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摘要 

近年來，機器人已經融入人類生活中，而服務型機器人的發展是為了讓人類

的生活更舒適便利。與此同時，機器人也不只是單純的機器，機器人應該具備與

人互動以及在環境順暢移動的能力。本篇論文旨在發展一個跟隨機器人，此機器

人能夠跟隨特定使用者，並能自動搜尋此使用者。我們使用 SLAMMOT 使機器

人能了解自身週遭環境位置，以及使用者的位置。當機器人丟失跟隨目標時，機

器人能尋找使用者，令使用者能重新進入機器人的視線後重新跟隨。 

本篇論文也提出使用者的辨認方法，讓機器人能夠辨識特定使用者，使機器

人不會認錯要跟踪的使用者。所建構的跟隨機器人系統，經實驗驗證具有不錯的

效果。 

  

 

 

 

 

 

關鍵字: 使用者辨識、人機互動、跟隨、行動式機器人、多模態融合 
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Abstract 

In recent years, robots are assimilated into humans’ life. Service robots are built 

for making people more convenient and more comfortable. A robot is not just a machine. 

It should be capable of interacting with people appropriately and moving in the 

surroundings smoothly. This thesis attempts to develop a shopping assistant robot 

system. It can recognize a specific user, automatically follow him and search for him. 

SLAMMOT is used in the robot for understanding environments, localizing itself and 

locating the user. If the robot loses the tracking user, it searches for the user and causes 

the user can be found in the view of the robot. In addition, the human recognition system 

is constructed to recognize the specific user. The proposed system has been justified in 

experiments. The results are promising. 

 

 

 

 

Keywords: User Recognition, Human-Robot Interaction, Following, Mobile Robot, 

Multimodal Fusion 
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Chapter 1 Introduction 

The motivation of this thesis is explained in this chapter. The related works of the 

service robots and the integrated system of service robots will be introduced.  

1.1 Motivation 

Industrial robots have been widely used in factories. Through controller and 

language development, sensing, and drive systems of the robot system have been 

greatly enhanced. Various robots have been developed to work in indoor or outdoor 

environments for more than decades [25, 43, 46]. The research of personal robots or 

social robots keep progress. Building an intelligent service robot is one of the main 

tasks in the field of robotics. Service robots act like assistants. They can take care of 

the elders or people with reduced mobility. 

The human following robot is the main issue of this thesis. This type of robots can 

be widely used as a shopping assistant [11, 22], self-propelled baggage [3], etc. 

Sometimes, the robot will lose the tracking target. It should have the ability of re-finding 

the specific target. The user can do some interaction with the following robot to help 

the robot re-find the user. 
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Figure 1-1 Applications of the assistant robots [3] [6] 

This thesis aims to develop a following robot so that it can recognize a specific 

user, following him, and re-find him after losing him. 

1.2 Related Works 

This section summarizes previous research about the field of service robots and 

Human-Robot-Interaction. Service robots are developed for various usage in shopping 

malls [24, 46, 51], museums [10, 26, 47], households [54-56], hospital [15, 19, 21], etc. 

They are capable of perceiving and reacting to their surroundings, avoiding obstacles 

near them, knowing their positions in their working spaces, and going to the target place. 

In order to interact with a pedestrian, some service robots are designed with human-like 

appearance or communication abilities, such as voice system and expression system. It 

makes them more friendly when the robots interact with humans. 

Human following robots have been developed with many sensors and effective 
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algorithms. They are built in vision-based, generally. Various Cameras are used on the 

following robot [34, 41], and laser range finder [20, 57] is a must. 

 In order to increase the accuracy of the sensor data, the sensor fusion algorithm 

proposed by Luo et al. [31] and implemented by Chen [11] are applied. 

Impedance Control implemented by Chen [11] is applied to this thesis for solving 

the interaction problems between the user and the robot. The robot needs a higher speed 

to follow the user when the user walks faster. In order to recognize the specific user 

precisely, multimodal biometric recognition technology [29, 39, 40] is implemented to 

identify the specific person.  

Moreover, human following robots sometimes lose the following target when the 

target turns into other directions. OTA et al. [37, 38] proposed a recovery function that 

the human following robot can re-find the user after the user makes a turned at the 

corner. The robot can predict the path where the user has walked. Lai [28] proposed a 

re-tracking scenario that the robot turns left or right according to the disappeared 

direction of the user. 

1.3 Objectives and Contributions 

Human following robots can transport goods so that the master (viz. human) may 
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not take the goods. This function can make more convenience to humans. Our robot, 

Bunny, can achieve it. However, to recognize the specific user by using the color-based 

particle filter is not robust. Multimodal biometric recognition [23, 29] is provided for 

more robust recognition. 

Combined with the techniques of user recognition, our robot can re-track the 

specific user accurately after the robot loses the tracked user. If the user is not found 

finally, the user can do something to interact with the robot, such as gesture, body 

posture, sound, etc. Many methods of interaction can be implemented in Human-Robot 

Interaction tasks. 

The contributions of this thesis are summarized as follows: 

 This thesis develops an amiable human following robot, to make the user 

 feel secure and familiar, and a basket for carrying.  

 In order to recognize the specific user accurately, multimodal user 

 recognition algorithm is implemented.  

 The robot can re-find the specific user after the user is lost from the 

 vision of the robot. The behaviors of the robot are provided in this thesis. 

1.4 Thesis Organization 

The thesis organization is given in Figure 1-2. 
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Chapter 1

Introduction

Chapter 2

Recognition and Tracking 
Specific Target

Chapter 3

Following, Guiding and 
User Re-tracking

Chapter 4

Simulations and 
Experiments

Chapter 5

Conclusions and Future 
Works

 

Figure 1-2 The organization of thesis 

Chapter 2 briefly introduces the existing human following algorithm developed by 

Chen. A structure of the sensor fusion method is applied for tracking and calculating 

the relative position of the user based on the robot. Chapter 2 will also introduce the 

method of the specific user recognition by using external biometric features such as 

face, body size, and dress color. A Multimodal fusion algorithm is applied for 

combining the different modalities to improve the accuracy. 

Chapter 3 discusses the human following system briefly. It introduces the behavior 
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of the user re-tracking. If the user disappears from the sight of the robot, the robot does 

something to re-track the user and follow the user again. 

Chapter 4 conducts a series of experiments and shows the results of the interactions 

between the user and the robot. The experiment scenario can be easily observed in our 

daily life. 

Chapter 5 addresses conclusions and future works. 
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Chapter 2 Recognition and Tracking a 

Specific Target 

There are great amounts of research about human tracking [30-32]. However, 

following a specific moving target is a difficult task. Several important factors 

considered are presented as follows. 

