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中文摘要 

經驗模態分解是一個被廣為使用的時頻分析工具，然而，訊號中的雜訊干擾，

例如突波，可能同時造成模態混合和模態分裂的問題，使得一個物理上有意義的成

份被拆解成二個以上的本質模態函數。在此論文中，我們引用近期發展出的經驗模

態分解的數學理論，提供突波問題造成模態混合和模態分裂的理論解釋，並且基於

此理論基礎，提出了解決突波問題的架構——最小弧長條件。為了更穩健地將突波

分離至原先不存在的本質模態函數中，我們加入了以弦波輔助的遮罩方法，而形成

了「遮罩—最小弧長—經驗模態分解」。在論文中提供了此方法的數學理論和數值

模擬，並且應用至真實世界的訊號，包括電流中的突波干擾、軸承震動訊號、睡眠

腦波中的週期性交替模式和核心體溫的生理時鐘。更有甚者，我們將此方法應用在

標準十二導心電圖上以分離 P波的波形，並且證明由此 P波波形所提取的特徵，可以

用來偵測受測者是否有潛在的心房顫動。最後，我們將此方法延伸至單位階梯函數

上，並且提出一個廣適性的演算法，來處理第 N階導數為突波的訊號。 
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Abstract 

Empirical mode decomposition (EMD) is an extensively utilized tool in time-

frequency analysis. However, disturbances such as impulse noise can result in both mode-

mixing and mode-splitting effect, in which one physically meaningful component is split in 

two or more intrinsic mode functions (IMFs). In this work, we provide a mathematical 

explanation for the cause of mode-mixing and mode-splitting by spikes in EMD, and propose 

a novel method, the minimum arclength EMD (MA-EMD), to robustly decompose time 

series data with spikes. To further isolate the spike in a previously non-existed IMF, the 

masking-aided MA-EMD (MAMA-EMD) is provided. The mathematical foundations and 

limitations for these two methods are provided. The MAMA-EMD is utilized to deal with 

four real-world data including electrical current, vibration signals, cyclic alternating pattern 

in sleep EEG (Electroencephalography), and circadian of core body temperature. In addition, 

this work developed a tool for P-wave isolation in electrocardiogram (ECG) by the MAMA-

EMD method, and showed that the P-wave related features can be used to identify potential 

atrial fibrillation patients. Finally, we extend our application to the Heaviside step function 

and propose a general algorithm for signals whose Nth order derivative is a spike function. 
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Chapter 1. Introduction 

1.1 Statement of purpose 

Empirical mode decomposition (EMD) is a powerful and popular tool to decompose 

a time series into several intrinsic mode functions (IMFs), and has been widely utilized for 

non-linear and non-stationary signals. Spikes are extremely high/low values in very short 

periods in time-domain but contain wide spectrums of frequency. When decomposed by 

EMD, the energy of a single spike would propagate to nearby signal and be scattered in 

several IMFs with different frequencies. Even though locality characteristic of EMD permits 

its effect to decay exponentially [1], the relatively strong magnitude of spike still results in 

perturbation of the IMF. Fig. 1-1(a-b) shows an example of Duffing wave with spikes 

decomposed by EMD. Compared to the IMFs from the same Duffing wave without spikes, 

the ~0.1 Hz signal is split into IMF 1 and 2. This is called the mode-splitting effect. 

In this work, we provide a novel method, MA-EMD to solve the spike problem in 

EMD. Combining with masking signal to become masking-aided MA-EMD (MAMA-EMD), 

we successfully isolate the spikes in the first IMF, and leave the later decomposition free 

from interferences (Fig. 1-1(c)). In another aspect, we can regard spikes as information to be 

extracted, such as the delta waves in EEG and the P-wave in ECG, and further analyze the 

extracted waves. 
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Figure 1- 1. Surrogated nonstationary Duffing signal contaminated by triangular spikes, and 

its decomposition by EMD and our proposed MAMA-EMD, respectively. 

 (a) Duffing wave. (b) The spike signal as a perturbation. (c) The spike-contaminated signal as the 

input for EMD and MAMA-EMD. (d-f) The blue lines are results of EMD on (c), and the black lines 

are from EMD on pure Duffing wave in (a) as the ground truth. (g-h) The red lines are MAMA-EMD 

on (c). The black lines in (h-j) are the same as the black lines in (d-f) but in different scales. Note that 

with MAMA-EMD method, the triangles are extracted, and the mode-splitting effect in (d-e), in 

which the 0.1Hz component in the first IMF of black line is split into IMF 1 and 2, is alleviated. 

 

1.2 Contribution 

 A novel method, named minimum-arclength EMD (MA-EMD) is proposed 

to solve the effect of spikes in EMD. 

 The effect of spike and the cause of mode-mixing and mode-splitting in EMD 

is analyzed mathematically by recently developed impulse response theory. 

 The theoretical foundation for the proposed MA-EMD is provided and 

supported by numerical simulations. 

 The masking-aided MA-EMD (MAMA-EMD), which combines masking 

EMD and MA-EMD, is proposed to improve the extraction of spikes. 

 Using MAMA-EMD, we showed that the extracted P-wave in 12-lead ECG 

can provide important features for identifying potential atrial fibrillation 

patients during sinus rhythm. 
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1.3 Related works 

1.3.1 EMD and time-frequency decomposition 

Empirical mode decomposition (EMD) [2] is an algorithm aiming to decompose a 

composite signal into intrinsic mode functions (IMFs). IMFs are oscillatory signals with 

separate spectral bands, each of which allows moderate time-varying frequency and 

amplitude modulations. By applying a series of iterations, the algorithm finds the “mode” of 

a signal from a high-frequency component, subtracts it, and finds another mode recursively. 

As a result, the signal is decomposed into a few intrinsic mode functions (IMF) and a residual 

noise, that is 

 

𝑠(𝑡) = ∑𝑠𝑘(𝑡)

𝐾

𝑘=1

 (1-1) 

The distinctiveness of EMD lies in its non-parametric nature. In a process called 

“sifting,” the baseline calculated by averaging the upper/lower envelope is iteratively filtered 

out from the signal to reel off the high-frequency oscillation. This upper/lower envelope is 

determined solely on the extrema distribution of the signal itself and thus varies over time. 

The recently developed mathematical property of the sifting operator proved EMD to be a 

highly non-linear and non-stationary adaptive filter [1]: the time-varying extrema intervals 

determine the non-stationary frequency response. Nevertheless, before the theoretical 

foundation has built, researchers have found IMFs to be highly adaptive, and formulated the 

IMF into amplitude modulated-frequency modulated (AM-FM) signal, where 

 𝑠𝑘(𝑡) = 𝐴𝑘(𝑡)cos⁡(𝜑𝑘(𝑡)), 

with 𝐴𝑘, 𝜑′𝑘(𝑡) > 0 ∀𝑡. 
(1-2) 
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Here, the frequency modulation is not constant; instead, it gives each IMF a wider 

range of frequency. Compared with Fourier or wavelet methods which assumes constant 

frequency (𝜑′𝑘(𝑡) = 0), this representation reduces the components needed (i.e. the number 

of 𝑘 ) to reconstruct the original signal.  The EMD thus ensures the sparsity of the 

decomposition.  

Since its development, EMD inspired numerous approaches for the capture the 

philosophy of (2). In the original EMD and its modifications, the local extrema were adopted 

when finding the mode function; however, in other non-EMD-based methods, parametric 

basis functions such as a wavelet or Fourier function are first adopted for a frequency domain 

transform, and different criteria for mode separation are then applied. For example, the 

synchro-squeezed wavelet transform [3] aims at reallocating a time-frequency scalogram in 

pursuit of a well-separated intrinsic mode component. In empirical wavelet transform [4, 5], 

an adaptive wavelet filter bank is built on a pre-determined spectrum segment. In variational 

mode decomposition (VMD) [6], a separation of modes is applied on the Fourier spectrum, 

which is therefore stationary.  

The distinctiveness of EMD lies in its nonparametric nature. In a process called 

“sifting,” the baseline calculated by averaging the upper/lower envelope is iteratively 

subtracted from the signal to extract the high-frequency oscillation. This upper/lower 

envelope is a cubic spline interpolation of the extrema, which are determined solely by the 

innate property the signal. The recently developed mathematical theories showed that this 

spline determines the nonstationary impulse response of the sifting operator, which makes 

EMD a highly nonlinear and nonstationary adaptive filter [1].  Nevertheless, since its 

development, EMD has shown outstanding capability for processing nonstationary signals 
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including speech [7, 8], coseismic accelerograms [9], and biological signals [10-12] as well 

as in the fault diagnosis of rotating machinery [13-16]. 

1.3.2 Modifications of EMD 

Albeit powerful, there are occasions where the IMFs are difficult to be interpreted. 

One notorious problem is the intermittency, in which a signal with distinctive frequency 

(usually higher frequency) intrude for only a short period of time. In this case, the IMF is 

consisting of two different frequencies. This is a mode-mixing effect. Many modifications of 

EMD have been proposed to address the intermittency. Such modifications include two main 

directions. The first direction, which includes ensemble EMD (EEMD) [17], complementary 

EEMD (CEEMD) [18], Complete EEMD with adaptive noise (CEEMDAN) [19], masking 

EMD [20], and uniform-phase EMD (UPEMD) [21] involves the addition of an assisting 

signal so that the extrema are more evenly distributed.. The other direction involves 

adjustment of the knot position of the cubic spline [14, 22-25] or reconstruction of the 

undersampled extrema using a wavelet interpolation [5]. Both directions work well on 

intermittent signals characterized as single-tone oscillatory components. By increasing or 

adjusting the distribution of the extrema, these methods aim to equalize the extremum 

intervals of the entire signal; thus, the frequency response of the EMD is more consistent 

throughout different timeframes. 

The most popular modification belongs to EEMD family. EEMD applies white 

Gaussian noise with amplitude dependent on the total power of the signal. The addition of 

white Gaussian noise solves the mode mixing by providing a full-band spectrum in all the 

time space, and EEMD behaves as a dyadic filter bank. However, two new shortcomings 

present, including residual noise due to the added noise and the mode-splitting effect in which 
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two or more IMFs contains components with similar scale. To cancel out the added noise, it 

requires to execute the algorithm under different randomizations (usually 100 to 200) and 

average the results. To boost the cancelation of added noise, CEEMD is proposed, in which 

the added noise comes in a pair (positive and negative one). CEEMD still cannot solve the 

mode-splitting problem, since the randomly generated Gaussian white noise put the same 

frequency component in the Nth IMF in some realizations but in the N+1th or N-1th IMF in 

other realizations. To solve this problem, CEEMDAN proposed to apply a pre-decomposed 

Gaussian white noise. In fact, this technique of applying a pre-filtered white noise, instead of 

a full-band noise, is similar to the masking-EMD which proposed at the same time as EEMD. 

Other EMD modifications which adaptively adds white noise also belongs to this kind. 

In masking-EMD, a sinusoid with pre-determined frequency and amplitude is added. 

To cancel out the added frequency, the realization comes in a pair – positive and negative 

ones. The inconvenience lies the selection of the proper sinusoid. Rilling and Fladrin’s [26] 

mathematical deduction gave us a hint to find the proper range with respect to the frequency 

and amplitude of our desired component under EMD. Ideally, if the sinusoid is properly 

chosen, there should be limited mode-splitting problem as compared to EEMD-related 

methods. However, there is still some residual noise problem in masking-EMD. The recently 

proposed UPEMD is a generalization of masking-EMD. In UPEMD, a set of sinusoid with 

the same amplitude and frequency but different phases are applied. It has been shown to be 

superior than masking EMD and CEEMD in suppressing residual noise and mode-splitting 

effect. 
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1.4 Spike problems  

1.4.1 Spike problems in signal processing 

Physically, a single spike may result from a single cause, such as the collective 

neuronal activity in EEG (Electroencephalography), or the electrical current surge caused by 

the switch. A spike has a very short time period but occupies a wide range within the 

frequency domain. Transforming of spikes in a time-frequency domain results in several to 

an infinite number of harmonics which mixed with real information. Therefore, for single-

point spikes, the most widely adopted solution is the removal of spikes within the time 

domain, as is done by the median filter and its modifications [27-29]. For triangular spikes 

where the median filter cannot be used, a discrete wavelet transform is usually applied  [30-

32]. It would require choosing the appropriate wavelet functions similar to the spike shape, 

and decomposing the signal into different scales. The spikes can then be detected or removed 

in certain scales [30-32], and the new signal is reconstructed from the modified coefficients. 

1.4.2 Spike problems in EMD 

Decomposing spikes and steps of signals during EMD also results in spurious 

oscillations spreading throughout multiple IMFs. These spurious oscillations are similar to 

the harmonics of the spikes when decomposed through a Fourier and wavelet analysis. They 

only appear within a certain period of time in each IMF, acting as an intermittency signal 

[33]; as a result, they cause both mode-mixing and mode-splitting problems. Even though 

locality characteristic of EMD permits its effect to decay exponentially [1], the relatively 

strong magnitude of spike still results in perturbation of the IMF. Fig. 1-1 shows an example 

of Duffing wave with spikes decomposed by EMD. Compared to the IMFs from the same 
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Duffing wave without spikes, the ~0.1 Hz signal is split into IMF 1 and 2. This is called the 

mode-splitting effect. Granted that the above spike-removal methods can be used as 

preprocessing techniques before performing EMD, as seen in some applications [8], this 

frequency domain approach is inefficient and ineffective, and may loses its nonlinear and 

nonstationary property. 

