical foundation for the proposed MA-EMD is provided and
supported by numerical simulations.

e The masking-aided MA-EMD (MAMA-EMD), which combines masking
EMD and MA-EMD, is proposed to improve the extraction of spikes.

e Using MAMA-EMD, we showed that the extracted P-wave in 12-lead ECG
can provide important features for identifying potential atrial fibrillation

patients during sinus rhythm.
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1.3 Related works

1.3.1 EMD and time-frequency decomposition

Empirical mode decomposition (EMD) [2] is an algorithm aiming to decompose a
composite signal into intrinsic mode functions (IMFs). IMFs are oscillatory signals with
separate spectral bands, each of which allows moderate time-varying frequency and
amplitude modulations. By applying a series of iterations, the algorithm finds the “mode” of
a signal from a high-frequency component, subtracts it, and finds another mode recursively.
As aresult, the signal is decomposed into a few intrinsic mode functions (IMF) and a residual

noise, that is

K

S@® = ) si(® (1-1)

k=1
The distinctiveness of EMD lies in its non-parametric nature. In a process called

“sifting,” the baseline calculated by averaging the upper/lower envelope is iteratively filtered
out from the signal to reel off the high-frequency oscillation. This upper/lower envelope is
determined solely on the extrema distribution of the signal itself and thus varies over time.
The recently developed mathematical property of the sifting operator proved EMD to be a
highly non-linear and non-stationary adaptive filter [1]: the time-varying extrema intervals
determine the non-stationary frequency response. Nevertheless, before the theoretical
foundation has built, researchers have found IMFs to be highly adaptive, and formulated the
IMF into amplitude modulated-frequency modulated (AM-FM) signal, where

sg(t) = A (t)cos(gk (1)),

. (1-2)
with Ay, ¢’ (t) > 0 Vt.
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Here, the frequency modulation is not constant; instead, it gives each IMF a wider
range of frequency. Compared with Fourier or wavelet methods which assumes constant
frequency (¢, (t) = 0), this representation reduces the components needed (i.e. the number
of k) to reconstruct the original signal. The EMD thus ensures the sparsity of the
decomposition.

Since its development, EMD inspired numerous approaches for the capture the
philosophy of (2). In the original EMD and its modifications, the local extrema were adopted
when finding the mode function; however, in other non-EMD-based methods, parametric
basis functions such as a wavelet or Fourier function are first adopted for a frequency domain
transform, and different criteria for mode separation are then applied. For example, the
synchro-squeezed wavelet transform [3] aims at reallocating a time-frequency scalogram in
pursuit of a well-separated intrinsic mode component. In empirical wavelet transform [4, 5],
an adaptive wavelet filter bank is built on a pre-determined spectrum segment. In variational
mode decomposition (VMD) [6], a separation of modes is applied on the Fourier spectrum,
which is therefore stationary.

The distinctiveness of EMD lies in its nonparametric nature. In a process called
“sifting,” the baseline calculated by averaging the upper/lower envelope is iteratively
subtracted from the signal to extract the high-frequency oscillation. This upper/lower
envelope is a cubic spline interpolation of the extrema, which are determined solely by the
innate property the signal. The recently developed mathematical theories showed that this
spline determines the nonstationary impulse response of the sifting operator, which makes
EMD a highly nonlinear and nonstationary adaptive filter [1]. Nevertheless, since its
development, EMD has shown outstanding capability for processing nonstationary signals

4
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including speech [7, 8], coseismic accelerograms [9], and biological signals [10-12] as well
as in the fault diagnosis of rotating machinery [13-16].
1.3.2 Modifications of EMD

Albeit powerful, there are occasions where the IMFs are difficult to be interpreted.
One notorious problem is the intermittency, in which a signal with distinctive frequency
(usually higher frequency) intrude for only a short period of time. In this case, the IMF is
consisting of two different frequencies. This is a mode-mixing effect. Many modifications of
EMD have been proposed to address the intermittency. Such modifications include two main
directions. The first direction, which includes ensemble EMD (EEMD) [17], complementary
EEMD (CEEMD) [18], Complete EEMD with adaptive noise (CEEMDAN) [19], masking
EMD [20], and uniform-phase EMD (UPEMD) [21] involves the addition of an assisting
signal so that the extrema are more evenly distributed.. The other direction involves
adjustment of the knot position of the cubic spline [14, 22-25] or reconstruction of the
undersampled extrema using a wavelet interpolation [5]. Both directions work well on
intermittent signals characterized as single-tone oscillatory components. By increasing or
adjusting the distribution of the extrema, these methods aim to equalize the extremum
intervals of the entire signal; thus, the frequency response of the EMD is more consistent
throughout different timeframes.

The most popular modification belongs to EEMD family. EEMD applies white
Gaussian noise with amplitude dependent on the total power of the signal. The addition of
white Gaussian noise solves the mode mixing by providing a full-band spectrum in all the
time space, and EEMD behaves as a dyadic filter bank. However, two new shortcomings
present, including residual noise due to the added noise and the mode-splitting effect in which

5
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two or more IMFs contains components with similar scale. To cancel out the added noise, it
requires to execute the algorithm under different randomizations (usually 100 to 200) and
average the results. To boost the cancelation of added noise, CEEMD is proposed, in which
the added noise comes in a pair (positive and negative one). CEEMD still cannot solve the
mode-splitting problem, since the randomly generated Gaussian white noise put the same
frequency component in the Nth IMF in some realizations but in the N+1th or N-1th IMF in
other realizations. To solve this problem, CEEMDAN proposed to apply a pre-decomposed
Gaussian white noise. In fact, this technique of applying a pre-filtered white noise, instead of
a full-band noise, is similar to the masking-EMD which proposed at the same time as EEMD.
Other EMD maodifications which adaptively adds white noise also belongs to this kind.

In masking-EMD, a sinusoid with pre-determined frequency and amplitude is added.
To cancel out the added frequency, the realization comes in a pair — positive and negative
ones. The inconvenience lies the selection of the proper sinusoid. Rilling and Fladrin’s [26]
mathematical deduction gave us a hint to find the proper range with respect to the frequency
and amplitude of our desired component under EMD. Ideally, if the sinusoid is properly
chosen, there should be limited mode-splitting problem as compared to EEMD-related
methods. However, there is still some residual noise problem in masking-EMD. The recently
proposed UPEMD is a generalization of masking-EMD. In UPEMD, a set of sinusoid with
the same amplitude and frequency but different phases are applied. It has been shown to be
superior than masking EMD and CEEMD in suppressing residual noise and mode-splitting

effect.
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1.4 Spike problems

1.4.1 Spike problems in signal processing

Physically, a single spike may result from a single cause, such as the collective
neuronal activity in EEG (Electroencephalography), or the electrical current surge caused by
the switch. A spike has a very short time period but occupies a wide range within the
frequency domain. Transforming of spikes in a time-frequency domain results in several to
an infinite number of harmonics which mixed with real information. Therefore, for single-
point spikes, the most widely adopted solution is the removal of spikes within the time
domain, as is done by the median filter and its modifications [27-29]. For triangular spikes
where the median filter cannot be used, a discrete wavelet transform is usually applied [30-
32]. It would require choosing the appropriate wavelet functions similar to the spike shape,
and decomposing the signal into different scales. The spikes can then be detected or removed
in certain scales [30-32], and the new signal is reconstructed from the modified coefficients.
1.4.2 Spike problems in EMD

Decomposing spikes and steps of signals during EMD also results in spurious
oscillations spreading throughout multiple IMFs. These spurious oscillations are similar to
the harmonics of the spikes when decomposed through a Fourier and wavelet analysis. They
only appear within a certain period of time in each IMF, acting as an intermittency signal
[33]; as a result, they cause both mode-mixing and mode-splitting problems. Even though
locality characteristic of EMD permits its effect to decay exponentially [1], the relatively
strong magnitude of spike still results in perturbation of the IMF. Fig. 1-1 shows an example

of Duffing wave with spikes decomposed by EMD. Compared to the IMFs from the same
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Duffing wave without spikes, the ~0.1 Hz signal is split into IMF 1 and 2. This is called the
mode-splitting effect. Granted that the above spike-removal methods can be used as
preprocessing techniques before performing EMD, as seen in some applications [8], this
frequency domain approach is inefficient and ineffective, and may loses its nonlinear and
nonstationary property.

To the best of our knowledge, most EMD modifications that have been proposed to
address the intermittency problem are not applicable to spikes or step functions. By
increasing or adjusting the distribution of the extrema, these methods aim to equalize the
extremum intervals of the entire signal; thus, the frequency response of the EMD is more
consistent throughout different timeframes. However, because spikes occupy a very wide
frequency spectrum, the unified frequency response in these modified EMD still decomposes
a spike into several harmonics which intrude into the other components, as can be seen in
Fig. 1-2. Therefore, a highly localized method focusing on adjusting only a few extrema is

expected to solve the spike and step problems.
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Figure 1- 2. Decomposing a sinusoid wave with a spike using different modifications of EMD
(2) EEMD. (b) CEEMDAN. (c) UPEMD. (d) MA-EMD.

1.5 Overview

This dissertation consists 7 chapters. In this chapter, Chapter 1, we give a general
introduction on the EMD and its related works, along with the spike problems in signal
processing. In Chapter 2, we review the related theories and works related to our proposed
work, including the EMD algorithm, its impulse response theory, the definition of the mode-
splitting and mode-mixing, masking EMD algorithm, and the conventional spike detection
algorithm which is applied to our MA-EMD algorithm. In Chapter 3, we make us of the
mathematical representation of sifting to analyze the effect of a spike on the EMD, and
propose our MA-EMD method that resolves the spike problem by isolating it in the first IMF.
The further improve the extraction of spikes, masking aided MA-EMD (MAMA-EMD)
methods are presented in Chapter 4. The validation of our method, limitations and some real-
world examples are also provided. In Chapter 5, we apply our MAMA-EMD on a large

database to detect potential atrial fibrillation (AF) patients by a standard 12-lead

9

doi:10.6342/NTU202000887



electrocardiogram (ECG). This novel method analyzing the P-wave loop which reflects
depolarization of atrial can better detects AF patients comparing to traditional waveform
parameters from ECG delineators. In Chapter 6, we provide a general algorithm that can be
used to apply our MA-EMD in the extraction of a Heaviside step function or any function

whose Nth-order derivative is a spike. In Chapter 7, we state the conclusions of our study.

10
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Chapter 2. Background

21 EMD
Given a signal x(t) (t > 0), we define k as the IMF index and p the sifting step.
Then, the notation x** represents the k., proto-IMF at p,,, sifting step. The EMD algorithm

is given in Algorithm 1.

Algorithm 1: EMD algorithm

(1) Define x%° £ x(t). Starting with k = 1 and p = 0. Set x1°(t) = x(t).
(2) Identify all the maximum {(t,, x,)} and minimum {(t,, x;)} of x*?(¢t).

(3) Connect maximum (respectively minimum) points with natural cubic spline to derive
upper (lower) envelope U(t) (and L(t), respectively).

(4) Obtain the local mean of the upper and lower envelopes

(6) m(t) = (U(®) + L(B))/2.

(6) Subtract local mean from the temporal signal

(7) x®PTL(t) = x*P(t) — m(t).

(8) Repeat (2)-(5) nyy, times, i.e. p = 0, -+, ng, — 1. Derive x*"se ().
(9) Assign the k., IMF as ¢ (t) = x*™s (t).

