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FeHpE

Membrane capacitive deionization (MCDI) is an alternative desalination
technology, which combined with the ion-exchange membrane (IEM) in front of
electrodes. Based on the principle of capacitive deionization (CDI), the ions are
removed by applying electric field and ions, which stored in the surface of porous
carbon electrodes from aqueous solution. During the process of electrosorption, the
IEM plays an important role to exclude the co-ion effect due to the characteristic of
permselective. A membrane that completely blocks transport of co-ions while allowing
transport of counter-ions simultaneously. However, the IEM is expensive, requires
strong physical pressure between membrane and electrodes. In order to solve the
problems of contact resistance and thickness of electrodes, the heterogeneous
membrane/activated carbon electrode (RMCDI) was developed by adhering the powder
of ion-exchange resin (IER) on the surface of electrodes directly. The electrodes were
characterized by electrochemical analysis, contact angle and surface structure analysis.
The results show IER layer can not only reduce the resistance between electrode and
IEM but also improve the hydrophilic properties. In addition, the results also show the
functional groups of IER will not be destroyed during product process. For the cyclic
voltammetry, the specific capacitance still keeps up after coating IER layer. From the
electrosorption experiments of 5 mM NaCl at applied potential of 1.2 V over 30 min
period in RMCDI system, the electrosorption capacity (6.21 mg/g-carbon) is 40 %
higher than the un-coating electrode and also have good performance of charge
efficiency (71.4%) and lower energy consumption (0.0434 kWh/mole). Furthermore, a
cyclic test was performance for continuous operation of RMCDI including
electrosorption and desorption process for 5 cycles. The electrosorption capacity was
measured between 5.91 and 6.23 mg/g-carbon over the repeat operations. This implies
that the RMCDI system would have stable performance and good generation of

electrodes over the repeated operation.

Keywords: membrane capacitive deionization, heterogeneous ion-exchange membrane,

electrosorption capacity, charge efficiency, energy consumption
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Figure 2-1 Schematic of capacitive deionization process to remove ions from agqueous

solutions.
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Figure 2-2 Principle of CDI operational process (a) feed solution; (b) electrosorption;

(c) saturated electrosorption; (d) regeneration process.
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(@ Helmholtz mocdel (b) Gouy-Chapman model (c) Stern model
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Figure 2-3 Simplified illustration of ions distribution on electrode model (a)
Helmholtz model; (b) Gouy-Chapman model; (c) Stern model. (electrostatic potential
near electrode, Em and electrostatic potential in solution, Es)
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Figure 2-4 Schematic representation of the electric double layer with immobilized
ions in the Stern layer and mobile ions in the diffuse layer; including inner Helmholtz
plane (IHP) and outer Helmholtz plane (OHP), the OHP marks the beginning of the

diffuse layer, where the electric potential exponentially decays with surface distance.

doi:10.6342/NTU201602358



zr3¢4*nm»1@ﬁﬁ%
2-1-3-1 T8k € ok

WIFIFENRF TEEF L G 28 H 4 A

St
&=H
W}
IR
(\x
Bk
)
¥
(]
N
=
QD
=
Q

etal., 2012; Hatzell et al., 2013; Lumeng et al., 2015) » #& @ 7 Lin ¥ A #3345 30
% 3L F © ~ (pore size, @) ]+t 0.8 nm pF > T & £ fr(double layer overlapping)»x
B F PRI RZENTVFP O F B AR L E AN I > R
gL e B 8 (Lin et al, 1999) o ik A Ying A 3 B R Sy o f1 S
faAp RS s T2 g g F% 0 Bl A R at (OLI< 2 nm)HrHE e o Adt R
Y XA IR HA A T A BIRock R TR £ R % (Figure
2-5a) Bt A Y EPTEACHRPEE BERAT IR 53 &
F okt F £(Yingetal, 2002) o ot > FA R FHITTHF AR FERZG
PR FIRIFSTFD LR FRRIBICTY > REHEI AL SIFPITE A IVFR > 2 d AT

T B A & H5(compression of electrical double layer)i % & 4 £ 4> is(Figure 2-
5b) o FJpt > FLIE A F eIk FRH A R fRERER DRI 2 M 5 CDI HjiFn

WL B o

(b)

0

& /’/ _ h & \“--——--—-:/
pore size pore size

Figure 2-5 Schematic of (a) double layer overlapping and (b) compression of

electrical double layer (indicated by dash lines).

doi:10.6342/NTU201602358



2-1-3-2 3+

BokpiRe o RPREG AT S > AIFET Y B2 MG T i 4 \ﬁfﬂﬁ
PRLFREFIAAREEAR T L AL RIE o TR LRy RS
RS B Aok 2 e 0 & 3k R & (concentration
driven) 2 ¢ #-i®* 4 (fielddriven)s@ 58> 7 WK 33 X 7| 5%$ 4 0

(counter-ion) & # > & F 2

Y g

(Co-ion) Az iz @ A F L F| i (s @ﬁ%%gﬁ, c T HIEF T 4T B E S
kR B R R i

Lo S et d 3

L’I‘h‘gﬁ%ﬂsrﬁ' AR K I 5 kR AL MIER

HEIEFEES 2

HE o W3 AT I ApT RR

ik RRLNT 72 4+ KR Y > LR A Y RS T HS e

IS ()RR ok P L ()T A
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;ﬁd Figure 2-7 33 R 0 eng HE B M > 305 e T il 79 > 3 4%
Wl PR E R A AR AT OR BT AR UE L DTHIEY AR
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counter-ion diffusion
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Figure 2-6 The counter-ion transport into the porous material as the co-ion released

due to field-driven.

Porous material layer

High electrolyte
concentration

Low electrolyte
concentration

10199[]09 UaLND

N\
Field-driven
co-ion diffusion

Concentration-driven
co-ion diffusion

Electric field
Anode Cathode

Figure 2-7 lon transport through a perfectly permselective cation/anion exchange
membrane placed between electrolyte solutions of high and low concentration occurs

only via the counter-ions.
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2-1-4 REFIBIPLFERA R

1996 & » F RBLP =S X F2 pl éﬁﬁé’t DR F R R AHDT
o A CDI AR 12063 12V R BRGJLT (A% LH P A4 12V T B
FNF R > T UG sk ER R S 100 pS/em =9 NaNOs i3z @ H 3 'ﬁ i
96% - ® 24T B E 2 (Farmeretal., 1996) - (6§ K #& 2111 3 b 0T B H AL
* 5 CDI e B > A BA-8 4 & 03 :e CDI kv @i > f* £ 5
AR R HeA G 4 - K TiO2(Ryooetal., 2003) ~ & 2 5 B2 2 5t gt ¢ (Dai et
al., 2005) ~ ¢ 3§ B g1t (Zou et al., 2008) 14 2 7 &% (Li et al., 2009) i+ & 7 4& 1
# = CDI gt £ o m 1395 2 /];Je:};] 2 CDI Btz T et 4t cniw & & £ 4o (Oren,
2008) :

(@ BrEAEf R EAGHFL DB G BTG RET T

We 3 EPH{AE o

(b) 2HFPETH I FPFTIRE A DT ] -

() HERTE R TRT TEAG 2 FIALEF K-

(d) RAFRARME DG BE3TRA R AV P FRAT e

() BALP W g R EFLIP MG 22 -

@ CDI $tjiest 2 1ok Bl > 2008 4 o MR RB2 F B E RN
BT b oA Lok SRS E R M TR ook d it a2 (Xu et al., 2008) o gt ¢
et £H#F 0 Huang % % & ¥4 415 >0 CDI % 2 > 3 ] 37 0.8V
Sk TR RN P EHPEF TR TR E 0 2 1 EIT Kk & (~13 mg/L)
AR AL+ 3 40T L U * (2 (Huang et al., 2014) - Fan % 4 #£3¢ CDI i * »¢
bR BB dp T B FIL A G L R R LT (HASOs & HASOS)
ORI R BT HE T RS SR A 2 AR R
BedT A Bigd Tuoafg o 2 Aamgl A4 e %
Je SRR k2 B Tk B F Bk 3 Az CDI e kB AT T ¥ i Ak B 15_0.138
mg/L "% & 2 & 4% KR 8(0.05 mg/L) » 2 % F 1% 70.5% (Fan et al., 2015) » o pt
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v 4o CDI ehfle® Ap 4 AL 4§ % CDI 2 # i $tir i & & 5 B S04 o

