At bA ST PTRERT AL 2
AL~
Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Taiwan University
Master Thesis

i PhHI AT E A E X80 AT F 2 ATy
Improving x86 Processor Performance via

Extended Registers

X A7 e
Che-Yang Wu

BEsE T RRY gL
Advisor: Wei-Chung Hsu, Ph.D.

PEARI0S & 7!
July, 2016

doi:10.6342/NTU201603161

>3+ >
\:'o\.L

]'ip-&‘]’i\'miﬂg—?(;}?ﬂiﬁﬁﬂ XEF > AT AR BT LA ?%m

l} i

B WA T AR s RGeS AL bR

TV EASPOT R HABH DTS o BB A DA e

RHEAFFALE YL F o RAN RS L o

i d0i:10.6342/NTU201603161

i &

IA-32 5 - B R ™ cfg & BoFHE > 5 X80 132 Ak > dp & 4D
PG BT ek AEBERETAPRT U

B {5 RIFRY AW E B R ady L2l KL
T 7R iifc’ﬁ 1 ¢ rrigkar o BEFR 64 AR & i Intel6d ¢ AT 5 B eh

&ﬁ*wﬁwc’wmgnﬂzwm@; 2R F G PRI B o H Y A
,';%; ‘g’_m)@’#Ib?r?,«r’\lg_%§32]g~7uﬁ’7»ﬂ-7]~i%4 ? ’;EL_"LLL
o FE ARARERESIES TR R EATHRFE I LR

AT o APRIT - B EEIR2 AN g
P WO R e APt ? 0 TA-32 i s B4R 4o 5

B0 B % AL S RegX16 0 32 = 2 chfe 5 7 1k B ¥ RegX 16
W EEfrEF NIA32 SN R o LR ’frﬁii“ (mixed-mode) = &

Bl RS 30 REHIoM W Bk £ AR Y o Aty
7 & EJL BHOY (processor mode) Kk A FEF W dp 4 chZEHEI L FEfRAG

TP 8 FICIA-32 ehdp £ U7 1] RegX164p £ > g2 BHC 7 &
M e RPR T - BRFFT AT Pl AT E o AR
A fefedp £ PR P TP BB e 2 O R e0dp £ 0 0SS
7 g A R Pp - B PR DD E 0 X0 SR IV IE T M g eh
R

A i@ % EEMBC »it B3 B K375 RegX16 $#rcit dhecie » s
RegX16 #5¢ ™ o % et tf & 3 19.5% > L3501 F 10.9% - tifli# A2

i d0i:10.6342/NTU201603161

ArEF R rAs R gaiRT o F wﬁﬁﬁmﬁféﬁ

T 3enit L 5.10% 0 B¢ 2L & ahfict o dk e ﬁ“wui4%ﬂ&fl
it (LTO) ¥ » $R B AT > RSB Re i 5] 21.2% qu‘f E "
povk o ApEL S 0 A 0O B £ AR o AP A mﬁ#‘?
RegX16 AJL B g Kk 3- AV i chdg £ A2 58 0 e 241 % 2 0 4
BOEA KPR o hh e r a0 W BE S 5 4 BAE R & 3.9% i

beig o e - H g WA B FR R RS 9.7% o

iii d0i:10.6342/NTU201603161

Abstract

IA-32, the 32-bit version of x86, is a commonly used ISA (Instruction Set
Architecture), which has feature-rich instruction set but only several registers.
If there are more general purpose architectural registers defined in the ISA,
the performance can be improved by promoting more variables to registers,
holding more temporaries in registers, and exposing more ILP (Instruction
Level Parallelism) for code scheduling. Although the 64-bit version, Intel64,
has been extended with more registers, such extended registers cannot be
exploited by 32-bit applications. Many embedded and desktop applications
prefer to stay in 32-bit mode to avoid increased data working set. In addition,
the operating system and runtime libraries have to be recompiled or even
redeveloped for such a new architecture.

In this thesis, we design a mechanism which gives 32-bit applications an
opportunity to exploit the extended registers. In our design, the general pur-
pose register file in the original IA-32 is extended to 16 registers. We call this
extended architecture RegX16. A 32-bit application could be recompiled to
RegX16 yet still linked with the legacy IA-32 libraries (in executable format).

Such an application binary is called mixed-mode binary, which is consist of

v

d0i:10.6342/NTU201603161

instructions from both the original and the extended ISAs. Processor mode
is introduced to identify which ISA is in use so that the current instrqctﬁ?n
can be correctly decoded. During binary execution, the processor mode; ha:;s |
to be explicitly switched when transiting between the IA-32 and the RegX16
mode. We implement a compiler that automatically take advantages of the ex-
tended registers in both the register allocation and the code scheduling phases.
Furthermore, our compiler also automatically inserts mode switching instruc-
tions to mixed-mode binaries according to our mode switching mechanism.
Optimizations to reduce mode switching overhead are also in place.

The EEMBC benchmark suite is used to evaluate the performance im-
provement of RegX16, the greatest improvement observed is 19.5%, with an
average speedup of 10.9 for the pure RegX16 binary. If the benchmarks have
to be linked with legacy 32-bit libraries as mixed-mode binaries, the improve-
ment is lowered to 5.1% on average due to the increased mode switching
overhead. In the above experiments, we have exploited the link-time opti-
mization (LTO) to eliminate unnecessary mode switching. For some applica-
tions, LTO has been quite effective, in one case, the mixed mode application
still can get 21.2% of performance gain from the extended register. Further-
more, we also evaluate the performance improvement of exploiting extended
registers on code scheduling. We have more accurately modeled the RegX16
micro-architecture to fully exploit the extended register in code scheduling.
Our revised code scheduling model improves the performance by 3.9% with-

out using the extended registers. When the extended registers are used, the

average performance gain increased to 9.7%.

d0i:10.6342/NTU201603161

Contents

5 i
FEE e i
Abstract v
Contents e e vi
Listof Figures e viii
Listof Tables ix
I Introduction 1
2 Background 5
2.1 x86 Instruction Set Architectures 5
2.1.1 Imstruction Encoding 5

2.1.2 TA-32Registers 6

2.1.3 Intel64 Extended Registers 8

2.2 RegXI16 Instruction Set Architecture 9
2.2.1 Designand Features 9

2.2.2 Conflicts of Instruction Encoding 10

223 RegXl6Processors 11

2.3 Mixed-mode Execution Lo 12

24 LLVMInfrastructure 14
24.1 x86Backend 14

2.4.2 Register File and Calling Convention 15

-l d0i:10.6342/NTU201603161

2.4.3 Instruction Scheduling¢8. 4. w15

3 Design and Implementation s 4. :';- | W
3.1 RegXl16 Code Generation0! Wiy
3.1.1 Extending RegisterFile. 17

3.1.2 One-byte Increments and Decrements 18

3.1.3 HighByte Registers 18

3.1.4 Granularity of Mixed-mode 19

3.2 Mode Switching 20
3.2.1 Mode Switching Overview 21

3.2.2 Legacy Compatible Mode Switching 24

4 Experimental Resultso oL 28
4.1 Environment. e 28
4.2 Performance Improvement of RegX16 29

4.3 Performance Improvement of Mixed-Mode 31

5 Conclusionsand Future Work oL 0oL 36
References L 38

vii doi:10.6342/NTU201603161

2.1

2.2

2.3

24

3.1

32

33

34

3.5

4.1

4.2

4.3

4.4

4.5

4.6

List of Figures

Opcode and ModR/M descriptor 6
Register size and Encoding 7
REX prefixencoding 8
Register mapping with the index and the flag bit in REX prefix 9
Callee-switch mode switching mechanism 22
Caller-switch mode switching mechanism 23
Legacy compatible mode switching mechanism 24
Redundant mode switches in a RegX16 to RegX16call 25
Optimized direct function calls without redundant mode switches 26
Performance improvement of RegX16 30
Reduction of code size when compiling toregX16 30
Performance improvement of all configurations 32
Frequencies of functioncalls 33
Improvement of exploiting extended registers 34
Improvement of instruction scheduling 35

