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Abstract

A variety is called an abelian variety if it has an abelian group structure.
These varieties are special geometric objects of particular importance in mul-
tiple mathematics fields. We are concerned with the reductions of abelian
varieties over the field of rational numbers modulo different primes. In par-
ticular, we are interested in whether the reduction of an abelian variety re-
mains an abelian variety. It is well-known for years that the reduction is still
an abelian variety, except for finitely many primes. However, it cannot be
an abelian variety modulo every prime. This is a theorem of Fontaine. But
Fontaine’s proof is not easy for beginners. So I expound the details of the

proof to make it easier for potential readers.
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1 Introduction

Abelian varieties are abelian group objects in the category of complete U varicties. An
abelian variety A over a field K with a discrete valuation v, valuation ring @,, and residue
field k, is said to have good reduction at v if there is an abelian scheme .27, over Spec(Q,)
such that A & 7, ®p, K. In this case, the special fiber A := o7, ®0, k, is an abelian
variety over k,,.

An interesting question is: Does there exist an abelian variety over Q with good re-
duction at every prime number?

Fontaine proved ([3]) that there cannot exist an abelian variety over Q with good re-
duction at every prime number. The proof'in [3] is complicated and not easy for beginners.
The aim of this article is to expound the details of the proof, and hence make it easier to

understand for potential readers.

1.1 The main result

To be precise, the main theorem we are to prove is the following.

Theorem 1.1. There cannot exist an abelian variety over Q with good reduction at every

prime number.

Let A be an abelian variety over Q and let <7 denote its Néron model over Z so that

A is the generic fibre of .7 and

If A has good reduction everywhere, then .7 is an abelian scheme over Z, as the special
fibres of .o are abelian varieties, by [[7, Proposition 20]; the kernel .7, of the multiplication
by n on &7 is a finite flat group scheme over Z. If v = p, O, = Z,), the afore-mentioned
<, can be taken as &/ ®gz Zy).

Here we demonstrate how Lemma below, together with the more well-known

Lemma [.2, can lead to the proof of the theorem.

'A variety X is called complete if for any variety Y, the projection X x Y — Y is a closed map.
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Proof. Let p be the prime 3. Suppose A is of dimension g. The system (&n),en 1S a

p-divisible group over Z of dimension 2¢. By Lemma [L. 1|, we have

(D )n = (Qp/Zp)* & (prp )’

This shows that A(Q) has infinitely many p-torsion elements. But this is impossible:
Let ¢ # p be aprime and let k, = Z/qZ. We shall show that the reduction map induces an
injection into a finite group: U, A, (Q) — U, A, (k,). For this, it suffices to show that
Ay (Q) — Apn(k,) is injective. By [[7, Proposition 20], both A« (Q) and A, (k,) are of
order p*™9, thus, the map is injective if and only it is surjective.

Then take K such that A,»(Q) = A, (K). By Lemma [1.2, the reduction map is a

surjection. ]
The following lemma manifests all works in [3] prior to the main theorem.

Lemma 1.1. Let ./ be an abelian scheme over Z of dimension g, and let p = 3. Then

Gy = (Z/p" L) D (pypn)?.
Proof. This will be proved in Proposition §.1]. [

Lemma 1.2. Let K be a field with a discrete valuation v and a complete valuation ring O,,.
Denote k = O, /m,. Let X = Spec(B) be a finite flat scheme over O,,. Let X = Spec(B)
be the special fiber of X, where B = B ®p, k. Suppose X(K) = X (K). Then the
reduction map X (0,) — X (k) = X (k) is surjective.

Remark 1.1.

1. Note that the reduction map sends a point z : B — O, toxr : B — k. And this
reduction map is in general not surjective.
For example, take O, = Z,), m, = (p), k = F,, K = Q,, B = O,[¢], where
¢ = /p. Then B = F,[T|/(T?), so there is a point in X (k) sending T to 0.
Butif z : B — O, is a point, then z sends £ to some 7 in O, such that > = p,

which is impossible. Hence X (K) = .

2
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2. Moreover, if B is finite over O, then any point in X ( K') actually belongs to X (O,,),
for O, is integrally closed. Therefore it makes sense to talk about the reduction map

X(K) — X(k).

Proof. By [, §1, Theorem 4.2(b)], we have
BBy x---B; X+ X B,

where each B; is a local finite flat algebra over O,. It is endowed with m,-adic topology.

Each point in X (k) corresponds to a homomorphism « : B — k. Since the powers
of the elements in mp, X --- X mp_ converge to 0, they are mapped to 0 by . Thus «
factors through B — [[, B;/mp, — k. And [[, B;/mp, — k must factor through some
B;/mp,, as k is a field.

From the maps B;/mB; — k and k — B;/mp, we see that B;/mp, = k. Thus there
can only be one k-homomorphism B; /mpg, — k.

Now we show that there is a O,-homomorphism B; — O, so that its reduction must
give rise to the unique k-homomorphism B;/mp, — k, and hence the reduction is surjec-
tive.

The Artinian K -algebra B; ®», K can be written as B; ®p, K = ﬁ Aj where each A;
is an Artinian local ring. Let K; denote the residue field of A;. Siné:K is a localisation
of O,, it is a flat O,-module. Thus we have a monomorphism K < [] i A;. Since K has
no non-zero zero-divisors, the image must lie in some A;. Further, as the elements in K
whose powers converge to 0 are zero, its image in A; is not contained inmy,,. So there is a
non-zero homomorphism between fields K — K;, hence a monomorphism. This means
each K is a finite extension of K. So we have a homomorphism B; — K; — K. By the
assumption this homomorphism has image in K, so we have a homomorphism B; — K.

Since B; is finite over O,, so is its image in /. But O, is integrally closed, so we have

a O,-homomorphism B; — O,. This completes the proof. ]

The key ingredient in the above proof is Propostion 4.1, which follows from Theorem
i.1. And Theorem §.1 will be proved in §#.2. The main tools used are the theory of group

3
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schemes and the ramification theory.

In §B, we review basic facts on group schemes for later application. In §f, we study
the theory of ramification. Then it will incorporate with the material in §p| as well as tools
involving the divided power structures and relative differentials into a proof of Theorem
B.1|. That theorem gives a nice bound on the upper numbering for the ramification groups
to become trivial. Other than this, the proof of Theorem @.1] also uses a result of Raynaud,
Theorem §.2. Unfortunately, we can only state it in §4 without further discussion.

Basically, this article is a report on a published paper. Hence the author has no intension
to claim that there is any newly proved statement in this article. Any assertion in this article

can be found in some published materials, or be deduced straightforwardly form those.

1.2 Notation

In this paper, X denotes a scheme, J denotes a finite flat group scheme, GG denotes the
Galois group of some extension, B denotes a Hopf algebra, and I' denotes a finite group.
Also, we oft use R to denote the base commutative ring, and S some R-algebra.

If K is a number field or a local field, we write Ok for its ring of integers. If B is a
local ring we use mp to denote the maximal ideal. When K is a local field we often write

my for mp,., and use £ to denote the residue field.

2 Group schemes

In this section, we review some basic properties of group schemes. For the purposes of this
article, a group scheme over a commutative ring R is defined as a representable functor
from the category of R-algebras to the category of groups. By abuse of language, we also
say that the representing scheme is a group scheme.

If J is a finite flat group scheme over R, then J is affine and equals to Spec(B), where
B is a Hopf algebra ([|13]]) finite flat over R. Weusec: B -+ B®g B,e: B — R, and
1 : B — B to denote the co-multiplication, the unit, and the co-inverse maps. We shall

assume that R is Neetherian, so that every finite flat R-module is locally free ([|13]).

4
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2.1 Examples

Some examples of group schemes are given here, notably the constant and the diagonalis-

able group schemes. They will play a major role in the demonstration of the main theorem.

Definition 2.1. Let I be a finite group. Denote R := R[e,],cr where e, v € T, form
an orthogonal system of idempotents with > e, = 1. Endow Spec(R) the group

scheme structure with the co-multiplication map

c: R — R g R

&y P D g o ®€r,

1 ~rv=1id
the unit e(e,) = , and the co-inverse given by i(e,) = e,-1. We call it the

0 v#1id
constant group scheme associated to I'. For simplicity of notation, we also denote it by I'.

Definition 2.2. Let I be a finitely generated abelian group and let R[I"| denote the group
ring. Since for every R-algebra S, the natural bijection Homg(R[I'], S) = Hom(I", S*)
gives the left-hand side a group structure, the group ring R[I'] (or its spectrum) is a group
scheme in a natural way, with c¢(v) = v ® =, for al v € I". We call such group schemes

the diagonalisable group schemes.

Example 2.1. We list below examples of group schemes.

(a) wy: The diagonalizable group scheme corresponding to I' = Z/nZ, which is repre-

sented by Spec(R[Z/nZ]) = Spec(R[X]/(z" — 1)).
(b) Z/nZ: The constant group scheme Spec(R%/"%)),

(¢) Gap: Leta,b € R be such that ab = —2. Define S = R[X]/(X? 4 aX) with
(X)=X®1+1X+bX ®X,e(X)=0andi(X) = X. This defines a group

scheme of rank 2 over R.

