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Abstract

In recent years, robots are assimilated into humans’ life. Service robots are built
for making people more convenient and more comfortable. A robot is not just a machine.
It should be capable of interacting with people appropriately and moving in the
surroundings smoothly. This thesis attempts to develop a shopping assistant robot
system. It can recognize a specific user, automatically follow him and search for him.
SLAMMOT is used in the robot for understanding environments, localizing itself and
locating the user. If the robot loses the tracking user, it searches for the user and causes
the user can be found in the view of the robot. In addition, the human recognition system
is constructed to recognize the specific user. The proposed system has been justified in

experiments. The results are promising.

Keywords: User Recognition, Human-Robot Interaction, Following, Mobile Robot,

Multimodal Fusion
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Chapter 1 Introduction

The motivation of this thesis is explained in this chapter. The related works of the

service robots and the integrated system of service robots will be introduced.

1.1 Motivation

Industrial robots have been widely used in factories. Through controller and
language development, sensing, and drive systems of the robot system have been
greatly enhanced. Various robots have been developed to work in indoor or outdoor
environments for more than decades [25, 43, 46]. The research of personal robots or
social robots keep progress. Building an intelligent service robot is one of the main
tasks in the field of robotics. Service robots act like assistants. They can take care of
the elders or people with reduced mobility.

The human following robot is the main issue of this thesis. This type of robots can
be widely used as a shopping assistant [11, 22], self-propelled baggage [3], etc.
Sometimes, the robot will lose the tracking target. It should have the ability of re-finding
the specific target. The user can do some interaction with the following robot to help

the robot re-find the user.
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Figure 1-1 Applications of the assistant robots [3] [6]

This thesis aims to develop a following robot so that it can recognize a specific

user, following him, and re-find him after losing him.

1.2 Related Works

This section summarizes previous research about the field of service robots and
Human-Robot-Interaction. Service robots are developed for various usage in shopping
malls [24, 46, 51], museums [10, 26, 47], households [54-56], hospital [15, 19, 21], etc.
They are capable of perceiving and reacting to their surroundings, avoiding obstacles
near them, knowing their positions in their working spaces, and going to the target place.
In order to interact with a pedestrian, some service robots are designed with human-like
appearance or communication abilities, such as voice system and expression system. It
makes them more friendly when the robots interact with humans.

Human following robots have been developed with many sensors and effective
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algorithms. They are built in vision-based, generally. Various Cameras are used on the
following robot [34, 41], and laser range finder [20, 57] is a must.

In order to increase the accuracy of the sensor data, the sensor fusion algorithm
proposed by Luo et al. [31] and implemented by Chen [11] are applied.

Impedance Control implemented by Chen [11] is applied to this thesis for solving
the interaction problems between the user and the robot. The robot needs a higher speed
to follow the user when the user walks faster. In order to recognize the specific user
precisely, multimodal biometric recognition technology [29, 39, 40] is implemented to
identify the specific person.

Moreover, human following robots sometimes lose the following target when the
target turns into other directions. OTA et al. [37, 38] proposed a recovery function that
the human following robot can re-find the user after the user makes a turned at the
corner. The robot can predict the path where the user has walked. Lai [28] proposed a
re-tracking scenario that the robot turns left or right according to the disappeared

direction of the user.

1.3 Objectives and Contributions

Human following robots can transport goods so that the master (viz. human) may
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not take the goods. This function can make more convenience to humans. Our robot,
Bunny, can achieve it. However, to recognize the specific user by using the color-based
particle filter is not robust. Multimodal biometric recognition [23, 29] is provided for
more robust recognition.

Combined with the techniques of user recognition, our robot can re-track the
specific user accurately after the robot loses the tracked user. If the user is not found
finally, the user can do something to interact with the robot, such as gesture, body
posture, sound, etc. Many methods of interaction can be implemented in Human-Robot

Interaction tasks.
The contributions of this thesis are summarized as follows:

® Thisthesis develops an amiable human following robot, to make the user
feel secure and familiar, and a basket for carrying.

® In order to recognize the specific user accurately, multimodal user
recognition algorithm is implemented.

® The robot can re-find the specific user after the user is lost from the

vision of the robot. The behaviors of the robot are provided in this thesis.

1.4 Thesis Organization

The thesis organization is given in Figure 1-2.
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Chapter 1

Introduction

Chapter 2 Chapter 3

Recognition and Tracking Following, Guiding and
Specific Target User Re-tracking

Chapter 4

Simulations and
Experiments

Chapter 5

Conclusions and Future
Works

Figure 1-2 The organization of thesis

Chapter 2 briefly introduces the existing human following algorithm developed by

Chen. A structure of the sensor fusion method is applied for tracking and calculating

the relative position of the user based on the robot. Chapter 2 will also introduce the

method of the specific user recognition by using external biometric features such as

face, body size, and dress color. A Multimodal fusion algorithm is applied for

combining the different modalities to improve the accuracy.

Chapter 3 discusses the human following system briefly. It introduces the behavior
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of the user re-tracking. If the user disappears from the sight of the robot, the robot does

something to re-track the user and follow the user again.

Chapter 4 conducts a series of experiments and shows the results of the interactions

between the user and the robot. The experiment scenario can be easily observed in our

daily life.

Chapter 5 addresses conclusions and future works.
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Chapter 2 Recognition and Tracking a
Specific Target

There are great amounts of research about human tracking [30-32]. However,
following a specific moving target is a difficult task. Several important factors
considered are presented as follows.

First, since the person and the robot are both moving in the real world, we need
not only to recognize the relative position between the target and the robot but also to
perceive the environmental information. This thesis utilizes SLAMMOT algorithm
proposed by Wang et al. [53] and implemented by Chung [12] to acquire the
information of the environment and find out the humans in the map.

Second, in view of the inevitable uncertainty caused by any kind of sensors, using
sensor fusion to improve the sensor accuracy is reasonable. For example, laser range
finder is very useful in building a map and recognizing the moving object in the map,
But, it does not contain the visual information. Kinect has depth and image information,
but it has narrow sensing range compared to laser range finder.