CDI & 3 M 4248 47 e R TS 0 o $ac RAEE DIFERT > M8 A
Mg R E 8RB AT F e iR B 3 @]“"%‘f—‘*fﬁ,@ ;i ° 2010 & - Anderson ? 1
* Biesheuvel z_ #t 4 # #i#z CDI it 423 5 2 ;% (Biesheuvel, 2009) - Figure 2-8 3&
& CDI At i@ 2aF 8T > 447 F NaCl k& dig i RE 7% B a2 3 3
Tk R () ¥ 300 mo/L)2 BB T BeER TR A iR o S5k CDI AR @
KPS REER R R o BRI E S 2 @ E AR R e A e
sz % (charge efficiency, n) > st R AL A M2 A F BB FE TF > B AL @K
FE (5000 Mg/L) » i AT ik S i R T (B0~T0 %) 0 T R 2 AT B

£ 4 4p§ chs s g% (Anderson et al., 2010) -

74 —=— Thermodynamics
—e— 1= 95%
6] —4—n=90%
| —v—n=85%
5 n=80%
@ —t—n =709
- n=70%
s
-~
£ 3
o
= 50
1
D_ --T T T T

T T T T ' | T ) T T ¥
0 5000 10000 15000 20000 25000 30000 35000 40000
[NaCl)/ mg L
Figure 2-8 Electrical work to produce 1 m? of a solution containing 0.3 g/L of NaCl

from solutions of different concentrations using capacitive deionization (CDI). The

operating cell voltage = 1.2 V, round trip efficiencies 70-95%.
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2-2 BWER AL S HE
2-2-1 T p I EAL

BT 7 4 33 P (membrane capacitive deionization, MCDI) » 3t CDI & st
PR RTHRL G AR E BT AE S ARG B INT A F S
EWBE2ZAM bl B A T FP L - A (F TR )
FE 07T jF £ 33 (co-ion)shdp S+ B E 5 i o Figure2-9 22 MCDI % % ¢ M &
THA GRS IIEE LA KBRS LY P EESHET R
RARZRUEE  SHhPFITLR BIIDNTHFZEGET I anspd > AEL 4P
HLPi - EFREF AHERFP VDI TEEY BT W
Foro R e THROE 4@ R IS RGEE O R DI LR
MeEH MBIl 0 TG A 4 L eI %3 4 (Biesheuvel etal., 2011) o gt ¢k &

WAETRIP I AXFTLLPFEYEIREGRIEAG L DR LY

P

o d 4E(Tanaka, 2015) ¥ & 345 < 3479 %7 & @‘} JHI T A BE G R

(@) M7 IBIEI

(b) &> fwa?]fffeﬂz

(€ L&k Hlkips k- FHP

@) #2532 548 RS £
(&) 24Feniii R

H ™=4

|:| Titanium
B Activated carbon
Cation exchange membrane

|:| Anion exchange membrane

O Cation
@ Anion

Figure 2-9 Schematic of MCDI process to remove ions from aqueous solutions.
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222 WA I P F R AR

L 4 4t 2006 & 0 gE LE]?J Lee & 4 ¢-¥+ MCDI 2
Z_ gk > #orz 1,000 ppm 2

12V 7 23 7] 92%2 4 % sk o o 5 MCDI % B 5 oc 5 1 CDI % 19% (Lee
2006) - # ¥| 2011 & #

1 79 %

AT AR B IR
NaCI /p /|>? 1 40 mL/mlm Z_ Si—r ] =R /n \qﬁ@
R A 3
et al.,

@] J Biesheuvel % # ¥ = g 49
% MCDI z_ ¢ s ¥t d 4 (Biesheuvel etal., 2011) » gt ¢k %

nigik e g*ﬁb%ﬁd LY 4
PLengi s L Ge FER LR LB LG P HF I EY oS
| & = 78 48 (7 33 6 :E (Kshamaetal., 1997) » 3 i erid 4 R I2 > 3 507 12
" 4 4+ vl B2 (LI and Zou, 2011; Zhaoetal., 2012) » k- BEHE § % 3 b 1p
P TRt E o FP AR onkF ehd I MCDI i ¥ i3t CDI e
Zhao # | 4p #.>t RO a2 Hojie MCDI 2 5t il i 42

B AR R P W JTat R o Figure 2-10
WA e T R 0 TR T

3+ 1kWh/m® » e P i 49
w2205 RO $30 250Kk & hic R
b MOk R S FIR 0 RO T3 et R 42 AL LA 0.5
3 1kWh/m® g#Rp > @ e
13 en s g2 3 500 mg TDS/L 2.

Kk B -] 3t 2000mg TDS/L » % i MCDI 8 55
# 4 g4 (Zhao et al., 2013)

KF o Ap#eT RO § i i ok

%2 &g en
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i MCDI &
0.5gLTDS,

P8 i McDl
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Figure 2-10 Comparison of energy consumption between MCDI and reverse osmosis.
Triangles: energy consumption of MCDI to bring salt concentration to the level of 0.5
g/L TDS (~ upper limit for palatable drinking water). Diamonds: energy consumption
of MCDI to reduce salt concentration to 1 g/L TDS (~upper limit for drinking water)

(Zhao et al., 2013).
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2-2-3 AW R NFENT FLAES FF

RSP E R S eI BAEAE DY KRGS L FRER Y
++ 50~200 pm & (Porada et al., 2013) » A€ & F B304 2 HW > 7 B /Y
3 LA o DS L~ T D W 2w e SIS AL 2 A
%-(homogeneous membrane)fr 232 % & + (heterogeneous membranes) < $# Af%5 %
(Tanaka, 2015) » +4c Figure 2-11 7+ X B #77 -

AT AE SN TR RN ERATEAG £ S A LA KT
BT SOHARA A3 AT g2 sz % (Kim and Choi, 2010; Lee et al., 2011; Liu
etal., 2014) » £ ¥ % & — [Le0d S LA G IR g E RS
(Kim et al., 2012) ~ &+ % #icz 3F # $2(Kim et al., 2016))7 2 %F w4 4L chee g2

~ 47 (Kwak et al., 2012; Zhang et al., 2015) % # 3 - & &>t Table 2-1 -

Heterogeneous ~ Homogeneous (a)

]

o:o.ogiz("":s:’o.\‘} ) \\‘
ety ghte
b @

Figure 2-11 lon-exchange membrane in the form on the electrode surface: (a)
commercial; (b) direct coating of homogenous and (c) direct coating of heterogeneous

ion-exchange membrane in MCDI cell.
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Table 2-1 Research on MCDI application.

