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摘要

持續記憶體架構是為一融合傳統主記憶體以及儲存單元的的新技

術。藉由可接於記憶體匯流排的非揮發隨機存取記憶體 (NVRAM)可

位元組定址能力 (byte-addressability)以及存儲單元所需要的非揮發特

性 (non-volatility)，持續記憶體架構將是未來相當重要的新架構。有了

持續記憶體架構的出現，將可直接將資料儲存於記憶體之中，而不用

再複製到傳統硬碟或者快閃儲存系統。然而為了在記憶體階層保證資

料持續性，持續記憶體必須維持資料從中央處理器快取寫到非揮發隨

機存取記憶體的寫入順序。直接利用軟體指令來保證寫入順序將會造

成許多中央處理器執行的限制而使得整體效能大幅下降。此外，為保

證將資料寫入至記憶體的單元性，傳統軟體將會需要額外寫入一些輔

助以及日誌資料。因此相關研究提出藉由硬體支援來解決上述效能下

降的問題。然而，之前研究所提出的辦法並沒有完全解決此問題，而

僅是將效能的負擔傳遞到快取及記憶體階層。因此，我們提出一個高

效的硬體方法，提供一個新保證資料持續性的路徑，消除原本硬體架

構要維持住寫入順序的負擔以及額外的日誌資料寫入，將整體效能提

升至接近於原有沒有保證持續性軟體的效能。

關鍵字—持續記憶體,非揮發記憶體,資料一致性,單元性,耐用性,

持續性
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Abstract

Persistent memory is a new technique that merges main memory (DRAM)

and storage (disk/flash) into one component. It can be implemented bymemory-

bus mounted nonvolatile memory (NVRAM), which incorporates the byte-

addressability of memory and the non-volatility of storage devices. Persis-

tent memory directly benefits computer system performance by allowing in-

memory data to persist immediately without the need for accessing secondary

storage, such as flash and disks. However, to ensure data persistence in mem-

ory, persistent memory systems need to preserve the ordering of writes from

CPU caches toward NVRAM main memory. Directly utilizing the software

instructions to ensure the write ordering will push much execution burden on

CPUs and result to much performance degradation. Besides, to ensure the

atomicity of storing operations to persist data, additional meta-data and log-

ging operations are added into traditional programs without persistence guar-

antee. And thus, multiple hardware supported solution is proposed. However,

previous hardware solutions do not solve the problem at all, which propa-

gates the performance overhead toward cache or memory hierarchy. There-

fore, we propose an efficient hardware solution and provide a new persis-

tent path, which frees existing architecture from handling the write ordering,

eliminates logging overhead and increases the overall performance near the

program without persistence guarantee.

Keywords — Persistent memory, nonvolatile memory, data consistency,

atomicity, durability, persistence
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Chapter 1

Introduction

Emerging nonvolatile memory (NVRAM) technologies, such as phase-change mem-

ory (PCM) [15, 23], spin-transfer torquemagnetic random access memory (STT-RAM) [9,

14] and resistive random access memory (RRAM) [27], enable a new memory hierarchy

design. NVRAMs have hybrid properties of memory hierarchy (DRAM) and persistent

storage (disk/flash). Like DRAM, NVRAM is byte-addressable and thus can be con-

nected through the memory-bus and put at memory layer. Simultaneously, like disk/flash,

NVRAM is nonvolatile, where different from DRAM, data saved in NVRAM will not

disappear after a shutdown. With these hybrid properties, persistent memory is proposed.

Persistent memory utilizes NVRAMs as memory layer storage. With better access speed

and closer layer toward CPU compared to disk/flash, persistent memory directly brings

great potential for storage performance. Not complicated block-based protocol toward

disk/flash [3], programmers now can save data into memory via load/store interface (byte

granularity). However, to utilize NVRAMs as memory layer storage and achieve bet-

ter performance, carefully modifications of software or hardware are unavoidable, which

incurs new design challenges.

Persistent memory changes the access behaviors of programs. Traditionally, programs

only utilize memory (DRAM) to save temporary data, which will disappear after a power

disconnection, but now, programswill save important data intomemory (NVRAM), where

saved data is persistent for future use. Therefore, under persistent memory system, pro-

grammers will care about how to persist data into NVRAM and if data is saved as their

1 doi:10.6342/NTU201602526



expectation. Programmers expect that the saved data of a program is consistent after a

normal program exit or even a sudden power failure. Consistent data means that data is

correctly saved in NVRAM as programmers want. Programmers will not expect that op-

erated data in NVRAM is crashed (inconsistent), which wastes storage space and cannot

be further operated because crashed data may not have the same format as programmers

think. Formally, the support of persistent memory to ensure that data saved in NVRAM

to be consistent as program behavior is called - data persistence guarantee.

To support data persistence, data writes toward NVRAM need to occur in the same

order as program behaviors. For example, to append a new node to a link list, program

will allocate a new node first and then make the last pointer of the link list point toward the

newly allocated node. If the write ordering is reversed. Then, after a power failure during

these two operations, it will result to an inconsistent condition that the last pointer points

toward a position that is not allocated. Besides, even the write ordering is guaranteed,

operations of a program may also be half completed and cause unexpected results. For

example, previous example may result to memory leakage, where new node is allocated

but not pointed by any pointer [2]. And thus, to guarantee data persistence, we have to

ensure the write ordering and atomicity of operation.

However, traditionally, the ordering of data requests issued from CPU through cache

hierarchy towardmainmemory layer will be not the same as program behaviors. For cache

line eviction, cache controller will have its own replacement policy, such as least-recently

used (LRU). For memory requests processing, main memory controller also will do differ-

ent scheduling policy to provide better performance, such as first ready, first-come-first-

service (FR-FCFS) [25]. To avoid this problem, previous works [32, 5] use software in-

structions, such asmemory fence (sfence andmfence) and cache flushing (clflushopt, clwb

and pcommit) instructions, to flush data from cache hierarchy toward NVRAM. Only after

flushing data into NVRAM, memory write operations after these instructions can be exe-

cuted and thus, it ensures the write ordering. Although these instructions enforce the write

ordering, this method blocks CPU from executing later memory requests, couples order-

ing with durability and results to performance degradation. To solve this problem, Condit

2 doi:10.6342/NTU201602526



et al. [3, 12, 28] propose epoch barrier to let software communicate ordering requirement

to cache and main memory. Cache replacement policy and main memory scheduling way

will follow the software declared ordering requirement without directly flushing data from

cache toward main memory and blocking other memory requests to be issued. Doshi et

al. [4] propose a software/hardware library and modify memory controller to support up-

dating data in parallel with program execution on CPU at background, which decouples

persisting operations from CPU execution and delegates them to memory controller.

As described above, in addition to the write ordering, the atomicity of data write oper-

ations is the another one of the important factors to ensure data persistence. To guarantee

atomicity, programmers will add additional meta-data or logging operations to track the

write progresses and thus be able to recover half completed data after a sudden power

failure. Most of previous works applies write-ahead logging [18, 32, 5, 28, 2] or copy-on-

write [8, 3] to do redundant backup for the atomicity of write operations. After sudden

system crash, the redundant backup can be utilized to recover the crashed data. However,

to support write-ahead logging or copy-on-write, additional NVRAM space is occupied

and write traffic is also increased because of redundant writes. Seeing this problem, Zhao

et al. [36] propose to utilize a nonvolatile LLC to naturally backup data during data flow

from cache towardNVRAMand eliminate the logging operations or redundant data writes.

