R 2 F - FRE R TEFEF T 97
AL~

Institute of Applied Mathematical Sciences

College of Science
National Taiwan University

Master Thesis

XA TIE D AR IR T RS R R

Applications of Large Deviation Theory
to Systemic Risk and Portfolio Optimization

E =

Hsuan-Hung Kuo

R EDEE L
Advisor: Chuan-Hsiang Han, Ph.D.

PER K 108 & 6 7

June 2019

d0i:10.6342/NTU201901030



il

d0i:10.6342/NTU201901030



B 437

jL

CTEERRRE

3 &

BriE g

iii

A BT

PG IR LT e LN R A S LA e

CE LG S

(G A o L RN

’I— = %

P o

LL

Wb

4’, xﬂ];gﬁ&m;}—)\ e

=

fan

S
fa

"

d0i:10.6342/NTU201901030



v

d0i:10.6342/NTU201901030



Abstract

There are two parts in this paper. In the first part, we will focus on
estimating the expectations under a rare event with the importance
sampling method. Under Normal distribution or Brownian motion, we
can prove that our proposed method is efficient. We will also show how
to apply the importance sampling method to measure the systemic risk. In
the second part, we will apply large deviation theory to the finite-horizon

investment optimization.

Keywords: importance sampling, asymptotic optimality, large deviation,

systemic risk, optimal portfolio
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Chapter 1

Introduction

It is a trend to use Monte Carlo simulation to estimate credit risk. However, it is not effi-
cient when the event become rare. For example, let Z be a random variable that follows the
standard normal distribution. We are interested in the expectation E[Z1(Z < c)], where ¢
is a negative constant. It is easy to compute the closed form —\/Lz?e_é. However, when ¢
is very small, we can see that the value will become very small, which makes it inefficient
to use crude Monte Carlo to estimate it. That is, we need to sample a lot of times so that
we can have a small standard error.

The importance sampling method helps us to solve the "inefficient” problem. More specit-
ically, the importance sampling method helps to reduce the variance [9]. The idea of im-
portance sampling is to find a suitable change of measure so that the rare events we are
interested in will become “’not rare” under the new measure, which will be called P in

this paper. Also, we need to reduce the variance of estimation under this new measure P.

Since

dP dP

Varp = Epl(f(2) 20— (Bl (2) )
~ El(1(2) 2 V) - (B2,

we can see that the variance equals to 0 if we could minimize the second moment under
the measure P. However, it is difficult to minimize it directly since the minimization
often relates to solving a nonlinear equation. Thus, we seek another way called ”asymp-

totically optimal” property to solve it [9]. That is, we will check if lim._, C% In M, =
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2lim,,_ Cig In M, under the measure ]5, where M, M, are the first moment and the sec-
ond moment, respectively. If it does, it implies that the importance sampling we proposed
is efficient”.

On the other hand, a lot of researchers use Importance Sampling to apply the theory of
large deviation to analyze the asymptotic properties of the tail probability. The famous
theories are Cramer Theorem, Schilder’s Theorem, Freidlin-Wentzell Theorem, etc. In
financial applications, some researchers let the time 7" go to infinity so that these large de-
viation theories can be easily applied. [§] provides a large deviations approach to optimal
long-term investment. However, some investors would like to earn their money as soon
as possible. Thus, we will try to apply the theory of large deviations to the finite-horizon
investment.

This paper is composed of two parts. In the first part, we will apply Importance Sampling
to estimate the expectation of a random variable under a rare event. In Chapter 2, we are
going to apply the method under the standard normal distribution. In Chapter 3 and 4,
we will extend it to Brownian motion and geometric Brownian motion. In Chapter 5, we
present some applications to estimate systemic risk under different models. In the second
part, we will apply the theory of large deviation to the finite-horizon investment, which

will be represented in Chapter 6.
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Part 1

Large Deviation Theory
applied to Systemic Risk

In this part, we will use importance sampling method to measure the systemic risk under
different models. In order to do this, we need to estimate the form E[1(X < ¢)] and
E[X1(X < c¢)], where X is a random variable and ¢ is a (usually negative) constant.
There have been some papers about how to estimate E[1(X < c)] efficiently, such as [[1]

and [2]. Thus, we will focus on E[X1(X < ¢)] in this part.
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Chapter 2

Standard Normal Case

Suppose X; = p Xy + \/1—7sz, where X, Y are independent standard normal distri-
bution, and p is correlation between X; and X ;. We are going to estimate F[X;1(X s <
¢)]. When the value c is very small, it is difficult to use Monte Carlo to estimate. Thus, we
will use importance sampling by choosing a new measure P such that the event {Xu <c}

1s no more “’rare” under this measure.

2.1 Change measure

Note that
:pE[XMl(XM <C>]+ 1—p2E[Y1(X]y[ <C)]
We can see that the second term is equal to 0 since X, and Y are independent. Thus, we
just need to consider the first term.
The easiest way to choose a new measure P such that the event {X,; < ¢} is no more

”rare” under this measure is to make the mean of X,; be ¢. That means X, will be a

normal distribution with the mean ¢ and the variance 1 under the new measure P. Then
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we can derive that

1 —Xfw
dpP 7. €
D (Xpr=0)?
P 1,
V2
e—CXM—I—j

Due to the above, we can rewrite the first term as:

2

E[Xy1(Xy < )] = E[Xyewp(—cXa + %)1(XM <o)l.