(d) Gp: This one represents the functor S ~ S*, with Hopf algebra R[X, X 1],
oX)=X®X.
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Every free finite group scheme of rank 2 equals to some G, (See Appendix [1}). We

show in Example 2.2 that ,, and Z/nZ are the Cartier duals of each other.

2.2 The Cartier duality and Deligne’s theorem

Let J = Spec(B) be a finite flat commutative group scheme over R. Define BY =

Hompg (A, R) as the dual module with its module structure defined by

(Af)(a) = A- fla) = f(Aa)

for e R, a € A.

Since B is a Hopf algebra, we have the R-algebra homomorphisms:

(the multiplication) m:B®B— B, a®b— ab,

(the co-multiplication) ¢: B — B® B, a+ c(a),

(the structure map) 1:R— B, A=Al
(the unity) e:B— R, a— e(a),
(the co-inverse) i: B — B, a—ia).

By dualising the above, we have the following homomorphisms:

m' :BY — BY® BY
¢/ :BY® BY — BY
¥ :BY =R
eV :R— BY

v :BY - BY

Note that " is just the structure map of BY as R-module. If J is commutative, or equiv-
alently, ¢¥(f ® g) = ¢'(g ® f), then BY is a commutative R-algebra with the multipli-
cation given by ¢'. In this case, B" is actually a Hopf algebra with m", 1V and 7" as the
co-multiplication, the unity and the co-inverse. We call JV := Spec(B") the Cartier dual

of J. Since B is locally free of finite rank, (BY)Y = B, hence (J¥)" = J.
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Lemma 2.1. Let J, be a finite flat group scheme. The Cartier dual J" represents the

functor

S ~» Homgg,(J/s,Gm) = {a€(B®rS)*|cla) =a®a,e(a)=1}
= {ac(B@rS)*|cla) =a®a},

where Homg,,(—, —) denotes the morphisms in the category of S-group schemes.

Proof. By taking the base change to .S, we may assume that S = R. The duality B =
(BY)Y identifies an a € B with a ¢, € Homg(B", R) such that ¢,(f) = f(a), for
all f € BY. That ¢, respects the ring multiplications is equivalent to f ® g(c(a)) =
f(a)-g(a) = f ® gla® a), forall f,g € BY. The condition, via the duality, becomes
c(a) = a ® a. We check that p,(1pv) = 1pv, ifand only if e(a) = 1. Thus, GY(R) =

{a € B | c(a) =a®a,e(a) = 1}. Moreover, if a * b is the product of a, b in JY(R), then

flaxb) =a@b(m’(f) = ow(f) = f(a-b), forall fe B,

which shows a x b = a - b. Hence JY(R) is a subgroup of B*. Conversely, if a € B*,

c(a) = a ® a, then

fla) = f@e(cla)) = f@e(a®a) = fa) - e(a)

holds for all f € BY, and hence e(a) = 1. Finally, an R-algebra homomorphism ¢ :
RI[T, ] — B is determined by a := £(T") € B*, and £ is a homorphism of Hopf algebras,
ifand only if ¢(a) = a ® a and e(a) = 1. O

Example 2.2. We show p.) = Z/nZ by computing 1,/ (S) for R-algebras S. Again, we

may assume that S = R. Set B = R[X]/(X™ — 1). An element a € B can be expressed
n—1

asa = Y. a;X". Then the condition c¢(a) = a ® a says that
i=0

n—1 n—1 n—1
Y aX'®) aX =) a(X®X).
=0 =0 =0

7
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By comparing coefficients, we see that a;a; = 0 for ¢ # j, and a? = a;. Further,
the condition e(a) = 1 means ) a; = 1. Therefore, ;¥ (R) consists of those a with
ag, a1, ..., a1 forming an orthogonal system of idempotents in . Note that in this case,
for b = Z?f(}l a,—; X', we have ab = 1 and hence a € B*.

Write Z/nZ = {[i] | i = 0,...,n — 1} as usual. Then each a € p,/(R) gives an R-

Z/nZ

algebra homomorphism 1, : R%*/"%) — R, ef) = a;. This gives a group homomorphism

u,.(R) — Z/nZ(R), which is an isomorphism.

Deligne’s Theorem

We end this section by showing a theorem of Deligne that is important in the theory of
commutative finite flat group schemes. Let S be a finite flat R-algebra, B an R-algebra.
Since B®pg .S is locally free over B, for s € By S, the determinant of the endomorphism
B®rS - B®rS, x> srisdefined. Let N : B ®p S — B denote this determinant

map. If S is of rank n over R , then
N(a) =a", fora € B. (1)

Lemma 2.2. If ¢y : B — C'is an R-algebra homomorphism, then the following diagram

commutes:

Proof. We may assume that S is free over R with a basis {¢;}. For « € B ® S, write
a(l®e;) = > pi(1®e;) for p;; € B. This implies N (o) = det(;;) and (o) (1®e;) =
(pij)(1 @ e5). Therefore, N (¢ () = det(¢(pi;)) = (N (a)). O

Let J = Spec(B) be a finite flat commutative group scheme over R. Lemma 2.1 says

J(S) can be viewed as a subgroup of (BY ® S)*.

8
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Lemma 2.3. There is a determinant map J(.5) N J(R) that fits into the commuta-

tive diagram:

Proof. We complete the proof by showing that the right vertical arrow maps J(S) to J(R).
To clarify the notation, write C = BY, let ¢ denote the co-multiplication, and denote
C’S = C ®p S. Since ég Rs és = (C’ QR C’) ®g S, there is the determinant map
Cs ®g Cg & C @ C . We see directly that if f € Cs, then No(f®1) = N(f) @ 1.
By Lemma .7 (taking v = &), we obtain &(N(f)) = No(é(f)). If f € J(S) so that

¢(f)=f® f,then
(N(f)=Na(f@f) = No(f@1)N2(1® f) = N(f)@1- 1@ N(f) = N(f) @ N(f),

which means N(f) € J(R). O

By ([ll), if S is of rank n and u € .J(R), then
N(u) =u". ()

For a commutative group scheme J, let [n| denote the homomorphism sending each

P e J(S)to P".

Theorem 2.1 (Deligne’s theorem). Let J be a finite flat commutative group scheme over

R of rank n. Then the map [n] annihilates J.

Proof. Tt suffices to show that [n] annihilates J(R). Write J = Spec(B) and denote
C := BY. Letu € J(R) c C*. We shall show u" = 1.
Define 7 : B — Bas T = (idg ® u) o ¢, which is an R-algebra automorphism of B

resulting in the translation by w on .J. Then extend 7 linearly to C' ®x B by T(f®a) =

9
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f ®7(a). Take S = B and consider the determinant map C @y S A, C . Since 7 is

an automorphism of the C-algebra, we have
N(a) = N(r(a)), forall a € C®pS. 3)

The identity map idg : B — S extends uniquely to a homomorphism of (right) S-algebra
B ®gr S — S, and hence can be viewed as an element, also denoted as idg, of J(S) C
C ®r S. We claim that

T(ZdB) =U- ZdB

Then by (8), we have N (idg) = N(u - idg). Also, (B) says N(u) = u". Therefore,
N(idg) = N(u-idg) = N(u)N(idg) = u"N(id4).

Hence v = 1 as desired.

Since the claim can be proved locally, we may assume that S is free over R. Let
ey, ..., e, beabasisof Sandletey,...,e" € C denote the dual basis. Identify C ®x S with
Homp(B, S). Then we see thatidp = Y | e) ®e;, andhence 7(idg) = >, e) @7(e;),

which means 7(idp) sends every b € B to 7(b). But u-idp sends b to u®1idg(c(b)) which

is also 7(b). O

2.3 Etale group schemes

We take the definiton of étale morphism from [6]. For a scheme X, let Ox denote the
structure sheaf; for z € X, let Ox, denote the local ring at x, m, C Ox_, the maximal

ideal and k(z) := Ox ,/m,Ox , the residue field.
Definition 2.3.

1. A morphism of scheme f : Y — X locally of finite type is called unramified at

y € Y,if Oy, /m, Oy, is a finite separable field extension of k(x), where x = f(y).

2. The morphism f is said to be unramified if it is unramified at every y € Y.

10
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3. A morphism of schemes is étale if it is flat and unramified (hence locally of finite

type also).
4. A group scheme .J over R is étale if the structure morphism J — Spec(R) is étale.

Note that the morphism f is unramified at y if and only if the induced f, @ Y X x
Spec(k(x)) — Spec(k(x)) is unramified at y := y X x Spec(k(x)). Thus, f is unramfied
(at every point) on the fibre at x if and only if f, is unramified.