(10) Calculate residual x*¥*+0 = x*0(¢) — ¢, (t).

(11) Increment k and repeat steps (2)-(8) to generate series of IMFs and a residue until
that the residue contains no more than one extrema

2.2 Impulse response of EMD

In Algorithm I, steps (2)—(5) describe sifting, a process for subtracting the local mean
from a signal. Here, we apply the analytical form of EMD derived by Wang et al. [1] to

explain the effect of a spike on the sifting. In step (3), the upper/lower envelope is constructed

11

doi:10.6342/N'TU202000887



using natural cubic splines. Given the set of maxima points I, = {(t,, x,),a = 1,2, ..., N}
where N is the number of maxima, the cubic spline of the upper envelope U(t) is exclusively
dependent on the positions and values of the maxima. Here, U(t) can be written as the
function

Ut; x() = LU) (2-1)
and satisfies the property of superposition [1, 34],

N

(L) = ) k(1) 2-2)

1

a=
with input spline vectors I, = {(t;, e,),j = 1, ..., N} and scalars x,,. Notation e, indicates a
unit vector whose only nonzero entry is at the a;, element. In other words, the upper
envelope U(t) is the summation of N different cubic splines sharing the same set of knot
positions ¢; and weighted by their individual maximum values x,. The spline L(I7,) has the
following two properties [11]:

(1) Itis a nonlinear time-variant impulse response of knot (t,, x,) to the other points.

(2) It has a sinc-like curve satisfying the definition of a weak IMF, i.e., there is only
one extremum between each pair of zero-crossing points, and the maxima and minima
interlace with each other (Fig. 2-1(b)). Furthermore, because there is only one extremum
between each pair of zero-crossing points, the cycle length (defined by the zero-crossing) of
L(I,) is the smallest extremum interval by at least two-fold. This is consistent with the
frequency response derived by [26, 34], which states that when the interpolation points
(which equal the extremum points) are equally spaced, the spline interpolator tends to be a
low-pass filter with a cutoff frequency that is approximately half of the interpolating

frequency.

12
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Because the upper envelope L(I7,) is a low-pass filter, when the mean of the upper
and lower envelope is subtracted, it becomes a high-pass filter. To summarize, the sifting
process is equivalent to a high-pass filter whose frequency depends locally on the “grid size”
of the sift, i.e., the knot interval, which is a result of the summation of different signal
components [26]. Most of the modifications of EMD, either adding an assisting signal or

adjusting the knot position of the spline, change the knot intervals and therefore the cutoff

frequency of the filter.

-
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Figure 2- 1. The upper envelope, spline curves, and the effect of a spike.
(a) Series of heartbeat intervals x(t) (gray) and the upper envelope U(t) (green). One of the extrema
is artificially changed to simulate an atopic beat. The new heartbeat series (black) has an upper

envelope (blue) that is affected by the spike. (b, ¢) Spline curves L(I},) for each maxima point (dashed
line). The curves £(I;_) generated by the spike (blue) and £(I;__, ) generated by the neighboring
point (green). (d) The spline curves £(I;,) when excluding a spike point in the set of maxima (dotted
line) and the new curve L(I'“as_l) (green). Note that when a spike occurs, the shape of the envelope is
similar to the spline curve and produces new extrema. When the spike point is directly skipped, the
curve has wider knot intervals and a lower cutoff frequency.
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2.3 Mode-mixing and mode-splitting

We consider a real-valued input signal x(t) consisting of multiple physical
components s, (t). The EMD algorithm shown in Algorithm 1 represents x(t) as a
combination of IMFs ¢, (t) and a residual r(t):

x(t) = Zm=1cm(®) +1(0). (2-3)
The ideal result of a decomposition with IMFs ¢, (t) should be as follows:

cm(t) = sp.(0), (2-4)
where each physical component should reside uniquely in a single IMF. The condition
in which ¢, (t) contains two or more physical components is called mode-mixing [23, 33];
in contrast, when the amplitude of one s, (t) is split into two or more IMFs, mode-splitting
occurs [17, 18]. In both mode-mixing and mode-splitting, the desired physical component is
not sparsely represented and is either contaminated by or separated into other signals, thus
encumbering further analysis.

One typical source of mode-mixing is the intermittency, where another signal with
distinctive frequency is introduced for only a period of time. Noted that the frequency
response of an IMF is dependent on the extrema interval, and the locally small extrema
intervals results in a higher cutoff frequency during sifting. Therefore, the resultant IMF
extracts the low-frequency components for most parts except the location with intermittency.
That is:

cm(8) = s (6) + 5;(2), (2-5)
for some k # j.

14
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The mode-splitting is the effect that one oscillatory component, which might possess
a physical meaning or have a narrow frequency band, occupies two or more adjacent IMFs.

Wang et al. [21] are the first to define mode-splitting mathematically, which is:

ne

() = ) i () + S (0) (2-6)

j=1

where @ m 18 the “attenuation ratio” representing the proportion of component jin IMF m
with the equality 2;"’;‘{ ajm = 1. In this representation, the mode-splitting effect is
stationary. Indeed, the term “mode-splitting” is first mentioned by Huang and Wu [17] to
denote the problem occurred in EEMD. When the same frequency component is resided in

different IMFs in different realizations, taking average of all the realizations results in an

energy splitting of the same component into different modes.

24  Masking EMD

Deering and Kaiser [20] proposed to insert a single tone sinusoid w(t) =
ansin(2nf,,t) during the decomposition. This sinusoid, whose frequency is relatively
higher, is a “masking signal” and serves as an assisted disturbance to avoid extraction of low

frequency components during sifting. The algorithm is summarized in Algorithm 2.

Algorithm 2: Masking EMD algorithm

(1) For step k in EMD, generate masking signal w(t) = a,,sin(2mf,t).

(2) Perform Steps (2)-(5) in Algorithm 1 on x*(t) = x*?(t) + w(t). In other words,
substitute x(t) by x*(t)) to obtain IMF ¢ . Similarly, perform steps (2)-(5) in
Algorithm 1 on x~(t) = x®?(t) — w(t) and obtain cj.

(3) The resultant IMF is defined as ¢, = (¢ + c;)/2.
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2.5 The spike detection

Mathematically, a signal with occasional artifacts can be modeled as
x(t) = x(t) + v(t) (2-7)
where x(t) is the signal of interest, v(t) models the noise term and x(t) is the
observed signal. We suggest that the noise term contains two components
v(t) = w(t) + z(t) xi(t) (2-8)
where w(t) represents the white Gaussian process and i(t) is the random process generating
impulsive artifact which is convolved with a spike-like function z(t). Here, z(t) can be of
different shapes, such as a single-point spike or a triangular spike.

Many types of impulse rejection filters have been designed for different types of
signals, such as wavelet for speech signals [32] and Raman spectra [35], and median filters
for images [29, 36]. We adopt one of the simplest designs, the median filter, as a tool for
spike detection. Similar to other impulse detection algorithms, our spike detector is based on
the prior assumption that the signal should be smooth. Therefore, the extrema that differ too
much from nearby extrema is regarded as spike points. The maximum and minimum are dealt

with separately. For each maximum {(¢,,, x4,)}, we first find the set containing D nearby

maximum values (D is an even value) in a window centered about x,,.

wpP = {xaj

i—D/2 SjSi+D/2} (2-9)

The median and standard deviation of this set are

mP = Med {xaj

xq, € WP} (2-10)

and
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SP =std {xa].

Xo; € Wl-D}, (2-11)
respectively. Then, the extrema values that are T times larger than the standard deviation is

classified as maximum impulses, i.e. the set of maximum impulses, and is defined as

GM = {(tay Xa,)|¥a, > m{ +SP - T} (2-12)

Similarly, the set of minimum impulses is obtained as

GN = {(toy xp,)|Xp, <m = SP - T}, (2-13)

where mP and SP are the median and the standard deviation of the minimum values within
window WP centered at xp,- Finally, we have the subsets GM and GV for the subsequent

analysis.
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Chapter 3. Effect analysis of spike in EMD and MA-EMD

3.1  Effect analysis of spike problem in EMD

Without loss of generality, we can formulate a spike as a shape function z(t) at time
to (time shift):
x(t) =s(t) +z(t —ty) (3-1)
Supposing we have the spike resultant extremum (tas,xas), the problem of a spike
occurring during EMD has two aspects. First, the extremum itself might be additional to the
original set of extrema, making the knot intervals half the original interval. Property (2-2) in
the previous section states that the frequency response of a cubic spline is dependent on the
knot intervals. That is, when a spike results in new extrema, the filter near t,_has a higher
stop band than the other locations.

Second, because x,_ > Xq; for some j # s, we have

n

U = £ = ) xaL(T) = x0,L(Ty,) (32

a=1

That is, U(t) is dominated by a single spline curve near the spike point; thus, the
curve has a shape extremely similar to a sinc-like function (Fig. 2-1(b)). The upper envelope
(and the local mean) are the results of artifacts rather than physically meaningful components.
Furthermore, when the amplitude of a spike is sufficiently large, the shape of this cubic spline
may generate additional knots during the iterations (see the simulation results in Sec. 1V),

making the inter-extrema interval even shorter than it should be.
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When a spike introduces new extrema either by itself or by an amplified cubic spling, it
results in locally shorter extrema intervals (i.e., a higher frequency curve) with respect to
the other locations. The sifting of one component is interrupted in this area, leaving it to
partially enter the next mode. Compared with the ideal results represented in Eq. (2-4),

owing to the spike at time point ¢,_, c;(t) becomes

s;—1(t), when t close to t,_
s;(t), otherwise

a® ={

This is a mode-mixing problem in which c;(t) contains portions of both mode s;_; (t)

(3-3)

and mode s;(t). Furthermore, mode s;(t) resides in c;(t) for most of t but splits into ¢, (t)
for some k > i, resulting in a “mode-splitting” effect. Because this mode splitting only
occurs during one period, it can be regarded as “nonstationary mode splitting.”

To show this, we experimentally generated two spikes on a Duffing wave (Fig. 3-1). The
first spike is added to the position of the original extremum at t = 28; the second spike
produces a new maximum at t = 89. Here, a Duffing wave is generated by numerically

solving the following Duffing equation:

%(t) = x —x3+ 0.1cos (%) (3-4)
with the initial condition x(0) = x(0) = 1. After the EMD operation, IMF ¢, (t) undergoes
intermittent high-frequency oscillations near the second spike (t = 60-70), and a part of the
0.1-Hz component of IMF ¢, (t) moves into IMF ¢, (t). Comparatively, at the location near
the first spike (t = 15~25), the signal frequency of IMF 1 determined by its relative cycle

length is the same as in the original results; only the shape is distorted. IMF 2 also has the
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same cycle length with a higher amplitude. This high amplitude results from energy leakage

from the spike.
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Figure 3- 1. The spike-interrupted Duffing wave and its decomposition by different methods.
(a) The Duffing wave S(t) (green), the triangle spikes S, (t) (red) and the summation of the two
x(t) = S(t) + S,(t) (black). (b-c) The upper (dotted) and lower (dashed) envelope of the first sifting
in EMD on x(t) (solid). (d) The first 3 resultant IMFs (black) by original EMD on x(t) and the IMFs
(green) of the S(t) as a comparison. IMF ¢4 was split into ¢, near the location of the second spike
which is not on the original extrema.