2.2 Asymptotic variance analysis

The first moment is

It implies that

d0i:10.6342/NTU201901030



Suppose X ~ N(—c¢, 1), Z ~ N(0,1) under P. Then the second moment is

My = E[X2exp(—2cXp + )Xy < ¢)]

. ap
= ecgE[Xfexp(—%XM)l(XM < c) df?]

= ¢ B[X2exp(—2cXn)1(Xa < )M

e E[X21(X )y < ¢)]

= P2 E[X31( Xy < )]+ (1 — p?)e” E[Y?1(Xyy < ©)]
= % E[(Z — ¢)*1(Z < 2¢)] + (1 — p?)e” E[1(Z < 2¢)]
= 2 {B[Z°1(Z < 2¢)] — 2cE[Z1(Z < 20)] + FE[1(Z < 2¢)]}

+ (1= p?)e” ®(20)

5 2 2c 22 ZQd 2c > Z2d )
= p°ef e 2dz—2¢ e 2dz+ c"P(2c
et o= | = (20}

+ (1= p?)e” D(20)

= p%e” (14 A)®(2¢) + (1 — p?)e d(2c)
= (p2* +1)e” D (20),

where ®(z) is the cdf of a standard normal.

There is an important approximation to ®(z):

1 22
lim &(z2) = —e 2
z——00 =) V2m(—2)
It implies that
) 1
lim —21nM2
c——00 C
— lim L[ 4 (2 4 1) + In(———) — 267
=00 2 V2m(—2c¢)

=—1.
Thus, we have the following theorem.

Theorem 1. Suppose X; = pXyr + /1 — p?Y, where Xy, Y are independent standard
normal distribution, and p is correlation between X; and X ;. Also, let

~ dP
XX < 0 2]
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M, = E[X*1(X) < c)(j—g)Q].

Then,

1 1
Iim —InM;, =2 lim — InM;.

c——00 CQ c——00 C2

2.3 Numerical results

The numerical results are shown below. NN is the simulation number. The value simulated
by basic Monte Carlo (BMC), importance sampling (IS) and the corresponding standard

error (S.E.) are given in the table. We also compare the value with the exact answer (exact).

Table 2.1: Standard normal case

c exact N BMC S.E. IS S.E.
10000 -0.2418 0.0058 -0.2377 0.0026
-1 -0.2420 40000 -0.2473 0.0029 -0.2416 0.0013
160000 -0.2403 0.0015 -0.2419 6.3741e-04
10000 -0.0028 0.0013 -0.0043 7.9976e-05
-3 -0.0044 40000 -0.0041 6.4021e-04 -0.0044 3.8964¢-05
160000 -0.0041 3.0699¢-04 -0.0044 1.9402¢-05
10000 0 - -1.4956e-06  3.3274¢-08
-5 -1.4867e¢-06 40000 0 - -1.4769¢-06 1.7267¢-08
160000 -3.2663e-05 3.2663e-05 -1.5034e-06 8.6994¢-09

We can see that the basic Monte Carlo method can hardly sample a rare event when ¢ =
—5, while the importance sampling method we provide gives an accurate estimation. In
addition, the sample error of importance sampling scheme is smaller than that of basic

Monte Carlo method.
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Chapter 3

Brownian Motion Case

Let Wy, Z; be independent Brownian motion. Define

Wi = pWay + V1 — p?Zy,

where p is a correlation between W;; and Wj,. Then W, is also a Brownian motion. In

this chapter, we are going to estimate E[W,;71(Wyr < ¢)].

3.1 Change measure

Note that if ¢ becomes very small, the probability of the event {W,,r < ¢} will also be
small, which means that it will be inefficient to use crude Monte Carlo method. Thus, we
need to find a new measure P such that the event {Wuyr < ¢} would be no more “rare”

under this measure. The following theorem helps us to find a good measure.

Girsanov’s Theorem. [6] Let W;,0 < t < T be a Brownian motion. Let ©;,0 <t < T

be an adapted process. Define

t 1 t
Zy = exp{/ oW, — —/ O2du},
0 2 0
t
Wt == Wt — / @udu,
0

and assume that

T
E[/ O2Z2du] < oo.
0

8 d0i:10.6342/NTU201901030



We also define a new probability measure P by the formula
Py = / Z.dP, forall A € F.
A

Set Z = Zp. Then E[Z] = 1 and under the probability measure P, the process W,,0 <
t < T, is also a Brownian motion.

By the Girsanov’s Theorem, we can define
ap _ e*OéWJVIT+%a2T
~ )
dP
WMT == WMT - aT,
where « is a constant and W, is a Brownian motion under P.