Third, in the general case, servant robots recognize a specific target by face
recognition [7], or track dress color histogram by particle filter [36]. However, it may

recognize the wrong target when features are similar. The multimodal fusion [23, 29]
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will be used to improve the modality accuracy. For example, face recognition can find
out a specific person but it does not contain the body information. The classifier will
make a mistake when it recognizes the similar face such as human twins. Dress color
histogram contains the color information, but it does not contain the face information.
The classifier makes a mistake if someone wears dresses with the similar color.

Biometric identification is a convenient way to accomplish the task since they do
not require individuals to carry authentication tokens (e.g. keys, cards) or remember
usernames and passwords. They can be divided into two approaches: active and passive.
An active biometric system requires the user to interact in some way with an interface.
This is the case of fingerprint recognition. In passive biometrics systems, the user is not
required to directly interact with the system. Facial and voice recognition fall into this
category and are becoming increasingly common in daily tasks.

In summary, the use of multiple sensors can improve the accuracy of the
multimodal system for a robust specific user recognition. It allows robots to have a

robust user recognition for Human-Robot Interaction.

2.1 Human Following Algorithm

This section shows the entire structure of the human tracking system. This thesis
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utilizes a similar system implemented by Luo et al. [31] and Chen [11]. After modifying

the part of the vision-based tracking system, the structure of human following is shown

in Figure 2-1.
Face
Recognition
Image Data -
and Kinect ey
Recognition
Data
Dress Color
Recognition
Assign Multir:nodal
Fusion
U] Algorithm
Assign ID to
Human the
CeniSIe pedestrian Following
. . Position .
Vision-Based in
Tracking SLAMMOT
Laser Data Moving (')bject
Tracking
Assign Assign
Target ID Target ID
Estimate
Human
Laser-Based Position
Tracking

Figure 2-1 Structure of human following

There are three parts in the human following system (see Figure 2-1). The red part

denotes the vision-based tracking system. The green part denotes the laser-based

9
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tracking system. The blue part denotes the part of the sensor fusion algorithm and

motion planning. The vision-based tracking system is used to track and recognize the

specific user. The laser-based tracking system is used to track the pedestrians in the

map, which is built by SLAMMOT. After the specific user is recognized, the

corresponding ID is assigned in SLAMMOT. The target position data tracked by Kinect

and laser range finder is sent to the part of the sensor fusion algorithm, which is

proposed by Luo et al. [31] and implemented by Chen [11]. After fusing the information

and assigning ID to the pedestrian in SLAMMOT, the robot operates the motion

planning mission.

The sensors used for tracking the user in this thesis are Kinect and laser range

finder. The information captured from the sensors are fused and calculate a goal behind

the user.

Kinect is a universal and cheap RGB-D camera (see Figure 2-2). It combines image

with depth data. We can develop some applications by using official SDK. After

recognizing the target user, the Kinect is used for tracking the center of hip of the target

user.

10
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3D depth sensor cameras

KINECT

Figure 2-2 Kinect v1.0 sensor
There are total 20 skeleton joints, which can be tracked by Kinect. The skeleton
picture is shown in Figure 2-3. We can define the hip center of the skeleton data as a

tracking joint.

HAND _RIGHT SHOULDER CENTER  HAND LEFT

a— \\.}' / © st Lo
£LBOW_RIGHT | ELBOW LEFT

SHOULDER RIGHT ) @ sHouLoer Lest

PINE

o A ANKLE RIGHT,  ANKLE LEFT(D &
7
FOOT RIGHT FOOT LEFT

Figure 2-3 Skeleton Joints tracked by Kinect [5]

Laser range finder can capture the obstacle information around the robot.

SLAMMOT proposed by Wang [53] and implemented by Chung [12, 13] can build the

map and locate the robot simultaneously, and track the moving object. The real

11
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operation of SLAMMOT is shown in Figure 2-4.

Figure 2-4 Operating process of SLAMMOT [12, 13]

In Figure 2-4, the robot can locate itself on a map. Simultaneously, it can track the
pedestrian in the map by recognizing the tracked specific shape of laser points. A red
cylinder shown in Figure 2-4 denotes the tracked pedestrian. A yellow cylinder denotes

the goal of the robot.

2.2 Multimodal User Recognition

In order to ensure the accuracy of the user identification system, there are three
modalities are implemented in the system. The three modalities are facial recognition,
body size recognition, and dress color recognition.

Two variables will be discussed in user identification: False Acceptance Rate and

False Rejection Rate. False Acceptance Rate denotes the acceptance rate of a non-

12
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Target. False Rejection Rate denotes the rejection rate of a True-Target. The
mathematical function of False Acceptance Rate and False Rejection Rate are shown in
Table 2-1.

Table 2-1 The relations between truth/falseness of the hypothesis and outcomes

Accept Reject

Predicted

Accept True Positive False Positive True Positive False Positive
Type | error TP FP
(Typ ) Rate = Rate =
TP+FP FP+TN
Reject False Negative True Negative False Negative True Negative
Type Il error
(Typ ) Rate = Rate =
FN+TP FN+TN
Accuracy TP+TN
X100%
TP+TN+FP+FN

where TP denotes true positive, TN denotes true negative, FP denotes false
positive and FN denotes false negative.

The definitions in Biometric identification [58], False Acceptance Rate is defined
as Type | error and False Rejection Rate is defined as Type Il error. It denotes the False
Acceptance Rate is equals to False Positive Rate, and False Rejection Rate is equals to

False Negative Rate.

2.2.1Face Modality

Face Recognition is an easy task for humans. In order to recognize a specific user,

13

doi:10.6342/NTU201602427



face recognition should be included. In this part, OpenCV function [1, 27] is
implemented. There are two processes for this function: Face Detection and Face
Recognition.

Haar feature-based cascade classifiers proposed by Viola et al. [52] is applied for
face detection. It is a machine learning based approach where a cascade function is
trained from many positive and negative images. Each feature is a single value obtained
by the subtracting sum of pixels under white rectangle from the sum of pixels under

black rectangle (see Figure 2-5).

: |:. (a) Edge Features

ﬂ: E (b) Line Features
;! (¢) Four-rectangle features

Figure 2-5 Haar Features
After the faces are detected from images, face recognition function can be initiated.
The recognition is performed by calculating the Euclidean distance between feature
vectors of a probe and reference images. Such a method has a huge drawback. The
accurate registration of the marker points is complicated. We should decrease the
number of dimensions of the image. In general, eigenfaces method, fisherfaces method

and Local Binary Patterns Histograms method are used in face recognition.

