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摘要

阿貝爾簇是一個有阿貝爾群結構的簇。這些簇是在多個數學領域

裡有特別重要性的幾何物件。我們對於有理數上的阿貝爾簇在不同質

數下的化約感興趣。特別的，我們想知道是否一個阿貝爾簇的化約仍

然是阿貝爾簇。我們知道一個阿貝爾簇只會在有限個質數上的化約不

是阿貝爾簇。不過一個阿貝爾簇不會在所有質數上的化約都是阿貝爾

簇。這是 Fontaine的定理。但 Fontaine的證明對於初學者來說並不容

易，所以我展開證明中的細節，讓潛在的讀者更能了解。
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Abstract

A variety is called an abelian variety if it has an abelian group structure.

These varieties are special geometric objects of particular importance in mul-

tiple mathematics fields. We are concerned with the reductions of abelian

varieties over the field of rational numbers modulo different primes. In par-

ticular, we are interested in whether the reduction of an abelian variety re-

mains an abelian variety. It is well-known for years that the reduction is still

an abelian variety, except for finitely many primes. However, it cannot be

an abelian variety modulo every prime. This is a theorem of Fontaine. But

Fontaine’s proof is not easy for beginners. So I expound the details of the

proof to make it easier for potential readers.
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1 Introduction

Abelian varieties are abelian group objects in the category of complete 1 varieties. An

abelian varietyA over a fieldK with a discrete valuation v, valuation ringOv, and residue

field kv is said to have good reduction at v if there is an abelian schemeAv over Spec(Ov)

such that A ∼= Av ⊗Ov K. In this case, the special fiber Ā := Av ⊗Ov kv is an abelian

variety over kv.

An interesting question is: Does there exist an abelian variety over Q with good re-

duction at every prime number?

Fontaine proved ([3]) that there cannot exist an abelian variety over Q with good re-

duction at every prime number. The proof in [3] is complicated and not easy for beginners.

The aim of this article is to expound the details of the proof, and hence make it easier to

understand for potential readers.

1.1 The main result

To be precise, the main theorem we are to prove is the following.

Theorem 1.1. There cannot exist an abelian variety over Q with good reduction at every

prime number.

Let A be an abelian variety over Q and let A denote its Néron model over Z so that

A is the generic fibre of A and

A(Q) = A (Q) = A (Z).

If A has good reduction everywhere, then A is an abelian scheme over Z, as the special

fibres ofA are abelian varieties, by [7, Proposition 20]; the kernelAn of themultiplication

by n on A is a finite flat group scheme over Z. If v = p, Ov = Z(p), the afore-mentioned

Av can be taken as A ⊗Z Z(p).

Here we demonstrate how Lemma 1.1 below, together with the more well-known

Lemma 1.2, can lead to the proof of the theorem.
1A variety X is called complete if for any variety Y , the projection X × Y → Y is a closed map.

1
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Proof. Let p be the prime 3. Suppose A is of dimension g. The system (Apn)n∈N is a

p-divisible group over Z of dimension 2g. By Lemma 1.1, we have

(Apn)n ∼= (Qp/Zp)
g ⊕ (µp∞)g.

This shows that A(Q) has infinitely many p-torsion elements. But this is impossible:

Let q ̸= p be a prime and let kq = Z/qZ. We shall show that the reduction map induces an

injection into a finite group: ∪nApn(Q) → ∪nĀpn(kq). For this, it suffices to show that

Apn(Q̄) → Āpn(k̄q) is injective. By [7, Proposition 20], both Apn(Q̄) and Āpn(k̄q) are of

order p2ng, thus, the map is injective if and only it is surjective.

Then take K such that Apn(Q̄) = Apn(K). By Lemma 1.2, the reduction map is a

surjection.

The following lemma manifests all works in [3] prior to the main theorem.

Lemma 1.1. Let A be an abelian scheme over Z of dimension g, and let p = 3. Then

Apn
∼= (Z/pnZ)g ⊕ (µpn)

g.

Proof. This will be proved in Proposition 4.1.

Lemma 1.2. LetK be a field with a discrete valuation v and a complete valuation ringOv.

Denote k = Ov/mv. LetX = Spec(B) be a finite flat scheme overOv. Let X̄ = Spec(B̄)

be the special fiber of X , where B̄ = B ⊗Ov k. Suppose X(K) = X(K̄). Then the

reduction map X(Ov)→ X(k) = X̄(k) is surjective.

Remark 1.1.

1. Note that the reduction map sends a point x : B → Ov to x̄ : B → k. And this

reduction map is in general not surjective.

For example, take Ov = Z(p), mv = (p), k = Fp, K = Qp, B = Ov[ξ], where

ξ =
√
p. Then B̄ = Fp[T ]/(T

2), so there is a point in X̄(k) sending T to 0.

But if x : B → Ov is a point, then x sends ξ to some η in Ov such that η2 = p,

which is impossible. Hence X(K) = ∅.

2
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2. Moreover, ifB is finite overOv, then any point inX(K) actually belongs toX(Ov),

forOv is integrally closed. Therefore it makes sense to talk about the reduction map

X(K)→ X̄(k).

Proof. By [6, §1, Theorem 4.2(b)], we have

B ∼= B1 × · · ·Bi × · · · ×Bm,

where each Bi is a local finite flat algebra over Ov. It is endowed with mv-adic topology.

Each point in X(k) corresponds to a homomorphism α : B → k. Since the powers

of the elements in mB1 × · · · × mBm converge to 0, they are mapped to 0 by α. Thus α

factors through B →
∏

iBi/mBi
→ k. And

∏
iBi/mBi

→ k must factor through some

Bi/mBi
, as k is a field.

From the maps Bi/mBi ↠ k and k ↪→ Bi/mBi
we see that Bi/mBi

= k. Thus there

can only be one k-homomorphism Bi/mBi
→ k.

Now we show that there is a Ov-homomorphism Bi → Ov so that its reduction must

give rise to the unique k-homomorphism Bi/mBi
→ k, and hence the reduction is surjec-

tive.

The ArtinianK-algebraBi⊗OvK can be written asBi⊗OvK =
ℓ∏

j=1

Aj where eachAj

is an Artinian local ring. Let Kj denote the residue field of Aj . Since K is a localisation

of Ov, it is a flat Ov-module. Thus we have a monomorphismK ↪→
∏

j Aj . SinceK has

no non-zero zero-divisors, the image must lie in some Aj . Further, as the elements in K

whose powers converge to 0 are zero, its image inAj is not contained inmAj
. So there is a

non-zero homomorphism between fields K → Kj , hence a monomorphism. This means

eachKj is a finite extension ofK. So we have a homomorphism Bi → Kj → K̄. By the

assumption this homomorphism has image inK, so we have a homomorphism Bi → K.

SinceBi is finite overOv, so is its image inK. ButOv is integrally closed, so we have

a Ov-homomorphism Bi → Ov. This completes the proof.

The key ingredient in the above proof is Propostion 4.1, which follows from Theorem

4.1. And Theorem 4.1 will be proved in §4.2. The main tools used are the theory of group

3
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schemes and the ramification theory.

In §2, we review basic facts on group schemes for later application. In §3, we study

the theory of ramification. Then it will incorporate with the material in §2 as well as tools

involving the divided power structures and relative differentials into a proof of Theorem

3.1. That theorem gives a nice bound on the upper numbering for the ramification groups

to become trivial. Other than this, the proof of Theorem 4.1 also uses a result of Raynaud,

Theorem 4.2. Unfortunately, we can only state it in §4 without further discussion.

Basically, this article is a report on a published paper. Hence the author has no intension

to claim that there is any newly proved statement in this article. Any assertion in this article

can be found in some published materials, or be deduced straightforwardly form those.

1.2 Notation

In this paper, X denotes a scheme, J denotes a finite flat group scheme, G denotes the

Galois group of some extension, B denotes a Hopf algebra, and Γ denotes a finite group.

Also, we oft use R to denote the base commutative ring, and S some R-algebra.

If K is a number field or a local field, we write OK for its ring of integers. If B is a

local ring we use mB to denote the maximal ideal. WhenK is a local field we often write

mK for mOK
, and use k to denote the residue field.

2 Group schemes

In this section, we review some basic properties of group schemes. For the purposes of this

article, a group scheme over a commutative ring R is defined as a representable functor

from the category of R-algebras to the category of groups. By abuse of language, we also

say that the representing scheme is a group scheme.

If J is a finite flat group scheme overR, then J is affine and equals to Spec(B), where

B is a Hopf algebra ([13]) finite flat over R. We use c : B → B ⊗R B, e : B → R, and

i : B → B to denote the co-multiplication, the unit, and the co-inverse maps. We shall

assume that R is Nœtherian, so that every finite flat R-module is locally free ([13]).

4
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2.1 Examples

Some examples of group schemes are given here, notably the constant and the diagonalis-

able group schemes. They will play a major role in the demonstration of the main theorem.

Definition 2.1. Let Γ be a finite group. Denote R(Γ) := R[eγ]γ∈Γ where eγ , γ ∈ Γ, form

an orthogonal system of idempotents with
∑

γ∈Γ eγ = 1. Endow Spec(R(Γ)) the group

scheme structure with the co-multiplication map

c : R(Γ) −→ R(Γ) ⊗R(Γ)

eγ 7→
∑

στ=γ eσ ⊗ eτ ,

the unit e(eγ) =


1 γ = id

0 γ ̸= id

, and the co-inverse given by i(eγ) = eγ−1 . We call it the

constant group scheme associated to Γ. For simplicity of notation, we also denote it by Γ.

Definition 2.2. Let Γ be a finitely generated abelian group and let R[Γ] denote the group

ring. Since for every R-algebra S, the natural bijection HomR(R[Γ], S) ∼= Hom(Γ, S×)

gives the left-hand side a group structure, the group ring R[Γ] (or its spectrum) is a group

scheme in a natural way, with c(γ) = γ ⊗ γ, for al γ ∈ Γ. We call such group schemes

the diagonalisable group schemes.

Example 2.1. We list below examples of group schemes.

(a) µn: The diagonalizable group scheme corresponding to Γ = Z/nZ, which is repre-

sented by Spec(R[Z/nZ]) = Spec(R[X]/(xn − 1)).