To the best of our knowledge, most EMD modifications that have been proposed to 

address the intermittency problem are not applicable to spikes or step functions. By 

increasing or adjusting the distribution of the extrema, these methods aim to equalize the 

extremum intervals of the entire signal; thus, the frequency response of the EMD is more 

consistent throughout different timeframes. However, because spikes occupy a very wide 

frequency spectrum, the unified frequency response in these modified EMD still decomposes 

a spike into several harmonics which intrude into the other components, as can be seen in 

Fig. 1-2. Therefore, a highly localized method focusing on adjusting only a few extrema is 

expected to solve the spike and step problems. 
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Figure 1- 2. Decomposing a sinusoid wave with a spike using different modifications of EMD 

(a) EEMD. (b) CEEMDAN. (c) UPEMD. (d) MA-EMD. 

1.5 Overview 

This dissertation consists 7 chapters. In this chapter, Chapter 1, we give a general 

introduction on the EMD and its related works, along with the spike problems in signal 

processing. In Chapter 2, we review the related theories and works related to our proposed 

work, including the EMD algorithm, its impulse response theory, the definition of the mode-

splitting and mode-mixing, masking EMD algorithm, and the conventional spike detection 

algorithm which is applied to our MA-EMD algorithm. In Chapter 3, we make us of the 

mathematical representation of sifting to analyze the effect of a spike on the EMD, and 

propose our MA-EMD method that resolves the spike problem by isolating it in the first IMF. 

The further improve the extraction of spikes, masking aided MA-EMD (MAMA-EMD) 

methods are presented in Chapter 4. The validation of our method, limitations and some real-

world examples are also provided. In Chapter 5, we apply our MAMA-EMD on a large 

database to detect potential atrial fibrillation (AF) patients by a standard 12-lead 
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electrocardiogram (ECG). This novel method analyzing the P-wave loop which reflects 

depolarization of atrial can better detects AF patients comparing to traditional waveform 

parameters from ECG delineators. In Chapter 6, we provide a general algorithm that can be 

used to apply our MA-EMD in the extraction of a Heaviside step function or any function 

whose Nth-order derivative is a spike. In Chapter 7, we state the conclusions of our study. 
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Chapter 2. Background 

2.1 EMD 

Given a signal 𝑥(𝑡) (𝑡 > 0), we define 𝑘 as the IMF index and 𝑝 the sifting step. 

Then, the notation 𝑥𝑘,𝑝 represents the 𝑘𝑡ℎ proto-IMF at 𝑝𝑡ℎ sifting step. The EMD algorithm 

is given in Algorithm 1. 

Algorithm 1: EMD algorithm 

(1) Define 𝑥0,0 ≜ 𝑥(𝑡). Starting with 𝑘 = 1 and 𝑝 = 0. Set 𝑥1,0(𝑡) = 𝑥(𝑡). 

(2) Identify all the maximum {(𝑡𝑎, 𝑥𝑎)} and minimum {(𝑡𝑏, 𝑥𝑏)} of 𝑥𝑘,𝑝(𝑡). 

(3) Connect maximum (respectively minimum) points with natural cubic spline to derive 

upper (lower) envelope 𝑈(𝑡) (and 𝐿(𝑡), respectively). 

(4) Obtain the local mean of the upper and lower envelopes 

(5) 𝑚(𝑡) = (𝑈(𝑡) + 𝐿(𝑡))/2. 

(6) Subtract local mean from the temporal signal 

(7) 𝑥𝑘,𝑝+1(𝑡) = 𝑥𝑘,𝑝(𝑡) − 𝑚(𝑡). 

(8) Repeat (2)-(5) 𝑛𝑠𝑝 times, i.e. 𝑝 = 0,⋯ , 𝑛𝑠𝑝 − 1. Derive 𝑥𝑘,𝑛𝑠𝑝(𝑡).  

(9) Assign the 𝑘𝑡ℎ IMF as 𝑐𝑘(𝑡) = 𝑥𝑘,𝑛𝑠𝑝(𝑡). 

(10) Calculate residual 𝑥𝑘+1,0 = 𝑥𝑘,0(𝑡) − 𝑐𝑘(𝑡). 

(11) Increment 𝑘 and repeat steps (2)-(8) to generate series of IMFs and a residue until 

that the residue contains no more than one extrema 

 

2.2 Impulse response of EMD 

In Algorithm I, steps (2)–(5) describe sifting, a process for subtracting the local mean 

from a signal. Here, we apply the analytical form of EMD derived by Wang et al. [1] to 

explain the effect of a spike on the sifting. In step (3), the upper/lower envelope is constructed 
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using natural cubic splines. Given the set of maxima points 𝛤𝑥 = {(𝑡𝑎, 𝑥𝑎), 𝑎 = 1,2, … ,𝑁} 

where 𝑁 is the number of maxima, the cubic spline of the upper envelope 𝑈(𝑡) is exclusively 

dependent on the positions and values of the maxima. Here, 𝑈(𝑡) can be written as the 

function 

 𝑈(𝑡; 𝑥(𝑡)) = ℒ(𝛤𝑥) (2-1) 

and satisfies the property of superposition [1, 34], 

 

ℒ(𝛤𝑥) = ∑𝑥𝑎ℒ(𝛤𝑎)

𝑁

𝑎=1

 (2-2) 

with input spline vectors 𝛤𝑎 = {(𝑡𝑗 , 𝒆𝒂), 𝑗 = 1,… ,𝑁} and scalars 𝑥𝑎. Notation 𝒆𝒂 indicates a 

unit vector whose only nonzero entry is at the 𝑎𝑡ℎ  element. In other words, the upper 

envelope 𝑈(𝑡) is the summation of 𝑁 different cubic splines sharing the same set of knot 

positions 𝑡𝑗 and weighted by their individual maximum values 𝑥𝑎. The spline ℒ(𝛤𝑎) has the 

following two properties [11]: 

(1) It is a nonlinear time-variant impulse response of knot (𝑡𝑎, 𝑥𝑎) to the other points. 

(2) It has a sinc-like curve satisfying the definition of a weak IMF, i.e., there is only 

one extremum between each pair of zero-crossing points, and the maxima and minima 

interlace with each other (Fig. 2-1(b)). Furthermore, because there is only one extremum 

between each pair of zero-crossing points, the cycle length (defined by the zero-crossing) of 

ℒ(𝛤𝑎) is the smallest extremum interval by at least two-fold. This is consistent with the 

frequency response derived by [26, 34], which states that when the interpolation points 

(which equal the extremum points) are equally spaced, the spline interpolator tends to be a 

low-pass filter with a cutoff frequency that is approximately half of the interpolating 

frequency. 
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Because the upper envelope ℒ(𝛤𝑎) is a low-pass filter, when the mean of the upper 

and lower envelope is subtracted, it becomes a high-pass filter. To summarize, the sifting 

process is equivalent to a high-pass filter whose frequency depends locally on the “grid size” 

of the sift, i.e., the knot interval, which is a result of the summation of different signal 

components [26]. Most of the modifications of EMD, either adding an assisting signal or 

adjusting the knot position of the spline, change the knot intervals and therefore the cutoff 

frequency of the filter. 

 
Figure 2- 1. The upper envelope, spline curves, and the effect of a spike.  

(a) Series of heartbeat intervals 𝑥(𝑡) (gray) and the upper envelope 𝑈(𝑡) (green). One of the extrema 

is artificially changed to simulate an atopic beat. The new heartbeat series (black) has an upper 

envelope (blue) that is affected by the spike. (b, c) Spline curves ℒ(𝛤a) for each maxima point (dashed 

line). The curves ℒ(𝛤a𝑠) generated by the spike (blue) and ℒ(𝛤a𝑠−1) generated by the neighboring 

point (green). (d) The spline curves ℒ(𝛤́a) when excluding a spike point in the set of maxima (dotted 

line) and the new curve ℒ(𝛤́a𝑠−1) (green). Note that when a spike occurs, the shape of the envelope is 

similar to the spline curve and produces new extrema. When the spike point is directly skipped, the 

curve has wider knot intervals and a lower cutoff frequency. 
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2.3 Mode-mixing and mode-splitting 

We consider a real-valued input signal 𝑥(𝑡)  consisting of multiple physical 

components 𝑠𝑘(𝑡) . The EMD algorithm shown in Algorithm 1 represents 𝑥(𝑡)  as a 

combination of IMFs 𝑐𝑚(𝑡) and a residual 𝑟(𝑡): 

 𝑥(𝑡) = ∑ 𝑐𝑚(𝑡)
𝑀
𝑚=1 + 𝑟(𝑡). (2-3) 

The ideal result of a decomposition with IMFs 𝑐𝑚(𝑡) should be as follows: 

 
𝑐𝑚(𝑡) ≈ 𝑠𝑘(𝑡), (2-4) 

where each physical component should reside uniquely in a single IMF. The condition 

in which 𝑐𝑚(𝑡) contains two or more physical components is called mode-mixing [23, 33]; 

in contrast, when the amplitude of one 𝑠𝑘(𝑡) is split into two or more IMFs, mode-splitting 

occurs [17, 18]. In both mode-mixing and mode-splitting, the desired physical component is 

not sparsely represented and is either contaminated by or separated into other signals, thus 

encumbering further analysis. 

One typical source of mode-mixing is the intermittency, where another signal with 

distinctive frequency is introduced for only a period of time. Noted that the frequency 

response of an IMF is dependent on the extrema interval, and the locally small extrema 

intervals results in a higher cutoff frequency during sifting. Therefore, the resultant IMF 

extracts the low-frequency components for most parts except the location with intermittency. 

That is:  

 
𝑐𝑚(𝑡) = 𝑠𝑘(𝑡) + 𝑠𝑗(𝑡), (2-5) 

for some 𝑘 ≠ 𝑗. 
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The mode-splitting is the effect that one oscillatory component, which might possess 

a physical meaning or have a narrow frequency band, occupies two or more adjacent IMFs. 

Wang et al. [21] are the first to define mode-splitting mathematically, which is: 

 

𝑐𝑚(𝑡) =∑𝛼𝑗,𝑚𝑠𝑗(𝑡)

𝑛𝑐

𝑗=1

+ 𝛿𝑚(𝑡) (2-6) 

where 𝛼𝑗,𝑚 is the “attenuation ratio” representing the proportion of component j in IMF m 

with the equality ∑ 𝛼𝑗,𝑚
𝑛𝑖𝑚𝑓

𝑚=1 = 1.  In this representation, the mode-splitting effect is 

stationary. Indeed, the term “mode-splitting” is first mentioned by Huang and Wu [17] to 

denote the problem occurred in EEMD. When the same frequency component is resided in 

different IMFs in different realizations, taking average of all the realizations results in an 

energy splitting of the same component into different modes. 

2.4 Masking EMD 

Deering and Kaiser [20] proposed to insert a single tone sinusoid 𝑤(𝑡) =

𝑎𝑚𝑠𝑖𝑛⁡(2𝜋𝑓𝑚𝑡)  during the decomposition. This sinusoid, whose frequency is relatively 

higher, is a “masking signal” and serves as an assisted disturbance to avoid extraction of low 

frequency components during sifting. The algorithm is summarized in Algorithm 2. 

Algorithm 2: Masking EMD algorithm 

(1) For step 𝑘 in EMD, generate masking signal 𝑤(𝑡) = 𝑎𝑚sin⁡(2𝜋𝑓𝑚𝑡). 

(2) Perform Steps (2)-(5) in Algorithm 1 on 𝑥+(𝑡) = 𝑥𝑘,𝑝(𝑡) + 𝑤(𝑡) . In other words, 

substitute 𝑥(𝑡)  by 𝑥+(𝑡) ) to obtain IMF 𝑐𝑘
+ . Similarly, perform steps (2)-(5) in 

Algorithm 1 on 𝑥−(𝑡) = 𝑥𝑘,𝑝(𝑡) − 𝑤(𝑡) and obtain 𝑐𝑘
−. 

(3) The resultant IMF is defined as 𝑐𝑘 = (𝑐𝑘
+ + 𝑐𝑘

−)/2. 
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2.5 The spike detection 

Mathematically, a signal with occasional artifacts can be modeled as 

 𝑥(𝑡) = 𝑥̂(𝑡) + 𝑣(𝑡) (2-7) 

where 𝑥̂(𝑡)  is the signal of interest, 𝑣(𝑡)  models the noise term and 𝑥(𝑡)  is the 

observed signal. We suggest that the noise term contains two components 

 𝑣(𝑡) = 𝜔(𝑡) + 𝑧(𝑡) ∗ 𝑖(𝑡) (2-8) 

where 𝜔(𝑡) represents the white Gaussian process and 𝑖(𝑡) is the random process generating 

impulsive artifact which is convolved with a spike-like function 𝑧(𝑡). Here, 𝑧(𝑡) can be of 

different shapes, such as a single-point spike or a triangular spike. 