viii

d0i:10.6342/NTU201603161

List of Tables

4.1 Compilation configurations for evaluations 29

ix d0i:10.6342/NTU201603161

1 Introduction

x86 [4] is a family of CISC (Complex Instruction Set Computing) instruction set archi-
tectures (ISAs) , which has variable length instructions, complex addressing mode, and
feature-rich instructions but much fewer general purpose registers (GPRs) than modern
RISC ISAs. TA-32, the first 32-bit version of x86 designed by Intel in 1985, has only
eight GPRs. However, ARMv7 [7] and other earlier series already have 16 GPRs, and
the latest ARMV8-A has 32 GPRs. During the evolution of x86, extensions to [A-32 have
been continuously introduced. However, the number of registers in [A-32 has never been
increased even if the processors actually have larger register file for renaming in out-of-
order execution. In the 64-bit version of x86, called Intel64, the register file is extended to
16 GPRs to improve the performance of x86. Nevertheless, even though Intel64 proces-
sors can execute [A-32 code in compatible mode, the extended registers are not available
for IA-32 applications.

Legacy applications have to be recompiled to exploit the new architectural features in
a brand new ISA. Besides, redevelopment of operating systems and runtime libraries is
required. In practice, to preserve investments of existing software, we often seek a mixed-
and-match execution environment. For example, to exploit new architectural features,
applications must be recompiled. However, such executables may want to link with the
old mode libraries. This is because the source code of some old libraries may not be

available for recompilation. How to work in such a mixed-and-match mode environment

1 d0i:10.6342/NTU201603161

is highly desirable. RegX16 meets this goal in that the processor can execute' tegacy TA=<32
binaries in IA32 mode, so we can run existing operating systems as well as maﬁ}.legacy
applications. When new applications need to take advantage of the exte‘ndé& ré-gi'sters,
we can also leverage existing compilers designed for x86 with mature optimizations, only
retarget the register allocator and the code scheduler.

If we cannot recompile applications for some reasons, other techniques, such as Static
or Dynamic Binary Translation (BT), can be used. BT is not the top choice for us due
to the runtime overhead. Instead, we are interested in the mixed-and-match scenario
where we can mix compiled binaries with legacy library binaries. We can compile the
application programs to binaries in the extended ISA as long as we have the source codes,
and then the compiled binaries and legacy library binaries are linked as a mixed-ISA
application. For example, for an image processing application that uses a third-party
library for loading images with multiple formats, we cannot reduce the image loading
time, but we can improve performance of the image processing routines. A more general
example is the C standard libraries, which are required by every program written in C.

It is relatively easy to add an instruction without breaking the compatibility if there are
unused opcodes. For example, Streaming SIMD Extensions (SSE) do not conflict with
the original instruction set in IA-32 and can be mixed in instruction granularity. Neverthe-
less, it is more difficult to extend the register file, since changing the number of registers
will essentially impact all instruction encoding. In x86, the extended registers are only
available in Intel64 and encoded with an extra byte, which is called REX prefix in the
encoding method of Intel64. However, in other ISAs, we may not be able to extend the
encoding method of instructions. For example, in RISC designs, since the instructions
are fixed-length and may have exhausted all bits to encode themselves, there is no field

remains for specifying extended registers. As an alternative, processor mode can be in-

2 d0i:10.6342/NTU201603161

troduced into such ISAs to identify how to decode and execute the instructions; andytheir
encoding methods can be totally different from the original ISAs. Some modérn ISAs
already support mixed-mode execution, such as ARM. Two incompatible i'nStI"l:lCti.-OIll sets,
ARM and Thumb, can be mixed in the same binary, and ARM processors can automat-
ically switch the processor mode according to mode bit, which is encoded as the least
significant bit in the instruction addresses. For ARM, each instruction is at least 16 bits
long, so the least significant bit is not used. For x86, this bit is not available since some
instructions are single byte. Therefore, for RegX16, we need to handle mode switching
by ourselves to ensure that each instruction is executed in correct mode. In this thesis, we
design a software-based mode switching mechanism for mixed-mode binaries, which is
fully independent to ISA features.

The case study of mixed-mode in this thesis is based on [A-32 and its extended ISA,
RegX16, which is an experimental ISA designed by RDC [6] (RDC Semiconductor Co.,
Ltd.). RegX16 extends IA-32 by introduced the extended register file and REX prefix
encoding of Intel64. Some IA-32 instructions are removed since they conflict with REX
prefixes, but our compiler can avoid generating those removed instructions and substitute
with other alternative instruction sequences. In the beginning, RegX16 processors are
designed for RegX16-only bare-machines and machine control units (MCUs). No oper-
ating system or legacy libraries exist on such machines and therefore mixed-mode is not
required. However, the processors can also be configured to enable RegX16 in user mode
only to boot and run IA-32 operating systems. In such a system, RegX16 can be enabled
individually for each process by itself. In addition, the processor mode, RegX16 or IA-32,
can be passively switched during the execution of mixed-mode binaries.

Our implementation is based on LLVM [5], and leveraging the fairly robust and ma-

ture x86 backend. We also improve some optimizations which benefit from the extended

3 d0i:10.6342/NTU201603161

register file and our mode switching mechanism. In the experiments, we measre the
performance gain of code scheduling from extended registers, especially in Fhé%egXM
processor we use. Static code scheduling is effective for our RegX16 proééss;r Since
it is in-order. In addition, we found that in our mode switching mechanism, the calling
convention can be changed incidentally with mode switching, and therefore we can use a
customized calling convention in the RegX16 mode, which is intended to further reduce
memory accesses.

The rest of the thesis is organized as follows. Section 2 provides the background of
this work. Section 3 describes the design issues and the development of the compiler.
Section 4 gives the benchmarks and our experiment set up, including results and analysis.

Section 5 summaries and concludes the work.

4 d0i:10.6342/NTU201603161

2 Background

In this chapter, we first introduce x86 ISAs, which includes the register file and how the
registers are specified by instructions. Then we describe RegX16, an ISA extended from
IA-32, and some problems of mixing RegX16 with IA-32. In the remains of this chapter,

we introduce LLVM infrastructure, which is the base of our compiler for RegX16.

2.1 x86 Instruction Set Architectures

x86 is a family of ISAs, which includes 32-bit and 64-bit variants. The first 32-bit design
of x86 architecture is IA-32, which used to represent 32-bit versions of x86 in this thesis.
Besides, though the designs of 64-bit versions of x86 by Intel or AMD have some differ-
ences, they have same register files and most of the instructions. For convenience, we use

Intel64 to represent all 64-bit versions.

2.1.1 Instruction Encoding

Both TA-32 and Intel64 are CISCs, which the length of instructions is variable. Each
instruction is composed of several bit fields and encoded into several bytes. A bit field
can be an opcode to specify the operation, a destination register index, or a source register
index. Generally, there is no reserved bit in the encoding of an instruction [4].

For example, an ADD r/m32, r32 instruction in IA-32 need two bytes. Figure 2.1

5 d0i:10.6342/NTU201603161

ADD EAX, EBX
0(fojojojofofoj1y1{rfoj1y140fojo

=2 “-‘l 1

opcode mod reg rii
Figure 2.1: Opcode and ModR/M descriptor

shows an example that how an ADD EAX, EBX instruction is encoded. The first byte is the
opcode and the second byte is a ModR/M descriptor. In this example, opcode = 01h is for
addition operations. In the ModR/M descriptor, the first two bits, field mod, specify the
type of source operand; the next three bits, field reg, specify the source register, EBX; and
the last three bits, field rm, are for the destination register, EAX. The index field has three
bits, which is just enough for encoding the index of total eight registers. Since all bits are
used to encode the instruction, there is no bit remaining for encoding more registers.