Size

Thickness (pum)

Voltage

Electrode material Application Concentration Results Reference
(cm x cm) Electrode IER layer V)
) .. NacCl solution (200 Performance Kim and Choi,
Activated Carbon 10 x 10 140 10 1.5 desalination
mg/L) MCDI > CDI 2010
.. NacCl solution (100 Performance
Carbon cloth 3x85 - - 1.8 desalination Leeetal., 2011
mg/L) A-CDI > CDI > MCDI
Carbon nanotubes 8 x 8 26 26 1.2 desalination - Enhance capacitance Nie et al., 2012
) . 5 mM of NaCl and 2 . ) )
Activated Carbon 10 x 10 150 70 1.0 selectivity ) selectivity of nitrate Kim et al., 2012
mM of nitrate
0.7 Qcm?
i Kwak et al.,
Membrane 2x%2 - 100 1.5 analysis NaCl (100 mM) 0.014 S/cm 2012
0.912
Carbon nanotubes 8 x 8 - - 1.2-2.0 desalination NaCl (50 ps/cm) m-MCDI > MCDI > CDI Liu et al., 2014
.. NacCl solution (100 .
Carbon nanotubes 10 x 10 4.89 1.0 desalination ma/L) MCDI > CDI Kim et al., 2015
) Enhance the conductivity Zhang et al.,
Membrane - - 170 - 470 analysis -
of membrane. 2015
. NaCl solution (100, = Removal efficiency )
Carbon nanotubes 10 x 10 150 6.4/10.6 1.0 selectivity Kim et al., 2016
200, 300 mg/L) NaCl > CaSO04 > MgCl2
IER: ion exchange resin.
16
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2-2-3-1 &S LHE

el @ OE* AR B W Ee R s R - KT L AP
EUFAFREF DD AR REPRET AL AEFI B AL S T A
CRAR R A AR R A+ AF L 22010 £ 0 Choi & 5% ;ﬁui‘%
22 gh a0k A yha ph(sulfosuccinicacid) 2 # 2 B e P B>t R 44 o o 1% B i
FREHN B RS TS B B E R @ 7 % CDl W RS R & 50—
67%3% < T 75-85% > % § rc 4 4 tF# 2 T 69-95% (Choietal., 2010) - @ Kwak
A NF GRS Bk £ F (4-styrenesulfonic acid sodium salt hydrate, NaSS) -
" &P pe(methacrylic acid, MAA){=® 2L [ % B4 P fia (methyl methacrylate, MMA)
SN EF B N R R EFE TR AR AIIEY B E BE SRR
& 4= (copolymer) » %% BT 3 % 2B F BPFR € W4 H T > R A 34 NaSS v
Bl e L RCE P sh g oKk 2 (water uptake)Hg 4o o i F9 4 B MR R R IR
T F oot MRS T e & 1) PR E B2 4e 60 %:5 NaSS ~ 30 %:1 MAA
fo 10 % MMA &% T » ¥ 5] 0.7 Qem? g it 7 [k 2 & L4F PR T A
(0.014 S/cm)fr @ % % #(0.912) > = & 7 A& T e R T o & (Kwak et al.,
2012) - ¥ = 2 5 Lee % 5 R4 ¥ ¢ Sg 3% CDI ik st(Figure 2-12) » 11
* & & 4~ (Bromomethylated poly, BPPO) 1 ¥ 7% > 5% ** g % (carbon cloth) % & » #

WA ZRAEIMAT A ATIEHRRET IS REIATEELG RS A
MCDI & 5t b PEfo— 457 % g 2 #9972 & o MCDI kst oo B % A7
A-MCDI ",%ﬁt-iﬁ‘i 3> CDl > ® 3%~ 3 MCDI ki % §.d »h a3 2 0 A & ahfe
FULE B PR R A = 2 A7 R > 4o Figure 2-13 #1571 o i2— # # A-MCDI
S sexr 100mg/L e NaCl 73 7% @ s i 2e e T iR R4k 17 > i § fEhT it £/

st A 4 & R(Leeetal., 2011) -
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Current collector

CEM—>

=
b Cation exchanger

Anionexchanger
s ks

Current collector A

<CDI> <MCDI> <A-MCDI>

Figure 2-12 Schematics of the CDI, MCDI and A-MCDI cell structures. (Lee et al.,

2011)
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20
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Figure 2-13 Variations in the ion conductivity of the CDI, membrane-CDI (MCDI)

and advanced-MCDI (A-MCDI) during their operation. (Lee et al., 2011)
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2-2-3-2 2IOF AR 1 #HA

PLIDF PG QY 0 3 R AR R R T AT AR - B AR
#HPg # B > 4o & ¢ % (polyvinylchloride, PVC) ~ /3 *f * (acrylonitrile) £ i I 4
BAFT AL A mREe a2 § TR B Fta @ 5k
2 v B RS Y i ket F(Kishietal, 1977) > £ e P H 2 AN > A
SO NRT E T v U BTk cWas £ A R A 0 20
B A E RIS ) XTI LA A REF AR bR AR R
W AR G RE EEE AT R SO AR L R L E 2
Mo @ BB T LA 7 BRI R RE DR R (4T B i) 7 B
FHRAT T EE AL T F RS F F1R S P8 & ¢ o R R (Was
et al., 2001) > #fPaks % AT 35% <15 39 um - 7 £ 60%cnfett @ > H B0 R

(bursting strength) % 1.9 kg/cm?~ fEfL 4 3+ 8-9Q cm? 2 @ #5 48 0.9 2 B & £ 3o
|

Kim fr Choi 4+ 41 # it 138tF 2 & — f2enge 2 3 45 (BHPS5) » ik ok
R dF 07 SR IR R A T R R A LRk ko B e~ REF AR e
BB ALY WA SRR £ F00 CDI ks p PR TR G 0 H e kit
Rl Lt g5 oniE $ 2(Figure 2-14) - #7 v 5.0 mM NaCl 4= 2.0 mM NaNOs >
AR 4 LOV R RS T U H “$ 34 mmole/L enid 243 €2 ¢ 19 mmole/L
LA P > AP ¥ MCDI i se? s Mok (40845 25 mmole/L > # ¢ 8.3
mmole/L 5 A a3 ) > 5 B F /A A4S Gi % (Figure 2-15) > = P 3 4c 14

e 430 A BR84S o3 % 44 (Kim and Choi, 2012) -
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Figure 2-14 SEM images of a composite carbon electrode coated with BHP55 resin

powder, (a) top view, (b) side view. (Kim and Choi, 2012)

C/Co

06

—&— nitrate
—w— chloride
-y ¥
T
E—
0.5 T T T T T T
8 10 12 14

adsorption time (min)

16

Figure 2-15 Changes in ion concentrations during the adsorption period in NSCCE

system operation. (Kim and Choi, 2012)
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Fle o Jii:?'/%fwféﬂ’. % MCDI s 59 > Z 4867 2558 iy (1) p
W (2) B AT LR (3) 2T L2 58 4o Table 2:2 4 o
PFEFPHIAREGFHT A TP ERE S W b2 BE XA G IS A e

KA LR BROTF I ER R S N B LS

i
=
ﬁ
2

A 2 SR HE S R R LA R R A G
PP T rL g4t AR e T i L E AT 0 B MCDI i St

Y E B -

Table 2-2 Caparison to commercial and direct coating ion-exchange membrane in

MCDI system.

B T2 A R it B
FRNENTEA S %A F

BE o

BEREFESF RHA  TIESEE % B p A

i TREFERF &
B HS
AT R 5 R B PRI F
Sl R Y L
ik & A
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2-2-3-3 3+ 2 HHy
3 % fE AP (lon-exchangeresin) > 5 - fid o E F it AchB A F REF - 5

HoehdE = 2 F A A T (matrix) & BCF 2 4 (polystyrene) 2 3 4 fiz(acrylic) e % B
BHedom g 23F 5 it 0 B E S BT (fixedion) e P 5
- B F w#t3 (counterion) > ;M aIFE T ¢ M ¥ 4 5 g A rid A opk ek g 1 B2 A
AR b2 G o " BREASS LA R FE - A T

2 FRGE I =ZBE R ¥ IEEF & (polymerization) ~ ¢ O R 5 %
(intermediate reaction) ~ F it & i* (functionalization) 12 & = % % e 3 < 4% 47y »

> Figure 2-17 A7 33 AR chE SV B F R om A SR AR T A G LT
(macropore) £ ¥} (gel) e 3+ 2 4547y - e Figure 2-16 #1771 » A F B L R0 R &
FRib®od BRAGBHI RO X35 - B Sk LA L3 RF
B s F Rt B A e ok 0 A SR BT LA E RSP