3.2  MSI: Measurement of mode-splitting

To quantify how extreme the mode-splitting is from S; to IMF j, the mode splitting
index (MSI) proposed. In our later simulations, we define the MSI as the amplitude of the

frequency that S; possesses within the Fourier spectrum of IMF j; that is,
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X, (f)
L%,

where ch(f) is the Fourier spectrum of IMF j and w is the frequency range where the

MSI = (3-5)

Fourier spectrum of S; is larger than zero.

3.3  NE: Newly generated extrema

To validate our claim of newly generated extrema from spike and artifacts results in
mode splitting, in our later simulations, we calculate the number of newly added extrema
(NE) of the upper envelope in the first sifting when finding the first IMF as compared to the

result with the upper envelope without a spike.

3.4  SK-EMD: skipping the extrema on spikes

To escape from the influence of spike, one trivial way is to directly skip it when

calculating spline. we exclude those extrema on spikes from the set of knots and define the

following:
[, ={(tyx,),a=1,..,N,a+as}
X a a S (3-6)
= Fx - {(tas’xas)}
and
U(t) = L(f'x) = Zg=1,a¢as xaL(fa)- (3'7)

This is efficient and guarantees that there is no impulse response from the spike during sifting.
However, if the spike lies on the original spline point or covers the originally existing extrema,
the knot interval becomes twice the original interval at this location (Fig. 2-1(c)). This lowers

the frequency of the spline and may result in another mode-splitting problem in which mode
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s;(t), with t close to t,, is advanced to mode c;_;(t). In Sec 3.6, we will demonstrate this

problem with a real example.

3.5 MA-EMD

3.5.1 Minimum arclength criterion

The alternative way is to keep all knot positions ¢, but find a replacement X,,_for the
spike point x,_in Eq. (3-2). In this study, we propose minimum arclength criterion to achieve
this. Given a spike point (t,_, x4, ), we find a new (¢, £,_) such that

%o, = argmin, {F (U(t|ya = Xq, A # A5} Vg, = y))} (3-8)

where

N I 2
FU(t ) = jo t j1+(dU§§' )) dt (3-9)

is the arclength of U(t| -). Then, the modified spline is created by the new series of maxima
with impulse point replaced by (t,,, 4, ). Fig. 3-2 is an illustration of our proposed method.
Here, the arclength is calculated over all the maxima points. However, this can be time
consuming when the signal is long. In our experience, minimizing the arclength over 10
maxima points near the spike points is sufficient.

For all spike points in GM, each point is processed consecutively. For the case of
multipoint spike, the spike detection algorithm will mark two or more consecutive points on
one single spike. (Here, we regard the whole structure as one single spike.) Minimizing the
arclength point by point may not achieve the optimal result. The solution to this problem can

be studied in future works.
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The modified algorithm of EMD is shown as Algorithm 3. Comparing it to Algorithm
1, we added our protocol of detecting spike points and replacing them only in the first IMF

(i.e. when k = 1). The rest of the IMFs are processed in the same way as EMD.

Algorithm 3: Spike extraction by EMD with minimum arclength method (MA-EMD)
algorithm

(1) Define x%° £ x(t). Starting with k = 1 and p = 0. Set x1°(t) = x(t)
(2) Identify all the maximum {(t,, x,)} and minimum {(t,, x;)} of x*°(t)
(3) If k = 1, find the subset of maximum impulses G" = {(t,, x4,)}, i = 1 ...n5py, and also

find the subset of minimum impulses GY = {(taj,xaj)},j = 1.. gy, Where ng,, and

ngpn are the total number of points regarded as maximum impulses and minimum
impulses, respectively.

(4) Start with i = 1, find minimizer (t,,, £,,) to minimize the arclength of upper envelope
U(t|xq)-

(5) Replace (tq,, xq,) With (tg,, Z4,), and form the new set of maximum points (¢, £,).

(6) Repeat (4) and (5) for i = 1...ngp,.

(7) For each j = 1...n4,,, find minimizers (tbj,y?bj) to minimize the arclength of lower
envelope L(t|xp), consecutively. Then, replace (tbj,xbj) with(tbj,a?bj). Form the new
set of minimum points {(t;, X;)}

(8) Derive the new upper and lower envelope U(t|X,) and L(t|x,), respectively, according
to the new set of maxima {(t,, X,)} and minima {(t;, X;)}.

(9) Perform step (4)-(5) in Algorithm 1, which is to derive the local mean m(t) and subtract
it from the present signal to form the temporal signal

(10)  x'PH(E) = xMP () —m(0)
(11)  Repeat (3)-(8) for p = 0---ng, — 1, and derive the first IMF, ¢, (t).
(12) For k > 1, the steps are the same as steps (2)-(9) in Algorithm 1 of EMD.
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3.5.2 Mathematical foundation

During the sifting process, a spike problematically produces new extrema and creates
a local high-pass filter. With the minimum arclength criterion, suppose that the spike point is
(ts, x5) and that its nearby extrema are (t,_,,xs_;) and (ts,1, xs4+1). We approximate the
third-order polynomial curve using a first-order polynomial, i.e., a straight-line segment (Fig.

3-2). This generates a triangle Ax,_;xxs,1. According to geometry, the sum of the lengths

of any two sides x;_;x; + x;x5,, Of a triangle is greater than the length of the third side
Xs_1Xs+1- Thus, if the minimum arclength x;_;x,, is satisfied, we have no new extrema at

X

C(ta,+1.Xa,+1)

EIEI 2I5

Figure 3- 2. Optimal replacement (pentagram) of spike point (A) found using the minimum
arclength criterion.

The new envelope (green) has no new extrema at the spike position compared to the old envelope
(blue). We approximate the cubic spline between points B-A and A-C by straight lines (orange). The

triangular inequality guarantees that, under the minimum arclength criterion, there are no new
extrema between B and C.
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3.5.3 Simulation verification

We conducted two simulations to show the additional extrema within an envelope
owing to the spike and their effect on mode splitting. The first is a composite signal of two
pure sinusoids with S; = 0.3 cos(2m * 5t) and S, = cos(2mt), t € [0,10]. The added spike,
Sy, shifts from t =5 to t = 5.2 and varies in height from 3 to 100 (Fig. 3-3). In each
realization, we decompose the signal using a conventional EMD and our proposed MA-EMD
(Figs. 3-4 and 3-5). In addition, we calculate the number of newly added extrema (NE)
defined in Sec. 3.3. The mode splitting index (MSI) defined in Sec. 3.2 is then calculated as
a measure of how extreme the mode-splitting is from S, to IMF 3. In our first example, the
frequency of S, is 1; thus, w = {1}.

With the second simulation, we aim to decompose a signal composed of a randomly
generated low-frequency signal S, and a high-frequency sinusoid S,. A spike Sy is added to
interfere with the decomposition. S; is generated by filtering white noise with a 4-6 Hz
bandpass filter; S, is again a sinusoid with an amplitude of 0.6 and a frequency of 15. In each
randomization, we first generate S, and S;. The spike Sy with height H is then added to the
signal (Fig. 3-6). Decompositions by EMD and MA-EMD are applied on all H € [1,51] with
an increment of 5. The NE of the upper envelope in the first sifting when finding the first
IMF and the MSI for IMF 3 are also calculated for each decomposition. Here, w for the MSI
is set to 4-6 Hz. We applied 20 randomizations for each height. Finally, the NE and MSI for
all randomizations with the same height were averaged. All the simulations are performed in
Matlab 2018b. The program for MA-EMD is modified from the EEMD of Wu and Huang

[17], and the program for EMD is from the latest version by Wang et al. [37].
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The results are shown in Figs. 3-4 to 3-7. In both simulations, three findings were
observed. First, the spike generated new extrema in the upper envelope in both the single-
tone sinusoid and the randomly generated low-frequency signal. When the height of the spike
is sufficiently large, NE is more than 1, i.e., more than the spike itself (Figs. 3-4 and 3-7).
Second, the NE value generated is positively correlated with the height of the spike. Third,
the MSI increases with an increase in NE. In addition, the MSI occasionally exceeds 1 by a
large margin. This means that a spurious amplitude that does not exist in the original signal
is created during the decomposition. In contrast, our MA-EMD generates no new extrema

and therefore maintains a zero MSI.

in
=}

Inputsignal

10

(=]
(8]

Figure 3- 3. Simulation 1: decomposing a two-tone signal with spikes of different heights and
positions.

The figure shows one of the simulated spikes (S, green), the high-frequency pure sinusoids (S, red),
and the low-frequency sinusoid (S5, blue). The summation of S, S, and S, is the input (black) for
EMD and MA-EMD. In this example, the height of the spike is 3, and its position is at 5.08.
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Figure 3- 4. The results of simulation 1 by EMD.
(@) The original signal (black) in Fig. 3-3 and the IMFs through EMD (purple). (b) The NE of the
upper envelope in the first sifting when finding IMF 1. (c) The MSI of IMF 3.
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Figure 3- 5. The results of simulation 1 by MA-EMD.
(a) The original signal (black) in Fig. 3-3 and the IMFs through MA-EMD (orange). (b) The NE of
the upper envelope in the first sifting when finding IMF 1. (c) The MSI of IMF 3.
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(c)
Figure 3- 6. Simulation 2: decomposing a randomly generated low-frequency signal with a
high-frequency sinusoid and a spike of different heights.

(@) One of the simulations in which the height of the spike is 6. (b) IMFs derived by EMD. (c) IMFs
derived by MA-EMD.
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Height of spike

@

Height of spike
Figure 3- 7. The results of simulation 2 by EMD (black) and MA-EMD (red).
(a) NE of the upper envelope is calculated in the first sifting when finding IMF 1. (b) The MSI of the

IMF 3. The circles represent the average values for 20 randomizations; the error bars represent the
standard deviation.
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3.5.4 Comparative accuracy analysis

To test the effect of background noise on the performance of the proposed method,
we applied the decomposition of a sinusoid mixed with a spike under different noise levels
and compared the results with those of a state-of-the-art variation of EMD. As with
simulation 1 described in the previous subsection, the sinusoid is S, = cos(2nt), t € [0,10].
The spike is located at t = 5.6, and the height H is 3, 13, and 23 in different simulations. We
added white Gaussian noise with varying signal-to-noise ratios (SNR) of
{20,15,10,5,0,—5} dB. The sampling frequency is 30. For each combination of the spike
height and SNR, 100 randomizations were applied.

We chose to use multilevel uniform-phase EMD (UPEMD) [21] in the comparison
because it has been shown to achieve a better performance than the other disturbance-assisted
approaches in reducing the mode-splitting effects and residual noise effects. We chose eight
phases and three levels. The frequencies of the perturbed sinusoids are 8.7, 4.3, and 2.1 for
each level, and the amplitudes are all 1.4. For our MA-EMD, the masking frequency is set to
7 with amplitude = 0.4. After removing the spike from MA-EMD, the same UPEMD was
applied to extract S;. Traditional EMD was also applied on the same simulation as a
comparison. In all three methods (EMD, UPEMD, and MA-EMD), the mode-splitting index
(MSI), in which w = {1}, is calculated for IMF 5. In addition, the mean square error (MSE)
of IMF 4, compared to the sinusoid, S;, is calculated as a measurement of the reconstruction
accuracy.