First, since the person and the robot are both moving in the real world, we need 

not only to recognize the relative position between the target and the robot but also to 

perceive the environmental information. This thesis utilizes SLAMMOT algorithm 

proposed by Wang et al. [53]  and implemented by Chung [12] to acquire the 

information of the environment and find out the humans in the map. 

Second, in view of the inevitable uncertainty caused by any kind of sensors, using 

sensor fusion to improve the sensor accuracy is reasonable. For example, laser range 

finder is very useful in building a map and recognizing the moving object in the map, 

But, it does not contain the visual information. Kinect has depth and image information, 

but it has narrow sensing range compared to laser range finder. 

Third, in the general case, servant robots recognize a specific target by face 

recognition [7], or track dress color histogram by particle filter [36]. However, it may 

recognize the wrong target when features are similar. The multimodal fusion [23, 29] 
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will be used to improve the modality accuracy. For example, face recognition can find 

out a specific person but it does not contain the body information. The classifier will 

make a mistake when it recognizes the similar face such as human twins. Dress color 

histogram contains the color information, but it does not contain the face information. 

The classifier makes a mistake if someone wears dresses with the similar color. 

Biometric identification is a convenient way to accomplish the task since they do 

not require individuals to carry authentication tokens (e.g. keys, cards) or remember 

usernames and passwords. They can be divided into two approaches: active and passive. 

An active biometric system requires the user to interact in some way with an interface. 

This is the case of fingerprint recognition. In passive biometrics systems, the user is not 

required to directly interact with the system. Facial and voice recognition fall into this 

category and are becoming increasingly common in daily tasks. 

In summary, the use of multiple sensors can improve the accuracy of the 

multimodal system for a robust specific user recognition. It allows robots to have a 

robust user recognition for Human-Robot Interaction. 

2.1 Human Following Algorithm 

This section shows the entire structure of the human tracking system. This thesis 
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utilizes a similar system implemented by Luo et al. [31] and Chen [11]. After modifying 

the part of the vision-based tracking system, the structure of human following is shown 

in Figure 2-1. 

Assign ID to 
the 

pedestrian 
in 

SLAMMOT

Following

Image Data 
and Kinect 

Data

Face 
Recognition

Body Size 
Recognition

Dress Color 
Recognition

Multimodal 
Fusion 

Algorithm

Assign 
Target ID

Human 
center hip 
Position

Laser Data
Moving Object 

Tracking

Assign 
Target ID

Assign 
Target ID

Estimate 
Human 
Position

Vision-Based 
Tracking

Laser-Based 
Tracking

 

Figure 2-1 Structure of human following 

There are three parts in the human following system (see Figure 2-1). The red part 

denotes the vision-based tracking system. The green part denotes the laser-based 



doi:10.6342/NTU201602427

 

10 

 

tracking system. The blue part denotes the part of the sensor fusion algorithm and 

motion planning. The vision-based tracking system is used to track and recognize the 

specific user. The laser-based tracking system is used to track the pedestrians in the 

map, which is built by SLAMMOT. After the specific user is recognized, the 

corresponding ID is assigned in SLAMMOT. The target position data tracked by Kinect 

and laser range finder is sent to the part of the sensor fusion algorithm, which is 

proposed by Luo et al. [31] and implemented by Chen [11]. After fusing the information 

and assigning ID to the pedestrian in SLAMMOT, the robot operates the motion 

planning mission. 

The sensors used for tracking the user in this thesis are Kinect and laser range 

finder. The information captured from the sensors are fused and calculate a goal behind 

the user.  

Kinect is a universal and cheap RGB-D camera (see Figure 2-2). It combines image 

with depth data. We can develop some applications by using official SDK. After 

recognizing the target user, the Kinect is used for tracking the center of hip of the target 

user. 
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Figure 2-2 Kinect v1.0 sensor 

There are total 20 skeleton joints, which can be tracked by Kinect. The skeleton 

picture is shown in Figure 2-3. We can define the hip center of the skeleton data as a 

tracking joint. 

 

Figure 2-3 Skeleton Joints tracked by Kinect [5] 

Laser range finder can capture the obstacle information around the robot. 

SLAMMOT proposed by Wang [53] and implemented by Chung [12, 13] can build the 

map and locate the robot simultaneously, and track the moving object. The real 
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operation of SLAMMOT is shown in Figure 2-4. 

 

Figure 2-4 Operating process of SLAMMOT [12, 13] 

In Figure 2-4, the robot can locate itself on a map. Simultaneously, it can track the 

pedestrian in the map by recognizing the tracked specific shape of laser points. A red 

cylinder shown in Figure 2-4 denotes the tracked pedestrian. A yellow cylinder denotes 

the goal of the robot. 

2.2 Multimodal User Recognition 

In order to ensure the accuracy of the user identification system, there are three 

modalities are implemented in the system. The three modalities are facial recognition, 

body size recognition, and dress color recognition. 

Two variables will be discussed in user identification: False Acceptance Rate and 

False Rejection Rate. False Acceptance Rate denotes the acceptance rate of a non-
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Target. False Rejection Rate denotes the rejection rate of a True-Target. The 

mathematical function of False Acceptance Rate and False Rejection Rate are shown in 

Table 2-1. 

Table 2-1 The relations between truth/falseness of the hypothesis and outcomes 

Condition 

 

Predicted 

Accept Reject 

Accept True Positive False Positive 

(Type I error) 

True Positive 

Rate = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

False Positive 

Rate = 
𝐹𝑃

𝐹𝑃+𝑇𝑁
 

Reject False Negative 

(Type II error) 

True Negative False Negative 

Rate = 
𝐹𝑁

𝐹𝑁+𝑇𝑃
 

True Negative 

Rate = 
𝐹𝑁

𝐹𝑁+𝑇𝑁
 

Accuracy 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
×100% 

where TP denotes true positive, TN denotes true negative, FP denotes false 

positive and FN denotes false negative. 

The definitions in Biometric identification [58], False Acceptance Rate is defined 

as Type I error and False Rejection Rate is defined as Type II error. It denotes the False 

Acceptance Rate is equals to False Positive Rate, and False Rejection Rate is equals to 

False Negative Rate. 

2.2.1 Face Modality 

Face Recognition is an easy task for humans. In order to recognize a specific user, 
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face recognition should be included. In this part, OpenCV function [1, 27] is 

implemented. There are two processes for this function: Face Detection and Face 

Recognition. 