Next, we are going to determine the constant . If we hope to make the event { Wy, < ¢}

no more “rare”, we can simply let E [Whr] = c. That is to say,

E[WMT} = EN'[WMT + OéT] =aol = C,

which means that o = %

3.2 Asymptotic variance analysis

Note that Wy ~ N(0,T) since Wy, is a Brownian motion. So we can get the first
moment as following:
M, = _E[I/Vle(WMT < C)]

= —pE[W]V[Tl(WMT < C)]

It implies that

.1 1
cEI—noo g lan = _ﬁ

Before we consider the second moment, we define a new measure P by
dpP

P

Warr = War + oT,

1.2
— eaWAjT—i-Ea T
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where W), r is a Brownian motion under P. Then we can calculate the second moment as

follows:
~ dP
My = EWz1(Wur < ¢)(—5)’]
dP
dP
= E[W71(Wr < C)ﬁ]
A dP dP
= EW21(Wyr < ¢)—=—
[(Wirl(War >deP]
= E’[VVZQTI(WMT < C>€a2T]
= 6a2TE[(pWMT + \/ 1— pQZT)Ql(WMT < C)]
= e T{E[p* Wi L(Warr < o)l + E[(1 — p*) Z31(Warr < c)]}
= P2 TEW2d(Warr < O)] 4+ (1 = p2)e® TTE[L(Warr < )]
A A . 2
= P2 TE[(War — oT) 1(Wayr < 2¢)] + (1 — p2)ea2TT<I>(—c)
VT
= p2e” T{EW2, 1(War < 20)] — 2aTE[Warl(War < 20)]
A R 2c
+ PT2E[1(War < 20)]} + (1 — p2)e®TTd(——
1y < 26} + (1= e TR(2)
2 \/T 2c2 2c 20\/T 22 2c
= p’eT{—2c e T +TP(—) + e T +A0(—=
preT{ o ( \/T) o ( ﬁ)}
2 2c
+(1—=p"eTTd(—=
(1= F)eTTe( )
— TR(L) (P 4 T)
VT
It implies that
lim - In M,
c——00 C
1 2 T
= lim —Infle" T 22 4T
JAm e T g e + 1)
B 1
==

Thus, we have the following theorem.

Theorem 2. Suppose Wi, = pWi + /1 — p?Z;, where Wy, Z; are Brownian motion,

and p is correlation between Wy, and Wyy,. Also, let

M, = _E[VVle(WMT < C)]

- dP
[ T ( MT C)dP]
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- dpP
AEZEW%MWMT<®%§W-

Then,
. 1 ) 1
Iim —InM;, =2 lim — InM;.

c——00 CQ c——00 C2

3.3 Numerical results

We perform the sampling again, the numerical results are shown below.

Table 3.1: Brownian motion case

C exact N BMC S.E. IS S.E.
10000 -0.9652 0.0274 -0.9846 0.0149

-5 -1.0084 40000 -1.0095 0.0140 -1.0089 0.0076
160000 -1.0157 0.0071 -1.0061 0.0038

10000  -0.0320 0.0064 -0.0354 6.3683e-04
-15 -0.0360 40000 -0.0426 0.0037 -0.0362 3.2467e-04
160000 -0.0344 0.0017 -0.0362 1.6229¢-04

10000 0 - -4.5248e-05  1.0255e-06
-25  -4.5779e-05 40000 0 - -4.5761e-05  5.2068e-07
160000 0 - -4.5571e-05  2.6038e-07
T =30,p=0.7.
Again, we can see that when ¢ = —25, the basic Monte Carlo method cannot sample a rare

event even we simulate 160000 times, while the importance sampling method we provide
gives an accurate estimation. In addition, the sample error of importance sampling scheme

is at least an order smaller than that of basic Monte Carlo method when ¢ < —15.
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Chapter 4

Geometric Brownian Motion Case

Let two assets be defined by the following:

dSy = piSydt + 0;.S;dWy

dSmt - Mmsmtdt + UmsmtdWmta

where Wy, W,,,; are Brownian motion satisfying W, = pW,.; + /1 — p?*Z;. Wi, Z; are

independent Brownian motion.

Letry; = In

S,

4.1 Change measure

It can be derived that

Si 012

In S; = (Ni — 7)T+ oiWir
SmT O'2

n 2L = (4, — I 4 6, W,
5 (1 5 )T + 0mWr

2
Im

c—(pm— P
Om

It means that the event {r,,r < ¢} is equivalent to {W,,; <

again use a similar method as previous chapter. That is, we define

ar _ o~ hWmr+5h*T

dp
WmT = WmT - hTa

12

S:;, Tt = 1IN g—;";) In this chapter, we are going to estimate E[ryr1(r,r < ¢)].

)T}. Thus, we can

d0i:10.6342/NTU201901030



where h is a constant and WmT is a Brownian motion under P. Since we hope that

E [rmT] = ¢, we can get

~ S, o2
Blin 2] = (s — YT 4 0, (W)
Simo 2
o2
= (g — 7m)T + O E[Wor + T
o2
= (fyn — 7m)T+ath
2
= (pm — Tm + omh)
2
= c7
2
(.Ufm_aTm)T

which implies that h = <=

4.2 Asymptotic variance analysis

o2,
Letc = C_(M";J)T Then the first moment is

M1 = E[TiT]-(TmT < C)]
2 2

= El(( = )T + oiWir) W (= 2T + 00 Wit < )]
= (= ZNT - BLWir < 8] + 01 EWirL(Wor < 9)
T e Cy_poVT 2

= (= T B( =) = F e,

It implies that

2 (p ‘_%E)T\/_ ,OCTi\/T
e 2 Ve Ve

)|

c——o0 (2 2To2,
B 1
- 2To?