The results of our simulation are shown in Figs. 3-8 and 3-9. Note that the calculation
of MA-EMD in Eqg. 3-8 is the same for spikes of all heights because we have a single point

spike with a very large slope. Thus, the results are the same for spikes of all heights. As
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mentioned in the introduction, UPEMD acts similar to a high-pass filter for each IMF; thus,

in the resultant IMFs, the spike is split into all of the IMFs. As a result, pure UPEMD is

perturbed by a spike, resulting in a mode-splitting problem in which components with a

frequency of 1 are present in both IMF 4 and IMF 5. When the spike is small, the

performances of MA-EMD and UPEMD are similar. When the height of the spike increases,

UPEMD results in larger MSI and MSE. Nevertheless, the original EMD performs the worst

in the presence of the same spike heights and SNRs.
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Figure 3- 8. Comparative accuracy analysis: decomposing a sinusoid with a spike under
different SNRs using EMD, MA-EMD, and UPEMD. The SNR =0 dB in this example.
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Figure 3- 9. The results of the comparative accuracy analysis.

(a) Mode splitting index (MSI) of the IMF 5. (b) Mean square error (MSE) of the IMF 4. The circles
represent the average values for 100 randomizations, and the error bars represent the standard
deviation. Note that the results of MA-EMD are independent of H.
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3.6  Comparison between skip and MA-EMD

As discussed in Sec 3.4, SK-EMD is efficient but might lower the frequency response
of the sifting due to reduced number of extrema. On the contrary, MA-EMD may increase
the frequency response and is computationally more complex. Regarding the possibility of
losing or adding new extrema, one possible policy to choose between the two methods is to
compare the extrema interval at the spike point and the other locations. When losing the spike
points as knots does not differentiate this knot interval from the average of knot intervals,
SK-EMD may work well without problem of mode-splitting. Similarly, if skipping the spike
makes the knot interval too large, MA-EMD can maintain the knot intervals in spline. This
often occurs when the spike is of the shape of a triangle and masks the original extrema.

Fig. 3-10 demonstrates the mode-splitting problem in SK-EMD on the example of a
set of core body temperature (CBT) data in which triangular spikes occur. The CBT data is
from a thermistor probe in the anal sphincter, recorded every 6 minutes. We can observe the
circadian rhythm in which a cycle length is around 1-day (Fig 3-10(a)). The triangular spikes
are resulted from showering. In the analysis of circadian, we aim to extract the 1-day
component in exactly one IMF. In conventional EMD, there is some mode-splitting effect on
days 4 and 5, as can be seen in the time domain signal and spectrogram (Fig. 3-10(b) and (c)).
On the contrary, when skipping these spike points, the 1-day component during this period

advances to IMF 4 (Fig. 3-10(d) and (e)) due to the dOecreased extrema rate.
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The resultant IMFs of different decomposition methods. (c,e,g) The spectrogram of the IMFs. (b,c)
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Chapter 4. Masking-aided minimum arclength EMD

4.1 Introduction

The MA-EMD tracks the local mean without the influence of spikes. This indicates
that the spikes are left in the first mode (IMF 1). However, if we want to separate the spikes
from the first IMF, we propose the Masking-Aided MA-EMD (MAMA-EMD) [38]. The
masking EMD [20] uses a pair of high-frequency sinusoids (positive and negative) in two
separate EMD algorithms and then combines the results by averaging the IMFs. The idea is
to insert a high frequency masking signal, the single sine tone w(t), to the original signal to
prevent lower frequency components from being included in this IMF. Then, perform sifting
algorithm on x*(t) = x(t) + w(t), the resultant mode c* contains only spikes and the
single sine wave. We repeat this algorithm on x~(t) = x(t) — w(t) and derive c~. When
averaging ¢* and ¢~, the added masking signals were compensated. Thus, we have the new
“first IMF” (IMF 0) that contains only spikes and some very-high-frequency components
(most of time noises), leaving the IMF 1 free of spikes. The algorithm of our proposed
masking-aided minimum arclength EMD (MAMA-EMD) is in Algorithm 4.

MAMA-EMD applies the MA-EMD in both masking algorithms. When the sinusoids
are properly chosen, the spikes can be isolated in the previously non-existed IMF (IMF 0).
Note that directly using the masking EMD can’t separate the spike; instead, masking EMD
serves as an adaptive filter that extracts only a high frequency components of the spike. The

next section discusses how to find the appropriate amplitude a,, and frequency f;, for the
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masking signal. A numerical simulation in Section 4.3 is performed to validate the effect of

different a,, and f, on separating a spike signal from a single tone sinusoid.

Algorithm 4: Spike extraction by masking aided minimum arclength EMD

(1) Perform steps (1) — (3) in Algorithm 3 to detect spike points when k=1.

(2) Perform EMD to derive the first IMF. Analyze its peak-power frequency f; and power
ar.

(3) Analyze the slope of each spike, choose the smallest, call it s;
(4) Find the proper frequency a,, and amplitude f;,, such that they meet both (10) and (15).
(5) Generate masking signal w(t) = aysin(2mfy,t)

(6) Perform steps (4)-(5) in Algorithm 3 on x*(t) = x(t) + w(t) to obtain IMF ¢;’, and
similarly on x~(t) = x(t) — w(t) and obtain ¢,

(7) The resultant IMF is defined as ¢, = (¢5 + c;)/2.
(8) For k>1, the steps are the same as Algorithm 3.

4.2 Determination of masking signal

The inserted sinusoid should create no extrema on the spike, and allow EMD to
separate itself from the original signal. According to Rilling and Flandrin [26], given two
sinusoid S, (t) = a;, cos(2mf,t) and Sy (t) = ay cos(2mfy,t), the necessary conditions to

separate these two signals are

afy <land f, <2/3 (4-1)

where

a, = ay/ay and f. = f/fu. (4-2)

Similarly, there should be no extrema on the morphology of spike. For simplicity, we

assume that the spike is a triangular-shaped signal ascending within the time range [t,, t,,] at
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a slope s;. In other words, the signal is T'(t) = s(t —t,), when t € [t,, t,]

extrema point is equivalent to solving the equation

d
ZT(®) +5y] = 0

In other words,

dSy dT

_M + —

dt dt

No extrema points means that the above equation has no solutions. Namely,

= 2may fy cosrfyt) +s =0

2 t) =
cos(2mf,t) 2l
is not solvable. This leads to
S >1
2nay fu
Thus,
2nay fy <Ss.

. Finding the

(4-8)

(4-4)

(4-5)

(4-6)

(4-7)

The derivation above is based on an ideal situation where the signal to be separated

is a pure sinusoid. In practice, we aim to use this method to separate spikes from the first

IMF derived from EMD. Thus, the a; and f; can be the peak-power frequency and power of

the first IMF. Therefore, to remove the effect of spike, we first detect the spikes and then find

a proper masking frequency by analyzing the slope of the spike and the frequency of the first

IMF from EMD to meet both Egs. (4-1) and (4-7).
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4.3 Simulation verification

4.3.1 Single Sinusoid

To validate our derivation of appropriate masking signals, we test the effect of
different amplitude and frequency of masking signal in MAMA-EMD in extracting a spike
from a single tone sinusoid. Without loss of generality, we set the frequency of the single-
tone sinusoidal signal to be 1, since the filtering property of EMD is only related with the
ratio of two frequencies, f,., and amplitudes, a,., of the pure sinusoidal signal and the added

masking signal. The simulated signal and its components are S(t) = S, (t) + S,(t), where

S, (t) = cos(2mt) (4-8)

and

200t —380 if2<t<2.05
Sp(t) =1—200t +420 if 205<t<21 (4-9)
0 otherwise

Then, a masking signal w(t) = aysin(2nf),t) is added to assist separating S, (t) and S, (¢).
Next, we vary the masking amplitude a,, from 0.01 to 100, and frequency f;, from 0.95 to
20. The sampling frequency is 100Hz. Fig. 4-1 shows the time-domain waveforms of S(t)
and its two components. The result of separation is evaluated by the mean squared error
(MSE) between the extracted IMF2 (sinusoidal) and S, (t).

Fig. 4-2 demonstrates the MSE of IMF2 versus f, and a,,. As expected, the proper
frequency and amplitude of masking signals is bounded by Egs. (4-1) and (4-7). At the left
hand side of the curve of 2ma,, f); = s, the spike is not separable from the w(t). Meanwhile,
at the right hand side of the curve, a,.f, =1 and f,. < 2/3, the masking signal is not

separable from S, (t).
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Figure 4- 1. The simulated signal and its decomposed IMFs.
The signal S(t) is a combination of the triangular spike S,,(t) (c, black line) and pure sinusoid Sy (t)
(d, black line). (b) A demonstration of summation of the signal and added masking sig (black solid
line). The upper envelope (blue line) is connected by the adjusted extrema. The baseline (green line)
is the average of the upper and lower (dashed blue line) envelop. (c) The triangular spike S, () (black

line) and the first IMF from MAMA-EMD (red line). (d) The pure sinusoid S, (¢t) (black line) and the
second IMF from MAMA-EMD (red line)
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4.3.2 Duffing wave

We use nonstationary Duffing wave with artificially added spikes to demonstrate that
the proposed method extracts, maintains the non-linear and non-stationary properties of EMD
and suppresses the mode-splitting effect. Duffing wave can be understood by the motion of
a pendulum with non-linear stiffness. The Duffing equation has the form in Eq. (3-4). We
add three spike signals with slope 5, -8 and 10, and height 1.5, -1.3 and 2.9, respectively, and
get spike-contaminated signals. The original Duffing wave, the spike signal as an artifact,
and the spike-contaminated signal is shown in Fig. 4-2(a-c).

The IMFs from EMD by decomposing the Duffing wave serve as the ground truth of
the decomposition. Three IMFs were derived from the decomposition (Fig. 4-3). The first
IMF corresponds to the intrinsic frequency around 0.1 Hz which shows strong intra-wave
frequency modulation structure; IMF 2 corresponds to a uniform intermediate frequency
component representing the forcing function. The sub-harmonic term is the evidence for the
non-linearity of the system. Moreover, its amplitude is very small, which means any error
will destroy the waveform of the sub-harmonic motion; IMF 3 represents a very low-intensity
sub-harmonics.

The decomposition results by EMD on the perturbed signal is shown in Fig. 4-3(d-f).
Under the influence of spikes, the IMFs are disturbed, resulting in a mode-splitting effect,
where the original 0.1 Hz signal is distributed in both IMF 1 and 2. Hilbert spectrum also
shows the frequency shift from 0.1 Hz to three times larger in IMF 1 (Fig. 4-4(a)). The 0.1Hz
during this period (80-100 sec) is split into IMF 2.

Then, we decompose the perturbed signal by the proposed method. Since the input

signal itself is smooth and without noise, we use MAMA-EMD where a high frequency sine
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wave is added in the first step to increase extrema points, so that the baseline, i.e. the signals
except spike, can be depicted during sifting. The masking signal here has a frequency f; =
200 and an amplitude a,, = 3.5. The result of our decomposition is depicted in Fig. 4-3 (g-
j). In comparison to EMD, our MAMA-EMD method extracted the spike signal in the first
mode, which is labeled as IMF 0 to avoid confusing with the original IMF 1. Afterwards, the
later IMFs can be successfully recovered from the decomposition. Compared to the ground
truth, our method only differs from the ground truth around both edges. The MAMA-EMD

derived IMFs clearly depict the intra-wave frequency modulation in Hilbert spectrum (Fig.