(b) Z/nZ: The constant group scheme Spec(R(Z/nZ)).

(c) Ga,b: Let a, b ∈ R be such that ab = −2. Define S = R[X]/(X2 + aX) with

c(X) = X ⊗ 1+ 1⊗X + bX ⊗X , e(X) = 0 and i(X) = X . This defines a group

scheme of rank 2 over R.

(d) Gm: This one represents the functor S ⇝ S×, with Hopf algebra R[X,X−1],

c(X) = X ⊗X .

5
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Every free finite group scheme of rank 2 equals to some Ga,b (See Appendix 1). We

show in Example 2.2 that µn and Z/nZ are the Cartier duals of each other.

2.2 The Cartier duality and Deligne’s theorem

Let J = Spec(B) be a finite flat commutative group scheme over R. Define B∨ :=

HomR(A,R) as the dual module with its module structure defined by

(λf)(a) = λ · f(a) = f(λa)

for λ ∈ R, a ∈ A.

Since B is a Hopf algebra, we have the R-algebra homomorphisms:

(the multiplication) m : B ⊗B → B, a⊗ b 7→ ab,

(the co-multiplication) c : B → B ⊗B, a 7→ c(a),

(the structure map) 1 : R→ B, λ 7→ λ · 1

(the unity) e : B → R, a 7→ e(a),

(the co-inverse) i : B → B, a 7→ i(a).

By dualising the above, we have the following homomorphisms:

m∨ : B∨ → B∨ ⊗B∨

c∨ : B∨ ⊗B∨ → B∨

1∨ : B∨ → R

e∨ : R→ B∨

i∨ : B∨ → B∨

Note that e∨ is just the structure map of B∨ as R-module. If J is commutative, or equiv-

alently, c∨(f ⊗ g) = c∨(g ⊗ f), then B∨ is a commutative R-algebra with the multipli-

cation given by c∨. In this case, B∨ is actually a Hopf algebra with m∨, 1∨ and i∨ as the

co-multiplication, the unity and the co-inverse. We call J∨ := Spec(B∨) the Cartier dual

of J . Since B is locally free of finite rank, (B∨)∨ = B, hence (J∨)∨ = J .

6
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Lemma 2.1. Let J/R be a finite flat group scheme. The Cartier dual J∨ represents the

functor

S ⇝ HomSgp(J/S,Gm) = {a ∈ (B ⊗R S)
× | c(a) = a⊗ a, e(a) = 1}

= {a ∈ (B ⊗R S)
× | c(a) = a⊗ a},

where HomSgp(−,−) denotes the morphisms in the category of S-group schemes.

Proof. By taking the base change to S, we may assume that S = R. The duality B =

(B∨)∨ identifies an a ∈ B with a φa ∈ HomR(B
∨, R) such that φa(f) = f(a), for

all f ∈ B∨. That φa respects the ring multiplications is equivalent to f ⊗ g(c(a)) =

f(a) · g(a) = f ⊗ g(a ⊗ a), for all f, g ∈ B∨. The condition, via the duality, becomes

c(a) = a ⊗ a. We check that φa(1B∨) = 1B∨ , if and only if e(a) = 1. Thus, G∨(R) =

{a ∈ B | c(a) = a⊗ a, e(a) = 1}. Moreover, if a ∗ b is the product of a, b in J∨(R), then

f(a ∗ b) = a⊗ b(m∨(f) = φab(f) = f(a · b), for all f ∈ B∨,

which shows a ∗ b = a · b. Hence J∨(R) is a subgroup of B×. Conversely, if a ∈ B×,

c(a) = a⊗ a, then

f(a) = f ⊗ e(c(a)) = f ⊗ e(a⊗ a) = f(a) · e(a)

holds for all f ∈ B∨, and hence e(a) = 1. Finally, an R-algebra homomorphism ξ :

R[T, 1
T
]→ B is determined by a := ξ(T ) ∈ B×, and ξ is a homorphism of Hopf algebras,

if and only if c(a) = a⊗ a and e(a) = 1.

Example 2.2. We show µ∨
n = Z/nZ by computing µ∨

n(S) for R-algebras S. Again, we

may assume that S = R. Set B = R[X]/(Xn − 1). An element a ∈ B can be expressed

as a =
n−1∑
i=0

aiX
i. Then the condition c(a) = a⊗ a says that

n−1∑
i=0

aiX
i ⊗

n−1∑
i=0

aiX
i =

n−1∑
i=0

ai(X ⊗X)i.

7
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By comparing coefficients, we see that aiaj = 0 for i ̸= j, and a2i = ai. Further,

the condition e(a) = 1 means
∑
ai = 1. Therefore, µ∨(R) consists of those a with

a0, a1, ..., an−1 forming an orthogonal system of idempotents in R. Note that in this case,

for b =
∑n−1

i=0 an−iX
i, we have ab = 1 and hence a ∈ B×.

Write Z/nZ = {[i] | i = 0, ..., n − 1} as usual. Then each a ∈ µ∨
n(R) gives an R-

algebra homomorphism ψa : R
(Z/nZ) → R, e[i] 7→ ai. This gives a group homomorphism

µ∨
n(R)→ Z/nZ(R), which is an isomorphism.

Deligne’s Theorem

We end this section by showing a theorem of Deligne that is important in the theory of

commutative finite flat group schemes. Let S be a finite flat R-algebra, B an R-algebra.

SinceB⊗RS is locally free overB, for s ∈ B⊗RS, the determinant of the endomorphism

B ⊗R S → B ⊗R S, x 7→ sx is defined. Let N : B ⊗R S → B denote this determinant

map. If S is of rank n over R , then

N(a) = an, for a ∈ B. (1)

Lemma 2.2. If ψ : B → C is an R-algebra homomorphism, then the following diagram

commutes:

B ⊗R S C ⊗R S

B C

ψ ⊗ idS

N N

ψ

Proof. We may assume that S is free over R with a basis {ei}. For α ∈ B ⊗ S, write

α(1⊗ei) =
∑
µij(1⊗ej) for µij ∈ B. This impliesN(α) = det(µij) and ψ(α)(1⊗ei) =

ψ(µij)(1⊗ ej). Therefore, N(ψ(α)) = det(ψ(µij)) = ψ(N(α)).

Let J = Spec(B) be a finite flat commutative group scheme over R. Lemma 2.1 says

J(S) can be viewed as a subgroup of (B∨ ⊗ S)×.

8
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Lemma 2.3. There is a determinant map J(S) J(R)
N that fits into the commuta-

tive diagram:

J(S)

J(R)

B∨ ⊗ S

(B∨)×

N N

Proof. We complete the proof by showing that the right vertical arrowmaps J(S) to J(R).

To clarify the notation, write C̃ := B∨, let c̃ denote the co-multiplication, and denote

C̃S = C̃ ⊗R S. Since C̃S ⊗S C̃S = (C̃ ⊗R C̃) ⊗R S, there is the determinant map

C̃S ⊗S C̃S C̃ ⊗R C̃
N2 . We see directly that if f ∈ C̃S , thenN2(f ⊗1) = N(f)⊗1.

By Lemma 2.2 (taking ψ = c̃), we obtain c̃(N(f)) = N2(c̃(f)). If f ∈ J(S) so that

c̃(f) = f ⊗ f , then

c̃(N(f)) = N2(f ⊗ f) = N2(f ⊗ 1)N2(1⊗ f) = N(f)⊗ 1 · 1⊗N(f) = N(f)⊗N(f),

which means N(f) ∈ J(R).

By (1), if S is of rank n and u ∈ J(R), then

N(u) = un. (2)

For a commutative group scheme J , let [n] denote the homomorphism sending each

P ∈ J(S) to P n.

Theorem 2.1 (Deligne’s theorem). Let J be a finite flat commutative group scheme over

R of rank n. Then the map [n] annihilates J .

Proof. It suffices to show that [n] annihilates J(R). Write J = Spec(B) and denote

C̃ := B∨. Let u ∈ J(R) ⊂ C̃×. We shall show un = 1.

Define τ : B → B as τ = (idB ⊗ u) ◦ c, which is an R-algebra automorphism of B

resulting in the translation by u on J . Then extend τ linearly to C̃ ⊗R B by τ(f ⊗ a) =

9
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f ⊗ τ(a). Take S = B and consider the determinant map C̃ ⊗R S C̃
N . Since τ is

an automorphism of the C̃-algebra, we have

N(a) = N(τ(a)), for all a ∈ C̃ ⊗R S. (3)

The identity map idB : B → S extends uniquely to a homomorphism of (right) S-algebra

B ⊗R S → S, and hence can be viewed as an element, also denoted as idB, of J(S) ⊂

C̃ ⊗R S. We claim that

τ(idB) = u · idB.

Then by (3), we have N(idB) = N(u · idB). Also, (2) says N(u) = un. Therefore,

N(idB) = N(u · idB) = N(u)N(idB) = unN(idA).

Hence un = 1 as desired.

Since the claim can be proved locally, we may assume that S is free over R. Let

e1, ..., en be a basis of S and let e∨1 , ..., e∨ ∈ C̃ denote the dual basis. Identify C̃⊗RS with

HomR(B, S). Then we see that idB =
∑n

i=1 e
∨
i ⊗ei, and hence τ(idB) =

∑n
i=1 e

∨
i ⊗τ(ei),

which means τ(idB) sends every b ∈ B to τ(b). But u · idB sends b to u⊗ idB(c(b))which

is also τ(b).

2.3 Étale group schemes

We take the definiton of étale morphism from [6]. For a scheme X , let OX denote the

structure sheaf; for x ∈ X , let OX,x denote the local ring at x, mx ⊂ OX,x the maximal

ideal and k(x) := OX,x/mxOX,x the residue field.

Definition 2.3.

1. A morphism of scheme f : Y → X locally of finite type is called unramified at

y ∈ Y , ifOY,y/mxOY,y is a finite separable field extension of k(x), where x = f(y).

2. The morphism f is said to be unramified if it is unramified at every y ∈ Y .

10
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3. A morphism of schemes is étale if it is flat and unramified (hence locally of finite

type also).

4. A group scheme J over R is étale if the structure morphism J → Spec(R) is étale.

Note that the morphism f is unramified at y if and only if the induced fx : Y ×X

Spec(k(x))→ Spec(k(x)) is unramified at ȳ := y ×X Spec(k(x)). Thus, f is unramfied

(at every point) on the fibre at x if and only if fx is unramified.