Before we consider the second moment, we define a new measure P by

d]f — War+5h°T
dP

WmT - WmT + hTa
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where W,,,r is a Brownian motion under P. Then we can calculate the second moment as

follows:
dP
My = ElrZl(rpr < C)(dP) ]
- E[r L(rmr < c)e hQT*QthT]
= M TE[(1; — %)T + oiWir) 21 (Wi < 8)]
2
o; ~ ~
= " T{(; — 7)2T2E[1(me < &)
o2 X
+ PE[W21(Wor < &)}
2
o; ~ ~
= " = 5 PTPEL(Wor < 2]
2
o; ~ ~
+ 0 (PPEW2E A (Wir < 8] + (1 — p)E[ZE1(Wr < &)])}
2 L.
= (1 = ST BN (Wi < &+ 1T)]
2 . .
+20(pi — %)aiTE[(WmT — W)L (Wyr < &+ hT)]
. . ¢+ hT
+ PO E[(Winr — KT (W < &+ hT)] + (1 — p)o?To( 20 )y
VT
o? c+hT
= M T (p; — 7)2T2<1>(7)
o? VT _@enry? ¢+ hT
+20(p; — =)o T(— i WTd
p(p 2)0 (me (ﬁ))
+ P22 B[(W2, — 2hTWp + h*T*)1 (W < &+ BT)]
+hT
+ (1 — p*)oiT® ¢
(1—-p7) ( T )}
2 0% o 0., 20 0 VT 2 28
=T {(1; — =2 )*T2®(—=) + 20(p; — =)o T(— T T — eP(——
eT{(u 2) (ﬁ) p(p )oiT( NGE: (ﬁ))
2V T 222 2¢ T 222 2¢
+ ool (— eT +To(—) + eT + FPh(——
SOr = Vol
2¢
+ (1 — p*)o?T®
( *)o (ﬁ)}
2 02 o 0. 20 VT 22 28
=T {(1; — L) T2®(—=) + 20(p; — 2o T(———e™ T — ¢0(——
{(p 2) (ﬁ) p(p o T'( NGr: (\/T>)
26 N
+03q’(ﬁ)(0202 +1)}.

14
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It implies that

1
C

Cc——00
1 2 (1 — %)PTNT
~ lim Lt D) VT

=00 C? V27 (—2¢)

o2 VT cv T VT
+ 2p(pi — 7)01'T(_\/g B \/%(_26)) i V2m(—2¢)

- cl}t—noo g(_ To'?n )
B 1
- To?,

Thus, we have the following theorem.

(p*& + )|

Theorem 3. Suppose W;; = pW,.i + /1 — p*Z;, where W,,;, Z; are Brownian motion,

and p is correlation between Wy, and W,,,,. Define two assets

dSy = piSydt + 0;.S;dWy

dSmt = ,UmSmtdt + UmSmtdWmt-

Also, let
M, = Elrgl(rur < c)]
- dP
= FElrirl(ryr < ¢)—=
[rir 1(rar )dP]
- dP
My = E[rfp1(rur < C)(d—ﬁ)z],
where
T = ln& Tt = ln%
it — Sz y Imt — Sm[)
Then,

1 1
lim — In|Ms| =2 lim — In|M]|.
c——00 (2 c——00 (2

In summary, we can get a more general theorem, shown as below.

Theorem 4. Let X,Y be random variables such that

X mi U% pPO102
~ N

2
Y Mo poi0y 04

15
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Also, let

M, = E[Y1(X < ¢)]

. dP
M, = E[Y?*1(X < ¢)(—=)?],
2= EYV*U(X < a)(55))
where
_ (@=mq)?
dP e i
P
Then,

1 1
c——00 C c——0o0 C

Proof. Define a random variable Z such that Y = pX + /1 — p2Z. Then

2 2 2
my — pmy 03 — pPoy

V1I—p2 1=p?

Z ~ N(

).
Thus,

M, = pE[X1(X < ¢)] + /1 - p2E[Z1(X < ¢)]

_ (c=mp)?

01 T c—my My — pmy . C— 1
= p(— e 1 4+md + 1= p? o

p( \/% 1 ( o )) P \/1_7p2 ( o )
_ (e=my)? _

2P @S,

- _p\/27r 01

Since

e 1 asc— —o0,

o1 )~ V21 (c — my)

we can derive that

) 1 1
Jim M= =55
On the other hand,
P 232 2 2\ 772 dpP .,
My = B[P + 207/ T= X Z + (1 = 2K < (35
(C—m1)2 2 _2(c—m1)2 2 _2
e et T (of (e 2m))R(— )

= e 1 — e
P [ V2T 01

—m 2 c—m 2
(c=mj) _ 1) 2 — 2m1

+2p(my — pmy)e i (—\/2_6 T — (c—2my)d(
m

)

01
(e=mq)?

2c —2m
+ o3 = pPo7 + (ma — pma)’le T D(———

).

