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摘要

創造無所不在的網際網路存取向來是電信業最重要的目標之一。為

了達成這個目標，資源管理就自然成為在無線網路的驚人成長速度之

下最重要的議題之一。近年來，隨著物聯網和智慧型裝置的成長，區

域無線行動網路的去中心化更顯得重要。因此，在本論文中，我們提

出了兩個分散式的媒體接取協定，用以解決在上述前提下分享和同步

化的問題。

在本研究的第一部分，我們針對各類無線接取基站，提出了一個基

於賽局理論的頻寬分享模型。我們將這個賽局裡的玩家分成三類，自

私接取基站、無私接取基站和訂閱基站。我們考慮了兩種不同的接取

基站，目的在換取收費的自私接取基站和提供免費服務的無私接取基

站。在這個設定之下，我們透過決定分享的比例和訂閱基站決定是否

加入服務，來得到賽局理論中所謂的均衡。在這個章節裡面，我們透

過分析推導得到了納什均衡，並在結果部分提出了對應的通訊協定設

計與數值效率評估。

在第二部分，我們提出了一個應用於裝置對裝置應用感知鄰近服務

的分散式通訊機制。這個師法螢火蟲的仿生演算法，能夠同時達成鄰

近探勘與同步化。更精確地說，這個機制不只同時達成鄰近裝置和服

務發掘，也在達成在物理層通訊時間和和服務偏好的同步。然而，基
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礎的螢火蟲演算法無法完美地應用於大規模的分散式網路系統，例如

像是基於進階長期演進技術 (LTE-A)的裝置對裝置通訊。在大部分的

網路拓樸，基於各種原因，節點裝置之間很可能無法聽到所有周邊的

裝置將使得無拓樸概念的基礎螢火蟲演算法無法達成目標。因此，我

們更近一步提出了螢火蟲生成樹演算法，用以解決因為節點拓樸所導

致的無法收斂的問題。
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Abstract

Constructing ubiquitous internet access is always one of the most impor-

tant targets for telecommunication industry. To achieve this goal, resource

management has become a crucial issue in response to the remarkable growth

of wireless networking. Currently, the ability for making wireless mobile

LAN (local area networks) decentralized has become more crucial due to the

growth of IOT (internet of things)and smart devices. In this thesis, two dis-

tributed MAC (medium access control) protocols are proposed for solving

both the sharing and the synchronizing problems.

In the first part of this work, a game-theoretic bandwidth sharing formu-

lation for wireless access points is proposed. We introduce three types of

players: selfish access points, altruistic access points and subscriber stations.

Two categories of access points are considered: selfish ones who charge, and

altruistic ones who provide the free service. Under these settings, the derived

game-theoretic equilibrium strategies can clearly determine rate allocation

and describe ways subscriber stations joining the service. In this chapter,

Nash Equilibrium is derived analytically and the results complement the dis-

tributed protocol designs and numerical performance evaluation.

In the second part, a distributedmechanism for application-aware proxim-
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ity services (ProSe) in device to device (D2D) communications is presented.

The method, which is derived from the bio-inspired firefly algorithm, can

achieve proximity discovery and synchronization at one time. To be precise,

this mechanism not only enables neighbour discovery and service discov-

ery simultaneously, but achieves synchronization in physical communication

timing and service interests in the meanwhile. However, the basic firefly

algorithm is not perfectly suitable for larger scale systems such as LTE-A

D2D. In most network topologies, the property that each node may not be

able to hear all its neighbours makes the basic version fail. Thus, we fur-

ther propose the firefly spanning tree (FST) algorithm which can solve the

topology-dependent divergence problems.
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Chapter 1

A Game Theoretic Model for Access

Point Bandwidth Sharing

1.1 Introduction

IEEE 802.11 WLAN has enormous potential to make future network more accessible,

and WiFi wireless network coverage is deemed as an significant factor in the future wire-

less internet. Such phenomenon can be observed from the rapid expansion of FON[1],

the world’s largest WiFi community. Broadband internet subscribers in such community

can take advantage of the service networks by plugging customized wireless routers that

connect to broadband internet connection, in addition to that, such routers can also work

as WiFi access points. As the use of such cooperative service in wireless network is ex-

panding around the world, sharing one’s bandwidth is becoming an interesting and useful

model. Since such access points mushroom worldwidely (e.g. FON access point has 80

percent coverage rate in Tokyo city), the subject of bandwidth management of these kinds

of network services need to be further studied. In such services, user cooperation (i.e.,

1
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sharing spare bandwidth) makes all the difference to access coverage, but we are still un-

certain about whether the users will not do this in an optimal way, i.e., balancing the profit

from user subscriptions and their own bandwidth needs.

