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中文摘要  

    地震會影響邊坡的穩定性並導致邊坡滑落。本論文致力於探討地震對邊坡穩

定性之影響，結合理論和實驗的方法以模擬在地震發生時，邊坡形貌的變化及顆粒

流的運動模式。在理論部分，以質量、動量及動能守恆方程式為基礎，利用深度積

分簡化顆粒流方程式，並驗證理論方法之可行性，再應用到模擬地震的方程式，將

顆粒流方程式及深度積分方程式建立成數值計算模式，相互比較驗證，並進一步推

導出加速度、通量和坡度之關係式。在實驗部分，利用振動台模擬地震波進行一系

列實驗，將影像進行座標轉換及移除位移之校正後，再使用影像方法分析顆粒之流

動形態，並觀察在振動情況下，物理量隨時間之變化。最後由實驗與理論之比較結

果，發現在觀察通量及斜坡角度的關係時，實驗與理論模擬的結果有相似的趨勢，

能夠幫助觀察及預測振動對邊坡之影響。 

 

關鍵字：振動台實驗、顆粒流、邊坡滑動、粒子速度測量追蹤、深度積分 
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ABSTRACT 

Earthquakes can affect the stability of slope and trigger landslides. In this study, both 

theoretical and experimental analysis are used to comprehend the flows behavior of the 

slope under seismic conditions. Though theory, we develop a depth-integrated equations 

with the assumption of conservation of kinetic energy, mass and momentum. To solve the 

granular flow equations, we derive the numerical models from the local equations and the 

depth-integrated equations. A series of experiments is conducted on a shaking table, 

which can simulate the seismic vibration. We use the images from experiments and the 

particle tracking velocimetry (PTV) method to acquire the velocity fields, the depth of 

flow layer and the time-evolving variables. Using these approach, we develop a model 

that can be used to estimate the behavior of slope under seismic conditions. Through the 

theory and experiment results, we can know more about the mechanism of landslides once 

the shaking conditions are given. 

 

Keywords：  Seismic slope behavior; Granular flow; Shaking table model; Particle 

tracking velocimetry 
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Chapter 1 Introduction 

In 1999, the Chi-Chi earthquake, also known as the 921 earthquake, struck Taiwan 

and triggered massive landslides, which caused a great deal of damage. Landslide is a 

natural phenomenon that occur when the slope is in an unstable condition. Earthquakes 

is one of the causes to trigger landslides. Due to the frequent earthquake, steep slope, and 

weak geological formation, there is a high probability that slope failures happened in 

Taiwan. In view of the risk, we would like to investigate this phenomenon.  

 

Fig. 1-1 The earthquake-induced landslides during the Chi-Chi earthquake. 

In the past, landslides triggered by earthquakes have been broadly discussed. We 

propose to focus on the slope behavior under seismic conditions in this research. In order 

to obtain more complete and reliable results, both theoretical and experimental analysis 

are used to simulate the motion. However, the seismic waves from earthquakes have a 

complex motion; therefore, the wave is simplified to a stable sine wave in our research.    

Chou et al. (2013) conducted the experiments of dry granular piles with two 
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symmetrical slopes under a horizontal shaking force. In the process, the relaxation of 

slope surface can be observed and the patterns on the granular surface are different under 

various shaking accelerations. In addition to the experiments, the equations to describe 

the process of relaxation are proposed in study. In our research, we design the experiment 

with one inclined granular slope and use the granular flow theory to describe the behavior 

of slope. 

To analyze the slope behavior, we adopt the dense granular flow equations to 

model our case. For entraining granular flows in narrow channel, the depth-integrated 

equations can capture the flow process successfully (Capart et al. 2015). Therefore, we 

apply the depth-integrated equation to solve our problem. In order to check these two 

methods both can obtain the velocity field and flow layer of the slope, we compare the 

calculation results together to verify the applicability. Furthermore, we find the relation 

between slope and acceleration by the results of depth-integrated equation. This equation 

can provide the estimation of equilibrium angle. 

The laboratory experiments are conducted on a shaking table, which can simulate 

the seismic vibration. We use the glossy mill stones as material to build the model slope, 

and take several measurements under different acceleration condition. After that, the 

image method is used to analyze the measurements. With the experimental results, we 

can convert them into the data which we are interest in, and compare them with the 

theoretical results.  
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Chapter 2 Theory 

In this research, we employ the theory of granular flow over loose bed to describe 

the behavior of granular flow due to seismic shaking. Before discussing the influence of 

seismic, we consider the basic problem first. Besides the local equations, we apply the 

depth-integrated equations to study the behavior. Then, we compare the results of two 

kinds of equations with the analytic solution to check the applicability of these approaches. 

After that, we can apply these methods to our case to obtain the results. Moreover, we 

derive the semi-analytical solution to find the relation of slope and acceleration and the 

relation of slope and flux by applying the depth-integrated equations. 

 

Fig. 2-1 Procedure of theory analysis 
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2.1 Unsteady uniform granular flows over erodible bed 

2.1.1 Local equations  

In the case of a dense granular flow over loose bed in a narrow channel, we apply 

the theory of granular flows in channels (Capart et al. 2015) to the basic problem. The 

governing equations can be obtained according to the mass and momentum balances.  