Haar feature-based cascade classifiers proposed by Viola et al. [52] is applied for 

face detection. It is a machine learning based approach where a cascade function is 

trained from many positive and negative images. Each feature is a single value obtained 

by the subtracting sum of pixels under white rectangle from the sum of pixels under 

black rectangle (see Figure 2-5). 

 

Figure 2-5 Haar Features 

After the faces are detected from images, face recognition function can be initiated. 

The recognition is performed by calculating the Euclidean distance between feature 

vectors of a probe and reference images. Such a method has a huge drawback. The 

accurate registration of the marker points is complicated. We should decrease the 

number of dimensions of the image. In general, eigenfaces method, fisherfaces method 

and Local Binary Patterns Histograms method are used in face recognition. 
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Fisherfaces method is implemented in this modality. The Principal Component 

Analysis (PCA) [42], which is the core of the eigenfaces method, finds a linear 

combination of features that maximizes the total variance in data. The Linear 

Discriminant Analysis performs a class-specific dimensionality reduction.  

 A dataset with 10000 facial images with size 150 150  pixels is created. This 

dataset becomes the template for face recognition. Part of facial images in the dataset 

is shown in Figure 2-6. Each facial image contains a label: Accept and Reject.  

 

Figure 2-6 Face dataset 

In order to find the combination of features that separates best between classes, 

the Linear Discriminant Analysis maximizes the ratio of between-classes to within-

classes scatter, instead of maximizing the overall scatter. The idea is simple. Same 

classes should cluster tightly together, while different classes are as far away as possible 

from each other in the lower-dimensional representation.  
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The Fisherfaces method learns a class-specific transformation matrix, so they do 

not capture illumination as obviously as that in the eigenfaces method. The 

Discriminant Analysis instead finds the facial features to discriminate between people. 

The algorithms are shown below. 

 Let X be a random vector with samples drawn from c classes. 

 1 2{ , , , }cX X X X  (2.1) 

The scatter matrices 𝑆𝐵 and 𝑆𝑤 are calculated as. 

 
1

( )( )
c

T

B i i i

i

S N    


     

   
1

( )( )
i

j

c
T

w j i j i

i x X

S x x 
 

     

(2.2) 

(2.3) 

 where   is the total mean. 

1

1 N

i

i

x
N




   (2.4) 

 And i  is the mean of class {1,..., }i c . 

1

| |
j i

i j

x Xi

x
X




   (2.5) 

 Fisher’s classical algorithm now looks for a projection W , that maximizes the 

class separability criterion. We have 
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| |
arg max

| |

T

B
opt w T

W

W S W
W

W S W
  (2.6) 

 A solution for this optimization problem is given by solving the following 

general eigenvalue problem: 

B i i w iS v S v  

1

W B i i iS S v v   

(2.7) 

    

    (2.8) 

 

Figure 2-7 Dimension Regression by FisherFaces Method 

The results of lower-dimensional representation is shown in Figure 2-7. The 

important features are kept after the dimension regression, such as the shape of eyes, 

nose, etc. The dimension regression can help to keep the speed of computing. 

Face Recognizer function of OpenCV is implemented in this modality. The dataset 

which is shown above is obtained from the members of our laboratory. The matching 

approach of the face modality is nearest neighbor algorithm. The number of training 

images affects the accuracy of the modality. The recognition rate is shown in Figure 

2-8. 
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Figure 2-8 Recognition rate of facial modality 

According to the Figure 2-8, the recognition rate increases when the number of 

training images per person increases. Therefore, we collect 15 training images per 

person and there are 10 people in our dataset. 

 

Figure 2-9 Operating interface in face modality 

Two information can be obtained: predicted label and confidence. In Figure 2-9, 

a target user is identified in label 0, which denotes Accept. The other label denotes 
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Reject. A Euclidean distance of measurement is obtained for the multimodal fusion 

modality. In the function of OpenCV, six people can be detected simultaneously in a 

frame of the image. 

The threshold is the maximum value of the Euclidean distance between the 

database image and the input image. The input face image is recognizes in a label if the 

measured distance is lower than the threshold. The subjects were asked to show their 

faces 10 times in the camera. The online test results are shown in Table 2-2 and Table 

2-3. 

Table 2-2 Threshold testing for Target 

Class 

Threshold 

Correct 

Recognition 

False 

Recognition 

1250 10 0 

1000 10 0 

750 8 2 

500 5 5 

It is observed that for the known target in Table 2-2, the threshold value in the 

range 1000~1250 gives us a 100% accuracy. The threshold value in the range 1000~750 

gives us an 80% accuracy. When the threshold value decreases, the false recognition of 

the person increases. 
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Table 2-3 Threshold testing for Non-Target 

Class 

Threshold 

Correct 

Recognition 

False 

Recognition 

1250 10 0 

1000 10 0 

750 10 0 

500 9 1 

For non-Target case in Table 2-3, the threshold range 1250~1000 gives us 100% 

accuracy, but the accuracy decreases when the threshold range decreases to 750. 

 According to the results in Table 2-2 and Table 2-3, the accuracy decreases when 

the threshold is set at 1000. Therefore, we set the threshold in 1000. 

2.2.2 Body Size Modality 

The sizes of body parts are unique for a human. They can be the unique features 

to recognize the specific person. Sinha et al. [48] proposed an approach, that captured 

the skeletal size and gait cycle data to be the features. Artificial Neural Network is one 

of the classifiers in their approach. Barbosa et al. [9] proposed an approach that the size 

of skeleton and contour of the user are the features for the classifier. 

In the approach of this thesis, the selected features are referred by the approach of 

Araujo et al. [8]. This data was captured while subjects walked in front of the sensor. 
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The Kinect provides frames that contains depth information from its sensors, at a rate 

of 30 frames per second. In this section, skeleton information is implemented. The 

skeleton information is shown in Figure 2-10. 

 

Figure 2-10 Skeleton joints returned by Kinect SDK and defined body parts 

 For each frame, the length of different parts of the body based on the coordinates 

provided by the sensors are calculated. 

 The distance between two skeleton joints are calculated as 

1 1 1

2 2 2

, 1 ( ) ( ) ( )
i i i i i ii i x x y y z zd P P P P P P

          (2.9) 

where P denotes the joint of the skeleton in the real world and i denotes the id of 

the skeleton joints defined by Kinect SDK. It contains 20 joints. They can be found by 

the captured data of the Kinect. 

Height can be calculated by the following equation. 
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_ _ _ _

_ _

( ) ( )

2 2

left leg right leg left thigh right thigh

height cervical spine thoracic spine

d d d d
d d d

 
     

(2.10) 

Namely, height is calculated by summing up the Cervical Spine, Thoracic Spine, 

the mean between left and right legs, and the mean between left and right thighs. It must 

be noted that, these attributes are not independent of each other. 