The rm field can also be used for indirect addressing, and sometimes an instruction
may require a followed SIB descriptor for more complex addressing, which depends on
mod. We will not introduce them in this thesis but briefly introduce the encoding of

registers with ModR/M.

2.1.2 TA-32 Registers

There are eight GPRs can be used in most of the IA-32 instructions, and their data width

are 32 bits. Naming of the registers follows the legacy convention below:

e EAX, ECX, EDX and EBX — accumulator, counter, data and base registers, used
in general arithmetic operations. The indexes are 03, which are used in ModR/M
for specifying registers. For example, in figure 2.1, the source, EBX, is encoded to

reg = 3, and the destination, EAX, is encoded to rm = 0.
e ESP, EBP — stack pointer and stack base pointer, used to point out the top and the

6 d0i:10.6342/NTU201603161

base of the stack. The indexes are 4-5.

e ESI, EDI — source index and destination index, used in some string op(;erjpiﬁ‘éns on
|| = |

byte sequences. The indexes are 6—7.

Modern compilers, such as GCC and LLVM, do not follow the convention above
during register allocation, except that ESP is reserved for the operations which are related
to memory accesses of stack.

The least significant 16 bits of all GPRs in IA-32 can be accessed by their 16-bit
versions, which are AX, CX, DX, BX, BP, SP, SI, and DI. The higher halves and lower
halves of the first four 16-bit registers can be accessed by their sub-registers. The higher
halves, the second significant byte of the 32-bit version, are identified by an ‘H’ suffix;
the lower halves are identified by an ‘L’ suffix, respectively. AH, CH, DH, and BH are
called high byte registers, and AL, CL, DL, and BL are called low byte registers.

The bit fields in an instruction only specify the register indexes of corresponding
operands. The data widths of registers are decided by opcodes or prefixes of the in-
structions. In figure 2.2, for example, the opcode for adding two 32-bit registers is ‘O1h’;
adding 16-bit registers requires an additional operand-size override prefix, ‘66h’; adding

8-bit registers, has to use ‘00h’ as the opcode.

31 15 8 7 0
AH AL
EAX AX

ADD EAX, EBX — 01 d8
ADD AX, BX — 66 01 d8
ADD AL, BL — 00 d8

Figure 2.2: Register size and Encoding

7 d0i:10.6342/NTU201603161

7 0
O(1]0|]0(W[R|X|B

Flag Description

W If set, the instruction uses 64-bit operand.
R The extension bit of the reg field in ModR/M
X The extension bit of the index field in SIB
B The extension bit of the rm field in ModR/M

Figure 2.3: REX prefix encoding

2.1.3 Intel64 Extended Registers

In Intel64, the register file is extended to 16 GPRs. All registers are extended to 64-bit,
include the original ones in IA-32. The 64-bit versions of the original registers are RAX,
RCX, RDX, RBX, RSP, RBP, RSI, and RDI. Besides, eight extended registers are named
from R8 to R15, which also have the 32-bit versions with ‘D’ suffixes (R8D-R15D) and
the 16-bit versions with ‘W’ suffixes (REW-R15W).

Since no unused bit reserved for specifying extended registers in ModR/M descriptors,
if any extended register is used, a REX byte is inserted as a prefix to the instruction. The
encoding of REX prefix is showed in figure 2.3. When a flag bit is set in REX prefix, the
corresponding operand is extended. For example, ADD EAX, R11D is encoded to ‘44 01
D8’. A REX byte, ‘44h’, is inserted as the prefix. The destination index in field rm is set
to 0 for EAX; the source index in field reg is set to 3, which specifies R11D but not EBX,
since the R-bit is set. Figure 2.4 shows the register mapping with flag bit.

In Intel64, all registers have their 8-bit versions, which are AL, CL, DL, BL, SPL,
BPL, SIL, DIL, and R8B—R15B. Not only the extended registers, but the last four original
registers, SPL, BPL, SIL, and DIL, need to be encoded with REX prefix. The flag bit in
REX and the field bits in ModR/M, totally four bits, are just enough to encode the index
of 16 low byte registers. Therefore, the high byte registers, AH, CH, DH, and BH, can

8 d0i:10.6342/NTU201603161

32-bit Registers
Index 0 1 2 3 4 5 6 N
flag=0 EAX ECX EDX EBX ESP EBP ESI EDf*
flag=1 R8D RY9D RIOD RI1ID RI2D RI3D RI14D ¢RI15D

8-bit Registers

Index 0 1 2 3 4 5 6 7
without REX AL CL DL BL AH CH DH BH
flag =0 AL CL DL BL SPL BPL SIL DIL
flag=1 R8B R9B RIOB RI1B RI12B RI13B RI14B RI15B

Figure 2.4: Register mapping with the index and the flag bit in REX prefix

be used only if the instruction has no REX prefix, and it is illegal to use both extended

registers and high byte registers in an instruction at the same time.

2.2 RegX16 Instruction Set Architecture

RegX16 is the ISA used in our case study, which is an experimental ISA designed by
RDC (RDC Semiconductor Co., L.td.) and currently implemented with FPGA board for

development.

2.2.1 Design and Features

The instruction set of RegX16 is almost the same as IA-32, but the register file is extended
to 16 GPRs, which exploit the design of Intel64 except the increased width. Therefore,
REX prefix is also used to encode the extended registers in RegX16. All registers in
RegX16 can be accessed in 32-bit, 16-bit, and 8-bit, with same register names and encod-
ing method as Intel64.

The advantage to leverage the existing Intel64 design is to reduce the cost of hardware
development, such as the register file and the instruction decoder. We can also leverage the
implementation of Intel64 in existing compiler, especially the registers, assembly format,

9 d0i:10.6342/NTU201603161

and instruction emitter. However, the restriction on high byte registers is alsosbrought to
RegX16. Even worse, not all IA-32 instructions are available, since some inéfﬂctions
conflict with REX prefix and have to be removed. |

RegX16 processors can execute codes in IA-32 mode or RegX16 mode. The mode
is controlled by the 28th bit in EFLAGS, which is reserved in IA-32. If the bit is set,
the process mode is RegX16; otherwise, the processor mode is IA-32. We can use the
instructions, PUSHF and POPF, to modify EFLAGS for mode switching. Since EFLAGS
belongs to task contexts, the processor mode of each process is automatically preserved
and resumed by the operating system when context switch occurs. Besides, to boot and
run existing IA-32 operating systems, the processor automatically disables RegX16 on
kernel codes by checking the Current Privilege Level (CPL) register. Because without
modifying the operating system, we cannot catch the event that a process is switched to

kernel mode and disable RegX16 before that.

2.2.2 Conflicts of Instruction Encoding

REX prefix is used for encoding extended registers in RegX16. However, it conflicts with
some [A-32 instructions and features.

Instructions INC/DEC 32r are removed from RegX16, since their opcodes overlap
with REX prefix. These instructions increase or decrease 32-bit registers by one, of which
the destinations are specified by 1-byte opcodes directly. The instructions require opcodes
from ‘40h’ to ‘4Fh’ for increments and decrements of eight registers, but the range of REX
prefix is from ‘40h’ to ‘47h’. Though the opcodes of DEC 32r are disjoint to REX prefix,
however, they share the same hardware with INC 32r and have to be removed together.
If a legacy binary with a INC/DEC 32r instruction is executed in RegX16 mode, the

processor will incorrectly decode the instruction as the REX prefix of the next instruction.