Let O be a Dedekind domain with field of fraction £ and let B be a finite flat O-
algebra. Then B ®p FE is a direct product of Artinian local algebras K; over £ and each
K; corresponds to a point y; in the generic fibre of f : Spec(B) — Spec(O) so that f
is unramified at y; if and only if K is a finite separable field extension of E. Thus, the

morphism f is unramified on the generic fibre if and only if

B®oE=K x - x K, 4)

with each K; a finite separable field extension of F. Similarly, for m C O a maximal
ideal with residue field k(m) = O/m, the morphism f is unramified at the special fibre
at m if and only if

B®@k:(m):k1><---><kl, (5)
with each k; /k(m) a finite separable field extension.

Proposition 2.1. Let £ be a number field with the ring of integers Op, and let J =
Spec(B) be an Og-scheme whch is a finite étale scheme over a Zariski open set U C

Spec(Og). Let F' = E(J(FE)). Then F'/E is unramified at every m in U.

Proof. Since the assertion of the proposition is local, it is sufficient to prove the corre-
sponding statement in which £ is the local completion of the given number field. Then
the maximal ideal m C Op is generated by a prime element .

Since B is flat over O, the identity ({) gives rise to B < K; x --- x K,,. Let B;
denote the image of B in i-th factor K. It follows that K is the fraction field of B; and

B; C Ok, C K, as B is finite over Op.

11
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Now (B) says B/mB is a product of fields. The surjection B/m — B;/mB; implies
mbB; is a maximal ideal of B; and B; is unramified over Og. It remains to show that
B; = Ok,.

Let S = {0} U S’ be a set of representatives of B; modulo mB;. Since B; is a com-
pact Og-module, it is a closed subring of K; in the m-adic topology. The standard ar-
gument implies every element & in B; can be written as a power series » -, a,m" with
ag, ..., Ay, ... € S and vice versa. Also, £ € B ifand only if ag # 0. As Kj is the fraction
field of B;, every n € K, can be written as = u x . From this, we deduce that ) € Ok,
if and only if ¢+ > 0, which means n € B;.

O

Proposition 2.2. Every finite flat group scheme over a field annihilated by an integer

prime to the characteristic of the field is étale.

Proof. See [|13, corollary in 11.4]. [

Proposition 2.3. Let p be a prime number. Every finite flat group scheme J of rank p"

over the ring of integers O of a number field is étale over (’)[%].

Proof. Let f : J — Spec(QO) be the structure morphism of J. Let x = m C O be a prime

ideal of residual characteristic # p. Then Proposition 2.2 says f, is unramified. [

Theorem 2.2. The category of finite étale group schemes over a field is equivalent to
the category of finite abelian group on which the absolute Galois group of the field acts

continuously.

Proof. See [[13, Theorem 6.4]. O

2.4 Local group schemes
Let R be alocal ring. By a local group scheme over R, we mean a group scheme Spec(B)
such that B is a local algebra over R.

12
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Local group schemes over a perfect field

By Proposition 2.2, a non-trivial local finite flat group scheme over a field & exists only if

char £ > 0.

Theorem 2.3. Let k be a perfect filed of characteristic p > 0. Then every finite flat group

scheme J over k can be expressed as J = J° x Jy
Proof. See [13, Theorem 6.8]. [

Theorem 2.4. Let J = Spec(B) be a local finite flat group scheme over a perfect field k

of characteristic p > 0. There exist positive integers py, ..., p, such that

e

B =k[zy, ...,z / (@ 2l ™).

Proof. See [[13, Theorem 14.4]. O

Local group schemes over the ring of integers of a local field

Let K be a finite extension of Q, and let Ok denote the ring of integers of K. Let mg
be the maximal ideal of O and k be the residue field. Let J = Spec(B) be a local finite
flat group scheme over Ok. Since Ok is Henselian, we can write (see [6, §1, Theorem
4.2(b)])

B = DBy X -+ X By, (6)

where each B; is a finite flat local algebra over Ok

Definition 2.4. We say that an Ok local algebra B is a complete intersection over O, if

there are P, ..., P, € Ok|[[ X7, ..., X3, ]] with

P; = X% (mod mg[[Xq,..., Xi]]), g; > 1, (7)

such that

B = Ok[[X1, ... X1/ (P, ooy Ba,)

7

and mp = mKC + (Xl, ...,Xh)/(Pl, 7Ph>

(3
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If B is a finite flat O x-algebra with the decomposition () and each B; is a complete

intersection, then we say that B is locally a complete intersection over Q. 2

Theorem 2.5. Let J = Spec(B) be a local finite flat group scheme over Ok. There exists
a finite unramified extension LK such that B ®o,. Oy is locally of complete intersection

over O,

Proof. Write J := Spec(B), where B := B®p,. k. By replacing K by certain L, we may
assume that J(k) = J(k). Here k denotes the algebraic closure of k. Then we prove the

theorem for K = L. By Theorem 2.3, we can write

Since Jy (k) = J(k) = J(k) = Js(k), Theorem R.2 says J,, is actually a constant group
scheme Spec(k(1)) for some I (see Definition R.1). Put J° = Spec(Cj). Then

B=Cy2, kM =Cyx - xC,,

where each C; is an artinian local k-algebra isomorphic to Cyy. From (f), we also have

where each B; is also an artinian local k-algebra. Now the uniqueness of the decomposi-
tion of B into a product of artinian local algebras implies that B; must equals C; for some

4, and hence isomorphic to C;y. Thus, by Theorem 2.4, we have the commutative diagram

T Ok[[X1,- , X3]] = B,
T kﬁ

€1 < 5
(2" ,...7%”)%1@[[@,---7%]} Cj

where T and (22, ..., 22" are respectively, the kernels of o and 3, 7 sends X to x;

and 7 is the reduction modulo mg. Since [ is surjective, Nakayama’s lemma says «

2Qur definition is not standard, but it fits in well with our situation.

14
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is also surjective. Because 3(m(X} J)) = 0, the element CV(ﬂ'(ijej)) is contained in
mgB; = ker(7). Write a(W(Xfej)) = a; - yj, with a; € mg and y; € B,. Since o
is surjective, we can lift y; to Y; € Og[[X1, ..., X4]]. Then set P; = X?” — a;Y;. We
have

P; = xrY (mod mg[[Xy, ..., X3]])

and P; € T. Since R[[X1, ..., X};]] is a Neetherian local ring, Nakayama’s lemma says

T=(P,.., P).

3 Fontaine’s bound and its consequences

In this section, we review one of the main results in [3], namely the following theorem of
Fontaine. Let K denote a finite extension of (Q,, with ring of integers denoted by Ok and
the ramification index of K /Q, (the absolute ramification index) denoted by ef. Let mg

and k := Ok /mg denote the maximal ideal of O and the residue field.

Let L/ K be a Galois extension and denote G := Gal(L/K). By [[11, §III.6, Proposi-
tion 12], we can write O, = O[] for some o with minimal polynomial f(X) € Ok|[X].
As usual, for ¢ running through [—1, o), let G* denote the ramification subgroups of G in
upper numbering [11, §IV.3]. By a p-group scheme over O we mean a finite flat group

scheme over O annihilated by some power of p

Theorem 3.1. Suppose J is a p-group scheme over O annihilated by p". Let L =

K (J(K)) be the field obtained by adjoining the geometric points of J, with G := Gal(L/K).
Then G* = {1}, for allu > ex(n+ 1/(p — 1)).

We will only prove the theorem in §B.4 for the special case where K = Qpandn = 1.

That will be sufficient for the later application.

15
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3.1 The ramification theory

Define v = vk to be the valuation on K such that v(7) = 1 for every uniformizer 7y of
K, and similarly define the valuation vy, so that v, = ey k - vk, where erk denotes the

ramification index. Recall the ramification groups in lower numbering [[11, §IV.1]
Gi={oeG |v(a—a)>i+1}, i>—1.

In particular, Gy is the inertia subgroup of G. For s € [—1, 00), put

8 dt
o(s) ::/0 Teperent

This defines the Herbrand function ¢ : [—1,00) — [—1,00), which is a bijiection [11,
§IV.3] such that
G = @,, forall s € [—1,00). (8)

For each o € G, define

ig(o) =v.(°a — a),
which is independent of the choice of . By [[11], §IV.3, Lemma 3],

1

€L/K

d(s)+1= > “min(ig(0), s+ 1). 9)

oeG

Lemma 3.1. If 3 € K and i := max {v;(°a — 3) | o € G}, then

¢(t—1) + 1 =vx(f(8)).

Proof. Suppose i = vr("aw — ) for some 7 € G. Foreach o € G,

vr(B —"a) > min(v (8 — "), v, (T — Pa)),

16
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in which the equality should actually hold, for otherwise
v(B—"a)=v.(Ta —"a) < v (B — a),
a contradiction to the choice of 7. Therefore, by (g),

S 1 = el SocgminGiolo),
— GZ/IK Y peemin(v(‘a — a),vp (8 - "a))
— 62/11( Y weemin(v (o — Ta), v (B — "))

= €1 YDogeq VLB — )

Lemma 3.2. (Krasner’s lemma) If 8 € K satisfies

v (B —a) >v.(a — a),

forall 0 € Aut(K), ac # «, then L C K ().