 

0

sin 2

cos

W

u w

x z

u
g

t z W

g
z


  


 

 
   


 

  
 


  

   (2.1) 

where x  and z  are the coordinates parallel and perpendicular to the flow direction, 

t  is time, u  and w  are the velocity components in x  and z  direction, W  is the 

width of channel,   is the angle of repose,   is the inclination of channel, the bulk 

density is = s sc  , the shear stress act on the wall is W W   , the normal stress is 

 g z z    . We define the components of gravitational acceleration are 

sing g   and cosg g   . As for the internal shear stress, we adopt the linearized 

dense granular flow rheology (GDR MiDi 2004; da Cruz et al. 2005; Berzi and Jenkins 

2009) 

  tan   ,   I=
/ (c )s s

D
I


   

 
    (2.2) 

 tan D       (2.3) 

where   is the dimensionless rheological coefficient, =
u

z





 is shear rate, D  is the 

grain diameter. The variables are defined in Fig. 2-2.  
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Fig. 2-2 Variable definitions of a dense granular flow over loose bed in a narrow channel 

(Hung, 2015) 

 

The boundary conditions is 

 0,       =0,        0,       u=0,      tanz        (2.4) 

At equilibrium, the depth, depth-averaged velocity, and velocity profile are 

 (tan tan )
W

W
h  


    (2.5) 

  
3 2

1 2
5 24

tan tan
35 W

g W
u

D
 

 


 
   

 
  (2.6) 

  ˆu uf    (2.7)  

     3 2 5 27 35 7
ˆ ˆ ˆ ˆ/     ,     

3 6 2
z z h f          (2.8) 

where   is the depth coordinate measured from free surface. In addition, we are also 

interested in the non-equilibrium evolution. Thus, we solve the equations by using explicit 

finite difference scheme, and rewrite (2.1) into the recurrence equation. 

 
    1 11

,2 21
2

t t
i i

W ii iu u
g

t W

 


 


 



  

 
  (2.9) 
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where             
( t ) ( t )

1
1 1 1

2 2 2

t a n i i

i i i

u u
D   




  


 


            (2.10) 

 
(t) (t)

1
1 1 1

2 2 2

tan i i

i i i

u u
D   




  


 


  (2.11) 

 ,W i W i W ig         (2.12)

   

2.1.2 Depth-integrated equations 

To get the non-equilibrium evolution by another method, we adopt the depth-

integrated equations, which proposed by Capart et al. (2015), to solve the same governing 

equations. We assume that the velocity profile remains self-similar 

    ˆ, (t) fu z t u z   (2.13) 

Integrate the momentum equation over depth, 

 
( ) ( )

0 0

1
2

h t h t
Wu

d g d
t z W


 

 

  
   

  
    (2.14) 

Calculate term by term  

    
( ) ( )

0 0
,

h t h tu
d u t d hu

t t t
  

  
 

      (2.15) 

 
( )

0

1
tan

h t

d g h
z


 





 

   (2.16) 

 
( )

2

0
2

h t
W Wd g h
W W

 



   (2.17) 

Thus, we get the ordinary differential equation for the depth-integrated momentum  

   2(tan tan ) Wd
hu g h g h

dt W


       (2.18) 

Since there are two variables to determine, we need another equation to solve the problem. 

Hence we integrate the equation over depth again and weight by the local velocity ( )u z , 
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( ) ( )

0 0

1
2

h t h t
Wu

u d u g d
t z W


 

 

  
   

  
    (2.19) 

and get another ordinary differential equation for the depth-integrated kinetic energy 

 
2

2 277 35 5
(tan tan )

96 9 9

Wd u
hu g hu D g h g h u

dt h W


    

 
    

 
  (2.20) 

In order to solve the ordinary differential equations, we rewrite these two equations into 

separate ordinary differential equations of ( )u t  and ( )h t  

 
3

2

19 160 71
(tan tan )

77 33 231

Wdu u
g D g g h

dt W
h


          (2.21) 

 
2

1

2

58 160 1 302
(tan tan )

77 33 231

Wdh h h
g D g g

dt u W u
h


          (2.22) 

 

2.1.3 Comparison 

In order to check the results of these two methods, we solve the governing equations 

and depth-integrated equations to get the non-equilibrium evolution, and compare with 

the analytical solution. The results are plotted together in Fig. 2-3, and we can find the 

profiles are congruent. It means that both of these two methods enable us to solve the 

problem. The numerical scheme used is presented in section 2.2.3. 
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Fig. 2-3 Velocity profile: (a) Equilibrium (b) Evolution  

 

2.2 Unsteady uniform granular flows due to seismic shaking 

2.2.1 Local equations 

After the approach is verified, we apply the granular flow rheology to our case. First, 

the acceleration term needs to be revised, so we assume the direction of vibration 

acceleration is parallel to the ground and the acceleration changes periodically which is 

defined as sina t . Moreover, the surface is parallel to the inclination   of the rigid 

bottom of the channel. Thus, the parallel and perpendicular components of acceleration 

can be defined as sin sin cosg a t    and cos sin sing a t    as shown in Fig. 

