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摘要

IA-32為一個廣泛使用的指令集架構，為 x86的 32位元版本，指令的

功能性很豐富但暫存器的數量則較少。如果在這個架構下我們可以擁

有更多暫存器，藉由將更多變數保留在暫存器中或在指令排程上增加

平行度，就有機會改進效能。雖然 64位元版本的 Intel64中暫存器的

數量有所增加，但現存的 32位元應用程式並沒有辦法利用到。其中不

少嵌入式或桌面應用傾向於保持 32位元避免額外增加的資料量。此

外，作業系統或執行時期函式庫也可能需要重新編譯甚至重新開發。

在本論文中，我們設計了一個方法讓 32位元的程式有機會利用到

這些延伸暫存器。在我們的設計中，IA-32的暫存器陣列被增加到 16

個，這個架構稱為 RegX16。32位元的程式可以被編譯成 RegX16，但

仍直接和舊有的 IA-32函式庫連結，稱為混和模式 (mixed-mode)二進

制檔，同時包含了原架構和延伸架構的指令在其中。在這樣的架構中

需要處理器模式 (processor mode)來分辨當前指令的架構以正確解碼。

執行時在遇到從 IA-32的指令執行到 RegX16指令時，處理器模式需要

被切換。我們實作了一個編譯器可以利用到延伸暫存器，並在暫存器

分配和指令排程時得到好處，並且自動地加入模式切換的指令。模式

的切換是根據一個我們設計的方法，並且最佳化過以降低模式切換的

負擔。

我們使用 EEMBC效能測試集來評估 RegX16對效能的改進，在純

RegX16模式下最大的改進幅度為 19.5%，平均則有 10.9%。在測試程
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式和舊有的 32位元函式庫連結的情況下，因為模式切換的額外負擔，

平均的改進為 5.1%，其中非必要的模式切換已被我們以連結時期最佳

化 (LTO)削減，對某些程式下，混合模式仍然可以達到 21.2%的加速。

此外，我們也評估了延伸暫存器對指令排程的改善。我們精確的根據

RegX16處理器的架構來設計我們的指令排程方式，以完全利用延伸暫

存器帶來的優勢。在不使用延伸暫存器時，指令排程僅能帶來 3.9%的

加速，但一併使用延伸暫存器時，整體的效能改進了 9.7%。
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Abstract

IA-32, the 32-bit version of x86, is a commonly used ISA (Instruction Set

Architecture), which has feature-rich instruction set but only several registers.

If there are more general purpose architectural registers defined in the ISA,

the performance can be improved by promoting more variables to registers,

holding more temporaries in registers, and exposing more ILP (Instruction

Level Parallelism) for code scheduling. Although the 64-bit version, Intel64,

has been extended with more registers, such extended registers cannot be

exploited by 32-bit applications. Many embedded and desktop applications

prefer to stay in 32-bit mode to avoid increased data working set. In addition,

the operating system and runtime libraries have to be recompiled or even

redeveloped for such a new architecture.

In this thesis, we design a mechanism which gives 32-bit applications an

opportunity to exploit the extended registers. In our design, the general pur-

pose register file in the original IA-32 is extended to 16 registers. We call this

extended architecture RegX16. A 32-bit application could be recompiled to

RegX16 yet still linked with the legacy IA-32 libraries (in executable format).

Such an application binary is called mixed-mode binary, which is consist of
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instructions from both the original and the extended ISAs. Processor mode

is introduced to identify which ISA is in use so that the current instruction

can be correctly decoded. During binary execution, the processor mode has

to be explicitly switched when transiting between the IA-32 and the RegX16

mode. We implement a compiler that automatically take advantages of the ex-

tended registers in both the register allocation and the code scheduling phases.

Furthermore, our compiler also automatically inserts mode switching instruc-

tions to mixed-mode binaries according to our mode switching mechanism.

Optimizations to reduce mode switching overhead are also in place.

The EEMBC benchmark suite is used to evaluate the performance im-

provement of RegX16, the greatest improvement observed is 19.5%, with an

average speedup of 10.9 for the pure RegX16 binary. If the benchmarks have

to be linked with legacy 32-bit libraries as mixed-mode binaries, the improve-

ment is lowered to 5.1% on average due to the increased mode switching

overhead. In the above experiments, we have exploited the link-time opti-

mization (LTO) to eliminate unnecessary mode switching. For some applica-

tions, LTO has been quite effective, in one case, the mixed mode application

still can get 21.2% of performance gain from the extended register. Further-

more, we also evaluate the performance improvement of exploiting extended

registers on code scheduling. We have more accurately modeled the RegX16

micro-architecture to fully exploit the extended register in code scheduling.

Our revised code scheduling model improves the performance by 3.9% with-

out using the extended registers. When the extended registers are used, the

average performance gain increased to 9.7%.
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1 Introduction

x86 [4] is a family of CISC (Complex Instruction Set Computing) instruction set archi-

tectures (ISAs) , which has variable length instructions, complex addressing mode, and

feature-rich instructions but much fewer general purpose registers (GPRs) than modern

RISC ISAs. IA-32, the first 32-bit version of x86 designed by Intel in 1985, has only

eight GPRs. However, ARMv7 [7] and other earlier series already have 16 GPRs, and

the latest ARMv8-A has 32 GPRs. During the evolution of x86, extensions to IA-32 have

been continuously introduced. However, the number of registers in IA-32 has never been

increased even if the processors actually have larger register file for renaming in out-of-

order execution. In the 64-bit version of x86, called Intel64, the register file is extended to

16 GPRs to improve the performance of x86. Nevertheless, even though Intel64 proces-

sors can execute IA-32 code in compatible mode, the extended registers are not available

for IA-32 applications.

Legacy applications have to be recompiled to exploit the new architectural features in

a brand new ISA. Besides, redevelopment of operating systems and runtime libraries is

required. In practice, to preserve investments of existing software, we often seek a mixed-

and-match execution environment. For example, to exploit new architectural features,

applications must be recompiled. However, such executables may want to link with the

old mode libraries. This is because the source code of some old libraries may not be

available for recompilation. How to work in such a mixed-and-match mode environment
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is highly desirable. RegX16 meets this goal in that the processor can execute legacy IA-32

binaries in IA32 mode, so we can run existing operating systems as well as many legacy

applications. When new applications need to take advantage of the extended registers,

we can also leverage existing compilers designed for x86 with mature optimizations, only

retarget the register allocator and the code scheduler.