4-4(b).).
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Figure 4- 3. Surrogated nonstationary Duffing signal contaminated by triangular spikes, and
its decomposition by EMD and our proposed MAMA-EMD, respectively.
(a) Duffing wave. (b) The spike signal as a perturbation. (c) The spike-contaminated signal as the
input for EMD and MAMA-EMD. (d-f) The blue lines are results of EMD on (c), and the black lines
are from EMD on pure Duffing wave in (a) as the ground truth. (g-h) The red lines are MAMA-EMD
on (c). The black lines in (h-j) are the same as the black lines in (d-f) but in different scales. Note that
with MAMA-EMD method, the triangles are extracted, and the mode-splitting effect in (d-e), in
which the 0.1Hz component in the first IMF of black line is split into IMF 1 and 2, is alleviated.
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Figure 4- 4. Hilbert spectrum showing the frequency overlapping caused by spikes.
(@) IMF 2-4 by EMD. (b) IMF 1-3 by MAMA-EMD.

4.4 Limitations

To use a masking signal, the frequency f, and amplitude a,, of the added sinusoid
Su(t) = aycos(2m ft) must be determined. The criteria for choosing the frequency and
amplitude of the added sinusoid were also proposed in Egs. (4-1) and (4-7). However, there
are some situations in which the spike is not separable from the first IMF even with the aid
of a masking signal. The nature of EMD lies in the local means determined by the rate of the
extrema [11], [42]. To separate the spike from the first IMF, the masking signal S,,(t) should
produce new extrema on the first IMF but not on the spike itself. Suppose the spike has slope

s and that the peak-power frequency and power of the first IMF are a; and f;, respectively.

This gives

apfi/amfu < landf,/fu <2/3 (4-10)
and
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Combining the above two inequalities, we have

> 1. (4-12)

s/2m > ayfy > aLfi. (4-12)
When Eq. (4-12) does not hold, we cannot find a masking signal to separate the spike and the

IMF; this implies the following:

s < 2maf;. (4-13)
Note that this inequality implies that the background signal has extrema exposed on the spike.
That is, if the spike is insufficiently sharp, we cannot separate it from the background even

with the aid of masking signals.

4.5 Examples

4.5.1. Electrical current

Electrical current surge is a common problem in automatic control system.
Conventional method of processing this signal is to use a linear low-pass filter, which does
not remove the spikes effectively. Here, we demonstrate the performance of our proposed
MAMA-EMD in solving this problem comparing to a Fourier-based low pass filter and
traditional EMD.

The data were phase currents measured from three-phase AC servomotor (YBL-9D,
Ye Li Electric & Machinery Co.,LTD) at 300rpm. The current values were transferred to
voltage values by the current sensors. After filtered by RC low pass filter, the analogue
voltage was converted to digital data by the microcontroller (STM32F103). A 3.3V 12-bit

1KS/s analog-to-digital converter was used.
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The time domain signal and the Fourier spectrum are shown in Fig. 4-5(a,b). The
spikes on the signals were cause by MOSFET switch on the three-phase inverter of the motor
drive, and the frequency of switching was 10 KHz. The instantaneously switching would
cause the current surges, resulting in the spikes on the signals. Furthermore, the
microcontroller and the peripheral circuits would also generate high frequency noise. The
phase current cycle represents the rotation of the engine. The harmonic (~40 Hz) in the
Fourier spectrum showed that the signal is not pure sinusoidal.

First, the signal is filtered by a low-pass FIR filter with pass band equals to 15Hz. Fig.
4-5 (c) shows the results of filtering. Since a spike has a very wide band in Fourier spectrum,
the designed filter can only decrease the height of spikes.

The decomposition result derived by EMD is shown in Fig. 4-6(a), where only the
first 6 IMFs are given. The spikes even in the non-spike region disturb EMD, resulting in the
mode splitting problem during the 0.2-0.4 second.

Then, the data is processed by our proposed MAMA-EMD. The spikes were first
detected by the median filter described in Section 2.2 with window size 20 and threshold 1.5.
The extrema detected as spikes are shown in Fig. 4-6(b, panel 1). Then, the first mode is
derived from adding a masking signal with frequency f,;, = 200 and amplitude a,; = 3.5. It
can be observed that, our MAMA-EMD extracted the spikes and some high-frequency noise
in the first IMF (Fig. 4-6 (b, panel 2)). The rest of the signal contains no spikes can be further
processed by traditional linear filters or EMD. Here, we demonstrate the IMF 1-5 of
decomposition results by EMD. In summary, it shows that our algorithm is capable of

removing the spikes, and improves the decomposition of the rest modes.
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Figure 4- 5. Electrical current data.

(a) The time domain signal. (b) Frequency spectrum. The arrow indicates the harmonic at 40Hz. The
spikes cannot be removed by a 15 Hz low-pass filter (c).
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Figure 4- 6. Intrinsic mode functions of the electrical current data (IMFs) derived from EMD
(a) and MAMA-EMD (b).
In (b), the first panel showed the original signal (black line) and the points detected as spikes (red
circles). Panel 2-6 demonstrate the decomposition by our propose method. The first IMF contains the
spikes and some high-frequency noise. The last panel shows IMF 5 that depicts the low frequency
wave.

4.5.2 Rotor test rig

Vibration signals from rolling element bearing is adopted to verify our proposed
method on realistic data. The faulty mechanical components often result in impulses-like
vibration signals. These spikes, although including useful information, may cause mode
mixing effects when decomposed by EMD. In fact, moderate de-noising before

decomposition or filtering has been proposed to improve the fault detection algorithm [30,

48

doi:10.6342/NTU202000887



39]. In the example demonstrated in this section, we show that our method can extract spikes
in the first IMF and improve the accuracy of later analysis.

The experimental data are provided by Center on Intelligent Maintenance Systems
(IMS), University of Cincinnati [40]. In this run-to-failure test, four Rexnord ZA-2115
double roll bearings were installed on one shaft. Each bearing was equipped with two PCB
353B33 High Sensitivity Quarts ICP® Accelerometers (x and y axis). Vibration data was
collected for 1 second every 20 minutes for 164 hours with a sampling rate of 20 kHz, and
the length of each data is 20480 points. The rotation speed is kept constant at 2000 rpm
(rotation frequency f,. = 33.3 Hz), and a radial load of 6000 Ib. was applied onto the shaft
and bearings by a spring mechanism. At the end of the test-to-failure experiment, an inner
race defect occurred on bearing 3. The inner race fault frequency f; is 296.9 Hz.

Fig. 4-7(a) shows the time-domain waveform of the vibration signal. Note that our
spike detection is defined on differences to extreme values of nearby extrema, not the
absolute value of the spike point, and thus some of those seemingly large values are not
detected as spike if its nearby extrema is also large (Fig. 4-7(b) and (c)). This provides an
advantage to maintain the resonance excited by the impact of default.

The decomposition results derived by EMD and MAMA-EMD are shown in Fig. 4-
8, where only the first 5 IMFs are presented. We performed envelop spectrum on IMF2 and
3. The envelop spectrum is the Fourier transform of the envelope of the signal. From the
envelope spectrum derived from IMFs of both methods (Fig. 4-9), the inner race fault

frequency (f;= 296.9) and its modulation with rotation frequency (296.9+33) can be found

from IMF 2. However, our proposed method has a lower noise level and clearer peaks in both

IMF 3, and clear peaks on the rotation-related frequencies 2f,. and 4f,..
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(a) and (c) are components from IMF 2; (b) and (d) are components from IMF 3.

4.5.3. Cyclic alternation pattern subtype classification in sleep electroencephalography
Neuronal signal often presents different shapes of spikes. In this section, we showed
that the extracted spikes can be used as a feature preserving its physiological significance.
The cyclic alternating pattern (CAP) is a periodic EEG (Electroencephalography) activity,
which is characterized by sequences of transient electrocortical events that are distinct from
background EEG activity. The CAP may signify sleep instability, sleep disturbance, or both
[41]. CAP is composed of transitions between Phase A, identified by high-voltage slow
waves, and the low-voltage irregular activity of at least 2 seconds (Phase B) (Fig. 4-10).
Phase A activity can be classified into three subtypes based on the reciprocal proportion of
high-voltage slow waves (EEG synchrony) and low-amplitude fast rhythms (EEG

desynchrony) throughout the entire phase A duration. According to the standard, the
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proportion of EEG desynchrony occupies <20%, 20-50% and >50% of the entire phase A
duration in subtype A1, A2 and A3, respectively [42]. Subtype A1 marks the brain’s attempt
to preserve sleep; subtypes A2 and A3 often coincide with a frank EEG arousal. Specifically,
85% of subtypes A3 and 62% of subtypes A2 meet the AASM (American Academy of Sleep
Medicine) criteria for arousals.

Here, we regard the high-voltage slow waves as spikes. By separating them from the
background EEG, we can define the relative proportion of time between EEG synchrony and
desynchrony and distinguish different phase A subtypes. The EEG is first processed by
masking EMD to remove the first 4 IMFs which contain high frequency information (Fig. 4-
11). The residual signal is then processed by MAMA-EMD to extract spikes. This extracted
signal, called IMF 455, which contains spikes is used to calculate proportion of EEG
synchrony, defined as the proportion of time IMF 4sp is above or below a threshold (£4uV).
We test our algorithm on the CAP Sleep Database [42, 43]
(https://physionet.org/pn6/capslpdb/#ref02). This database includes polysomnography
recordings, and the sleep microstructure is labeled by a team of trained neurologists. We use
EEG recordings of the bipolar derivation C3-A2 from one of the normal subjects (n9) as an
example. A total of 317 phase-A segments were analyzed.

Fig. 4-12 summarizes the result of our thresholding method on the three subtypes.
The proportions of time with EEG synchrony are significantly different among the three

subtypes (P<0.05).
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Figure 4- 10. An example of CAP cycles in 4 EEG channels (Fp2-F4, F4-C4, C4-P4 and P4-
02).

A CAP cycle is defined as a sequence of 2 alternating EEG patterns called phase A (indicated by red
line) and phase B. Phase A is composed of high-amplitude EEG bursts which stand out from the
background rhythm (phase B) in all the EEG channels.
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Figure 4- 11. An example of CAP cycles. A CAP cycle is defined as a sequence of 2 alternating
EEG patterns called phase A (indicated by red line) and phase B.
Phase A is composed of high-amplitude EEG bursts which stand out from the background rhythm
(phase B). Decomposition of the three different phase A subtypes, including subtype Al (a-e), A2 (f-
j) and A3 (k-0). The red horizontal lines indicate occurrences of A phase. The original signals (a,f,k)
are first decomposed by masking EMD to remove the first 4 IMFs (b,g,i). The residual signals (c,h,m),
derived by subtracting IMF1-4 from the original signal, are then processed by MAMA-EMD to
extract the high-amplitude spikes (d,i,n). We then set up a threshold (£4uV, blue lines in d,i,n) to
identify whether the extracted spikes are above/under this threshold. The proportion of time that the
spikes are above/under this threshold (indicated by blue areas in e,j,0) is distinguishable among
different phase A subtypes. The blue arrow in IMF 1 of (I) indicates EEG arousal, which is often
observed in subtype A3.
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Chapter 5. Application of MAMA-EMD on P-wave extraction for

detection of potential atrial fibrillation patients

5.1 Significance for AF detection

Atrial fibrillation (AF) is a most common arrhythmia with an estimated prevalence of
1-4% in the general population [44]. Adults with AF are under a 5-fold greater of risk of
stroke, 1.5-fold greater risk of all-cause mortality, increased risk of development and
mortality of heart failure and higher risk of dementia [45]. Independent of other associated
cardiovascular conditions, quality of life in AF patient is impaired [46]. The diagnosis of AF
requires an electrocardiogram (ECG) documenting the typical AF rhythm. For potential
patients with AF symptoms, general procedures in hospitals are usually an ECG Holter
device which would be brought back home and used to record for 24-hr. Recent development
of wearable devices with dry-electrode which enables patients to start recording only when
symptoms occur [47] is another solution. However, for some AF patients, undiagnosed is
common due to asymptomatic (‘silent AF’) and paroxysmal occurrence of AF [48]. Identify
and determine potential AF patients under sinus rhythm during regular 12-lead ECG

examination is crucial and beneficial for further prolonged systematic screening.