10 d0i:10.6342/NTU201603161

Another restriction is that the high byte registers cannot be used with REXptefixgn-an
instruction together. However, some IA-32 instructions need particular high. by:!‘re regis-
ters for source or destination operands. For example, 8-bit division instruction, :DI{I r/m8,
puts the remainder in AH and the quotient in AL. After the division, we cannot immedi-
ately use AH and extended registers in one operation. We have to move the result from AH
to another compatible register, such as AL, if we want to use the result in an instruction

with REX prefix.

2.2.3 RegX16 Processors

In this thesis, our designs and implementations are evaluated on the processor developed
by RDC. Since RegX16 is an experimental architecture, the processor is not a real product

but implemented with an FPGA board.

Instruction Issue

The processor is an in-order processor, but can issue at most three instructions in one
cycle. Multiple instructions can be executed in the same time if the required resources,
such as registers, do not overlap. For example, two addition instructions on different
registers can be issued in the same cycle. Therefore, the extended registers also bring
advantages to instruction level parallelism (ILP). A critical path can be broken into several
shorter paths and be executed simultaneously, since the dependency of physical registers
is broken.

There are some restrictions of instruction issuing on the RegX16 processor: first, the
function units, two arithmetic logic units (ALU) and one address generation units (AGU)
limit the maximum instruction can be issued because of structure hazards; second, if an

instruction uses the AGU, then it must be the last one in the issue group; finally, two

11 d0i:10.6342/NTU201603161

instructions cannot be issued in the same group, if two instruction has datda dependency,

which means read-after-write (RAW) on registers. | =
The instructions can be categorized into four classes by the required function bHits,
General arithmetic instructions on registers require one ALU only, called ALU-instructions.
Memory operations or addressing related instructions require the AGU, called AGU-
instructions. If the instruction has to modify register and access memory, for example,
a pop instruction that read the memory and increase the stack pointer register, requires
one ALU and the AGU, called MIX-instructions. Finally, some complex instructions,
such as division operations, have to degrade to several micro-instructions, which occupy
all function units during execution and called uROM-instructions. In summary, maximal
combination of instructions in an issuing group are: two ALU-instructions and one AGU-

instruction, or one ALU-instruction and one MIX-instructions. The order is fixed since

the AGU-instruction or MIX-instruction must be the last instruction in the group.

2.3 Mixed-mode Execution

In this section we describe the mixed-mode execution and mode switching problems by

two examples: ARM/Thumb and RegX16/1A-32.

Mixed ARM/Thumb

Thumb mode is introduced to ARM because of the code size issues. Thumb instruction
set consists of 16-bit instructions, but the ARM instructions are 32-bit. Because of the
smaller encoding space, Thumb instruction set has fewer operations and registers, but it
is useful for compacting code of simple functions and less code size may result in better
cache locality. Most modern compilers support generate mixed binary with ARM and

Thumb instructions.

12 d0i:10.6342/NTU201603161

ARM and Thumb instructions cannot be mixed in codes directly but havesto beycon-
nected with branch instructions. ARM processors can automatically switch tfie mode
when the branching happens because the mode is encoded in the address of br'a:ncl; target.
The mode of targeting instructions is identified by the last significant bit (LSB) of the
addresses, since ARM and Thumb codes are two-bytes aligned and the LSB is free to use.
With such a hardware support, ARM and Thumb instructions can be even mixed in basic

block granularity with low mode switching overhead.

Mixed RegX16/1A-32

Because the one-byte increments and decrements are removed, we cannot execute 1A-32
codes in RegX16 mode. In the scenario we described, we can recompile our application
to RegX16, but it still has to be directly linked with legacy libraries, which cannot be
recompiled. Such a mixed-mode binary is composed of RegX16 and IA-32 codes, and
they are mixed by function calls or jumps during execution.

During mixed-mode execution, we have to make processor mode be consistent with
executing instructions. The RegX16 mode is controlled by the mode bit in EFLAGS,
which requires several instructions to modify for either enabling or disabling. In the
environment of our experiments, a mode switch requires about 14 cycles. It is much
slower than a general instruction, which usually needs no more than two cycles.

To completely ensure the correctness, a naive method is to wrap each RegX16 instruc-
tions with mode switches and every bundle now seems to be a single IA-32 instruction.
However, the performance is extremely bad because of the overhead of frequent and re-
dundant mode switches. Not only the correctness, but the performance should also be

considered in designing mode switching mechanism.

13 d0i:10.6342/NTU201603161

2.4 LLVM Infrastructure

=
=

LLVM is an open source collection of compilers and toolchains, which begihs as-a.re-
search project at the University of Illinois. LLVM is highly modular and support two-level
compilation. High level language, such as C language, is first compiled to LLVM inter-
mediate representation (IR) by the frontend; then the IR can be compiled to target binary
code by the backend [2]. LLVM 3.8, which is the version used in this thesis, support over
a dozen of backends, which are used to generate code for targeting ISAs.

Between frontends and backends, LLVM support a series of optimizations which do
not depend on the target ISA. These optimizations that can be applied to LLVM-IR code,
are called machine-independent optimizations. On the other hands, machine-dependent
optimizations have to be applied in backends, since they require more information about
the target. Besides, common optimizers are reused and shared among all backends.

Unlike optional optimizations, some works are necessary for code generation, for
example, DAG lowering, instruction selection, register allocation, instruction encoding,
etc. Each of these steps, include the optimizations, are handled by a particular “pass” in

LLVM. We can customize LLVM by modifying existing passes or inserting new passes.

2.4.1 x86 Backend

The Intel64 and the IA-32 is handled in one backend. Since Intel64 is extended from
[A-32, they very similar in many aspects. For example, most of the instructions have
same encoding in both ISAs; The register definitions are similar, but Intel64 has eight
extended registers and more low byte registers. Therefore, Intel64 and IA-32 are defined
as “subtargets” of x86 in LLVM to make use of the common designs and implementations

of the backend. For example, the instruction encoder is shared by both ISAs, except that

14 d0i:10.6342/NTU201603161

it may insert REX prefix if targeting Intel64. There is also 16 GPRs in/the definitien-of

the register file by default, except that the extended registers are preservediin IA%BZ.

2.4.2 Register File and Calling Convention

The register file of an ISA has to be described in the backend. The names, number,
and width of registers have to be defined in the TableGen description file. In another
description file, the calling convention is defined, which includes the callee-saved and
caller-saved registers and the how arguments are passed in function calls.

In register allocation, though the algorithm is generalized, the use of registers can be
partially controlled by the backend. In x86, for example, there are 15 registers can be used
in register allocation, but a getReservedRegs method is used to specifying the forbidden
registers in 1A-32. Besides, the classes of registers are also defined, which are used to
define the format of instructions. For example, a MOVZX r32, r/m8 instruction is defined
to use a GR32 register for the destination and a GRS register for the source in Intel64, but
the source register can also be GR§_ABCD_H, which is the class of high byte registers,
in [A-32.

Unlike the registers, the calling convention is defined individually for each subtarget.
Only the callee-save registers (CSRs) have to be defined, and LLVM assume that other
GPRs are caller-save. In addition, how arguments are passed is defined by a sequence of

operations, which include type checking and corresponding actions for arguments.