2-4. In our case, the governing equation is  

(b) (a) 
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 

 

sin cos sin 2

cos sin sin

Wu
g a t

t z W

g a t
z


    


   

 
     


   

 

  (2.23) 

where the shear stress is tan   ,   W WD         , and the boundary 

conditions is 0,  =0,  0,  u=0, tanz      . 

 

Fig. 2-4 the components of vibration acceleration: parallel ( sin cosa t  ) and 

perpendicular ( sin sina t  ) to the flow direction  

 

The direction of flow velocity will change in our case, because the channel moves 

back and forth periodically. Theoretically, the shear stress resists the motion of particles, 

so the direction of friction terms are opposite to the direction of velocity. Therefore, it is 

necessary to define the direction of friction terms in particular when we solve the 

equations by numerical method. We use (2.24) to revise the velocity terms. 

 

u
u uz

uz z

z



  
 



  (2.24) 
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The internal shear stress is revised to 

 
tanu

D
uz

z


  

 
 
  

  
  

  (2.25) 

1

21 1
1 1 1

12 2 2

tan
i

i i i i

i i i
i i

g z z
u u u u

D g z z
u uz z

z



    




 


  


  
  

               
  

 

1

21 1
1 1 1

12 2 2

tan
i

i i i i

i i i
i i

g z z
u u u u

D g z z
u uz z

z



    




 


  


  
  

               
  

 

1 1 1 1 1 1

2 2 2 2 2 2
1 12 2 2 2

( )
i i i i i i

i i iu u u
z z z z z z

     



     

 

  
      

      
  

 

The shear stress act on the wall is  

   i
W W W i

i

u
g z z

u
         (2.26) 

We can rewrite (2.23) into the recurrence equation. 

 

 

1 1 1 1

2 2 2 2
1 12 2 2 2

( sin cos sin ) ( )

                  2

t t t i i i i
t t t t t ti i
i i i

t t

W i
i t t

i

u u
g a t u u u

t z z z z

u
g z z

W u

   

  





    
  

 



 

 
       

     
  

 

  (2.27) 
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2.2.2 Depth-integrated equations 

As mentioned previously, the depth-integrated equations also can be used to solve 

the governing equation. We can obtain the depth-integrated momentum equation and the 

depth-integrated kinetic energy equation by integrate the governing equation over depth. 

To revise the velocity terms, we add the sign function sgn(u)  to equations. 

 

   

  2

( cos sin ) tan sin sin sgn(u)

               sin sin sgn(u)W

d
hu g a t h g a t h

dt

g a t h
W

    


 





    

  

  (2.28) 

 

 

 

 

2

2

2

77
( cos sin ) tan sin sin sgn(u)

96

35
                       sin sin

9

5
                       sin sin sgn(u)

9

W

d
hu g a t hu g a t hu

dt

u
D g a t h

h

g a t h u
W

    

  


 







 
     

 

 

  

 (2.29) 

The equations can separate into two ordinary differential equations of ( )u t  and ( )h t  

3

2

19
cos sin tan ( sin sin ) sgn(u)

77

160 71
       ( sin sin ) ( sin sin ) sgn(u)

33 231

W

du
g a t g a t

dt

u
D g a t g a t h

W
h

    


    



 

       

    
   (2.30) 

 2

1

2

58
cos sin tan ( sin sin ) sgn(u)

77

160 1 302
        ( sin sin ) ( sin sin ) sgn(u)

33 231

W

dh h
g a t g a t

dt u

h
D g a t g a t

W u
h

    


    



 

       

    
 (2.31) 
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2.2.3 Numerical scheme and comparison 

The two ordinary differential equations of ( )u t  and ( )h t  derived from the depth-

integrated equations can rewrite into the recurrence equation.  

 
     

 

 

 

 
 

  

1 1 1

3

2

( ) B( ) ( ) J( )
k k k k k

k

k k
ku u

h

du u u u u u
A t t C t h t

dt t u u
h

 


  


       
  



   

(2.32) 

 
       

  

 

 

  
 

  

2
1

1 1 1 1

2 1

2

1
( ) ( ) ( ) ( )

k
k k k k k

k k
k

ku u
u

h

hdh h h h u h
E t F t G t I t

dt t u uu h
  


   
 

    
   

 

 (2.33) 

where  
19 19

( ) cos sin ,  ( ) tan ( sin sin ),
77 77

A t g a t B t g a t         

71 160
( ) ( sin sin ),  J( ) ( sin sin ),

231 33

WC t g a t t D g a t
W


          

 
58 58

( ) cos sin ,  ( ) tan ( sin sin ),
77 77

E t g a t F t g a t          

302 160
( ) ( sin sin ),  ( ) ( sin sin )

231 33

WG t g a t I t D g a t
W


           

 

Then, we transpose the equation, and we can obtain the depth-averaged velocity and flow 

depth from (2.34) and (2.35). 