Proof. 1f 7 is an element in Aut(K) fixing /3, then for all o € Aut(K), ‘a0 # a,
v ("B —Ta) = v (B —a) > v (o — ),

Hence

v (" — ) > min(vy (Tae — ), v(5 — @) > v (a0 — ).

This shows that "o = «a. Therefore the field extension L(/3)/K () is trivial, and L C

K(5). =
For each finite extension F'/K and each real number ¢, set

My ={x € Op | vg(z) >t}

17
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so that the maximal ideal my; C O equals M}. Denote X := Spec(Oy,).

Lemma 3.3. Let ¢ € (0,1). The extension L/K is unramified if and only if the map

X(0p) = X(Op/Mp)

is surjective for every F.

Proof. A point on X (Op/M}) is given by an algebra homomorphism

Suppose L/ K is unramified. Then we can find « such that f has monic irreducible image

f(X) € Ok[X]. Note that our condition implies if f(3) = 0, for some 3 € Fy, then
F'(B) #0.

Choose 8 € Op such that 8 = 1g(«) (mod ME). Then f(8) = 0 (mod Mj},) and
vk (f'(8)) = 0. Hence, by Hensel’s lemma there exist § € O such that f(3) = 0 and
3=} (mod ML,). This shows the map in question is surjective.

Let E be the unique unramified sub-extension of L/ K with residue field F,. Consider

the surjection

OL —)IFL IIFE = OE/Mt = OE/WKOE.

This lifts to a K-algebra homomorphism O — Op, if ¥p is surjective. Under this

condition, L/ K is a sub-extension of £/ K, and hence unramified. [

Define
ur/k = ¢p(max{ig(o) | o #idg} —1)+1,
so that by (§),

G' ={idg} = p>uyr—1 (10)

18
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Lemma 3.4. Let L/ K be a finite extension. Then

)
unramified <~ uprg =0

L/K is tamely ramified <= wup/x =1

wildly ramified — upx > 1
\

Proof. For a non-negative integer n, we have G, = G,,, for z € (n — 1,n]. Now Gy is
the inertia subgroup, while by [[11, Chapter IV. §2. Proposition 6.], |Gy|/|G1| is of order
prime to p and |G,,|/|Gr1]| is a power of p for n > 1. Then we check that ¢(—1) = —1
and ¢(0) = 0.

O
Proposition 3.1. Let ¢ be a positive number.
(a) If ¢ > up,k, then the implication
X(Op/Mp) #0 = X(Op)#0 (11)

holds for all finite extension £/ K.

(b) Conversely, if the implication ([L1)) holds for all finite extension /K, then t >

uL/K — 1/6L/K-

Proof. Suppose t > up;x and X(Op/M};) # 0 so that there exists 5 € Op with
vk (f(B)) >t > upx. By Lemma B.1 and ([L0),

¢p(max{v,(°a —pB) | o€ G} —1) > ¢p(max{v,(ic(o) | 0 € G, 0 #idg}—1).
Because ¢ is an increasing function, there exists 7 € G such that
v (B —"a) > max{v,(a —«a) | 0 € G, 0 #idg}.

Hence by Krasner’s lemma, L = K (") C K(f) C E. Thus X (Og) # 0.
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If L/K is unramified, then (b) holds trivially, because in this case ur/x = 0, and

hence t > uy/x — 1/er,k, while Lemma B.3 says ([L1]) always holds.

If L/K is ramified, we shall prove (b) by showing that for t = uy/x — 1/ep/k, there
exists a finite extension E such that X (Og/M},) # 0 but X (Og) = 0. To do so, we
may replace K by the maximal unramified sub-extension of L /K and assume that L/K

is totally ramified with « a uniformizer of Oy, and f(X) an Eisenstein polynomial.

Suppose L/K is tamely ramified. Then u/x = 1 and hence ¢t = 1 — 1/e; k. Take
E to be a totally ramified extension of K of degree d < er/x = [L : K|, by adjoining
a root of some Eisenstein polynomial. Since L can not be embedded into F, we have

X (Og) = 0. In this case,

ME = {$€OE|UK(1‘)Zl—l/eL/K>1—1/d}
= {2 €0 |vk(z) > 1}

= Mmg.

If /3 is uniformizer of O, then vk (5) = 1/d, and hence
v (F(B)) = vk (][ B =) = eryic - 1/ersc = 1.

This shows X (Op/M},) # 0.

Finally consider the case where L/K is wildly ramified, namely, p | ez k. Since

G = Gy and G4 is a nontrivial p-group, by ([L0), we have

urxk > ¢(1)+1>plepk + 1.

Hence
t= UrL/K — 1/6L/K > 1.
Now thatt-ey/x € Z, wecanwritet-ep g =r-ep/x+swithr,s € Zand0 < s < e k.
Let £ = K(f3), where 3 is a root of the polynomial g(X) = f(X) — 7} X*.
We check that ¢ is an Eisenstein polynomial as follow: First, g is monic, because
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er/k > s. Also, r > 1, because ¢ > 1, hence 7x divides all non-leading coefficients of
g. If s = 0, then t > 1 implies r > 2. Thus the constant term of g is not divisible by 72..
We then deduce that vx () = 1/er k. Since v (f(f)) = vk (mEB%) = t, we see
X(Op/ML) # 0. It remains to show X (Og) = 0.
Suppose X (Og) # (. Then an K-algebra homomorphism O; — Op induces an
embedding of L into £. But we actually have L = E, because both sides are of the same

degree over K. Then o and 3 both lie in E and by Lemma j3.1],

¢p(max{v,(°a—B) | c € G} — 1)+ 1=vk(f(B)) =t.

Define § = max{i¢(c) | o # idg} and put

d:=|Gs_1| =|{o € G | ig(o) > 5}

Then by (0) and by the definition of uy,x,

¢(§—1/d—1)—|—1I(b((;—1)+1—1/€L/KIUL/K—1/€L/K:t.

Thus, there is some 7 € G such that

v("Ta = B) =9 —1/d.

This implies 1/d € Z, and hence d = 1. But this absurd, since Gs_; is non-trivial. The

proposition is proved.

3.2 Divided power sturctures

In this subsection, we review some basic facts about divided power structures.

Definition 3.1. Let R be a commutative ring. A divided power structure on anideal I/ C R

is a collection of maps ,, : I — I, n = 1, ..., such that
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(@) 71(x) =z, forz € 1.

) wm(z+y) =7 7i(®)mi(y), for z,y € I.

(©) Yn(azx) = a"y,(x), fora € R, x € I.

(d) Y (z) V() = (m+n)!7m+n(:v). forz € 1.

min!
(€) Yn(ym(2)) = %vmn(:c), forz € I.

We say that [ is a divided power ideal (with the given divided power structure).

Note that the numbers (”;TTZ)! and (fn"f)@:ﬂ are integers and by [(d)]
nly,(z) = z".
For simplicity, we often use the abbreviation 2™ := ~, (). Put

I[n} = (:L'[al] . .x[al] | a + e _|_ a; Z n)

Lemma 3.5. Let ] be a divided power ideal. Then, I is also a divided power ideal.

Moreover, we have

(1trym) < pimn),
Proof. 1fi > landy = 2™ - ... 2l 4y + ... 4+ 4, > n, then, by (c) and (d),
(ZTL)' a a;—1|\i ia
%) = Gy @ B,

which is contained in 71" C ", Then we apply (b) to show that if m > 1, y,,(2) € 1™

forall z € 11",

We say [ is topologically nilpotent, if it is divided power and

(1™ =o. (12)
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Lemma 3.6. Let  be a divided power ideal. Let P(X}, ..., X;) € R[Xy,..., X;). For

Uy, ..., up, € Rand py, ..., up € I™, n > 1, we have

oP

ox, (up,...,up) - p;  (mod 17+,

P(uy + piyy ooy up + pin) = P(ug, ... up) + Z

=

Proof. This is from the Taylor expansion of P. The left-hand side can be written as
P(uy, .cupn) + 30, 8X L (uyy ooy un) - 5+ Q(as .., i), where Q(X1, ..., X3,) is a poly-
nomial with coefficients in R such that the constant and degree one terms all vanishes. By

Definition B.1i(d) and Lemma B.5, Q(u1, ..., pup,) € 11, .

As before, let £/ K be a finite extension. Let ¢ be a positive real number. The only

possible divided power structure on M is the one such that 2" = %
Lemma 3.7. The ideal M!, of O is divided power if and only if M, = M} for some

t' > eK . Itis topologically nilpotent if and only if ¢ can be chosen to be greater than

Proof. Let = be a generator of ML with vy (z) = ¢ > t. Then t’ is the maximum of
the numbers v satisfying ME = M. By replacing ¢ with ¢/, we may assume that ¢ = ¢'.
Thus, M}, is divided power if and only if for each positive n, vg (") — vi(n!) > ¢, or
equivalently,

(n 1)t i (13)

n
p
Take n = p” for an integer k so that the right-hand side of ([13) equals ’% -ex. Hence

(13) implies t > <.