14
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Fisherfaces method is implemented in this modality. The Principal Component
Analysis (PCA) [42], which is the core of the eigenfaces method, finds a linear
combination of features that maximizes the total variance in data. The Linear
Discriminant Analysis performs a class-specific dimensionality reduction.

A dataset with 10000 facial images with size 150x150 pixels is created. This
dataset becomes the template for face recognition. Part of facial images in the dataset

is shown in Figure 2-6. Each facial image contains a label: Accept and Reject.

Figure 2-6 Face dataset

In order to find the combination of features that separates best between classes,
the Linear Discriminant Analysis maximizes the ratio of between-classes to within-
classes scatter, instead of maximizing the overall scatter. The idea is simple. Same
classes should cluster tightly together, while different classes are as far away as possible

from each other in the lower-dimensional representation.

15
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The Fisherfaces method learns a class-specific transformation matrix, so they do
not capture illumination as obviously as that in the eigenfaces method. The
Discriminant Analysis instead finds the facial features to discriminate between people.
The algorithms are shown below.

Let X be a random vector with samples drawn from c classes.

X={X,X,,.... X.} (2.1)

The scatter matrices Sz and S, are calculated as.

=_ZC:Ni(ﬂi - )t — 1)’

(2.2)
. (2.3)
= Z (Xj_ﬂi)(xj_ﬂi)T
i=1 xjeX'
where ¢ is the total mean.
1 N
u=g 2K (24)
i=1
And 4 is the mean of class iefl,..,c}.
1
Hi =7 ZX (2.5)

Fisher’s classical algorithm now looks for a projection W, that maximizes the

class separability criterion. We have

16
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[WTSW |

W,,, =argmax,, m (2.6)
A solution for this optimization problem is given by solving the following
general eigenvalue problem:
SgV, = A4SV, 2.7)
Sw'SsV, = AV, (2.8)

Figure 2-7 Dimension Regression by FisherFaces Method

The results of lower-dimensional representation is shown in Figure 2-7. The

important features are kept after the dimension regression, such as the shape of eyes,

nose, etc. The dimension regression can help to keep the speed of computing.

Face Recognizer function of OpenCV is implemented in this modality. The dataset

which is shown above is obtained from the members of our laboratory. The matching

approach of the face modality is nearest neighbor algorithm. The number of training

images affects the accuracy of the modality. The recognition rate is shown in Figure

2-8.

17

d0i:10.6342/NTU201602427



Recognition Rate

o
[}

o
IS
T

0.2

II).O2

- - Eigenfaces
— Fisherfaces

3 4 5 6 7 8 9
Database Size (Images per Person)

Figure 2-8 Recognition rate of facial modality

According to the Figure 2-8, the recognition rate increases when the number of

training images per person increases. Therefore, we collect 15 training images per

person and there are 10 people in our dataset.

B

Fusion

Figure 2-9 Operating interface in face modality

Two information can be obtained: predicted label and confidence. In Figure 2-9,

a target user is identified in label 0, which denotes Accept. The other label denotes

18
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Reject. A Euclidean distance of measurement is obtained for the multimodal fusion

modality. In the function of OpenCV, six people can be detected simultaneously in a

frame of the image.

The threshold is the maximum value of the Euclidean distance between the

database image and the input image. The input face image is recognizes in a label if the

measured distance is lower than the threshold. The subjects were asked to show their

faces 10 times in the camera. The online test results are shown in Table 2-2 and Table

2-3.

Table 2-2 Threshold testing for Target

Class Correct False

Threshold Recognition ~ Recognition

1250

1000

750
500

It is observed that for the known target in Table 2-2, the threshold value in the

range 1000~1250 gives us a 100% accuracy. The threshold value in the range 1000~750

gives us an 80% accuracy. When the threshold value decreases, the false recognition of

the person increases.
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Table 2-3 Threshold testing for Non-Target

Class Correct False

Threshold Recognition Recognition
10 0
10 0
10 0
9 1

For non-Target case in Table 2-3, the threshold range 1250~1000 gives us 100%
accuracy, but the accuracy decreases when the threshold range decreases to 750.
According to the results in Table 2-2 and Table 2-3, the accuracy decreases when

the threshold is set at 1000. Therefore, we set the threshold in 1000.

2.2.2 Body Size Modality

The sizes of body parts are unique for a human. They can be the unique features
to recognize the specific person. Sinha et al. [48] proposed an approach, that captured
the skeletal size and gait cycle data to be the features. Artificial Neural Network is one
of the classifiers in their approach. Barbosa et al. [9] proposed an approach that the size
of skeleton and contour of the user are the features for the classifier.

In the approach of this thesis, the selected features are referred by the approach of

Araujo et al. [8]. This data was captured while subjects walked in front of the sensor.
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The Kinect provides frames that contains depth information from its sensors, at a rate

of 30 frames per second. In this section, skeleton information is implemented. The

skeleton information is shown in Figure 2-10.

Cervical Spine
| .
| o |
Forearm Thoracic Spine
[ | [ | n
Arm . s . 4
b | [ ]
|
. Thigh
L ] [ ] —_
Leg
B [ ] .
] [

Figure 2-10 Skeleton joints returned by Kinect SDK and defined body parts

For each frame, the length of different parts of the body based on the coordinates

provided by the sensors are calculated.

The distance between two skeleton joints are calculated as

dja=+(P, —P, )’ +(R, =P, )’ +(P,—P, ) (2.9)

where P denotes the joint of the skeleton in the real world and i denotes the id of

the skeleton joints defined by Kinect SDK. It contains 20 joints. They can be found by
the captured data of the Kinect.

Height can be calculated by the following equation.
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(dleft_leg + dright_leg) + (dleft_thigh + dright_thigh) (210)

thoracic_ spine
_sp 2 2

d +d

height = CIz:erviz:al _ spine

Namely, height is calculated by summing up the Cervical Spine, Thoracic Spine,

the mean between left and right legs, and the mean between left and right thighs. It must

be noted that, these attributes are not independent of each other.

However, the measured distance between the joints are different when the distance

between the tracked user and robot is different. The skeleton size information cannot

total implemented in real application. The ratio of limbs become the features. The 12

features implemented in this modality are shown as follows.