Many types of impulse rejection filters have been designed for different types of 

signals, such as wavelet for speech signals [32] and Raman spectra [35], and median filters 

for images [29, 36]. We adopt one of the simplest designs, the median filter, as a tool for 

spike detection. Similar to other impulse detection algorithms, our spike detector is based on 

the prior assumption that the signal should be smooth. Therefore, the extrema that differ too 

much from nearby extrema is regarded as spike points. The maximum and minimum are dealt 

with separately. For each maximum {(𝑡𝑎𝑖 , 𝑥𝑎𝑖)}, we first find the set containing⁡𝐷 nearby 

maximum values (𝐷 is an even value) in a window centered about 𝑥𝑎𝑖.  

 𝑊𝑖
𝐷 = {𝑥𝑎𝑗|𝑖 − 𝐷 2⁄ ≤ 𝑗 ≤ 𝑖 + 𝐷 2⁄ } (2-9) 

The median and standard deviation of this set are 

 𝑚𝑖
𝐷 = Med {𝑥𝑎𝑗|𝑥𝑎𝑗 ∈ 𝑊𝑖

𝐷} (2-10) 

and 
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 𝑆𝑖
𝐷 = std {𝑥𝑎𝑗|𝑥𝑎𝑗 ∈ 𝑊𝑖

𝐷}, (2-11) 

respectively. Then, the extrema values that are T times larger than the standard deviation is 

classified as maximum impulses, i.e. the set of maximum impulses, and is defined as 

 𝐺𝑀 = {(𝑡𝑎𝑖 , 𝑥𝑎𝑖)|𝑥𝑎𝑖 > 𝑚𝑖
𝐷 + 𝑆𝑖

𝐷 ∙ 𝑇} (2-12) 

Similarly, the set of minimum impulses is obtained as 

 𝐺𝑁 = {(𝑡𝑏𝑠 , 𝑥𝑏𝑠)|𝑥𝑏𝑖 < 𝑚𝑖
𝐷 − 𝑆𝑖

𝐷 ∙ 𝑇}, (2-13) 

where 𝑚𝑖
𝐷 and 𝑆𝑖

𝐷 are the median and the standard deviation of the minimum values within 

window 𝑊𝑖
𝐷  centered at 𝑥𝑏𝑖 . Finally, we have the subsets 𝐺𝑀  and 𝐺𝑁  for the subsequent 

analysis. 
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Chapter 3. Effect analysis of spike in EMD and MA-EMD 

3.1 Effect analysis of spike problem in EMD 

Without loss of generality, we can formulate a spike as a shape function 𝑧(𝑡) at time 

𝑡0 (time shift): 

 𝑥(𝑡) = 𝑠(𝑡) + 𝑧(𝑡 − 𝑡0) (3-1) 

Supposing we have the spike resultant extremum (𝑡𝑎𝑠 , 𝑥𝑎𝑠), the problem of a spike 

occurring during EMD has two aspects. First, the extremum itself might be additional to the 

original set of extrema, making the knot intervals half the original interval. Property (2-2) in 

the previous section states that the frequency response of a cubic spline is dependent on the 

knot intervals. That is, when a spike results in new extrema, the filter near 𝑡𝑎𝑠 has a higher 

stop band than the other locations. 

Second, because 𝑥𝑎𝑠 ≫ 𝑥𝑎𝑗  for some 𝑗 ≠ s, we have 

 
𝑈(𝑡) = ℒ(𝛤𝑥) = ∑𝑥𝑎ℒ(𝛤𝑎)

𝑛

𝑎=1

≈ 𝑥𝑎𝑠ℒ(𝛤𝑎𝑠) (3-2) 

That is, 𝑈(𝑡) is dominated by a single spline curve near the spike point; thus, the 

curve has a shape extremely similar to a sinc-like function (Fig. 2-1(b)). The upper envelope 

(and the local mean) are the results of artifacts rather than physically meaningful components. 

Furthermore, when the amplitude of a spike is sufficiently large, the shape of this cubic spline 

may generate additional knots during the iterations (see the simulation results in Sec. IV), 

making the inter-extrema interval even shorter than it should be. 
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When a spike introduces new extrema either by itself or by an amplified cubic spline, it 

results in locally shorter extrema intervals (i.e., a higher frequency curve) with respect to 

the other locations. The sifting of one component is interrupted in this area, leaving it to 

partially enter the next mode. Compared with the ideal results represented in Eq. (2-4), 

owing to the spike at time point 𝑡𝑎𝑠, 𝑐𝑖(𝑡) becomes 

 

𝑐𝑖(𝑡) = {
𝑠𝑖−1(𝑡), when⁡t⁡close⁡to⁡tas

𝑠𝑖(𝑡), otherwise
 (3-3) 

This is a mode-mixing problem in which 𝑐𝑖(𝑡) contains portions of both mode 𝑠𝑖−1(𝑡) 

and mode 𝑠𝑖(𝑡). Furthermore, mode 𝑠𝑖(𝑡) resides in 𝑐𝑖(𝑡) for most of 𝑡 but splits into 𝑐𝑘(𝑡) 

for some 𝑘 > 𝑖 , resulting in a “mode-splitting” effect. Because this mode splitting only 

occurs during one period, it can be regarded as “nonstationary mode splitting.”  

To show this, we experimentally generated two spikes on a Duffing wave (Fig. 3-1). The 

first spike is added to the position of the original extremum at 𝑡 = 28; the second spike 

produces a new maximum at 𝑡 = 89. Here, a Duffing wave is generated by numerically 

solving the following Duffing equation: 

 
𝑥̈(𝑡) = 𝑥 − 𝑥3 + 0.1 cos (

2𝜋𝑡

25
) (3-4) 

with the initial condition 𝑥(0) = 𝑥̇(0) = 1. After the EMD operation, IMF 𝑐1(𝑡) undergoes 

intermittent high-frequency oscillations near the second spike (𝑡 ≈ 60– 70), and a part of the 

0.1-Hz component of IMF 𝑐1(𝑡) moves into IMF 𝑐2(𝑡). Comparatively, at the location near 

the first spike (𝑡 ≈ 15~25), the signal frequency of IMF 1 determined by its relative cycle 

length is the same as in the original results; only the shape is distorted. IMF 2 also has the 
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same cycle length with a higher amplitude. This high amplitude results from energy leakage 

from the spike. 

 

 
Figure 3- 1.  The spike-interrupted Duffing wave and its decomposition by different methods.  

(a) The Duffing wave 𝑺(𝒕) (green), the triangle spikes 𝑺𝒑(𝒕) (red) and the summation of the two 

𝒙(𝒕) = 𝑺(𝒕) + 𝑺𝒑(𝒕) (black). (b-c) The upper (dotted) and lower (dashed) envelope of the first sifting 

in EMD on⁡𝒙(𝒕) (solid). (d) The first 3 resultant IMFs (black) by original EMD on 𝒙(𝒕) and the IMFs 

(green) of the 𝑺(𝒕) as a comparison. IMF 𝒄𝟏 was split into 𝒄𝟐  near the location of the second spike 

which is not on the original extrema. 

 

 

3.2 MSI: Measurement of mode-splitting 

To quantify how extreme the mode-splitting is from 𝑆i to IMF j, the mode splitting 

index (MSI) proposed. In our later simulations, we define the MSI as the amplitude of the 

frequency that 𝑆𝑖 possesses within the Fourier spectrum of IMF j; that is, 
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MSI = ∑
𝑋𝑐𝑗(𝑓)

𝑋𝑆𝑖(𝑓)𝑓∈𝜔

 (3-5) 

where 𝑋𝑐𝑗(𝑓) is the Fourier spectrum of IMF j and 𝜔  is the frequency range where the 

Fourier spectrum of 𝑆𝑖 is larger than zero. 

3.3 NE: Newly generated extrema 

To validate our claim of newly generated extrema from spike and artifacts results in 

mode splitting, in our later simulations, we calculate the number of newly added extrema 

(NE) of the upper envelope in the first sifting when finding the first IMF as compared to the 

result with the upper envelope without a spike. 

3.4 SK-EMD: skipping the extrema on spikes 

To escape from the influence of spike, one trivial way is to directly skip it when 

calculating spline. we exclude those extrema on spikes from the set of knots and define the 

following: 

 𝛤́𝑥 = {(𝑡𝑎, 𝑥𝑎), 𝑎 = 1,… ,𝑁, 𝑎 ≠ 𝑎𝑠} 

= 𝛤𝑥 − {(𝑡𝑎𝑠 , 𝑥𝑎𝑠)} 
(3-6) 

and 

 𝑈́(𝑡) = ℒ(𝛤́𝑥) = ∑ 𝑥𝑎ℒ(𝛤́𝑎)
𝑁
𝑎=1,𝑎≠𝑎𝑠

. (3-7) 

This is efficient and guarantees that there is no impulse response from the spike during sifting. 

However, if the spike lies on the original spline point or covers the originally existing extrema, 

the knot interval becomes twice the original interval at this location (Fig. 2-1(c)). This lowers 

the frequency of the spline and may result in another mode-splitting problem in which mode  
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𝑠𝑖(𝑡), with 𝑡 close to 𝑡𝑎, is advanced to mode 𝑐𝑖−1(𝑡). In Sec 3.6, we will demonstrate this 

problem with a real example. 

3.5 MA-EMD 

3.5.1 Minimum arclength criterion 

The alternative way is to keep all knot positions 𝑡𝑎 but find a replacement 𝑥̂𝑎𝑠 for the 

spike point 𝑥𝑎𝑠 in Eq. (3-2). In this study, we propose minimum arclength criterion to achieve 

this. Given a spike point (𝑡𝑎𝑠 , 𝑥𝑎𝑠), we find a new (𝑡𝑎𝑠 , 𝑥̂𝑎𝑠) such that 

 𝑥̂𝑎𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦 {𝐹 (𝑈(𝑡|𝑦𝑎 = 𝑥𝑎, 𝑎 ≠ 𝑎𝑠; 𝑦𝑎𝑠 = 𝑦))} (3-8) 

where 

 

𝐹(𝑈(𝑡| ∙)) = ∫ √1 + (
𝑑𝑈(𝑡| ∙)

𝑑𝑡
)
2𝑡𝑁

0

𝑑𝑡 (3-9) 

is the arclength of 𝑈(𝑡| ∙). Then, the modified spline is created by the new series of maxima 

with impulse point replaced by (𝑡𝑎𝑠 , 𝑥̂𝑎𝑠). Fig. 3-2 is an illustration of our proposed method. 

Here, the arclength is calculated over all the maxima points. However, this can be time 

consuming when the signal is long. In our experience, minimizing the arclength over 10 

maxima points near the spike points is sufficient.  

For all spike points in 𝐺𝑀, each point is processed consecutively. For the case of 

multipoint spike, the spike detection algorithm will mark two or more consecutive points on 

one single spike. (Here, we regard the whole structure as one single spike.) Minimizing the 

arclength point by point may not achieve the optimal result. The solution to this problem can 

be studied in future works. 
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The modified algorithm of EMD is shown as Algorithm 3. Comparing it to Algorithm 

1, we added our protocol of detecting spike points and replacing them only in the first IMF 

(i.e. when 𝑘 = 1). The rest of the IMFs are processed in the same way as EMD. 

 

Algorithm 3: Spike extraction by EMD with minimum arclength method (MA-EMD) 

algorithm 

(1) Define 𝑥0,0 ≜ 𝑥(𝑡). Starting with 𝑘 = 1 and 𝑝 = 0. Set 𝑥1,0(𝑡) = 𝑥(𝑡) 

(2) Identify all the maximum {(𝑡𝑎, 𝑥𝑎)} and minimum {(𝑡𝑏, 𝑥𝑏)} of 𝑥𝑘,0(𝑡) 

(3) If 𝑘 = 1, find the subset of maximum impulses 𝐺𝑀 = {(𝑡𝑎𝑖 , 𝑥𝑎𝑖)}, 𝑖 = 1…𝑛𝑠𝑝𝑥, and also 

find the subset of minimum impulses 𝐺𝑁 = {(𝑡𝑎𝑗 , 𝑥𝑎𝑗)}, 𝑗 = 1…𝑛𝑠𝑝𝑛, where 𝑛𝑠𝑝𝑥 and 

𝑛𝑠𝑝𝑛  are the total number of points regarded as maximum impulses and minimum 

impulses, respectively.  

(4) Start with 𝑖 = 1, find minimizer (𝑡𝑎𝑖 , 𝑥̂𝑎𝑖) to minimize the arclength of upper envelope 

𝑈(𝑡|𝑥𝑎).  