2.4.3 Instruction Scheduling

In LLVM, instruction scheduling is separated to two phases: the pre-RA scheduling and
the post-RA scheduling. The pre-RA pass is executed before register allocation, which

aims to balance register pressure and ILP. After register allocation, some instructions for

15 d0i:10.6342/NTU201603161

spilling and restoring register are inserted, and we have to schedule them in the pdét-RA
pass. Post-RA scheduling helps minimizing the stalls in pipeline for in—order:pfﬁeessors.
In our implementation, we extend the post-RA scheduling pass in x86 for our Epro:-ceé'sor.
The instructions are scheduled in basic block scope in the post-RA pass. To reduce the
stalls, the pipeline structure is required, which is defined by the itineraries of instruction
classes. An itinerary describe how the instruction will be pipelined by the setting of the
timing, required function units, and latency of each pipeline stage. Besides, an additional
hazard recognizer can be introduced into the scheduler to customize hazard detection.
The post-RA scheduler uses a greedy algorithm for instruction scheduling, which is
known as list scheduling. Before scheduling a basic block, the dependency is analyzed
and the DAG of instructions in the basic block is created. The scheduler repeatedly selects
an instruction in the DAG, which does not depend on other instructions; emit it to the
scheduled code; and remove it from the DAG. In practice, the available instructions are
placed in a priority queue, sorted by some heuristics with the height and out-degree of the

node, and selected in order.

16 d0i:10.6342/NTU201603161

..urb

3 Design and Implementation

3.1 RegX16 Code Generation

We extend the x86 backend in LLVM to support RegX16 architecture. Unlike IA-32 and
Intel64, RegX16 is not treated as a subtarget but an extension of IA-32 in our implemen-
tation, and therefore we can reuse the source code of IA-32. However, since REX prefix
conflicts to the one-byte increments and decrements and high byte registers, merely ex-
tending the registers and the encoding method is not enough. In addition, we have to

disable these conflicting features in RegX16.

3.1.1 Extending Register File

The extended registers can be used in RegX16 by inserting REX byte as prefix of the
instruction. We do not need to define these registers again, but can exploit the definition
of Intel64 registers. Since we do not reserve the extended registers in RegX16, they can
be assigned by the register allocator, which include the extended low byte registers, SPL,
BPL, SIL, and DIL.

In TA-32, the code emitter does not correctly encode the extended registers. Since
registers are encoded with the last three bits of their indexes, the extended registers are

incorrectly encoded to corresponding original registers. We port the DetermineREXPrefix

17 d0i:10.6342/NTU201603161

function to IA-32, which is originally used in Intel64 to check whether anginstraetion
needs REX prefix. The function also calculates the required REX byte for the .in'éft:fuction.
However, since the W-bit in REX, which is used to specify the operand size:,: 1s ignored
by RegX16 processors, we can remove the related code in DetermineREXPrefix to speed

up compilation.

3.1.2 One-byte Increments and Decrements

INC r32 and DEC r32 instructions cannot be used in RegX16, since the opcodes overlap

to REX prefix. Fortunately, we can use INC r/m32 and DEC r/m32 instructions, which
support operations on both register and memory. These instructions need two bytes, which
is composed of the opcode ‘FFh’ and the destination descriptor rm.

The one-byte increments and decrements are selected in the instruction lowering pass
by X86MClnstLower. The instruction lowering pass is used to translate and simplify
instructions. In TA-32, an INC r/m32 which generated from instruction selection, will be
convert to INC r32 in the instruction lowering pass. In our implementation, we disable

such conversions in X86MClnstLower when targeting RegX16.

3.1.3 High Byte Registers

All high byte registers, AH, CH, DH, and BH, cannot be used in an instruction with REX
prefix because the indexes of these registers are occupied by BPL, SPL, DIL, and SIL.

In Intel64, high byte registers are reserved, even though they can be used in the in-
struction without REX prefix, and the number of available byte registers is reduced from
12 to 8. This is because of the limitation of generalized register allocators in LLVM,
which cannot prevent to use high byte registers with REX prefix. Currently, the register

type can be individually set for each operand by specifying register classes, such as GR32

18 d0i:10.6342/NTU201603161

or GR8. However, we cannot force the types of all operands to be the same’ing@n ifistruc-
tion. Therefore, if high byte registers are allowed, the register allocator may gcéfﬁentally
select an illegal combination of registers. L2

For the same reason, we have to prevent using high byte registers in RegX16. How-
ever, even if high byte registers are not used in register allocation, they can be directly
selected by some optimization passes in IA-32. For example, a peephole pattern in IA-32
is used to recognize a right-shift of byte by eight bits. Such an instruction is replaced by
a copying to GR32_ABCD and a copying from their high byte halves, since they have
opportunity to be eliminated by copy propagation or coalescing with other copying.

Such optimizations can be fully removed to prevent using high byte register acciden-
tally, but we use a different approach, which also attempts to retain the optimizations.
The approach needs an additional pass after such optimizations have been done. The pass
scans the instructions and check if any source may be high byte register. If so, the desti-
nation is forced to select original registers, which makes no REX prefix is required in the
instruction. In the worst case, one additional copying is required for moving data from the
original register to the other extended register, but we still do not use more instructions

than the non-optimized code.

3.1.4 Granularity of Mixed-mode

Our implementation support mixing RegX16 and IA-32 code in a binary. The granularity
affects the design of mode switching, which is described in the mixed-mode section. Here
we merely describe how we support mixed-modes of different granularities.

Assume that all functions in a module is compiled to RegX16, but the module has
to be linked with other modules which the mode is unknown. For example, we have the

source codes of our applications but the runtime library is pre-compiled. A processor

19 d0i:10.6342/NTU201603161

feature flag, HasRegX16, is added to our implementation, and we can enable RegX16 for

the whole module by compiler flags. ==

If not all the functions are going to be compiled to RegX16, we have to support mode

controlling in function granularity. In our implementation, we add a new function at-

tribute,

regx16, to the compiler framework. The attribute has to be support by both
frontend and backend, since it has to be recognizable in high level language. We can
append this attribute to the functions which have to be compiled to RegX16, and we can
also use it to identity external RegX16 functions by appending it to their declarations. Be-
sides, in our link-time optimization (LTO) support, the attribute is automatically appended
to RegX16 functions.

In summary, RegX16 can be enabled in either module or function granularities. When
RegX16 is enabled for whole the module, the compiler conservatively assumes that the
modes of external functions are unknown. However, if we specify the mode of each
function, the compiler has more information that can be used to optimize mode switching.

Our implementation does not support smaller granularities than a function, such as a
basic block or an instruction, since register allocation is applied on whole function, and

there is no reason to limit extended registers to be used in some basic blocks only.

3.2 Mode Switching

When mixed-mode is used, our implementation automatically generate mode switches to

ensure that every instruction is executed in correct mode.

20 d0i:10.6342/NTU201603161

3.2.1 Mode Switching Overview

=
=

Since the mode is controlled by the 28th-bit of EFLAGS, which can be modi;ﬁed"'by. SeV-
eral instructions, no extra instruction for mode switching is supported by RegX16-proces-

sor. The mode can be switched by following instructions:

Switch to RegX16 Switch to IA32

PUSHF PUSHF

OR DWORD [ESP], 0x10000000 AND DWORD [ESP], OxEFFFFFFF
POPF POPF

The first instruction, PUSHF, write EFLAGS to stack, since there is no instruction for
setting ELFAGS directly. Then, we use OR 0x10000000 or AND OxEFFFFFFF to modify
the value for enabling or disabling RegX16. Finally, the value is write back to EFLAGS
by POPF. For convenience, we use switch_to_regx16 and switch_to_ia32 for the shorten
of the above instructions.

A naive mechanism of mode switching is to wrap each RegX16 instruction by the
mode switches, switch_to_regx16 and switch_to_ia32, and the instruction seems to be
IA-32. However, this mechanism is impractical because of the overhead of mode switch-
ing. Since the pipeline has to be flushed when mode changes, the instructions of mode
switching cannot be pipelined and takes 14 cycles in our processor. Therefore, enabling
and disabling RegX16 for an instruction requires extra 28 cycles, which is not acceptable.