® Thoracic spine

® The length of left arm and right arm (the length of forearm + the length

of upper arm)

® The length of left leg and right leg (the length of thigh + the length of
lower leg)

® The ratio of forearm and forearm (included left and right)
® The ratio of thigh and lower leg (included left and right)
® The ratio of leg and thoracic spine (included left and right)

® Height

The output of the person identification system includes: Accept and Reject. The

labels for supervised learning system are defined as accept and reject. Two learning

classifiers are tested in this modality: Multi-layer Perceptrons (using Backpropagation,

22

doi:10.6342/NTU201602427



with 10 hidden units) and Support Vector Machine.

Multi-layer Perceptron [44] is one of the methods of deep learning. It can separate

a set of data that is linearly inseparable. It is widely used in voice recognition, image

recognition, etc. However, it spends a lot of time in training. Support Vector Machine

[14, 16] is implemented for a classifier in this modality. SVM is good at two-class

recognition and training datasets with less time. It can process the small dataset. The

advantages of support vector machines are:

® Effective in high dimensional spaces

®  Still effective in cases where the number of dimensions is greater than the

number of samples

® Uses a subset of training points in the decision function, to make memory

efficient.

® |tis versatile and different Kernel functions can be specified for the decision

function. Common kernels are provided, but it is also possible to specify

custom kernels.

A set of the offline testing result is shown in Table 2-4. Libsvm-3.16 library, which

is provided by Chang et al. [2], is implemented in this modality. The type of SVM in

this modality is C-Support Vector Classification (C-SVC). The kernel of SVM in this
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modality is RBF kernel. After cross-validation, the training variables of SVM are:
cost=32, gamma=8.

In order to make the differences between the features clearly, the normalization of
feature vectors is implemented. The equation of normalization implemented in this

modality is shown as

X' =2x (X,
(X

- Xi_min)
X

-1 (2.11)

i_max i_min)
where X', denotes the normalized feature value, X, denotes the raw feature value,

X and X, ., denote the minimum value and maximum value of feature,

respectively. i denotes the index of feature vectors. The feature values are mapped
into the range -1 to 1.
There are 27000 pieces of data for training and 8000 pieces of data for testing. The

testing confusion matrix is shown in Table 2-4.

Table 2-4 Confusion matrix in offline test of body modality

Predicted

Accept 1324 234
Reject 165 6295
Accuracy 95.0237%

Table 2-4 shows the confusion matrix and accuracy in the offline test. The
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accuracy of the body size modality is 95.024%. The False Acceptance Rate (False

Positive Rate) is 0.1108 and the False Rejection Rate (False Negative Rate) is 0.026.
In the online test, the user is asked to stand forward of the Kinect sensor. The robot

recognizes whether the user is a target or not. If the target is recognized, a high grade

value is returned. If a wrong target is recognized, a low grade value is returned.

2.2.3Dress Color Modality

There are many types of research for the human following robot to recognize the
dress color of the specific user. In general, color-based particle filter [18, 36], SIFT [45]
or SURF [17] are used for tracking the color of users’ dresses. However, the algorithms
spend a lot computing power. We should save the computing power for operating the
multi-modal system.

Sugiyama et al. [49, 50] proposed a simple personal identification method using
Dress Color Information for a guide robot. Unlike the general approaches such as
particle filter or SURF, this approach is only calculated at narrow areas around a user’s
joint position obtained by Kinect. This method can identify the specific user in real time.

There are total 20 skeleton points and 20 narrow areas for matching the color of

dresses (see Figure 2-11).
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|

Fy(t)
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Pys(t)

Piylt)

Pig(t)
Figure 2-11 Definition of Personal Information in the current time t without
height information and shoulder width information

There are 25 pixels in each narrow area of skeleton joints. The center of narrow
area (shown in red square) denotes the joint of skeleton. The image of narrow area is
extracted for the dresses matching. There are 20 skeleton joints in a human, as there are
20 dress color images for the dresses matching.

The matching scores of dresses matching OIMIArty(t) is calculated by cosine
similarity method, and is given as

L Z(t)"Z(0)
Simil =" .
imilarity(t) ZO1Z0) (2.12)

where Z(t) denotes the feature vector of the current time t, and Z(O) denotes that of

the initial time (t=0).
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The color histogram information, height and shoulder length are elements in the
feature vector. The feature vector is represented as
Z(t) =[Py (), R(t)..... Po ), HOW )] (2.13)
where Z(t) denotes the feature vector of the current time. P,(t) (i:O,l,,,.,lQ)
denotes the color feature vectors in NXN area of RGBD camera image around the

skeleton joint. Position P(t) represented by

P(t) =[R, (), R, (t), Ry(t),....G4(t), G, (t), G4 (1), ... B, (1), B, (1), B4 (1),...T (2.14)

where R, (t),G,(t),B,(t) denote each RGB color histogram value in nxn pixels of the
current time t, respectively, | denotes the divided number in the histogram, H(t)
denotes the height, and W(t) denotes the shoulder length.

However, the influence of height and shoulder width feature is not large enough
to find out the difference for calculating the personal conformity. They are separated
and these two features are included in the body size modality described in section 2.2.2.
Eq. (2.12) becomes

Z(t) =[P ), R, .. P )]’ (2.15)

RGB is not a good color space. Instead, we use HSV space without V (intensity)

channel. Then we can handle with large variations of illumination.

Considering the contrast of the environment light, the color space is changed to
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HSV space without the V channel. Eq. (2.15) becomes

R () =[H (1), Hio(0), Hig(0), . S, (1), S, (0). S 1), . T (2.16)
where H,(t) denotes the H channel histogram value in HS space and s, (t) denotes the
S channel histogram value in HS space.

The Kinect sensor is setup with a distance 2.5m from a user. The divided numbers
of the color histogram are 8. The 2 divided and 4 divided are not good because they are
high values after changing dress. The 16 divided and 32 divided are also not good
because they are low values before changing dress. Therefore, the histogram is divided
in 8, and the feature vector contains 2x20x8=320 features. There are 8 divided
histogram levels, 2 HSV colors, and 20 skeletal joints.

The personal conformity in this modality is calculated by Eg. (2.15) by using the

Eqg. (2.12) and Eq. (2.13). The result is shown in Figure 2-12.