(5) Replace (𝑡𝑎𝑖 , 𝑥𝑎𝑖) with (𝑡𝑎𝑖 , 𝑥̂𝑎𝑖), and form the new set of maximum points (𝑡𝑎, 𝑥̂𝑎). 

(6) Repeat (4) and (5) for 𝑖 = 1…𝑛𝑠𝑝𝑥. 

(7) For each 𝑗 = 1…𝑛𝑠𝑝𝑛 , find minimizers (𝑡𝑏𝑗 , 𝑥̂𝑏𝑗) to minimize the arclength of lower 

envelope 𝐿(𝑡|𝑥𝑏), consecutively. Then, replace (𝑡𝑏𝑗 , 𝑥𝑏𝑗) with(𝑡𝑏𝑗 , 𝑥̂𝑏𝑗). Form the new 

set of minimum points {(𝑡𝑏, 𝑥̂𝑏)} 

(8) Derive the new upper and lower envelope 𝑈(𝑡|𝑥̂𝑎) and 𝐿(𝑡|𝑥̂𝑏), respectively, according 

to the new set of maxima {(𝑡𝑎, 𝑥̂𝑎)} and minima {(𝑡𝑏 , 𝑥̂𝑏)}. 

(9) Perform step (4)-(5) in Algorithm 1, which is to derive the local mean 𝑚(𝑡) and subtract 

it from the present signal to form the temporal signal  

(10) 𝑥1,𝑝+1(𝑡) = 𝑥1,𝑝(𝑡) − 𝑚(𝑡) 

(11)  Repeat (3)-(8) for 𝑝 = 0⋯𝑛𝑠𝑝 − 1, and derive the first IMF, 𝑐1(𝑡). 

(12) For 𝑘 > 1, the steps are the same as steps (2)-(9) in Algorithm 1 of EMD. 
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3.5.2 Mathematical foundation  

During the sifting process, a spike problematically produces new extrema and creates 

a local high-pass filter. With the minimum arclength criterion, suppose that the spike point is 

(𝑡𝑠, 𝑥𝑠) and that its nearby extrema are (𝑡𝑠−1, 𝑥𝑠−1) and (𝑡𝑠+1, 𝑥𝑠+1). We approximate the 

third-order polynomial curve using a first-order polynomial, i.e., a straight-line segment (Fig. 

3-2). This generates a triangle ∆𝑥𝑠−1𝑥𝑠𝑥𝑠+1. According to geometry, the sum of the lengths 

of any two sides 𝑥𝑠−1𝑥𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑥𝑠𝑥𝑠+1̅̅ ̅̅ ̅̅ ̅̅ ̅ of a triangle is greater than the length of the third side 

𝑥𝑠−1𝑥𝑠+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Thus, if the minimum arclength 𝑥𝑠−1𝑥𝑠+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is satisfied, we have no new extrema at 

𝑥𝑠. 

 
Figure 3- 2. Optimal replacement (pentagram) of spike point (A) found using the minimum 

arclength criterion. 

The new envelope (green) has no new extrema at the spike position compared to the old envelope 

(blue). We approximate the cubic spline between points B-A and A-C by straight lines (orange). The 

triangular inequality guarantees that, under the minimum arclength criterion, there are no new 

extrema between B and C. 
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3.5.3 Simulation verification 

We conducted two simulations to show the additional extrema within an envelope 

owing to the spike and their effect on mode splitting. The first is a composite signal of two 

pure sinusoids with 𝑆1 = 0.3⁡cos⁡(2𝜋 ∗ 5𝑡) and 𝑆2 = cos⁡(2𝜋𝑡), 𝑡 ∈ [0,10]. The added spike, 

𝑆𝐻 , shifts from 𝑡 = 5  to 𝑡 = 5.2 and varies in height from 3 to 100 (Fig. 3-3). In each 

realization, we decompose the signal using a conventional EMD and our proposed MA-EMD 

(Figs. 3-4 and 3-5). In addition, we calculate the number of newly added extrema (NE) 

defined in Sec. 3.3. The mode splitting index (MSI) defined in Sec. 3.2 is then calculated as 

a measure of how extreme the mode-splitting is from 𝑆2 to IMF 3. In our first example, the 

frequency of 𝑆2 is 1; thus, 𝜔 = {1}. 

With the second simulation, we aim to decompose a signal composed of a randomly 

generated low-frequency signal 𝑆𝐿 and a high-frequency sinusoid 𝑆2. A spike 𝑆𝐻 is added to 

interfere with the decomposition. 𝑆𝐿  is generated by filtering white noise with a 4–6 Hz 

bandpass filter; 𝑆2 is again a sinusoid with an amplitude of 0.6 and a frequency of 15. In each 

randomization, we first generate 𝑆2 and 𝑆𝐿. The spike 𝑆𝐻 with height 𝐻 is then added to the 

signal (Fig. 3-6). Decompositions by EMD and MA-EMD are applied on all 𝐻 ∈ [1,51] with 

an increment of 5. The NE of the upper envelope in the first sifting when finding the first 

IMF and the MSI for IMF 3 are also calculated for each decomposition. Here, 𝜔 for the MSI 

is set to 4–6 Hz. We applied 20 randomizations for each height. Finally, the NE and MSI for 

all randomizations with the same height were averaged. All the simulations are performed in 

Matlab 2018b. The program for MA-EMD is modified from the EEMD of Wu and Huang 

[17], and the program for EMD is from the latest version by Wang et al. [37]. 
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The results are shown in Figs. 3-4 to 3-7. In both simulations, three findings were 

observed. First, the spike generated new extrema in the upper envelope in both the single-

tone sinusoid and the randomly generated low-frequency signal. When the height of the spike 

is sufficiently large, NE is more than 1, i.e., more than the spike itself (Figs. 3-4 and 3-7). 

Second, the NE value generated is positively correlated with the height of the spike. Third, 

the MSI increases with an increase in NE. In addition, the MSI occasionally exceeds 1 by a 

large margin. This means that a spurious amplitude that does not exist in the original signal 

is created during the decomposition. In contrast, our MA-EMD generates no new extrema 

and therefore maintains a zero MSI.  

 

 
Figure 3- 3. Simulation 1: decomposing a two-tone signal with spikes of different heights and 

positions.  

The figure shows one of the simulated spikes (𝑺𝑯, green), the high-frequency pure sinusoids (𝑺𝟏, red), 

and the low-frequency sinusoid (𝑺𝟐, blue). The summation of 𝑺𝑯, 𝑺𝟏, and 𝑺𝟐 is the input (black) for 

EMD and MA-EMD. In this example, the height of the spike is 3, and its position is at 5.08. 
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Figure 3- 4. The results of simulation 1 by EMD.  

(a) The original signal (black) in Fig. 3-3 and the IMFs through EMD (purple). (b) The NE of the 

upper envelope in the first sifting when finding IMF 1. (c) The MSI of IMF 3. 
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Figure 3- 5. The results of simulation 1 by MA-EMD.  

(a) The original signal (black) in Fig. 3-3 and the IMFs through MA-EMD (orange). (b) The NE of 

the upper envelope in the first sifting when finding IMF 1. (c) The MSI of IMF 3. 
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Figure 3- 6. Simulation 2: decomposing a randomly generated low-frequency signal with a 

high-frequency sinusoid and a spike of different heights. 

(a) One of the simulations in which the height of the spike is 6. (b) IMFs derived by EMD. (c) IMFs 

derived by MA-EMD. 
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Figure 3- 7. The results of simulation 2 by EMD (black) and MA-EMD (red).  

(a) NE of the upper envelope is calculated in the first sifting when finding IMF 1. (b) The MSI of the 

IMF 3. The circles represent the average values for 20 randomizations; the error bars represent the 

standard deviation. 
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3.5.4 Comparative accuracy analysis 

To test the effect of background noise on the performance of the proposed method, 

we applied the decomposition of a sinusoid mixed with a spike under different noise levels 

and compared the results with those of a state-of-the-art variation of EMD. As with 

simulation 1 described in the previous subsection, the sinusoid is 𝑆𝐿 = cos⁡(2𝜋𝑡), 𝑡 ∈ [0,10]. 

The spike is located at 𝑡 = 5.6, and the height 𝐻 is 3, 13, and 23 in different simulations. We 

added white Gaussian noise with varying signal-to-noise ratios (SNR) of 

{20, 15, 10, 5, 0, −5} dB. The sampling frequency is 30. For each combination of the spike 

height and SNR, 100 randomizations were applied. 

We chose to use multilevel uniform-phase EMD (UPEMD) [21] in the comparison 

because it has been shown to achieve a better performance than the other disturbance-assisted 

approaches in reducing the mode-splitting effects and residual noise effects. We chose eight 

phases and three levels. The frequencies of the perturbed sinusoids are 8.7, 4.3, and 2.1 for 

each level, and the amplitudes are all 1.4. For our MA-EMD, the masking frequency is set to 

7 with amplitude = 0.4. After removing the spike from MA-EMD, the same UPEMD was 

applied to extract 𝑆𝐿 . Traditional EMD was also applied on the same simulation as a 

comparison. In all three methods (EMD, UPEMD, and MA-EMD), the mode-splitting index 

(MSI), in which 𝜔 = {1}, is calculated for IMF 5. In addition, the mean square error (MSE) 

of IMF 4, compared to the sinusoid, 𝑆𝐿, is calculated as a measurement of the reconstruction 

accuracy. 

 The results of our simulation are shown in Figs. 3-8 and 3-9. Note that the calculation 

of MA-EMD in Eq. 3-8 is the same for spikes of all heights because we have a single point 

spike with a very large slope. Thus, the results are the same for spikes of all heights. As 
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mentioned in the introduction, UPEMD acts similar to a high-pass filter for each IMF; thus, 

in the resultant IMFs, the spike is split into all of the IMFs. As a result, pure UPEMD is 

perturbed by a spike, resulting in a mode-splitting problem in which components with a 

frequency of 1 are present in both IMF 4 and IMF 5. When the spike is small, the 

performances of MA-EMD and UPEMD are similar. When the height of the spike increases, 

UPEMD results in larger MSI and MSE. Nevertheless, the original EMD performs the worst 

in the presence of the same spike heights and SNRs. 

 

 
Figure 3- 8. Comparative accuracy analysis: decomposing a sinusoid with a spike under 

different SNRs using EMD, MA-EMD, and UPEMD. The SNR = 0 dB in this example. 
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Figure 3- 9. The results of the comparative accuracy analysis. 

(a) Mode splitting index (MSI) of the IMF 5. (b) Mean square error (MSE) of the IMF 4. The circles 

represent the average values for 100 randomizations, and the error bars represent the standard 

deviation. Note that the results of MA-EMD are independent of H. 
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3.6 Comparison between skip and MA-EMD 

As discussed in Sec 3.4, SK-EMD is efficient but might lower the frequency response 

of the sifting due to reduced number of extrema. On the contrary, MA-EMD may increase 

the frequency response and is computationally more complex. Regarding the possibility of 

losing or adding new extrema, one possible policy to choose between the two methods is to 

compare the extrema interval at the spike point and the other locations. When losing the spike 

points as knots does not differentiate this knot interval from the average of knot intervals, 

SK-EMD may work well without problem of mode-splitting. Similarly, if skipping the spike 

makes the knot interval too large, MA-EMD can maintain the knot intervals in spline. This 

often occurs when the spike is of the shape of a triangle and masks the original extrema. 

Fig. 3-10 demonstrates the mode-splitting problem in SK-EMD on the example of a 

set of core body temperature (CBT) data in which triangular spikes occur. The CBT data is 

from a thermistor probe in the anal sphincter, recorded every 6 minutes. We can observe the 

circadian rhythm in which a cycle length is around 1-day (Fig 3-10(a)). The triangular spikes 

are resulted from showering. In the analysis of circadian, we aim to extract the 1-day 

component in exactly one IMF. In conventional EMD, there is some mode-splitting effect on 

days 4 and 5, as can be seen in the time domain signal and spectrogram (Fig. 3-10(b) and (c)). 

On the contrary, when skipping these spike points, the 1-day component during this period 

advances to IMF 4 (Fig. 3-10(d) and (e)) due to the d0ecreased extrema rate. 
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Figure 3- 10. The CBT data and the results from different methods.  

(a) The CBT raw data (black) and the maxima (circle) and minimum (cross) defined as spikes. (b,d,f) 

The resultant IMFs of different decomposition methods. (c,e,g) The spectrogram of the IMFs. (b,c) 

EMD (d,e) skipping the extrema, and (f,g) MA-EMD. The red arrow indicates non-stationary mode 

splitting from IMF 5 to the previous (c) or later (e) IMFs. 
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Chapter 4. Masking-aided minimum arclength EMD 

4.1 Introduction 

The MA-EMD tracks the local mean without the influence of spikes. This indicates 

that the spikes are left in the first mode (IMF 1). However, if we want to separate the spikes 

from the first IMF, we propose the Masking-Aided MA-EMD (MAMA-EMD) [38]. The 

masking EMD  [20] uses a pair of high-frequency sinusoids (positive and negative) in two 

separate EMD algorithms and then combines the results by averaging the IMFs. The idea is 

to insert a high frequency masking signal, the single sine tone⁡𝑤(𝑡), to the original signal to 

prevent lower frequency components from being included in this IMF. Then, perform sifting 

algorithm on 𝑥+(𝑡) = 𝑥(𝑡) + 𝑤(𝑡) , the resultant mode 𝑐+  contains only spikes and the 

single sine wave. We repeat this algorithm on 𝑥−(𝑡) = 𝑥(𝑡) − 𝑤(𝑡) and derive 𝑐−. When 

averaging 𝑐+ and 𝑐−, the added masking signals were compensated. Thus, we have the new 

“first IMF” (IMF 0) that contains only spikes and some very-high-frequency components 

(most of time noises), leaving the IMF 1 free of spikes. The algorithm of our proposed 

masking-aided minimum arclength EMD (MAMA-EMD) is in Algorithm 4. 