However, the measured distance between the joints are different when the distance 

between the tracked user and robot is different. The skeleton size information cannot 

total implemented in real application. The ratio of limbs become the features. The 12 

features implemented in this modality are shown as follows. 

 Thoracic spine 

 The length of left arm and right arm (the length of forearm + the length 

of upper arm) 

 The length of left leg and right leg (the length of thigh + the length of 

lower leg) 

 The ratio of forearm and forearm (included left and right) 

 The ratio of thigh and lower leg (included left and right) 

 The ratio of leg and thoracic spine (included left and right) 

 Height 

The output of the person identification system includes: Accept and Reject. The 

labels for supervised learning system are defined as accept and reject. Two learning 

classifiers are tested in this modality: Multi-layer Perceptrons (using Backpropagation, 
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with 10 hidden units) and Support Vector Machine. 

 Multi-layer Perceptron [44] is one of the methods of deep learning. It can separate 

a set of data that is linearly inseparable. It is widely used in voice recognition, image 

recognition, etc. However, it spends a lot of time in training. Support Vector Machine 

[14, 16] is implemented for a classifier in this modality. SVM is good at two-class 

recognition and training datasets with less time. It can process the small dataset. The 

advantages of support vector machines are: 

 Effective in high dimensional spaces 

  Still effective in cases where the number of dimensions is greater than the 

number of samples 

 Uses a subset of training points in the decision function, to make memory 

efficient. 

 It is versatile and different Kernel functions can be specified for the decision 

function. Common kernels are provided, but it is also possible to specify 

custom kernels. 

A set of the offline testing result is shown in Table 2-4. Libsvm-3.16 library, which 

is provided by Chang et al. [2], is implemented in this modality. The type of SVM in 

this modality is C-Support Vector Classification (C-SVC). The kernel of SVM in this 
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modality is RBF kernel. After cross-validation, the training variables of SVM are: 

cost=32, gamma=8. 

In order to make the differences between the features clearly, the normalization of 

feature vectors is implemented. The equation of normalization implemented in this 

modality is shown as  

_ min

_ max _ min

( )
' 2 1

( )

i i

i

i i

X X
X

X X


  


   (2.11) 

where 'iX  denotes the normalized feature value, iX  denotes the raw feature value, 

_ miniX  and _ maxiX denote the minimum value and maximum value of feature, 

respectively. i  denotes the index of feature vectors. The feature values are mapped 

into the range -1 to 1. 

 There are 27000 pieces of data for training and 8000 pieces of data for testing. The 

testing confusion matrix is shown in Table 2-4. 

Table 2-4 Confusion matrix in offline test of body modality 

Condition 

 

Predicted 

Accept Reject 

Accept 1324 234 

Reject 165 6295 

Accuracy 95.0237% 

Table 2-4 shows the confusion matrix and accuracy in the offline test. The 
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accuracy of the body size modality is 95.024%. The False Acceptance Rate (False 

Positive Rate) is 0.1108 and the False Rejection Rate (False Negative Rate) is 0.026. 

In the online test, the user is asked to stand forward of the Kinect sensor. The robot 

recognizes whether the user is a target or not. If the target is recognized, a high grade 

value is returned. If a wrong target is recognized, a low grade value is returned. 

2.2.3 Dress Color Modality 

There are many types of research for the human following robot to recognize the 

dress color of the specific user. In general, color-based particle filter [18, 36], SIFT [45] 

or SURF [17] are used for tracking the color of users’ dresses. However, the algorithms 

spend a lot computing power. We should save the computing power for operating the 

multi-modal system. 

Sugiyama et al. [49, 50] proposed a simple personal identification method using 

Dress Color Information for a guide robot. Unlike the general approaches such as 

particle filter or SURF, this approach is only calculated at narrow areas around a user’s 

joint position obtained by Kinect. This method can identify the specific user in real time.  

There are total 20 skeleton points and 20 narrow areas for matching the color of 

dresses (see Figure 2-11).  
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Figure 2-11 Definition of Personal Information in the current time t without 

height information and shoulder width information 

There are 25 pixels in each narrow area of skeleton joints. The center of narrow 

area (shown in red square) denotes the joint of skeleton. The image of narrow area is 

extracted for the dresses matching. There are 20 skeleton joints in a human, as there are 

20 dress color images for the dresses matching. 

The matching scores of dresses matching ( )Similarity t  is calculated by cosine 

similarity method, and is given as 

( ) (0)
( )

| ( ) || (0) |

TZ t Z
Similarity t

Z t Z
  (2.12) 

where ( )Z t  denotes the feature vector of the current time t, and (0)Z  denotes that of 

the initial time (t=0). 
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The color histogram information, height and shoulder length are elements in the 

feature vector. The feature vector is represented as 

 0 1 19( ) ( ), ( ),..., ( ), ( ), ( )
T

Z t P t P t P t H t W t  (2.13) 

where ( )Z t  denotes the feature vector of the current time. ( )iP t  ( 0,1,...,19)i   

denotes the color feature vectors in n n  area of RGBD camera image around the 

skeleton joint. Position ( )iP t  represented by 

1 2 3 1 2 3 1 2 3( ) [ ( ), ( ), ( ),..., ( ), ( ), ( ),..., ( ), ( ), ( ),...]T

i i i i i i i i i iP t R t R t R t G t G t G t B t B t B t  
(2.14) 

where ( ), ( ), ( )il il ilR t G t B t  denote each RGB color histogram value in n n  pixels of the 

current time t, respectively, l  denotes the divided number in the histogram, ( )H t  

denotes the height, and ( )W t  denotes the shoulder length. 

 However, the influence of height and shoulder width feature is not large enough 

to find out the difference for calculating the personal conformity. They are separated 

and these two features are included in the body size modality described in section 2.2.2. 

Eq. (2.12) becomes 

 0 1 19( ) ( ), ( ),..., ( )
T

Z t P t P t P t  (2.15) 

RGB is not a good color space. Instead, we use HSV space without V (intensity) 

channel. Then we can handle with large variations of illumination. 

Considering the contrast of the environment light, the color space is changed to 
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HSV space without the V channel. Eq. (2.15) becomes 

1 2 3 1 2 3( ) [ ( ), ( ), ( ),...,S ( ),S ( ),S ( ),...]T

i i i i i i iP t H t H t H t t t t  (2.16) 

where ( )ilH t  denotes the H channel histogram value in HS space and ( )ilS t  denotes the 

S channel histogram value in HS space. 