100

20 fm‘b‘ﬂ'w:h“‘ A
i ":"’n‘{s'h’\
% o (a) \ (b)
5. |
| ‘
40} A { N M.‘. | & b
(‘wln "WW‘{L"‘W”“\\* "'V‘f ‘Q““h‘ Mt

Number of Frames

Figure 2-12 Online test of Dress color similarity diagram in time t
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Figure 2-13 (a) Original dress (b) other dress
An online testing experiment result is shown in Figure 2-13. The original dress
data Z(0) is shown in Figure 2-13 (a).
The corresponding similarity diagram is shown in region (a) of Figure 2-12. The
similarity maintains about 90%. After changing the dressing clothes, the similarity is
dropped to 40%. The corresponding similarity diagram is shown in region (b) of Figure

2-12.

2.2.4User ldentification System and Multimodal fusion

Jain et al. [23] introduced the biometric recognition system. It acquires biometric
data from an individual, extracts a feature set from the acquired data, and compares this

feature set against the template set in the database.
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Three levels of multimodal fusion, similar to that in [23], are employed in classic

user identification system. They are feature extraction level, matching score level and

decision level.

The data obtained from each biometric modality is used to compute a feature

vector. It is defined as fusion at the feature extraction level. Feature reduction

techniques may be employed to extract a small number of salient features from the

larger set of features.

Techniques such as weighted averaging may be used for combining the matching

scores in multiple matches. It is defined as Fusion at matching score.

Each biometric modality makes its own recognition decision based on its own

feature vector. A majority vote scheme can be used to make the final recognition

decision. It is defined as Fusion at the decision level.

There are three modalities in this chapter. A Euclidean distance is calculated in

facial recognition modality. The matching score is calculated in body size recognition

modality and dress color modality. Two of them are biometric features and the other

one is an external feature. In Manabe et al. [33] approach, FAR (False Acceptance Rate)

of decision level fusion is greater than the matching score fusion level. Considering the

output of each modality, matching score level fusion is a unique solution to compose
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three modalities.

The fuzzy inference system can be used for fusion in the multimodal biometric

system [33]. Fuzzy influence system is implemented for modality fusion in this thesis.

There are three modalities in this system. The output of each modality is the confidence.

However, the unit of similarity for each modality is different (Facial: Distance, Body

Size and Dress: Similarity). Matching score level fusion is considered in fuzzy

influence system. The block diagram of the multimodal user recognition system is

shown in Figure 2-14.

Multimodal Fusion Module

Matching Score (Distance)

Feature
Extraction
Module

Matching Score (Similarity)
Feature
Extraction
Module

Personal

Fuzzy Defuzzific INIlIEILia

Fuzzification Influence
System

Body Size
Modal

Matching Score (Similarity)
Feature
Extraction
Module

Fuzzification

Figure 2-14 Block Diagram of Multimodal Biometric System

Figure 2-14 shows the multimodal user system implemented in this thesis. Face

31

doi:10.6342/NTU201602427



modality gives the matching score in distance. Body size modality and Dress color

modality give the matching score in similarity. The fusion level is conducted after the

fuzzification of each modality. A set of if-then rules is set and plugged in the fuzzy

influence system. After defuzzification, the personal confidence is calculated.

The membership function for fuzzification in unit-modality is trapezoid

membership function and the level of fusion is triangle member function. The

membership functions are shown in Figure 2-15.
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Figure 2-15 Membership function for each modality

Figure 2-15 shows the membership function in each modality. They are in

trapezoid form (LOW and HIGH) and triangular form (MEDIUM). The measured
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distance range in the face modality is [0~1]. However, the matching distance of face
modality is not stable, the output of face modality often falls into the range [0.5~0.7].
This is why the membership function is shifted to the right to ensure the accuracy. The
matching score can be obtained from the other two modalities.

The membership function at fuzzy inference output level section in Figure 2-16.

08 —

0.6

K VERY|
VERY LOW HIGH
LOW MEDIUM HIGH

Membership Grade

02 —

| | | | | | | |
0
0 01 02 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Fuzzy inference output (Fusion)

Figure 2-16 Membership function for the fusion result
Figure 2-16 shows the membership function for the fusion result. They are all in
triangular form. The range of the user similarity is between 0 and 1. There are five fuzzy
sets: VERY LOW, LOW, MEDIUM, HIGH and VERY HIGH. The peak are 0, 0.25,

0.5,0.75and 1.

The fuzzy rule described above are implemented in this thesis. The fuzzy influence

rules are shown in Table 2-5, Table 2-6 and Table 2-7.
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Table 2-5 Fuzzy rule with dress modality in HIGH level

I.

e

VH H
H M M
H M L

Table 2-6 Fuzzy rule with dress modality in MEDIUM level

H M

M M M
M M L

Z.

iaZ!

Table 2-7 Fuzzy rule with dress modality in LOW level

H M

M M
L L VL

-:-ft

MEDIUM, L denotes LOW and VL denotes VERY LOW.
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In the tables shown above, VH denotes VERY HIGH, H denotes HIGH, M denotes

The linguistic fuzzy rules shown above address the relationship between the level
of each unit-modality recognized and level of fusion. There are total 27 rules. The level
of unit-modality is divided into three levels: LOW, MEDIUM, and HIGH. The level of
fusion consists of five results: VERY BAD, LOW, MEDIUM, HIGH, and

EXCELLENT. The level of fusion is classified as VERY HIGH and VERY LOW if all
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of the unit-modalities are classified as in HIGH and LOW, respectively. The level of
fusion is classified as HIGH if two of the unit-modalities are classified in HIGH. The
level of fusion is classified as LOW if two of the unit-modalities are classified as LOW.
The level of fusion is classified as MEDIUM if two or more of the unit-modalities are
classified as MEDIUM, or three modalities are classified as HIGH, MEDIUM, and
LOW, respectively.

It is a Mamdani-Type (Min.-Max) Fuzzy Inference in this system. The defuzzifier
of fuzzy fusion system is centroid method. This method is also called center of gravity
defuzzifier or center of area defuzzifier. The defuzzifier is given as follows.