 
 

  

 

 

 

 

3

2

1

J( )
1 ( )

B( ) ( )
1

k

k

h
k

k

k k

u u

t t
u A t t

h
u

t t C t t h

u u



 



 
 
   

 
 

  
 

 

  (2.34) 
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 

    

 

  
   

  

1
2

1 1

2 1

2

( ) ( ) ( ) ( )
1

k
k k k

k k
k

ku u
u

h

G t t F t t E t t u I t t
h h h

u u u h
   


 

 
     

     
     

 (2.35) 

 

The results of the depth-integrated equations are compared with the local solutions solved 

by Capart (2016). We consider the one way flow and the two way flow. The numerical 

parameters are listed in Table 2.1. The results are plotted from  

Fig. 2-5 to Fig. 2-8. We can observe that the results obtained by the local equations and 

the depth-integrated equations are similar. It means that these two methods are available 

to solve our seismic shaking problem. 

Table 2.1 Numerical parameters 

Parameter Symbol 
One way flow 

Value [Unit] 

Two way flow 

Value [Unit] 

Gravity acceleration g  9.8 2/m s    9.8 2/m s    

Angle of repose tan  0.3  0.3  

Inclination of the channel  tan  0.15  0.05  

Horizontal shaking 

acceleration 
a  0.3g

2/m s    0.5g
2/m s    

Frequency f  4  Hz  4  Hz  

Rheological parameter   0.5  0.5  

Grain diameter D  0.0023  m  0.0023  m  

Wall friction coefficient W  0.2  0.2  

Width of channel W  0.04  m  0.04  m  

Minimum value u  610  610  

Minimum value h  610  610  

Time interval t  
510  s  510  s  
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Fig. 2-5 the velocity profile of one way flow: The blue lines are local solutions, the red 

lines are the results of the depth-integrated equations. 

 

Fig. 2-6 the flux of one way flow: The blue lines are local solutions, the red lines are the 

results of the depth-integrated equations. 
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Fig. 2-7 the velocity profile of two way flow: The blue lines are local solutions, the red 

lines are the results of the depth-integrated equations. 

 

Fig. 2-8 the flux of two way flow: The blue lines are local solutions, the red lines are 

the results of the depth-integrated equations. 
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2.3 Semi-analytical solution    

2.3.1 The relation between slope and acceleration 

We can employ the equations (2.30) and (2.31) to find the condition of critical state. 

Consider that there is no flow under critical state, the term to decide the flow state is 

   cos sin tan ( sin sin ) sgn(u)f t g a t g a t            (2.36) 

and when sin 1t  , the  f t  achieve the maximum value 

 max cos tan ( sin )f g a g a         (2.37) 

If 
max 0f  , the flow is in the critical state. Thus, we can obtain the relation between slope 

and acceleration in critical state. 

max cos tan ( sin ) 0c cf g a g a         

and transpose the equation 

 
tan

tan
tan

c

g a

a g






 


 
  (2.38) 

 

2.3.2 The relation between slope and flux 

As mentioned previously, the parallel and perpendicular components of acceleration 

are defined as  

   sin cos sing t g a t     (2.39) 

   cos sin sing t g a t      (2.40) 

We try to simplify the equations to find a semi-analytical solution of the relation between 

slope and flux. With the equation (2.37), the condition to let  f t  be maximum is 

 
2

t


    (2.41) 



doi:10.6342/NTU201603286

 17 

We assume 
2

x t


   and use a Taylor series for sin t  at   0
2

t x x


     

 
2

sin sin sin cos sin
2 2 2 2 2

x
t x x

   


       
           

       
  (2.42) 

 

2
1

sin 1
2 2

t t


 
 

   
 

  (2.43) 

According to the result of Taylor series expansions for sin t , we simplify the sinusoidal 

wave to a parabola. Then, we redefine the parallel and perpendicular components of 

acceleration with (2.43). Since the value of shaking acceleration and inclination 

influence the sign of parallel components of acceleration, we still need to consider the 

effect of time term. Thus, the simplified parallel components of acceleration is 

  
2

1
sin cos 1

2 2
g t g a t


  

  
     

   

  (2.44) 

As for the perpendicular components of acceleration, we can simplify as 

 cos sing g a      (2.45) 

With the simplified definitions of acceleration, the equation (2.36) can be written as 

    
2

1
sin cos 1 tan cos sin

2 2
f t g a t g a


     

  
       

   

  (2.46) 

The flow starts to have velocity when  f t  is zero. We assume the time that the flow 

starts to have velocity is 
0t , and the time that the flow back to static is 1t . 

   
2

0 0

1
sin cos 1 tan cos sin 0

2 2
f t g a t g a


     

  
        

   

 

 max
0

1
2

2 cos

f
t

a



 

 
   

 
  (2.47) 

As shown in Fig. 2-9, we can observe that  f t  is similar within the time period from 
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0t  to 1t . It means that our simplification is available. 

 

Fig. 2-9 The simplification of  f t : The blue line is sinusoidal wave, the red line is a 

parabola, and the green point is at 
0t t  . 