However, even though previous works put much effort into ensuring data persistence,

problem is still not solved. Previous works directly change the components in the existing

architecture (cache hierarchy or memory layer) and extend the cache/memory controller

to ensure the write ordering. In this way, even though Condit et al. [3] or Doshi et al. [4]

relax CPU from blocking later memory requests, the cache hierarchy or memory layer are

still constrained by the ordering overhead. The same, to ensure the write ordering, Zhao et

al. [36] still need to flush data from L1 toward LLC, and the replacement policy of the LLC

will bemodified and constrained tomeet the ordering requirement. Directly combining the

new policy into existing cache replacement is not naive, which makes cache design logic

complex [3, 36]. And the modification of memory controller from [4] is complicated,

which needs to read out logging data and then updates target data. Also, previous works

3 doi:10.6342/NTU201602526



only solve one of the problem mentioned above, neither of them solve both the write

ordering and additional logging overhead at once.

In this paper, we propose the transaction cache. By adding an additional nonvolatile

hardware of small size aside of the existing cache hierarchy, we free the existing architec-

ture from explicitly handling the writing ordering and eliminate the logging operations.

By this way, besides of freeing CPU from blocking later memory requests, the cache con-

troller and memory layer also will not be constrained by persistence overhead and differ-

ently, a new persistent path via the transaction cache is provided. By removing persistence

overhead, we can achieve the performance near the native case without persistence sup-

port.

4 doi:10.6342/NTU201602526



Chapter 2

Background and Motivation

To utilize NVRAM as persistent storage, without compromising the benefits of fast

access speed of nonvolatile memory, persistent memory will directly connect NVRAM

through memory-bus but slower SATA or PCI interfaces for disk or flash. Besides, even

though NVRAM has performance near DRAM, it is not totally the same as DRAM as

specially for the write latency. Thus, to obtain best performance, it is better to use a com-

bination of DRAM and NVRAM for a system running programs with or without data

persistence demand concurrently. Therefore, as the bottom hardware part of Figure 2.1

shows, we target the system that NVRAMwill be put aside with DRAM and both are con-

nected through memory-bus toward memory controller and CPU cache hierarchy. From

the top software part of Figure 2.1, programs can directly access NVRAM the same as

DRAM through load/store instructions or persistent memory library like Mnemosyne [32]

or NV-Heaps [2] and declare, allocate or save data into NVRAM or DRAM. Programs that

need data persistence will save and write data into NVRAM and utilize software or hard-

ware mechanism to ensure that saved data is consistent. In the following, we focus on the

properties to ensure data persistence.

To ensure data persistence, transaction concepts are borrowed from database. A trans-

action among a program is a group of memory read/write operations that modifies the

content of a persistent storage (NVRAM). Transaction concepts contain atomicity, con-

sistency, isolation and durability (ACID) [36]. Modification done by a transaction shall be

atomic and must not partially complete, which is atomicity. Without atomicity guarantee,

5 doi:10.6342/NTU201602526



Multicores

Cache hierarchy

NVRAMDRAM

NVRAM 
Controller

memory bus

source code virtual address space per process

Stack

Heap

Persistent Heap

…

Persistent Data Section

Data Section

Text SectionSoftware
Hardware

DRAM 
Controller

volatile
persistent

p_int a[128] = {0};
int b[128] = {0};
…
int main() {
int *x;
p_int *y;
x = malloc(sizeof(int) * 256);
y = p_malloc(sizeof(int) * 256);
…

}

Figure 2.1: Persistent memory architecture

data may be half modified and inconsistent. Consistency means that the total operations

of a transaction defined by programmers have to bring the data in the persistent storage

from one consistent state to the another one. Durability guarantees that data modified by

a transaction after it commits should be preserved in the persistent storage even after a

power failure or sudden crash. And only after a transaction commits, data modified by a

transaction can be viewed by other transactions, which ensures isolation. After a trans-

action commits, it means that the transaction can finish atomically and data modified by

the transaction would be durable and readable. Among these four properties, to make

NVRAM serve as a persistent storage, we have to ensure that data in the NVRAM modi-

fied by transactions of a program have to be consistent and persistent or it wastes storage,

which covers ACD and guarantees data persistence.
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Program

Transaction 1
READ/WRITE operations

Transaction 2
READ/WRITE operations

Transaction N
READ/WRITE operations

…

Figure 2.2: Program with transaction concept

2.1 Match Program Behavior

Based on transaction concept, a program is composed of multiple sequential transac-

tions from 1 toward N as Figure 2.2 shows. To guarantee data persistence, we have to

ensure data in the persistent storage is consistent with program behaviors. If data of trans-

action N is preserved in the persistent storage, data of transaction 1 till N-1 have to be also

preserved in the persistent storage. This is an obvious and important rule. Data saved in

the persistent storage have to match program behavior and be identical to the program re-

sults. If data of transaction 4 is durable in the persistent storage but data of transaction 3 is

not durable in the persistent storage, it is an inconsistent result and some execution results

of the program are missed. To match program behavior, the ordering of writes toward

the persistent storage have to be the same as the execution order of different transactions

order. Data of different transactions have to be persistent and durable in order.

2.2 Transaction Atomicity Guarantee

Besides of different transactions execution order, the atomicity of each transaction is

another important property. To guarantee this, most previous works [32, 5, 3, 28] employ

write-ahead logging [18] to make the data modified by a transaction stay consistent even

after a power failure or an abrupt system crash. Figure 2.3 illustrates the transaction with

7 doi:10.6342/NTU201602526



Cache 
NVRAM

A=B=10
TX:

A=A-10
B=B+10

Tag Data
A 0
B 20

Address Data
A 0
B 10

(a) No atomicity guarantee          (b) Write-ahead logging (WAL)              (c) WAL without ordering

A=B=10
TX:

log(&A, 0)
log(&B, 20)
A=A-10
B=B+10

Tag Data
LOG A (&A, 0)
LOG B (&B, 20)

A 0
B 20

Address Data

Log Area
LOG A (&A, 0)
LOG B (&B, 20)

Data Area
A 0
B 10

Software
Hardware

A=B=10
TX:

log(&A, 0)
log(&B, 20)
A=A-10
B=B+10

Tag Data
LOG A (&A, 0)
LOG B (&B, 20)

A 0
B 20

Address Data

Log Area
LOG A (&A, 0)

Data Area
A 0
B 10

Figure 2.3: Transaction with and without atomicity guarantee by write-ahead logging

and without atomicity guarantee by write-ahead logging. The example in Figure 2.3 is to

transfer 10 from variable A to variable B. Initially, both variable A and B are 10. Without

losing consistency, after this transaction, the sum of variable A and B should still be 20

(10+10). But, in Figure 2.3 (a), if a system crash happens after only the variable A is

written back into the NVRAM, the updated value of variable B that is still in the cache

hierarchy would be lost. And the final results in the NVRAM is inconsistent. The sum

of variable A and B would be 10, but not 20. Besides, from the results, the transaction

only completes its operation on data A and its operation on data B is lost, which is half

completed and violates atomicity. And thus, to ensure atomicity, before updating variable

A and B, a transaction in Figure 2.3 (b) will do logging first. The logging data contains

the target data address and to be updated data (ex, address of variable A and 0). Only after

logging operations are finished, the updating operations of target data will be processed.