MAMA-EMD applies the MA-EMD in both masking algorithms. When the sinusoids 

are properly chosen, the spikes can be isolated in the previously non-existed IMF (IMF 0). 

Note that directly using the masking EMD can’t separate the spike; instead, masking EMD 

serves as an adaptive filter that extracts only a high frequency components of the spike. The 

next section discusses how to find the appropriate amplitude 𝑎𝑀⁡and frequency 𝑓𝑀⁡for the 
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masking signal. A numerical simulation in Section 4.3 is performed to validate the effect of 

different 𝑎𝑀 and 𝑓𝑀 on separating a spike signal from a single tone sinusoid. 

Algorithm 4: Spike extraction by masking aided minimum arclength EMD 

(1) Perform steps (1) – (3) in Algorithm 3 to detect spike points when k=1. 

(2) Perform EMD to derive the first IMF. Analyze its peak-power frequency 𝑓𝐿 and power 

𝑎𝐿.  

(3) Analyze the slope of each spike, choose the smallest, call it 𝑠𝑡 

(4) Find the proper frequency 𝑎𝑀 and amplitude 𝑓𝑀, such that they meet both (10) and (15). 

(5) Generate masking signal 𝑤(t) = 𝑎𝑀sin⁡(2𝜋𝑓𝑀𝑡) 

(6) Perform steps (4)-(5) in Algorithm 3 on 𝑥+(𝑡) = 𝑥(𝑡) + 𝑤(𝑡) to obtain IMF 𝑐𝑘
+, and 

similarly on 𝑥−(𝑡) = 𝑥(𝑡) − 𝑤(𝑡) and obtain 𝑐𝑘
− 

(7) The resultant IMF is defined as 𝑐𝑘 = (𝑐𝑘
+ + 𝑐𝑘

−)/2. 

(8) For k>1, the steps are the same as Algorithm 3. 

 

4.2 Determination of masking signal 

The inserted sinusoid should create no extrema on the spike, and allow EMD to 

separate itself from the original signal. According to Rilling and Flandrin [26], given two 

sinusoid 𝑆𝐿(𝑡) = 𝑎𝐿 cos(2𝜋𝑓𝐿𝑡) and 𝑆𝑀(𝑡) = 𝑎𝑀 cos(2𝜋𝑓𝑀𝑡), the necessary conditions to 

separate these two signals are 

 
𝑎𝑟𝑓𝑟 < 1 and 𝑓𝑟 < 2/3 (4-1) 

where 

 
𝑎𝑟 = 𝑎𝐿/𝑎𝑀 and 𝑓𝑟 = 𝑓𝐿/𝑓𝑀. (4-2) 

Similarly, there should be no extrema on the morphology of spike. For simplicity, we 

assume that the spike is a triangular-shaped signal ascending within the time range [𝑡𝑎, 𝑡𝑝] at 
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a slope 𝑠𝑡 . In other words, the signal is 𝑇(𝑡) = 𝑠(𝑡 − 𝑡𝑎),  when 𝑡 ∈ [𝑡𝑎, 𝑡𝑝]. Finding the 

extrema point is equivalent to solving the equation 

 𝑑

𝑑𝑡
[𝑇(𝑡) + 𝑆𝑀] = 0 (4-3) 

In other words, 

 𝑑𝑆𝑀
𝑑𝑡

+
𝑑𝑇

𝑑𝑡
= 2𝜋𝑎𝑀𝑓𝑀 cos(2𝜋𝑓𝑀𝑡) + 𝑠 = 0 (4-4) 

No extrema points means that the above equation has no solutions. Namely, 

 
cos(2𝜋𝑓𝐿𝑡) =

−𝑠

2𝜋𝑎𝑀𝑓𝑀
 (4-5) 

is not solvable. This leads to 

 𝑠

2𝜋𝑎𝑀𝑓𝑀
> 1 (4-6) 

Thus, 

 
2𝜋𝑎𝑀𝑓𝑀 < s. (4-7) 

The derivation above is based on an ideal situation where the signal to be separated 

is a pure sinusoid. In practice, we aim to use this method to separate spikes from the first 

IMF derived from EMD. Thus, the 𝑎𝐿 and 𝑓𝐿 can be the peak-power frequency and power of 

the first IMF. Therefore, to remove the effect of spike, we first detect the spikes and then find 

a proper masking frequency by analyzing the slope of the spike and the frequency of the first 

IMF from EMD to meet both Eqs. (4-1) and (4-7). 
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4.3 Simulation verification 

4.3.1 Single Sinusoid 

To validate our derivation of appropriate masking signals, we test the effect of 

different amplitude and frequency of masking signal in MAMA-EMD in extracting a spike 

from a single tone sinusoid. Without loss of generality, we set the frequency of the single-

tone sinusoidal signal to be 1, since the filtering property of EMD is only related with the 

ratio of two frequencies, 𝑓𝑟, and amplitudes, 𝑎𝑟, of the pure sinusoidal signal and the added 

masking signal. The simulated signal and its components are 𝑆(𝑡) = 𝑆𝐿(𝑡) + 𝑆𝑝(𝑡), where 

 
𝑆𝐿(𝑡) = cos(2𝜋𝑡) (4-8) 

and 

 

𝑆𝑝(𝑡) = {
200𝑡 − 380⁡⁡⁡⁡𝑖𝑓⁡2 < 𝑡 < 2.05

−200𝑡 + 420⁡⁡⁡𝑖𝑓⁡2.05 < 𝑡 < 2.1
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (4-9) 

Then, a masking signal 𝑤(t) = 𝑎𝑀sin⁡(2𝜋𝑓𝑀𝑡) is added to assist separating 𝑆𝐿(𝑡) and 𝑆𝑝(𝑡). 

Next, we vary the masking amplitude 𝑎𝑀 from 0.01 to 100, and frequency 𝑓𝑀 from 0.95 to 

20. The sampling frequency is 100Hz. Fig. 4-1 shows the time-domain waveforms of 𝑆(𝑡) 

and its two components. The result of separation is evaluated by the mean squared error 

(MSE) between the extracted IMF2 (sinusoidal) and 𝑆𝐿(𝑡).  

Fig. 4-2 demonstrates the MSE of IMF2 versus 𝑓𝑀 and 𝑎𝑀. As expected, the proper 

frequency and amplitude of masking signals is bounded by Eqs. (4-1) and (4-7). At the left 

hand side of the curve of 2𝜋𝑎𝑀𝑓𝑀 = 𝑠, the spike is not separable from the⁡𝑤(𝑡). Meanwhile, 

at the right hand side of the curve, 𝑎𝑟𝑓𝑟 = 1  and 𝑓𝑟 < 2/3 , the masking signal is not 

separable from 𝑆𝐿(𝑡). 
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Figure 4- 1. The simulated signal and its decomposed IMFs. 

The signal 𝑺(𝒕) is a combination of the triangular spike 𝑺𝒑(𝒕) (c, black line) and pure sinusoid 𝑺𝑳(𝒕) 

(d, black line). (b) A demonstration of summation of the signal and added masking sig (black solid 

line). The upper envelope (blue line) is connected by the adjusted extrema. The baseline (green line) 

is the average of the upper and lower (dashed blue line) envelop. (c) The triangular spike 𝑺𝒑(𝒕) (black 

line) and the first IMF from MAMA-EMD (red line). (d) The pure sinusoid 𝑺𝑳(𝒕) (black line) and the 

second IMF from MAMA-EMD (red line) 
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Figure 4- 2. The MSE of IMF2 extracted by MAMA-EMD for different 𝒇𝑴 and 𝒂𝑴. The 

ground truth is a pure sinusoidal signal. 
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4.3.2 Duffing wave  

We use nonstationary Duffing wave with artificially added spikes to demonstrate that 

the proposed method extracts, maintains the non-linear and non-stationary properties of EMD 

and suppresses the mode-splitting effect. Duffing wave can be understood by the motion of 

a pendulum with non-linear stiffness. The Duffing equation has the form in Eq. (3-4). We 

add three spike signals with slope 5, -8 and 10, and height 1.5, -1.3 and 2.9, respectively, and 

get spike-contaminated signals. The original Duffing wave, the spike signal as an artifact, 

and the spike-contaminated signal is shown in Fig. 4-2(a-c). 

The IMFs from EMD by decomposing the Duffing wave serve as the ground truth of 

the decomposition. Three IMFs were derived from the decomposition (Fig. 4-3). The first 

IMF corresponds to the intrinsic frequency around 0.1 Hz which shows strong intra-wave 

frequency modulation structure; IMF 2 corresponds to a uniform intermediate frequency 

component representing the forcing function. The sub-harmonic term is the evidence for the 

non-linearity of the system. Moreover, its amplitude is very small, which means any error 

will destroy the waveform of the sub-harmonic motion; IMF 3 represents a very low-intensity 

sub-harmonics. 

The decomposition results by EMD on the perturbed signal is shown in Fig. 4-3(d-f). 

Under the influence of spikes, the IMFs are disturbed, resulting in a mode-splitting effect, 

where the original 0.1 Hz signal is distributed in both IMF 1 and 2. Hilbert spectrum also 

shows the frequency shift from 0.1 Hz to three times larger in IMF 1 (Fig. 4-4(a)). The 0.1Hz 

during this period (80-100 sec) is split into IMF 2. 

Then, we decompose the perturbed signal by the proposed method. Since the input 

signal itself is smooth and without noise, we use MAMA-EMD where a high frequency sine 
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wave is added in the first step to increase extrema points, so that the baseline, i.e. the signals 

except spike, can be depicted during sifting. The masking signal here has a frequency 𝑓𝑀 =

200 and an amplitude 𝑎𝑀 = 3.5. The result of our decomposition is depicted in Fig. 4-3 (g-

j). In comparison to EMD, our MAMA-EMD method extracted the spike signal in the first 

mode, which is labeled as IMF 0 to avoid confusing with the original IMF 1. Afterwards, the 

later IMFs can be successfully recovered from the decomposition. Compared to the ground 

truth, our method only differs from the ground truth around both edges. The MAMA-EMD 

derived IMFs clearly depict the intra-wave frequency modulation in Hilbert spectrum (Fig. 

4-4(b).). 

 

 
Figure 4- 3. Surrogated nonstationary Duffing signal contaminated by triangular spikes, and 

its decomposition by EMD and our proposed MAMA-EMD, respectively. 

(a) Duffing wave. (b) The spike signal as a perturbation. (c) The spike-contaminated signal as the 

input for EMD and MAMA-EMD. (d-f) The blue lines are results of EMD on (c), and the black lines 

are from EMD on pure Duffing wave in (a) as the ground truth. (g-h) The red lines are MAMA-EMD 

on (c). The black lines in (h-j) are the same as the black lines in (d-f) but in different scales. Note that 

with MAMA-EMD method, the triangles are extracted, and the mode-splitting effect in (d-e), in 

which the 0.1Hz component in the first IMF of black line is split into IMF 1 and 2, is alleviated. 
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Figure 4- 4. Hilbert spectrum showing the frequency overlapping caused by spikes. 

(a) IMF 2-4 by EMD. (b) IMF 1-3 by MAMA-EMD. 

 

4.4 Limitations 

To use a masking signal, the frequency 𝑓𝑀 and amplitude 𝑎𝑀 of the added sinusoid 

𝑆𝑀(𝑡) = 𝑎𝑀cos⁡(2𝜋⁡𝑓𝑀𝑡) must be determined. The criteria for choosing the frequency and 

amplitude of the added sinusoid were also proposed in Eqs. (4-1) and (4-7). However, there 

are some situations in which the spike is not separable from the first IMF even with the aid 

of a masking signal. The nature of EMD lies in the local means determined by the rate of the 

extrema [11], [42]. To separate the spike from the first IMF, the masking signal 𝑆𝑀(𝑡) should 

produce new extrema on the first IMF but not on the spike itself. Suppose the spike has slope 

𝑠 and that the peak-power frequency and power of the first IMF are 𝑎𝐿 and 𝑓𝐿, respectively. 