In continuous field case:

;e [,y dy 016
[, maly)dy |

In discrete field case:
L
Z,UA(Yi)‘Yi
* =l

Y =—1
ZﬂA(Yi)

(2.17)

where A is an aggregated output fuzzy set. This is the most widely adopted

defuzzification strategy, which is reminiscent of the calculation of expected values of

probability distributions. y* is the solution after defuzzification from the probability

distributions. One of the fused results is shown in Figure 2-17.
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FACE =0.412 BODY = 0.991 DRESS = 0.675 output! = 0.917
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Figure 2-17 The simulation result of multimodal fusion in Fuzzy influence

system

Figure 2-17 shows the result of multimodal fusion by fuzzy influence system. The
simulated input values of face modality, body modality and dress color modality are
0.412, 0.991 and 0.675, respectively. After the multimodal fusion, the output after

defuzzification is 0.917.

2.3 Summary
Comparing to the approach proposed by Chen [11], the skeletal joint returned by
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Kinect can be used for the tracking joint [21]. As the hardware of the robot is upgraded,

SLAMMOT and Kinect SDK can operate simultaneously.

We proposed the fusion of three modalities. OpenCV function is implemented in

face modality. The length of limbs in skeletal data is captured by Kinect and recognized

by using Support Vector Machine. There are twenty images of clothes captured by

Kinect and matched with the initial dress color data by cosine similarity matching. The

fuzzy influence system is implemented for fusing three modalities. It can recognize the

specific user correctly. The multimodal user recognition system can still work if one of

the modalities fails.
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Chapter 3 Following, Guiding and User Re-
Tracking

This chapter is divided into two parts: following and user re-tracking. We
introduce the whole human following system briefly. The robot tracks the target with
combining the information of visual sensor and Laser Range Finder.

In order to improve the quality of interaction between human and the robot, a basic
lost target re-tracking approach is also proposed in this section. If the target is lost in
the sight of the following robot, the robot can re-tracks the target automatically. It is

useful in the corner turning case and crowded case.

3.1 Human Following System

Figure 3-1 states the relationship between multimodal user recognition system
(painted in blue) and function (painted in green). SLAMMOT and visual information
are implemented in the system. The multimodal user recognition system is used for
checking the tracked user is the target user or not. After the tracked user passes the
recognition, the moving object (viz. human) tracked in SLAMMOT is assigned as the

target pedestrian for the robot’s following.
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Multimodal
user
recognition

Following

SLAMMOT

Figure 3-1 The relationship between multimodal user recognition system and

function

3.2 User Re-Tracking

3.2.1 User Re-tracking mechanism

There are a small amount of research for re-tracking a lost target. Ota et al. [37]
proposed an approach for re-tracking a lost target human after the human has turned the
corner. The robot goes through a predicted trajectory which is modeled as a logarithmic
function with 5 points. Lai [28] proposed a re-tracking scenario that the robot turns left

or right according to the disappeared direction of the user. Another simple re-tracking
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mechanism exists in some research, such as Luo et al. [32] and Misu et al. [35] They

have the similar state transition model.

Clearly, the robot has to “search” the user after the robot loses the tracking target.

The state transition diagram implemented in this thesis is shown in Figure 3-2.

Following FO”OWing

Target Lost Specific Target

Tracking Success

Searching
Success

Specific Target
Tracking Fail

SearChing Searching Fail TraCking

Figure 3-2 State Transition Diagram

There are three states in the specific target following system: Tracking, Following,

and Searching. The “Tracking” state is activated when the system initializes. If a

specific user is tracked, the state is transferred to “Following” state. Maybe the target

is lost during the robot follows the specific user. “Searching” state is activated and

searching for the lost target. The robot keeps following if the robot searches the lost

target again. Otherwise, the robot will go back to the point where the robot loses the

target. The searching behavior scenario of the robot will be introduced in the next
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section.
3.2.2 User Re-tracking Searching Scenario

In general, the robot searches for the lost target by turning the position of the robot
to the direction where the target disappears, such as the research of Lai [28]. It is a
simple approach to solve this problem. However, this approach is applicable for the
open environment. The approach proposed by Ota et al. [38] is applicable when the user
turns into the corner.

Two cases are considered. The first one is that the target is lost in the visual sensor.
However, the laser sensor can still track the user as the sensing range of laser is wider

than Kinect. The similar situation is shown in Figure 3-3.

Figure 3-3 SLAMMOT Tracking and the user is out of the range of the visual

sensor

Figure 3-3 shows that the laser tracks the pedestrian out of the range of the visual
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sensor. If one of the sensors loses the tracking target, the other sensor is activated and

tracks the user. The system still works even if one of the sensors loses the following

target.

The other case is that the robot is moved in a crowded environment. The robot

may loses the tracking target in a crowded environment. The last position where the

tracking target appears is needed. The relationships between the robot and the tracking

user is shown in Figure 3-4.

Yl

A . Target
(v
VR i (x..,)
i XR
Robot .,_Or i
S
]
i
J
> Xl

Figure 3-4 The position of the robot and target in global coordinates
Figure 3-4 shows the position of the robot and the target in global coordinates. If
the target is lost at the coordinate (x,.,y,-) with orientation 91 + Qr relative to the
robot, SLAMMOT is implemented to locate the coordinates of the following user. In
other words, if the user disappears from the sight of Kinect sensor and laser sensor of
the robot simultaneously, the last position where the tracking target appears is recorded.

That position is assigned as the goal that the robot searches for the lost target. After the
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robot has reached the goal, the robot rotated to find the user. If the user is still not found,

the robot stays and wait the user to come back. It means the robot enters in the tracking

transition state. The whole process is described in Figure 3-5.

Skeleton

Tracked

Specific User
Recognized yes

Robot Stopped

Go to the
Follow the Position where
Specific User the target last

tracked Specific User

Recognized

Figure 3-5 Flowchart of the processes in Specific User Re-tracking

3.4 Summary

This section presented the human following system, and the user re-tracking
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mechanism. The user re-tracking mechanism is developed on the basis of SLAMMOT.
The final detected position of the user before disappeared becomes the goal where the
robot searches for the lost target. If the robot searches for the target user successfully,
the robot will follow the target again, or the robot will go back to the tracking state to

wait for the target user.
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Chapter 4 Simulations and Experiments

4.1 Software Platform

A software platform is developed for simulations and real experiments. The
development and testing environment is Microsoft® Visual C++™ 2010 under
Microsofte  Windows™ 7. The Open Graphics Library (OpenGL) is used for
simulation display. Additional utility is provided by Open Source Computer Vision
(OpenCV) with version 2.4.9. The proposed algorithms are embedded in the integrated

simulation platform based on MFC (Microsoft Foundation Class).