IR S SR AR O R R R B AT S B
P BE TR AR A R P A BV BN T o &2 ST
RAEE o BRI EARBTNTE o V- 3 5 0 EIVRET L HM I EFE

X gL LG AR Tt s gt @ Table 2-3 #7571 (Miller et al., 2009) -

(@) Gel (b) Macropore

Figure 2-16 Structure of ion-exchange resin of (a) gel and (b) macropore
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(a) & & F R(polymerization)

REREF ZBH LehE 323 F 4 - HHW(AoF o )R o il Al
LIHH M (4o DVB) v #73 hj A RIFTIA R L 0 £ RIS SRR W 4R
woe BARIB IR BB RS BRBIERIRT S0 FAR BT IBDRL G
FM LG RRREF R FFESEOR 0 BV AT ARG PR
EEy apnkiito

(b) ¥ B %2~ B (intermediate reaction)

PAER G R R R RS S IR H A iE T4 e
H o sp A 235 A chls B+ LA R & 3R e 2 styrene/DVB & A T eiE
B LM ERLAER AL ERY X REFIoF T AT AR
(chloromethylmethyl ether, CME) % R iR E R MALZ T AR ESF D
PR B AR R R R A R A R AT A et B - B E

BE MR o 2 AR R 2t NI4T A o

(c) F it #& 1 (functionalization)

Bh AR AT QL He AL AR A Y o S5 d 3 EUE B (100°C) 4 4o A S N R

@%%%%%’ﬁ%ﬁ&ﬂﬁﬁii’%ﬁwa’#M%ﬁﬁ%m@ﬁﬂ’ﬁi
EE R %%%?ﬁ%i:a@%éﬁﬁﬁﬁmgﬂﬂ@%ﬁigﬁﬂm%

R e F I ez s Alile k¥ A& $ 5 5 3] (strong base anion resins, SBA) - 33
4] (weak base anion resins, WBA) i &+ < 4, - H 7 WBA §.d 7 Fver ¢
PR Y R R REG o F v A 1 EEeE ) 3¢ (free-base form) s 7 5 SBA ¢

Z P AR - " R ppidfed PR B2 2> T4 3 & 3+ 3555 (chloride form)
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polymerization sulfonating acid
CH=CH; CH=CH;, —— %  -+*—— CHCH,CHCH. ———» ***— CHCH,CHCH, —
catalyst L L swelling agent l l
O Q 0Q @)@l
L L J \ / A
N mi:‘ﬁ\ = \—}&\ SOsH ~ =~ xP SO H*
styrene CH=CH- — CHCH; . +»+—— CHCH3
divinylbenzene
+**—— CHCH,CHCH: +o+—— CHCH:CHCH; —=*+ (1) + N(CH3); — ***—— CHCH,CHCH; —=**
O catayst (NN OO
1 ] - ] [} |
L Q\-./'] + CICH,0CH, A [\—/'/ -"‘-Y\'
. S m ’, Ry e g
T CH,Cl + CH30H ] CHoN*(CH3)1CI
s — CHCH;—** — CHCH: — CHCH,—
(M

Figure 2-17 Chemical reactions of ion exchange resin production (a) cation exchange

resin (b) anion exchange resin (Wheaton and Lefevre, 2000).

Table 2-3 Comparisons of gel and macroporous ion-exchange resins (Miller et al., 2009)

Gel Macroporous

Uses

Appearance

Porosity

Crosslinking Levels

\Volume Change

Resistance

Capacity and Kinetics

Standard resin for most water
Widely for special application

application.

Transparent Opaque

Function of cross-linking and number of

Function of degree of crosslinking discrete pores

Low High

Considerablewith/highiporosity Less volume change than gel resin

(low cross-linked) resin

Susceptible to oxidizing agents and
P g9ag Good chemical resistance

organic foulants

High capacity and fast elution kinets Reduced capacity and kinetics
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¥ % REHRHPLE
31l RHRESERA

Table 3-1 Manufacturers and model of experimental instrument.

ER R ey 35 B R
T i 3 60 mesh Retsch

Wi & 120 mesh Retsch

i i 3 230 mesh Retsch

TF 4 HR-200 AND
BrRERE Color Squid IKA

% PFA-2010-S PROYES
Bz DOV30 Deng Yng
Ez¥{F Chemker 11 ROCKER

LEh J BT100-2J Longer

54 Tt MF-2060 Basi

TR SC2300 Suntex

e b B 3 pH 510 Eutech/Oakton
CDI » &t =R BRE¥GF P
T F LR CHI-6273D CH-Instruments
EE £ A FTA125 Inc. American
Frde 38 % 7 Mps JSM-6330F JEOL

¥ & BRI ASAP 2020 Micromeritics

Gtk kA

Bruker, Vertex 80v

Tensor 27
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Table 3-2 Manufacturers and purity of experimental medicines

g | SR XX R
% L4 Sodium chloride NaCl  99.50% Sigma-Aldrich
- 7 ¢ fei%  N,Dimethylaceflurodie, DMAC 99%  Alfa Aesar
SRR Polyvinylidene fluoride, PVdF - Sigma-Aldrich
it 4w Potassium bromide KBr  99.92% Sigma-A Idrich
FF 3+ < # Ay Cation-exchange resin polymer - Purolite
FE 3+ < 3 #H5  Anion-exchange resin polymer - Purolite

3-2 R BN AER
Literature Review
v
Prepared IER/AC electrode
,_1& ,,,,,,,,,,, .. ! | v

Surface Characteristic

Electrochemistry Characteristic

Lt Scanning electron microscope, SEM

¥t Contact angle

¥t Fourier transform infrared spectroscopy

1t Electrochemical impedance spectroscopy, EIS
¥t cyclic voltammetry, CV

It Galvanostatic charge-discharge, GC

v

Electrosorption experiments

X Applied potential
£t Various concentration

It Cyclic test

Figure 3-1 Research process flowchart.
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3-3FHEMTEUA

*F % * 5 (AC, F-400, calgon carbon corporation) i® 3 & &2 A&
IR VLR S Sy et il SY - QEpk L e S I S LW B
240 um > 4 F B B R RE MRS R R L ¢ G (PVDF) 1 91 2 0t f4e » = 7 e
fe"=(DMAC)3 &[5 3 R{c 2 /] PF1s » ILE‘\JF%,LIE,J‘J%# RIS ¥
FIR R BNE R » BHID3 2 F G4 0 B 0 E g p 0 0 R 1200k
BT 200 dFea 80CE ZRET 2B ua RILER L S AR
DMAC 73 #4L% » e P ié B AR LnF T4 b R B e S p 4o

Figure 3-2 #f7 o

PVDF AC(F-400)

DMAC

\ 4

Stirring for 2 hours

t on Ti plat:
Casto plates Th]ckness of AC

......................