This gives 

 𝑎𝐿𝑓𝐿/𝑎𝑀𝑓𝑀 < 1 and 𝑓𝐿/𝑓𝑀 < 2/3 (4-10) 

and 
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 𝑠

2𝜋𝑎𝑀𝑓𝑀
> 1. (4-11) 

Combining the above two inequalities, we have 

 𝑠 2𝜋⁄ > 𝑎𝑀𝑓𝑀 > 𝑎𝐿𝑓𝐿. (4-12) 

When Eq. (4-12) does not hold, we cannot find a masking signal to separate the spike and the 

IMF; this implies the following: 

 𝑠 < 2𝜋𝑎𝐿𝑓𝐿. (4-13) 

Note that this inequality implies that the background signal has extrema exposed on the spike. 

That is, if the spike is insufficiently sharp, we cannot separate it from the background even 

with the aid of masking signals. 

4.5 Examples  

4.5.1. Electrical current 

Electrical current surge is a common problem in automatic control system. 

Conventional method of processing this signal is to use a linear low-pass filter, which does 

not remove the spikes effectively. Here, we demonstrate the performance of our proposed 

MAMA-EMD in solving this problem comparing to a Fourier-based low pass filter and 

traditional EMD. 

The data were phase currents measured from three-phase AC servomotor (YBL-9D, 

Ye Li Electric & Machinery Co.,LTD) at 300rpm. The current values were transferred to 

voltage values by the current sensors. After filtered by RC low pass filter, the analogue 

voltage was converted to digital data by the microcontroller (STM32F103). A 3.3V 12-bit 

1KS/s analog-to-digital converter was used.  
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The time domain signal and the Fourier spectrum are shown in Fig. 4-5(a,b). The 

spikes on the signals were cause by MOSFET switch on the three-phase inverter of the motor 

drive, and the frequency of switching was 10 KHz. The instantaneously switching would 

cause the current surges, resulting in the spikes on the signals. Furthermore, the 

microcontroller and the peripheral circuits would also generate high frequency noise. The 

phase current cycle represents the rotation of the engine. The harmonic (~40 Hz) in the 

Fourier spectrum showed that the signal is not pure sinusoidal. 

First, the signal is filtered by a low-pass FIR filter with pass band equals to 15Hz. Fig. 

4-5 (c) shows the results of filtering. Since a spike has a very wide band in Fourier spectrum, 

the designed filter can only decrease the height of spikes. 

The decomposition result derived by EMD is shown in Fig. 4-6(a), where only the 

first 6 IMFs are given. The spikes even in the non-spike region disturb EMD, resulting in the 

mode splitting problem during the 0.2-0.4 second. 

Then, the data is processed by our proposed MAMA-EMD. The spikes were first 

detected by the median filter described in Section 2.2 with window size 20 and threshold 1.5. 

The extrema detected as spikes are shown in Fig. 4-6(b, panel 1). Then, the first mode is 

derived from adding a masking signal with frequency 𝑓𝑀 = 200 and amplitude 𝑎𝑀 = 3.5. It 

can be observed that, our MAMA-EMD extracted the spikes and some high-frequency noise 

in the first IMF (Fig. 4-6 (b, panel 2)). The rest of the signal contains no spikes can be further 

processed by traditional linear filters or EMD. Here, we demonstrate the IMF 1-5 of 

decomposition results by EMD. In summary, it shows that our algorithm is capable of 

removing the spikes, and improves the decomposition of the rest modes. 
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Figure 4- 5. Electrical current data.  

(a) The time domain signal.  (b) Frequency spectrum. The arrow indicates the harmonic at 40Hz. The 

spikes cannot be removed by a 15 Hz low-pass filter (c). 
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Figure 4- 6. Intrinsic mode functions of the electrical current data (IMFs) derived from EMD 

(a) and MAMA-EMD (b).  

In (b), the first panel showed the original signal (black line) and the points detected as spikes (red 

circles). Panel 2-6 demonstrate the decomposition by our propose method. The first IMF contains the 

spikes and some high-frequency noise. The last panel shows IMF 5 that depicts the low frequency 

wave. 

 

4.5.2 Rotor test rig 

Vibration signals from rolling element bearing is adopted to verify our proposed 

method on realistic data. The faulty mechanical components often result in impulses-like 

vibration signals. These spikes, although including useful information, may cause mode 

mixing effects when decomposed by EMD. In fact, moderate de-noising before 

decomposition or filtering has been proposed to improve the fault detection algorithm [30, 
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39]. In the example demonstrated in this section, we show that our method can extract spikes 

in the first IMF and improve the accuracy of later analysis. 

The experimental data are provided by Center on Intelligent Maintenance Systems 

(IMS), University of Cincinnati [40]. In this run-to-failure test, four Rexnord ZA-2115 

double roll bearings were installed on one shaft. Each bearing was equipped with two PCB 

353B33 High Sensitivity Quarts ICP®  Accelerometers (x and y axis). Vibration data was 

collected for 1 second every 20 minutes for 164 hours with a sampling rate of 20 kHz, and 

the length of each data is 20480 points. The rotation speed is kept constant at 2000 rpm 

(rotation frequency 𝑓𝑟 = 33.3 Hz), and a radial load of 6000 lb. was applied onto the shaft 

and bearings by a spring mechanism. At the end of the test-to-failure experiment, an inner 

race defect occurred on bearing 3. The inner race fault frequency 𝑓𝑖 is 296.9 Hz. 

Fig. 4-7(a) shows the time-domain waveform of the vibration signal. Note that our 

spike detection is defined on differences to extreme values of nearby extrema, not the 

absolute value of the spike point, and thus some of those seemingly large values are not 

detected as spike if its nearby extrema is also large (Fig. 4-7(b) and (c)). This provides an 

advantage to maintain the resonance excited by the impact of default. 

The decomposition results derived by EMD and MAMA-EMD are shown in Fig. 4-

8, where only the first 5 IMFs are presented. We performed envelop spectrum on IMF2 and 

3. The envelop spectrum is the Fourier transform of the envelope of the signal. From the 

envelope spectrum derived from IMFs of both methods (Fig. 4-9), the inner race fault 

frequency (𝑓𝑖= 296.9) and its modulation with rotation frequency (296.9±33) can be found 

from IMF 2. However, our proposed method has a lower noise level and clearer peaks in both 

IMF 3, and clear peaks on the rotation-related frequencies 2𝑓𝑟 and 4𝑓𝑟.  
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Figure 4- 7. A vibration signal from bearing 3 with inner race defect.  

Maxima spikes are denoted as red circles; minima spikes are blue stars. (a) The raw data. (b) and (c) 

are partial zoom-in of the signal. 

 

 
Figure 4- 8. Intrinsic mode functions (IMFs) derived from EMD (a) and MAMA-EMD (b). 
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Figure 4- 9. Envelope spectra of components derived from EMD (a-b) and MAMA-EMD (c-

d).  

(a) and (c) are components from IMF 2; (b) and (d) are components from IMF 3. 

  

4.5.3. Cyclic alternation pattern subtype classification in sleep electroencephalography 

Neuronal signal often presents different shapes of spikes. In this section, we showed 

that the extracted spikes can be used as a feature preserving its physiological significance. 

The cyclic alternating pattern (CAP) is a periodic EEG (Electroencephalography) activity, 

which is characterized by sequences of transient electrocortical events that are distinct from 

background EEG activity. The CAP may signify sleep instability, sleep disturbance, or both 

[41]. CAP is composed of transitions between Phase A, identified by high-voltage slow 

waves, and the low-voltage irregular activity of at least 2 seconds (Phase B) (Fig. 4-10). 

Phase A activity can be classified into three subtypes based on the reciprocal proportion of 

high-voltage slow waves (EEG synchrony) and low-amplitude fast rhythms (EEG 

desynchrony) throughout the entire phase A duration. According to the standard, the 
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proportion of EEG desynchrony occupies <20%, 20-50% and >50% of the entire phase A 

duration in subtype A1, A2 and A3, respectively [42]. Subtype A1 marks the brain’s attempt 

to preserve sleep; subtypes A2 and A3 often coincide with a frank EEG arousal. Specifically, 

85% of subtypes A3 and 62% of subtypes A2 meet the AASM (American Academy of Sleep 

Medicine) criteria for arousals. 

Here, we regard the high-voltage slow waves as spikes. By separating them from the 

background EEG, we can define the relative proportion of time between EEG synchrony and 

desynchrony and distinguish different phase A subtypes. The EEG is first processed by 

masking EMD to remove the first 4 IMFs which contain high frequency information (Fig. 4-

11). The residual signal is then processed by MAMA-EMD to extract spikes. This extracted 

signal, called IMF 4sp, which contains spikes is used to calculate proportion of EEG 

synchrony, defined as the proportion of time IMF 4sp is above or below a threshold (±4uV). 

We test our algorithm on the CAP Sleep Database [42, 43] 

(https://physionet.org/pn6/capslpdb/#ref02). This database includes polysomnography 

recordings, and the sleep microstructure is labeled by a team of trained neurologists. We use 

EEG recordings of the bipolar derivation C3-A2 from one of the normal subjects (n9) as an 

example. A total of 317 phase-A segments were analyzed. 

Fig. 4-12 summarizes the result of our thresholding method on the three subtypes. 

The proportions of time with EEG synchrony are significantly different among the three 

subtypes (P<0.05).  

  

  



doi:10.6342/NTU202000887

53 

 

  
Figure 4- 10. An example of CAP cycles in 4 EEG channels (Fp2-F4, F4-C4, C4-P4 and P4-

O2).  

A CAP cycle is defined as a sequence of 2 alternating EEG patterns called phase A (indicated by red 

line) and phase B. Phase A is composed of high-amplitude EEG bursts which stand out from the 

background rhythm (phase B) in all the EEG channels. 
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Figure 4- 11. An example of CAP cycles. A CAP cycle is defined as a sequence of 2 alternating 

EEG patterns called phase A (indicated by red line) and phase B.  

Phase A is composed of high-amplitude EEG bursts which stand out from the background rhythm 

(phase B). Decomposition of the three different phase A subtypes, including subtype A1 (a-e), A2 (f-

j) and A3 (k-o). The red horizontal lines indicate occurrences of A phase. The original signals (a,f,k) 

are first decomposed by masking EMD to remove the first 4 IMFs (b,g,i). The residual signals (c,h,m), 

derived by subtracting IMF1-4 from the original signal, are then processed by MAMA-EMD to 

extract the high-amplitude spikes (d,i,n). We then set up a threshold (±4uV, blue lines in d,i,n) to 

identify whether the extracted spikes are above/under this threshold. The proportion of time that the 

spikes are above/under this threshold (indicated by blue areas in e,j,o) is distinguishable among 

different phase A subtypes. The blue arrow in IMF 1 of (l) indicates EEG arousal, which is often 

observed in subtype A3. 
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Figure 4- 12. Proportion of time that the extracted spikes in a phase A exceed the threshold. 
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Chapter 5. Application of MAMA-EMD on P-wave extraction for 

detection of potential atrial fibrillation patients 

5.1 Significance for AF detection 

Atrial fibrillation (AF) is a most common arrhythmia with an estimated prevalence of 

1-4% in the general population [44]. Adults with AF are under a 5-fold greater of risk of 

stroke, 1.5-fold greater risk of all-cause mortality, increased risk of development and 

mortality of heart failure and higher risk of dementia [45]. Independent of other associated 

cardiovascular conditions, quality of life in AF patient is impaired [46]. The diagnosis of AF 

requires an electrocardiogram (ECG) documenting the typical AF rhythm. For potential 

patients with AF symptoms, general procedures in hospitals are usually an ECG Holter 

device which would be brought back home and used to record for 24-hr. Recent development 

of wearable devices with dry-electrode which enables patients to start recording only when 

symptoms occur [47] is another solution. However, for some AF patients, undiagnosed is 

common due to asymptomatic (‘silent AF’) and paroxysmal occurrence of AF [48]. Identify 

and determine potential AF patients under sinus rhythm during regular 12-lead ECG 

examination is crucial and beneficial for further prolonged systematic screening. 

5.2 Recent works related to AF detection under sinus rhythm  

There has been increasing evidence showing the structural changes in the atrial that 

develop atrial fibrillations [49], and these structural changes may reflect on the 12-lead ECG. 

Using 180922 patients with 649931 normal sinus rhythm ECGs, Attia et al. showed a 79% 
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accuracy in diagnosing AF patients under sinus rhythm with a 10-layer 1-D convolutional 

neuron network (CNN) on the eight physical leads in 12-lead ECG [50]. However, the critical 

features and clinical implications involved in the classification could not be revealed in the 

1D CNN. The major challenges in identifying AF feature is the non-prominent P-waves in 

ECGs. Here in this study, we develop a method to isolate P-wave from ECG, and formulate 

P-wave related features which are free from interferences of QRS complexes. The aim of this 

study is to use feature based analysis to identify viable biomarkers for detecting AF patients 

under sinus rhythm. 

5.3 Method for P-wave analyses  

5.3.1 Subject selection 

We included all digital-available standard 10-second 12-lead ECG recordings from 

the Taipei Medical University Hospital between January, 29, 2015 and March, 07, 2020. A 

total of 94224 digital ECG recordings from 64196 patients were collected and de-identified. 