4.2 Hardware Platform

The real experiments were conducted on the robot Bunny (see Figure 4-1). Bunny
is a differential-drive, two-wheel mobile robot. It is equipped with a laser range finder,
a head camera, motor encoders, and an RGB-depth camera. This specification of
Bunny’s shown in Table 4-1.

The laser range finder is a SICK laser LMS-291 with sensing range of 80 meters
and angle resolution of 0.5 degrees. The camera is Logitech C820 web camera. It has a
resolution of 640x480 pixels.

A Kinect sensor is installed in Bunny’s chest as shown in Figure 4-1 and Figure
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4-2. The Kinect has a resolution of 640x480 pixels and returns the depth data in 5 meters

of the images.

A B ®)
N £ a
=
l sICK
(a) ©

Figure 4-1 Photos of hardware (a) The robot Bunny, (b) Logitech C820

Webcam, (c) Laser Range Finder SICK LMS-291

Vision camera

Microphone
array

|

Microphone
array

J

&——— Motorized tilt

3D depth sensor cameras

KINECT

for &

Figure 4-2 Kinect RGB-D sensor
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Table 4-1 The specification of the mobile robot

Item

Name Bunny
Height 130cm
Weight 48.5kg

4.3 Experimental Results

There are two cameras on Bunny, Logitech C820 webcam and Kinect. Because
two cameras are implemented, the target user is asked to stand in the range of the 0.8m
to 2.5m from the front of Bunny:. It is the stable sensing range of the Kinect, as indicated

in Figure 4-3.
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[ sweet spot
physical limits

Figure 4-3 Stable sensing range of Kinect [4]

The robot follows the specific user in a distance of 1.8m. It is a good sensing

distance for Kinect. The real scenario of the specific target following is shown in Figure

4-4.

g

@
B

Figure 4-4 The real scenario of the specific target following

4.3.1 Case Study 1: Multimodal user recognition

The unit-modality experiment results was given explained in Chapter 2. The
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multimodal fusion experiments results were explained in this section.

Three modalities are implemented in this thesis. The fusion score is calculated by
fuzzy influence system. In order to ensure the multimodal user recognition system still
working after one of the modalities fail, the threshold is set at 0.75. It means the user is

accepted if his matching score is larger than 0.75. It corresponds to HIGH level of the

output of the fuzzy influence system.

Figure 4-5 The result of correct multimodal user recognition (a) the score bar of
each modality and multimodal fusion, (b) face recognition, (c) dress color recognition,

(d) skeleton image
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(d)

Figure 4-6 The results of incorrect multimodal user recognition (a) the score bar

of each modality and multimodal fusion, (b) face recognition, (c) dress color
recognition, (d) skeleton image
Figure 4-5 and Figure 4-6 show the results of correct and incorrect multimodal
user recognition, respectively. The fusion scores are shown in of Figure 4-5 (a) and
Figure 4-6 (a). All of the unit-modality scores and multimodal fusion scores are very
high when the correct target are recognized. On the other hand, the scores are very low
when the incorrect target is recognized.

After the target is recognized correctly, the ID number of skeleton is locked and
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the corresponding 3D coordinates (center of hip) are returned. The returned 3D position
becomes the joint position of the robot.

There are 563 frames of image are captured for online testing. The results of online
testing of each modalities and multimodal fusion are shown in Table 4-2, Table 4-3,
Table 4-4 and Table 4-5.

Table 4-2 The confusion matrix of face modality in online testing

Condition |  Accept

Reject

Predicted
Accept 189
Reject 133 240
Accuracy 76.199%

HI

1

Table 4-3 The confusion matrix of dress modality in online testing

Condition |  Accept
Predicted
Accept 231
Reject 81 241
Accuracy 83.84%

Reject

oI

1

Table 4-4 The confusion matrix of body modality in online testing

Condition |  Accept Reject
Predicted

Accept 243
Reject 69 214
Accuracy 81.172%

N
-~

1
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Table 4-5 The confusion matrix of multimodal fusion in online testing

Condition |  Accept Reject
Predicted

Accept 232 0
Reject 80 241
Accuracy 84.0142%

The accurate, FAR and FRR are shown in Table 4-6. The mathematical functions

of False Acceptance Rate and False Rejection Rate are shown in Table 2-1.

Table 4-6 The accurate, FAR and FRR of each modalities and multimodal

Variable Accuracy (%) False Acceptance False Rejection
Modality Rate Rate
Face 76.199 0.00415 0.413
Dress 83.84 0 0.2596
Body 81.172 0.112 0.2212
Multimodal fusion 84.0142 0 0.2564

Comparing with each unit-modality and multimodal, the accurate of multimodal
is the highest and FAR is lowest. Although the FRR of multimodal is higher than the
body modality’s, the FAR of body modality is higher than the multimodal fusion. It
denotes that the multimodal fusion can improve the accuracy, FAR and FRR. The robot
can recognizes a target user correctly.

4.3.2 Case Study 2: Following a Specific User

In order to make Bunny follow the real target, the multimodal user recognition

module is integrated with the human following function of Bunny.

The target person is asked to stand in front of the robot and let the robot recognize
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the person. After successful recognition, the target person will walk around the lobby

of the college of engineering building. The robot follows the user and walks around the

lobby smoothly.

The following series of figures show the situation of the operating multimodal user

recognition system. The robot would follow the specific user when the user accesses

the recognizing of the multimodal user recognition system.

Figure 4-7 The multimodal user recognition system recognizes the users

The recognition result of the incorrect target is shown in Figure 4-7 (a). The fusion

score is very low. The result of the correct target is shown in Figure 4-7 (c). The fusion
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score is high but there is no score in face modality. Due to the sensing range of Kinect,

the user is standing 1.8m from the robot causes the images of detected faces were very

blurry. Although the face modality is very unstable, the target user is still recognized

successfully by the fusion of other two modalities, such as the results in Figure 4-7 (c).