For the opposite implication, write n = ) _, a;p', 0 < a; < p. Then

- p -1 €K
Z: — - eK—Zai-p_l-ng(n—l)-p_l.

7

Therefore the condition ¢ > ef /(p — 1) implies ([L3).

(z#" /p*!) = ¢, forall k > 1.

Now, if t = 2K
p—1
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Consequently, M is not topologically nilpotent. On the other hand, if ¢ > pefl , then

k1 e e
PRy =k P Tk Oy K
v (2 /p™l) = p S K= ( p—l) 6
which tends to oo as k — oo. This implies M is topologically nilpotent. ]

3.3 The relative differential forms

Let R be a commutative ring and B an R-algebra. Recall that the module of relative
differential forms of B over R is a a B-module 2}, B> together with an R-derivation d :
B — QL B> which satisfies the universal property: for any B-module M, and for any R-
derivation d’ : B — M, there exists a unique B-module homomorphism f : Q} r— M
such that d’ = f o d [5, §1L.8].

Let f : B®rB — B bethe homomorphism sending a®b to a-b and write T" for ker(f).
Then Q0 = T/T? with the derivation d : B — T/T* definedby db = 1 ® b~ b ® 1
(mod T?) [5, §11.8, Proposition 8.1A].

Relative differentials of group schemes

If G := Spec(B) is a group scheme, then QJ, /i can also be described as follow. Let e be

the unity of G. Denote I := ker(e), the augmentation ideal.

Lemma 3.8. Let G = Spec(B) be a group scheme over R with augmentation ideal /.

Then QlB/R =B KRR [G/]g;
Proof. See [13, Theorem 11.3]. O

Since R is free over R, the exact sequence

0 Iq B R 0

splits, and hence

B=R® Ig.
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Lemma 3.9. Let G = Spec(B) be a group scheme with co-multiplication

B—C>B®B.Then
C(ZL‘) =lr+r®1 (l’IlOd Ig®ng),VI€Ig.

Proof. Express B®pg B as the direct sum of RQg R, RQgr g, [ ®r Rand I Qg Ig. For
x € Ig, write ¢(z) = o+ + 7+ d where o, 3,7, § are in the corresponding components.

By the commutative diagram:

€®Z.dB
R@RB(—B(X)RB

1 ®idp

we obtain

l@r=(e®idg)oc(z) =a+p -

This implies that « = 0 and § = 1 ® x, since x € [5. Then a similar argument implies

y=z® 1. [

Lemma 3.10. Let G = Spec(B) be a group scheme annihilated by some integer n. Then

Proof. Let B®™ denote the tensor product of B with itself n-times over R so that B®! = B.
Define ¢" : B — B®"™! = B®" @y B be such that ¢! = cand ¢" = (idgsn—1 @ c) oL,
Let m, : B®" — B denote the multiplication sending a1 ® --- ® a; ® -+ ® a, to
TREEERN TRRERE a,. Then m,, o "' : B — B is the morphism dual to [n] : G — G that
sends each point to its nth power. Therefor m,, o ¢~ factors through the structure map
1 : R — B, and hence induces the trivial map on Q}, /g- But Lemma B.9 says it sends

x € Ig/IEton -z (mod I%).
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Relative differentials over Ox

Now consider the situation in which B is a local algebra over Of. Let mg denote the

maximal ideal of B. For latter application, we prove the following technical lemmas.

Lemma 3.11. Let B be a finite flat local algebra over O with the residue field B/mp =
Ok /mg = k. Suppose there is some non-zero a € O annihilating Q}B 0K to make
Q}B/OK a free B/aB-module. Let {x,---,xz,} be elements in mp lifting a basis of

mp/(m% + mg B) over k. Then {dx;} is a basis of Q0 ., - over B/aB.

Proof. The assumption implies

B = Ok + mp. (14)

Hence Q0 ,  is generated by
d(mB) = {dl’ | x € mB}.

Every z € mp can be written as x = > bx; + 2, b; € Ok, z € m% + mgB. Thus

dx = bidzr; + dz. Now () implies mx B = mx O + mygmp, and hence
dz € d(m} + mgB) = d(m%).
Consequently,
b0, = spany, {dz;} + d(my) C spang{dz;} + mpQp/0, -

Then Nakayama’s lemma says 0}, 0, = spang{dz;}.
Put B’ := B/(m% + mgB). We have a surjection Q}B/OK — Q}B//OK (see 3,

§1I1.8, Proposition 8.3A]), and hence also
QE/OK ®p (B/mp) —» QEI/OK ®p (B/mpg) .

Thus, if 7 denote the (B/aB)-rank of Q , , then

r Z dll’nk QIB’/(’)K XB (B/mB) =.S.
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Since £ C B’ and is isomorphic to the residue field of B’, Proposition 8.7 of [, §11.8]
says

mB/(m2B + mKB) ~ QlB’/OK XB (B/mB)

Let d denote the O -rank of B, which equals the (Ox /aOf )-rank of B/aB. This implies

that the (O /aOy )-rank of QJ, /0, €quals dr. Hence
Q5/0,] = 10k /aOk|".
On the other hand, since spang{dz;} can be generated by ds elements over Ok,
250, | = Ispang{dwi}| < |0k /aOk|™.

By counting, the equality holds and » = s. This means {dz;} is actually a (B/aB)-basis.
]

Suppose in addition to the condition of the previous lemma, B is also a complete inter-
section over Ok: B = Ok|[[ X1, -+, X3]|/ (P, ..., P), each P, satisfing the congruence
(. This assumption ensures that if z; denotes the image of X, in B, then the image of

{z1, ...,z } inmp/(m% + my B) forms a basis over k. Hence
r=s=h. (15)

For every 1,
op;
(9.1']‘

(1, ,xp)dej = dP(xy, ..., z5) = 0.
By Lemma B.11], we can write

oF;
8xj

(561,'“ ,xh) = ap;; (16)

for some p;; € B. Since B is free over Oy, these p;; are unique. In this circumstance, we

have the following lemma.
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Lemma 3.12. The matrix (p;;) is invertible over B.

Proof. Denote C' = Ok|[[ X1, -+, X4]], J = (P, ..., Py) so that B = C'/.J. Proposition
8.3A of [5, §11.8] says that kernel of the homomorphism

Qlc/oK ®Xc B — Q}B/OK, dX; ® b — bdx;, is generated by d Py, ..., dP, over B. Since
adX; is in the kernel, we have a - dX; = ) i dP;, for some ¢;; € B. We check that

(gij) is the inverse of (p;;). O
Lemma 3.13. If B is a finite flat Og-algebra with les/oK = (0, then B is étale over Og.

Proof. We have to show that B ® K /K and B ® k/k are étale. By [13, §11.2 (a)], both
Qb /i and Q}3®k/k are 0. Thus, by [[13, §11.2 (e)], both B ® K /K and B ® k/k are

étale.

3.4 The proof

As mentioned before, Theorem B.1| is going to be proved, but only for X' = Q, and n = 1.

The proof of Theorem B.1]

We shall apply the following proposition whose proof will be given in §3.4

Proposition 3.2. Let B be a finite flat O -algebra locally of complete intersection. Sup-
pose there exists an a € O such that Qp , is flat over B/aB. Denote Y = Spec(B).

The following holds:

(1) For every finite flat O -algebra S and for all topologically nilpotent divided power

ideal I C S, we have

Y(S) 2 img(Y (S/al) — Y (S/I)).

(if) Write L for the Galois extension K (Y (K)). Then

ur/k < vr(a) +ex/(p—1).
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Now we prove our theorem.

Proof of Theorem B.1. We may replace @, by a finite unramified extension K to have
Theorem P.3 holds for L = K. By Lemma B.10, the relative differentials 4 3 0K 1S anni-
hilated by p. Since the residue field Ok /pOx = F, is a field, QE 0K is certainly a free
module over Ok /pOk. Therefore, Proposition is applicable to our situation. Hence

by the assertion (ii) of the proposition, we have

up g <1+1/(p—1).

The proof of Proposition

To prove Proposition B.2(i), we may assume that B is a local algebra over Of. Hence
B = Ok[[X1, ..., X4]]/(Py, ..., Pr), where P; satisfies the congruence (7). As before, let
x; denote the image of X; in B. Let S be a finite flat O -algebra, I a topological nilpotent
divided power ideal in S and Y = Spec(B). Write y,, for img(Y (S /al™) — Y (S/IM)).

Lemma 3.14. For n > 1, the natural map
Y(S/aIl™Y) = V(S /al™)

is surjective. It induces a bijection y,, — ¥y,11.