Control the thickness of AC layer
Dried at 120 °C for 2 hours TA —

Vacuum dried at 80 °C for 2 hours

\ 4

Activated carbon electrodes

Figure 3-2 Flowchart of the experimental procedure of carbon electrode.
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3-4 B M WY T

AT HY AT 2 A R 2T it 2 o g AR 0 Bl

3

FAHEM AR F Ao Table3-3 #5 o 37 AN AR R - KT TL
B R A WM R I (S 0 BT 0 @ R4 A 65 pm 1
T 4o F 0t 15%0 PVDF (7 5 L F A 0 3594 R 4o DMAC 3 & ¢ o 2 12
BT MR 24 ) FE 5 W 18 Pk A 2 M R ’fﬁd S T
Bt Sl B R 0 B (S E M 0 L A0CIE R R 2R

BAMITE = >0 2 r 3 IR 5 4o Figure 3-3 -

Table 3-3 Typical physical and chemical characteristics.

lon exchange resin Anion Cation
Polymer Structure Macroporous polystyrene crosslinked with divinylbenzene
Appearance Spherical beads Spherical beads
Functional Group Type | Quaternary Ammonium Sulfonic Acid
lonic Form as Shipped CI- Na*
Capacity (min.) 1.15 eq/l (25.1 Kgr/ft®) 2.3 eq/l (50.2 Kgr/ft®)
Moisture Retention 57-63% 35-40%
Particle Size Range 300 - 1200 pm 300 - 1200 pm
Uniformity Coefficient 1.7 1.7
Reversible Swelling 20 % 4%
Specific Gravity 1.08 1.3
Temp Limit, Cl- Form 100°C (212°F) 120°C (250°F)
Temp Limit, OH- Form 65°C (150°F) 140°C (285°F)
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Dried at 40°C for 24 hours

Brocken resin and sieved resin less than 65 pum

PVDF

Resin

DMAC

v

Stirring for 24 hours

Control the thickness of resin layer

Dried at room temperature till almost solvent removed

A\ 4

Resin membrane/activated carbon electrodes

 s— |

(@]

[ ]

Figure 3-3 Flowchart of the experimental procedure for ion exchange resin coating on

the activated carbon electrode.
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35 RtEi e A7
351 WidfEa AH &K

FI% F R R AR F PRI R EMA R AR A R R
AT N FHEFRESIT o F F - AL A ESETN ARMER
TTK, —195°C)$t 5 4+ 55 7 T A iT* o 30 R4 L p 2 T
et £ 0 Bt T EsgE 0 J1 % BET = %432 % (Brunauerr-Emmett-Teller
Theory) =4 25835 DRI 20 £ 5 ff o2t ¢F > 2 % BIH 22 % (Barrett-Joyner-
Halenda Theory)# * Kelvin 34 jF L L 383 8 8 F ok enit [T F (¢ LB EIY) -

BET model:

P _ 1, c-
V. —P) _ V.-C v, c(_)

0

P: e st A R

Po s s Al fe 7 1 R
i e LS R

Vm: H ke foe i £

C: B4k &va s 4 Ap B e dic

3-5-2 ##fe 3 T kS

4 7% = + B ficse(Scanning electron microscope, SEM) 5 f1* % it £ 2 7 +
% f (electron beam)gez # &4 & > BTk p R B R > LB e R
B TR ORAPTHAL SRR B AR BRI DRBTEAG E
PRt B L p 5 b I i BT 0 R R AR TR A Gl LR
P frdbF A A 4 LB endt AR ~ Akt ) s eh B R E 0 SEM Rl -G 1A

"R A R Rt R
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3-5-3 2o LR L

ERZEEE S N S g e A SR (e £ b M SR e SRl S S o
B b kA o B E A S 4 > T KA F SR K
PR E BT L1250 AT e nHMA G F - T EAgB kiR
VA5 AF 2 (Sessiledrop) c CKIFHFHMA G 0 ARZIIH R F AR
kg k4 TEF P do Figure 3-4 BP0 JnKIF B AR B AR BE2 7 oK

T4 2SS R (0) 0 T AEY S H MAEY BlR B -

Tvi 741 vapor-liquid interfacial
Ysv - SOlid-vapor interfacial
Y4 - Solid-liquid interfacial

Tsv 0 : contact angle
A

Vsl

Figure 3-4 lllustration of contact angles formed by sessile liquid drops on a smooth

homogeneous solid surface.

3-5-4 & = Fibik it K

% > e = vt k¥ (Fourier transform infrared spectroscopy, FTIR) 3 235 14
B F i AAfAsE % b REFRREFHI DL G T AFET TR
RIS A% 2 sty HEand b A2 & 5 B © g(stretching) ~ 4 #: (bending) -
W AR RS 2 F R T R R R IR %ﬁ?‘* p i b Ak
FA AT T L R A S e R S i B A T R S b e
]

o

-
|l

FIRG R Senfie B 2 0% 0 Mo ROR RS2 T 49 0s 1509 L BIR £ FT R 5]
*ORGRY RS PR RS GE T k3 o BRI F S 400~4,000 cm' - A
FREEER TAE BANE-TR LRSS R G EE R O L

b MR -
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3-6 T 1 FHEA I

ROOBRBEERMARRT AR AT EFEAR TSI R L E LT R
BECZEN TR R 0 @ sk E 17 R H&(working electrode) ~ 4P
1&(counter electrode) » %+ T 4&(reference electrode) % 42-# * 423 +&(Silver-Silver
chloride electrode, Ag/AgCI) » 4 Figure 3-5 » i& {7 #5 3% K % ;% (cyclic voltammetry,
CV) ~ #_7 i “v 3z 7 (galvanostatic charge-discharg)#? & Fe 4w~ 47 (electrochemical
impedance spectroscopy) ' fg it fiE M a & m G WA S IR R L 8

R

(@) (b)

CH Instrument ©
@) 2 @ CH Instrument ©
® @ O
C ] ° 9
J (1) Working electrode
GBSy
Plati . (2) Reference electrode
atinum wire 3—:,
(3) Count electrode
AC electrode o for ==
~

Figure 3-5 Schematic diagram of a three-electrode circuit for electrochemical

characteristic analysis of (a) CV and GC ; (b) EIS.
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3-6-1 7% K%

Fir e RTEWRITCFnr B2 Tin o 64— FRTENL FT L 0 T
MR RS BRRRAG DT EE B VA S 2 iR E 4R A 4T
KR o AFREY BNV EF B R 2 TR E-F AT Eilver
silver chloride electrode, Ag/AQCI) » 1 T 4& 5 4 @ B2 T4 > 12 1 X 1lom? ehsk
B 1F 5 T on e & E(current collector) » ¥+ T & * § 3t enE Ml § (TR AE
Ff s TR A TREFRRWNCHY 2 EFARFHER DA T EDT R
TR R IR hitF e BRF) > & Figure 3-6 BT EHTF AR o
B natE B U R S LR MRS TR RRREE R

B0 Fpt > B HAELF FadFREST >Im/s~2m/s ~5mV/s~10mV/s
20mV/s ~ 50mV/s » i 23 kg } (—0.4~0.6V)ie 7 4 4% » B 15417 2 % Eq.

3-1# ¥ H#end % w(F/g) -

_ Al Eq. 3-1
2mv,;
C: % % i (Flg)
I % (A)
m: % & & & (g-carbon)
Vi #F ik 5 (V/s)
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-—>
\oltage (V)

Current (A)
*’

Ll
: \/ Time

Applied Voltage (V)
. y

Figure 3-6 Current-potential plots resulting from a cyclic linear potential sweep

applied to a working electrode.

3-6-2 TR LwE R 5%

T_7 o L2 § (Galvanostatic charge-discharge, GC)§ 2 7 i s & &1 4L cud
Fr Lottt FPREEP RO RE TSR TRHOTHETE R %
MZHATCERESAIT S TR N BB T RERF g it 5 A& Hack
etal. v pr¥ 43| EHTFAEY > § - HTE LIERTIRAL DG A
4 T R % 1 (potential difference, EaA) » F R T4 o A% > AR R TIE
(electrolyte resistance, Rs) & >t F enpF iz » & TIRF T R T4 o Ra > F
AT R DEEFTLRTARTIEOET R EIRT L ST RS
(potential drop) » # % IR drop > & § 4& & 2) = — B s 7 R # A& (potential
gradient) » F]2t 5 IR drop s~ ] % *U3 35 4o 0 R B A (current density) fr % f2 B
ARk R Mo 2T LBE T £ 1T (DC equivalent circuits) Bl 4o
Figure 3-7 #751 (Hack et al., 1990) - § sk #:c%¥ % /v % & 01-02-03-04-05

Alg a o A AR T REF A 0T 2 sk o
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Figure 3-7 Potential distribution in a cell with electrolyte resistance (Hack et al.,

1990)
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3-6-3 R IEdiAs 17

T v § ek 47 (Electrochemical Impedance Spectroscopy, EIS) @ % & #8534 ©
BF et FETEA G R T F R LR TR R TR
FA St BT ReTRTaELEd e £ T RFEREF B2 T
SRR AP & R o - A7 B R A 0 2 O FE 4B (Nyquist plot) > 7 Rk