All ECG were recorded in the supine position by a trained physician at the sampling rate 500 

Hz. All the recordings are diagnosed by trained cardiologists. The Taipei Medical University 

Hospital Review Board approved waiver of the requirement to obtain informed consent in 

accordance. 

To select the recordings for identifying characteristic of potential atrial fibrillation 

during sinus rhythm, we first identified patients who are positive for atrial fibrillation by 

having at least one atrial fibrillation rhythm in these ECG recordings (Fig. 5-1). Many 

patients had multiple recordings over the inclusion period. To maintain the time dependence 

with atrial fibrillation instance, we defined a collection window of 90-days prior to the first 
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atrial fibrillation record. We consider only the ECG recordings marked as sinus rhythm, and 

287 recordings from 213 subjects are selected according to these rules. Among them, the last 

ECG record diagnosed for each subject was included for the analysis. 

The subjects for the control group were selected to comply with all the following 

criteria: (1) Each subject has at least 2 ECG recordings. (2) All the ECG recordings from the 

same subject are sinus rhythm. (3) Subjects have no ICA 10 codes of AF in their electronic 

medical records. A total of 3588 subjects meets the above criteria. Then, to avoid the effect 

of age on the ECG features, we use stratified sampling to ensure similar age distribution 

between AF and control groups. We set a 10-year age bin, and randomly sampled the subjects 

from each of the age groups between 50-70 to maintain the number of selected subject 2 

times the AF group. The total number of selected control subjects are 247. After the subject 

list is determined, the first ECG recording for each subject were chosen in the analysis. 



doi:10.6342/NTU202000887

59 

 

 
Figure 5- 1. Subject selection diagram. 

 

5.3.2 ECG Signal processing 

The scheme for this study comprises of signal processing, feature extraction and 

statistics. The complete flow chart of this study is in Fig. 5-2. Details for each step are given 

below.  

 
Figure 5- 2. Flowchart for the ECG processing and feature extraction for this study 
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5.3.2.1 Noise filtering 

Electrocardiagrams were resampled to 500 Hz. We first filter the baseline wonder by 

discrete wavelet decomposition. The ECG is decomposed with symlet 10 wavelet at level 8. 

The 8th approximate coefficient was set to zero to remove the very low frequency component. 

Then, the filtered signal was reconstructed using an inverse wavelet transform. Afterwards, 

a high pass filter with cutoff frequency equals to 32 Hz was applied. Some of the devices 

encountered artifacts in the first or last 0.5 sec and these artifacts were removed. Therefore, 

the length of the ECG recordings that are available for analysis ranges from 6.6-10.9 sec. 

5.3.2.2 ECG Delineator 

To identify the critical points on ECG for the later P-wave extraction and ECG 

morphology features, we used an open-source QRS detector and waveform limit locator, 

ECGPUWAVE [51], which has excellent performance for P-wave and QRS detector. Q-, R-, 

S-wave and the onset and offset of P-wave were identified for further processing. 

5.3.2.3 P-wave extraction 

The P-wave of an ECG reflects electrical activity originated from the atrial. Thus in 

this study, we aim at extracting features from P-wave. Our previously developed ECG 

features by the VCG and PCA will be largely influenced by the QRS wave and T wave which 

dominates ECG in amplitude and time, and thus we proposed a two-step algorithm to isolate 

P-wave from the ECG. The QRS wave was first removed by MA-UPEMD. Then, the baseline 

and T-wave of the QRS-removed ECG was delineated and subtracted by applying the MA-

UPEMD again. 
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The EMD is an iterative algorithm which adaptively decomposes an input signal x(t) 

into several IMFs. Each IMF is an oscillatory component with a characteristic frequency 

scale. In each iteration to derive an IMF, a series of sifting process is performed, including 

the following steps. (1) Identify local maxima and minima. (2) Calculate the upper/lower 

envelope by interpolating the local maxima/minima with a cubic spline. (3) Take the mean 

curve by averaging the upper and lower envelopes. (4) Subtract the mean curve from the 

signal. The steps (1)-(4) is repeated several times (usually 10) and the residual is an IMF. By 

subtracting the IMF from the x(t) and repeating the sifting steps, several IMFs can be derived.  

The MA-UPEMD is a combination of the two newly developed modification of EMD 

-- MA-EMD and UPEMD. With the MA-EMD, we aim at extracting spike functions of a 

signal in the first IMF. During each sifting for the first IMF, the height of extrema on the 

spike were adjusted to minimized the arclength of the cubic spline. This way, the spike is left 

with the residual after subtracting the mean curve. To remove the QRS-complexes, the Q-, 

R-, and S-waves are treated as spikes in MA-EMD. To improve the performance of QRS 

extraction and limit the range of cut-off frequency extracted by the MA-EMD, we further 

applied UPEMD, which has been shown to effectively suppress mode-splitting effect and 

residual noise problem. In UPEMD, a set of sinusoid signals of the same amplitude and 

frequency but with phases uniformly distributed within 2π was added into the input signal. 

The EMD is performed separately on each of the phases, and the IMFs from each realization 

is then averaged. The frequency of the sinusoid in the QRS extraction is 30 Hz and the 

amplitude is 0.02, and the number of phases is 4. The MA-UPEMD is to apply MA criterion 

on each of the realization of UPEMD, and the extracted QRS and the residual ECG which 

contains P- and T-wave are presented in Fig. 5-3 (b). 
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The remainder P- and T-wave still encountered serious baseline drift. Since we aim 

at preserving the intact waveform of P-wave, we did not use Fourier-based linear filters. We 

first take the averaged beat of each lead by aligning the beats with their original R peak 

position. Each subjects have a 1-sec by 12-lead ECG wave matrix. Then, the MA-UPEMD 

was performed on each lead of the average beat. This time, the P-wave was treated as spike, 

and the frequency of the added sinusoid is 10. The amplitude is 0.02 with 4 realizations. As 

a result, we have the isolated P-wave of the averaged beat for each of the 12 leads (Fig. 5-

3(c)). 

 
Figure 5- 3. The isolation of P-wave by applying twice the MA-EMD method.  

(a) The raw ECG (black) and the QRS removed signal (blue). (b) the delineated baseline wonder and 

T-wave (purple). (c) The extracted P-wave (red), which is the subtraction of the blue line and purple 

line. The results by directly applying an 3-8 Hz bandpass IIR filter (Butterworth) and directly applying 

a Tukey window at the P-wave were also shown in (d) and (e), respectively, as comparisons. 
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5.3.3 Feature extraction 

5.3.3.1 ECG morphology features 

The conventional ECG morphological features were calculated from the ECG critical 

points detected by ECGPUWAVE. Due to collinearity, we chose the leads with the largest R 

amplitude among the limb leads and chest leads, respectively, and the morphological features 

were extracted on the averaged beat of the two chosen leads. The positions of ECG critical 

points include peak, onset, and offset of P-wave, onset and offset of QRS complex, Q-, R-, 

S-wave, and the peak, onset and offset of T-wave. The 3 types of ECG morphology features 

were defined bellow. 

(1) Wave amplitude. The amplitude of P, Q, S, and T wave is defined by the peak of 

the wave. 

(2) Duration. Traditionally features for ECG are calculated, including: the duration 

between P-onset and R-onset (PR interval), the duration between Q onset and J 

point (QRS duration), and the duration between Q onset and T offset (QT interval). 

(3) ST-voltage. The height of the ECG segment between J point and T onset, which 

is usually used for diagnosis of myocardial infarction, is also used. The average 

voltage between the two points were calculated.  

5.3.3.2 Principle component analysis for P-wave projection 

To analyze the depolarization route of the atrial, we map the 12-lead ECG to a 3D 

vector space spanned by the principle component (PC) of the ECG (Fig. 5-4). This 

transformation can better project the depolarization route to the x-y plane than the traditional 

vectorcardiogram transforms since each individual has a unique P-wave axis. This projection 
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method has been used on the QRS complex for distinguishing patients with arrhythmogenic 

right ventricular cardiomyopathy [52]. Here, we apply the same technique on the P-wave 

extracted ECG. We construct the P-wave matrix Xnx8 by 8 of the 12 leads (I, II, V1, V2, V3, 

V4, V5, and V6) with n observations (n = 500 points, 1 second), and decompose the 

correlation matrix (XTX) by principle component analysis (PCA). The first 3 principle 

components U1, U2, and U3 occupy 99% of the total variance and is representative for the 

route and variation of the P-loop. The weighting of PC1, PC2, and PC3 (the eigenvalues) 

were included as a P-wave feature from PCA. 

 
Figure 5- 4. The PCA transform for 8 of the 12 leads.  
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5.3.3.3 P-loop descriptors 

Then, the previously developed QRS-loop descriptors [52] were applied on the P-

loop. We calculated the area and length of the P-loop on the 2D plane expanded by PC1 and 

PC2 (Fig. 5-5). A minimum rectangle that encompasses the P-loop was divided into N cells 

(N = 4900 in this study) with equal size. The P-loop area (PA) is defined by the percentage 

of cells inside the P-loop. This area represents regularity of the loop and reduces when convex 

and concave components exist in this loop. The P-loop length is calculated by the total 

number of cells the route passes. The increase in P-loop length indicates the dispersion or 

inhomogeneity of the route. 

 
Figure 5- 5. The P-loop descriptor by PC1 and PC2.  

The number of grey cells are the loop length, while the number of white cells inside the loop is the 

loop area. 

 

5.3.3.4 Inter-lead P-wave dispersion 

 We further measured the dissimilarity of the P-loop between potential AF patients 

and normal subjects by analyzing the inter-lead relationships. This was previous used on the 
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QRS loop and was named inter-lead QRS dispersion [52]. In this study, we applied the same 

idea on the P-wave. In the new 3D vector space of the PCA, each lead was mapped to a vector 

in the new orthogonal axes constructed by the first 3 principle components (Fig. 5-6). We 

calculated the angles between each pair of the reconstructed vectors. A smaller angle 

indicates spatially closer vectors and vice versa. The differences in the angles in the AF group 

from the normal group represents a change in the inter-lead relationship, which indicates a 

shape distortion in the P-loop. 

 

 
Figure 5- 6. The inter-lead correlation of the P-loop by PC1, PC2 and PC3.  

The left panel is an example from the control subject and the right panel is one subject from the AF 

group. 

 

5.3.4 Statistical analysis 

We compare the differences in mean (median) of all the extracted features in the AF 

and control groups with the independent student t-test when the assumption of normal 

distribution meets. If the assumption of normality fails by a p-value smaller than 0.05 with 

Shapiro-test, a non-parametric Wilcoxon rank-sum test was performed instead. To 

understand the predictability of these features, a logistic regression was performed and the 
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area under curve (AUC) of the receiver-operator curve (ROC) was calculated. The features 

were selected by sequential forward selection until the increase of AUC is less than 0.1. Cox 

proportional hazard model was used for assessing the time-dependency of these features for 

the risk of having AF in 3 months. The start point is the ECG examine date of each subject, 

and the end point is set to be the date of the ECG for the AF confirmation. For the control 

group, the end of observation is the date when the last ECG was recorded. To ensure 

balancing between AF and control group, recording times for more than 90 days in the normal 

group were censored to 90 days.  

5.4 Statistical significance of the features 

5.4.1 Morphology features 

We found significant differences between AF and control patients (Table 5-1). The 

AF patients are characterized with a reduced amplitude in P-wave, R wave and T wave in 

limb leads, and a smaller T-wave amplitude and larger QRS interval in the chest leads. There 

is time-dependency in P-wave and QRS related features. A higher risk of AF is found in 

patients with larger P-wave duration, an earlier P-onset time (that is, a longer PR interval), a 

larger QRS interval, and a decreased height of ST segment. 
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Table 5- 1. Differences in morphology features for AF and control patients and the respective 

hazard ratio in cox survival analysis. 
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5.4.2 PCA related features 

The weight of principle component 1 of the PCA on the extracted P-wave is reduced 

in AF patients, and a relatively higher weights in principle component 2 was found (Table 5-

2). The weights of PC1 and PC 2 have both time-dependent effect. The P-wave loop 

expanded by PC1 and 2 also showed a smaller area in AF patients. 

 

Table 5- 2. Differences in PCA related features for AF and control patients and the respective 

hazard ratio in cox survival analysis. 

 

5.4.3 Inter-lead P-wave dispersion 

We found a time-dependent effect on the risk of AF in the inter-lead angles (Table 5-

3); larger angles between V2 and V3, Lead II and V2, Lead I and V2, and V2 and V6. A 

higher risk of AF was also present with larger angles between V3 and V6 and Lead I and V5, 

and a smaller angle between Lead II and V6. 
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Table 5- 3. Differences in inter-lead P-wave dispersion for AF and control patients and the 

respective hazard ratio in cox survival analysis. 