With these guarantee, even if a system crash happens after only the variable A is written

back into the NVRAM, we will have the logging data for variable B and can do recovery

to update the variable B from old value 10 to target value 20, which ensures the atomicity

of the transaction.
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Program

Transaction 1

…

Logging phase

Real data updating phase

Transaction 2

Logging phase

Real data updating phase

Transaction N

Logging phase

Real data updating phase

Figure 2.4: Program with write-ahead logging transaction concept

2.3 Program with WAL concept (Persistent Program)

Considering program behavior and transaction atomicity, a persistent program is com-

posed of multiple transactions and each transaction will do its WAL for atomicity guar-

antee as Figure 2.4 shows. As above clarified, we can know that the logging operations

and target data updating writes have to be processed in order. Also, to match program

behavior, data of different transactions also have to be persistent in order. However, the

write ordering from cache hierarchy toward the NVRAM is controlled by hardware and

could be reordered. Cache eviction and memory scheduling policy will make the write

ordering from cache hierarchy toward the NVRAM different from program behaviors,

such as least-recent policy (LRU) and first ready, first come first service (FR-FCFS) [25].

Under this condition, even though a transaction applies write-ahead logging, the final data

saved in the NVRAM would not be consistent and could not be recovered to a consistent

state. For example, in Figure 2.3 (c), there will be a result that only the logging data for

the variable A and the target variable A updating are completed and written back into the

NVRAM after a sudden power failure because of hardware reordering mechanisms. For

this condition, the same, after writing back the variable A into the NVRAM, we don’t

have the logging data for variable B to recover data, which results to inconsistent data.
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On the other side, there may be a result that data of the transaction 3 and 1 is saved in the

NVRAM but data of the transaction 2 is lost because of reordering, which doesn’t match

the program behavior. That is, the ability to guarantee the write ordering is an important

factor for data persistence.

2.4 Software-supported Persistent Program

To provide software the ability to enforce the write ordering, Intel announces new

memory instructions, such as clflushopt, clwb and pcommit [11]. As Figure 2.5 shows,

software programmers can utilize these new instructions with memory fence instructions,

such as sfence and mfence, to ensure the write ordering toward the NVRAM the same as

program behaviors. Each instruction covers different guarantees:

• clflushopt and clwb (cache flushing instructions)

These instructions flush cache lines from cache hierarchy toward main memory

layer. The difference is that clflushopt will invalid the flushed cache line entry and

clwb will not, which provides programmers more options for better performance

under different data locality behavior of programs. To flush cache lines that will not

be used in the future, we can utilize clflushopt and conversely, we can use clwb.

• sfence andmfence

These instructions ensure that the data flushed by clflushopt and clwb will be

flushed into the NVRAM write queue and accepted by the NVRAM before exe-

cuting pcommit.

• pcommit

This instruction drains the write request in the NVRAM write queue accepted by

the NVRAM into the NVRAM DIMM and makes them persistent.

With these instructions, software can persist data at certain points of a program. Nor-

mally, data writes will be persistent after the positions of pcommit instructions. From

Figure 2.5 (a), the same as Figure 2.3, a simple transaction to transfer 10 from variable A
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A=B=10
TX:

log_a=log(&A, 0)
log_b=log(&B, 20)
clwb &log_a
clwb &log_b
sfence
pcommit
sfence
A=A-10
B=B+10

(a) Program with Intel instructions      

(b) Execution timeline

log_a Cache

NVRAM write queue

NVRAM DIMM

log_b

Time

log_a log_b

log_a log_b

logging
clwb &log_a 
clwb &log_b

Flush
Cache
lines

pcommit

NVRAM
Drain
Writes

CPU stalls

A=A-10 B=B+10

finishedcommitted

Figure 2.5: Software with Intel instructions and execution timeline

to variable B, but the write ordering of logging operations and target data updating is guar-

anteed. By utilizing the clwb, we can flush the logging data of log_a and log_b from cache

hierachy toward the NVRAM write queue. And after the clwb, the sfence and pcommit

are applied. Sfence makes sure that pcommit happens right after clwb instructions. And

thus, we can exactly use pcommit to drain the data, log_a and log_b, in the NVRAM

write queue into NVRAM DIMM. After the draining, CPU continues to do data updating

of variable A and B.

2.4.1 Inefficiency in Software-supported Persistent Program

As we can see, even though utilizing these software instructions can ensure the write

ordering, the performance is sacrificed. Software-supported persistent program has two

deficiency. First, from Figure 2.5, during the flushing and draining operations, CPU

is stalled and does nothing but waits for logging data being drained into the NVRAM

DIMM. That’s, the software-instruction-supported write ordering is not efficient. By uti-

lizing software instructions, CPU has to explicitly control and handle the write ordering
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from the cache hierarchy toward the NVRAM, which wastes a lot of time for CPU to do

other computations. Second, to support write-ahead logging and ensure atomicity, a sin-

gle write will need an another logging operation. This results to double write latency for a

single write and for write intensive workloads, most of the CPU execution time are doing

redundant backups without real progress for target data.

2.5 Related Works to Mitigate Persistence Overhead

With above these two problems, previous works follow these two directions to solve

them. To mitigate the ordering problem, Condit et al. [3] propose epoch barrier, an in-

struction to deliver the software ordering requirements toward cache and memory hier-

archy. With this instruction, instead of blocking following memory requests, CPU will

continue to execute; cache controller and memory controller will follow the software or-

dering requirements asynchronously. To evict a target cache line, cache controller will

check if there are cache lines that have ordering dependency before the target cache line

and evict them before the target cache line first. The same, memory controller will write

data into memory DIMM in the same order. Differently, Doshi et al. [4] propose to make

NVRAM controller responsible for ensuring the ordering and let CPU execute in parallel

with background persisting operations processed by NVRAM controller. Logging data

are combined and committed into NVRAM via a new software/hardware interface, and

NVRAM controller will update the target data from the logging data at background. On

the other side, to eliminate logging writes, Zhao et al. [36] propose to apply nonvolatile last

level cache to serve as another backup like logging data. The difference between [36] and

WAL is that utilizing nonvolatile LLC and following architectural data flow, data writes

from cache toward main memory will naturally back up data in the LLC, which doesn’t

need additional logging writes.

However, even though previous works try to solve the ordering constraint and elimi-

nate the logging operations, the problem is just relieved and not solved. The persistence

overhead is propagated toward cache hierarchy or memory layer. As above described,

Condit et al. [3] need to modify the cache controller and memory controller to follow the
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ordering requirement and actually, the cache replacement policy and memory scheduling

way will be constrained. Doshi et al. [4] have to do much modification on the memory

controller to support persisting operations and the memory controller is still constrained

by the logging and updating ordering. Zhao et al. [36] have to flush cache lines of a

transactions toward LLC to follow the transaction ordering requirement. Besides, the re-

placement policy of LLC is also constrained and the in-progressing data of a transaction

are not replaceable, which results to fewer cache space for other data. In addition, none

of previous works solve these two problems at once.

Seeing these problems, in this work, we propose the transaction cache, which removes

overall persistence overhead from the existing architecture and make them execute na-

tively without any constraint. In the following, we describe our mechanism to solve per-

sistence overhead in chapter 3. And then, we show the experimental results in chapter 4.

And for future study, we discuss the prior works related to persistent memory in chapter 5.

Finally, we conclude this work in chapter 6.
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Chapter 3

Transaction Cache Design

3.1 Overview

The goal of our design is two-fold. First, allow a program to progress as if there is

no persistent requirement. Second, the design needs to be non-intrusive to the existing

cache or memory hierarchy. Figure 3.1 shows the high-level view of the proposed trans-

action cache (TC) design. Flushing and memory fence instructions are eliminated and

program executes as usual. Hardware will guarantee the persistence that program needs.