Let O be a Dedekind domain with field of fraction E and let B be a finite flat O-

algebra. Then B ⊗O E is a direct product of Artinian local algebras Ki over E and each

Ki corresponds to a point yi in the generic fibre of f : Spec(B) → Spec(O) so that f

is unramified at yi if and only if Ki is a finite separable field extension of E. Thus, the

morphism f is unramified on the generic fibre if and only if

B ⊗O E = K1 × · · · ×Km. (4)

with each Ki a finite separable field extension of E. Similarly, for m ⊂ O a maximal

ideal with residue field k(m) = O/m, the morphism f is unramified at the special fibre

at m if and only if

B ⊗O k(m) = k1 × · · · × kl, (5)

with each ki/k(m) a finite separable field extension.

Proposition 2.1. Let E be a number field with the ring of integers OE , and let J =

Spec(B) be an OE-scheme whch is a finite étale scheme over a Zariski open set U ⊂

Spec(OE). Let F = E(J(Ē)). Then F/E is unramified at every m in U .

Proof. Since the assertion of the proposition is local, it is sufficient to prove the corre-

sponding statement in which E is the local completion of the given number field. Then

the maximal ideal m ⊂ OE is generated by a prime element π.

Since B is flat over OE , the identity (4) gives rise to B ↪→ K1 × · · · × Km. Let Bi

denote the image of B in i-th factor Ki. It follows that Ki is the fraction field of Bi and

Bi ⊆ OKi
⊆ Ki as B is finite over OE .

11
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Now (5) says B/mB is a product of fields. The surjection B/m ↠ Bi/mBi implies

mBi is a maximal ideal of Bi and Bi is unramified over OE . It remains to show that

Bi = OKi
.

Let S = {0} ∪ S ′ be a set of representatives of Bi modulo mBi. Since Bi is a com-

pact OE-module, it is a closed subring of Ki in the m-adic topology. The standard ar-

gument implies every element ξ in Bi can be written as a power series
∑∞

n=0 anπ
n with

a0, ..., an, ... ∈ S and vice versa. Also, ξ ∈ B×
i if and only if a0 ̸= 0. AsKi is the fraction

field ofBi, every η ∈ Ki can be written as η = u×πµ. From this, we deduce that η ∈ OKi

if and only if µ ≥ 0, which means η ∈ Bi.

Proposition 2.2. Every finite flat group scheme over a field annihilated by an integer

prime to the characteristic of the field is étale.

Proof. See [13, corollary in 11.4].

Proposition 2.3. Let p be a prime number. Every finite flat group scheme J of rank pn

over the ring of integers O of a number field is étale over O[1
p
].

Proof. Let f : J → Spec(O) be the structure morphism of J . Let x = m ⊂ O be a prime

ideal of residual characteristic ̸= p. Then Proposition 2.2 says fx is unramified.

Theorem 2.2. The category of finite étale group schemes over a field is equivalent to

the category of finite abelian group on which the absolute Galois group of the field acts

continuously.

Proof. See [13, Theorem 6.4].

2.4 Local group schemes

LetR be a local ring. By a local group scheme overR, we mean a group scheme Spec(B)

such that B is a local algebra over R.

12
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Local group schemes over a perfect field

By Proposition 2.2, a non-trivial local finite flat group scheme over a field k exists only if

char k > 0.

Theorem 2.3. Let k be a perfect filed of characteristic p > 0. Then every finite flat group

scheme J over k can be expressed as J = J0 ⋊ Jét

Proof. See [13, Theorem 6.8].

Theorem 2.4. Let J = Spec(B) be a local finite flat group scheme over a perfect field k

of characteristic p > 0. There exist positive integers p1, ..., ph such that

B = k[x1, ..., xh]/(x
pe1
1 , ..., xp

eh

h ).

Proof. See [13, Theorem 14.4].

Local group schemes over the ring of integers of a local field

Let K be a finite extension of Qp and let OK denote the ring of integers of K. Let mK

be the maximal ideal of OK and k be the residue field. Let J = Spec(B) be a local finite

flat group scheme over OK . Since OK is Henselian, we can write (see [6, §I, Theorem

4.2(b)])

B = B1 × · · · ×Bm, (6)

where each Bi is a finite flat local algebra over OK .

Definition 2.4. We say that anOK local algebra B is a complete intersection overOK , if

there are P1, ..., Phi
∈ OK [[X1, ..., Xhi

]] with

Pj ≡ Xgj (mod mK [[X1, ..., Xh]]), gj > 1, (7)

such that

B = OK [[X1, ..., Xhi
]]/(P1, ..., Phi

)

and mB = mKC + (X1, ..., Xh)/(P1, ..., Phi
).

13
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If B is a finite flat OK-algebra with the decomposition (6) and each Bi is a complete

intersection, then we say that B is locally a complete intersection over OK . 2

Theorem 2.5. Let J = Spec(B) be a local finite flat group scheme overOK . There exists

a finite unramified extension L/K such thatB⊗OK
OL is locally of complete intersection

over OL.

Proof. Write J̄ := Spec(B̄), where B̄ := B⊗OK
k. By replacingK by certain L, we may

assume that J̄(k̄) = J̄(k). Here k̄ denotes the algebraic closure of k. Then we prove the

theorem forK = L. By Theorem 2.3, we can write

J̄ = J̄0 ⋊ J̄ét.

Since J̄ét(k̄) = J̄(k̄) = J̄(k) = J̄ét(k), Theorem 2.2 says J̄ét is actually a constant group

scheme Spec(k(Γ)) for some Γ (see Definition 2.1). Put J̄0 = Spec(C0). Then

B̄ = C0 ⊗k k
(Γ) = C0 × · · · × Cl,

where each Ci is an artinian local k-algebra isomorphic to C0. From (6), we also have

B̄ = B̄1 × · · · × B̄m,

where each Bi is also an artinian local k-algebra. Now the uniqueness of the decomposi-

tion of B̄ into a product of artinian local algebras implies that B̄i must equals Cj for some

j, and hence isomorphic to C0. Thus, by Theorem 2.4, we have the commutative diagram

T OK [[X1, · · · , Xh]] Bi

(xp
e1

1 , · · · , xp
eh

h ) k[[x1, · · · , xh]] Cj

α

β

π π̄

,

where T and (xp
e1

1 , ..., xp
eh

h ) are respectively, the kernels of α and β, π sends Xj to xj

and π̄ is the reduction modulo mK . Since β is surjective, Nakayama’s lemma says α
2Our definition is not standard, but it fits in well with our situation.

14
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is also surjective. Because β(π(Xpej

j )) = 0, the element α(π(Xpej

j )) is contained in

mKBi = ker(π̄). Write α(π(Xpej

j )) = aj · yj , with aj ∈ mK and yj ∈ Bi. Since α

is surjective, we can lift yj to Yj ∈ OK [[X1, ..., Xh]]. Then set Pj = Xpej − ajYj . We

have

Pj ≡ Xpej (mod mK [[X1, ..., Xh]])

and Pj ∈ T . Since R[[X1, ..., Xh]] is a Nœtherian local ring, Nakayama’s lemma says

T = (P1, ..., Ph).

3 Fontaine’s bound and its consequences

In this section, we review one of the main results in [3], namely the following theorem of

Fontaine. LetK denote a finite extension of Qp with ring of integers denoted by OK and

the ramification index ofK/Qp (the absolute ramification index) denoted by eK . Let mK

and k := OK/mK denote the maximal ideal of OK and the residue field.

Let L/K be a Galois extension and denote G := Gal(L/K). By [11, §III.6, Proposi-

tion 12], we can writeOL = OK [α] for some αwith minimal polynomial f(X) ∈ OK [X].

As usual, for i running through [−1,∞), letGi denote the ramification subgroups ofG in

upper numbering [11, §IV.3]. By a p-group scheme over OK we mean a finite flat group

scheme over OK annihilated by some power of p

Theorem 3.1. Suppose J is a p-group scheme over OK annihilated by pn. Let L =

K(J(K̄)) be the field obtained by adjoining the geometric points of J , withG := Gal(L/K).

Then Gu = {1}, for all u > eK(n+ 1/(p− 1)).

We will only prove the theorem in §3.4 for the special case whereK = Qp and n = 1.

That will be sufficient for the later application.

15
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3.1 The ramification theory

Define v = vK to be the valuation on K̄ such that v(πK) = 1 for every uniformizer πK of

K, and similarly define the valuation vL so that vL = eL/K · vK , where eL/K denotes the

ramification index. Recall the ramification groups in lower numbering [11, §IV.1]

Gi = {σ ∈ G | vL( ασ − α) ≥ i+ 1}, i ≥ −1.

In particular, G0 is the inertia subgroup of G. For s ∈ [−1,∞), put

ϕ(s) :=

∫ s

0

dt

|G0 : Gt|
.

This defines the Herbrand function ϕ : [−1,∞) → [−1,∞), which is a bijiection [11,

§IV.3] such that

Gϕ(s) = Gs, for all s ∈ [−1,∞). (8)

For each σ ∈ G, define

iG(σ) = vL( α
σ − α),

which is independent of the choice of α. By [11, §IV.3, Lemma 3],

ϕ(s) + 1 =
1

eL/K

∑
σ∈G

min(iG(σ), s+ 1). (9)

Lemma 3.1. If β ∈ K̄ and i := max {vL( ασ − β) | σ ∈ G}, then

ϕ(i− 1) + 1 = vK(f(β)).

Proof. Suppose i = vL( α
τ − β) for some τ ∈ G. For each σ ∈ G,

vL(β − ατσ ) ≥ min(vL(β − ατ ), vL( α
τ − ατσ )),

16
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in which the equality should actually hold, for otherwise

vL(β − ατ ) = vL( α
τ − ατσ ) < vL(β − ατσ ),

a contradiction to the choice of τ . Therefore, by (9),

ϕ(i− 1) + 1 = e−1
L/K ·

∑
σ∈Gmin(iG(σ), i)

= e−1
L/K ·

∑
σ∈Gmin(vL( ασ − α), vL(β − ατ ))

= e−1
L/K ·

∑
σ∈Gmin(vL( ατσ − ατ ), vL(β − ατ ))

= e−1
L/K ·

∑
σ∈G vL(β − ατσ )

= vK(f(β)).