5.2 Recent works related to AF detection under sinus rhythm

There has been increasing evidence showing the structural changes in the atrial that
develop atrial fibrillations [49], and these structural changes may reflect on the 12-lead ECG.

Using 180922 patients with 649931 normal sinus rhythm ECGs, Attia et al. showed a 79%
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accuracy in diagnosing AF patients under sinus rhythm with a 10-layer 1-D convolutional
neuron network (CNN) on the eight physical leads in 12-lead ECG [50]. However, the critical
features and clinical implications involved in the classification could not be revealed in the
1D CNN. The major challenges in identifying AF feature is the non-prominent P-waves in
ECGs. Here in this study, we develop a method to isolate P-wave from ECG, and formulate
P-wave related features which are free from interferences of QRS complexes. The aim of this
study is to use feature based analysis to identify viable biomarkers for detecting AF patients

under sinus rhythm.

5.3 Method for P-wave analyses

5.3.1 Subject selection

We included all digital-available standard 10-second 12-lead ECG recordings from
the Taipei Medical University Hospital between January, 29, 2015 and March, 07, 2020. A
total of 94224 digital ECG recordings from 64196 patients were collected and de-identified.
All ECG were recorded in the supine position by a trained physician at the sampling rate 500
Hz. All the recordings are diagnosed by trained cardiologists. The Taipei Medical University
Hospital Review Board approved waiver of the requirement to obtain informed consent in
accordance.

To select the recordings for identifying characteristic of potential atrial fibrillation
during sinus rhythm, we first identified patients who are positive for atrial fibrillation by
having at least one atrial fibrillation rhythm in these ECG recordings (Fig. 5-1). Many
patients had multiple recordings over the inclusion period. To maintain the time dependence

with atrial fibrillation instance, we defined a collection window of 90-days prior to the first
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atrial fibrillation record. We consider only the ECG recordings marked as sinus rhythm, and
287 recordings from 213 subjects are selected according to these rules. Among them, the last
ECG record diagnosed for each subject was included for the analysis.

The subjects for the control group were selected to comply with all the following
criteria: (1) Each subject has at least 2 ECG recordings. (2) All the ECG recordings from the
same subject are sinus rhythm. (3) Subjects have no ICA 10 codes of AF in their electronic
medical records. A total of 3588 subjects meets the above criteria. Then, to avoid the effect
of age on the ECG features, we use stratified sampling to ensure similar age distribution
between AF and control groups. We set a 10-year age bin, and randomly sampled the subjects
from each of the age groups between 50-70 to maintain the number of selected subject 2
times the AF group. The total number of selected control subjects are 247. After the subject

list is determined, the first ECG recording for each subject were chosen in the analysis.
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ECG recordings and diagnosis
(94224 files from 64196 patients)

Patients with ECG
diagnosed as AF
(7324 files, 2271 patients)

Patients with sinus rhythm
(2183 files, 780 patients)

Patients with ECG within 3
months before first AF
(287 files, 213 patients)

The first recording of each
subject
(213files)

AF

Figure 5- 1. Subject selection diagram.

5.3.2 ECG Signal processing

Subject inclusion criteria:

(1) Each subject has at least 2 ECG
recordings.

(2) All the ECG recordings from the same
subject are sinus rhythm.

(3) Subjects have no ICA 10 codes of AF in
their electronic medical records.

(10321 subjects)

Stratified selection in each age group
(247 subjects)

The first recording of each subject
(247 files)

Control

The scheme for this study comprises of signal processing, feature extraction and

statistics. The complete flow chart of this study is in Fig. 5-2. Details for each step are given

below.

Signal Filtering

P-wave

Beat ali t
eat alignmen extraction

N

PCA transform

Group
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Logistic
regression &
ROC curve

P-loop descriptor

Inter-lead P-
wave distortion

ECG delineator

Morphology Survival curve
features

Figure 5- 2. Flowchart for the ECG processing and feature extraction for this study
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5.3.2.1 Noise filtering

Electrocardiagrams were resampled to 500 Hz. We first filter the baseline wonder by
discrete wavelet decomposition. The ECG is decomposed with symlet 10 wavelet at level 8.
The 8th approximate coefficient was set to zero to remove the very low frequency component.
Then, the filtered signal was reconstructed using an inverse wavelet transform. Afterwards,
a high pass filter with cutoff frequency equals to 32 Hz was applied. Some of the devices
encountered artifacts in the first or last 0.5 sec and these artifacts were removed. Therefore,
the length of the ECG recordings that are available for analysis ranges from 6.6-10.9 sec.
5.3.2.2 ECG Delineator

To identify the critical points on ECG for the later P-wave extraction and ECG
morphology features, we used an open-source QRS detector and waveform limit locator,
ECGPUWAVE [51], which has excellent performance for P-wave and QRS detector. Q-, R-,
S-wave and the onset and offset of P-wave were identified for further processing.
5.3.2.3 P-wave extraction

The P-wave of an ECG reflects electrical activity originated from the atrial. Thus in
this study, we aim at extracting features from P-wave. Our previously developed ECG
features by the VCG and PCA will be largely influenced by the QRS wave and T wave which
dominates ECG in amplitude and time, and thus we proposed a two-step algorithm to isolate
P-wave from the ECG. The QRS wave was first removed by MA-UPEMD. Then, the baseline
and T-wave of the QRS-removed ECG was delineated and subtracted by applying the MA-

UPEMD again.
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The EMD is an iterative algorithm which adaptively decomposes an input signal x(t)
into several IMFs. Each IMF is an oscillatory component with a characteristic frequency
scale. In each iteration to derive an IMF, a series of sifting process is performed, including
the following steps. (1) Identify local maxima and minima. (2) Calculate the upper/lower
envelope by interpolating the local maxima/minima with a cubic spline. (3) Take the mean
curve by averaging the upper and lower envelopes. (4) Subtract the mean curve from the
signal. The steps (1)-(4) is repeated several times (usually 10) and the residual is an IMF. By
subtracting the IMF from the x(t) and repeating the sifting steps, several IMFs can be derived.

The MA-UPEMD is a combination of the two newly developed modification of EMD
-- MA-EMD and UPEMD. With the MA-EMD, we aim at extracting spike functions of a
signal in the first IMF. During each sifting for the first IMF, the height of extrema on the
spike were adjusted to minimized the arclength of the cubic spline. This way, the spike is left
with the residual after subtracting the mean curve. To remove the QRS-complexes, the Q-,
R-, and S-waves are treated as spikes in MA-EMD. To improve the performance of QRS
extraction and limit the range of cut-off frequency extracted by the MA-EMD, we further
applied UPEMD, which has been shown to effectively suppress mode-splitting effect and
residual noise problem. In UPEMD, a set of sinusoid signals of the same amplitude and
frequency but with phases uniformly distributed within 27 was added into the input signal.
The EMD is performed separately on each of the phases, and the IMFs from each realization
is then averaged. The frequency of the sinusoid in the QRS extraction is 30 Hz and the
amplitude is 0.02, and the number of phases is 4. The MA-UPEMD is to apply MA criterion
on each of the realization of UPEMD, and the extracted QRS and the residual ECG which
contains P- and T-wave are presented in Fig. 5-3 (b).
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The remainder P- and T-wave still encountered serious baseline drift. Since we aim

at preserving the intact waveform of P-wave, we did not use Fourier-based linear filters. We

first take the averaged beat of each lead by aligning the beats with their original R peak

position. Each subjects have a 1-sec by 12-lead ECG wave matrix. Then, the MA-UPEMD

was performed on each lead of the average beat. This time, the P-wave was treated as spike,

and the frequency of the added sinusoid is 10. The amplitude is 0.02 with 4 realizations. As

a result, we have the isolated P-wave of the averaged beat for each of the 12 leads (Fig. 5-

3(c)).
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Figure 5- 3. The isolation of P-wave by applying twice the MA-EMD method.

() The raw ECG (black) and the QRS removed signal (blue). (b) the delineated baseline wonder and
T-wave (purple). (c) The extracted P-wave (red), which is the subtraction of the blue line and purple
line. The results by directly applying an 3-8 Hz bandpass IR filter (Butterworth) and directly applying
a Tukey window at the P-wave were also shown in (d) and (e), respectively, as comparisons.
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5.3.3 Feature extraction

5.3.3.1 ECG morphology features

The conventional ECG morphological features were calculated from the ECG critical
points detected by ECGPUWAVE. Due to collinearity, we chose the leads with the largest R
amplitude among the limb leads and chest leads, respectively, and the morphological features
were extracted on the averaged beat of the two chosen leads. The positions of ECG critical
points include peak, onset, and offset of P-wave, onset and offset of QRS complex, Q-, R-,
S-wave, and the peak, onset and offset of T-wave. The 3 types of ECG morphology features
were defined bellow.

(1) Wave amplitude. The amplitude of P, Q, S, and T wave is defined by the peak of
the wave.

(2) Duration. Traditionally features for ECG are calculated, including: the duration
between P-onset and R-onset (PR interval), the duration between Q onset and J
point (QRS duration), and the duration between Q onset and T offset (QT interval).

(3) ST-voltage. The height of the ECG segment between J point and T onset, which
is usually used for diagnosis of myocardial infarction, is also used. The average
voltage between the two points were calculated.

5.3.3.2 Principle component analysis for P-wave projection

To analyze the depolarization route of the atrial, we map the 12-lead ECG to a 3D
vector space spanned by the principle component (PC) of the ECG (Fig. 5-4). This
transformation can better project the depolarization route to the x-y plane than the traditional

vectorcardiogram transforms since each individual has a unique P-wave axis. This projection
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method has been used on the QRS complex for distinguishing patients with arrhythmogenic
right ventricular cardiomyopathy [52]. Here, we apply the same technique on the P-wave
extracted ECG. We construct the P-wave matrix Xnxg by 8 of the 12 leads (I, II, V1, V2, V3,
V4, V5, and V6) with n observations (n = 500 points, 1 second), and decompose the
correlation matrix (XTX) by principle component analysis (PCA). The first 3 principle
components U1, U2, and U3 occupy 99% of the total variance and is representative for the
route and variation of the P-loop. The weighting of PC1, PC2, and PC3 (the eigenvalues)

were included as a P-wave feature from PCA.
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Figure 5- 4. The PCA transform for 8 of the 12 leads.
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5.3.3.3 P-loop descriptors

Then, the previously developed QRS-loop descriptors [52] were applied on the P-

loop. We calculated the area and length of the P-loop on the 2D plane expanded by PC1 and

PC2 (Fig. 5-5). A minimum rectangle that encompasses the P-loop was divided into N cells

(N =4900 in this study) with equal size. The P-loop area (PA) is defined by the percentage

of cells inside the P-loop. This area represents regularity of the loop and reduces when convex

and concave components exist in this loop. The P-loop length is calculated by the total

number of cells the route passes. The increase in P-loop length indicates the dispersion or

inhomogeneity of the route.
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Figure 5- 5. The P-loop descriptor by PC1 and PC2.
The number of grey cells are the loop length, while the number of white cells inside the loop is the

loop area.