A new persistent path via the transaction cache is added to handle persistent writes asyn-

chronously with program execution. This new path is put side by side with the existing

cache hierarchy, guaranteeing the persistence without bothering the L1, L2 or LLC cache

controllers. The transaction cache is a nonvolatile memory buffer, which inserts and evicts

data as a first-in/first-out memory (FIFO). A persistent write is written to both the transac-

tion cache and the L1 cache. TC buffers and persists the persistent writes at background in

parallel with program execution. Also, as a nonvolatile buffer, TC serve as a logging area.

After writing all the data of a transaction, TC will write back the data of the transaction

to the NVRAM. And only after writing back data into the NVRAM, TC can remove the

data of the transaction.

Since TC serves as the logging area, we eliminate writing logs at the NVRAM layer.

All the persistent writes toward the NVRAMhave been logged in TC.Without writing logs

at the NVRAM layer, the ordering requirement among a transaction to ensure atomicity
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Transaction {
write A=0
write B=1

}

NVRAM 
ACK

CPU

L1

L2
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NVRAM controller

Software
Hardware

Transaction {
LOG_A=log(&A, 0)
LOG_B=log(&B, 1)
clwb &LOG_A
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pcommit
sfence
write A=0
write B=1

}

LLC miss

TC-controlled
write ordering

NVRAM 

Dropped writes

Write/Commit request

New 
Persistent
Path

Figure 3.1: Transaction Cache Overview

is removed. The ordering requirement now is only the sequential ordering of different

transactions. But, with backup data in TC, even the NVRAM controller schedules the

persistent writes out of the sequential ordering of different transactions, such as writes data

of later transactions first, after a sudden crash, we can still utilize the backup data from TC

to do recovery. That is, the NVRAM controller can schedule the persistent writes without

ordering constraint.

Besides, when a cache line containing persistent data is replaced from the last level

cache, it is dropped and not written back to the NVRAM so the state of persistent data

is not affected. All the persistent data toward the NVRAM will flow via the transaction

cache. In this way, a program can execute speculatively on the original data path without

extra writes for logging and stalls for ensuring correct write order. Besides, existing cache

hierarchy or memory layer is not constrained by the persistence overhead.

In the proposed design, without compromising performance, two important properties

(write ordering and transaction atomicity) to ensure data persistence are guaranteed.

• Write Ordering: Different from the existing cache hierarchy, all the persistent
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writes flows the new persistent path will not be reordered. The transaction cache

serves writes as FIFO. The persistent writes from CPU are inserted into and evicted

from TC in FIFO order, which simply conforms to the write ordering. The ordering

of different transactions is guaranteed.

• TransactionAtomicity: All the persistent writes of a transaction toward theNVRAM

will have completed backup in the transaction cache. Only after totally backing up

a transaction, the transaction cache will issue the data of the transaction toward the

NVRAM. And only after updating the NVRAM, the corresponding backup in the

TC can be dropped. If a crash happens during the time for the NVRAM controller

to process the data of a transaction, we can recover data in the NVRAM from a half

completed one to a consistent one by the backup in the TC. If a crash happens before

the transaction cache issues the data of the transaction to the NVRAM, data in the

NVRAM is intact and consistent. With the completed backup in the TC, transaction

atomicity is guaranteed. To accomplish above behavior, after finishing a write re-

quest, the NVRAM controller have to send back a acknowledgment message back

toward the TC to let the TC to drop written back backup data.

Since the persistent data to be replaced from the LLC is not written back to theNVRAM,

these new version persistent data is discarded and the persistent memory may only contain

the stale value. This scenario appears when the persistent data replacement happens be-

fore TC evicts the corresponding data toward the NVRAM. After the discarding, if there

are miss requests on the discarded cache lines, last level cache will grab the old version

data from the NVRAM but the new one in the transaction cache and results to inconsis-

tency execution results. Therefore, to serve a miss request, last level cache will issue miss

requests toward not only the NVRAM but also the transaction cache to get the newest

value.
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Figure 3.2: Transaction cache example

3.2 Transaction Cache Example

Figure 3.2 shows the proposed transaction cache execution results with the same trans-

action example as Figure 2.3. To execute a transaction, software now only needs to do

target data updating operations and provide the transaction boundary information. The

flushing and logging operations for ordering and transaction atomicity guarantee are re-

moved. Hardware will guarantee the persistence with the transaction information provided

from software. We can see the program in Figure 3.2 is almost the same as the program

without persistence guarantee in Figure 2.3 (a).The only differences are the transaction

mark and big parentheses. With the proposed transaction cache mechanism, data flows

via the transaction cache toward NVRAM in FIFO order as program behaviors. Transac-

tion cache will issue the write back request of the variable A first and then the variable B.

But, the memory controller can schedule these two requests concurrently without order-

ing constraint because the transaction cache has backed up the data. Figure 3.2 shows the

condition after NVRAM updates the variable A. The variable A is updated from old value

10 to new value 0 and the variable B is still the old value 10. If there is a power failure

happens after NVRAM updates the variable A, we can recover the variable B in NVRAM

from old value 10 to the new value 20 by the backup in the transaction cache.

Figure 3.3 shows the execution time line of the proposed transaction cache. With the

transaction cache, after writing data A and B and finishing a transaction, CPU now can
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Figure 3.3: Transaction cache execution time line

continue to execute to do computation on other data C and D without stalling to control

the write ordering. And the existing cache hierarchy will serve these requests constantly

without flushing operations to ensure the write ordering. Besides, we can notice that be-

cause logging operations are eliminated, after inserting data into the transaction cache, one

transaction can directly commit and finish. After that, the write ordering of data A and B

would be controlled by the transaction cache.

In the following sections, we describes detailed hardware implementation of the trans-

action cache and modification on the existing architecture design.

3.3 Detailed Software and Hardware Modification

In this section, we present our implementation details on transaction cache architecture

and its associated logic, software interface, other modifications in the processor, and a

summary of our hardware cost.

3.3.1 Transaction Cache Implementation

In-order to maintain the transaction information of each cached entry, we implement

the TC as a content-addressable, first-in/first-out (CAM FIFO) [21, 30]. The FIFO ar-

chitecture is to match program ordering and the CAM architecture is to serve the miss

requests or acknowledgment messages fast to get matched cache line entry in a single
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Figure 3.4: Transaction Cache architecture

operation. Figure 3.4 shows the detailed hardware design of the transaction cache. The

transaction cache consists of transaction cache queue, transaction cache controller and

transaction cache data array. Transaction cache queue buffer requests from the other

controllers (CPU, LLC and NVRAM). There are four types of requests:

• Write requests of a transaction from CPU: contain the transaction ID (TxID),

data addresses and data value.

• Commit request of a transaction fromCPU: contain only the transaction ID (TxID).

• Miss requests from LLC: contain the data address of the missed cache line.

• Acknowledgmentmessages fromNVRAM: contain the address of the correspond-

ing written back backup in TC.