Lemma 3.2. (Krasner’s lemma) If β ∈ K̄ satisfies

vL(β − α) > vL( α
σ − α),

for all σ ∈ Aut(K̄), ασ ̸= α, then L ⊆ K(β).

Proof. If τ is an element in Aut(K̄) fixing β, then for all σ ∈ Aut(K̄), ασ ̸= α,

vL( β
τ − ατ ) = vL(β − α) > vL( α

σ − α),

Hence

vL( α
τ − α) ≥ min(vL( ατ − β), v(β − α)) > vL( α

σ − α).

This shows that ατ = α. Therefore the field extension L(β)/K(β) is trivial, and L ⊆

K(β).

For each finite extension E/K and each real number t, set

M t
E = {x ∈ OE | vK(x) ≥ t}

17
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so that the maximal ideal mK ⊂ OK equalsM1
K . Denote X := Spec(OL).

Lemma 3.3. Let t ∈ (0, 1). The extension L/K is unramified if and only if the map

X(OE)→ X(OE/M
t
E)

is surjective for every E.

Proof. A point on X(OE/M
t
E) is given by an algebra homomorphism

ψE : OL → OE/M
t
E.

Suppose L/K is unramified. Then we can find α such that f has monic irreducible image

f̄(X) ∈ OK [X]. Note that our condition implies if f̄(β̄) = 0, for some β̄ ∈ F̄K , then

f̄ ′(β̄) ̸= 0.

Choose β ∈ OE such that β ≡ ψE(α) (mod M t
E). Then f(β) ≡ 0 (mod M t

E) and

vK(f
′(β)) = 0. Hence, by Hensel’s lemma there exist β̃ ∈ OE such that f(β̃) = 0 and

β̃ ≡ β (mod M t
E). This shows the map in question is surjective.

LetE be the unique unramified sub-extension of L/K with residue field FL. Consider

the surjection

OL → FL = FE = OE/M
t
E = OE/πKOE.

This lifts to a K-algebra homomorphism OL → OE , if ψE is surjective. Under this

condition, L/K is a sub-extension of E/K, and hence unramified.

Define

uL/K := ϕ(max{iG(σ) | σ ̸= idG} − 1) + 1,

so that by (8),

Gµ = {idG} ⇐⇒ µ > uL/K − 1. (10)

18
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Lemma 3.4. Let L/K be a finite extension. Then

L/K is


unramified ⇐⇒ uL/K = 0

tamely ramified ⇐⇒ uL/K = 1

wildly ramified ⇐⇒ uL/K > 1

Proof. For a non-negative integer n, we have Gx = Gn, for x ∈ (n − 1, n]. Now G0 is

the inertia subgroup, while by [11, Chapter IV. §2. Proposition 6.], |G0|/|G1| is of order

prime to p and |Gn|/|Gn+1| is a power of p for n ≥ 1. Then we check that ϕ(−1) = −1

and ϕ(0) = 0.

Proposition 3.1. Let t be a positive number.

(a) If t > uL/K , then the implication

X(OE/M
t
E) ̸= ∅ =⇒ X(OE) ̸= ∅ (11)

holds for all finite extension E/K.

(b) Conversely, if the implication (11) holds for all finite extension E/K, then t >

uL/K − 1/eL/K .

Proof. Suppose t > uL/K and X(OE/M
t
E) ̸= ∅ so that there exists β ∈ OE with

vK(f(β)) ≥ t > uL/K . By Lemma 3.1 and (10),

ϕ(max{vL( ασ − β) | σ ∈ G} − 1) > ϕ(max{vL(iG(σ) | σ ∈ G, σ ̸= idG} − 1).

Because ϕ is an increasing function, there exists τ ∈ G such that

vL(β − ατ ) > max{vL( ασ − α) | σ ∈ G, σ ̸= idG}.

Hence by Krasner’s lemma, L = K( ατ ) ⊆ K(β) ⊆ E. Thus X(OE) ̸= ∅.
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If L/K is unramified, then (b) holds trivially, because in this case uL/K = 0, and

hence t > uL/K − 1/eL/K , while Lemma 3.3 says (11) always holds.

If L/K is ramified, we shall prove (b) by showing that for t = uL/K − 1/eL/K , there

exists a finite extension E such that X(OE/M
t
E) ̸= ∅ but X(OE) = ∅. To do so, we

may replace K by the maximal unramified sub-extension of L/K and assume that L/K

is totally ramified with α a uniformizer of OL and f(X) an Eisenstein polynomial.

Suppose L/K is tamely ramified. Then uL/K = 1 and hence t = 1 − 1/eL/K . Take

E to be a totally ramified extension of K of degree d < eL/K = [L : K], by adjoining

a root of some Eisenstein polynomial. Since L can not be embedded into E, we have

X(OE) = ∅. In this case,

M t
E = {x ∈ OE | vK(x) ≥ 1− 1/eL/K > 1− 1/d}

= {x ∈ OE | vK(x) ≥ 1}

= mE.

If β is uniformizer of OE , then vK(β) = 1/d, and hence

vK(f(β)) = vK(
∏
σ

β − ασ ) = eL/K · 1/eL/K = 1.

This shows X(OE/M
t
E) ̸= ∅.

Finally consider the case where L/K is wildly ramified, namely, p | eL/K . Since

G = G0 and G1 is a nontrivial p-group, by (10), we have

uL/K ≥ ϕ(1) + 1 ≥ p/eL/K + 1.

Hence

t = uL/K − 1/eL/K > 1.

Now that t·eL/K ∈ Z, we can write t·eL/K = r ·eL/K+swith r, s ∈ Z and 0 ≤ s < eL/K .

Let E = K(β), where β is a root of the polynomial g(X) = f(X)− πr
KX

s.

We check that g is an Eisenstein polynomial as follow: First, g is monic, because
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eL/K > s. Also, r ≥ 1, because t > 1, hence πK divides all non-leading coefficients of

g. If s = 0, then t > 1 implies r ≥ 2. Thus the constant term of g is not divisible by π2
K .

We then deduce that vK(β) = 1/eL/K . Since vK(f(β)) = vK(π
r
Kβ

s) = t, we see

X(OE/M
t
E) ̸= ∅. It remains to show X(OE) = ∅.

Suppose X(OE) ̸= ∅. Then an K-algebra homomorphism OL → OE induces an

embedding of L into E. But we actually have L = E, because both sides are of the same

degree overK. Then α and β both lie in E and by Lemma 3.1,

ϕ(max{vL( ασ − β) | σ ∈ G} − 1) + 1 = vK(f(β)) = t.

Define δ = max{iG(σ) | σ ̸= idG} and put

d := |Gδ−1| = |{σ ∈ G | iG(σ) ≥ δ}|.

Then by (9) and by the definition of uL/K ,

ϕ(δ − 1/d− 1) + 1 = ϕ(δ − 1) + 1− 1/eL/K = uL/K − 1/eL/K = t.

Thus, there is some τ ∈ G such that

vL( α
τ − β) = δ − 1/d.

This implies 1/d ∈ Z, and hence d = 1. But this absurd, since Gδ−1 is non-trivial. The

proposition is proved.

3.2 Divided power sturctures

In this subsection, we review some basic facts about divided power structures.

Definition 3.1. LetR be a commutative ring. A divided power structure on an ideal I ⊂ R

is a collection of maps γn : I → I , n = 1, ..., such that
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(a) γ1(x) = x, for x ∈ I .

(b) γn(x+ y) =
∑n

i=0 γi(x)γn−i(y), for x, y ∈ I .

(c) γn(ax) = anγn(x), for a ∈ R, x ∈ I .

(d) γm(x)γn(x) = (m+n)!
m!n!

γm+n(x). for x ∈ I .

(e) γn(γm(x)) = (mn)!
(m!)nn!

γmn(x), for x ∈ I .

We say that I is a divided power ideal (with the given divided power structure).

Note that the numbers (m+n)!
m!n!

and (mn)!
(m!)nn!

are integers and by [(d)]

n!γn(x) = xn.

For simplicity, we often use the abbreviation x[n] := γn(x). Put

I [n] := (x[a1] · · · x[al] | a1 + · · ·+ al ≥ n).

Lemma 3.5. Let I be a divided power ideal. Then, I [n] is also a divided power ideal.

Moreover, we have

(I [n])[m] ⊆ I [mn].

Proof. If i ≥ 1 and y = x
[a1]
1 · · · · · x[al]l , a1 + · · ·+ al ≥ n, then, by (c) and (d),

γi(y) =
(in)!

(i!)nn!
· (x[a1]1 · · · · · x[al−1]

l−1 )i · x[ial]l ,

which is contained in I [in] ⊆ I [n]. Then we apply (b) to show that ifm ≥ 1, γm(z) ∈ I [mn]

for all z ∈ I [n].

We say I is topologically nilpotent, if it is divided power and

∩
n

I [n] = 0. (12)
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Lemma 3.6. Let I be a divided power ideal. Let P (X1, ..., Xh) ∈ R[X1, ..., Xh]. For

u1, ..., uh ∈ R and µ1, ..., µh ∈ I [n], n ≥ 1, we have

P (u1 + µ1, ..., uh + µh) ≡ P (u1, ..., uh) +
h∑

i=1

∂P

∂Xj

(u1, ..., uh) · µj (mod I [n+1]).

Proof. This is from the Taylor expansion of P . The left-hand side can be written as

P (u1, ..., uh) +
∑h

i=1
∂P
∂Xj

(u1, ..., uh) · µj +Q(µ1, ..., µh), where Q(X1, ..., Xh) is a poly-

nomial with coefficients inR such that the constant and degree one terms all vanishes. By

Definition 3.1(d) and Lemma 3.5, Q(µ1, ..., µh) ∈ I [n+1].

As before, let E/K be a finite extension. Let t be a positive real number. The only

possible divided power structure onM t
E is the one such that x[n] = xn

n!
.

Lemma 3.7. The ideal M t
E of OE is divided power if and only if M t

E = M t′
E for some

t′ ≥ eK
p−1

. It is topologically nilpotent if and only if t′ can be chosen to be greater than eK
p−1

.