 The Kinect sensor is setup with a distance 2.5m from a user. The divided numbers 

of the color histogram are 8. The 2 divided and 4 divided are not good because they are 

high values after changing dress. The 16 divided and 32 divided are also not good 

because they are low values before changing dress. Therefore, the histogram is divided 

in 8, and the feature vector contains 2 20 8 320    features. There are 8 divided 

histogram levels, 2 HSV colors, and 20 skeletal joints. 

 The personal conformity in this modality is calculated by Eq. (2.15) by using the 

Eq. (2.12) and Eq. (2.13). The result is shown in Figure 2-12. 

 

Figure 2-12 Online test of Dress color similarity diagram in time t 
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Figure 2-13 (a) Original dress (b) other dress 

An online testing experiment result is shown in Figure 2-13. The original dress 

data Z(0) is shown in Figure 2-13 (a). 

 The corresponding similarity diagram is shown in region (a) of Figure 2-12. The 

similarity maintains about 90%. After changing the dressing clothes, the similarity is 

dropped to 40%. The corresponding similarity diagram is shown in region (b) of Figure 

2-12.  

2.2.4 User Identification System and Multimodal fusion 

Jain et al. [23] introduced the biometric recognition system. It acquires biometric 

data from an individual, extracts a feature set from the acquired data, and compares this 

feature set against the template set in the database. 
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Three levels of multimodal fusion, similar to that in [23], are employed in classic 

user identification system. They are feature extraction level, matching score level and 

decision level.  

The data obtained from each biometric modality is used to compute a feature 

vector. It is defined as fusion at the feature extraction level. Feature reduction 

techniques may be employed to extract a small number of salient features from the 

larger set of features.  

Techniques such as weighted averaging may be used for combining the matching 

scores in multiple matches. It is defined as Fusion at matching score. 

Each biometric modality makes its own recognition decision based on its own 

feature vector. A majority vote scheme can be used to make the final recognition 

decision. It is defined as Fusion at the decision level. 

There are three modalities in this chapter. A Euclidean distance is calculated in 

facial recognition modality. The matching score is calculated in body size recognition 

modality and dress color modality. Two of them are biometric features and the other 

one is an external feature. In Manabe et al. [33] approach, FAR (False Acceptance Rate) 

of decision level fusion is greater than the matching score fusion level. Considering the 

output of each modality, matching score level fusion is a unique solution to compose 
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three modalities. 

 The fuzzy inference system can be used for fusion in the multimodal biometric 

system [33]. Fuzzy influence system is implemented for modality fusion in this thesis. 

There are three modalities in this system. The output of each modality is the confidence. 

However, the unit of similarity for each modality is different (Facial: Distance, Body 

Size and Dress: Similarity). Matching score level fusion is considered in fuzzy 

influence system. The block diagram of the multimodal user recognition system is 

shown in Figure 2-14. 

Face 
Modal

Body Size 
Modal

Dress 
Color 

Modal

Feature 
Extraction 

Module

Feature 
Extraction 

Module

Feature 
Extraction 

Module

Fuzzification 

Fuzzification 

Fuzzification 

Fuzzy 
Influence 
System

Fuzzy Rule

Matching Score (Distance)

Matching Score (Similarity)

Matching Score (Similarity)

Defuzzific
ation

Personal
Similarity

Multimodal Fusion Module

 

Figure 2-14 Block Diagram of Multimodal Biometric System 

Figure 2-14 shows the multimodal user system implemented in this thesis. Face 
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modality gives the matching score in distance. Body size modality and Dress color 

modality give the matching score in similarity. The fusion level is conducted after the 

fuzzification of each modality. A set of if-then rules is set and plugged in the fuzzy 

influence system. After defuzzification, the personal confidence is calculated. 

 The membership function for fuzzification in unit-modality is trapezoid 

membership function and the level of fusion is triangle member function. The 

membership functions are shown in Figure 2-15. 

 

Figure 2-15 Membership function for each modality 

Figure 2-15 shows the membership function in each modality. They are in 

trapezoid form (LOW and HIGH) and triangular form (MEDIUM). The measured 
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distance range in the face modality is [0~1]. However, the matching distance of face 

modality is not stable, the output of face modality often falls into the range [0.5~0.7]. 

This is why the membership function is shifted to the right to ensure the accuracy. The 

matching score can be obtained from the other two modalities.  

The membership function at fuzzy inference output level section in Figure 2-16. 

 

Figure 2-16 Membership function for the fusion result 

Figure 2-16 shows the membership function for the fusion result. They are all in 

triangular form. The range of the user similarity is between 0 and 1. There are five fuzzy 

sets: VERY LOW, LOW, MEDIUM, HIGH and VERY HIGH. The peak are 0, 0.25, 

0.5, 0.75 and 1.  

The fuzzy rule described above are implemented in this thesis. The fuzzy influence 

rules are shown in Table 2-5, Table 2-6 and Table 2-7. 
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Table 2-5 Fuzzy rule with dress modality in HIGH level 

Body 

Face 

H M L 

H VH H H 

M H M M 

L H M L 

Table 2-6 Fuzzy rule with dress modality in MEDIUM level 

Body 

Face 

H M L 

H H M M 

M M M M 

L M M L 

Table 2-7 Fuzzy rule with dress modality in LOW level 

Body 

Face 

H M L 

H H M L 

M M M L 

L L L VL 

In the tables shown above, VH denotes VERY HIGH, H denotes HIGH, M denotes 

MEDIUM, L denotes LOW and VL denotes VERY LOW. 

The linguistic fuzzy rules shown above address the relationship between the level 

of each unit-modality recognized and level of fusion. There are total 27 rules. The level 

of unit-modality is divided into three levels: LOW, MEDIUM, and HIGH. The level of 

fusion consists of five results: VERY BAD, LOW, MEDIUM, HIGH, and 

EXCELLENT. The level of fusion is classified as VERY HIGH and VERY LOW if all 
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of the unit-modalities are classified as in HIGH and LOW, respectively. The level of 

fusion is classified as HIGH if two of the unit-modalities are classified in HIGH. The 

level of fusion is classified as LOW if two of the unit-modalities are classified as LOW. 

The level of fusion is classified as MEDIUM if two or more of the unit-modalities are 

classified as MEDIUM, or three modalities are classified as HIGH, MEDIUM, and 

LOW, respectively. 

It is a Mamdani-Type (Min.-Max) Fuzzy Inference in this system. The defuzzifier 

of fuzzy fusion system is centroid method. This method is also called center of gravity 

defuzzifier or center of area defuzzifier. The defuzzifier is given as follows. 