In Figure 3.4, besides of the tag and data value, each cache line among the TC data
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Figure 3.5: Cache line transition state of Transaction Cache

array also records the transaction information to ensure transaction atomicity, the trans-

action ID (TxID) and the transaction state of corresponding transaction ID (State). Each

cache line entry among the TC data array transitions in three state: available, active and

committed (Figure 3.5). Write requests from CPU are inserted from the TC head and

evicted at the TC tail. To serve a write request, first we check if the cache line entry

pointed by the TC head is in the available state. If it is in the available state, we copy the

tag information from the data addresses, data value and transaction ID of the write request

into the cache line pointed by the TC head and set it in the active state. After that, the TC

head points to the next entry. If it is not in the available state, then the transaction cache is

full and we have to wait for data being written back into NVRAM and then we can insert

new cache lines. To prevent the problem that NVRAM serves writes too slow and lets the

transaction cache easily gets full, if the transaction cache is almost full, the transaction

cache will send a signal toward NVRAM to tell NVRAM controller to drain the writes.

And to serve a commit request, the content-addressable TC data array are compared

with the transaction ID of the commit request. All the matched cache lines with the same

transaction ID of the commit request are set from the available state into the committed

state. Committed cache lines are written back and issued toward the NVRAM in FIFO

order (also program order). Because requests issued from CPU are handled in FIFO and

thus after serving a commit requests, it means all the data of a transaction are backed up in

the TC. In this way, writes requests issued to the NVRAMwill have backup in the TC data

array and thus can be scheduled out of order. Besides, because conflicted requests (same
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Transaction {
A=A-10
B=B+10 }

TX_BEGIN
mov r1, [A] //load from A
sub r1, 10
mov [A], r1 //store to A
mov r1, [B]
add r1, 10
mov [B], r1

TX_END

Compiling

Figure 3.6: Software modification

cache line address and toward the same row of a bank) have to be handled sequentially

in the NVRAM, the NVRAM controller will schedule the conflicted write requests of

different transactions in the same as the FIFO issue order and is consistent with program.

After issuing the committed cache lines toward the NVRAM, the TC tail will not move

or point to the next entry. Only after receiving the acknowledgment messages from the

NVRAM, the committed cache line can be changed into the available state. And because

different cache line entries may complete out of order from the NVRAM, at each time

receiving the acknowledgment message, we will check if the cache line entries pointed by

the TC tail is changed into the available state. If it is in the available state, the TC tail will

continuously change its position until it points to the first entry that is not in the available

state, which makes room for future write requests.

To serve acknowledgment messages from the NVRAM, because cache lines are is-

sued to the NVRAM in FIFO order and different write requests of the same address are

handled in the same issue order by the NVRAM controller, thus the content-addressable

TC data array are compared with the address of the acknowledgment message and the

matched one nearest to the TC tail is set into available state, which is issued toward and

handled in the NVRAM first. On the other hand, to serve the miss requests from LLC,

the content-addressable TC data array are compared with the address of the miss request

and the matched one nearest the TC head is returned toward the LLC, which is the newest

because data is inserted from the TC head in FIFO order.
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3.3.2 Software Interface

Software now only needs to provide the transaction boundary information. As shown

in Figure 3.6, transactions can be implemented as following:

Transaction {...}

. This function will be compiled into CPU primitives TX_BEGIN and TX_END. En-

countering these primitives, CPU can execute in both normal mode (without persistence

guarantee) and transaction mode (with persistence guarantee) (Figure 3.8). If CPU is exe-

cuting the codes enclosed by TX_BEGIN and TX_END, then it is in the transaction mode.
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Otherwise, it is in the normal mode. As illustrated in Figure 3.7, CPU maintains a mode

register that indicates whether it is in the normal or transaction modes. CPU also main-

tains a next transaction register that differentiates the execution of different transactions

in programs. If the value of the mode register is non-zero, CPU is in the transaction mode.

If the value of the mode register is zero, then the CPU is in normal mode. In the normal

mode, CPU will only issue writes to L1 caches. In the transaction mode, CPU will issue

write requests to both the L1 caches and the TC. Write requests issued to the L1 cache

is tagged with persistent flag to let existing cache hierarchy differentiate persistent and

volatile cache lines. Write requests issued to the TC contains the transaction ID. At en-

countering TX_BEGIN, CPU will copy the transaction ID from the next transaction ID

into the mode register and enter the transaction mode. The next transaction register will

automatically increase by one for the next transaction to be executed. And at encountering

TX_END, CPU will issue commit request to the TC to let the TC know that a transaction

commits, set the mode register as zero and enter the normal mode.

3.3.3 Other Modifications in the Processor

In Figure 3.7, each cache line in the existing cache hierarchy is modified to record if

it is persistent cache line with one additional persistent or volatile flag (P/V). Persistent or

volatile information is provided from the write requests issued from CPU. The LLC cache

controller is modified to drop persistent eviction and have to issue miss requests toward

both the transaction cache and the NVRAM controller and use the newer data from the

transaction cache first. After handling a persistent write request, the NVRAM controller

is modified to send an acknowledgment message with the same data address back toward

the transaction cache to let the TC know that a backup is written back into the NVRAM.

The acknowledgment message can utilize the address bus the same as the read request to

transfer the address information of the written back cache line.
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Component Type Size
CPU TxID/Mode register flip-flops 6 bits
CPU Next TxID register flip-flops 6 bits
Cache P/V flag SRAM 1 bit
TxID in TC data array STTRAM 6 bits
State in TC data array STTRAM 1 bit
TC head/tail pointer flip-flops depends on TC data array size
Other TC components

(Multiplexer, tag register) flip-flops depends on TC data array size

TC data array STTRAM flexible

Table 3.1: Summary of major hardware overhead.

3.3.4 Accommodating Multicore Systems

The write requests issued to both the L1 cache and the transaction cache are not syn-

chronous. The cache line of a write request is directly inserted into the TC, but is inserted

into the L1 cache and visible by other cores after cache coherence protocol. Besides,

the TC is readable. Therefore, the TC may make some cache lines visible to other cores

earlier than cache coherence protocol allows so. Before the L1 cache controller com-

pletes the write coherence protocol operation of an to-be-inserted cache line, the to-be-

inserted cache line may be inserted into the TC and read by the other read requests from

the other cores. To address this multicore issue, we force the TC controller to wait for the

L1 cache controller to complete the corresponding coherence operation of corresponding

writes and obtaining the ownership of the write request. To this end, we implement a

TC request queue. Persistent write requests issued from CPU are first buffered in the TC

request queue. After the L1 cache controller finishes the cache coherence operation of

corresponding writes, the L1 cache controller will send a finishing signal to the TC con-

troller. Until then, the TC can start serving the corresponding persistent write requests at

tail of the TC request queue1. The finishing signal can be implemented the same way as

acknowledgment signals among traditional cache controllers.
1Under x86 architecture, the L1 cache controller will follow the total store order memory consistency

model and handle write requests in program order. Thus, upon receiving a finishing signal, it must indicate
that the write request at tail of the TC request queue finishes cache coherence protocol.
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3.3.5 Hardware Overhead

For the storage overhead showed in Table 3.1, a cache line in the TC data array has

to record transaction ID (TxID), state and cache line data (tag and data). For a core with

a 4KB transaction cache size, if each transaction only touches one cache line, there will

be at most 64 executed transactions (4 * 1024 / 64) on a core, so all the CPU TxID/Mode

register, next TxID register and TxID in TC data array needs 6 bits. And both P/V and

state flag needs 1 bits. The total additional bits for a cache line in the TC data array are

7 bits (TxID + state) and the total additional bits for the existing cache hierarchy is 1 bit

(P/V), which is much small compared to a cache line with 64 bytes and tag data. And with

a multi-core system of 4 processors, the additional TCs size 16KB (4*4KB) are not much

compared to the LLC size 64MB. Besides, the size of the transaction cache can be flexibly

configured based on the transaction sizes of the processor’s target applications.