Proof. An element of Y (S/al™) corresponds to a O -algebra homomorphism v : B —
S/alI™, or equivalently, u,, ..., u; € S such that Pj(uy,...,uy) € aI™, fori = 1,..., h.
We need to find i1, ..., iy, € I to have P;(uy + pia, ..., up + j1p,) belonging to al"+1 and

show that i1, ..., y, is unique in I /71,

By (1), we can write g)];; (u1,...,up) = ap;; (wWhich equals 1(p;;)), for some p;; €

S/alI™. Lemma implies that the matrix (p;;) is invertible. Let \; denote P;(uy, ..., up).
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Then Lemma gives

Pi(ul +,ula T, Up + ,uh) = CI,()\Z + Zf)” . :uj) (mod a[[n+1])_
J

Since (p;;) is invertible, there are unique ji1, ..., pp, € 1 ] to have

>\i + Zp” = 0 (rnod I[n—H]). (17)
J
The congruence ([L7) is a sufficient condition for P;(u; + pu1, ..., up + ) € al1. To
complete the proof, we need to show that it is also a necessary condition. But this is
actually a consequence of the fact that S is a free O x-module, and hence al"*! is a free
submodule, consequently, a - z € aI"*! if and only if z € I*+1,

]

Proof of Proposition B.2. Denote S, := @n S /1" and consider the natural homomor-
phism S — S, whose image is a dense set in S.,. Since S, being a finite free O -module,
is compact in the mg-adic topology, the image in question is compact, and hence the whole
S.. Also, because [ is topological nilpotent, the homomorphism is injective. Therefore,
we can identify S with S..

An Og-homomorphism B — S induces homomorphisms B — S/al — S/I. This
defines the map

Y(S) — img(Y(S/al) — Y(S/I)) = v.

Lemma says an element in y; determines an element in Y (S.,) = Y (5). Hence we
have y; — Y (S). These two maps are inverse to each other. This proves (i).

Suppose a is a unit. Then Q7 o =0, which by Lemma implies B/QOk is étale.
Hence L/K is unramified by Proposition together with its proof. By Lemma [3.4,
ur/x = 0. In this case, (ii) trivially holds.

For the rest of the proof, we assume that a € mg. If L/K is tamely ramified, then
ur/k = 1 by Lemma B.4. In this case, (ii) also holds trivially. It remains to treat the wildly

ramified case.
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Denote X := Spec(Op). We claim that if

t > vic(a) + exc/(p — 1),

then the implication ([L1}) holds for every finite extension /K. Then by Proposition B.1],
the above inequality implies

t>up/x — 1/€L/K~

This shows

UL/KSUK(G)+€K/<}?—1>+1/€L/K. (18)

Write G = Gal(L/K). The wild ramification assumption implies p divides |G|, for
s > 0. Because ¢(0) = 0, by the definition of ¢, we deduce that p divides e,/ - ¢(s) for

all positive integer s. In particular, p | ey x - ur k. Hence ([18) implies

ur/x < vk(a) +ex/(p—1)

as desired.

To prove the claim, assuming ¢ > vg(a) + ex/(p — 1) and X (Og/M}) contains an
element O _77) Op /ML , wehave to show the existence of some O x-homomorphism

Or, — Og, or equivalently, some K-embedding . — FE.

Denote By := B ®o,. K, it contains O and is finite over /. Proposition 2.2 says
m
Bk /K is étale. Hence By can be written as [ [ L;, where each L; is a finite extension of

=1
K. For each finite extension F'/ K, we have

Y(E) =Y(Og)
= HomoK_alg(B, OE)

= HOl’IlK_alg(BK, E)
= 1%, Homg (L;, E).

The number of K -homomorphisms from L; to F'is < [L; : K], and the equality holds
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if and only if £ contains a field isomorphic to the Galois closure of L; over K. Hence

Y (E) <[Y (L),

and the equality holds if and only if L/K can be embedded into /K. Thus, it remains
to show |Y(E)| > |Y'(L)|.

For each E, write M}, = alp with

I ={c€Op | vg(c) >t—wvk(a)},

which by Lemma .7 is a topologically nilpotent divided power ideal. Now, for every
u € Y(Oy), the assertion (i) (applied to the case where S = Op) says the composition
nou : B — Og/alg determines uniquely an u" € Y (Op) such that the following diagram
commutes:

nou

B Op/alg
u'l projection
Op ——— Og/Ip.
projection

This defines a mapping Y (L) — Y (F). It remains to prove that this mapping is

injective. But, since aly, is the kernel of 7, and hence each u" factors through

T
Or u—> OL/GIL — OE/GIE .

If u” = w", then 4" = w". By applying (i) to the S = L case, we conclude that u = w.

]

4 The choice of a prime

In this section, let J denote a finite flat group scheme over Z annihilated by a power

of a prime number p. We shall investigate the structure of J for the case where p =
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3,5,7,11,13,17. It is known that for such p the cyclotomic field Q(+{/1) has class number

1 (see [[12, Table §3]).

4.1 The global ramification theory

Denote F' := Q(J(Q)), n = [F : Q], and G := Gal(F/Q). Then F'/Q is unramified
out side {p, co}. Let w be a place of F sitting over p. Take L = F,,, K = Q, and apply
Theorem B.1|, we obrain

1
ur, /g, < 1+ P (19)

Minkowski’s lower bounds of the discriminant

If ©r, @, denotes the different of F, /Q,, then ( see [|l, §1.9, Propostion 4])

Up (QFw/Qp) = qu/@p ?
which, together with ([L9), lead to the inequality for the discriminant dj of F:
1 141
dp <p'eL (20)

Thus, the Minkowski’s lower bound

L 7 . n
di = 4 (n'%)2
implies
1 T .n
T2 (), @

For simplicity, call the right-hand side of the above f(n). The following is a hand-made

table of f(n) for some small integers n.

Lemma 4.1. The function f(n) is an increasing function of n.

Proof. This is proved in Theorem in Appendix A. It can also be proved by using the
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Table 1: The values of f(n)
n 1 2 3 4 5 6 7 8 9 10
f(n) 0.78 1.57 2.13 256 2.89 3.15 336 355 3.70 3382
n 15 20 25 30 35 40 45 50 52 53
fln) 428 455 474 487 497 501 512 517 5.191 5.198

Stirling’s formula for n!. ]

Now 3% = 5.19615.... Thus, by (21]), Table [[] and Lemma .1, for p = 3, the order
of GG can not exceed 52. Indeed, by using a better estimation and the table given by Diaz
y Diaz [2], one can deduce that, for p = 3,5, 7,11, 13, 17 respectively, the order of G can
not exceed 6, 12, 18, 50, 88, 574.

For the remaining of this thesis, the symbol p will stand for one of the above six prime
numbers. We shall consider the case where F' contains Fy := Q(4/1) and write H :=
Gal(F'/F,), n' = |H|. By the above discussion, n’ is at most 35. Hence H is a solvable

group. That will be crucial for later discussion.

The field extension F'/Q

Because of our choice of p, the field extension F'/Q turns out to be small in the following

sense.

Lemma 4.2. Suppose J is a finite flat group scheme over Z annihilated by a power of p.

Let ' = Q(J(Q)). Then F' C Q(¥/1).

Proof. By replacing J with the direct product J X p, if necessary, we may assume that
11, is a subgroup of J, and hence Q(¥/1) C F. We use the notation introduced above so
that F, = Q(¥/1) and so on. We are in the situation where (a) The inequality ([L9) holds,
(b) F'/Q is a Galois extension, (c¢) F'/ Fy only ramified at the unique place v of Fj sitting
over p, (d) Fy has class number 1, and (e) H is solvable. It remains to show that these five
conditions imply H = {id}. We shall give a proof by contradiction, hence at first assume
H non-trivial.

Denote I' := Gal(Fy/Q). Let v € I" and let 4 € G be a lift of 7. The conjugation

7 + 4797 defines an automorphism on H. The commutator subgroup [H : H] is
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invariant under the automorphism. This induces an action of y on H* := H/[H : H]. Tt

is independent of the choice of 7. Thus, we have the conjugate action of I' on H.

Since H is solvable and non-trivial, so is H®. Hence, by replacing H by the quotient
H, or equivalently replacing F by the subfield F[//:/'] we reduce the proofto case where
H is commutative. Note that ([L0) says the inequality ([L9) holds for the new F, since the
upper numbering is stable under going down form a Galois extension to a Galois sub-

extension (see [|1, §1.9, Theorem 2(ii)]).

We may make further reduction by choosing a proper I'-invariant subgroup N (so
that F'V/Q is also a Galois extension) then replace H by H/N (F by F'). Again, the

condition (a)-(e) also holds for the new F.

Let w be a place of F'sitting over p and let H,,, C H denote the inertia subgroup at
w. Since H is commutative, if w’ is another place of F' sitting over p, then Hy v = Hy .
Since the conjugate action of each v € I' sends H,, to some H,,s, we conclude that
Hy ,, 1s invariant under the action of I'. We claim that H,,, = H, and hence w is totally
ramified under F'/Q. If the claim does not hold, then by replacing H with H/Hj,,, we
may assume that F'/ F} is unramified at every place. Then F' is a sub field of the Hilbert
class field of Fj, but because of (d), the Hilbert class fields is Iy itself, and hence F' = Fj,

a contradiction.