A better mechanism is to switch the mode for functions, not instructions. We have to
insert mode switching at the boundary of function. More specifically, when a function is
called or returns, we have to switch the mode according to the targeting function. The
mode can be switched before branches happen. For example, assume that there is a call
from RegX16 function to IA-32 function. We can add switch_to_ia32 before the call
instruction. Otherwise, the mode has to be switch at the target of branches. In the above

example, if no switch_to_regx16 is inserted before the return instructions of the [A-32

21 d0i:10.6342/NTU201603161

(ITOEoTe,
.@31-@'&-_1!:?& B

A:IA-32

Caller: IA-32 A: RegX16

save mode
CALL A mode—RegX16

save mode . r*:
mode—IA-32 /|

restore mode
RET

restore mode
RET

Figure 3.1: Callee-switch mode switching mechanism

function, we have to insert switch_to_regx16 after the call instruction. We first introduce

two basic mechanisms, callee-switch and caller-switch, in following paragraphs.

Callee-switch

In callee-switch mechanism, the callee is responsible for mode switching. At the en-
try point of each function, switch_to_regx16 is inserted if it is a RegX16 function, and
switch_to_ia32 is inserted for [A-32 function. However, at the exit points, we cannot de-
termine which mode should switch to, since the return instructions are indirect branches,
which the targets are unknown or variable. Therefore, we have to save the mode of the
caller by push EFLAGS onto the stack, which is similar to reserve callee-saved registers.
Then we can restore the mode for caller at exit points. In figure 3.1, function A is called
from IA-32 caller. If function A is a RegX16 function, the mode is switched to RegX16
before entering the function body and restored to IA-32 before leaving the function. If
function A is IA-32, the mode is switched to IA-32, which is actually not changed, and
retains [A-32 when leaving the function.

The disadvantage is that when the caller and the callee have the same mode, mode

switches are redundant. Furthermore, the callee-switch mechanism is failed when there

22 d0i:10.6342/NTU201603161

A: RegX16 B: IA-32

mode—RegX16
mode—IA-32 CALL D

CALL B mode —IA-32

mode—RegX16 D: RegX16

CALLD

Figure 3.2: Caller-switch mode switching mechanism

are external calls to pre-compiled functions, since we cannot insert mode switches in such

callees.

Caller-switch

In caller-switch mechanism, the caller is responsible for mode switching, and mode
switchings are inserted before and after call instructions. Before a call, the mode should
be switch to be the mode of the callee, and it should be switch back to the mode of the
caller. We do not have to reserve EFLAGS, since the mode of callee and caller is de-
terminate, and therefore, caller-switch is a little bit faster than callee-switch. Moreover,
when the caller and the callee are in the same mode, the mode switching can be removed
to prevent redundancy. In figure 3.2, function A is RegX16 and B is IA-32, the mode
is switched at every function calls between different ISAs. If the caller and callee have
same ISA, such as the call from function B to function C, we do not have to insert mode
switches.

Caller-switch does not support indirect function calls since modes of the callees are

unknown. To solve this problem, a function pointer is limited to point to functions with

23 d0i:10.6342/NTU201603161

A: RegX16
mode—RegX16

mode—IA-32
CALL B

mode—RegX16

mode—IA-32
RET

Figure 3.3: Legacy compatible mode switching mechanism

single mode. In our compiler implementation, a function pointer can be limited to RegX16

functions by the appending __regx16 attribute to the declaration of the pointer.

3.2.2 Legacy Compatible Mode Switching

The mode switching mechanism used in our implementation is fully compatible with
linked libraries. Our design is a combination of callee-switch and caller-switch and opti-
mized to eliminate redundant mode switching.

The idea is to make every function seem like IA-32. No IA-32 function has to be mod-
ified, and all mode switches are inserted into RegX16 functions. Therefore, the functions
in legacy libraries do not have to be recompiled. Both callee-switch and caller-switch are
required for RegX16 functions. Callee-switch makes the functions seem like IA-32 and
able to be called directly from other functions. According to caller-switch mechanism,
switches are inserted at each function calls in RegX16 functions, since all called func-
tions seem like [A-32. With this mechanism, RegX16 functions are able to call external
IA-32 functions and safe to be passed as function pointers. In figure 3.3, function A is
compiled to RegX16 with mode switches at the entry, exit, and call site.

24 d0i:10.6342/NTU201603161

& 2

In the following paragraphs, we describe the optimizations which kefe”uf

applied to RegX16 functions, since we assume that we cannot modiﬁéf)
@ F

TA-32 functions.

Optimize Direct Calls

The disadvantage is that redundant mode switches exist between two RegX16 functions.
Ideally, if both the caller and the callee are RegX 16 functions, no mode switch is required,
but we switch twice in this case. Figure 3.4 shows the problem. When function A calls
function B, the mode is switched to IA-32 before the call and switched back to RegX16

after entering the callee function. Same problems occur when the callee functions return.

A: RegX16 B: RegX16
mode—RegX16 mode—RegX16

mode —IA-32
CALL B
mode—RegX16

mode—IA-32 mode—IA-32
RET RET

Figure 3.4: Redundant mode switches in a RegX16 to RegX16 call

The redundant mode switch in the caller can be removed directly, but the one in the
callee cannot be removed, since the callee function may be called by other IA-32 functions
without mode switching.

To remove the redundant mode switch in the callee, we have to migrate the switch to a

wrapper function. In our implementation, the name of the wrapper function is same as the

25 d0i:10.6342/NTU201603161

L
“Logogeat®”

target the callee. Figure 3.5 shows an example of optimized functions. function A and
B are renamed to A.regx16 and B.regx16. The name of additional wrapper functions are
same as their original function. A function calls from A to B, is replaced to B.regx16 to

eliminate the redundant mode switch in wrapper function B.

A A.regx16

mode—RegX16 mode—RegX16

CALL A.regx16
CALL B.regx16

mode—IA-32

RET mode—IA-32
CALL C
mode—RegX16

B.regx16

RET

Figure 3.5: Optimized direct function calls without redundant mode switches

Indirect Call Problems

An indirect call in x86 uses a register to specify the address of the target function. We
cannot eliminate mode switches of such function calls because modes of the targets are
variable. However, in some cases the targeting functions are determined in compile time
and stored as a constant list. If all the targets are RegX16 functions, it is safe to remove
the switches.

Besides, because the mode is switched to IA-32 before the call instruction is executed,

26 d0i:10.6342/NTU201603161

extended registers cannot be used here. The same problem occurs with'the indirect.call
instructions of which the address is placed in memory. In these instructiens, Fhé%iemory
location cannot be addressed by extended registers either. Therefore, we r’epléice the Teg-
ister classes of such instructions by GR32_NOREX to avoid assigning extended registers

to them.

Optimizing Tail Calls

The optimization for direct calls between RegX16 functions cannot be applied on tail
calls since they do not return and we have no chance to switch the mode back. For
example, assumed that the functions A, B are RegX16 and function C is [A-32. If A calls
B normally and B calls C by tail jump, the mode is still IA-32 after function B returns,
which is incorrect. Therefore, tail call optimization should be disabled when calling IA-32

function, but it is safe to use if the jump targeting RegX16.

27 d0i:10.6342/NTU201603161

4 Experimental Results

In this chapter, we conduct the performance evaluation of our design and implementa-
tion for the mixed-mode execution of IA-32 and RegX16 code. Before the evaluation of
mixed-mode execution, we also measure the performance improvement of pure RegX16

binaries, which are fully compiled to RegX16 and do not have mode switching.

4.1 Environment

Our RegX16 processor is emulated by a FPGA board, which is about 250-300 times
slower than modern PC-grade consumer processors. Therefore, we use the EEMBC
benchmark set [1] for evaluations, since these benchmarks are lightweight enough to be
executed within reasonable turnaround time using our FPGA board based system. The
operating system used is Fedora, a Linux based open source OS. All benchmarks from
EEMBC are compiled with our compiler, which is based on clang-3.8 and supports mixed-
mode binaries of RegX16 and IA-32.