In continuous field case: 

*
( )

( )

A
Y

A
Y

y y dy
y

y dy










 (2.16) 

In discrete field case: 

A
* 1

A

1

( )

( )

L

i i

i

L

i

i

y y

y

y















 (2.17) 

 where A is an aggregated output fuzzy set. This is the most widely adopted 

defuzzification strategy, which is reminiscent of the calculation of expected values of 

probability distributions. 
*y  is the solution after defuzzification from the probability 

distributions. One of the fused results is shown in Figure 2-17. 
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Figure 2-17 The simulation result of multimodal fusion in Fuzzy influence 

system 

Figure 2-17 shows the result of multimodal fusion by fuzzy influence system. The 

simulated input values of face modality, body modality and dress color modality are 

0.412, 0.991 and 0.675, respectively. After the multimodal fusion, the output after 

defuzzification is 0.917.  

2.3 Summary 

Comparing to the approach proposed by Chen [11], the skeletal joint returned by 
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Kinect can be used for the tracking joint [21]. As the hardware of the robot is upgraded, 

SLAMMOT and Kinect SDK can operate simultaneously. 

We proposed the fusion of three modalities. OpenCV function is implemented in 

face modality. The length of limbs in skeletal data is captured by Kinect and recognized 

by using Support Vector Machine. There are twenty images of clothes captured by 

Kinect and matched with the initial dress color data by cosine similarity matching. The 

fuzzy influence system is implemented for fusing three modalities. It can recognize the 

specific user correctly. The multimodal user recognition system can still work if one of 

the modalities fails. 
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Chapter 3 Following, Guiding and User Re-

Tracking 

This chapter is divided into two parts: following and user re-tracking. We 

introduce the whole human following system briefly. The robot tracks the target with 

combining the information of visual sensor and Laser Range Finder. 

In order to improve the quality of interaction between human and the robot, a basic 

lost target re-tracking approach is also proposed in this section. If the target is lost in 

the sight of the following robot, the robot can re-tracks the target automatically. It is 

useful in the corner turning case and crowded case. 

3.1 Human Following System 

Figure 3-1 states the relationship between multimodal user recognition system 

(painted in blue) and function (painted in green). SLAMMOT and visual information 

are implemented in the system. The multimodal user recognition system is used for 

checking the tracked user is the target user or not. After the tracked user passes the 

recognition, the moving object (viz. human) tracked in SLAMMOT is assigned as the 

target pedestrian for the robot’s following. 
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Figure 3-1 The relationship between multimodal user recognition system and 

function 

3.2 User Re-Tracking 

3.2.1 User Re-tracking mechanism 

There are a small amount of research for re-tracking a lost target. Ota et al. [37] 

proposed an approach for re-tracking a lost target human after the human has turned the 

corner. The robot goes through a predicted trajectory which is modeled as a logarithmic 

function with 5 points. Lai [28] proposed a re-tracking scenario that the robot turns left 

or right according to the disappeared direction of the user. Another simple re-tracking 

Multimodal 
user 

recognition

SLAMMOT

Following
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mechanism exists in some research, such as Luo et al. [32] and Misu et al. [35] They 

have the similar state transition model.  

Clearly, the robot has to “search” the user after the robot loses the tracking target. 

The state transition diagram implemented in this thesis is shown in Figure 3-2. 

Following

Searching Tracking

Specific Target 
Tracking Success

Specific Target 
Tracking Fail

Following 
Target Lost

Searching 
Success

Searching Fail

 

Figure 3-2 State Transition Diagram 

There are three states in the specific target following system: Tracking, Following, 

and Searching. The “Tracking” state is activated when the system initializes. If a 

specific user is tracked, the state is transferred to “Following” state. Maybe the target 

is lost during the robot follows the specific user. “Searching” state is activated and 

searching for the lost target. The robot keeps following if the robot searches the lost 

target again. Otherwise, the robot will go back to the point where the robot loses the 

target. The searching behavior scenario of the robot will be introduced in the next 
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section.  

3.2.2 User Re-tracking Searching Scenario 

In general, the robot searches for the lost target by turning the position of the robot 

to the direction where the target disappears, such as the research of Lai [28]. It is a 

simple approach to solve this problem. However, this approach is applicable for the 

open environment. The approach proposed by Ota et al. [38] is applicable when the user 

turns into the corner. 

Two cases are considered. The first one is that the target is lost in the visual sensor. 

However, the laser sensor can still track the user as the sensing range of laser is wider 

than Kinect. The similar situation is shown in Figure 3-3. 

 

Figure 3-3 SLAMMOT Tracking and the user is out of the range of the visual 

sensor 

Figure 3-3 shows that the laser tracks the pedestrian out of the range of the visual 
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sensor. If one of the sensors loses the tracking target, the other sensor is activated and 

tracks the user. The system still works even if one of the sensors loses the following 

target. 

The other case is that the robot is moved in a crowded environment. The robot 

may loses the tracking target in a crowded environment. The last position where the 

tracking target appears is needed. The relationships between the robot and the tracking 

user is shown in Figure 3-4. 

 

Figure 3-4 The position of the robot and target in global coordinates 

Figure 3-4 shows the position of the robot and the target in global coordinates. If 

the target is lost at the coordinate (x𝑟,y𝑟) with orientation θ
𝐼

+θ
𝑟
 relative to the 

robot, SLAMMOT is implemented to locate the coordinates of the following user. In 

other words, if the user disappears from the sight of Kinect sensor and laser sensor of 

the robot simultaneously, the last position where the tracking target appears is recorded. 

That position is assigned as the goal that the robot searches for the lost target. After the 
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robot has reached the goal, the robot rotated to find the user. If the user is still not found, 

the robot stays and wait the user to come back. It means the robot enters in the tracking 

transition state. The whole process is described in Figure 3-5. 

Start

Specific User 

Recognized

no

Follow the 

Specific User

yes

Target Lost

no

Go to the 
Position where 
the target last 

tracked

yes

Skeleton 
Tracked

no

Robot Stopped

yes

Specific User 
Recognized

no

yes

  

Figure 3-5 Flowchart of the processes in Specific User Re-tracking 

3.4   Summary 

This section presented the human following system, and the user re-tracking 
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mechanism. The user re-tracking mechanism is developed on the basis of SLAMMOT. 

The final detected position of the user before disappeared becomes the goal where the 

robot searches for the lost target. If the robot searches for the target user successfully, 

the robot will follow the target again, or the robot will go back to the tracking state to 

wait for the target user. 
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Chapter 4 Simulations and Experiments 

4.1 Software Platform 

 A software platform is developed for simulations and real experiments. The 

development and testing environment is Microsoft®  Visual C++™ 2010 under 

Microsoft®  Windows™ 7. The Open Graphics Library (OpenGL) is used for 

simulation display. Additional utility is provided by Open Source Computer Vision 

(OpenCV) with version 2.4.9. The proposed algorithms are embedded in the integrated 

simulation platform based on MFC (Microsoft Foundation Class). 