If we cannot recompile applications for some reasons, other techniques, such as Static

or Dynamic Binary Translation (BT), can be used. BT is not the top choice for us due

to the runtime overhead. Instead, we are interested in the mixed-and-match scenario

where we can mix compiled binaries with legacy library binaries. We can compile the

application programs to binaries in the extended ISA as long as we have the source codes,

and then the compiled binaries and legacy library binaries are linked as a mixed-ISA

application. For example, for an image processing application that uses a third-party

library for loading images with multiple formats, we cannot reduce the image loading

time, but we can improve performance of the image processing routines. A more general

example is the C standard libraries, which are required by every program written in C.

It is relatively easy to add an instruction without breaking the compatibility if there are

unused opcodes. For example, Streaming SIMD Extensions (SSE) do not conflict with

the original instruction set in IA-32 and can be mixed in instruction granularity. Neverthe-

less, it is more difficult to extend the register file, since changing the number of registers

will essentially impact all instruction encoding. In x86, the extended registers are only

available in Intel64 and encoded with an extra byte, which is called REX prefix in the

encoding method of Intel64. However, in other ISAs, we may not be able to extend the

encoding method of instructions. For example, in RISC designs, since the instructions

are fixed-length and may have exhausted all bits to encode themselves, there is no field

remains for specifying extended registers. As an alternative, processor mode can be in-
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troduced into such ISAs to identify how to decode and execute the instructions, and their

encoding methods can be totally different from the original ISAs. Some modern ISAs

already support mixed-mode execution, such as ARM. Two incompatible instruction sets,

ARM and Thumb, can be mixed in the same binary, and ARM processors can automat-

ically switch the processor mode according to mode bit, which is encoded as the least

significant bit in the instruction addresses. For ARM, each instruction is at least 16 bits

long, so the least significant bit is not used. For x86, this bit is not available since some

instructions are single byte. Therefore, for RegX16, we need to handle mode switching

by ourselves to ensure that each instruction is executed in correct mode. In this thesis, we

design a software-based mode switching mechanism for mixed-mode binaries, which is

fully independent to ISA features.

The case study of mixed-mode in this thesis is based on IA-32 and its extended ISA,

RegX16, which is an experimental ISA designed by RDC [6] (RDC Semiconductor Co.,

Ltd.). RegX16 extends IA-32 by introduced the extended register file and REX prefix

encoding of Intel64. Some IA-32 instructions are removed since they conflict with REX

prefixes, but our compiler can avoid generating those removed instructions and substitute

with other alternative instruction sequences. In the beginning, RegX16 processors are

designed for RegX16-only bare-machines and machine control units (MCUs). No oper-

ating system or legacy libraries exist on such machines and therefore mixed-mode is not

required. However, the processors can also be configured to enable RegX16 in user mode

only to boot and run IA-32 operating systems. In such a system, RegX16 can be enabled

individually for each process by itself. In addition, the processor mode, RegX16 or IA-32,

can be passively switched during the execution of mixed-mode binaries.

Our implementation is based on LLVM [5], and leveraging the fairly robust and ma-

ture x86 backend. We also improve some optimizations which benefit from the extended

3
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register file and our mode switching mechanism. In the experiments, we measure the

performance gain of code scheduling from extended registers, especially in the RegX16

processor we use. Static code scheduling is effective for our RegX16 processor since

it is in-order. In addition, we found that in our mode switching mechanism, the calling

convention can be changed incidentally with mode switching, and therefore we can use a

customized calling convention in the RegX16 mode, which is intended to further reduce

memory accesses.

The rest of the thesis is organized as follows. Section 2 provides the background of

this work. Section 3 describes the design issues and the development of the compiler.

Section 4 gives the benchmarks and our experiment set up, including results and analysis.

Section 5 summaries and concludes the work.

4
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2 Background

In this chapter, we first introduce x86 ISAs, which includes the register file and how the

registers are specified by instructions. Then we describe RegX16, an ISA extended from

IA-32, and some problems of mixing RegX16 with IA-32. In the remains of this chapter,

we introduce LLVM infrastructure, which is the base of our compiler for RegX16.

2.1 x86 Instruction Set Architectures

x86 is a family of ISAs, which includes 32-bit and 64-bit variants. The first 32-bit design

of x86 architecture is IA-32, which used to represent 32-bit versions of x86 in this thesis.

Besides, though the designs of 64-bit versions of x86 by Intel or AMD have some differ-

ences, they have same register files and most of the instructions. For convenience, we use

Intel64 to represent all 64-bit versions.

2.1.1 Instruction Encoding

Both IA-32 and Intel64 are CISCs, which the length of instructions is variable. Each

instruction is composed of several bit fields and encoded into several bytes. A bit field

can be an opcode to specify the operation, a destination register index, or a source register

index. Generally, there is no reserved bit in the encoding of an instruction [4].

For example, an ADD r/m32, r32 instruction in IA-32 need two bytes. Figure 2.1

5



	  

doi:10.6342/NTU201603161

opcode mod reg rm

0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0

ADD EAX, EBX

Figure 2.1: Opcode and ModR/M descriptor

shows an example that how an ADD EAX, EBX instruction is encoded. The first byte is the

opcode and the second byte is a ModR/M descriptor. In this example, opcode = 01h is for

addition operations. In the ModR/M descriptor, the first two bits, field mod, specify the

type of source operand; the next three bits, field reg, specify the source register, EBX; and

the last three bits, field rm, are for the destination register, EAX. The index field has three

bits, which is just enough for encoding the index of total eight registers. Since all bits are

used to encode the instruction, there is no bit remaining for encoding more registers.

The rm field can also be used for indirect addressing, and sometimes an instruction

may require a followed SIB descriptor for more complex addressing, which depends on

mod. We will not introduce them in this thesis but briefly introduce the encoding of

registers with ModR/M.

2.1.2 IA-32 Registers

There are eight GPRs can be used in most of the IA-32 instructions, and their data width

are 32 bits. Naming of the registers follows the legacy convention below:

• EAX, ECX, EDX and EBX — accumulator, counter, data and base registers, used

in general arithmetic operations. The indexes are 0–3, which are used in ModR/M

for specifying registers. For example, in figure 2.1, the source, EBX, is encoded to

reg = 3, and the destination, EAX, is encoded to rm = 0.