01

Since
—my)?
2¢ — 2my —01 o)
)~ e 71 asc— —oo,

o1 - V272(c — my)

O(
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we can derive that
. 1
lim —In|[M;| = ——.
c——00 C 0'1
Therefore,

1 1
IS c——00 C

c——00
[
Remark. Theorem [, Theorem [, Theorem B are the special cases of Theorem H.
4.3 Numerical results
We show the numerical results again. The results are shown below.
Table 4.1: Geometric Brownian motion case
c exact N BMC S.E. IS S.E.
10000  -7.8055e-04 2.0346e-04 -1.1732e-03  2.1354e-05
-1 -1.1527¢-03 40000 -0.0010 1.1434e-04 -1.1581e-03  1.0481e-05
160000 -0.0011 5.9253e-05 1.1482e-03  5.2372e-06
10000 0 - -8.0165e-06  1.7730e-07
-1.5  -8.2625e¢-06 40000 -1.4882e-05 1.4882e-05 -8.1879e-06 9.0629e-08
160000 -8.4565e-06 5.9916e-06 -8.2925e-06 4.5457e-08
10000 0 - -7.7696e-09  1.9611e-10
-2 -7.9718e-09 40000 0 - -7.8575e-09  1.0036e-10
160000 0 - -8.0090e-09  5.0809e-11
T = 0.5, u; = 0.08,0; = 0.3, Sio = 10, ftr, = 0.1, 5y = 0.5, Simo = 100, p = 0.7.
Here we can see that when ¢ = —2, the basic Monte Carlo method cannot sample a rare

event even we simulate 160000 times, while the importance sampling method we provide
gives an accurate estimation. In addition, the sample error of importance sampling scheme

is at least an order smaller than that of basic Monte Carlo method.
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Chapter 5

Applications to Measuring Systemic Risk

After the 2008 financial crisis, measuring systemic risk has become a crucial issue for the
financial stability. Governments are trying to figure out why the regulation failed, how
much capital is required and how to address the next financial crisis. Bisias et al. [[10] pro-
vide a survey on the systemic risk measures and conceptual frameworks that have been
developed in the past few years. There are some measures that are widely adopted, such
as SRISK and ACoVaR. Adrian and Brunnermeier (2011) allow for tail dependence and
use a quantile regression approach to estimate the ACoVaR. Brownlees and Engle (2012)
model time-varying linear dependencies and use a multivariate GARCH-DCC model to
compute the SRISK.

In this chapter, we will estimate the systemic risk measurement SRISK in the framework of
Stochastic Volatility Model(SV model). SRISK is defined as the expected capital shortfall
of a financial entity conditional on a prolonged market decline. SRISK can be considered
to be a function of several variables. One of these variables is Long Run Marginal Ex-
pected Shortfall(LRMES). Our goal is to estimate LRMES using the Monte Carlo method

and compare it with the importance sampling method.

5.1 Stochastic Volatility model

In order to estimate LRMES, we need an appropriate model to compute the expected mar-

ket return and firm’s return. Here we use the Heston model to simulate stochastic volatility
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and assume that stochastic correlation follows Jacobi process.

The overall model is constructed below:

/

dIn S,y = (ftm — Y21 )dt + Vg d Wy
AV = K (Om — Vint)dt + Env/ Vit Zmy
dIn Sy = (i — %)dt + Vi dWy

Vi = ki(0; — Vi) dt + &/ ViadZy

d<Wm7 Zm>t = pmdt

dWi, Z)e = pidt

d<Wm7 VVi>t = pirdt

[ dpit = a;(m; — pa)dt + Bin/1 — p5d Xy

where S,,,;, S;; denote the market index and stock price of the i-th firm, respectively, and

Vint, Vie are the corresponding stochastic volatility. W,,,, Wy, Z,,, Z;, X are the stan-
dard Brownian motions, where p,,,, p;, pi: are correlations between each Brownian motion.
Km, k; are the mean reverting speed of corresponding volatility. 6,,,6; are the long-run
level of the volatility. &,,, &; are the volatility of volatility. «; represents the mean recov-
ery rate. [3; represents the volatility.

Define the i-th firm’s LRMES from time ¢ to time ¢ + h by

LRMESi,t:t+h = — [7”1 t: t.;,.h(t + h) |CriSiSt;t+h]

Bt 4+ D)1 peen(t + R) < c)]
N El(rpuesn(t +h) < c)] ' (5.1)

where 7, .14 and 7; .45 are the returns of index of market and the i-th firm over the
period [t,t + h].

Sometimes the ”Crisis” is a rare event, depending on the value of c. Ifitis a rare event, then
we will introduce the importance sampling method to reduce sample variance. Otherwise,

the basic Monte Carlo method is enough.

The numerical results are presented in the following table.
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c BMC S.E. LRMES IS S.E. LRMES
-1 -0.0050 1.389¢-04  0.3372 -0.0051 6.462e-05  0.3350
-2 -2.413e-05 8.717e-06  0.4897  -1.133e-05 2.067e-06  0.4627
-3 - - - -5.405e-10  2.876e-10  0.6757

Table 5.1: Results of basic Monte Carlo simulation and importance sampling scheme with N =
160000, = 0.5,dt = 0.002, pt, = 0.1, 4, = 0.08, Ky, = 5,k = 3,&m = 2,& = 1,0, = 05,0, =
0.3,c;, =5,8;,=1,m =0.5,p; = 0.5, p, = 0.5.