Proof. Let x be a generator of M t
E with vK(x) = t′ ≥ t. Then t′ is the maximum of

the numbers ν satisfyingM t
E = Mν

E . By replacing t with t′, we may assume that t = t′.

Thus, M t
E is divided power if and only if for each positive n, vK(xn) − vK(n!) ≥ t, or

equivalently,

(n− 1)t ≥
∞∑
i=1

⌊ n
pi
⌋ · eK . (13)

Take n = pk for an integer k so that the right-hand side of (13) equals pk−1
p−1
·eK . Hence

(13) implies t ≥ eK
p−1

.

For the opposite implication, write n =
∑

i aip
i, 0 ≤ ai < p. Then

∞∑
j=1

⌊ n
pj
⌋ · eK =

∑
i

ai ·
pi − 1

p− 1
· eK ≤ (n− 1) · eK

p− 1
.

Therefore the condition t ≥ eK/(p− 1) implies (13).

Now, if t = eK
p−1

, then by the above computation, vK(xp
k
/pk!) = t, for all k ≥ 1.

23



doi:10.6342/NTU201701790

Consequently,M t
E is not topologically nilpotent. On the other hand, if t > eK

p−1
, then

vK(x
pk/pk!) = pk · t′ − pk − 1

p− 1
· eK = pk · (t′ − eK

p− 1
)− eK

p− 1
,

which tends to∞ as k →∞. This impliesM t
E is topologically nilpotent.

3.3 The relative differential forms

Let R be a commutative ring and B an R-algebra. Recall that the module of relative

differential forms of B over R is a a B-module Ω1
B/R, together with an R-derivation d :

B → Ω1
B/R, which satisfies the universal property: for any B-moduleM , and for any R-

derivation d′ : B → M , there exists a unique B-module homomorphism f : Ω1
B/R → M

such that d′ = f ◦ d [5, §II.8].

Let f : B⊗RB → B be the homomorphism sending a⊗b to a·b andwrite T for ker(f).

Then Ω1
B/R = T/T 2 with the derivation d : B → T/T 2 defined by db = 1 ⊗ b − b ⊗ 1

(mod T 2) [5, §II.8, Proposition 8.1A].

Relative differentials of group schemes

If G := Spec(B) is a group scheme, then Ω1
B/R can also be described as follow. Let e be

the unity of G. Denote IG := ker(e), the augmentation ideal.

Lemma 3.8. Let G = Spec(B) be a group scheme over R with augmentation ideal IG.

Then Ω1
B/R
∼= B ⊗R IG/I

2
G.

Proof. See [13, Theorem 11.3].

Since R is free over R, the exact sequence

0 IG B R 0
e

splits, and hence

B = R⊕ IG.
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Lemma 3.9. Let G = Spec(B) be a group scheme with co-multiplication

B B ⊗Bc . Then

c(x) ≡ 1⊗ x+ x⊗ 1 (mod IG ⊗R IG), ∀x ∈ IG.

Proof. ExpressB⊗RB as the direct sum ofR⊗RR,R⊗R IG, IG⊗RR and IG⊗R IG. For

x ∈ IG, write c(x) = α+β+γ+ δ where α, β, γ, δ are in the corresponding components.

By the commutative diagram:

R⊗R B B ⊗R B

B,

e⊗ idB

c
1⊗ idB

we obtain

1⊗ x = (e⊗ idB) ◦ c(x) = α + β .

This implies that α = 0 and β = 1 ⊗ x, since x ∈ IG. Then a similar argument implies

γ = x⊗ 1.

Lemma 3.10. Let G = Spec(B) be a group scheme annihilated by some integer n. Then

n · Ω1
B/R = 0.

Proof. LetB⊗n denote the tensor product ofB with itselfn-times overR so thatB⊗1 = B.

Define cn : B → B⊗n+1 = B⊗n⊗RB be such that c1 = c and cn = (idB⊗n−1 ⊗ c) ◦ cn−1.

Let mn : B⊗n → B denote the multiplication sending a1 ⊗ · · · ⊗ ai ⊗ · · · ⊗ an to

a1 · · · · · ai · · · · · an. Thenmn ◦ cn−1 : B → B is the morphism dual to [n] : G→ G that

sends each point to its nth power. Therefor mn ◦ cn−1 factors through the structure map

1 : R → B, and hence induces the trivial map on Ω1
B/R. But Lemma 3.9 says it sends

x ∈ IG/I2G to n · x (mod I2G).
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Relative differentials over OK

Now consider the situation in which B is a local algebra over OK . Let mB denote the

maximal ideal of B. For latter application, we prove the following technical lemmas.

Lemma 3.11. Let B be a finite flat local algebra overOK with the residue field B/mB =

OK/mK = k. Suppose there is some non-zero a ∈ OK annihilating Ω1
B/OK

to make

Ω1
B/OK

a free B/aB-module. Let {x1, · · · , xh} be elements in mB lifting a basis of

mB/(m
2
B +mKB) over k. Then {dxi} is a basis of Ω1

B/OK
over B/aB.

Proof. The assumption implies

B = OK +mB. (14)

Hence Ω1
B/OK

is generated by

d(mB) := {dx | x ∈ mB}.

Every x ∈ mB can be written as x =
∑
bixi + z, bi ∈ OK , z ∈ m2

B + mKB. Thus

dx =
∑
bidxi + dz. Now (14) implies mKB = mKOK +mKmB, and hence

dz ∈ d(m2
B +mKB) = d(m2

B).

Consequently,

Ω1
B/OK

= spanOK
{dxi}+ d(m2

B) ⊆ spanB{dxi}+mBΩ
1
B/OK

.

Then Nakayama’s lemma says Ω1
B/OK

= spanB{dxi}.

Put B′ := B/(m2
B + mKB). We have a surjection Ω1

B/OK
Ω1

B′/OK
(see [5,

§II.8, Proposition 8.3A]), and hence also

Ω1
B/OK

⊗B (B/mB) Ω1
B′/OK

⊗B (B/mB) .

Thus, if r denote the (B/aB)-rank of Ω1
B/OK

, then

r ≥ dimk Ω
1
B′/OK

⊗B (B/mB) =: s.
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Since k ⊂ B′ and is isomorphic to the residue field of B′, Proposition 8.7 of [5, §II.8]

says

mB/(m
2
B +mKB) ≃ Ω1

B′/OK
⊗B (B/mB).

Let d denote theOK-rank ofB, which equals the (OK/aOK)-rank ofB/aB. This implies

that the (OK/aOK)-rank of Ω1
B/OK

equals dr. Hence

|Ω1
B/OK

| = |OK/aOK |dr.

On the other hand, since spanB{dxi} can be generated by ds elements over OK ,

|Ω1
B/OK

| = |spanB{dxi}| ≤ |OK/aOK |ds.

By counting, the equality holds and r = s. This means {dxi} is actually a (B/aB)-basis.

Suppose in addition to the condition of the previous lemma,B is also a complete inter-

section over OK : B = OK [[X1, · · · , Xh]]/(P1, ..., Ph), each Pi satisfing the congruence

(7). This assumption ensures that if xi denotes the image of Xi in B, then the image of

{x1, ..., xh} in mB/(m
2
B +mKB) forms a basis over k. Hence

r = s = h. (15)

For every i, ∑ ∂Pi

∂xj
(x1, · · · , xh)dxj = dPi(x1, ..., xh) = 0.

By Lemma 3.11, we can write

∂Pi

∂xj
(x1, · · · , xh) = apij (16)

for some pij ∈ B. Since B is free overOK , these pij are unique. In this circumstance, we

have the following lemma.

27



doi:10.6342/NTU201701790

Lemma 3.12. The matrix (pij) is invertible over B.

Proof. Denote C = OK [[X1, · · · , Xh]], J = (P1, ..., Ph) so that B = C/J . Proposition

8.3A of [5, §II.8] says that kernel of the homomorphism

Ω1
C/OK

⊗C B → Ω1
B/OK

, dXi ⊗ b 7→ bdxi, is generated by dP1, ..., dPh over B. Since

adXi is in the kernel, we have a · dXi =
∑

j qij · dPj , for some qij ∈ B. We check that

(qij) is the inverse of (pij).

Lemma 3.13. If B is a finite flat OK-algebra with Ω1
B/OK

= 0, then B is étale over OK .

Proof. We have to show that B ⊗K/K and B ⊗ k/k are étale. By [13, §11.2 (a)], both

Ω1
B⊗K/K and Ω1

B⊗k/k are 0. Thus, by [13, §11.2 (e)], both B ⊗ K/K and B ⊗ k/k are

étale.

3.4 The proof

As mentioned before, Theorem 3.1 is going to be proved, but only forK = Qp and n = 1.

The proof of Theorem 3.1

We shall apply the following proposition whose proof will be given in §3.4

Proposition 3.2. Let B be a finite flat OK-algebra locally of complete intersection. Sup-

pose there exists an a ∈ OK such that Ω1
B/OK

is flat over B/aB. Denote Y = Spec(B).

The following holds:

(i) For every finite flatOK-algebra S and for all topologically nilpotent divided power

ideal I ⊆ S, we have

Y (S) ∼= img(Y (S/aI)→ Y (S/I)).

(ii) Write L for the Galois extensionK(Y (K̄)). Then

uL/K ≤ vK(a) + eK/(p− 1).
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Now we prove our theorem.

Proof of Theorem 3.1. We may replace Qp by a finite unramified extension K to have

Theorem 2.5 holds for L = K. By Lemma 3.10, the relative differentials Ω1
B/OK

is anni-

hilated by p. Since the residue field OK/pOK = Fp is a field, Ω1
B/OK

is certainly a free

module over OK/pOK . Therefore, Proposition 3.2 is applicable to our situation. Hence

by the assertion (ii) of the proposition, we have

uL/K ≤ 1 + 1/(p− 1).

The proof of Proposition 3.2

To prove Proposition 3.2(i), we may assume that B is a local algebra over OK . Hence

B = OK [[X1, ..., Xh]]/(P1, ..., Ph), where Pj satisfies the congruence (7). As before, let

xi denote the image ofXi inB. Let S be a finite flatOK-algebra, I a topological nilpotent

divided power ideal in S and Y = Spec(B). Write yn for img(Y (S/aI [n])→ Y (S/I [n])).