• ESP, EBP — stack pointer and stack base pointer, used to point out the top and the

6
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base of the stack. The indexes are 4–5.

• ESI, EDI — source index and destination index, used in some string operations on

byte sequences. The indexes are 6–7.

Modern compilers, such as GCC and LLVM, do not follow the convention above

during register allocation, except that ESP is reserved for the operations which are related

to memory accesses of stack.

The least significant 16 bits of all GPRs in IA-32 can be accessed by their 16-bit

versions, which are AX, CX, DX, BX, BP, SP, SI, and DI. The higher halves and lower

halves of the first four 16-bit registers can be accessed by their sub-registers. The higher

halves, the second significant byte of the 32-bit version, are identified by an ‘H’ suffix;

the lower halves are identified by an ‘L’ suffix, respectively. AH, CH, DH, and BH are

called high byte registers, and AL, CL, DL, and BL are called low byte registers.

The bit fields in an instruction only specify the register indexes of corresponding

operands. The data widths of registers are decided by opcodes or prefixes of the in-

structions. In figure 2.2, for example, the opcode for adding two 32-bit registers is ‘01h’;

adding 16-bit registers requires an additional operand-size override prefix, ‘66h’; adding

8-bit registers, has to use ‘00h’ as the opcode.

EAX
AH AL

AX

0831 15 7

ADD EAX, EBX → 01 d8
ADD AX, BX → 66 01 d8
ADD AL, BL → 00 d8

Figure 2.2: Register size and Encoding

7



	  

doi:10.6342/NTU201603161

0 1 0 0 W R X B

7 0

Flag Description
W If set, the instruction uses 64-bit operand.

R The extension bit of the reg field in ModR/M

X The extension bit of the index field in SIB

B The extension bit of the rm field in ModR/M

Figure 2.3: REX prefix encoding

2.1.3 Intel64 Extended Registers

In Intel64, the register file is extended to 16 GPRs. All registers are extended to 64-bit,

include the original ones in IA-32. The 64-bit versions of the original registers are RAX,

RCX, RDX, RBX, RSP, RBP, RSI, and RDI. Besides, eight extended registers are named

from R8 to R15, which also have the 32-bit versions with ‘D’ suffixes (R8D–R15D) and

the 16-bit versions with ‘W’ suffixes (R8W–R15W).

Since no unused bit reserved for specifying extended registers in ModR/M descriptors,

if any extended register is used, a REX byte is inserted as a prefix to the instruction. The

encoding of REX prefix is showed in figure 2.3. When a flag bit is set in REX prefix, the

corresponding operand is extended. For example, ADD EAX, R11D is encoded to ‘44 01

D8’. A REX byte, ‘44h’, is inserted as the prefix. The destination index in field rm is set

to 0 for EAX; the source index in field reg is set to 3, which specifies R11D but not EBX,

since the R-bit is set. Figure 2.4 shows the register mapping with flag bit.

In Intel64, all registers have their 8-bit versions, which are AL, CL, DL, BL, SPL,

BPL, SIL, DIL, and R8B–R15B. Not only the extended registers, but the last four original

registers, SPL, BPL, SIL, and DIL, need to be encoded with REX prefix. The flag bit in

REX and the field bits in ModR/M, totally four bits, are just enough to encode the index

of 16 low byte registers. Therefore, the high byte registers, AH, CH, DH, and BH, can

8
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32-bit Registers

Index 0 1 2 3 4 5 6 7

flag = 0 EAX ECX EDX EBX ESP EBP ESI EDI

flag = 1 R8D R9D R10D R11D R12D R13D R14D R15D

8-bit Registers

Index 0 1 2 3 4 5 6 7

without REX AL CL DL BL AH CH DH BH

flag = 0 AL CL DL BL SPL BPL SIL DIL

flag = 1 R8B R9B R10B R11B R12B R13B R14B R15B

Figure 2.4: Register mapping with the index and the flag bit in REX prefix

be used only if the instruction has no REX prefix, and it is illegal to use both extended

registers and high byte registers in an instruction at the same time.

2.2 RegX16 Instruction Set Architecture

RegX16 is the ISA used in our case study, which is an experimental ISA designed by

RDC (RDC Semiconductor Co., Ltd.) and currently implemented with FPGA board for

development.

2.2.1 Design and Features

The instruction set of RegX16 is almost the same as IA-32, but the register file is extended

to 16 GPRs, which exploit the design of Intel64 except the increased width. Therefore,

REX prefix is also used to encode the extended registers in RegX16. All registers in

RegX16 can be accessed in 32-bit, 16-bit, and 8-bit, with same register names and encod-

ing method as Intel64.

The advantage to leverage the existing Intel64 design is to reduce the cost of hardware

development, such as the register file and the instruction decoder. We can also leverage the

implementation of Intel64 in existing compiler, especially the registers, assembly format,
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and instruction emitter. However, the restriction on high byte registers is also brought to

RegX16. Even worse, not all IA-32 instructions are available, since some instructions

conflict with REX prefix and have to be removed.

RegX16 processors can execute codes in IA-32 mode or RegX16 mode. The mode

is controlled by the 28th bit in EFLAGS, which is reserved in IA-32. If the bit is set,

the process mode is RegX16; otherwise, the processor mode is IA-32. We can use the

instructions, PUSHF and POPF, to modify EFLAGS for mode switching. Since EFLAGS

belongs to task contexts, the processor mode of each process is automatically preserved

and resumed by the operating system when context switch occurs. Besides, to boot and

run existing IA-32 operating systems, the processor automatically disables RegX16 on

kernel codes by checking the Current Privilege Level (CPL) register. Because without

modifying the operating system, we cannot catch the event that a process is switched to

kernel mode and disable RegX16 before that.

2.2.2 Conflicts of Instruction Encoding

REX prefix is used for encoding extended registers in RegX16. However, it conflicts with

some IA-32 instructions and features.

Instructions INC/DEC 32r are removed from RegX16, since their opcodes overlap

with REX prefix. These instructions increase or decrease 32-bit registers by one, of which

the destinations are specified by 1-byte opcodes directly. The instructions require opcodes

from ‘40h’ to ‘4Fh’ for increments and decrements of eight registers, but the range of REX

prefix is from ‘40h’ to ‘47h’. Though the opcodes of DEC 32r are disjoint to REX prefix,

however, they share the same hardware with INC 32r and have to be removed together.