From the numerical results, we can see that the basic Monte Carlo method doesn’t work
well when c is very small. On the other hand, the standard error was reduced when we use

the importance sampling method.

5.2 First Passage Time Case

In this section, we introduce another definition of LRMES. It is called the first passage
time problem, or the hitting time problem. We will also use the Heston model, but here

we define LRMES as follows:

LRMESLO:T = —E[T‘i70:T(T) |CI'iSiS();T]

_ Elrior(T)1(infyry or(u) < )]
a E[(nfyrmor() <] (5.2)

The only difference between (B.1]) and (5.2) is the “Crisis” event. Here we define the *Cri-
sis” to be the minimum market return below ¢ during the time [0, 7']. Before we show the
numerical results, we need to show how to compute the denominator and the numerator
of LRMES under the constant volatility model. More specifically, we need to derive the

density function.

Let W,,; = at + W,,;, where W, is a standard Brownian motion. Define m(T) =
minp<;<r Wmt, then we can derive the joint distribution of 7i(7") and Wmt. Then deriva-
tion is similar to [6]. Let Z(t) = e~@Wm—30" — —aWmit30% By Girsanov’s Theorem,
Wi is a Brownian motion under the measure P. By using a similar derivation in [6], we

can derive the joint density of (m/(7), WmT) under P is

(2 —y)?
oT

: 22z —y)

= ——exrp(—
TV27T p(

fm(T),WmT('ruy> = ),x <0,y > x.
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Hence,

Therefore, under the measure P,

2(2z — y) 1 (22 —y)*

. s z, = ——"’p¢ -
Sy s (7:9) TV2xT

1

Let o = -=(puy — 307,) and ¢ = =

m

Then we can see that

S, ., = SmOeUmet+(,U«m*%U»,2n)t

— OeUmet
= Om .

Hence, we can get the denominator

E[1(inf,rmor(u) < c)]

_ E[i(inf, In 27 < o]

m0

1(inf, Wi < )]

/ / fm(T Wi (z,y)dydx
e oy ol dxd
/ / T\/ 27TT Y

/ / 2:L‘— eay 1 2T_(2x2Ty) dxdy
VorT

:e2aé®(C+O‘T n ¢c—aoTl

\/T) @(ﬁ)
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and the numerator

E[riTl(inf Tm 0;T<U> < C)]
2 A
é)T + o;Wir)1(inf, W, < €)]
2
g; aé
O

= E((ni —
¢+ aT c—aT

T )+ @( JT )]
+ 0, pE[(Wr — oT)1(inf, Wy, < €)]

= (i "3>T[ 2%(‘“’}% ra(ts aT)]
- aT(eza%("j;T) " @(%m
= (- Drle L) o2
+ Uip[oqu)(é ;;T) + (2¢ + ozT)eQaé@(é J\F/;T)
- aT(o(“LET) + o —2)
= (1 — %’2)(620@@(6 T/;T) + @(é \_/;T)) + 201-;)662&6(]?(6 T/;T).

Here the ”Crisis” can also be a rare event, depending on what value c is. Like the last
section, we introduce the basic Monte Carlo method to estimate LRMES and compare it

with the importance sampling method.

The numerical results are presented in the following table.

c BMC S.E. LRMES IS S.E. LRMES
-1 -2.053e-03  1.519e-04 03941 -1.874e-03 2.170e-05  0.4083
-1.5  -1.453e-05 -1.453e-05 0.5812  -1.352e-05 2.557e-07 0.6134
-2 - - - -1.288e-08 3.661e-10  0.8259

Table 5.2: Results of basic Monte Carlo simulation and importance sampling scheme with N = 40000,7T =
0.5,dt = 0.002, ; = 0.08, p, = 0.1,0;, = 0.3,0,,, = 0.5,p = 0.7.

As we can see, the basic Monte Carlo method doesn’t work well when c is very small. On

the other hand, the standard error was reduced by using the importance sampling method.
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Part 2

Large Deviation Theory
applied to Portfolio Optimization

In this part, we are going to apply large deviation theory to the finite-horizon investment

optimization.
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Chapter 6

Optimal Finite-Horizon Investment

There have been a lot of research about large deviations approach to optimal long term
investment. For example, [8] considered a Bachelies model for the stock price: S; =
ut+ oWy, where W, is a Brownian motion. Suppose that an investor trades a number « of
shares in stock of price .S, and keep it until time 7. The wealth at time 7" is then X" = a.S7.
The average wealth is X ¢ = % The asymptotic version of the outperforming benchmark

criterion is then formulated as:

1 _
sup lim — InP[X$ > 2] = — inf I(z, a),

aeR T—o0 acR

where

I(x, ) = suplfz — T'(0, «)]

(SN

1 a
I'(6, o) = lim sup T In E[e?X7].

T—o0
In [8], it is derived that the solution is given by a* = x/u, which means that the associated

expected wealth E[X%'] is equal to the target .

In this chapter, we consider a large deviations approach to optimal finite-horizon in-
vestment. We first describe some very important large deviations results that will be used

in this chapter.