 

We simplify the equation (2.30) and (2.31), 

 
19 71

( )
77 231

Wdu
f t g h

dt W


    (2.48) 

 
258 302

( )
77 231

Wdh h h
f t g

dt u W u


    (2.49) 

Then, we define the dimensionless variables ˆ ˆ(t)f , t̂ , û , ĥ , and the equation (2.48) 

and (2.49) become 

 
ˆ 19 71ˆ ˆˆ( )
ˆ 77 231

du
f t h

dt
    (2.50) 

 
2ˆ ˆ ˆ58 302ˆ ˆ( )

ˆ ˆˆ 77 231

dh h h
f t

dt u u
    (2.51) 
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where 
 

max

ˆ ˆ(t)
f t

f
f

 , 
max

t̂
t

t
 , 

max max

ˆ u
u

f t



, 

max

ˆ W g
h h

f W

 



 

As the results of dimensionless equations, we know that 

 
3

max

cos

Wf W
q

a g



  




 
  (2.52) 

We substitute the parameters into (2.52) to find the coefficient 

 
3

max

cos

Wf W
q C

a g



  


 

 
  (2.53) 

 

1

0

3 3

max max

0.1175

cos cos

t

t

W W

qdt

q TC
f W f W

a g a g

 

    

  
 

   



  (2.54) 

 



doi:10.6342/NTU201603286

 20 

Chapter 3 Shaking table experiment 

In this chapter, we will introduce the setup, facilities and procedures of our 

experiments at first. Since the image method is used to analyze the experimental results, 

we need to adjust the photos, and the method and process will be discussed later. Finally, 

we will check the repeatability of experiments.  

 

3.1 Experimental setup 

The experimental apparatus is composed of the channel, the shaking table, cameras, 

particles, and other auxiliary equipment (Fig. 3-1). We will introduce each device and 

discuss the experimental design in this section. 

 

Fig. 3-1 Overview of the experimental apparatus   

The design of the channel is illustrated in Fig. 3-2 with a length of 100 cm, width of 

4 cm, and height of 40 cm. Since particles will rub against the walls of the channel, we 

use glass as the material of channel to reduce quantity of scratches caused by particles 

inside the channel. Moreover, glass is not easily bent or deformed after conducting 
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experiments. Then, polyethylene blocks are placed between two sheets of glass and be 

screwed together. We can alter the width of channel with different block sizes. Since the 

polyethylene blocks are removable, the object can be easily cleared from the channel. In 

addition, we put an aluminum sheet under the channel in order to fix the channel to the 

shaking table. One side of the channel is connected to the aluminum sheet, the other side 

can be adjusted to our design width of channel. The overall view of the channel is shown 

in Fig. 3-3.  

 

 

 

 

 

 

Fig. 3-2 Sketch of channel 

 

 

Fig. 3-3 The glass-walled channel 
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The experiments were performed on the shaking table of the department of civil 

engineering in National Chiao Tung University. This shaking table has an aluminum alloy 

platform with a length of 100 cm, width of 120 cm, and is equipped with the screw holes 

to arrange the specimen (Fig. 3-4). The shaking waveform of experiments is sinusoidal 

wave. We can set the frequency and amplitude to determine the response of shaking table. 

 

Fig. 3-4 (a) Shaking table (b) Sketch of shaking table 

To record the process of experiments and obtain photos which are available for 

analysis, we use two types of cameras: the high speed camera (HSC) and the digital video 

(DV). The former is used to capture positions of particles. The frame rates is 200 frames 

per second and the recording time is about 11 seconds in our experiments. As for the latter, 

it is used to record the evolution of surface. We operate the digital video to capture the 

process about 60 seconds. 

 

Fig. 3-5 Image measurement facilities: Digital video 

100 cm 

120 cm 

(a) (b) 
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In order to shoot clear photos, we need to lighten the channel. Nonetheless, the light 

which is supplied by alternating current will flicker on the screen of high speed camera 

because of the high frame rates. Therefore, we use LED strip which have sufficient 

brightness and a storage battery to generate the light for experiments (Fig. 3-6 (a)). In 

addition, the laser line level is used to display an accurately horizontal and vertical line 

in the experiment (Fig. 3-6 (b)).  

  

Fig. 3-6 (a) LED strip and battery placed on the platform (b) The laser line level display 

an accurately horizontal line on the wall 

We use glossy mill stones as our experimental material. In order to increase the 

uniformity of particles and know the particle size, we sift the glossy mill stones through 

the standard test sieve. The average diameter is 2.3 mm. Since the appearance of particle 

is easily been observed and the slope can be built successfully by the mill stones, we 

choose it to be our experimental material.  

 

Fig. 3-7 the glossy mill stones used in the experiment 

(a) (b) 
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3.2 Experimental procedure 

First, we are going to build the slope which reach the critical value. Thus, it is 

necessary to find the angle of repose of the particles. The channel is divided into two parts, 

and the particles are piled up with different height. Next, the division plate be drawn out 

rapidly, and then particles develop a slope naturally. The measurements are carried out 

several times and recorded by the camera. After that, we analyze the images and use the 

laser line level which provide the datum to help us calculate the angle. According to the 

average value, the angle of repose which is the initial angle of our experiment is 22.5 

degrees.  