We can make another type of reduction. Because every Sylow [-subgroup H; of H is
invariant under the conjugate action of [', we may choose a non-trivial H; and replace H
by H/H, to make the order of H smaller, unless H; = H. Thus, by keeping doing so, we

can reduce the proof to the case where H is an [-group for some /.

Because F'/Q is totally ramified at p, the residue field I, at w is the same as F,. If
| # p, then F'/Q is tamely ramified at w, and hence there is an injection Gal(F'/Q) — F)
(1, §1.8, Theorem 1]. This means [F : Q] < p — 1 = [F} : Q], a contradiction.

Finally, we consider the case where H is a p-group. Since N := p- H is ['-invariant, we
can replace H by H/N to make H an F,-vector space. Also, because H is decomposed
into the direct sum of 1-dimensional x-eigenspaces of characters y € Hom(I',F,), we

may further reduce the condition to the case where H is an 1-dimensional eigenspace,
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hence cyclic of order p. Let § denote max{is(c) | o # ids}, which is the smallest
integer u such that G,, = {id}. By the definition (J) of the Herbrand function and by the

definition of ur, /g,
up,g, = ¢0—1)+1

ig(0)<é

5—1

- p(pl—l) (Z |G| = |Giga| - (2 + 1)) +9
i=0

— 1 UGO’_F’Gl’_'_”.—i_’GleD-

p(p—1)

In our case, |Go| = p(p — 1) and |G| = p. Thus, Fontaine’s bound ([19) implies
§=2. (22)

That means for every non-trivial 0 € H,

Hence Hy, = H; = H and H, is trivial. Write L, K for I, Iy ,,. Then similar computa-
tion leads to

(|Ho| + |Hyl) = 2.

1
U — —
L/K »
Thus, by (10), F* is trivial for 1 > 1. Let ¢ be a primitive pth root of 1 and write £ := (—1,

which is a uniformizer of Og. Denote U, := 1 + {*Ok, for u = 1,2, .... The local class

field theory says that the local reciprocity map
0: K*—H

factors through K* — K* /U, (see [[l, §VL.4, Theorem 1]). Because L/K is totally
ramified, we have 0(Of) = H [l, §VI1.2.5, Corollary]. Moreover, since O /U, =~ F)

has order prime to p, we have the isomorphism
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0
Up/Up —— H .

The above isomorphism respects the actions of I', which acts on the left-hand side via the
Galois action on O, and on the right-hand side by sending 7 € H to the above conjugate:
V1= A7y L, §XIIL.3]. Lett: ' — [F) be the character such that 7¢ = ¢t Then vy

sends 1 + ¢ (mod Uy), a generator of Uy /Us, to 1 + ¢(7)¢ (mod Us). This means
I =7t (23)
Kummer theory tells us that if a denotes a (mod (F)?) fora € F, then the mapping

Ry /(R — Hom(Gal(Fo/ o), )

~ ) " Ya
G ————— Y0~ Ve
is a ['-isomorphism in the sense that
Ya(0) = "a(" o). (24)

We can write F' = Fy({/a) for some a € Fj‘. Then F is the fixed field of ker(v);). Also,
since ¢ = ("), the equalities (23) and (4)) together imply that 1)-; = 1);. This means

o) = — € (Fy).

Since the cocycle condition p(y172) = "p(72) - p(72) is satisfied, our p gives rise to a

class [p] € HY(T', (F})P). Now the exact sequence
1= pp, — Fy — (F))P — 1,
induces the exact sequence

HY(T, ) — HY(T, (F7)?) — HA(T, p).
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Hilbert’s Theorem 90 says H'(T", F) = 0, and since T" is cyclic,

~0
H*(T, ) = H (T, ) = g, /Ny g (pp) = 0

Hence H' (T, (Fy)?) = 0. This shows that there exists b € (F;)? such that p(y) = 7b/b,
for all v € H. This means that a/b is fixed by I'. Thus, by replacing a by a/b, we may
assume that ¢ € Q. We may further assume that a € 7Z, not divisible by any non-trivial
pth power of integer. Then a can not be divided by any prime number [ other than p, for
otherwise I’/ F, would be ramified at /. Since —1 is a pth power, and Fy(¢/p”) = Fo(¢/D),
forv =1,...,p — 1, we can conclude that F' = Fy,(y/p).

Set a := %. The valuation vy () = 1, and hence « is a uniformizer of Op. If v

is a non-trivial element of I', then "ac = (" - a. for some ¢’ € f,. This shows iy (y) =

v (Ya — ) = p+ 1 and leads to
2=0>p+1.

That is absurd.

4.2 The decomposition theorem

The rest of this section is to verify the following decomposition theorem. In this subsection
by a group scheme we shall understand a commutative group scheme, and we say a p-group
scheme is constant (resp. diagonalisable) if it is isomorphic to a direct sum of Z /p®Z (resp.

fipe). We sometimes use commutative group scheme to emphasize its commutativity.

Theorem 4.1. Let p be one of the primes 3,5,7,11,13,17. Then any commutative finite
flat group scheme J over Z which is annihilated by a power of p is a direct sum of constant

and diagonalisable group schemes.
The proof will be completed in §4.2.

Remark 4.1. Let <7 be the Néron model of an abelian variety A over Q. By Theorem
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i1, <, = (L[pZL)* & #Z for some a, b such that a + b = 2¢g. Then the same theorem says
that o> = (Z/pZ)™ & (Z/p*Z)*> & pbt & p3 with ay + ag + by + by = 2g.

By [[7, Proposition 20.7], the multiplication-by-p map [p] on .7 is surjective, so we
have a surjection %72 —» 7, . This means ay > a and by > b. Since ag + by < 29 =
a+b,wehave ay = a, by =b,and a; = by =0, i.e. A = (Z/p*L)* & ,UZQ.

Applying similar arguments, we see that @,n = (Z/p"Z)"* @& i}

Proposition 4.1. Let </ be an abelian scheme over Z of dimension g, and let p = 3. Then

Gy = (L[ L) S (pprn ).

Proof. By Theorem {.1| and the discussions that follow it, &, = (Z/p"Z)* & (p,»)° with
a+b = 2g. Then A, is the special fiber of .7, hence of the form (Z/p"Z)* & (pin )
over the residue field k,. This means the geometric points of A, form (Z/p"Z)®. Butitis
known that the geometric points of A, is of rank < g. Thus a < g. Take the dual abelian
variety A" of A and let .&7* denote the Néron model of A’. Then .27}, is the Cartier dual
(see §2.2) of o7,» (Cf[8, .15 Theorem 1, p143]), hence of the form (Z/p"Z)" @ (i,m)°.

But we have already proved b < g. Therefore a = b = g. [l

Raynaud’s theorem

First we recall the following result of Raynaud []10, Theorem 3.3.3].

Theorem 4.2. Let p be an odd prime. Then a finite flat commutative p-group X over QQ
has at most one extension to Z. That is, there is at most one finite flat group scheme 2

over Z such that Zg = X.

Let J be a finite p-group over Z. Denote £ := Q(J(Q)) and G := Gal(E/Q).

Lemma 4.3. J is uniquely determined (up to isomorphism) by the G-module structure of

J(Q).

Proof. Theorem .2 says .J is determined by .Jg, while Theorem tells us that Jg is

uniquely determined by the abelian group J(Q) together with the action of G. [
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Lemma 4.4. Suppose J is an extension of a constant group by a constant group. Then

E =Q(J(Q))/Q is a p-extension.

Proof. Suppose we have an exact sequence

0—-A—-J—=B—=0.

By Theorem .2, this corresponds to an exact sequence of G-modules:

0—-A—-J—=B—=0.

Define f : G x J — Aby f(o,2) = ¢ — x which is in A as G acts trivially on B. It

follows that f(—, x) defines a 1-co-cycle:

floro9,2) = 120 —x
— 0'1021, _ UlZL’ + 011: — 7

= f(og, ) + f(o1,2).

However, because G acts trivially on A as well, so that f(—, x) is a group homomoor-
phism for every € J. Since the intersection (), ker(f(—,x)) is trivial, ©,f(—,z)

defines an embedding of GG into a direct sum of copies of A. Therefore G is a p-group. [

The proof of Theorem {.1

Before proving the theorem, we first discuss about the sub-objects and the quotients of

group schemes.
Remark 4.2. Sub-objects and quotients.

1. Recall the results of Raynaud (see [|10, §2]).

Let R be a discrete valuation ring with fraction field /K and residue field % of char-

acteristic p.

Let 2" be a flat R-scheme of finite type with generic fiber X = 2" @z K. LetY

be a closed sub-scheme of X. See the following diagram.
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f
«/\

Z X Y

l l

Spec(Z) «—— Spec(Q)

Then the scheme-theoretic image of the map f : Y — X — 2 is the closed
subscheme Z of 2 such that f factors through Z and that for every closed Z' —
Z through which f factors, we have Z C Z’. Namely, it is the smallest closed
subscheme through which f factors. Denote the scheme-theoretic image of f as

SchIm(f).