If a legacy binary with a INC/DEC 32r instruction is executed in RegX16 mode, the

processor will incorrectly decode the instruction as the REX prefix of the next instruction.
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Another restriction is that the high byte registers cannot be used with REX prefix in an

instruction together. However, some IA-32 instructions need particular high byte regis-

ters for source or destination operands. For example, 8-bit division instruction, DIV r/m8,

puts the remainder in AH and the quotient in AL. After the division, we cannot immedi-

ately use AH and extended registers in one operation. We have to move the result from AH

to another compatible register, such as AL, if we want to use the result in an instruction

with REX prefix.

2.2.3 RegX16 Processors

In this thesis, our designs and implementations are evaluated on the processor developed

by RDC. Since RegX16 is an experimental architecture, the processor is not a real product

but implemented with an FPGA board.

Instruction Issue

The processor is an in-order processor, but can issue at most three instructions in one

cycle. Multiple instructions can be executed in the same time if the required resources,

such as registers, do not overlap. For example, two addition instructions on different

registers can be issued in the same cycle. Therefore, the extended registers also bring

advantages to instruction level parallelism (ILP). A critical path can be broken into several

shorter paths and be executed simultaneously, since the dependency of physical registers

is broken.

There are some restrictions of instruction issuing on the RegX16 processor: first, the

function units, two arithmetic logic units (ALU) and one address generation units (AGU)

limit the maximum instruction can be issued because of structure hazards; second, if an

instruction uses the AGU, then it must be the last one in the issue group; finally, two
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instructions cannot be issued in the same group, if two instruction has data dependency,

which means read-after-write (RAW) on registers.

The instructions can be categorized into four classes by the required function units.

General arithmetic instructions on registers require one ALU only, called ALU-instructions.

Memory operations or addressing related instructions require the AGU, called AGU-

instructions. If the instruction has to modify register and access memory, for example,

a pop instruction that read the memory and increase the stack pointer register, requires

one ALU and the AGU, called MIX-instructions. Finally, some complex instructions,

such as division operations, have to degrade to several micro-instructions, which occupy

all function units during execution and called uROM-instructions. In summary, maximal

combination of instructions in an issuing group are: two ALU-instructions and one AGU-

instruction, or one ALU-instruction and one MIX-instructions. The order is fixed since

the AGU-instruction or MIX-instruction must be the last instruction in the group.

2.3 Mixed-mode Execution

In this section we describe the mixed-mode execution and mode switching problems by

two examples: ARM/Thumb and RegX16/IA-32.

Mixed ARM/Thumb

Thumb mode is introduced to ARM because of the code size issues. Thumb instruction

set consists of 16-bit instructions, but the ARM instructions are 32-bit. Because of the

smaller encoding space, Thumb instruction set has fewer operations and registers, but it

is useful for compacting code of simple functions and less code size may result in better

cache locality. Most modern compilers support generate mixed binary with ARM and

Thumb instructions.
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ARM and Thumb instructions cannot be mixed in codes directly but have to be con-

nected with branch instructions. ARM processors can automatically switch the mode

when the branching happens because the mode is encoded in the address of branch target.

The mode of targeting instructions is identified by the last significant bit (LSB) of the

addresses, since ARM and Thumb codes are two-bytes aligned and the LSB is free to use.

With such a hardware support, ARM and Thumb instructions can be even mixed in basic

block granularity with low mode switching overhead.

Mixed RegX16/IA-32

Because the one-byte increments and decrements are removed, we cannot execute IA-32

codes in RegX16 mode. In the scenario we described, we can recompile our application

to RegX16, but it still has to be directly linked with legacy libraries, which cannot be

recompiled. Such a mixed-mode binary is composed of RegX16 and IA-32 codes, and

they are mixed by function calls or jumps during execution.

During mixed-mode execution, we have to make processor mode be consistent with

executing instructions. The RegX16 mode is controlled by the mode bit in EFLAGS,

which requires several instructions to modify for either enabling or disabling. In the

environment of our experiments, a mode switch requires about 14 cycles. It is much

slower than a general instruction, which usually needs no more than two cycles.

To completely ensure the correctness, a naïve method is to wrap each RegX16 instruc-

tions with mode switches and every bundle now seems to be a single IA-32 instruction.

However, the performance is extremely bad because of the overhead of frequent and re-

dundant mode switches. Not only the correctness, but the performance should also be

considered in designing mode switching mechanism.
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2.4 LLVM Infrastructure

LLVM is an open source collection of compilers and toolchains, which begins as a re-

search project at the University of Illinois. LLVM is highly modular and support two-level

compilation. High level language, such as C language, is first compiled to LLVM inter-

mediate representation (IR) by the frontend; then the IR can be compiled to target binary

code by the backend [2]. LLVM 3.8, which is the version used in this thesis, support over

a dozen of backends, which are used to generate code for targeting ISAs.

Between frontends and backends, LLVM support a series of optimizations which do

not depend on the target ISA. These optimizations that can be applied to LLVM-IR code,

are called machine-independent optimizations. On the other hands, machine-dependent

optimizations have to be applied in backends, since they require more information about

the target. Besides, common optimizers are reused and shared among all backends.

Unlike optional optimizations, some works are necessary for code generation, for

example, DAG lowering, instruction selection, register allocation, instruction encoding,

etc. Each of these steps, include the optimizations, are handled by a particular “pass” in

LLVM. We can customize LLVM by modifying existing passes or inserting new passes.

2.4.1 x86 Backend

The Intel64 and the IA-32 is handled in one backend. Since Intel64 is extended from

IA-32, they very similar in many aspects. For example, most of the instructions have

same encoding in both ISAs; The register definitions are similar, but Intel64 has eight

extended registers and more low byte registers. Therefore, Intel64 and IA-32 are defined

as “subtargets” of x86 in LLVM to make use of the common designs and implementations

of the backend. For example, the instruction encoder is shared by both ISAs, except that
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it may insert REX prefix if targeting Intel64. There is also 16 GPRs in the definition of

the register file by default, except that the extended registers are preserved in IA-32.

2.4.2 Register File and Calling Convention

The register file of an ISA has to be described in the backend. The names, number,

and width of registers have to be defined in the TableGen description file. In another

description file, the calling convention is defined, which includes the callee-saved and

caller-saved registers and the how arguments are passed in function calls.