 

Fig. 3-8 the angle of repose measurements  

In order to ensure the repeatability of experiments, we design a frame and a scraper 

which is made of acrylic to maintain the initial shape of slope (Fig. 3-9 (a)). When we are 

going to build the slope, the frame is placed on the channel (Fig. 3-9 (b)). Then, the glossy 

mill stones are poured into the channel through a funnel and the spare particles are scraped 

away by the scraper (Fig. 3-10). With these procedures, the initial shape of slope is fixed 

in each experiment. 
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Fig. 3-9 (a) Frame and scraper (b) Frame hung on the channel 

 

Fig. 3-10 (a) Add particles (b) Scrap the particles  

 

In order to observe the relevance between the slope behavior and the acceleration, 

we conduct the experiment for 12 rounds under different acceleration and frequency 

conditions as shown in Table 3.1. From round 1 to round 8, we design 4 different 

magnitudes of acceleration every two rounds, and the frequency conditions are classified 

as 4 Hz and 3 Hz. As to the other four rounds, we want to verify the repeatability 

according to the result of these experiments.  

 

 

 

 

 

(b) (a) 

(b) (a) 
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Table 3.1 List of the twelve rounds in shaking table experiment 

Round 
Frequency 

(Hz) 

maximum 

acceleration (PTV) 

(cm/s2) 

maximum 

acceleration (input) 

(cm/s2) 

1 3 196.59 230.95 

2 4 194.73 252.66 

3 3 297.69 348.20 

4 4 299.33 378.99 

5 3 401.13 454.79 

6 4 405.09 492.69 

7 3 495.53 575.60 

8 4 501.88 619.02 

9 3 303.88 355.31 

10 3 297.69 348.20 

11 3 409.07 461.90 

12 3 401.13 454.79 

 

Because of the difference between the input wave and the output wave as shown in 

Table 3.1, it is difficult for us to keep acceleration the same every time. Moreover, we 

cannot obtain accurate output acceleration through the input settings. Thus, we measure 

the output value by PTV method, which we will introduce in the next section. With the 

PTV results, we can discover the noise in the acceleration signal (Fig. 3-11), hence we 

use the least squares method to fit the data obtained by PTV analysis to define the 

maximum acceleration in each round. We use Gauss–Newton method to solve the least 

squares problems, and the model function is defined as below: 

 sin( )y a bt c    (2.55) 

Since the vibration is unstable in first period, the data is not used in fitting. According to 

the fitting result, the maximum acceleration of our experiments can be defined. We take 

round 6 for example. In Fig. 3-11, the results are plotted together, and we can determine 

the maximum acceleration of round 6 is 297.69 cm/s2 by the equation.  
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Fig. 3-11 Fitting acceleration at round 6: the equation of fitting result is 

297.69sin(18.85 0.4414)y t    

There are three different sizes of observation regions which is illustrated in Fig. 3-12 in 

this study. Region A focus on the center of slope to analyze the velocity profile of 

particles. As to region B, we want to observe the slip surface. Then, the digital video 

records region C to capture the surface deformations.   

 

Fig. 3-12 Three different observation regions  
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3.3 Image method 

3.3.1 Calibration 

Since the photos are in pixel coordinates, we need to transform the coordinates 

system from image coordinates to real world coordinates first. In order to obtain the 

relation between these two systems, the calibration points are put on the wall of the 

channel. According to the different observation regions, we design three different size 

calibration points as shown in Fig. 3-13.  

 

Fig. 3-13 The calibration points which we used in the experiment 

 

3.3.2 Image pre-processing 

Before applying the PTV method, we need to adjust the photos first. Since the high 

speed camera is located on the ground rather than move with the shaking table, it is 

necessary to remove the displacement of each photos before computing the velocity of 

particles. The position of channel at each moment can be obtained by capturing the 

calibration points. Then, we use the data to calculate the displacement and velocity of 

shaking table, and the results also enable us to divide the photos into each period. In Fig. 

3-14, we take two photos in the same period as example. The calibration points move 

with the shaking table in original photos. After we transform the coordinate and remove 
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the displacement, the photos seem to be taken by the camera which is placed on the 

shaking table. The adjusted photos have no extra movement, so they are able to further 

analyze.   

 

Fig. 3-14 Photo rectification: (a) original photos and (b) rectified images in the beginning 

of a period; (c) original photos and (d) rectified images in the interval of a period. 

 

When observing the region A, it means that we focus on the velocity profile of the 

slope. Thus, we rotate the images to let slope be parallel to the horizontal with rotation 

matrix.  

 
cos sin

sin cos
R

 

 

 
  

 
  (2.56) 

 
cos sin

sin cos

x x x
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y y y

 

 

       
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(a) (b) 
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Where ( , )x y   is the point in new coordinate system, R  is the rotation matrix,   is 

the slope of photos, and ( , )x y  is the point in original coordinate system.  