5.3.3.4 Inter-lead P-wave dispersion

We further measured the dissimilarity of the P-loop between potential AF patients

and normal subjects by analyzing the inter-lead relationships. This was previous used on the
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QRS loop and was named inter-lead QRS dispersion [52]. In this study, we applied the same
idea on the P-wave. In the new 3D vector space of the PCA, each lead was mapped to a vector
in the new orthogonal axes constructed by the first 3 principle components (Fig. 5-6). We
calculated the angles between each pair of the reconstructed vectors. A smaller angle
indicates spatially closer vectors and vice versa. The differences in the angles in the AF group
from the normal group represents a change in the inter-lead relationship, which indicates a

shape distortion in the P-loop.
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Figure 5- 6. The inter-lead correlation of the P-loop by PC1, PC2 and PC3.
The left panel is an example from the control subject and the right panel is one subject from the AF

group.

5.3.4 Statistical analysis

We compare the differences in mean (median) of all the extracted features in the AF
and control groups with the independent student t-test when the assumption of normal
distribution meets. If the assumption of normality fails by a p-value smaller than 0.05 with
Shapiro-test, a non-parametric Wilcoxon rank-sum test was performed instead. To
understand the predictability of these features, a logistic regression was performed and the
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area under curve (AUC) of the receiver-operator curve (ROC) was calculated. The features
were selected by sequential forward selection until the increase of AUC is less than 0.1. Cox
proportional hazard model was used for assessing the time-dependency of these features for
the risk of having AF in 3 months. The start point is the ECG examine date of each subject,
and the end point is set to be the date of the ECG for the AF confirmation. For the control
group, the end of observation is the date when the last ECG was recorded. To ensure
balancing between AF and control group, recording times for more than 90 days in the normal

group were censored to 90 days.

5.4  Statistical significance of the features

5.4.1 Morphology features

We found significant differences between AF and control patients (Table 5-1). The
AF patients are characterized with a reduced amplitude in P-wave, R wave and T wave in
limb leads, and a smaller T-wave amplitude and larger QRS interval in the chest leads. There
is time-dependency in P-wave and QRS related features. A higher risk of AF is found in
patients with larger P-wave duration, an earlier P-onset time (that is, a longer PR interval), a

larger QRS interval, and a decreased height of ST segment.
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Table 5- 1. Differences in morphology features for AF and control patients and the respective
hazard ratio in cox survival analysis.

Feature Number of samples Measurement Cox survival analysis
AF Control Effect cutoff  Hazzard

AF Control meantsD meantsD Size P-value point ratio P-value
Limb leads
P_duration 203 240 0.133 + 0.017 0.130 + 0.015 0.173 0.072 0.129 1,542 0.002 **
P_peak position 1599 234 0.251 = 0.032 0.255 = 0.023 0.149  0.133 0.236 0.703 0.024 *
P_onset 201 236 0.182 + 0.039 0.189 + 0.027 -0.183 0.084 0.168 0.671 0.008 **
P_offset 159 234 0.318 = 0.027 0.320 = 0.023 -0.086  0.325 0.330 1.233  0.144
P wave amplitud 189 228 0.024 + 0.034 0.031 + 0.031 -0.216 0.030 * 0.010 0.747 0.053
Rwave amplitud 203 242 0.590 = 0.223 0.658 £ 0.253 -0.284 0.003 ** 0.799 0.608 0.006 **
S wave amplitud 95 119 -0.189 * 0.102 -0.189 = 0.085 0.000 0.999 -0.249 0.827 0.410
T wave amplitud 157 232 0.063 + 0.086 0.093 + 0.084 0.423  «0.001*** 0.051 0.539 <0.001 ***
PR interval 153 240 148.031 £ 34.862 145550 + 27.916 0.080 0.422 154.000 1.238 0.142
QRS interval 156 228 88.923 £ 21.342 83.991 £ 14.359 0.275  0.006 52.000 1.375 0.037 *
QT interval 203 235 416.335 + 44.011 411.906 * 36.755 0.110 0.258 416.000 1.240 0.125
ST segment heigl 202 234 -0.053 + 0.034 -0.058 + 0.029 0.151 0.121 -0.046 1.443 0.010 *
Chest leads
P wave amplitud 134 212 0.003 + 0.046 0.000 + 0.043 0.070 0.316 0.008 1.511 0.010 **
Rwave amplitud 206 239 1.201 = 0.574 1.204 + 0.458 -0.006  0.948 0.807 0.769 0.073
Swave amplitudi 175 209 -0.634 + 0.376 -0.609 + 0.318 0.074  0.479 -0.811 0.817 0.236
T wave amplitud 153 238 0.113 * 0.166 0.156 + 0.162 -0.263  0.007 ** 0.154 0.597 <0.001 ***
PR interval 160 214 153.638 £ 30.792 152.598 + 24.882 0.038 0727 172.000 1.328 0.108
QRS interval 154 220 89.062 + 13.730 26.227 * 7.564 0.260 0.011 * 92.000 1.680 0.001 ***
arT interval 206 243 413.728 + 51.536 406.066 * 33.930 0.179 0.065 434.000 1.626 0.001 *=
ST segment heigl 198 228 -0.095 + 0.061 -0.095 + 0.046 0.002  0.985 -0.068 1.408 0.020 *
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5.4.2 PCA related features

The weight of principle component 1 of the PCA on the extracted P-wave is reduced

in AF patients, and a relatively higher weights in principle component 2 was found (Table 5-

2). The weights of PC1 and PC 2 have both time-dependent effect. The P-wave loop

expanded by PC1 and 2 also showed a smaller area in AF patients.

Table 5- 2. Differences in PCA related features for AF and control patients and the respective

hazard ratio in cox survival analysis.

Feature Number of samples Measurement Cox survival analysis
AF Control Effect cutoff  Hazzard

AF Control mean+SD meansD Size P-value point ratio P-value
Loop Area 204 243 0.508 + 0.091 0.511 + 0.108 -0.025  0.756 0.560 0.692 0.016 *
Loop Length 188 217 271691 £ 2.756 271770 t 2.691 -0.025 0.974 271.000 0.925 0.594
Loop L/A ratio 192 228 536.585 £ 89.121 538.885 £ 111.374 -0.023 0.814 431.104 1454 0.014 *
weight of PC1 204 236 0.885 + 0.085 0.917 * 0.057 -0.451 <0.001 ¥** 0.920 0.621 0.001 **=*
weight of PC2 205 233 0.106 + 0.082 0.074 £ 0.053 0.469 <0.001 *** 0.077 1.433  0.010 **
weight of PC3 156 225 0.007 * 0.005 0.006 £ 0.004 0.273  0.007 0.008 1.250 0.073

5.4.3 Inter-lead P-wave dispersion

We found a time-dependent effect on the risk of AF in the inter-lead angles (Table 5-

3); larger angles between V2 and V3, Lead Il and V2, Lead | and V2, and V2 and V6. A

higher risk of AF was also present with larger angles between VV3 and V6 and Lead | and V5,

and a smaller angle between Lead 11 and V6.
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Table 5- 3. Differences in inter-lead P-wave dispersion for AF and control patients and the
respective hazard ratio in cox survival analysis.

Number of samples Measurement Cox survival analysis
Inter-lead AF Control Effect cutoff  Hazzard
dispersion AF Control meantsD meantsD Size P-value point ratio P-value
Il 200 237 70.815 * 14.864 72.617 1 14.493 0,123  0.202 82,778 0.691 0.038
l_vi 206 233 ¥77.296 * 10.080 76.743 * 10.467 0.054 0.574 74,711 1.143  0.368
V1 w2 211 244 48.948 £ 24.077 52.321 + 24.566 -0.139 0.141 71.708 0.768 0.115
V2 W3 211 244 40.767 £ 21.726  39.089 + 20.732 0.079 0.402 42.595 1.324 0.042 %
V3_wv4 202 242 30.872 + 16.116 33.664 £ 19.767 0.153 0.102 42,642 0.728 0.068
V4 V3 203 238 29,143 + 17.606 29.195 t 18.151 -0.003  0.975 17.318 1.315  0.086
V5_VE 204 239 28.807 = 19.706 26.515 * 16.657 0,126 0.191 29,004 1.237  0.132
V1 207 241 70.055 = 17.131 67.407 T 19.610 0.143  0.128 56.948 1.289 0.128
In_v2 205 226 75.187 £ 12.142 73.378 t 12.576 0.146 0.129 79.618 1.412 0.013 *
V1 W3 210 238 69.837 £ 16.032 71.533 1 14.621 -0.111  0.245 66.892 0.798 0.109
V2_v4 211 244 58.105 + 20.865 55.898 £ 20.797 0.106 0.260 65.238 1.237  0.125
V3_Vs 211 244 51.832 £ 20,928 49,941 f 21.511 0.089 0.243 70,341 1.228 0.180
Va_ve 211 244 46.884 £ 22,857 45.165 + 23.095 0,075  0.426 43.847 1.198 0.150
I_v2 203 238 74.219 + 11.482 70.9%6 t 13.662 0.254 0.007 ** 77.015 1.337 0.038 *
I_v3 211 244 60.982 * 21.731 62.393 t 22.007 -0.065 0.492 59.223 0.802 0.111
V1 va 205 231 76.183 + 11.080 77.135 * 9.265 -0.100 0.305 73.793 0.854 0.274
V2_V35 208 235 69.031 = 15.696 67.404 £ 15.472 0.104 0.274 78.026 1.233  0.135
V3_Ve 211 244 62.806 * 19.795 60.580 & 20.530 0,110 0.240 79,356 1.421 0.020 *
I_V3 208 240 71.367 £ 13.574 72.036 * 13.770 -0.049  0.805 78.170 1.148 0.326
I_v4 211 244 58.183 + 23.454 57.644 1 23.001 0.023  0.8206 68.509 1.124 0.402
V1 W5 201 238 ¥6.532 £ 10.757 75.611 t 5.714 0.090 0.351 82.866 1.485 0.007 **
V2_Ve 203 237 71.750 £ 12.482 70.992 1 14271 0.056 0.553 62,932 1.408 0.046 *
I_v4 209 239 68.496 £ 17.756 69.910 £ 15.665 0085 0.375 58.347 0.790 0.121
l_vs 211 244 56.466 = 25.277 61048 * 23.208 0.189  0.046 49.524 0.796 0.105
V1 Ve 205 237 72463 * 12.329 72.822 t 12.657 -0.029 0.763 76,759 0.847 0.238
I_V5 211 244 60.337 £ 21.734 58.468 t 21.311 0.087 0.357 72,715 1.343 0.037 *
I_va 211 244 56.483 * 22.750 63.462 * 21.059 -0.319  0.001 *** 71.970 0.646 0.003 **
| Ve 211 244 51.566 + 24.206 50.439  23.486 0.047 0.616 71.377 1.225 0.187

5.5. Classification of AF and control patients

We performed logistic regressions for each of the variable and see the AUC of ROC

for each variable. Table 5-4 lists the top 10 biomarkers for identify AF patients, and the most

important feature is the amplitude of T-wave on the limb lead which yields an AUC of 0.61

(Fig. 5-7). The other biomarkers including weight of PC1, PC2 and the T-wave amplitude on

the chest leads. In the stepwise inclusion of all the candidate variables, the final AUC can

reach 0.67 (Fig. 5-8), and the contributing variables include T wave amplitude (limb leads),

angle between Il and V6, R wave amplitude (limb leads), angle between V1 and V2, and P

wave duration (Table 5-5).
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Table 5- 4. The top 10 features for classifying the AF and control subjects when single feature
is used.