In register allocation, though the algorithm is generalized, the use of registers can be

partially controlled by the backend. In x86, for example, there are 15 registers can be used

in register allocation, but a getReservedRegs method is used to specifying the forbidden

registers in IA-32. Besides, the classes of registers are also defined, which are used to

define the format of instructions. For example, a MOVZX r32, r/m8 instruction is defined

to use a GR32 register for the destination and a GR8 register for the source in Intel64, but

the source register can also be GR8_ABCD_H, which is the class of high byte registers,

in IA-32.

Unlike the registers, the calling convention is defined individually for each subtarget.

Only the callee-save registers (CSRs) have to be defined, and LLVM assume that other

GPRs are caller-save. In addition, how arguments are passed is defined by a sequence of

operations, which include type checking and corresponding actions for arguments.

2.4.3 Instruction Scheduling

In LLVM, instruction scheduling is separated to two phases: the pre-RA scheduling and

the post-RA scheduling. The pre-RA pass is executed before register allocation, which

aims to balance register pressure and ILP. After register allocation, some instructions for
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spilling and restoring register are inserted, and we have to schedule them in the post-RA

pass. Post-RA scheduling helps minimizing the stalls in pipeline for in-order processors.

In our implementation, we extend the post-RA scheduling pass in x86 for our processor.

The instructions are scheduled in basic block scope in the post-RA pass. To reduce the

stalls, the pipeline structure is required, which is defined by the itineraries of instruction

classes. An itinerary describe how the instruction will be pipelined by the setting of the

timing, required function units, and latency of each pipeline stage. Besides, an additional

hazard recognizer can be introduced into the scheduler to customize hazard detection.

The post-RA scheduler uses a greedy algorithm for instruction scheduling, which is

known as list scheduling. Before scheduling a basic block, the dependency is analyzed

and the DAG of instructions in the basic block is created. The scheduler repeatedly selects

an instruction in the DAG, which does not depend on other instructions; emit it to the

scheduled code; and remove it from the DAG. In practice, the available instructions are

placed in a priority queue, sorted by some heuristics with the height and out-degree of the

node, and selected in order.
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3 Design and Implementation

3.1 RegX16 Code Generation

We extend the x86 backend in LLVM to support RegX16 architecture. Unlike IA-32 and

Intel64, RegX16 is not treated as a subtarget but an extension of IA-32 in our implemen-

tation, and therefore we can reuse the source code of IA-32. However, since REX prefix

conflicts to the one-byte increments and decrements and high byte registers, merely ex-

tending the registers and the encoding method is not enough. In addition, we have to

disable these conflicting features in RegX16.

3.1.1 Extending Register File

The extended registers can be used in RegX16 by inserting REX byte as prefix of the

instruction. We do not need to define these registers again, but can exploit the definition

of Intel64 registers. Since we do not reserve the extended registers in RegX16, they can

be assigned by the register allocator, which include the extended low byte registers, SPL,

BPL, SIL, and DIL.

In IA-32, the code emitter does not correctly encode the extended registers. Since

registers are encoded with the last three bits of their indexes, the extended registers are

incorrectly encoded to corresponding original registers. We port the DetermineREXPrefix
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function to IA-32, which is originally used in Intel64 to check whether an instruction

needs REX prefix. The function also calculates the required REX byte for the instruction.

However, since the W-bit in REX, which is used to specify the operand size, is ignored

by RegX16 processors, we can remove the related code in DetermineREXPrefix to speed

up compilation.

3.1.2 One-byte Increments and Decrements

INC r32 and DEC r32 instructions cannot be used in RegX16, since the opcodes overlap

to REX prefix. Fortunately, we can use INC r/m32 and DEC r/m32 instructions, which

support operations on both register and memory. These instructions need two bytes, which

is composed of the opcode ‘FFh’ and the destination descriptor rm.

The one-byte increments and decrements are selected in the instruction lowering pass

by X86MCInstLower. The instruction lowering pass is used to translate and simplify

instructions. In IA-32, an INC r/m32 which generated from instruction selection, will be

convert to INC r32 in the instruction lowering pass. In our implementation, we disable

such conversions in X86MCInstLower when targeting RegX16.

3.1.3 High Byte Registers

All high byte registers, AH, CH, DH, and BH, cannot be used in an instruction with REX

prefix because the indexes of these registers are occupied by BPL, SPL, DIL, and SIL.

In Intel64, high byte registers are reserved, even though they can be used in the in-

struction without REX prefix, and the number of available byte registers is reduced from

12 to 8. This is because of the limitation of generalized register allocators in LLVM,

which cannot prevent to use high byte registers with REX prefix. Currently, the register

type can be individually set for each operand by specifying register classes, such as GR32
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or GR8. However, we cannot force the types of all operands to be the same in an instruc-

tion. Therefore, if high byte registers are allowed, the register allocator may accidentally

select an illegal combination of registers.

For the same reason, we have to prevent using high byte registers in RegX16. How-

ever, even if high byte registers are not used in register allocation, they can be directly

selected by some optimization passes in IA-32. For example, a peephole pattern in IA-32

is used to recognize a right-shift of byte by eight bits. Such an instruction is replaced by

a copying to GR32_ABCD and a copying from their high byte halves, since they have

opportunity to be eliminated by copy propagation or coalescing with other copying.

Such optimizations can be fully removed to prevent using high byte register acciden-

tally, but we use a different approach, which also attempts to retain the optimizations.

The approach needs an additional pass after such optimizations have been done. The pass

scans the instructions and check if any source may be high byte register. If so, the desti-

nation is forced to select original registers, which makes no REX prefix is required in the

instruction. In the worst case, one additional copying is required for moving data from the

original register to the other extended register, but we still do not use more instructions

than the non-optimized code.

3.1.4 Granularity of Mixed-mode

Our implementation support mixing RegX16 and IA-32 code in a binary. The granularity

affects the design of mode switching, which is described in the mixed-mode section. Here

we merely describe how we support mixed-modes of different granularities.

Assume that all functions in a module is compiled to RegX16, but the module has

to be linked with other modules which the mode is unknown. For example, we have the

source codes of our applications but the runtime library is pre-compiled. A processor
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feature flag, HasRegX16, is added to our implementation, and we can enable RegX16 for

the whole module by compiler flags.

If not all the functions are going to be compiled to RegX16, we have to support mode

controlling in function granularity. In our implementation, we add a new function at-

tribute, __regx16, to the compiler framework. The attribute has to be support by both

frontend and backend, since it has to be recognizable in high level language. We can

append this attribute to the functions which have to be compiled to RegX16, and we can

also use it to identity external RegX16 functions by appending it to their declarations. Be-

sides, in our link-time optimization (LTO) support, the attribute is automatically appended

to RegX16 functions.