For the logic modification overhead, the logic modification of the existing cache hier-

archy is not much, which is to drop eviction requests, send finishing signals and issue miss

requests toward the TC. And the NVRAM controller only have to sent back the acknowl-

edgment messages. All can be completed with simple logic. Besides, the transaction

cache logic can simply adopt the logic of the CAM FIFO hardware structure to serve miss

request from LLC or acknowledgment message from NVRAM with content-addressable

data array and write or evict the cache line in FIFO order.

3.3.6 Detailed Transaction Cache Execution Example

Figure 3.9 shows the detailed execution of the same transaction example as before.

We divide the execution sequence with time T1, T2 and T3. At executing ”TX_BEGIN”

before time T1, CPU 0 will get the transaction ID from the next transaction ID initialized

with 1. We can see that after executing ”TX_BEGIN”, CPU 0 has mode ID register with

value 1, which is in the transaction mode. And in the transaction mode, all the data writes

will be issued toward both the existing cache hierarchy and the transaction cache. Requests

issued toward the existing cache hierarchy will set up ”P” flag to know that it is persistent

request. Requests issued toward transaction cachewill have transaction ID information. In
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P A 0
P B 20

Next TxID = 2

Figure 3.9: Detailed transaction cache execution example

the beginning, all the entries in the transaction cache is in available state. After receiving

requests from CPU, the transaction cache will insert the data with transaction ID and set

them into active state. We can see, from Figure 3.9., during time L1 to time L2, CPU

0 is handling store requests A and B. And during the same time, the transaction cache

will receive corresponding store requests from CPU and insert them in the same as the

issuing order from CPU. Cache line of request A is inserted first than the one of request

B. After time T2, at executing ”TX_END”, CPU 0 will send a commit request with the

transaction ID information to the transaction cache, set mode register as 0 and enter the

normal mode. Receiving the commit request with the transaction ID, the transaction cache

can use the transaction ID of the commit request to set all the state of the cache lines of
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Time
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Figure 3.10: Eviction order problem on multi-cores

a transaction into committed state and commit the transaction. After this moment, all the

committed cache lines of the transaction 0 can be evicted toward NVRAM. After evicting

the committed cache line A, the data A in NVRAM is updated from original version 10

to new version 0. And after writing the data A, the NVRAM controller will send back

the acknowledgment message toward the transaction cache and the transaction cache can

remove the cache line A, set the corresponding entry into available state and make room

for future writes.

3.4 Detailed Discussions of Multicore Systems

With multi-cores, one important thing to be noted is that different cores may touch

the shared cache line of the same address. At this time, the execution order have to be

carefully handled. Different cores have to see the shared data in the same value. That’s

whywe need cache coherence. But, in the above design, the transaction caches of different

cores are not synchronized, which may results to two problems.

Eviction order problem: The first problem is that the insertion or write-back order
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Figure 3.11: Early read problem on multi-cores

toward the transaction cache may be different from the results of cache coherence. For

example, in Figure 3.10, two cores 0 and 1 execute a transaction to increase the shared

variable A by 1. Core 1 has variable A = 1 and core 0 has variable A = 2, so it is obvious

that the execution order and cache coherence results is that core 1 executes earlier than

core 0. Both cores finish the transaction and backup data in the transaction cache. At this

moment, the transaction cache will issue the write-back request of the committed variable

A toward the NVRAM at background. However, the issue order between different trans-

action caches is not synchronous. The transaction cache doesn’t check if other transaction

cache has the data of the same address to be written back. Therefore, the final result may

not match the execution results on a multicore system. For example, in Figure 3.10, if the

transaction cache of core 1 writes back the data of variable A afterward than core 2, then

the final value of variable A is 1 but 2, which is inconsistent.

Early read problem: The second problem is that if we directly insert data into the

transaction cache, early read problem may happen. The problem results from that our

transaction cache is readable. If we insert data and write data into the transaction cache
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TC Request 
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Write Request

TxID SeqID Address Data
1 0 (Invalid) 0xAAAA 0

TxID SeqID Address Data
1 1 0xBBBB 20

Figure 3.12: Transaction request queue

earlier than the cache coherence results, read requests from other cores may be served from

the transaction cache that should be seen afterward than the read request. Fig. 3.11. is an

example that read miss on variable A from core 1 is early served from the new version

variable A in the transaction cache that actually will be executed and seen by other cores

after core 1’s read miss.

To solve above problems, we have to ensure that the write-back order matches the

cache coherence and preventmaking data readable earlier than the cache coherence results.

To prevent early read problem, we can add a flag into transaction requests to indicate

that if the cache coherence operation of this request is finished to know that the data can

be inserted into the transaction cache. And to ensure eviction order, a naive way is to

utilize the cache coherence mechanism to let cache transfer the dependency order between

different cores after the cache coherence. However, this will make cache controller design

more complicated because cache controllers have to track and transfer the dependency

information in the messages during cache coherence. Besides, the transaction cache have

to check if the corresponding dependent cache line on the other core has been issued to

NVRAM, which is not simple.

Differently, we apply a simple method to know the write-back order. What we do is to

record the global write order results after cache coherence, but not the detailed coherence

relation between different cores. We add two registers (global sequence id and global

write-back sequence id) into our design.

• Global sequence id: record the total write order among all the cores.

• Global write-back sequence id: record the last sequence id issued towardNVRAM

to synchronize the write-back order between different transaction caches.

Each write request in the TC request queue is added a sequence id flag as Figure 3.12

shows. Sequence id records the order of each write request and indicate that if the write
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request finishes cache coherence. Write request with sequence id larger than zero means

that the request finishes cache coherence and can be handled by the transaction cache con-

troller and inserted into the transaction cache data array. After finishing a cache coherence,

L1 cache controller will issue a finishing signal toward the TC request queue. Receiving

the finishing signal, the sequence id of the write request at tail 2 in the TC request queue

will be filled with the value from the the global sequence id and the global sequence id

will then automatically increase by one to maintain the order of different write requests.

The cache line in the transaction cache data array also have to record the sequence

id, which will be copied from the write request. With the recorded sequence id, to write

back a cache, the transaction cache have to check the sequence id of the cache line. If the

sequence id of the cache line matches the global write-back sequence id, then it can be

issued toward NVRAM. After issuing the cache line with matched id, the global write-

back sequence id will increase by one tomake the next cache line with matched id issuable.

By this way, write-back order of the cache lines from transaction caches of different cores

will match the cache coherence results.