4.2 Hardware Platform 

 The real experiments were conducted on the robot Bunny (see Figure 4-1). Bunny 

is a differential-drive, two-wheel mobile robot. It is equipped with a laser range finder, 

a head camera, motor encoders, and an RGB-depth camera. This specification of 

Bunny’s shown in Table 4-1. 

 The laser range finder is a SICK laser LMS-291 with sensing range of 80 meters 

and angle resolution of 0.5 degrees. The camera is Logitech C820 web camera. It has a 

resolution of 640×480 pixels. 

 A Kinect sensor is installed in Bunny’s chest as shown in Figure 4-1 and Figure 
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4-2. The Kinect has a resolution of 640×480 pixels and returns the depth data in 5 meters 

of the images. 

 

(a) 

 

(b) 

 

(c) 

Figure 4-1 Photos of hardware (a) The robot Bunny, (b) Logitech C820 

Webcam, (c) Laser Range Finder SICK LMS-291 

 

 

Figure 4-2 Kinect RGB-D sensor 
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Table 4-1 The specification of the mobile robot 

Item 

 

Name Bunny 

Height 130cm 

Weight 48.5kg 

4.3 Experimental Results 

There are two cameras on Bunny, Logitech C820 webcam and Kinect. Because 

two cameras are implemented, the target user is asked to stand in the range of the 0.8m 

to 2.5m from the front of Bunny. It is the stable sensing range of the Kinect, as indicated 

in Figure 4-3. 



doi:10.6342/NTU201602427

 

50 

 

 

Figure 4-3 Stable sensing range of Kinect [4] 

The robot follows the specific user in a distance of 1.8m. It is a good sensing 

distance for Kinect. The real scenario of the specific target following is shown in Figure 

4-4. 

 

Figure 4-4 The real scenario of the specific target following 

4.3.1 Case Study 1: Multimodal user recognition 

The unit-modality experiment results was given explained in Chapter 2. The 
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multimodal fusion experiments results were explained in this section.  

Three modalities are implemented in this thesis. The fusion score is calculated by 

fuzzy influence system. In order to ensure the multimodal user recognition system still 

working after one of the modalities fail, the threshold is set at 0.75. It means the user is 

accepted if his matching score is larger than 0.75. It corresponds to HIGH level of the 

output of the fuzzy influence system. 

 
(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-5 The result of correct multimodal user recognition (a) the score bar of 

each modality and multimodal fusion, (b) face recognition, (c) dress color recognition,  

(d) skeleton image 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-6 The results of incorrect multimodal user recognition (a) the score bar 

of each modality and multimodal fusion, (b) face recognition, (c) dress color 

recognition,  (d) skeleton image 

Figure 4-5 and Figure 4-6 show the results of correct and incorrect multimodal 

user recognition, respectively. The fusion scores are shown in of Figure 4-5 (a) and 

Figure 4-6 (a). All of the unit-modality scores and multimodal fusion scores are very 

high when the correct target are recognized. On the other hand, the scores are very low 

when the incorrect target is recognized.  

After the target is recognized correctly, the ID number of skeleton is locked and 
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the corresponding 3D coordinates (center of hip) are returned. The returned 3D position 

becomes the joint position of the robot. 

There are 563 frames of image are captured for online testing. The results of online 

testing of each modalities and multimodal fusion are shown in Table 4-2, Table 4-3, 

Table 4-4 and Table 4-5. 

Table 4-2 The confusion matrix of face modality in online testing 

Condition 

Predicted 

Accept Reject 

Accept 189 1 

Reject 133 240 

Accuracy 76.199% 

Table 4-3 The confusion matrix of dress modality in online testing 

Condition 

Predicted 

Accept Reject 

Accept 231 0 

Reject 81 241 

Accuracy 83.84% 

Table 4-4 The confusion matrix of body modality in online testing 

Condition 

Predicted 

Accept Reject 

Accept 243 27 

Reject 69 214 

Accuracy 81.172% 
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Table 4-5 The confusion matrix of multimodal fusion in online testing 

Condition 

Predicted 

Accept Reject 

Accept 232 0 

Reject 80 241 

Accuracy 84.0142% 

The accurate, FAR and FRR are shown in Table 4-6. The mathematical functions 

of False Acceptance Rate and False Rejection Rate are shown in Table 2-1. 

Table 4-6 The accurate, FAR and FRR of each modalities and multimodal 

Variable 

Modality 

Accuracy (%) False Acceptance 

Rate 

False Rejection 

Rate 

Face 76.199 0.00415 0.413 

Dress 83.84 0 0.2596 

Body 81.172 0.112 0.2212 

Multimodal fusion 84.0142 0 0.2564 

Comparing with each unit-modality and multimodal, the accurate of multimodal 

is the highest and FAR is lowest. Although the FRR of multimodal is higher than the 

body modality’s, the FAR of body modality is higher than the multimodal fusion. It 

denotes that the multimodal fusion can improve the accuracy, FAR and FRR. The robot 

can recognizes a target user correctly. 

4.3.2 Case Study 2: Following a Specific User 

In order to make Bunny follow the real target, the multimodal user recognition 

module is integrated with the human following function of Bunny.  

 The target person is asked to stand in front of the robot and let the robot recognize 
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the person. After successful recognition, the target person will walk around the lobby 

of the college of engineering building. The robot follows the user and walks around the 

lobby smoothly.  

The following series of figures show the situation of the operating multimodal user 

recognition system. The robot would follow the specific user when the user accesses 

the recognizing of the multimodal user recognition system. 

  

(a) (b) 

  

(c) (d) 

Figure 4-7 The multimodal user recognition system recognizes the users 

The recognition result of the incorrect target is shown in Figure 4-7 (a). The fusion 

score is very low. The result of the correct target is shown in Figure 4-7 (c). The fusion 
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score is high but there is no score in face modality. Due to the sensing range of Kinect, 

the user is standing 1.8m from the robot causes the images of detected faces were very 

blurry. Although the face modality is very unstable, the target user is still recognized 

successfully by the fusion of other two modalities, such as the results in Figure 4-7 (c). 