In summary, RegX16 can be enabled in either module or function granularities. When

RegX16 is enabled for whole the module, the compiler conservatively assumes that the

modes of external functions are unknown. However, if we specify the mode of each

function, the compiler has more information that can be used to optimize mode switching.

Our implementation does not support smaller granularities than a function, such as a

basic block or an instruction, since register allocation is applied on whole function, and

there is no reason to limit extended registers to be used in some basic blocks only.

3.2 Mode Switching

When mixed-mode is used, our implementation automatically generate mode switches to

ensure that every instruction is executed in correct mode.
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3.2.1 Mode Switching Overview

Since the mode is controlled by the 28th-bit of EFLAGS, which can be modified by sev-

eral instructions, no extra instruction for mode switching is supported by RegX16 proces-

sor. The mode can be switched by following instructions:

Switch to RegX16

PUSHF
OR DWORD [ESP], 0x10000000
POPF

Switch to IA32

PUSHF
AND DWORD [ESP], 0xEFFFFFFF
POPF

The first instruction, PUSHF, write EFLAGS to stack, since there is no instruction for

setting ELFAGS directly. Then, we use OR 0x10000000 or AND 0xEFFFFFFF to modify

the value for enabling or disabling RegX16. Finally, the value is write back to EFLAGS

by POPF. For convenience, we use switch_to_regx16 and switch_to_ia32 for the shorten

of the above instructions.

A naïve mechanism of mode switching is to wrap each RegX16 instruction by the

mode switches, switch_to_regx16 and switch_to_ia32, and the instruction seems to be

IA-32. However, this mechanism is impractical because of the overhead of mode switch-

ing. Since the pipeline has to be flushed when mode changes, the instructions of mode

switching cannot be pipelined and takes 14 cycles in our processor. Therefore, enabling

and disabling RegX16 for an instruction requires extra 28 cycles, which is not acceptable.

A better mechanism is to switch the mode for functions, not instructions. We have to

insert mode switching at the boundary of function. More specifically, when a function is

called or returns, we have to switch the mode according to the targeting function. The

mode can be switched before branches happen. For example, assume that there is a call

from RegX16 function to IA-32 function. We can add switch_to_ia32 before the call

instruction. Otherwise, the mode has to be switch at the target of branches. In the above

example, if no switch_to_regx16 is inserted before the return instructions of the IA-32
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A: RegX16

restore mode

save mode

RET

mode    RegX16

Caller: IA-32

CALL A

A: IA-32

restore mode

save mode

RET

mode    IA-32

Figure 3.1: Callee-switch mode switching mechanism

function, we have to insert switch_to_regx16 after the call instruction. We first introduce

two basic mechanisms, callee-switch and caller-switch, in following paragraphs.

Callee-switch

In callee-switch mechanism, the callee is responsible for mode switching. At the en-

try point of each function, switch_to_regx16 is inserted if it is a RegX16 function, and

switch_to_ia32 is inserted for IA-32 function. However, at the exit points, we cannot de-

termine which mode should switch to, since the return instructions are indirect branches,

which the targets are unknown or variable. Therefore, we have to save the mode of the

caller by push EFLAGS onto the stack, which is similar to reserve callee-saved registers.

Then we can restore the mode for caller at exit points. In figure 3.1, function A is called

from IA-32 caller. If function A is a RegX16 function, the mode is switched to RegX16

before entering the function body and restored to IA-32 before leaving the function. If

function A is IA-32, the mode is switched to IA-32, which is actually not changed, and

retains IA-32 when leaving the function.

The disadvantage is that when the caller and the callee have the same mode, mode

switches are redundant. Furthermore, the callee-switch mechanism is failed when there
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A: RegX16

mode    IA-32

mode    RegX16

CALL D

CALL B

B: IA-32

mode    IA-32

mode    RegX16

RET

CALL D

CALL C

C: RegX16

D: RegX16

Figure 3.2: Caller-switch mode switching mechanism

are external calls to pre-compiled functions, since we cannot insert mode switches in such

callees.

Caller-switch

In caller-switch mechanism, the caller is responsible for mode switching, and mode

switchings are inserted before and after call instructions. Before a call, the mode should

be switch to be the mode of the callee, and it should be switch back to the mode of the

caller. We do not have to reserve EFLAGS, since the mode of callee and caller is de-

terminate, and therefore, caller-switch is a little bit faster than callee-switch. Moreover,

when the caller and the callee are in the same mode, the mode switching can be removed

to prevent redundancy. In figure 3.2, function A is RegX16 and B is IA-32, the mode

is switched at every function calls between different ISAs. If the caller and callee have

same ISA, such as the call from function B to function C, we do not have to insert mode

switches.

Caller-switch does not support indirect function calls since modes of the callees are

unknown. To solve this problem, a function pointer is limited to point to functions with
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A: RegX16

mode    IA-32

mode    RegX16

RET

CALL B

mode    IA-32

mode    RegX16

B: IA-32

C: IA-32

Figure 3.3: Legacy compatible mode switching mechanism

single mode. In our compiler implementation, a function pointer can be limited to RegX16

functions by the appending __regx16 attribute to the declaration of the pointer.

3.2.2 Legacy Compatible Mode Switching

The mode switching mechanism used in our implementation is fully compatible with

linked libraries. Our design is a combination of callee-switch and caller-switch and opti-

mized to eliminate redundant mode switching.

The idea is to make every function seem like IA-32. No IA-32 function has to be mod-

ified, and all mode switches are inserted into RegX16 functions. Therefore, the functions

in legacy libraries do not have to be recompiled. Both callee-switch and caller-switch are

required for RegX16 functions. Callee-switch makes the functions seem like IA-32 and

able to be called directly from other functions. According to caller-switch mechanism,

switches are inserted at each function calls in RegX16 functions, since all called func-

tions seem like IA-32. With this mechanism, RegX16 functions are able to call external

IA-32 functions and safe to be passed as function pointers. In figure 3.3, function A is

compiled to RegX16 with mode switches at the entry, exit, and call site.
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In the following paragraphs, we describe the optimizations which can improve the

performance of our mode switching mechanism. The following optimizations are only

applied to RegX16 functions, since we assume that we cannot modified pre-compiled

IA-32 functions.