The following series of figures show that the robot follows the specific user after

the user is recognized by the multimodal user recognition system. The target goal of the

robot is set about 1.8m away from the user. If the distance between the robot and the

user is less than 1.8m, the robot stops and waits for the moving of the user The choice

of 1.8m distance is due to the physical limitation of Kinect.
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(9) (h)

(k) ()

Figure 4-8 The robot follows the specific user

The simulation of SLAMMOT are shown in Figure 4-8 (a), (c), (e), (9), (i) and

(k), and the experiment results are shown in Figure 4-8 (b), (d), (f), (h), (j) and (k).

In the simulation interface of SLAMMOT, the orange and black cylinders denote
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the followed person and other pedestrians, respectively. The white cylinder denotes the

robot, and yellow cylinder denotes the target goal of the robot. The target goal is set at

1.8m away from the user.

When a user is recognized successfully, the robot calculates the difference between

the sensor data of Kinect and Laser in a Euclidean distance. The sensor data of Kinect

contains the position of tracking joints. The sensor data of laser contains the position of

pedestrians relative to the robot. The pedestrian with the smallest Euclidean distance

from the Kinect sensor data becomes person who will be followed (red cylinder). The

other pedestrians are rejected (keep in the black cylinder). Figure 4-8 (c) shows that

the pedestrian is defined as the tracking target (shown in the red cylinder).

Due to the function of SLAMMOT, the tracked pedestrian can be labeled as target

(red cylinder) and non-target (black cylinder). The robot can follows the target user in

a crowded environment. The following series of figures show the situation of crowded

environment.
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(c) (d)

Figure 4-9 The robot follows the target user (in black dress) in crowded

environment
Figure 4-9 shows the robot follows the target user in a crowded environment. The
other pedestrian passes through between the robot and the target user in Figure 4-9 (c).

The robot still follows the target user in Figure 4-9 (d).

4.3.3 Case Study 3: User Re-Tracking

In the real world, the robot may get lost due to several reasons: the target turns into
the corner, in a crowded environment, blocked sight, etc. Although the robot has an
ability to re-track the user, the robot might follow another pedestrian.

The following series of figures show the real situation when the robot loses the
tracking target with the situation of the target user turning into the corner. The lost
position of the target user becomes the target goal of the robot. The robot moves to the

target goal and stops when the Kinect detects the pedestrian skeleton. The multimodal

59

doi:10.6342/NTU201602427



user recognition system starts to recognize the presently detected pedestrians. The robot

will follow the user again when the pedestrian passes the verification by the multimodal

user recognition system, or the robot stops and waits for the correct user.

(@) (h)
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(k)

Figure 4-10 The robot re-tracks the target user

The simulation results of SLAMMOT are shown in Figure 4-10 (a), (), (e), (9),

(1) and (K), and the experiment results are shown in Figure 4-10 (b), (d), (f), (h), (j) and

(K). The user re-tracking scenario is constructed as follows. A large black cloth is

erected to simulate a corner. A user is asked to walk and turn into a corner. The laser

range finder and Kinect cannot track the desired target because the black cloth blocks

the sight, i.e. the street corner. It is shown in Figure 4-10 (b). In Figure 4-10 (c), the

last position of the target is set as a target goal (yellow cylinder). The robot moves to

the goal, which is shown in Figure 4-10 (e) and Figure 4-10 (f). The robot finds the

other pedestrian in Figure 4-10 (g) and the pedestrian does not passes the verification

of multimodal user recognition system. Then, the pedestrian is defined as a black
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cylinder in the simulation interface of SLAMMOT. The correct target is back in the
sight of the robot and passes the verification of multimodal user recognition system in
Figure 4-10 (i). Then, the correct target is defined as a red cylinder in the simulation
interface of SLAMMOT. After the successful recognition, the robot follows the user

again.

4.4 Summary

This thesis is focused on presenting a specific user recognition system for a human
following robot. Hence, all experiments are used to simulate some situations the robot
may encounter when it loses the master. To explain the relationship between the
experiments and practical usages, we equipped a basket on the robot and simulated
practical shopping scenarios. The following series of figures show the real situation that
the robot follows the master only and how the robot reacts when another pedestrian is

in the sight of the robot.
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(i) ()

Figure 4-11 The real situation in the First Student Activity Center

Figure 4-11 shows the series of the real situations in the First Student Activity
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Center. The master buys goods from a shop and puts the goods into the basket, as shown

in Figure 4-11 (a) and (b). If someone else appears between the robot and the master,

the robot will stop, as shown in Figure 4-11 (c) and (d). Upon the master coming back,

the robot will follow the master again. If the master makes a turn suddenly, the robot is

not fast enough to track the master, as shown in Figure 4-11 (f). In Figure 4-11 (g) and

(h), the other pedestrian comes into the sight of the robot. The robot will not move since

the pedestrian does not pass the recognition process. Once the master is back in the

sight of the robot, the robot will follow the master again, as shown in Figure 4-11 (i)

and (j).
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Chapter 5 Conclusions and Future Works

5.1 Conclusions

Servant robots should have the ability to follow its master and provide services
whenever its master asks. Our purpose is to build a practical assistant robot that can be
adopted in malls, department stores or shopping centers. Therefore, this thesis proposed
an application of a shopping assistant robot based on the thesis of Chen. We targeted
on an accurate specific user recognition and user re-tracking mechanism after the
desired target is lost in the environment.

We implemented three modalities, face, body size, and dress color matching, in
the specific user recognition system. We combined these three modalities by fuzzy
influence system. The combined system can still work even if one of the modalities fail.
The proposed multimodal user recognition system can recognize the specific user.

We also proposed a simple mechanism for the lost target re-tracking. The last
detected position of the user becomes the goal where the robot searches for the user. By
combining SLAMMOT with multimodal user recognition, the robot can always localize
itself in the map and re-track the lost target by referring the information provided by

SLAMMOT and multimodal user recognition system.
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5.2 Future Works

Improving the user recognition process

The multimodal user recognition system can recognize the user accurately in a
static condition. But, it may not be accurate in a dynamic condition. It is easy to
recognize a false result when the robot is moving, especially in body modality. Better
features can be implemented for the body modality.

Gesture Control

An approach of specific user following is provided in this thesis, but the
interactivity of the robot can be improved. Some situations should be considered in the
shopping mall, such as some assigned areas in a shopping mall that the robot cannot
pass through. The robot should stand by. We should “tell” the robot that the robot should

stop. Gesture control is one of the interaction approaches.
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