7 & it 2 ez ficiE (Figure 3-8 a) 0 I 1245 B2 & 7 & »x & B (equivalent circuit)

2 3%+ (Figure 3-8 b) » et 1 (¥ iz % A2 5 ¢ 0T Pﬂ#‘aﬁ)g% o

(@)

p— P— >
Re Ret Za “
® .
| |
Rsg | I
—V\\—
Rer Ly

Figure 3-8 (a) Impedance plot for an electrochemical system and (b) The equivalent
circuit for partial mass transport limitation by diffusion. The Warburg impedance (Zw)
is in series with the charge transfer resistance (Rct) and in parallel with the double

layer capacitance (Ca).
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3-7 & ’,g-i 3+ LR

TEAHF pRY e FRFLAHFIEY R E LR CFEFF - ER
Bt phdk B o Figure 3-9 0 i % aZds Jl ok BRds KR R e BRIl ORaE o MR
R~ CDI e p » B ER ez 4em X dcmate & TRl i
2 mm 5 & e WAL R Rh kR R i i (Table 3-4) » # {43 CDI HEie dt o 232
HT R pHI T RIK T # 0 #F CHI 2 £ /% § (chronocoulometry, CC)
ARTATRERE LR 2 aN il NEFT A BT R SRE ot b

v

- BT F ARSI PEET 4 AL BRLT T HRAL G AT RET
% (charging) » =tk # ¥ i RS © f0f L (discharging) {6 o f# 2k
AL ApE Rorem Figure3-10 # - ) AR HR T R R E K 2 kS
kB g ¢ 2 RMCDI 17 5 (4 B 9 53k % fo CDIAp e o o 35 Rt dp e = /] ¢

LT LR LU E

o s 4 EC meter
: i o
© ©® CHI
[ a—]
() — .
24 Mixing
Pump

Figure 3-9 Schematic diagram of the CDI system and the capacitive deionization

experiment.
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)

Conductivity meter

output | g 2
[ Plate
O Titanium
B Activated carbon
] Spacer

Bl Cation exchange layer
B Anion exchange layer

input

%

Figure 3-10 Schematic diagram of the RMCDI system and the capacitive deionization

experiment.

Table 3-4 Dimension elements in unit CDI cell.

Element Dimension (cm)

Current collector area 6 X 6

thickness 0.06

Activated carbon electrode  area 4 x 4
Spacer outer 6 X 6
inner 4 x 4

thickness 0.2

38

doi:10.6342/NTU201602358



3-7-1 T % % ek

bR R R RBORF A S T F 2 RS TR LR RAR
EAY T LR RATERT A o R@2)F T AR AR AR TURA
T2 RSLack o AR BADR R ERRERRD 0 LT FRPOC LG )

LA E R H e o ’\‘j\ﬁgl":ﬁaﬂq CDI sxise o

C—C
R = © % 100% 3-2

R: T 7% % B (%)
Ci: 445k & (mole/L)
Ce: T §7k & (mole/L)
372 i
ok - SRR AR R R R R HT o Jfd TR G

Kidie P BT RE Y S IV H I P TE H o F B g AT R e

R

s

)
Flpt o e e XRBIT - KER SRR RRETRER L FER

Fﬂ

@ 3F BABIT T o WL Rk R (Ce) 0 04 R (3-8)3 B 2 o

q _ M xwvx(C;—Ce) 3-3
E— m
Qe : % ® 't & (mg/g-carbon)
M: 4~ 3 & (g/mole)
v kAL
Ci: 4= 4k & (mole/L)
Ce: T #rik & (mole/L)
m: FHRTEE ()
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3-7-3 s

GRFAUT PSS TEM RS b AR T ok HigaRd g 3

ot o VWL RPN G RE GRS B AR ET 0 B BT
Fo2 LTS A IATE2 T FF CRRF B T ART N EIMES

floc @ AR R L L BIT GLE 2 R o R
W % R SEF AR M e SRR R RE T R KT TR Y

o B E 2N et (3-4) -

T

(Cd - Ce) 34
Dp= ——————Xx100%
R (€ —Co)

Dr: i 5 (%)
Cq : "%tk & (mole/L)

Ci: 44>k & (mole/L)

Ce: T #k & (mole/L)
3-7-4 i R 4

PR AR K G E ARIEE 2 O g kB i £ 0023 8 A CDI
G DT RERBARBRAEBETIN TR ESN EHEY > o8(35) A EN Y

- AE AR TR RS R R E S R o8 (3-6)7 T o

tc
VX [ “Idt ~ 3-5
V x fotc Idt 3-6

Em1 = (C;—C,)xv
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Em: i B 4= (KWh/m®)
Vi FiTTRV)

I: 7 n(A)

te: “ & FFR(mMin)

v AL

Ci: 44>k & (mole/L)

Ce: T fmik & (mole/L)

# CDI g %3u¥ g’ﬁ %b?aj;—?rﬁ;}j_—? s -Qr?—?'fr%ﬁ‘_—? s fil,"'%é‘ﬂ— ?@(E\‘?
)RR AR M AR A R 6 AR A RS T R TR 6
TEA o F P AP EE - BRI RRY I goeF o TR ALE | A 1Y

it T F (R on) A CDI Lk sed sxsia ik @ 3+ iy (Kinoshita, 1998) » 43¢ (3-

_Fxvx(C—Ce)

- 3-7
J, < 1dt

n

n oo R RE (%)

F: 24+ % % #i(F = 96485.33 A/mole)
Ci: 445k & (mole/L)

Ce @ T )k & (mole/L)

te: L w PE R (min)

v

o

g (L)
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Fri HREREHEG
4-1 B3 L {MFIERTEL & L7
AT FIRFHNY TR e 5 - BHETR B HE R iR
- F B AR FHAE G RS R ST 4514 (Oren, 2008)-
B EAR Y TR R I § F R ME R(Figure 4-1) > £ E ¥
BET = ;% i fhpt 2 1t 4 & 4 59 993.3m?/g > 3% i # 4% 0.549 cm®/g » T 353t
Aol 220 nm e 3L A F g 0 5 % e Table 4-1 #5% o

Table 4-1 Surface and porosity characteristic of activated carbon.

SBET Pore Volume Average pore diameter
Material
(m*g) (cm®/g) (nm)
Activated carbon 993.3 0.549 2.21

Seet: fid BET #rsii- B 2 1t £ 5 ff o

___ 400

o —@— nitrogen adsorption-desorption isotherms

-

)

o
o 300 -

L “2 100 —e— pore area distribution
o o)

& 200 | g 801

S S 60 -

2 L

2 S 40 1

2 100 A 2 201

) =

5 S 01

) .

o o Pore width (A) 100

0.0 0.2 0.4 0.6 0.8 1.0

Relative pressure (p/p°)

Figure 4-1 BET analysis of activated carbon for nitrogen adsorption-desorption

isotherms and pore area distribution.
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4-1-1 &+ 2 &4 K 2 SEM & 41
AL 2 AR R RO T R R i 4 PVAF 7 2 2 045 d DMAC

BAR LB O BIT AR AP £ L0 EERTREA o MR & AR F A i 3R
R o Tt AU A e 3N A AL B BL B 1 4 6 B o 4 PVAF 17 5 AR F A chg]

W% %% o 4-Figure 4-2 #177 » FPRESEEFE RS 0 FIPVAF £ 5 24
ST B L A T A& (Choi, 2010) - F] ;ﬁz’ A0 B gk
FARNR RS o WA R R M TR > v d Figure4-3 pe g
LHEMAB AR RN BT RS o F > X 2T il K AR T B3 R
R K AR AR LA R 385 K 4 e A i 5 (Figure 4-20)8 i®
BT AERGR R & F 0 PVAF 4R % 2 2304 6 o @ ;%E; PR AR RS T
FeRa B 2 B R ¥ 87um; Figure4-4 fe 4% ch e 1F 5 2 H M SEM Bl P ¥ L
BB LM ek 2 PVAF 2R F AR B A - A2 R B RV R
PR AL G o T P R RRTIHE G B % 0B A X 95 um -

(@)100X ot (b) 2,000 X 4 ()8,000X

Figure 4-2 SEM images of AC electrode (a) 100X; (c) 2,000X and (d) 8,000X.
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(©) 10000x JF AL WSt T L () side view

Figure 4-3 SEM images of anion-exchange resin/AC electrode (a) 100X (b) 1,000X (c)

10,000X and (d) side view.