Definition 1. Large-deviations principle. [7] A sequence Y7, Y5,... obeys the large-

deviations principle (LDP) with rate function /() if
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a. For any closed set F/,

hmsup log P(— ZYGF < —inf I(a);

n—oo N ack

b. For any open set G,

1 1 &
liminf = log P(= Y Y; € G) > — inf I(a).

n—oo M n 4 acCG

Freidlin-Wentzell Theorem. []|, 2] Let W; be a standard Brownian motion. Then the

solution of

dXt = G(Xt)dt + \/Eb(Xt)th
satisfies LDP with rate function

T, f—
3o (5

0, otherwise.

I(f) =

6.1 Constant Investment Strategy

Let the bond price S° and the stock price S satisfy

ds? = rSVdt
dSt = ,LLStdt + O'Stth.

92dt, f € Ci,[0,T]and [(f)*dt < oo

Define the wealth process V,* = O‘Vt Sy + (1 S?, where « is the proportion invested
in the stock. Then we can get
aVe (1—a)V2
AV = —=dS, + ~dS)
s SP

= aV*(udt + odWy) + (1 — a)Vrdt
= V(e — r)a + r)dt + ocadWy].
By It6’s formula, we can derive
o2
dinV® = (r+ (p—r)a— Eaz)dt + cadW,.
Integrate the above equation from 0 to 7", then we can get

VT _ % (r+(p— r)cx——a2)T—|—acxWT

25
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Define 7* = info<i<r{t : V,* > z}, where x > 0. We are interested in the problem

sup, P(t* < T). Let X = fot asds + fot bsdW,, where ag; = r + (u — 1)ov — "7209 and

by = oa. Then
{t*<T}={su V* >z}
0<t<T
={sup X> ln%
0<t<T Vs
—{ inf —X*< —In—
{,dnf —X7" < mw
= {,inf X7 <3},
where we define X = —X?, 7 = —In &, b, = b,.

as Vs
VO

To apply the theory of large deviations, we introduce a scaling factor /€ and reformulate

Xt"‘ as df(ta = Gydt + \/eb,dW,, where G, = —(r+p—r)a— %az).
Define p® = P(7® < T) and a; = —(r + (u —r)a). Then according to Freidlin-Wentzell

theorem,
lim e log p™©
e—0
= —infI(J)

N B i
— —inf= )2t
11;2/0< )

= —1(f)

Let L(t, f(t), f(1)) = (%;at)z By Euler-Lagrange equation, we have

OL _ doL _
of dtof
After some calculation, we can get
. “ C ~
flt)=a:+ Elth

and so
c

t t
f(t)202+/ dsds+—1/ b2ds,
0 2 0

where ¢; and ¢, are constant.

Note that f*(0) = 0 and f*(T') = . Thus, we can derive that ¢; = (% — ) and ¢; = 0,
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where & = a, and b = b,. Therefore,

1(f) = 2%(% —a). 6.1)

So the problem can be reduced to find o such that

sup li_r;ol(flogpo“6 = sup(—1(f*()))

«

~infI(f*())

Note that it is equivalent to find o € [0, 1] such that the function h(a) = -5 (

o (F —a)is

z
T

minimum.

Remark. If'we use the closed-form to consider the above problem, and we let In 75 >

(r + (u — r)a)T, then we can get the same answer.

Proof. By [6], we can derive that

—c— kT

-2
k_ +(pu—r)a— 204

_ 1
where ¢ = —~1In Va’ -

2
. . . r+(p—r)a—<2-a?
Again, we introduce a scaling factor /e and rewrite ¢ = ﬁ In 75 and k = i G s
0

Veoa
Then we will have
e \/T _ (c—kT)? ke ﬁ _ (c+kT)?
Ty —F 2T + e _ ¢ 2T
V27 (c — kT V2r(c+ kT)
— \/T e_<672kTT)2 ( 1 + L )2.

V2m c—kT  c+ kT

We use the same notation as above. Thatis, a = —(r + (u — r)a — %oﬂ) a=—(r+

(t—7)a),b=0ca,and & = —lnvioa.

Hence, we can derive that

lim € log p™* _11386[_(6_2?)2 10%%—?“"%( Ck2T2)]
_11_1}3[ (—ﬁx—i—%T) +log\/_+1 (}/_b<~2T)2)]
_—%(—l:ﬁ+7T)2+0+0

g
=—2—B2(%—A)2,
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which is the same as (6.1)).

Thus,

T
supli_r}r&elogpa = —igf;(

6.2 Deterministic Investment Strategy

In the last section, we considered « to be constant. In this section, we will let o be a
function of time ¢, which will be denoted by «;. In other words, the problem will be
sup,,, P(7%* < T'). Similar to the last section, we define df(ta = a;dt + \/Egtth, where
ag=—(r+ (p—r)oy — %af), by = ooy and éy = —(r + (u — r)oy).

According to Freidlin-Wentzell theorem, we can rewrite our problem as following:

inf inf I(f(t)) = inf inf — / f

ar feB ar feB 2
where the set B = {f € C'[0,T7], f(0) = 0,infycs<r f(t) < T < 0}.