3.4.1 Cache Hierarchy Modification for Mulicore Systems

LLCmodification to get dropped nonvolatile requests: Different transaction caches

may have the data of the same addresses and only one among them is the newest. To get

the new version dropped data, LLC will issue read miss request toward transaction caches

and NVRAM and use data from transaction cache at first because data from transaction

cache are newer than NVRAM. But, one important thing to be pointed out that different

transaction caches may all have different version data of the same cache line, but only one

among them is the newest one. To solve this, LLC can simply use the cache line returned

from transaction caches with the biggest SeqID, which means that it is the newest inserted

data.
2Under x86 architecture, L1 cache controller will follow the total store order memory consistency model

and handle write requests in program order. And thus, at receiving a finishing signal, it must indicate that
the write request at tail of the TC request queue finishes cache coherence.
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3.4.2 Hardware Overhead for Multicore Systems

The additional storage overhead is the global sequence id, the global write-back se-

quence id and the sequence id recorded in the write request and the TC data array. For a

core with a 4KB transaction cache size, if each transaction only touches one cache line,

there will be at most 256 executed transactions (4 * 1024 / 64 * 4) on a multi-core system

of 4 processors, so the additional bits of the sequence id are 8 bits.
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Chapter 4

Experimental Results

4.1 Experimental Setup

Table 4.1: Machine Configuration

Device Description
CPU 4 cores, 2GHz, 4 issue, out of order
L1 I/D Private, 32KB/core, 4-way LRU, 64B line, 3-cycle, 1.5ns
L2 Private, 256KB/core, 8-way LRU, 64B line, 9-cycle, 4.5ns

L3 (LLC) Shared, 64MB, 16-way LRU, 64B line, 20-cycle, 10ns
Transaction Cache

(STTRAM)
Private, 4KB/core Fully-Associative CAM FIFO [21, 30],

64B line, 21-cycle, 10.5ns [29]

2 Memory Controllers 8/64-entry read/write queue,
read-first or write drain when the write queue is 80% full

NVRAMMemory
(STTRAM)

8GB, 4 ranks, 8 banks/rank, 64B row size,
65-ns read, 76-ns write [36]

DRAMMemory DDR3 8GB, 4 ranks, 8 banks/rank, 64B row size

To evaluate the transaction cache design, we conduct experimentswithMARSSx86 [20]

and DRAMsim2 [26]. MARSSx86 is a cycle-accurate full-system simulator that uses

PTLsim [35] for CPU simulation on top of the QEMU [1] emulator. DRAMSim2 is

a cycle-accurate simulator of main-memory systems. The DRAMSim2 is modified to

model hybrid persistent memory system with DRAM and NVRAM through memory-bus.

The cache model of MARSSx86 is modified to simulate related works and the transac-

tion cache design of this work, which serves the miss requests from LLC and controls the
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Table 4.2: Workloads

Name Description

graph Randomly generate an edge.
If it is not added, add it into the adjacency list graph.

rbtree Randomly search a value in a red-black tree.
If it doesn’t exist in tree, then insert it into the red-black tree.

sps Randomly swap two different elements in an array.

btree Randomly search a value in a B+tree.
If it doesn’t exist in tree, then insert it into the B+tree.

hashtable Randomly generate a key-value pair.
If it doesn’t exist, then insert it into the hashtable.

write ordering toward NVRAM. NVRAM model of DRAMSim2 is modified to transfer

back an acknowledgment message after finishing a persistent write. We set up a multi-

cores system with four cores, which is Intel Core i7 like. The memory system has two

memory controller for NVRAM and DRAM respectively. Both the transaction cache and

NVRAM apply STTRAM technology [29, 36]. The default transaction cache has 4KB

size and 10.5ns latency. Table 4.1 describes the core and memory configurations.

To analyze different mechanisms, we implement five benchmarks similar to the bench-

mark suite used by NV-heaps [2]. These benchmarks have similar behaviors to the pro-

grams used in many of databases and file systems. The size of all manipulated key and

value data in these benchmarks is 64 bits. We simulate each benchmark for 1.7 billion

instructions. Table 4.2 lists the descriptions of the benchmarks.

We compare four mechanisms:

• SP (Software-supported Persistence)

The software mechanism that supports write-ahead logging and ensures the write

ordering through software instructions.

• TC

The transaction cache mechanism proposed in this work.

• Kiln [36]
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A prior work that adopts a non-volatile last level cache and maintains writing order-

ings at the hardware level.

• Optimal

It represents the native execution without persistence overhead.

SP runs the transactions with logging operations and other three mechanisms run the

transactions without logging operations. Both TC and Kiln applies hardware to ensure

atomicity without logging operations.

4.2 Performance Evaluation
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Figure 4.1: Performance improvements (IPC)

0

0.2

0.4

0.6

0.8

1

graph rbtree sps btree hashtable geomean

N
o

rm
al

iz
ed

 T
h

ro
u

gh
p

u
t

SP TC Kiln optimal

Figure 4.2: Performance improvements (Throughput)
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Figure 4.3: LLC miss rate

Figure 4.1 and Figure 4.2 show the IPC (instructions per cycle) and throughput (trans-

actions per cycle) of various schemes normalized to the optimal. We can see that software-

supported persistence (SP) does impose significant overheads for maintaining persistence,

achieving only 47.7% and 31.6%performance of the optimal case for both IPC and through-

put metrics. The proposed transaction cache (TC) mechanism performs comparable to the

optimal case for both IPC and throughput metrics (98.49% and 98.5%). In this experi-

ment, we use a 4K transaction cache per core, and find that the CPU hardly stalls due to

a full transaction cache. Only sps, the benchmark with the highest write intensity among

the benchmarks, stalls for 0.67% of execution time.

Kiln achieves 87.8% performance of the optimal case for both IPC and throughput.

The reason is that when committing each transaction, the cache controllers of Kiln need

to flush the writes of that transaction into the nonvolatile LLC; corresponding LLC blocks

cannot be written back to NVRAMmain memory before the cache flushes complete. Do-

ing so blocks subsequent cache and memory requests during transaction commits and re-

sults in bursts of traffic in the cache hierarchy. Besides, to replace a cache line in the

LLC, Kiln have to wait the to-be-replaced cache line for writing back into NVRAM and

results to longer load/store latency for bringing data into the LLC. Figure 4.3 shows the

miss rate of different schemes normalized to the optimal case. On average, Kiln incurs

16% higher LLC miss rate compared to TC and the optimal case. The reason is that Kiln

needs to keep all uncommitted cache blocks in the LLC, which can prevent other reusable
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Figure 4.4: Write traffic

data being stored in the LLC. Our design does not incur such constraints in the LLC and

therefore leading to much lower LLC miss rate.

Figure 4.4 shows write traffic to the NVRAMmemory of various schemes normalized

to the optimal case. We can see that SP has close to 20 times more write traffics than

the native execution (Optimal) due to logging overheads and cache flushes. Both TC and

Kiln reduces the write traffics significantly, but still have more writes toward NVRAM

than the optimal. The reason is that to ensure data persistence, TC and Kiln have to write

back persistent data after a transaction commits or for a nonvolatile LLC replacement, but

for the optimal case, these persistent data is just cached and coalesced in upper volatile

cache layer.

Even though TC has higher write traffics than the naive execution, it can still achieve

comparable performance to the optimal case as shown above. This is because these writes

are from the TC data path that are decoupled from the program execution. TC has more

write traffic than Kiln because after a transaction commits, TC directly update the trans-

action data to NVRAM but Kiln only flush the data into the nonvolatile LLC.

The increased write traffic will affect the latency of nonvolatile read requests and re-

sults to performance degradation. Figure 4.5 shows the NVRAM read latency of various

schemes normalized toward the optimal case. In average, TC and Kiln have 48.3% and

21.73% longer read latency of the optimal case respectively, which is unavoidable for

persistence.
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Figure 4.5: Read latency
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Figure 4.6: Load latency

Figure 4.6 shows the CPU persistent load latency of various schemes normalized to-

ward Kiln. Because of cache flushes and the changes to the LLC replacement due to

maintaining transaction ordering, Kiln has 2.41 times and 2.3 times load latency com-

pared to the optimal case and TC, in average. Our mechanism TC achieves load latency

close to the the optimal case, which only increases a little because of write traffic.