Optimize Direct Calls

The disadvantage is that redundant mode switches exist between two RegX16 functions.

Ideally, if both the caller and the callee are RegX16 functions, no mode switch is required,

but we switch twice in this case. Figure 3.4 shows the problem. When function A calls

function B, the mode is switched to IA-32 before the call and switched back to RegX16

after entering the callee function. Same problems occur when the callee functions return.

A: RegX16

mode    IA-32

mode    RegX16

RET

CALL B

mode    IA-32

mode    RegX16

B: RegX16

mode    IA-32

mode    RegX16

RET

Figure 3.4: Redundant mode switches in a RegX16 to RegX16 call

The redundant mode switch in the caller can be removed directly, but the one in the

callee cannot be removed, since the callee function may be called by other IA-32 functions

without mode switching.

To remove the redundant mode switch in the callee, we have to migrate the switch to a

wrapper function. In our implementation, the name of the wrapper function is same as the
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callee, and the original callee function is renamed by appending a “.regx16” suffix. The

wrapper function switches the mode and call the original callee directly. All uses of the

original callee is replaced by the wrapper function, but except for all direct calls which

target the callee. Figure 3.5 shows an example of optimized functions. function A and

B are renamed to A.regx16 and B.regx16. The name of additional wrapper functions are

same as their original function. A function calls from A to B, is replaced to B.regx16 to

eliminate the redundant mode switch in wrapper function B.

A.regx16

mode    RegX16

RET

CALL C

mode    IA-32

mode    RegX16

B.regx16

BA

mode    IA-32

mode    RegX16

RET

CALL A.regx16
CALL B.regx16

Figure 3.5: Optimized direct function calls without redundant mode switches

Indirect Call Problems

An indirect call in x86 uses a register to specify the address of the target function. We

cannot eliminate mode switches of such function calls because modes of the targets are

variable. However, in some cases the targeting functions are determined in compile time

and stored as a constant list. If all the targets are RegX16 functions, it is safe to remove

the switches.

Besides, because the mode is switched to IA-32 before the call instruction is executed,
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extended registers cannot be used here. The same problem occurs with the indirect call

instructions of which the address is placed in memory. In these instructions, the memory

location cannot be addressed by extended registers either. Therefore, we replace the reg-

ister classes of such instructions by GR32_NOREX to avoid assigning extended registers

to them.

Optimizing Tail Calls

The optimization for direct calls between RegX16 functions cannot be applied on tail

calls since they do not return and we have no chance to switch the mode back. For

example, assumed that the functions A, B are RegX16 and function C is IA-32. If A calls

B normally and B calls C by tail jump, the mode is still IA-32 after function B returns,

which is incorrect. Therefore, tail call optimization should be disabled when calling IA-32

function, but it is safe to use if the jump targeting RegX16.
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4 Experimental Results

In this chapter, we conduct the performance evaluation of our design and implementa-

tion for the mixed-mode execution of IA-32 and RegX16 code. Before the evaluation of

mixed-mode execution, we also measure the performance improvement of pure RegX16

binaries, which are fully compiled to RegX16 and do not have mode switching.

4.1 Environment

Our RegX16 processor is emulated by a FPGA board, which is about 250–300 times

slower than modern PC-grade consumer processors. Therefore, we use the EEMBC

benchmark set [1] for evaluations, since these benchmarks are lightweight enough to be

executed within reasonable turnaround time using our FPGA board based system. The

operating system used is Fedora, a Linux based open source OS. All benchmarks from

EEMBC are compiled with our compiler, which is based on clang-3.8 and supports mixed-

mode binaries of RegX16 and IA-32.

To evaluate the performance of RegX16, not only the benchmarks, but we also extract

necessary functions from C libraries and compile them to RegX16. Therefore, mode

switching between functions is not required, and we only have to enable RegX16 at the

entry points of the benchmarks.

To evaluate the mixed-mode execution, all benchmarks are compiled with all the six
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Base Compiled with -m32 -mno-sse -O3. Since the emulated pro-
cessor does not support SSE, these features have to be disabled.

RegX16 Same as the baseline but add an additional -mregx16 flag to
enable mixed-mode code generation.

BaseLTO Compiled with -flto -m32 -mno-sse -O3. A baseline for
other configurations which also enable link-time optimization.

RegX16LTO Compiled to mixed-mode code with LTO support.

SchedLTO Compiled with -flto -m32 -mno-sse -O3 -march=rdc to
enable our customized scheduler and LTO support.

SchedRegX16LTO Compiled to mixed-mode code with LTO and scheduler sup-
port.

Table 4.1: Compilation configurations for evaluations

configurations listed in table 4.1. However, routelookup, bezier01fixed, and bezier01float

benchmarks have been fully optimized away when LTO is enabled, and therefore, these

benchmarks are removed from our testing set. Besides, we impose some additional re-

strictions on extended registers to some instructions for the ospf and cjpeg benchmarks

to avoid triggering a hardware bug and crashing the benchmarks. The bug is that some

extended registers cannot be used as the index of the effective address. Therefore, the real

improvement of these two benchmarks is constrained by the lack of extended registers.

4.2 Performance Improvement of RegX16

We first evaluate the performance improvement of exploiting extended registers in RegX16.

All the benchmarks are fully compiled to RegX16 and not linked with IA-32 libraries.

The necessary library functions are extracted and compiled to RegX16. Therefore, the

overhead of mode switching is excluded in this case. Figure 4.1 shows the improvement,

which is based on the performance of original IA-32 binaries. Floating-point benchmarks,

matrix01, basefp01, iirflt01, tblook01, and aifirf01, are removed in this experiment, since

they certainly do not benefit from extended registers on integer operations. Some other
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Figure 4.1: Performance improvement of RegX16
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Figure 4.2: Reduction of code size when compiling to regX16

benchmarks are removed because their performance are not improved even if compiled to

Intel64, which means that there is no performance opportunity by exploiting more regis-

ters. When the benchmarks are compiled to RegX16 and no mode-switching is required,

the average performance improvement is 10.9%, and the performance of some bench-

marks are improved more than 18%.

The comparison of code size of IA-32 and RegX16 is showed in figure 4.2. Though

the length of some instructions may be increased by REX prefix, the total code sizes
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are reduced in all benchmarks since the number of instructions of register spilling and

restoring is decreased.