Again, by the Euler-Lagrange equation, we can derive that

2 2 T

cio
15(0) = 95 [ atat,
0
where
2(f(t) — [, as ds
Cc1 =
fo b2ds
First, we consider the problem:
inf ci.

infoci<r f(1)<Z

(8)— o asds)
fof b2ds

If there exists ¢; such that fo asds < z, then we choose f(t; fo asds. Note that in

Since ¢; is constant, we know that V¢ € (0, 7], the value 24 is fixed.
this case, ¢; = 0.
Thus, we will only consider the case that f[f asds > z, vt € (0,7].
Let & < Z, then Vt € (0, 7], fo asds < T — fo asds. Also, fo b2ds > 0. Hence,

~ t A ~ t A

T— | ads T — |, asds

tff) < t‘[o <0
J, b2ds J, b2ds
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So we can derive that

i fy dsds)Q . (:Jz — [ ads
[ b2ds [ b2ds
Therefore, we have to choose f(t;) = , where
T — fotj asds . T — fot asds

il = inf (m—20 =" 6.2
7 b2ds ) 0<t£T( [ b2ds ) o)

( )%

so that we can ensure that ¢? is minimized.

That is,
2(7 — [ asds)
f b2ds

C1 =

Then we can derive that
~ ti ~
_ J sd tN t
F5(t) = w x / bds +/ yds.
fOJ b?ds 0 0
We can easily check that f* € C1[0, T).

Therefore, the problem can be reduced to the following problem:

2 & [lin d T
infa—(wy / a2dt. (6.3)
ar 2 foj bgdS 0

Due to that fact that it is very hard to solve the problem directly, we can reformulate the
problem as following:
Let0 <ty <tp <..<ty,=T,and g(a,,...,0p,) = (0, Quyy oy ) Doty OF

It is equivalent to minimize the function g in the space [0, 1]".
Remark. If a; = « is a constant, we can check that (6.3)) is equal to (6.1)).

In summary, we can give the theorem.
Theorem 5. Let the bond price S° and the stock price S satisfy

ds? = rSodt
dSt = ,uStdt + O'Stth.

The wealth process is defined by V,** = atv ol g, 4 QzaVe at)v SY. In addition, we define

7 = infyccr{t : V** > x}, where x > 0. Let fo (r+ (p —r)as)ds > —In e,

0
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vt € (0,T]. Then,

sup li_%elog P(rec < T)

ot

= —inf —( >
ar 2 f0J<O'OéS)2dS

z (4 _
o2 —Ingh Jol —(r+ (p—r)as)ds 2/T w2
0

if we introduce a scaling factor /€ such that

ot 2

Vi
dln - :(7“~|—(;1J—r)04t—1

‘/E)at 5 OZtQ)dt + \/EO'O{tth,

and if 3t; € (0, T) such that (6.2) is satisfied.
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Chapter 7

Conclusion

In this thesis, we applied importance sampling method to estimate the expectation of a
random variable with an indicator function under different models. It was shown that our
method is efficient under those models. In addition, our importance sampling method can
be applied to measure the systemic risk. On the other hand, we can apply the theory of

large deviations to the finite-horizon investment optimization.

31 d0i:10.6342/NTU201901030



References

[1] Yen-An Chen. "Importance Sampling for Estimating High Dimensional Joint Default

Probabilities”. MA thesis. National Taiwan University, July 2017.

[2] Dung-Cheng Lin. ”Asymptotically Optimal Importance Sampling for Lower Tail
Probability Estimation under Matrix Valued Stochastics”. MA thesis. National Taiwan

University, July 2018.

[3] Paul Glasserman, Wanmo Kang and Perwez Shahabuddin. ”Fast Simulation of Mul-

tifactor Portfolio Credit Risk.” Operations Research, vol. 56, 1200-1217, 2008.

[4] Paul Glasserman, Wanmo Kang and Perwez Shahabuddin. ”Large deviations in mul-

tifactor portfolio credit risk.” Mathematical Finance, vol. 17, 345-379, 2007.

[5] Paul Glasserman, Jingyi Li. "Importance sampling for portfolio credit risk.” Manage-

ment Science, 51(11):1643-1656, 2005.
[6] Steven E. Shreve. Stochastic Calculus for Finance II. Springer Finance, 2004.
[7] Michel Mandjes. Large Deviations for Gaussian Queues. WILEY, 2007.

[8] Pham H. "Large deviations in mathematical finance.” Lecture Notes, University of

Paris 7, 2010.

[9] James Bucklew. Introduction to rare event simulation. Springer Science & Business

Media, 2013.

[10] Viral Acharya et al. "Measuring systemic risk.” The Review of Financial Studies 30.1
(2017), pp. 2-47.

32 d0i:10.6342/NTU201901030



	摘要
	Abstract
	Introduction
	Part 1
	Standard Normal Case
	Change measure
	Asymptotic variance analysis
	Numerical results

	Brownian Motion Case
	Change measure
	Asymptotic variance analysis
	Numerical results

	Geometric Brownian Motion Case
	Change measure
	Asymptotic variance analysis
	Numerical results

	Applications to Measuring Systemic Risk
	Stochastic Volatility model
	First Passage Time Case

	Part 2
	Optimal Finite-Horizon Investment
	Constant Investment Strategy
	Deterministic Investment Strategy

	Conclusion
	References