Lemma 3.14. For n ≥ 1, the natural map

Y (S/aI [n+1])→ Y (S/aI [n])

is surjective. It induces a bijection yn → yn+1.

Proof. An element of Y (S/aI [n]) corresponds to aOK-algebra homomorphism ψ : B →

S/aI [n], or equivalently, u1, ..., uh ∈ S such that Pi(u1, ..., uh) ∈ aI [n], for i = 1, ..., h.

We need to find µ1, ..., µh ∈ I [n] to have Pi(u1+µ1, ..., uh+µh) belonging to aI [n+1] and

show that µ1, ..., µh is unique in I [n]/I [n+1].

By (16), we can write ∂Pi

∂Xj
(u1, ..., uh) = ap̄ij (which equals ψ(pij)), for some p̄ij ∈

S/aI [n]. Lemma 3.12 implies that thematrix (p̄ij) is invertible. Letλi denotePi(u1, ..., uh).
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Then Lemma 3.14 gives

Pi(u1 + µ1, · · · , uh + µh) ≡ a(λi +
∑
j

p̄ij · µj) (mod aI [n+1]).

Since (p̄ij) is invertible, there are unique µ1, ..., µh ∈ I [n] to have

λi +
∑
j

p̄ij · µj ≡ 0 (mod I [n+1]). (17)

The congruence (17) is a sufficient condition for Pi(u1 + µ1, ..., uh + µh) ∈ aI [n+1]. To

complete the proof, we need to show that it is also a necessary condition. But this is

actually a consequence of the fact that S is a free OK-module, and hence aI [n+1] is a free

submodule, consequently, a · z ∈ aI [n+1] if and only if z ∈ I [n+1].

Proof of Proposition 3.2. Denote S∞ := lim←−n
S/I [n] and consider the natural homomor-

phism S → S∞ whose image is a dense set in S∞. Since S, being a finite freeOK-module,

is compact in themK-adic topology, the image in question is compact, and hence the whole

S∞. Also, because I is topological nilpotent, the homomorphism is injective. Therefore,

we can identify S with S∞.

An OK-homomorphism B → S induces homomorphisms B → S/aI → S/I . This

defines the map

Y (S)→ img(Y (S/aI)→ Y (S/I)) = y1.

Lemma 3.14 says an element in y1 determines an element in Y (S∞) = Y (S). Hence we

have y1 → Y (S). These two maps are inverse to each other. This proves (i).

Suppose a is a unit. Then Ω1
B/OK

= 0, which by Lemma 3.13 implies B/OK is étale.

Hence L/K is unramified by Proposition 2.1 together with its proof. By Lemma 3.4,

uL/K = 0. In this case, (ii) trivially holds.

For the rest of the proof, we assume that a ∈ mK . If L/K is tamely ramified, then

uL/K = 1 by Lemma 3.4. In this case, (ii) also holds trivially. It remains to treat the wildly

ramified case.
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Denote X := Spec(OL). We claim that if

t > vK(a) + eK/(p− 1),

then the implication (11) holds for every finite extension E/K. Then by Proposition 3.1,

the above inequality implies

t > uL/K − 1/eL/K .

This shows

uL/K ≤ vK(a) + eK/(p− 1) + 1/eL/K . (18)

Write G = Gal(L/K). The wild ramification assumption implies p divides |Gs|, for

s > 0. Because ϕ(0) = 0, by the definition of ϕ, we deduce that p divides eL/K · ϕ(s) for

all positive integer s. In particular, p | eL/K · uL/K . Hence (18) implies

uL/K ≤ vK(a) + eK/(p− 1)

as desired.

To prove the claim, assuming t > vK(a) + eK/(p − 1) and X(OE/M
t
E) contains an

element OL OE/M
t
E

η
, we have to show the existence of someOK-homomorphism

OL → OE , or equivalently, someK-embedding L→ E.

Denote BK := B ⊗OK
K, it contains OK and is finite over K. Proposition 2.2 says

BK/K is étale. Hence BK can be written as
m∏
i=1

Li, where each Li is a finite extension of

K. For each finite extension E/K, we have

Y (E) = Y (OE)

= HomOK -alg(B,OE)

= HomK-alg(BK , E)

=
⨿m

i=1HomK(Li, E).

The number ofK-homomorphisms from Li to E is≤ [Li : K], and the equality holds
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if and only if E contains a field isomorphic to the Galois closure of Li overK. Hence

|Y (E)| ≤ |Y (L)|,

and the equality holds if and only if L/K can be embedded into E/K. Thus, it remains

to show |Y (E)| ≥ |Y (L)|.

For each E, writeM t
E = aIE with

IE = {c ∈ OE | vK(c) ≥ t− vK(a)},

which by Lemma 3.7 is a topologically nilpotent divided power ideal. Now, for every

u ∈ Y (OL), the assertion (i) (applied to the case where S = OE) says the composition

η◦u : B → OE/aIE determines uniquely an uη ∈ Y (OE) such that the following diagram

commutes:

B OE/aIE

OE OE/IE .

η ◦ u

uη

projection

projection

This defines a mapping Y (L) → Y (E). It remains to prove that this mapping is

injective. But, since aIL is the kernel of η, and hence each uη factors through

OL OL/aIL OE/aIE
ūη .

If uη = wη, then ūη = w̄η. By applying (i) to the S = L case, we conclude that u = w.

4 The choice of a prime

In this section, let J denote a finite flat group scheme over Z annihilated by a power

of a prime number p. We shall investigate the structure of J for the case where p =
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3, 5, 7, 11, 13, 17. It is known that for such p the cyclotomic fieldQ( p
√
1) has class number

1 (see [12, Table §3]).

4.1 The global ramification theory

Denote F := Q(J(Q̄)), n = [F : Q], and G := Gal(F/Q). Then F/Q is unramified

out side {p,∞}. Let w be a place of F sitting over p. Take L = Fw, K = Qp and apply

Theorem 3.1, we obrain

uFv/Qp ≤ 1 +
1

p− 1
. (19)

Minkowski’s lower bounds of the discriminant

If DFw/Qp denotes the different of Fw/Qp, then ( see [1, §I.9, Propostion 4])

vp(DFw/Qp) = uFw/Qp ,

which, together with (19), lead to the inequality for the discriminant dF of F :

d
1
n
F ≤ p1+

1
p−1 . (20)

Thus, the Minkowski’s lower bound

d
1
n
F ≥

π

4
· ( n

n!
1
n
)2

implies

p1+
1

p−1 ≥ π

4
· ( n

n!
1
n
)2. (21)

For simplicity, call the right-hand side of the above f(n). The following is a hand-made

table of f(n) for some small integers n.

Lemma 4.1. The function f(n) is an increasing function of n.

Proof. This is proved in Theorem 2.1 in Appendix A. It can also be proved by using the
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Table 1: The values of f(n)
n 1 2 3 4 5 6 7 8 9 10
f(n) 0.78 1.57 2.13 2.56 2.89 3.15 3.36 3.55 3.70 3.82
n 15 20 25 30 35 40 45 50 52 53
f(n) 4.28 4.55 4.74 4.87 4.97 5.01 5.12 5.17 5.191 5.198

Stirling’s formula for n!.

Now 31.5 = 5.19615.... Thus, by (21), Table 1 and Lemma 4.1, for p = 3, the order

of G can not exceed 52. Indeed, by using a better estimation and the table given by Diaz

y Diaz [2], one can deduce that, for p = 3, 5, 7, 11, 13, 17 respectively, the order of G can

not exceed 6, 12, 18, 50, 88, 574.

For the remaining of this thesis, the symbol p will stand for one of the above six prime

numbers. We shall consider the case where F contains F0 := Q( p
√
1) and write H :=

Gal(F/F0), n′ = |H|. By the above discussion, n′ is at most 35. Hence H is a solvable

group. That will be crucial for later discussion.

The field extension F/Q

Because of our choice of p, the field extension F/Q turns out to be small in the following

sense.

Lemma 4.2. Suppose J is a finite flat group scheme over Z annihilated by a power of p.

Let F = Q(J(Q̄)). Then F ⊆ Q( p
√
1).

Proof. By replacing J with the direct product J × µp if necessary, we may assume that

µp is a subgroup of J , and hence Q( p
√
1) ⊂ F . We use the notation introduced above so

that F0 = Q( p
√
1) and so on. We are in the situation where (a) The inequality (19) holds,

(b) F/Q is a Galois extension, (c) F/F0 only ramified at the unique place v of F0 sitting

over p, (d) F0 has class number 1, and (e)H is solvable. It remains to show that these five

conditions implyH = {id}. We shall give a proof by contradiction, hence at first assume

H non-trivial.

Denote Γ := Gal(F0/Q). Let γ ∈ Γ and let γ̃ ∈ G be a lift of γ. The conjugation

τ 7→ γ̃τ γ̃−1 defines an automorphism on H . The commutator subgroup [H : H] is
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invariant under the automorphism. This induces an action of γ on Hab := H/[H : H]. It

is independent of the choice of γ̃. Thus, we have the conjugate action of Γ on Hab.

Since H is solvable and non-trivial, so isHab. Hence, by replacing H by the quotient

Hab, or equivalently replacing F by the subfield F [H:H], we reduce the proof to case where

H is commutative. Note that (10) says the inequality (19) holds for the new F , since the

upper numbering is stable under going down form a Galois extension to a Galois sub-

extension (see [1, §I.9, Theorem 2(ii)]).

We may make further reduction by choosing a proper Γ-invariant subgroup N (so

that FN/Q is also a Galois extension) then replace H by H/N (F by FN ). Again, the

condition (a)-(e) also holds for the new F .

Let w be a place of F sitting over p and let H0,w ⊂ H denote the inertia subgroup at

w. Since H is commutative, if w′ is another place of F sitting over p, then H0,w′ = H0,w.

Since the conjugate action of each γ ∈ Γ sends H0,w to some H0,w′ , we conclude that

H0,w is invariant under the action of Γ. We claim that H0,w = H , and hence w is totally

ramified under F/Q. If the claim does not hold, then by replacing H with H/H0,w, we

may assume that F/F0 is unramified at every place. Then F is a sub field of the Hilbert

class field of F0, but because of (d), the Hilbert class fields is F0 itself, and hence F = F0,

a contradiction.