To evaluate the performance of RegX16, not only the benchmarks, but we also extract
necessary functions from C libraries and compile them to RegX16. Therefore, mode
switching between functions is not required, and we only have to enable RegX16 at the
entry points of the benchmarks.

To evaluate the mixed-mode execution, all benchmarks are compiled with all the six

28 d0i:10.6342/NTU201603161

Base Compiled with -m32 -mno-sse -03. Since the.emulatedpro-
cessor does not support SSE, these features have to/be dlsabled

RegX16 Same as the baseline but add an additional —mregx16 ‘Hag to
enable mixed-mode code generation. (||

BaseLTO Compiled with -fl1to -m32 -mno-sse -03. A basehne for
other configurations which also enable link-time optimization.

RegX16LTO Compiled to mixed-mode code with LTO support.

SchedLTO Compiled with -f1to -m32 -mno-sse -03 -march=rdc to

enable our customized scheduler and LTO support.

SchedRegX16LTO Compiled to mixed-mode code with LTO and scheduler sup-
port.

Table 4.1: Compilation configurations for evaluations

configurations listed in table 4.1. However, routelookup, bezier(O1fixed, and bezierO1float
benchmarks have been fully optimized away when LTO is enabled, and therefore, these
benchmarks are removed from our testing set. Besides, we impose some additional re-
strictions on extended registers to some instructions for the ospf and cjpeg benchmarks
to avoid triggering a hardware bug and crashing the benchmarks. The bug is that some
extended registers cannot be used as the index of the effective address. Therefore, the real

improvement of these two benchmarks is constrained by the lack of extended registers.

4.2 Performance Improvement of RegX16

We first evaluate the performance improvement of exploiting extended registers in RegX16.
All the benchmarks are fully compiled to RegX16 and not linked with IA-32 libraries.
The necessary library functions are extracted and compiled to RegX16. Therefore, the
overhead of mode switching is excluded in this case. Figure 4.1 shows the improvement,
which is based on the performance of original IA-32 binaries. Floating-point benchmarks,
matrix01, basefp01, iirfltO1, tblookO1, and aifirfO1, are removed in this experiment, since

they certainly do not benefit from extended registers on integer operations. Some other

29 d0i:10.6342/NTU201603161

20%

18%
16%
14%
12%
10%
8%
6%
4%
il
0
So\b S O © & &P S

Speedup

X

o
& S L £ QO S & & § 5
g & K F & & S & > X & @ &
&7 S & & v T8

Figure 4.1: Performance improvement of RegX16

0.00% H
-2.00%
-4.00%

-6.00%
-8.00%

-10.00%

Reduction of Code Size

-12.00%

-14.00%
o o S N S S)) & > > O o X
N NS Q N Q & SN N NN N N
P & f & &8 § & 8 ¢ ¥ & &
) &L L8 S) 1S @ SN @ WO)
& T TE S S ¥ & & <

Figure 4.2: Reduction of code size when compiling to regX16

benchmarks are removed because their performance are not improved even if compiled to
Intel64, which means that there is no performance opportunity by exploiting more regis-
ters. When the benchmarks are compiled to RegX16 and no mode-switching is required,
the average performance improvement is 10.9%, and the performance of some bench-
marks are improved more than 18%.

The comparison of code size of IA-32 and RegX16 is showed in figure 4.2. Though

the length of some instructions may be increased by REX prefix, the total code sizes

30 d0i:10.6342/NTU201603161

are reduced in all benchmarks since the number of instructions of register spilling,and

restoring is decreased. =

4.3 Performance Improvement of Mixed-Mode

Figure 4.3 shows the performance improvement of each benchmark when compiled with
each of the configurations. The performance of the Base configuration is used as the
baseline performance of all other configurations. The result shows that the performance
can be improved by extended registers in mixed-mode. When all optimizations enabled
by compiling with SchedRegX16LTO, the average performance gain is 34.4%, which is
better than SchedLTO without RegX16, 21.2%. The comparison of RegX16LTO and
BaseLTO is similar, where the speedup of RegX16LTO, 22.5%, is larger than using LTO
alone, 16.6%.

The pure RegX16 configuration is one exception, whose performance is worse than
the baseline on average. In some benchmarks, the performance is even reduced more
than 50%. The reason is that the frequencies of external function call in these bench-
marks are much higher than others. We calculate the number of function calls in each
benchmark by instrumentation and classify them into 3 kinds: external, indirect, and in-
ternal. The term “external” means to call a function that out of the module of the caller
at compile-time; and “internal” means to call a function in the same module, respectively.
Figure 4.4 shows the result. Since only the mode switching of internal and indirect calls
can be eliminated without LTO support, those benchmarks with lots of external calls,
canrdr816, memacc816, rspeed816, cacheb01, canrdrO1, rspeed01, and pktflow, perform
poorly when compiled with the pure RegX16 configuration.

On the other hand, if a benchmark does not frequently call external functions, it could

31 d0i:10.6342/NTU201603161

135% 128Y
120% o 128%

100%
80%
60%
[N
=
g 40%
(=N
wn
= “ ||“|| |||| .
0% III I _in I B | |-I I| III |I|“ III II| _,-J .III [[] II
-20% ||
-40% -49% -61% -55% -53% -62%
O b b b b L LU QDD \ \
N AN A% AN AN NN Q. O W® INMEENEINN
FEFFITFF TSI TS TS
'*‘@c?’& @é& &430 %Q ’(‘Q i v & F @ N &
120%
100%
80%
60%
(=9
=]
B 40%
)
Ll Ll || “ |“‘| [l il
0% |||| il .l |||I I,|| ||I| -l .,II walel I |,||| I“ ' I.|| |||| I
1 I 1 - I I
-20%
-40% -53% -50%
S DD % & NN QOO
SO S SFTLS ST SESLSSTE & &
0\5\6‘Q > °\~&q’>‘c,°4© & & XL
Q4$é\ {:’Q ‘0 Q QO &,QO 45 & &\\’ & ‘b\'g\' 000 ®\ 4{\ Qg’o

HRegX16 ®WLTO =RegX16LTO = SchedLTO ® SchedRegX16LTO

Figure 4.3: Performance improvement of all configurations

32 d0i:10.6342/NTU201603161

2500
2000

1500

1000 ‘
. 1 . .
©

Kilo Calls per Second

w
=3
(=]
6
I
1
n
n
I
.
[]