. 2

(c)10,000X &8

Figure 4-4 SEM images of anion-exchange resin/ AC electrode (a) 100X (b) 1,000X (c)

10,000X and (d) side view.
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4-1-2 B+ L H MK 2 BAR A 5

FE A kY B TARA G ARIEARE (oK) 0 #-i 3 2<# 2 CDI
ez iy (Park and Choi, 2010) - % 7 Bf f# ;’ftffj? ‘v g A 3 ABF A PVAF {ois (4p ] 4o
THENTELG > BT RT LA AR LR TR R Rk
& MR RGFMop) R A > TRIEORF ARMAAMA G 2 &R > & R AR
o BRRR AR o € Table 4-2 S % A 0 BT REMER NS 1380 £
B IR LR R S PR KA & end B A Y 5 111.84- 96.37°
RP)REF A2 UAFAR A MR A R AT A S
B pet e CDI Rz AP > W R R AT 4 6 S BB » R %

(%] %% % 4 Figure 4-5) -

Table 4-2 Photographic angles of water droplets on the surface of electrodes.

Electrode Angle
AC 138.3 + 2.640
C-AC 111.8 +6.490
A-AC 96.37 £ 4.540

() (b) ()

Figure 4-5 Photographic images of water droplets on the surface of (a) AC, (b) C-AC

and (c) A-AC.
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4-1-3 B+ M R 2 F A BAAPTET

PR RAEE RS LR BT RERT O R R R S
FRP AT R Sk Rtk (< 65 um) > e PVAF 5 ALF )R ~ DMAC #4 > B {8 2
FoWE D SV ZEATA R 0 Flt A1 FTIR A7+ R &P F | e A2 F 20
MFE T A AR PIRARI BB o

% FTIR 477 (Figure 4-6) » [£ 33 244" > BB R 2Z EBES T M & >
A& P R 5 RCF ¢ % (Polystyrene) ¥z = ¢ % A& ¥ (Divinylbenzene, DVB) % % &
@ = # 4 F % w 4(quaternary ammonium) ¥ i A £ & 3+ (ionform)ét 3 > 9
P52 /*Jc:}ﬂ Mtk #c 12225 emt =% 5 C-N 4% (Silverstein et al., 1981) » %% %
Blen® fensdand @ ¥k IR 4 1480 {r 1475em ™ A BATE > fF 74 20 CHs
fe CHz2 = —‘g g Arig 2 Jr B L (Kozak and Domka, 2004) » 7 &9 1 4+ < &4t

e Ry PV ARTE T AR n AR LEARINA B A

pd FMekrtd > RiRd B FC f& DVB 2 #F Jgm = 0 ¥ j&_Figure 4-7 ¢

\v.l\r

2,

2P| Tk C-H & 1634 cm ™t v 5 PR BE 1 1 o fdf 3 50 95 = 5 enBlaE(Li et

Rk

al.,1999) » ¥ 1177cm™ = ¥ % & S=O & #H4f @ 45 & $- % (antisymmetric stretching
vibration)2_ 4.5 » R ¥ ¢ % &4 1067 emt Ao i A B G T eh B E L% (1009
{1038 cm™) » 55 A 0¥ IR C-H 6 P 4TIRS % S=O HALN iR il B A
4 OoORPEEARS > A HORRREARS > WP ARF Y TR AREATN

(Zhou et al., 2010) -
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Figure 4-6 FTIR spectra of (a) electrode of anion-exchange layer and (b) anion-

exchange resin powder.

(a) resin layer

. (b) resin powder]|

1038

1177 :

Structure of C-160 resin

776.5
(b}
O
c |
©
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=
(n -
c
©
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600 800
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Figure 4-7 FTIR spectra of (a) electrode of cation-exchange layer and (b) cation-

exchange resin powder.
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42 B3 L HMFERRTEL T EHFHL I
4-2-1 B HAFIAEMEEZ T RT I
AELY R ERRE AT A A2 BN T AR Y A @RIT

BB T FERA i e BT AT R DAY 2

TERRC E AT RSB RT LA 2 NaCl T2 -
SRR R L mV/s 47 Tk K% BI(Figure 4-8) Gl MR E R T 0 AT AT

i@

B e e e P A BRI R ORI RR DT RE
A % ik B $- & (concentration gradient) » 3 #32F i g F 5%

#- 4 (driving force) » & H jAk R% RBlfIRiTE7) > BT BHTEAT TR - &

CALE (0400 P RN R F AT Y Pt e SRR A7

6"34

=

e R IV F £ o T A ¢ (EDL) G 2k A 4 R SHE TR 5 (Hsieh
and Teng, 2004) - j&_Table 4-3 %% 35 1! &7 & PR3+ 2 447 o0 PR T 1B (A-
AC)frHs + 2 3t inE M T1R(C-AC)R 3 2 RAER F L2 - Ra & T FF
A0 FREEIE G AEMTERAC)E04 1 06V T EFFIP CVEAZ T E
By TR NIVF A RTITEA R EF AT A LR ERT
N E R A EERT S > TR E TS T o ApF B AR

B A TR RRT R ERHBE @ @ CV WA RIRT I e .

vq.

MEFRFHERRLORBORREFIENRTARIGFZRE 6 DR R F AR

F S TR R R MR RE T GRTIY o a L TEHAL R 0

~

PN FR AR AT EART P EFFH R R THRVR FENTE

(Yangetal., 2003) - d Figure4-9 ¥ @L% 3| & <44 & & AC ~ A-AC 4v C-AC 2

TFERGMFLE > Rl RE AT o 45 BB il 4 L IE G g 2
Bk AAEd PEREZIRPRITERELEDFERFTEE THRE 5 > B i

20 mV/s infFrde i T o (a9 ELE T AC ehR % /8 25.83 F/g & %] "%

1 16.94 FIg(A-AC)7r 21.42 FIg(C-AC) -
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Table 4-3 Specific capacitance of AC, A-AC and C-AC electrodes measured by cyclic

voltammetry for various scan rate in 1 M of NaCl solution.

Scan rate Specific capacitance (F/g)
(mV/s) AC A-AC C-AC
1 56.62+1.51 57.00£2.25 54.81+1.17
2 53.12+0.683 52.12+1.60 51.71+0.758
5 47.35+2.52 41.42+3.08 42.94+1.72
10 38.92+3.48 31.70+£1.59 32.34+4.08
20 25.83+5.14 16.94+2.27 17.33+4.25
50 12.88+2.33 6.87+1.41 6.357+2.49

Specific capacitance (F/g-carbon)
o

-06 -04 -0.2 0.0 0.2 0.4 0.6 0.8
E (V) vs. Ag/AgCI

Figure 4-8 CV curves of AC, A-AC, C-AC electrodes in 1 M NacCl solution at a scan

rate of 1 mV/s.
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Specific capacitance (F/g)
o

E (V) vs. Ag/AgCI

-04 -02 00 02 04 06 08

Specific capacitance (F/g-carbon)
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Specific capacitance (F/g-carbon)

-04 -02 00 02 04 06 08
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Figure 4-9 CV curve (a) AC (b) A-AC and (c) C-AC electrode; distribution of specific capacitance