We can make another type of reduction. Because every Sylow l-subgroup Hl of H is

invariant under the conjugate action of Γ, we may choose a non-trivial Hl and replace H

byH/Hl to make the order ofH smaller, unlessHl = H . Thus, by keeping doing so, we

can reduce the proof to the case where H is an l-group for some l.

Because F/Q is totally ramified at p, the residue field Fw at w is the same as Fp. If

l ̸= p, then F/Q is tamely ramified at w, and hence there is an injection Gal(F/Q)→ F×
p

[1, §I.8, Theorem 1]. This means [F : Q] ≤ p− 1 = [F0 : Q], a contradiction.

Finally, we consider the case whereH is a p-group. SinceN := p·H isΓ-invariant, we

can replace H by H/N to make H an Fp-vector space. Also, because H is decomposed

into the direct sum of 1-dimensional χ-eigenspaces of characters χ ∈ Hom(Γ,Fp), we

may further reduce the condition to the case where H is an 1-dimensional eigenspace,
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hence cyclic of order p. Let δ denote max{iG(σ) | σ ̸= idG}, which is the smallest

integer u such thatGu = {idG}. By the definition (9) of the Herbrand function and by the

definition of uFw/Qp ,

uFw/Qp = ϕ(δ − 1) + 1

= 1
p(p−1)

 ∑
iG(σ)≤δ

iG(σ)

+ δ

= 1
p(p−1)

(
δ−1∑
i=0

|Gi| − |Gi+1| · (i+ 1)

)
+ δ

= 1
p(p−1)

(|G0|+ |G1|+ · · ·+ |Gδ−1|).

In our case, |G0| = p(p− 1) and |G1| = p. Thus, Fontaine’s bound (19) implies

δ = 2. (22)

That means for every non-trivial σ ∈ H ,

iH(σ) = iG(σ) = 2.

Hence H0 = H1 = H and H2 is trivial. Write L, K for Fw, F0,w. Then similar computa-

tion leads to

uL/K =
1

p
(|H0|+ |H1|) = 2.

Thus, by (10),Hµ is trivial forµ > 1. Let ζ be a primitive pth root of 1 andwrite ξ := ζ−1,

which is a uniformizer of OK . Denote Uµ := 1 + ξµOK , for µ = 1, 2, .... The local class

field theory says that the local reciprocity map

θ : K× → H

factors through K× → K×/U2 (see [1, §VI.4, Theorem 1]). Because L/K is totally

ramified, we have θ(O×
K) = H [1, §VI.2.5, Corollary]. Moreover, since O×

K/U1 ≃ F×
p

has order prime to p, we have the isomorphism
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U1/U2 H
θ
∼ .

The above isomorphism respects the actions of Γ, which acts on the left-hand side via the

Galois action onO×
K , and on the right-hand side by sending τ ∈ H to the above conjugate:

τγ := γ̃τ γ̃−1 [11, §XIII.3]. Let t : Γ→ F×
p be the character such that ζγ = ζt(γ). Then γ

sends 1 + ξ (mod U2), a generator of U1/U2, to 1 + t(γ)ξ (mod U2). This means

τγ = τ t(γ). (23)

Kummer theory tells us that if ā denotes a (mod (F×
0 )p) for a ∈ F×

0 , then the mapping

F×
0 /(F×

0 )p Hom(Gal(F̄0/F0), µp)

ā ψā : σ 7→
p√a

σ

p√a

ψ

is a Γ-isomorphism in the sense that

ψ āγ (σ) = ψγ ā( σγ−1

). (24)

We can write F = F0( p
√
a) for some a ∈ F×

0 . Then F is the fixed field of ker(ψā). Also,

since ζγ = ζt(γ), the equalities (23) and (24) together imply that ψ āγ = ψā. This means

ρ(γ) :=
aγ

a
∈ (F ∗

0 )
p.

Since the cocycle condition ρ(γ1γ2) = ρ(γ2)
γ1 · ρ(γ2) is satisfied, our ρ gives rise to a

class [ρ] ∈ H1(Γ, (F ∗
0 )

p). Now the exact sequence

1→ µp → F ∗
0 → (F ∗

0 )
p → 1,

induces the exact sequence

H1(Γ, F ∗
0 )→ H1(Γ, (F ∗

0 )
p)→ H2(Γ, µp).
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Hilbert’s Theorem 90 says H1(Γ, F ∗
0 ) = 0, and since Γ is cyclic,

H2(Γ, µp) ∼= Ĥ
0
(Γ, µp) ∼= µΓ

p/NF0/Q(µp) = 0

Hence H1(Γ, (F ∗
0 )

p) = 0. This shows that there exists b ∈ (F ∗
0 )

p such that ρ(γ) = bγ /b,

for all γ ∈ H . This means that a/b is fixed by Γ. Thus, by replacing a by a/b, we may

assume that a ∈ Q. We may further assume that a ∈ Z, not divisible by any non-trivial

pth power of integer. Then a can not be divided by any prime number l other than p, for

otherwise F/F0 would be ramified at l. Since−1 is a pth power, and F0( p
√
pν) = F0( p

√
p),

for ν = 1, ..., p− 1, we can conclude that F = F0( p
√
p).

Set α := ξ
p
√
p
. The valuation vL(α) = 1, and hence α is a uniformizer of OL. If γ

is a non-trivial element of Γ, then αγ = ζ ′ · α. for some ζ ′ ∈ µp. This shows iH(γ) =

vL( α
γ − α) = p+ 1 and leads to

2 = δ ≥ p+ 1.

That is absurd.

4.2 The decomposition theorem

The rest of this section is to verify the following decomposition theorem. In this subsection

by a group schemewe shall understand a commutative group scheme, andwe say a p-group

scheme is constant (resp. diagonalisable) if it is isomorphic to a direct sum ofZ/paZ (resp.

µpa). We sometimes use commutative group scheme to emphasize its commutativity.

Theorem 4.1. Let p be one of the primes 3, 5, 7, 11, 13, 17. Then any commutative finite

flat group scheme J overZwhich is annihilated by a power of p is a direct sum of constant

and diagonalisable group schemes.

The proof will be completed in §4.2.

Remark 4.1. Let A be the Néron model of an abelian variety A over Q. By Theorem
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4.1, Ap
∼= (Z/pZ)a⊕µb

p for some a, b such that a+ b = 2g. Then the same theorem says

that Ap2
∼= (Z/pZ)a1 ⊕ (Z/p2Z)a2 ⊕ µb1

p ⊕ µ
b2
p2 with a1 + a2 + b1 + b2 = 2g.

By [7, Proposition 20.7], the multiplication-by-p map [p] on A is surjective, so we

have a surjection Ap2 Ap . This means a2 ≥ a and b2 ≥ b. Since a2 + b2 ≤ 2g =

a+ b, we have a2 = a, b2 = b, and a1 = b1 = 0, i.e. Ap2
∼= (Z/p2Z)a ⊕ µb

p2 .

Applying similar arguments, we see that Apn
∼= (Z/pnZ)a ⊕ µb

pn .

Proposition 4.1. Let A be an abelian scheme over Z of dimension g, and let p = 3. Then

Apn
∼= (Z/pnZ)g ⊕ (µpn)

g.

Proof. By Theorem 4.1 and the discussions that follow it, Apn
∼= (Z/pnZ)a⊕ (µpn)

b with

a + b = 2g. Then Āpn is the special fiber of Apn , hence of the form (Z/pnZ)a ⊕ (µpn)
b

over the residue field kp. This means the geometric points of Āpn form (Z/pnZ)a. But it is

known that the geometric points of Āpn is of rank≤ g. Thus a ≤ g. Take the dual abelian

variety At of A and let A t denote the Néron model of At. Then A t
pn is the Cartier dual

(see §2.2) of Apn (Cf [8, III.15 Theorem 1, p143]), hence of the form (Z/pnZ)b⊕ (µpn)
a.

But we have already proved b ≤ g. Therefore a = b = g.

Raynaud’s theorem

First we recall the following result of Raynaud [10, Theorem 3.3.3].

Theorem 4.2. Let p be an odd prime. Then a finite flat commutative p-group X over Q

has at most one extension to Z. That is, there is at most one finite flat group scheme X

over Z such that XQ ∼= X .

Let J be a finite p-group over Z. Denote E := Q(J(Q̄)) and G := Gal(E/Q).

Lemma 4.3. J is uniquely determined (up to isomorphism) by theG-module structure of

J(Q̄).

Proof. Theorem 4.2 says J is determined by JQ, while Theorem 2.2 tells us that JQ is

uniquely determined by the abelian group J(Q̄) together with the action of G.

39



doi:10.6342/NTU201701790

Lemma 4.4. Suppose J is an extension of a constant group by a constant group. Then

E = Q(J(Q̄))/Q is a p-extension.

Proof. Suppose we have an exact sequence

0→ A→ J → B → 0.

By Theorem 2.2, this corresponds to an exact sequence of G-modules:

0→ A→ J → B → 0.

Define f : G × J → A by f(σ, x) = xσ − x which is in A as G acts trivially on B. It

follows that f(−, x) defines a 1-co-cycle:

f(σ1σ2, x) = xσ1σ2 − x

= xσ1σ2 − xσ1 + xσ1 − x

= f(σ2, x)
σ1 + f(σ1, x).

However, becauseG acts trivially on A as well, so that f(−, x) is a group homomoor-

phism for every x ∈ J . Since the intersection
∩

x∈J ker(f(−, x)) is trivial, ⊕xf(−, x)

defines an embedding ofG into a direct sum of copies ofA. ThereforeG is a p-group.

The proof of Theorem 4.1

Before proving the theorem, we first discuss about the sub-objects and the quotients of

group schemes.

Remark 4.2. Sub-objects and quotients.

1. Recall the results of Raynaud (see [10, §2]).

Let R be a discrete valuation ring with fraction fieldK and residue field k of char-

acteristic p.

Let X be a flat R-scheme of finite type with generic fiber X = X ⊗R K. Let Y

be a closed sub-scheme of X . See the following diagram.
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X X Y

Spec(Z) Spec(Q)

f

Then the scheme-theoretic image of the map f : Y → X → X is the closed

subscheme Z of X such that f factors through Z and that for every closed Z ′ ↪→

X through which f factors, we have Z ⊆ Z ′. Namely, it is the smallest closed

subscheme through which f factors. Denote the scheme-theoretic image of f as

SchIm(f).