4.3 Performance Improvement of Mixed-Mode

Figure 4.3 shows the performance improvement of each benchmark when compiled with

each of the configurations. The performance of the Base configuration is used as the

baseline performance of all other configurations. The result shows that the performance

can be improved by extended registers in mixed-mode. When all optimizations enabled

by compiling with SchedRegX16LTO, the average performance gain is 34.4%, which is

better than SchedLTO without RegX16, 21.2%. The comparison of RegX16LTO and

BaseLTO is similar, where the speedup of RegX16LTO, 22.5%, is larger than using LTO

alone, 16.6%.

The pure RegX16 configuration is one exception, whose performance is worse than

the baseline on average. In some benchmarks, the performance is even reduced more

than 50%. The reason is that the frequencies of external function call in these bench-

marks are much higher than others. We calculate the number of function calls in each

benchmark by instrumentation and classify them into 3 kinds: external, indirect, and in-

ternal. The term “external” means to call a function that out of the module of the caller

at compile-time; and “internal” means to call a function in the same module, respectively.

Figure 4.4 shows the result. Since only the mode switching of internal and indirect calls

can be eliminated without LTO support, those benchmarks with lots of external calls,

canrdr816, memacc816, rspeed816, cacheb01, canrdr01, rspeed01, and pktflow, perform

poorly when compiled with the pure RegX16 configuration.

On the other hand, if a benchmark does not frequently call external functions, it could
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Figure 4.4: Frequencies of function calls

often take advantage of RegX16. For example, aifirf01, aiifft01, fft00, and viterb00 are

improved by about 17%, and fbital00 has the maximum improvement, which is 27.3%.

However, this is not always true since not all benchmarks could benefit from lots of gen-

eral purpose registers. For example, basefp01 and maxtrix01 are floating-point applica-

tions, which requires more FP registers rather than the extended general purpose registers.

LTO accounts for a significant part of the performance gain from RegX16LTO and

SchedRegX16LTO. Canrdr816 and puwmod816 gain about 100% speedup; ttsprk816,

a2time01, and rspeed01 have over 60% speedup. The reason is that when LTO is en-

abled, most of the functions from separated modules are available to be inlined, and this

inlining further increase the impact of other optimizations due to the enlarged optimiza-

tion scope. Therefore, to measure the true performance gain with extended registers in

mixed-mode, we have to use BaseLTO as the baseline of RegX16LTO and SchedLTO for

SchedRegX16LTO. The result is showed in figure 4.5. The average speedup of RegX16LTO

and SchedRegX16LTO are 5.1% and 10.9%. The best one in RegX16LTO is aifftr01,

which has 21.2% speedup. Scheduled code delivers higher performance than non-scheduled

because that to get full benefit of extended register requires the code scheduler to aware
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Figure 4.5: Improvement of exploiting extended registers

of the newly available registers. For example, RegX16 does not perform well for non-

scheduled code in pntrch816 and rgbhpg01, but the performance is dramatically improved

to 75.0% and 50.1% in the scheduled versions.

Instruction scheduling becomes more effective when RegX16 is enabled. The speedup

of applying instruction scheduling on pure IA-32 code and mixed-mode RegX16 code is

showed in figure 4.6, which use BaseLTO and RegX16LTO as baselines, respectively. On

average, the improvement is 3.9% in IA-32 code and 9.7% in mixed-mode RegX16 code,

which means that we have more effective instruction scheduling with extended registers.

Some benchmarks are slowed down when the instruction scheduling is applied. This is

because that our scheduler aims to maximize ILP with some greedy heuristics, which does

not always reach a perfect balance between ILP and limited registers. Over-scheduling

could result in register spilling while under-scheduling may leave some bubbles in the

pipelined execution. A more balanced scheduling algorithm could address this issue bet-

ter. We leave this issue for future improvement.
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Figure 4.6: Improvement of instruction scheduling

35



	  

doi:10.6342/NTU201603161

5 Conclusions and Future Work

In this thesis, we propose a software-based mode switching mechanism to support mixed-

mode execution. With our mechanism, instructions from two incompatible ISA can be

mixed and executed in a binary without special hardware support. We can link our appli-

cation binaries, which are compiled to RegX16, with legacy IA-32 libraries. Therefore,

to make an existing application available to exploit the extended registers, we only need

to recompile the applications themselves.

Our compiler implementation is based on LLVM and support code generation for

mixed RegX16 and IA-32 binaries. Since RegX16 is directly extended from IA-32, we

can leverage the existing IA-32 backend in LLVM to avoid tedious and error prone devel-

opment work. Most of the source codes in IA-32 backend can be reused in the RegX16

backend, but we have to carefully remove unsupported IA-32 features from our backend

to prevent generating illegal instructions in the RegX16 code. Our compiler can generate

statically-linked, pure RegX16 binaries without mode switching or dynamically-linked,

mixed-mode binaries of RegX16 and IA-32, and both executable types can be executed

in our environment, which is an FPGA board with a Linux-based operating system.

The results of our experiments show that the performance of existing applications can

be improved by recompiling to RegX16, either in pure or mixed mode. The performance

of the benchmarks which may benefit from using more registers are improved by 10.9%

in pure mode on average, and in mixed mode, the average speedup of all benchmarks
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is 5.1%. In pure mode, all source codes are compiled to RegX16 and therefore mode

switching is not required. The performance is not encumbered with the overhead of mode

switching. Optimizations for reducing redundant mode switches are not required in this

case. However, if the application is compiled to mixed-mode binaries, the overhead of

mode switching may affect the performance, especially when the source codes are full

of external calls. Our optimizations can only eliminate redundant internal calls, but if

link-time optimization is enabled, we can further eliminate external calls between source

files. However, external calls which targeting library functions are required and cannot be

eliminated.

Our experiments also show that the effectiveness of code scheduling can be improved

with additional registers. When applying to RegX16 binaries, the performance improve-

ment of code scheduling is larger than applying to IA-32 binaries. On the other hand,

using extended registers with code scheduling is better than without it. Extended registers

and code scheduling are benefit from each other.

Our software-based mode switching mechanism is fully independent to the mixed

ISAs, which means that we can mix any two ISAs in a binary, not only the extended and

the original one. One future work could be mixing ARM and x86 on Atom processors,

which execute ARM binaries by binary translation. Our target is to reduce the overhead

of binary translation by combining multiple binaries and executing them in mixed-mode

if the future processors provide mode switching support.
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