 

5.5. Classification of AF and control patients 

We performed logistic regressions for each of the variable and see the AUC of ROC 

for each variable. Table 5-4 lists the top 10 biomarkers for identify AF patients, and the most 

important feature is the amplitude of T-wave on the limb lead which yields an AUC of 0.61 

(Fig. 5-7). The other biomarkers including weight of PC1, PC2 and the T-wave amplitude on 

the chest leads. In the stepwise inclusion of all the candidate variables, the final AUC can 

reach 0.67 (Fig. 5-8), and the contributing variables include T wave amplitude (limb leads), 

angle between II and V6, R wave amplitude (limb leads), angle between V1 and V2, and P 

wave duration (Table 5-5). 
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Table 5- 4. The top 10 features for classifying the AF and control subjects when single feature 

is used. 

 

Rank Variable AUC 

1 T wave amplitude (limb) 0.614 
2 Weight of PC1 0.597 
3 Weight of PC2 0.594 
4 Angle: II_V6 0.589 
5 T wave amplitude (chest) 0.572 
6 Angle: II_V2 0.565 
7 R wave amplitude (limb) 0.561 
8 P wave duration 0.555 
9 Angle I_V2 0.553 
10 Weight of PC3 0.551 

 

 

 
Figure 5- 7. The ROCs for classifying AF patients by single variable. 
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Table 5- 5. The first 5 selected feature for classifying AF patients using stepwise forward 

selection in the logistic regression. 

 

Rank Variable AUC 

1 T wave amplitude (limb) 0.614 

2 Angle: II and V6 0.634 

3 R wave amplitude (limb) 0.651 

4 Angle: V1 and V2 0.662 

5 P wave duration 0.672 

 

 

 
Figure 5- 8. The ROC for classifying AF with combined variables. 

  

5.6 Discussion and implication  

In this study, we have developed an algorithm that is able to isolate P-wave, which 

reflects electrical activity of the atrial, from 12-lead ECG. We have shown that, when 

transforming the 12-lead with the PCA which represents the individualized P-wave axis, the 

inter-lead relationships on this new axis can be quantified. The inter-lead relationships and 
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the PCA weighting are promising biomarkers for AF, which showed a significant difference 

between the AF and control group. With the features derived from PCA of the extracted P-

wave, specifically the angles between the physical leads, the ability of detecting potential AF 

patients can increase at least 10% than the traditional morphology features. 

When classifying the AF and control group by logistic regression, the prominent 

biomarker is the T-wave amplitude. The reduced T-wave amplitude is observed in the AF 

patients, and patients with a T-amplitude less than 0.051 mV has a hazard ratio equal to 1.8 

times. The T-wave amplitude represents ventricular repolarization, and a decrease or 

deflection may have related with ischemia [53]. Ischemia and myocardial infarction are 

known risk factors for atrial fibrillation due to ischemia or hemodynamic changes in atrial 

stretch [54, 55]. In our results, we also found ST-segment to be a significant risk factor in the 

cox survival analysis which showed a 1.4 times higher risk, though there is no significantly 

different between AF and control group. The comorbidity of ischemia can be further 

investigated by the medical history. The other explanation of the reduced T-wave amplitude 

is the additional depolarization activities from the atrial that contaminate the derived ECG. 

This can also explain the reduced P-wave and R-wave amplitudes in the AF patients. 

The weighting of the PC1 and PC2 is also highly significantly different between the 

AF and non-AF groups, showing a transmission energy dispersion in the abnormal atrial. 

These two variables alone are the most prominent feature when prediction AF except the T-

wave amplitude. However, they are not present in the stepwise inclusion procedure of feature 

selection, indicating a dependency on the T-wave amplitude. On the other hand, the inter-

lead dispersion of P-wave, specifically the angles between lead II and V6 and between V1 

and V2, are independent factors that contribute to the detection of AF.  
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Our finding showed a limited power on the proposed features in detecting AF patients. 

As the pathology of AF is the fibrosis of any area of the atria, a single source of abnormality 

or single lead distortion may not be detected from a cohort of patients. The recently published 

work incorporated 180922 patients with 454789 ECGs and trained by an integrated artificial 

system may be holistic view of pathology of the AF, and therefore reaches an AUC of 0.87 

[50]. Our work here can be combined with the detailed medical history or the ablation 

outcomes to provide clinical insights. 
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Chapter 6. Extension to step function  

6.1 Generalized algorithm 

In Sec. 4.5, we demonstrated the use of our MA-EMD on several spike-contaminated 

datasets. Here, we extend our method to the removal of step-function signal components. To 

better describe the idea in a real implementation and avoid confusion with numerical 

differentiation and integration, we use the discrete-time representation of the signal, 𝑥[𝑡]. 

Because the first derivative of a Heaviside step function is a spike, we can approximate the 

first derivative of the signal 𝑥(𝑡) by a finite difference, that is, 𝑥̃[𝑡] = 𝑥[𝑡] − 𝑥[𝑡 − 1]. The 

signal 𝑥̃[𝑡] can be decomposed into IMFs using MA-EMD. The first mode, 𝑐̃[𝑡], is the signal 

with the spike (step function). By subtracting 𝑐̃[𝑡] from 𝑥̃[𝑡], we obtain 𝑥̃2[𝑡] as the first-

order time-difference of the step-function-removed signal. Finally, we can reconstruct the 

step-function-removed signal 𝑥2[𝑡]  using the cumulative summation (approximating the 

integration) of 𝑥̃2[𝑡],i.e., 𝑥2[𝑡] = ∑ 𝑥̃2[𝑠]
𝑡
𝑠=0 . The proposed workflow is given in Algorithm 

5. In fact, Algorithm 5 can easily be generalized to handle any function whose Nth-order 

derivative is a spike function, for example, the Heaviside step function or a sigmoid function 

with a steep change in slope.  
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Algorithm 5: Removing step function by MA-EMD 

(1) Input signal 𝑥[𝑡] 

(2) Take the time-difference of the input signal 𝑥̃[𝑡] = 𝑥[𝑡] − 𝑥[𝑡 − 1] 

(3) Perform MA-EMD on 𝑥̃[𝑡]. Let 𝑐̃[𝑡] be the first IMF, which is 

(4) (3-1) Define 𝑥̃′[𝑡] = 𝑥̃[𝑡]. 

(5) (3-2) Identify spikes in 𝑥̃′[𝑡]. These spikes should correspond to the points on the step 

function. 

(6) (3-3) Apply the minimum arclength criteria of (11) and (12). Find the replacements for 

the spike points in the local maxima 𝛤𝑥 to obtain the upper envelope⁡𝑈(𝑡). 

(7) (3-4) Perform step (4) in Algorithm I and derive ℎ[𝑡]. 

(8) (3-5) If the stopping criteria in step (5) in Algorithm I are met, assign 𝑐̃[𝑡] = ℎ[𝑡] as the 

IMF and go to (4). Otherwise, let 𝑥̃′[𝑡] = ℎ[𝑡], and repeat (3-2) to (3-4). 

(9) Calculate 𝑥̃2[𝑡] = 𝑥̃[𝑡] − 𝑐̃[𝑡]. 

(10) Let 𝑥2[𝑡] = ∑ 𝑥̃2[𝑠]
𝑡
𝑠=0 . Then, 𝑥2[𝑡] is the step-removed signal. 

 

6.2 Example: Photoplethysmogram (PPG) recording 

To describe the use of Algorithm II, we utilize a photoplethysmogram (PPG) 

recording from a transmittance pulse oximeter recorded at 256 Hz as an example. When 

estimating the blood oxygen saturation level (SpO2) from the PPG, it is necessary to calculate 

the amplitude variation (AC) of the pulsatile component of the PPG waveform [56]. The PPG 

waveform often suffers from baseline drift and noise, and it is necessary to filter the signal 

using a bandpass filter with a passband ranging from 0.5 to 5 Hz [57, 58] before calculating 

the AC. In our recording, there is contamination of the step function owing to a change in the 

DC gain from either an LED light emission or firmware calibration (Fig. 6-1(a)). This step 

function in the signal obtained after applying a 0.5–5 Hz bandpass filter results in a large 

spread of data distortion for approximately five pulses (Fig. 6-1(c)).  
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According to Algorithm II, we take the first-order time-difference of the signal to 

form 𝑥̃[𝑡], and the step function thus becomes a spike function. We add a masking signal  

𝑆𝑀
𝑘 [𝑡] = 𝑎𝑀cos⁡[2𝜋 𝑓𝑀𝑡 + 2𝜋𝑘/𝐾]  in which 𝑎𝑀  and 𝑓𝑀  are 1 and 20, respectively, and 

consider K = 2 realizations. Then, for each realization, we use MA-EMD on 𝑥̃𝑘[𝑡] = 𝑥̃[𝑡] +

𝑆𝑀
𝑘 [𝑡] to extract the first IMF, 𝑐̃𝑘[𝑡], where the spike resides. The spike function of 𝑥̃[𝑡] is 

then calculated by averaging all 𝑐̃𝑘[𝑡], i.e., 𝑐̃[𝑡] = ∑ 𝑐̃𝑘[𝑡]
𝐾
𝑘=1 . Finally, the reconstructed 

signal 𝑥2[𝑡] is processed using a cumulative summation of the spike-removed signal 𝑥̃2[𝑡] =

𝑥̃[𝑡] − 𝑐̃[𝑡]. The detailed flow chart for the processing of this example is exhibited in Fig. 6-

2. In fact, this flow chart can represent a general algorithm dealing with the step functions in 

any type of signal. The set of minimum impulses, G, is the step function. The masking signal 

is not necessary but is suggested so as to limit the band width of the derived first IMF. The 

frequency and amplitude of the masking signal should be determined through Eqs. (4-1) and 

(4-7). 

In contrast, the conventional EMD alone can also be treated as an adaptive filter to 

replace the bandpass filter. In this study, we also tested the ability of the conventional EMD 

in dealing with this problem as a comparison. Because IMFs 1–3 carry most of the 0.5–5 Hz 

components (Fig. 6-1(d)) and IMF 4 and later modes are contaminated by the step function, 

we treat the summation of IMFs 1–3 as a signal filtered through EMD. 

The signal reconstructed by our MA-EMD is shown in Fig. 6-1(a). When filtered by 

the same 0.5–5 Hz bandpass filter, the distortion reduces to only 1–3 pulses (Fig. 6-1(c)). 

Comparatively, when we directly apply EMD to the original PPG signal as an adaptive filter, 

the results also show a distortion near the location where the step function occurs, and the 
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effected range is approximately five pulses, which is not smaller than that achieved using a 

Fourier bandpass filter (Fig. 6-1(c)). 

 

 
Figure 6- 1. Step function removal in PPG using MA-EMD. 

(a) Original PPG 𝑥[𝑡] (black) and step-removed PPG 𝑥3[𝑡] (red). (b) First-order time-difference of 

signals, i.e., 𝑥̃[𝑡] (black) and spike (step)-removed signal, 𝑥̃2[𝑡] (red). (c) Extracted spike function in 

𝑥̃[𝑡]. (d) Band-pass-filtered PPG signals of 𝑥[𝑡] (black) and 𝑥̃2[𝑡] (red). (e-j) IMFs 1–5 (blue line) 

when applying conventional EMD on 𝑥[𝑡] and the summation of IMFs 1–3 (green). 
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Figure 6- 2. Flowchart for removing step functions in the PPG signal. 
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Chapter 7. Conclusion 

Nonstationary impulse noise and step functions are common problems in signal 

processing and disrupt the IMFs of EMD. By introducing a recently developed impulse 

response theory of decomposition, we clarified that the sifting process is effectively a non-

stationary highpass filter whose cut-off frequency depends on the extrema interlacing interval. 

There are mainly two causes of the undesirable effects of spikes in EMD. First, the extremely 

large impulse response by the spike point. Second, the newly generated extrema. The 

interaction of these two results in a locally high-frequency oscillation distinct from the signal 

at other locations. This results in a chain of effects of non-stationary mode-splitting which 

propagates throughout the IMFs.  

In order to overcome this problem, our MA-EMD finds a replacement point of the 

spike that minimizes the number of newly generated extrema and reduces the impulse 

response from the spike. This way, the spike can be fully attributed to and isolated in the 

first IMF, and as a result the latter IMFs would be free from this disturbance. A 

mathematical proof and two numerical simulations are provided. To further facilitate the 

spike extraction, masking-aided MA-EMD (MAMA-EMD) is proposed. Aided with a 

masking signal with proper frequency and amplitude, we isolate the spikes in the first IMF, 

and improve the performance of decomposition the later IMFs. We also provided a 

mathematical induction and numerical experiment to find the proper amplitude and frequency 

of masking signal. We applied the MAMA-EMD method on the ECG to isolate the P-wave 

which represents atrial activity, and showed the statistical significance of the P-wave related 
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features in identifying potential AF patients. Finally, we proposed a general algorithm for 

separating the Heaviside step function by applying our MA-EMD approach.  

Future applications to signals whose Nth-order derivative is a spike function can be 

expected. We believe that we have established a solution to an important problem regarding 

the nonstationary noise incurred during EMD. The proposed MA-EMD can further be 

applied to other EMD modifications, resulting in a robust algorithm for stationary and 

nonstationary types of noise. 
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