 

Fig. 3-15 original coordinate system (red lines) and new coordinate system (blue lines) 

 

3.4 Verification 

3.4.1 Image method applicability 

To verify the PTV method can be applied to track the movement and velocity of 

shaking table, we compare the actual performances of shaking table experiments with the 

data from PTV analysis. The response of shaking can be obtained by some devices. The 

linear variable displacement transducer (LVDT) and the accelerometer mounted on the 

platform (Fig. 3-16) measure the displacement and acceleration outputs. We take round 2 

as an example to plot the position and acceleration as shown in Fig. 3-17 and Fig. 3-18. 

It is observed that PTV results match well with the position feedback (LVDT), and the 

acceleration obtained from PTV analysis has a similar trend with the accelerometer 

signals.  

x

y
y

x


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Fig. 3-16 (a) Accelerometer (b) Arrangement of the accelerometer  

 

 

Fig. 3-17 Position of the shaking table at round 2 

(b) (a) 
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Fig. 3-18 Acceleration signal of the shaking table at round 2 

We use the photos which are transformed into real world coordinates to plot the time 

exposure image. As can be seen in Fig. 3-19, the calibration points and the deeper particle 

are seen clearly. This result means that not only are they static relative to the channel, but 

also the procedure for removing the displacement from images is practicable. These 

results indicate that PTV analysis is available to capture the movement of shaking table 

and transform the coordinates system of images.    

 

Fig. 3-19 Time exposure image of third period at round 2 
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3.4.2 Repeatability 

In order to enhance the credibility of our experimental results, we need to confirm 

the behavior of particles is similar under same conditions. As we mentioned in the 

previous section, two sets of experiments are performed to verify the repeatability of 

experiments. We analyze the slip range, velocity magnitude and the variance of slope of 

each case. The comparison is plot from Fig. 3-20 to Fig. 3-22. We can observe that the 

experiments under same conditions have good repeatability.  
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Round 9 Round 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-20 Mean flow velocity magnitude of round 9 and round 10 
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Round 11 Round 12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-21 Mean flow velocity magnitude of round 11 and round 12 
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Fig. 3-22 The variance of slope under similar conditions 
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Chapter 4 Results and comparison 

The analysis results of our experiments are shown in this chapter. We put the mean 

flow velocity magnitude of each round together. Based on the PTV data, we can acquire 

the time-evolving variables and compare the results with theory which we derivate in 

previous chapter. In the process of analysis, not only the observation region but also the 

time scale of analysis is not fixed in our experiment because of the different object. We 

observe the average velocity field of each period and divide period into 8 sections to find 

the behavior of particles within the period. The detailed classification is shown in Fig. 

4-1.  

 

Fig. 4-1 Classification of experimental analysis with different time scale 
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4.1 Granular velocity fields 

The velocity field of slip surface can be captured by PTV method. In Fig. 4-2 and 

Fig. 4-3, the time exposure images are compared with the mean velocity magnitude 

images. We can observe that the flowing layer is similar among these two image analysis 

methods. From Fig. 4-4 to Fig. 4-6, we draw a comparison between different frequency 

from first period to fifth period. The results show that the case which frequency is 3 Hz 

reach higher velocity faster and the slip depth is deeper than the case which frequency is 

4 Hz. 
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. 

Fig. 4-2 Time exposure and mean velocity magnitude images from period 1 to period 5 

of round 1 
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Fig. 4-3 Time exposure and mean velocity magnitude images from period 1 to period 5 

of round 2 
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Round 3 Round 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-4 Mean velocity magnitude images from period 1 to period 5 of round 3 and 

round 4. 
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Round 5 Round 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-5 Mean velocity magnitude images from period 1 to period 5 of round 5 and 

round 6. 



doi:10.6342/NTU201603286

 43 

Round 7 Round 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-6 Mean velocity magnitude images from period 1 to period 5 of round 7 and 

round 8. 
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4.2 Time-evolving variables 

In addition to the velocity field, we are interested in the time-evolving variables. We 

can obtain the flux, velocity profile, and maximum velocity by PTV data. Flux is the flow 

rate per unit width, and be calculated by the equation: 

 
0

( )
z

q t udz    (4.1) 

Additionally, we can plot the surface shape and acquire the time-evolving surface slope 

with the photos recorded by digital video. These variables are showed from Fig. 4-7 to 

Fig. 4-12. In order to distinguish each round easily, we plot the data with specified color, 

which is set according to the magnitude of acceleration, and the corresponded color scale 

is also shown on the figure. As mentioned in the beginning of this chapter, the analysis 

can divide into three different time scales. In the part of flux and maximum velocity 

calculation, the results can be classified into the mean value of each period and the value 

of each sections. We can observe the variation of flux and maximum velocity with time 

in Fig. 4-7, and the value decrease gradually. The periodic variation of flux and maximum 

velocity is shown in Fig. 4-8 and Fig. 4-9 . We find that the flux and velocity are negative 

during a portion of a period. In addition, the variation of slope is recorded by the digital 

video, and the results are plotted in Fig. 4-10. We can use this data to obtain the 

equilibrium angle tan c  after the shaking motion.  
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Fig. 4-7 (a) Average value of flux q in each period. (b) Maximum velocity in each period. 