(d) AC (e) A-AC and (f) C-AC electrodes under various scan rate in the 1 M of NaCl electrolyte.
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4-2-2 THAIT LT

ERAHA S 0LAQEFE B FEHRZ AT GRBE L RT R % L IM
NaCl /2 7% iv 2 25 » FIS g4 R 00 0 s LT B 00V &prt & 3
08V i T A m FI- AT Akd R - BB eg kA 53R~
= 4 Ra A RTINERERY L DRARTEAEE A2 TR
% % (IRdrop) 3 % » ¥ j&_Figure 4-10 L2 F| b3 T cdz4~ > = 87 F 7 & (AC~
C-AC-A-AC)7 7 L RERFFER %> X7 8 H - RO T ERAG DT IE
T F i 0 Z BB E R T R T R A B 5 848 sec(AC) ~ 839 sec(C-
AC)2 839seCc(A-AC) > FFRFARE > REFHF av 4 484> T EREPFF R T4 >
Fz7mgko v d gt B i auie gt T B4 B 5 56.88 F/g (C-AC){r
53.19 F/g (A-AC) -
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Figure 4-10 Galvanostatic charge/discharge curve of AC ~ A-AC and C-AC

electrodes for 1 M NaCl solution with a current density of 0.1 A/g.
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Figure 4-11 IR drop with current density of 0.1, 0.2, 0.3, 0.4 and 0.5 A/g in 1 M of

NacCl solution.

Table 4-4 IR drop value from galvanostatic charge-discharge test for C-AC, A-AC and

AC electrodes in 1 M NacCl solution.

Current density

work electrode

(A/g) C-AC A-AC AC
0.1 0.0685 0.0446 0.0324
0.2 0.1384 0.0889 0.0645
0.3 0.2082 0.1345 0.0968
0.4 0.2766 0.1758 0.129
0.5 0.3125 0.2197 0.1616
*Discharge capacitance(F/g) 56.88 53.19 53.76
Slope 0.626 0.437 0.323
R? 0.9884 0.9998 0.9999

*the discharge specific capacitance at 0.1 A/g of GC analysis.
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Figure 4-12 Nyquist plots from electrochemical impedance spectra recorded in the

frequency range of 0.001— 10° Hz for activated carbon (AC), coating cation-ion

exchange (C-AC) and the anion-ion exchange electrode.

Table 4-5 Electrochemical properties of the coating layers and capacitance of coated

and uncoated electrode, measured using EIS.

Thickness Rs Rt Capacitance*

(um) (Q) (Q) (F/g-carboon)

A-AC ~ 87 1414 18.38 57.00 £ 2.25
C-AC ~95 244 30.81 54.81 +£1.17
AC ~ 450 1.696 8.654 56.62 £ 1.51

*in 1 M NacCl electrolyte at a scan rate of 1 mV/s.
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Table 4-6 Material information of electrodes in RMCDI cell.

Electrodes Weight of AC  Weight of resin layer ~ Thickness of resin layer

A-AC ~ 8.87 mg/cm? 87 um
~05¢g
C-AC ~10.1 mg/cm? 95 um
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Figure 4-13 The conductivity curve during the electrosorption process of initial 5 mM

NaCl solution with various voltages applied in CDI (black) and RMCDI (red) system.

Table 4-7 The results of CDI and RMCDI under various applied voltage in 5 mM of NaCl.

Electrosorption capacity

\oltage (V)  Removal efficiency (%)

(mg/g-carbon)

0.4 3.98 0.479
CDI 0.8 20.3 2.37
1.2 36.7 4.61
0.4 6.16 0.909
RMCDI 0.8 22.6 3.33
1.2 41.4 6.13
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Figure 4-14 The conductivity, current and voltage value of initial concentration of 2 mM NacCl solution.
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Figure 4-15 The conductivity, current and voltage value of initial concentration of 5 mM NacCl solution.
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Figure 4-16 The conductivity, current and voltage value of initial concentration of 10 mM NacCl solution.
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Table 4-8 The pH detected during the charge and discharge steps for CDI and RMCDI systems.

Concentration CDI RMCDI

(mM) 2 5 10 2 5 10

0 min 6.98 7.21 6.86 7.23 7.22 6.92

30 min 6.59 4.97 3.27 6.9 5.47 5.06

60 min 7.05 6.91 6.34 7.2 6.86 6.76
(@) = =& (electrosorption capacity)

(b)

d Figure 4-17 2_ ¢ % Bo1 5d % w3+ LA & 2 7 & RMCDI i s
B 2-5-10mM aNaCl » % B3t A% i e CDI Jk 5> B T ehR g
Fig™ o a8 (3-3) T »2mM hNaCl 2 § s 8 i » £ 7)
R MERE V4R M A TEA L PR R ¥F(Yang et al,,
2003; Zou et al., 2008) > @ ST FE R e 3 THHE 2 @ M A dgg
B 2 ARBPFRARF M BIRDIEFL FP TR FRE FHRE 0 R0 ER
PBEER > THRAG FEIED T eI A BERE B S .

LR s (charge efficiency)

PR BR T A G TR EDR T M “,fﬁ Hirh a2 g+ 2w
B T AR S - BE R ¥ CDI 2 »zi (Biesheuvel etal., 2011; Lietal.,
2014) - j&_Figure 4-19 & % &g m CDI t= Bk & dmgsk ® (225~ 10mM) - 3§
d @) E AN T A2 MM 23S ERRB T L REFSLT
re A IET] 66.1% 0 A FIARIERE- BB S pF > L FIIVUF P O kg
FIRBRH A B e R T A R CDI i S SRR R Yo “f%ﬁﬂ F o
10 MM g+ kR ™ H L st 1 53.5% o B F g AR R Hp Rk 2
B ERT o FWPAT I AT RHAL TH 10-15% > 2 ¢ 4 2mM 5
NaCl > RMCDI z_. v 2 »cF v £ 353 86.1% F e "gkRr 2 3 10mM
AP G Ry 0T TR R
BOHAR R EARY R AET oL B ¥ AZRA Y NG LT nF
47 (% >t 65%)

4,4
,g\«

mH AT EFTIE G 65% 0 d PV v hdp

63

doi:10.6342/NTU201602358



(c) 7™ (current leakage)
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Figure 4-17 Electrosorption capacity of initial concentration of 2, 5 and 10 mM NaCl
solution divided in CDI and RMCDI system.
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Figure 4-18 Distribution of current leakage under initial concentration of 2, 5, and 10
mM of NaCl at applied 1.2 V for 30 min.
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Figure 4-19 Distribution of charge efficiency after electrical work to charge ions of
solution containing 2, 5 and 10 mM of NaCl by using CDI and RMCDI. The

operating cell voltage = 1.2 V for 30 min operation.
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Table 4-9 CDI and RMCDI performance index.

Batch system CDI RMCDI

Concentration (mM) 2 5 10 2 5 10

Electrosorption capacity (mg/g-carbon) 2.782£0.102 4.34+0.041 4,98 £0.172 4.28 £0.27 6.21 +0.21 6.38 £ 0..28

Charge efficiency (%) 66.1 +5.2 59.5+3.85 53.5+2.95 81.1+6.44 71.4+4.13 65.6 = 2.03
Removal efficiency (%) 59.5+111 30.5+2.01 16.8 £0.83 69.0+6 38.2+1.3 203+13
Energy consumption (KWh/m?d) 0.0586 0.0906 0.102 0.0532 0.0915 0.102
Energy consumption (kWh/mole) 0.0534 0.0543 0.0593 0.0405 0.0434 0.0510
Current leakage (A) 0.00328 0.00351 0.00411 0.00266 0.0031 0.00326
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Figure 4-20 Multiple electrosorption/regeneration cycles of 5 mM NaCl solution with

the applied voltage of 1.2 V and flow rate of 10 mL/min. Its (a) conductivity curve,

current curve, voltage changing and (b) electrosorption capacity in the operations of 5

cycles.
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