If X = Spec(B), then X = Spec(B ⊗Z Q) and Y = Spec(B ⊗Z Q/I) for some

ideal I ofB⊗ZQ. SinceB is flat, wemay regardB as a sub-algerba ofB⊗ZQ. Then

we see that f factors through Spec(B/J) for some ideal J if and only if J ⊆ B ∩ I .

Thus Spec(B/B ∩ I) = SchIm(f).

Since for every x ∈ I , there is an integer n such that n · x ∈ B ∩ I , we have

(B ∩ I)⊗Q = I . Therefore SchIm(f)⊗Q ∼= Y .

This shows that the subgroups of a group over Q, which admits an extension to Z,

have extensions to Z.

2. Let J be a finite flat group scheme over Q and let J be a finite flat group scheme

over Z with generic fiber J . Let H be a flat closed subgroup of J . Then since Q is

Artinian, by [9, page 82, (i)], the quotient J/H is representable.

Further, let H be the scheme-theoretic image ofH in J as above. By [4, page 71,

Corollaire 17.6.2.] and [9, page 82, (a) (ii)], the quotient J /H is representable as

well. And it is evident that the generic fiber of J /H is J/H .

Now we are ready to complete the proof.

Proof of Theorem4.1. The proof is divided in six steps.

1. Every finite p-group over Z, which is an extension of a constant group by a constant

group is constant.
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Let J be such a group, and letE be as in Lemma 4.4. By Lemma 4.4, we knowE/Q

is a p-extension, hence solvable. Furthermore,E/Q is everywhere unramified, since

an extension of an étale group by an étale group is étale. But Q is of class number

1, hence E = Q. By Lemma 4.3, we conclude that J is constant.

2. Every finite commutative p-group over Z, which is an extension of a diagonalisable

group by a diagonalisable group is diagonalisable.

Apply the argument in step 1. to the Cartier dual sequence.

3. In the category of finite p-groups over Z, every extension of Z/pZ by a diagonalis-

able group µ is trivial.

Given an exact sequence

0→ µ→ J → Z/pZ→ 0,

we shall show it splits.

Let u be a lift of a generator of Z/pZ in J(Q̄). Then v = p · u ∈ µ(Q̄). Also,

for every g ∈ G, wg := ug − u ∈ µ(Q̄) since G acts trivially on Z/pZ. Then

vg = p · ( ug ) = p · (wg+u) = v+p ·wg. But µ is diagonalisable, so vg = χ1(g) ·v.

If we choose g such that χ1(g) ̸= 1, then we see u can be choosen so that p · u = 0.

Therefore, as abelian groups, the following splits.

0→ µ(Q̄)→ J(Q̄)→ Z/pZ→ 0. (25)

And it suffices to show the sequence (25) splits as Galois modules.

By Lemma 4.2, we know the field E := Q(J(Q̄)) is equal to Q( p
√
1). This shows

that the sequence (25) splits as Galois modules as well.

4. In the category of finite p-groups over Z, every extension of µp by a constant group

Γ is trivial.
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Given an exact sequence

0→ Γ→ J → µp → 0,

we shall show it splits.

Let u be a lift of a generator of µp in J(Q̄). Then v = p · u ∈ Γ(Q̄). Also, for

every g ∈ G, wg := ug − χ1(g) · u ∈ Γ(Q̄) since µp is diagonalisable. Then

vg = p · ( ug ) = p · (wg + χ1(g) · u) = χ1(g) · v + p · wg. But Γ is constant, so

vg = v. This means v = χ1(g) · v + p · wg. If we choose g such that χ1(g) ̸= 1,

then we see u can be choosen so that p · u = 0. Therefore, as abelian groups, the

following splits.

0→ Γ(Q̄)→ J(Q̄)→ µp(Q̄)→ 0. (26)

It remains to show (26) splits as Galois modules. But again Q(J(Q̄)) = Q( p
√
1) so

(26) splits as Galois modules as well.

5. The only simple objects in the category of finite p-groups over Z are Z/pZ and µp.

The group G = Gal(Q̄/Q) acts on the p-th roots of unity. Let χ1 : G → F∗
p be the

character of this action.

If J is a simple object, then the sub-object of J formed by the p-torsion is equal to

J , so that J is killed by p. The action of G on J(Q̄) factors through Gal(E/Q),

where E = Q(J(Q̄)).

Lemma 4.3 says J(Q̄) is a simple Fp[Gal(E/Q)]-module. Moreover, by Lemma

4.2, E ⊂ Q( p
√
1). Since Gal(E/Q) is abelian, its simple module J(Q̄) is an 1-

dimensional Fp-vector space, on which the Galois action is given by χi
1 for some

i ∈ {0, · · · , p− 2}. By [10, Colloraire 3.4.4], we only have two cases to consider:

i = 0 and i = 1. Now Lemma 4.3 implies that in the first case J ∼= Z/pZ and in

the second case J ∼= µp.

6. Every finite flat commutative group scheme J over Z which is killed by a power of

p is a direct sum of constant and diagonalisable group schemes.
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Let J be a finite commutative p-group over Z, let G = Gal(Q̄/Q) and let

V0 = {x ∈ J(Q̄) | gx = x, ∀g ∈ G}

V1 = {x ∈ J(Q̄) | gx = χg(x), ∀g ∈ G}

Clearly V0 ⊕ V1 ↪→ J(Q̄) and we only have to show

J(Q̄) = V0 ⊕ V1. (27)

If equation (27) holds, we say J is admissible. We know that the category of admis-

sible finite commutative p-groups over Z is stable under the sub-objects, quotients,

and direct sums.

Suppose there exist finite non-admissible commutative p-groups overZ, and choose

J such that the order of J(Q̄) is minimal. We can choose a sub-group J ′ of J such

that J/J ′ is simple. By our choice of J , J ′ = J ′
0 ⊕ J ′

1 with J ′
0 constant and J ′

1

diagonalisable. If J ′
0 ̸= 0 and J ′

1 ̸= 0, then J/J ′
0 and J/J ′

1 are admissible, so that

J ↪→ J/J ′
0 ⊕ J/J ′

1 is admissible.

If J ′
0 = 0, then J ′ is diagonalisable, and J/J ′, being simple, is either µp or Z/pZ.

In the first case, J is an extension of a diagonalisable by a diagonalisable, hence

diagonalisable. In the second case we have an exact sequence

0→ J ′ → J → Z/pZ→ 0. (28)

By Step 4, this sequence splits, and J is admissible.

For the remaining case J ′
1 = 0, J ′

2 = J ′, J ′ is constant. A parallel argument to the

above finishes the proof.
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Appendices

1 Rank 2 groups

We classify free group schemes of rank 2 in this section.

Proposition 1.1. Every free group scheme Spec(A) of rank 2 is isomorphic to some Ga,b.

Proof. Consider the split exact sequence:

0→ IG → R×R = A→ R→ 0. (29)

Here we identifyR ↪→ Awith {(r, r) | r ∈ R}. Now (1, 1) and (1, 0) forms a basis for the

free module A, so IG ∼= A/R ∼= R, and hence IG is free of rank 1. This means IG = R ·x

for some x ∈ IG.

Then x2 = ax for some a ∈ R. Moreover, by Lemma 3.9,

c(x) = 1⊗ x+ x⊗ 1 + bx⊗ x,

for some b ∈ R.

From the relation c(x)2 = c(x2) = a · c(x) we see that

1⊗x2+x2⊗ 1+ b2x2⊗x2+2x⊗x+2bx2⊗x+2bx⊗x2 = a(1⊗x+x⊗ 1+ bx⊗x).

After rearranging, we find

(a2b2 + 2 + 4ab)(x⊗ x) = abx⊗ x.

From the freeness of A it follows that

(ab+ 2)(ab+ 1) = 0. (30)

Write i(x) = r + sx for some r, s ∈ R. By the axioms,m ◦ (idA ⊗ i) ◦ c = e. Apply
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this to x and obtain

m(1⊗ (r + sx) + x⊗ 1 + bx⊗ (r + sx)) = 0.

Thus r = 0 and s+1+ br+ abs = 0, namely, (ab+1)s = −1. Combined with (30), this

yields ab = −2 and s = 1.

Therefore Spec(A) ∼= Ga,b.

2 An increasing function

We show that a function is increasing in this section.

Lemma 2.1.
n∏

k=1

(
1 +

1

k

)
= n+ 1

Lemma 2.2.

(1 +
1

k
)k < e < (1 +

1

k
)k+1

Proof. Take log and get

k ln(1 +
1

k
) < 1 < (k + 1) ln(1 +

1

k
).

Now the inequality follows from the Taylor expansion of ln(1 + x).

Lemma 2.3.
nn

n!
=

n−1∏
i=1

(1 +
1

i
)i.

Proof.
nn

n!
=
∏n−1

k=1

(
1 + 1

k

)n ·∏n−1
i=1

∏i
k=1

(
1 + 1

k

)−1

=
∏n−1

k=1

(
1 + 1

k

)n ·∏n−1
i=1

(
1 + 1

i

)−(n−i)

=
∏n−1

i=1

(
1 + 1

i

)i
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Theorem 2.1. Define f(n) = n

(n!)
1
n
for n = 1, 2, · · · . Then

f(n) < f(n+ 1), ∀n = 1, 2, · · · .

Proof.

When raised to the n(n+ 1)-th power, this inequality is transformed into

nn(n+1)

(n!)n+1
<

(n+ 1)n(n+1)

((n+ 1)!)n
.

After rearranging, this becomes

(n+ 1)n

n!
< (

n+ 1

n
)n(n+1).

Namely, nn

n!
· (n+1

n
)n < (n+1

n
)n(n+1). Hence it is equivalent with

nn

n!
< (

n+ 1

n
)n

2

. (31)

By Lemma 2.3, the L.H.S. of equation (31) is
n−1∏
k=1

(1 +
1

k
)k.

By Lemma 2.2, we have

(1 +
1

k
)k < e < (1 +

1

n
)n+1, ∀k = 1, 2, · · · .

Therefore
n−1∏
k=1

(1 +
1

k
)k < (1 +

1

n
)(n+1)(n−1) < (1 +

1

n
)n

2

.
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