Rank Variable AUC
1 T wave amplitude (limb) 0.614
2 Weight of PC1 0.597
3 Weight of PC2 0.594
4 Angle: 11_V6 0.589
5 T wave amplitude (chest) 0.572
6 Angle: 11_V2 0.565
7 R wave amplitude (limb) 0.561
8 P wave duration 0.555
9 Angle |_V2 0.553
10 Weight of PC3 0.551
1.00
I,
0.75 1

Variable

= T_amplitude (limb)
Angle: I1&VE
R_amplitude(limb)

= Angle: V1&V2

True positive rate
=
T
=

P_duration

0.00 0.25 0.50 0.75 1.00
False positive rate

Figure 5- 7. The ROC:s for classifying AF patients by single variable.
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Table 5- 5. The first 5 selected feature for classifying AF patients using stepwise forward
selection in the logistic regression.

Rank Variable AUC

1 T wave amplitude (limb) 0.614

2 Angle: 1l and V6 0.634

3 R wave amplitude (limb) 0.651

4 Angle: V1 and V2 0.662

5 P wave duration 0.672
1.00
0.751

Variable

True positive rate
=
LT
=
1

0004 ™

0.o0

0.25 0.50 0.75 1.00
False positive rate

= T_amplitude {limb)

— all 5variables

Figure 5- 8. The ROC for classifying AF with combined variables.

5.6  Discussion and implication

In this study, we have developed an algorithm that is able to isolate P-wave, which

reflects electrical activity of the atrial, from 12-lead ECG. We have shown that, when

transforming the 12-lead with the PCA which represents the individualized P-wave axis, the

inter-lead relationships on this new axis can be quantified. The inter-lead relationships and
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the PCA weighting are promising biomarkers for AF, which showed a significant difference
between the AF and control group. With the features derived from PCA of the extracted P-
wave, specifically the angles between the physical leads, the ability of detecting potential AF
patients can increase at least 10% than the traditional morphology features.

When classifying the AF and control group by logistic regression, the prominent
biomarker is the T-wave amplitude. The reduced T-wave amplitude is observed in the AF
patients, and patients with a T-amplitude less than 0.051 mV has a hazard ratio equal to 1.8
times. The T-wave amplitude represents ventricular repolarization, and a decrease or
deflection may have related with ischemia [53]. Ischemia and myocardial infarction are
known risk factors for atrial fibrillation due to ischemia or hemodynamic changes in atrial
stretch [54, 55]. In our results, we also found ST-segment to be a significant risk factor in the
cox survival analysis which showed a 1.4 times higher risk, though there is no significantly
different between AF and control group. The comorbidity of ischemia can be further
investigated by the medical history. The other explanation of the reduced T-wave amplitude
is the additional depolarization activities from the atrial that contaminate the derived ECG.
This can also explain the reduced P-wave and R-wave amplitudes in the AF patients.

The weighting of the PC1 and PC2 is also highly significantly different between the
AF and non-AF groups, showing a transmission energy dispersion in the abnormal atrial.
These two variables alone are the most prominent feature when prediction AF except the T-
wave amplitude. However, they are not present in the stepwise inclusion procedure of feature
selection, indicating a dependency on the T-wave amplitude. On the other hand, the inter-
lead dispersion of P-wave, specifically the angles between lead Il and V6 and between V1
and V2, are independent factors that contribute to the detection of AF.
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Our finding showed a limited power on the proposed features in detecting AF patients.
As the pathology of AF is the fibrosis of any area of the atria, a single source of abnormality
or single lead distortion may not be detected from a cohort of patients. The recently published
work incorporated 180922 patients with 454789 ECGs and trained by an integrated artificial
system may be holistic view of pathology of the AF, and therefore reaches an AUC of 0.87
[50]. Our work here can be combined with the detailed medical history or the ablation

outcomes to provide clinical insights.
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Chapter 6. Extension to step function

6.1  Generalized algorithm

In Sec. 4.5, we demonstrated the use of our MA-EMD on several spike-contaminated
datasets. Here, we extend our method to the removal of step-function signal components. To
better describe the idea in a real implementation and avoid confusion with numerical
differentiation and integration, we use the discrete-time representation of the signal, x[t].
Because the first derivative of a Heaviside step function is a spike, we can approximate the
first derivative of the signal x(t) by a finite difference, that is, X[t] = x[t] — x[t — 1]. The
signal X[t] can be decomposed into IMFs using MA-EMD. The first mode, ¢[t], is the signal
with the spike (step function). By subtracting ¢[t] from %[t], we obtain X,[t] as the first-
order time-difference of the step-function-removed signal. Finally, we can reconstruct the
step-function-removed signal x,[t] using the cumulative summation (approximating the
integration) of &, [t],i.e., x,[t] = Xt_, X, [s]. The proposed workflow is given in Algorithm
5. In fact, Algorithm 5 can easily be generalized to handle any function whose N"-order
derivative is a spike function, for example, the Heaviside step function or a sigmoid function

with a steep change in slope.
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Algorithm 5: Removing step function by MA-EMD

(1) Input signal x[t]

(2) Take the time-difference of the input signal X[t] = x[t] — x[t — 1]
(3) Perform MA-EMD on %[t]. Let ¢[t] be the first IMF, which is

(4) (3-1) Define x'[t] = x[t].

(5) (3-2) Identify spikes in X'[t]. These spikes should correspond to the points on the step
function.

(6) (3-3) Apply the minimum arclength criteria of (11) and (12). Find the replacements for
the spike points in the local maxima I, to obtain the upper envelope U (t).

(7) (3-4) Perform step (4) in Algorithm | and derive h[t].

(8) (3-5) If the stopping criteria in step (5) in Algorithm I are met, assign ¢[t] = h[t] as the
IMF and go to (4). Otherwise, let X'[t] = h[t], and repeat (3-2) to (3-4).

(9) Calculate %, [t] = x[t] — ¢[t].
(10)  Let x,[t] = Xioo X,[s]. Then, x,[t] is the step-removed signal.

6.2  Example: Photoplethysmogram (PPG) recording

To describe the use of Algorithm 1I, we utilize a photoplethysmogram (PPG)
recording from a transmittance pulse oximeter recorded at 256 Hz as an example. When
estimating the blood oxygen saturation level (SpO.) from the PPG, it is necessary to calculate
the amplitude variation (AC) of the pulsatile component of the PPG waveform [56]. The PPG
waveform often suffers from baseline drift and noise, and it is necessary to filter the signal
using a bandpass filter with a passband ranging from 0.5 to 5 Hz [57, 58] before calculating
the AC. In our recording, there is contamination of the step function owing to a change in the
DC gain from either an LED light emission or firmware calibration (Fig. 6-1(a)). This step
function in the signal obtained after applying a 0.5-5 Hz bandpass filter results in a large

spread of data distortion for approximately five pulses (Fig. 6-1(c)).
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According to Algorithm 11, we take the first-order time-difference of the signal to
form X[t], and the step function thus becomes a spike function. We add a masking signal
SK[t] = aycos[2m fyut + 2mk/K] in which ay, and fy, are 1 and 20, respectively, and
consider K = 2 realizations. Then, for each realization, we use MA-EMD on %*[t] = ¥[t] +
S¥ [t] to extract the first IMF, ¢%[t], where the spike resides. The spike function of ¥[t] is
then calculated by averaging all &*[¢], i.e., é[t] = XX_, &[t]. Finally, the reconstructed
signal x,[t] is processed using a cumulative summation of the spike-removed signal %, [t] =
X[t] — C[t]. The detailed flow chart for the processing of this example is exhibited in Fig. 6-
2. In fact, this flow chart can represent a general algorithm dealing with the step functions in
any type of signal. The set of minimum impulses, G, is the step function. The masking signal
IS not necessary but is suggested so as to limit the band width of the derived first IMF. The
frequency and amplitude of the masking signal should be determined through Eqgs. (4-1) and
4-7).

In contrast, the conventional EMD alone can also be treated as an adaptive filter to
replace the bandpass filter. In this study, we also tested the ability of the conventional EMD
in dealing with this problem as a comparison. Because IMFs 1-3 carry most of the 0.5-5 Hz
components (Fig. 6-1(d)) and IMF 4 and later modes are contaminated by the step function,
we treat the summation of IMFs 1-3 as a signal filtered through EMD.

The signal reconstructed by our MA-EMD is shown in Fig. 6-1(a). When filtered by
the same 0.5-5 Hz bandpass filter, the distortion reduces to only 1-3 pulses (Fig. 6-1(c)).
Comparatively, when we directly apply EMD to the original PPG signal as an adaptive filter,

the results also show a distortion near the location where the step function occurs, and the
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effected range is approximately five pulses, which is not smaller than that achieved using a

Fourier bandpass filter (Fig. 6-1(c)).

4000,

IMF 1
L
=
=1

35000

30000

2500 (ﬂ) - - I I (D

[

o
IMF 3
Y]
=
=]

n
IMF 4
[=]

400 :
Time (s) Time (s)
(d)

Figure 6- 1. Step function removal in PPG using MA-EMD.

(@) Original PPG x|[t] (black) and step-removed PPG x;[t] (red). (b) First-order time-difference of
signals, i.e., Z[t] (black) and spike (step)-removed signal, X,[t] (red). (c) Extracted spike function in
%[t]. (d) Band-pass-filtered PPG signals of x[t] (black) and %, [t] (red). (e-j) IMFs 1-5 (blue line)
when applying conventional EMD on x[t] and the summation of IMFs 1-3 (green).
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Chapter 7. Conclusion

Nonstationary impulse noise and step functions are common problems in signal
processing and disrupt the IMFs of EMD. By introducing a recently developed impulse
response theory of decomposition, we clarified that the sifting process is effectively a non-
stationary highpass filter whose cut-off frequency depends on the extrema interlacing interval.
There are mainly two causes of the undesirable effects of spikes in EMD. First, the extremely
large impulse response by the spike point. Second, the newly generated extrema. The
interaction of these two results in a locally high-frequency oscillation distinct from the signal
at other locations. This results in a chain of effects of non-stationary mode-splitting which
propagates throughout the IMFs.

In order to overcome this problem, our MA-EMD finds a replacement point of the
spike that minimizes the number of newly generated extrema and reduces the impulse
response from the spike. This way, the spike can be fully attributed to and isolated in the
first IMF, and as a result the latter IMFs would be free from this disturbance. A
mathematical proof and two numerical simulations are provided. To further facilitate the
spike extraction, masking-aided MA-EMD (MAMA-EMD) is proposed. Aided with a
masking signal with proper frequency and amplitude, we isolate the spikes in the first IMF,
and improve the performance of decomposition the later IMFs. We also provided a
mathematical induction and numerical experiment to find the proper amplitude and frequency
of masking signal. We applied the MAMA-EMD method on the ECG to isolate the P-wave

which represents atrial activity, and showed the statistical significance of the P-wave related
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features in identifying potential AF patients. Finally, we proposed a general algorithm for
separating the Heaviside step function by applying our MA-EMD approach.

Future applications to signals whose N"-order derivative is a spike function can be
expected. We believe that we have established a solution to an important problem regarding
the nonstationary noise incurred during EMD. The proposed MA-EMD can further be
applied to other EMD modifications, resulting in a robust algorithm for stationary and

nonstationary types of noise.
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