4.3 Sensitivity Analysis

Figure 4.7 shows the throughput under different transaction cache size from 1KB to

8KB normalized to the optimal case. The transaction cache size affects how often the CPU

has to stall for persistent writes. As we can see, for the benchmarks tested in this work,

a 4K TC size is quite sufficient. Even with 1K and 2K TC, it has only 1.8% and 0.2%
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Figure 4.7: Throughput under different transaction cache size
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Figure 4.8: Throughput under different transaction ache latency

performance degradation compared to the 4KB transaction cache.

Figure 4.8 shows the throughput under different transaction cache latency from 5.25ns

to 42ns normalized to the optimal case (the default latency is 10.5ns). The transaction

cache latency affects the time to serve miss requests from LLC and insert transaction data

into TC. As we can see from the results, our design is quite insensitive to the TC latency.

The reason is that with the new persistent path, operations related to maintaining atomicity

or write ordering is decoupled from the program execution.
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Figure 4.9: Throughput under different NVRAM latency

Figure 4.9 shows the average throughput under different NVRAM latency from 0.5x

to 2x (the default 1x latency is 65ns read, 76ns write). With 2x NVRAM latency, TC can

still achieve 96.2% of the optimal performance. We can also observe that Kiln is more

sensitive to the NVRAM latency. With a better NVRAM technology, i.e., 0.5x latency,

TC can further improve performance, 98.8% performance of the optimal case.
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Chapter 5

Related Works

5.1 NVRAM Access Library

Persistent memory utilizes nonvolatile memory (NVRAM) as mainmemory level stor-

age. Compared to traditional disk or flash storage, persistent memory brings many perfor-

mance benefits with better access latency of NVRAM and closer layer toward CPU. To

exploit and use NVRAM more efficiently without compromising the performance poten-

tial of NVRAM, many works pay much effort into it. To make programmer easily operate

and allocate data into nonvolatile memory, NV-heap [2], Mnemosyne [32], nvml [13],

nvm-direct [19] and HEAPO [10] propose to build NVRAM library to help programmer

operate data in NVRAM like traditional memory allocation and management library. With

these libraries, programmer can utilize new proposed API to easily develop and build pro-

grams that target and use NVRAM.

5.2 NVRAM File System

Besides of allocating data into NVRAMvia load/store interface, as a storage, it is com-

mon that we manage and operate data via file system abstraction. However, because of

different access speed and operation behavior (load/store) of NVRAM compared to disk

and flash, traditional file system may not suit persistent memory well. Directly utilizing

traditional file systems may decrease the benefits of NVRAM and results to large soft-
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ware overhead. BPFS [3], PMFS [5], SCMFC [33], Aerie [31] and NOVA [34] propose

to rebuild file systems that utilizes the fine-grained access behavior of NVRAM to elim-

inate software overhead and remove duplicate buffer cache copy in DRAM, which suits

persistent memory well.

5.3 Write Ordering for NVRAM Persistence

To utilize NVRAM as persistent storage, data persistence guarantee is an important

topic. To ensure data persistence, we need to ensure the datawrite ordering towardNVRAM.

Mnemosyne [32], nvm-direct [19] and nvml [13] utilizememory fence (sfence andmfence)

and cache flushing instructions (clflushopt, clwb and pcommit) to ensure the write order-

ing. However, utilizing these instructions will delay later requests to be handled, bound

ordering with durability and result to poor performance. To solve this, epoch barrier [3]

proposes to use a new software and hardware primitive to make software declare order-

ing constraint toward hardware. Receiving these information, cache eviction and memory

scheduling way will follow the software declared rule. DP2 [28] finds out that epoch

barrier will push too much constraint on memory controller and relaxes the ordering con-

straint between logs and target data updating operations of WAL. Strand persistence [22]

points out that program may not only have one single ordering rule from the beginning till

the end of a program and can have different ordering dependency among different part of

a program and thus, proposes strand command to make program to start a new ordering

constraint among a program. Giles and Doshi et al. [7, 4] propose a different direction

and delegate the logging and real data updating operation toward the NVRAM controller.

NVRAM controller persists data at background in parallel with CPU execution. Joshi et

al. [12] finds out that even though epoch barrier makes cache and memory layer follow the

ordering at background in parallel with CPU execution, to evict a cache line and ensure

the ordering, it will result to long cache stall time, let cache eviction become critical path

and thus, affect the overall performance. Therefore, Joshi et al. propose to proactively

evict the cache lines earlier to remove the ordering constraint from critical path.
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5.4 Write Atomicity for NVRAM Persistence

In addition to the write ordering, increased write traffic of duplicated writes to protect

writes atomicity and avoid half completed operations for persistence after a power failure

is also an severe problem. To reduce the write traffic toward NVRAM and increase cache

efficiency, Loose-ordering [17] proposes to utilize multi-version backup at cache layer

and speculatively write back the data. Kiln [36] applies nonvolatile last level cache to

eliminate backup data operations overhead. WSP [6] proposes to use the residual energy

to save whole system state and can continue a program execution after a power failure.

With the ability to resume a program after a crash, half finished operations will not be a

problem and duplicated writes for atomicity are removed. Instead of whole system states

including device states, ThyNVM [24] proposes that checkpointing only data state and

CPU execution state can ensure data persistence. Besides, thyNVM overlaps execution

with checkpointing operation to hide persistence overhead.

To improve performance under persistence constraints, all above methods follow the

design way that changing the existing cache hierarchy or memory layer to avoid persis-

tence overhead. However, it is complicated to combine the existing cache hierarchy logic

with these new design and changing the existing cache hierarchy or memory just propa-

gates the persistence overhead toward them and results to performance degradation at the

critical time to ensure persistence. Our method provide a new path to extract the persis-

tence overhead out of the overall architecture, conquer it and solve the write traffic and

ordering problem at once.

5.5 Scheduling Methods for Stand-alone NVRAM Main

Memory System

On the other side, NVM duet [16] and FIRM [37] improve the performance of the

system that uses NVRAM as stand-alone main memory without DRAM. Both volatile and

persistent write requests will go toward NVRAM, so a well-defined scheduling method of
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NVRAM controller is important. NVM duet makes NVRAM controller schedule volatile

requests without persistent constraints and prioritizes the persistent requests which are

more critical than volatile requests. FIRM analyzes the volatile and persistent workload

behaviors, balances the time to process volatile or persistent requests and reduces the bus-

turnaround time for the write intensive property of persistent workloads.
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Chapter 6

Conclusion

To ensure data persistence of persistent memory, the software solution based on Intel

released new instructions incurs much performance degradation. Extra fence and backup

operations cause longer write latency and the write ordering pushes much execution bur-

den on CPUs. To solve these problems, related works propose to modify cache hierarchy

or memory controller to hide persistence overhead at background in parallel with CPU

execution. However, these design philosophies will propagate the persistence overhead

toward the existing cache hierarchy or memory layer at some critical moments. Differ-

ently, we attempt a new direction, propose an efficient hardware mechanism to free the

existing hardware architecture from ensuring the write ordering, paves a new persistent

path via additional nonvolatile hardware (transaction cache) to eliminate extra backup op-

erations and be responsible for the write ordering. The experimental results show that our

efficient hardwaremechanism eliminates the software overhead to ensure data persistence,

extracts persistence overhead from the existing architecture and achieves the performance

near the one without data persistent guarantee.
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