m
| |
I
]
pktflow S—

. | | . - -

© © © © O o o o e e et e e e e e o e = e B B = — — 4= - - o o o o o
~~~~~~~ S e LIS TS S LSS LR L & e g eSS e
w@wwooocooq‘_,_M&Q_D.Uﬁclf.:'ovxf,&,&%_n.go 5 8 5 § = & 2
(=3 S =9 9 2 g & & & £ 2B EEYEEL S ST o5 g &5 £ = 2 =2 *
EEESEEEEEEEIESESEEEELE : %3 s25:2&8 2

s = 2 E g = £ £ 82 2 = z =
ESEZE 8 ZQ 5 F § 8= E &2z 22 = o @ 2 S >
B g = 2 &

g 2

m External ®Indirect ® Internal

Figure 4.4: Frequencies of function calls

often take advantage of RegX16. For example, aifirfO1, aiifftO1, fft00, and viterbOO are
improved by about 17%, and fbital00 has the maximum improvement, which is 27.3%.
However, this is not always true since not all benchmarks could benefit from lots of gen-
eral purpose registers. For example, basefpOl and maxtrixO1 are floating-point applica-
tions, which requires more FP registers rather than the extended general purpose registers.
LTO accounts for a significant part of the performance gain from RegX16LTO and
SchedRegX16LTO. Canrdr816 and puwmod816 gain about 100% speedup; ttsprk816,
a2time01, and rspeed01 have over 60% speedup. The reason is that when LTO is en-
abled, most of the functions from separated modules are available to be inlined, and this
inlining further increase the impact of other optimizations due to the enlarged optimiza-
tion scope. Therefore, to measure the true performance gain with extended registers in
mixed-mode, we have to use BaseLTO as the baseline of RegX16LTO and SchedL.TO for
SchedRegX16LTO. The result is showed in figure 4.5. The average speedup of RegX16LTO
and SchedRegX16LTO are 5.1% and 10.9%. The best one in RegX16LTO is aifftrO1,
which has 21.2% speedup. Scheduled code delivers higher performance than non-scheduled

because that to get full benefit of extended register requires the code scheduler to aware

33 d0i:10.6342/NTU201603161



40% 75% 50%
30%

20%

- ‘ | ‘ | || | |‘ || |
0% I|II|IIII|.|I |I|_||I||||II_ |I|I-|II| |1 | S

Speedup

-10%

-20%

6
6
6
6
6
6
6

________________ c‘)c‘)_‘-ﬁ-ﬁ‘a;ﬁﬁooooo:

R Exxx B E R R R R R SR E RS SRR T REREREE SR8

E L B EEEE S E 2 ES L8 5 EEE°S2E38¢EFF¢
B == s 9 = = I 151 B = s s = O

s 2 8 E o =B '3 3 3 & o 50 = S g o = & e} 2= © 3 g & Z D

E5EEE828 EZ£E8RTEEzEZRS 5B S 2 E g =&

5 ° 2 &g & a =

= 2

mRegX16LTO  m SchedRegX16LTO
Figure 4.5: Improvement of exploiting extended registers

of the newly available registers. For example, RegX16 does not perform well for non-
scheduled code in pntrch816 and rgbhpgO01, but the performance is dramatically improved
to 75.0% and 50.1% in the scheduled versions.

Instruction scheduling becomes more effective when RegX16 is enabled. The speedup
of applying instruction scheduling on pure IA-32 code and mixed-mode RegX16 code is
showed in figure 4.6, which use BaseLTO and RegX16LTO as baselines, respectively. On
average, the improvement is 3.9% in IA-32 code and 9.7% in mixed-mode RegX16 code,
which means that we have more effective instruction scheduling with extended registers.

Some benchmarks are slowed down when the instruction scheduling is applied. This is
because that our scheduler aims to maximize ILP with some greedy heuristics, which does
not always reach a perfect balance between ILP and limited registers. Over-scheduling
could result in register spilling while under-scheduling may leave some bubbles in the

pipelined execution. A more balanced scheduling algorithm could address this issue bet-

ter. We leave this issue for future improvement.

34 d0i:10.6342/NTU201603161



o
B

X
XX
S 8 & 6h & @ & &
F ad A a = =

dnpaodg

0%
-5%
-10%
-15%
-20%

-29%

u SchedRegX16LTO

-29%

ueowoad
0091anA
004
ooreaqy
(QUQAUOD
00l109ne
10218101
1omip
moppid
Jdso
10b14q81
103dyqsz
10Awoq31
Fodlp
Fodlo
10Hdsn
10300191
10opa2ads1
[opowmnd
1oyonud
[oxLRW
1o
1ounopt
10IpIues
1092YoLd
1oduuniq
10dyoseq
Toyjire
Togre
rongjte
[oowmnze
918Hdsn
91 gpaadst
91gpowmnd
918yonud
9[8ooRWAW
9181piued
918duuniq

m SchedLTO

heduling

101 SC

Improvement of instruct

Figure 4.6

10.6342/NTU201603161

i:

do

35



5 Conclusions and Future Work

In this thesis, we propose a software-based mode switching mechanism to support mixed-
mode execution. With our mechanism, instructions from two incompatible ISA can be
mixed and executed in a binary without special hardware support. We can link our appli-
cation binaries, which are compiled to RegX16, with legacy 1A-32 libraries. Therefore,
to make an existing application available to exploit the extended registers, we only need
to recompile the applications themselves.

Our compiler implementation is based on LLVM and support code generation for
mixed RegX16 and [A-32 binaries. Since RegX16 is directly extended from [A-32, we
can leverage the existing IA-32 backend in LLVM to avoid tedious and error prone devel-
opment work. Most of the source codes in IA-32 backend can be reused in the RegX16
backend, but we have to carefully remove unsupported IA-32 features from our backend
to prevent generating illegal instructions in the RegX16 code. Our compiler can generate
statically-linked, pure RegX16 binaries without mode switching or dynamically-linked,
mixed-mode binaries of RegX16 and IA-32, and both executable types can be executed
in our environment, which is an FPGA board with a Linux-based operating system.

The results of our experiments show that the performance of existing applications can
be improved by recompiling to RegX16, either in pure or mixed mode. The performance
of the benchmarks which may benefit from using more registers are improved by 10.9%

in pure mode on average, and in mixed mode, the average speedup of all benchmarks

36 d0i:10.6342/NTU201603161



is 5.1%. In pure mode, all source codes are compiled to RegX16 and therefore mode
switching is not required. The performance is not encumbered with the overhga(ff?f mode
switching. Optimizations for reducing redundant mode switches are not requ;re& iﬁ'this
case. However, if the application is compiled to mixed-mode binaries, the overhead of
mode switching may affect the performance, especially when the source codes are full
of external calls. Our optimizations can only eliminate redundant internal calls, but if
link-time optimization is enabled, we can further eliminate external calls between source
files. However, external calls which targeting library functions are required and cannot be
eliminated.

Our experiments also show that the effectiveness of code scheduling can be improved
with additional registers. When applying to RegX16 binaries, the performance improve-
ment of code scheduling is larger than applying to IA-32 binaries. On the other hand,
using extended registers with code scheduling is better than without it. Extended registers
and code scheduling are benefit from each other.

Our software-based mode switching mechanism is fully independent to the mixed
ISAs, which means that we can mix any two ISAs in a binary, not only the extended and
the original one. One future work could be mixing ARM and x86 on Atom processors,
which execute ARM binaries by binary translation. Our target is to reduce the overhead
of binary translation by combining multiple binaries and executing them in mixed-mode

if the future processors provide mode switching support.

37 d0i:10.6342/NTU201603161



References

[1] EEMBC - Embedded Microprocessor Benchmarks. http://www.eembc.org/

benchmark/products. php. (Accessed on 08/15/2016).
[2] writing an llvm backend —Illvm 3.8 documentation.

[3] Intel Corporation. Intel® Itanium Architecture Software Developer’s Manual. Octo-

ber 2002.

[4] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Number 253669-033US. December 2009.

[5] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation. Mar 2004.
[6] RDC Semiconductor Co., Ltd. Official website. http://www.rdc.com. tw/, 2016.

[7] David Seal. ARM Architecture Reference Manual. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 2nd edition, 2000.

38 d0i:10.6342/NTU201603161


http://www.eembc.org/benchmark/products.php
http://www.eembc.org/benchmark/products.php
http://www.rdc.com.tw/

	誌謝
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	x86 Instruction Set Architectures
	Instruction Encoding
	IA-32 Registers
	Intel64 Extended Registers

	RegX16 Instruction Set Architecture
	Design and Features
	Conflicts of Instruction Encoding
	RegX16 Processors

	Mixed-mode Execution
	LLVM Infrastructure
	x86 Backend
	Register File and Calling Convention
	Instruction Scheduling


	Design and Implementation
	RegX16 Code Generation
	Extending Register File
	One-byte Increments and Decrements
	High Byte Registers
	Granularity of Mixed-mode

	Mode Switching
	Mode Switching Overview
	Legacy Compatible Mode Switching


	Experimental Results
	Environment
	Performance Improvement of RegX16
	Performance Improvement of Mixed-Mode

	Conclusions and Future Work
	References