The bold lines are frequency 4Hz , the thin lines are frequency 3Hz , and the color 

represents different accelerations. 

(a) 

(b) 
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Fig. 4-8 Time evolution of flux q  (a) within the whole recording time; (b) zoom in on 

the time axis. The bold lines are frequency 4Hz , the thin lines are frequency 3Hz , and 

the color represents different accelerations. 

(a) 

(b) 
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Fig. 4-9 Time evolution of maximum velocity (a) within the whole recording time; (b) 

zoom in on the time axis. The bold lines are frequency 4Hz , the thin lines are frequency

3Hz , and the color represents different accelerations. 

(a) 

(b) 
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Fig. 4-10 Time evolution of surface slope. The bold lines are frequency 4Hz , the thin 

lines are frequency 3Hz , and the color represents different accelerations.  
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Round 1 

 

Round 2 

 

Round 3 

 

Round 4 

 

Fig. 4-11 The surface shape of round 1 to round 4 at 0,  0.3, 1,  3,  10,  30,  60 sect  . 
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Round 5 

 

Round 6 

 

Round 7 

 

Round 8 

 

Fig. 4-12 The surface shape of round 5 to round 8 at 0,  0.3, 1,  3,  10,  30,  60 sect  . 
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4.3 Relation between slope and flux 

Based on the results of theory and experiment, we can find the relation of slope and 

flux, and compare these two methods. The result of tan  and flux measured from 

experiments is shown in Fig. 4-13. Then, we substitute the experiment data into equation 

(2.38), and we get the 28.03    as shown in Fig. 4-14. Thus, we substitute two kinds 

of angle of repose into the theory, and compare with the experiment data. We consider the 

original theory which acceleration is a sinusoidal wave and the semi-analytical solution 

which acceleration is a parabola. The results of sinusoidal wave accelerations are plotted 

in Fig. 4-17 and Fig. 4-16. The results of semi-analytical solution are plotted in Fig. 4-17 

and Fig. 4-18. We can observe the trend is similar between the theory and experiment in 

the case of 22.5   . 
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Fig. 4-13 The relation of tan  and flux measured from experiments. The bold lines 

are frequency 4Hz , the thin lines are frequency 3Hz , and the color represents 

different accelerations. 

 

Fig. 4-14 The relation of acceleration and tan c . The red dotted line is 28.03   , the 

blue lines is 22.5   , and the green points are experiment data.  
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Fig. 4-15 The relation of tan  and flux with 28.03   . The color dotted lines are 

theoretical results, the points are experiment data, the bold lines are frequency 4Hz , the 

thin lines are frequency 3Hz , and the color represents different accelerations. 

 

Fig. 4-16 The relation of tan  and flux with 22.5   . The color lines are theoretical 

results, the points are experiment data, the bold lines are frequency 4Hz , the thin lines 

are frequency 3Hz , and the color represents different accelerations. 
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Fig. 4-17 The relation of tan  and flux with 28.03   . The color lines are 

theoretical results, the points are experiment data, the bold lines are frequency 4Hz , the 

thin lines are frequency 3Hz , and the color represents different accelerations. 

 

Fig. 4-18 The relation of tan  and flux with 22.5   . The color lines are theoretical 

results, the points are experiment data, the bold lines are frequency 4Hz , the thin lines 

are frequency 3Hz , and the color represents different accelerations. 
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Chapter 5 Conclusion 

In this research, two numerical models which are derived from the governing 

equations and the depth-integrated equations are used to solve the granular flow problem, 

and the results of numerical solution and analytical solution are the same in the case of a 

dense granular flow over loose bed in a narrow channel. It means that both these two 

methods can be used to solve these flow problems. Furthermore, we use the numerical 

model to solve the problem of the granular flow under seismic conditions, and can obtain 

the velocity profile, flow depth, and flux under different initial conditions. Moreover, we 

can observe the situation that the direction of velocity will change as the vibration.  

We conducted 12 rounds experiments with 3 different sizes observation regions. The 

initial condition of slope can be fixed with the frame, and the maximum acceleration can 

be defined by fitting the PTV data. Since the high speed camera is located on the ground, 

we remove the displacement of each photos and transform the coordinates system. The 

image results indicate that our method and process to adjust the photos is workable. 

Moreover, the PTV results also show that the image analysis method is applicability and 

the slope behavior is similar under the same conditions. This result supports our PTV 

method and repeatability of experiments. 

With the results from PTV method, we can see the slope behavior and flow layer 

clearly. The PTV results also can provide the data to calculate the time-evolving variables, 

and we can observe the variation of flux, velocity profile, maximum velocity, surface 

shape and slope with time. When focus on the sections within a period, we can observe 

the periodic variation. 

We derive the relation of slope and flux from our numerical model and experimental 

data fitting. Then, we plot the results together and can observe that the trend is similar 
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between theoretical and experimental analysis. 
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