The following series of figures show that the robot follows the specific user after 

the user is recognized by the multimodal user recognition system. The target goal of the 

robot is set about 1.8m away from the user. If the distance between the robot and the 

user is less than 1.8m, the robot stops and waits for the moving of the user The choice 

of 1.8m distance is due to the physical limitation of Kinect. 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

  

(g) (h) 

  

(i) (j) 

  

(k) (l) 

Figure 4-8 The robot follows the specific user 

The simulation of SLAMMOT are shown in Figure 4-8 (a), (c), (e), (g), (i) and 

(k), and the experiment results are shown in Figure 4-8 (b), (d), (f), (h), (j) and (k). 

In the simulation interface of SLAMMOT, the orange and black cylinders denote 
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the followed person and other pedestrians, respectively. The white cylinder denotes the 

robot, and yellow cylinder denotes the target goal of the robot. The target goal is set at 

1.8m away from the user. 

When a user is recognized successfully, the robot calculates the difference between 

the sensor data of Kinect and Laser in a Euclidean distance. The sensor data of Kinect 

contains the position of tracking joints. The sensor data of laser contains the position of 

pedestrians relative to the robot. The pedestrian with the smallest Euclidean distance 

from the Kinect sensor data becomes person who will be followed (red cylinder). The 

other pedestrians are rejected (keep in the black cylinder). Figure 4-8 (c) shows that 

the pedestrian is defined as the tracking target (shown in the red cylinder). 

Due to the function of SLAMMOT, the tracked pedestrian can be labeled as target 

(red cylinder) and non-target (black cylinder). The robot can follows the target user in 

a crowded environment. The following series of figures show the situation of crowded 

environment. 

  

(a) (b) 
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(c) (d) 

Figure 4-9 The robot follows the target user (in black dress) in crowded 

environment 

Figure 4-9 shows the robot follows the target user in a crowded environment. The 

other pedestrian passes through between the robot and the target user in Figure 4-9 (c). 

The robot still follows the target user in Figure 4-9 (d). 

4.3.3 Case Study 3: User Re-Tracking 

In the real world, the robot may get lost due to several reasons: the target turns into 

the corner, in a crowded environment, blocked sight, etc. Although the robot has an 

ability to re-track the user, the robot might follow another pedestrian. 

The following series of figures show the real situation when the robot loses the 

tracking target with the situation of the target user turning into the corner. The lost 

position of the target user becomes the target goal of the robot. The robot moves to the 

target goal and stops when the Kinect detects the pedestrian skeleton. The multimodal 
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user recognition system starts to recognize the presently detected pedestrians. The robot 

will follow the user again when the pedestrian passes the verification by the multimodal 

user recognition system, or the robot stops and waits for the correct user. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 
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(i) (j) 

  

(k) (l) 

Figure 4-10 The robot re-tracks the target user 

The simulation results of SLAMMOT are shown in Figure 4-10 (a), (c), (e), (g), 

(i) and (k), and the experiment results are shown in Figure 4-10 (b), (d), (f), (h), (j) and 

(k).  The user re-tracking scenario is constructed as follows. A large black cloth is 

erected to simulate a corner. A user is asked to walk and turn into a corner. The laser 

range finder and Kinect cannot track the desired target because the black cloth blocks 

the sight, i.e. the street corner. It is shown in Figure 4-10 (b). In Figure 4-10 (c), the 

last position of the target is set as a target goal (yellow cylinder). The robot moves to 

the goal, which is shown in Figure 4-10 (e) and Figure 4-10 (f). The robot finds the 

other pedestrian in Figure 4-10 (g) and the pedestrian does not passes the verification 

of multimodal user recognition system. Then, the pedestrian is defined as a black 
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cylinder in the simulation interface of SLAMMOT. The correct target is back in the 

sight of the robot and passes the verification of multimodal user recognition system in 

Figure 4-10 (i). Then, the correct target is defined as a red cylinder in the simulation 

interface of SLAMMOT. After the successful recognition, the robot follows the user 

again. 

4.4 Summary 

This thesis is focused on presenting a specific user recognition system for a human 

following robot. Hence, all experiments are used to simulate some situations the robot 

may encounter when it loses the master. To explain the relationship between the 

experiments and practical usages, we equipped a basket on the robot and simulated 

practical shopping scenarios. The following series of figures show the real situation that 

the robot follows the master only and how the robot reacts when another pedestrian is 

in the sight of the robot. 

  

(a) (b) 
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(c) (d) 

  

(e) (f) 

  

(g) (h) 

  

(i) (j) 

Figure 4-11 The real situation in the First Student Activity Center 

Figure 4-11 shows the series of the real situations in the First Student Activity 
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Center. The master buys goods from a shop and puts the goods into the basket, as shown 

in Figure 4-11 (a) and (b). If someone else appears between the robot and the master, 

the robot will stop, as shown in Figure 4-11 (c) and (d). Upon the master coming back, 

the robot will follow the master again. If the master makes a turn suddenly, the robot is 

not fast enough to track the master, as shown in Figure 4-11 (f). In Figure 4-11 (g) and 

(h), the other pedestrian comes into the sight of the robot. The robot will not move since 

the pedestrian does not pass the recognition process. Once the master is back in the 

sight of the robot, the robot will follow the master again, as shown in Figure 4-11 (i) 

and (j). 
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Chapter 5 Conclusions and Future Works 

5.1 Conclusions 

Servant robots should have the ability to follow its master and provide services 

whenever its master asks. Our purpose is to build a practical assistant robot that can be 

adopted in malls, department stores or shopping centers. Therefore, this thesis proposed 

an application of a shopping assistant robot based on the thesis of Chen. We targeted 

on an accurate specific user recognition and user re-tracking mechanism after the 

desired target is lost in the environment.  

We implemented three modalities, face, body size, and dress color matching, in 

the specific user recognition system. We combined these three modalities by fuzzy 

influence system. The combined system can still work even if one of the modalities fail. 

The proposed multimodal user recognition system can recognize the specific user. 

We also proposed a simple mechanism for the lost target re-tracking. The last 

detected position of the user becomes the goal where the robot searches for the user. By 

combining SLAMMOT with multimodal user recognition, the robot can always localize 

itself in the map and re-track the lost target by referring the information provided by 

SLAMMOT and multimodal user recognition system. 
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5.2 Future Works 

 Improving the user recognition process 

 The multimodal user recognition system can recognize the user accurately in a 

static condition. But, it may not be accurate in a dynamic condition. It is easy to 

recognize a false result when the robot is moving, especially in body modality. Better 

features can be implemented for the body modality. 

 Gesture Control 

 An approach of specific user following is provided in this thesis, but the 

interactivity of the robot can be improved. Some situations should be considered in the 

shopping mall, such as some assigned areas in a shopping mall that the robot cannot 

pass through. The robot should stand by. We should “tell” the robot that the robot should 

stop. Gesture control is one of the interaction approaches. 
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