If 2" = Spec(B), then X = Spec(B ®z Q) and Y = Spec(B ®z Q/I) for some
ideal I of B®7;Q. Since B is flat, we may regard B as a sub-algerba of B&7(Q. Then
we see that f factors through Spec(B/.J) for some ideal J if and only if J C BN 1.
Thus Spec(B/B N I) = Schim(f).

Since for every x € I, there is an integer n such that n - z € B N I, we have

(BNI)®Q = I. Therefore Schim(f) @ Q =Y.

This shows that the subgroups of a group over Q, which admits an extension to Z,

have extensions to Z.

2. Let J be a finite flat group scheme over Q and let _# be a finite flat group scheme
over 7 with generic fiber J. Let H be a flat closed subgroup of .J. Then since Q is

Artinian, by [9, page 82, (i)], the quotient J/H is representable.

Further, let 77 be the scheme-theoretic image of [ in _# as above. By [4, page 71,
Corollaire 17.6.2.] and [9, page 82, (a) (ii)], the quotient ¢ /.7 is representable as
well. And it is evident that the generic fiber of ¢ /¢ is J/H.

Now we are ready to complete the proof.

Proof of Theorem{.1. The proof is divided in six steps.

1. Every finite p-group over Z, which is an extension of a constant group by a constant

group is constant.
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Let .J be such a group, and let E be as in Lemma 4. By Lemma .4, we know E/Q
is a p-extension, hence solvable. Furthermore, £'/Q is everywhere unramified, since
an extension of an étale group by an étale group is étale. But Q is of class number

1, hence ¥ = Q. By Lemma @, we conclude that .J is constant.

. Every finite commutative p-group over Z, which is an extension of a diagonalisable

group by a diagonalisable group is diagonalisable.

Apply the argument in step 1. to the Cartier dual sequence.

. In the category of finite p-groups over 7Z, every extension of Z/pZ by a diagonalis-

able group i is trivial.

Given an exact sequence

0—=pu—J—2Z/pZ — 0,

we shall show it splits.

Let u be a lift of a generator of Z/pZ in J(Q). Thenv = p-u € u(Q). Also,
for every g € G, w, == %u —u € u(Q) since G acts trivially on Z/pZ. Then
I =p-(%u) =p-(wy+u) =v+p-w, Butyisdiagonalisable, so v = x1(g) - v.

If we choose g such that x1(g) # 1, then we see u can be choosen so that p - u = 0.

Therefore, as abelian groups, the following splits.

0— u(Q) — J(Q) = Z/pZ — 0. (25)

And it suffices to show the sequence (29) splits as Galois modules.

By Lemma §.2, we know the field £ := Q(.J(Q)) is equal to Q(¥/1). This shows

that the sequence (25) splits as Galois modules as well.

. In the category of finite p-groups over Z, every extension of |, by a constant group

T is trivial.
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Given an exact sequence

0—=T—=J—=pu,—0,

we shall show it splits.

Let u be a lift of a generator of y, in J(Q). Thenv = p-u € I'(Q). Also, for
every g € G, w, = 9u — x1(g) - u € I'(Q) since p, is diagonalisable. Then
I =p-(%u) =p-(wy+xi(g) - v) = x1(g) - v+ p - w,. But I is constant, so
9y = v. This means v = x1(g) - v+ p - w,. If we choose g such that x;(g) # 1,

then we see u can be choosen so that p - u = 0. Therefore, as abelian groups, the

following splits.

0—T(Q) — J(Q) = 1,(Q) — 0. (26)

It remains to show (R6) splits as Galois modules. But again Q(J(Q)) = Q(¥/1) so

(26) splits as Galois modules as well.

. The only simple objects in the category of finite p-groups over 7 are 7 /pZ and .

The group G = Gal(Q/Q) acts on the p-th roots of unity. Let x; : G — F be the

character of this action.

If J is a simple object, then the sub-object of J formed by the p-torsion is equal to
J, so that J is killed by p. The action of G' on J(Q) factors through Gal(E/Q),

where £ = Q(J(Q)).

Lemma §.3 says J(Q) is a simple F,[Gal(E/Q)]-module. Moreover, by Lemma
B2, E c Q(¥/1). Since Gal(E/Q) is abelian, its simple module J(Q) is an 1-
dimensional FF,-vector space, on which the Galois action is given by x} for some
i€ {0,---,p—2}. By[l0, Colloraire 3.4.4], we only have two cases to consider:
i = 0andi = 1. Now Lemma (.3 implies that in the first case J = Z/pZ and in

the second case J = p,,.

. Every finite flat commutative group scheme J over 7. which is killed by a power of

p is a direct sum of constant and diagonalisable group schemes.
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Let .J be a finite commutative p-group over Z, let G = Gal(Q/Q) and let

Vo ={z€J(Q)|gr=uxVgeG}

Vi ={z€J(Q)]|gzr=xy), Vg€ G}

Clearly Vo @ Vi < J(Q) and we only have to show

J(Q) =Vy @ V1. (27)

If equation (27) holds, we say .J is admissible. We know that the category of admis-
sible finite commutative p-groups over Z is stable under the sub-objects, quotients,

and direct sums.

Suppose there exist finite non-admissible commutative p-groups over Z, and choose
J such that the order of J(Q) is minimal. We can choose a sub-group .J’ of .J such
that J/J' is simple. By our choice of J, J' = Jj & J; with J| constant and J;
diagonalisable. If J| # 0 and J{ # 0, then J/.J and J/J| are admissible, so that

J — J/Ji& J/J] is admissible.

If J) = 0, then .J' is diagonalisable, and .J/.J, being simple, is either (1, or Z/pZ.
In the first case, J is an extension of a diagonalisable by a diagonalisable, hence

diagonalisable. In the second case we have an exact sequence

0—J —J—=Z/pZ — 0. (28)

By Step 4, this sequence splits, and .J is admissible.

For the remaining case J; = 0, J;, = J', J' is constant. A parallel argument to the

above finishes the proof.
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Appendices

1 Rank 2 groups

We classify free group schemes of rank 2 in this section.

Proposition 1.1. Every free group scheme Spec(A) of rank 2 is isomorphic to some G, .

Proof. Consider the split exact sequence:
0—>Igc—RxR=A—R—DO. (29)

Here we identify R — A with {(r,7) | r € R}. Now (1, 1) and (1, 0) forms a basis for the
free module A, so I = A/R = R, and hence I is free of rank 1. This means I = R-x
for some = € Ig.

Then 22 = ax for some a € R. Moreover, by Lemma B.9,
c(r)=1r+2r01+br®x,

for some b € R.

From the relation ¢(z)? = ¢(z?) = a - ¢(x) we see that

12+ 2?21+ @ +2r 01+ 2br* @2+ 2br 2 =a(l@z +r @1 +br ).
After rearranging, we find
(a®b* + 2 + 4ab)(z @ ) = abzx @ x.
From the freeness of A it follows that
(ab+2)(ab+1) =0. (30)

Write i(x) = r + sz for some r, s € R. By the axioms, m o (id4 ® i) o ¢ = e. Apply
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this to « and obtain
ml®(r+sr)+x®1+br® (r+sz))=0.

Thus » = 0 and s 4 1 + br + abs = 0, namely, (ab+ 1)s = —1. Combined with (B0), this
yields ab = —2 and s = 1.
Therefore Spec(A) = G, p. N

2 An increasing function

We show that a function is increasing in this section.

Lemma 2.1.

H<1+%>:n+1

k=1

Lemma 2.2.

1 1
1 “\k 1 T\k+1
(+k) <e<( +k>

Proof. Take log and get
1 1
Ein(l+ ) <1< (k+1)n(l+ ).
Now the inequality follows from the Taylor expansion of In(1 + z). O

Lemma 2.3.

Proof.
DI e (L4 7)
= I (L )" TES (1 )
1
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Theorem 2.1. Define f(n) = —"+ forn =1,2,---. Then

(n)7
fn)< f(n+1),Yn=1,2,---
Proof.
When raised to the n(n + 1)-th power, this inequality is transformed into

nn(n+1) _ (n+ 1)n(n+1)
(nh)mt = (D

After rearranging, this becomes

(n+1)" n -+ 1)n(n+1).

< (

n! n

Namely, 27 - ()" < (2L)n(+1) Hence it is equivalent with

n" n-+1

2
— ", 31
n! < n ) G
n—1 1
By Lemma P.3, the L.H.S. of equation (B1)) is H(l + E>k
k=1

By Lemma 2.2, we have

1 1
(1—|—E)k<e<(1+E)"+1,Vk:1,2,--~

Therefore
T ] L\ (ns1)(n-1) 2
[Ja+ )k <@+ =)0 < (14 ), O
P k n n
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