This chapter provides a game theoretic framework to model the emerging service shar-

ing and using behavior. The Nash Equilibrium strategies for selfish and altruistic access

points and subscriber stations are derived. In addition, we discuss the detailed practical

protocol design. Distributed algorithms converging to equilibrium strategies are also for-

mulated for practical implementation so that the it can be applied to present and future

access point technologies. This chapter makes two major contributions: (1) it exposes the

way users allocating rates for bandwidth sharing in access points and (2) the processes

subscriber stations joining the service in a distributed fashion while optimizing individual

objectives reflected in utility functions. Besides, the game-theoretic concept of “share and

use” is also applicable in the emerging cognitive radio networks since they share the basic

concepts. That is, the relationship between access points and subscriber stations in 802.11

is analogous to the bonding between primary and secondary users in 802.22. Thus the

general techniques proposed in this chapter shows great potential to be applied to the field

of cognitive radio.

We hereby introduce three types of players: subscriber stations, altruistic access points

and selfish access points. An subscriber station (called Alien in FON) is anyone who use

the WiFi access with a fee but does not share his connection. By contrast, as broadband

network subscribers, the other two types of community members share part of their net-

work bandwidth service either for free or for a profit. The former, altruistic access points,

also known as Linus, are anyone who share his or her network service and enjoys free

wireless access when roaming to other’s wireless access points. And the latter, selfish

2
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access points, also known as Bill in FON community, are those in business who share

their WiFi access and receive part of the revenue collected from Aliens for using the ac-

cess points. In real world FON systems, just like Linuses (altruistic access points), Bills

(selfish access points) also have gratuitous WiFi access roaming.

Game theory has been widely applied to resolve allocation problems in computing

[2][3][5] and various networking problems [6][7][8] as it offers a suite of analytical tech-

niques to model the interactions between players in various situations. Recognizing its

structural characteristics, we apply game theory to model the bandwidth sharing strate-

gies and the convergence of operation equilibria in the network. We focus on particular

sets of strategy that each represents a best response to the others, which is also known

as Nash Equilibria[9]. When the current set of strategy choices users have made reach a

Nash Equilibrium, they would have no incentive to unilaterally deviate from their current

choices, since changing their current strategy alone does not benefit them as the rest of

others remain theirs unchanged.

The rest of the chapter is organized as follows: After the brief review of the previous

works in Section 2, we give an overview of the modeling settings in Section 3. Then,

we investigate the game theoretic model when Bill is the access point in Section 4, and

when Linus is the access point in Section 5. After that, we illustrate a practical bandwidth

sharing strategy that could be implemented in Section 6. In Section 7, we present the

simulation results of user dynamic and Nash Equilibrium in various settings. After that,

we show the versatility of our implementation in Section 8, then conclude the chapter in

Section 9.

3
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1.2 Related Work

Our model is presented differently from the previous works in several aspects. First, Rak-

shit andGuha solve a distributed fair bandwidth sharing problem by applying a constrained

Nash Equilibrium to resolve fairness issues among distributed selfish users[2]. Compared

to our game model, this game theoretic model focuses on p-CSMA MAC layer random

access control while ours focuses on pricing and adjustable bandwidth sharing.

Second, Lam, Chiu and Lui apply a game theoretic approach to study pricing as an in-

centive mechanism in wireless mesh network [4]. According to economical behavior, the

interaction between access points, relaying nodes and clients from one-hop to multi-hop

networks are analyzed under both the unlimited and limited capacity scenarios. Therefore,

the fixed-rate non-interrupted service scheme we proposed is considered more likely to be

practical as the core idea of their paper is to adjust price, while ours applies fixed-pricing

policy and emphasizes on the optimization resource allocation without adjusting price.

Third, Musacchio and Walrand investigate the WiFi pricing problem with the Perfect

Bayesian Equilibrium (PBE) concept [12]. The game theoretic models are formulated for

two types of user utility functions: (1) Web browsing utility which increases linearly with

time. (2) File transfer utility function which is a step function. Their work focuses on

adjusting price for these two types of utility functions to achieve PBE. In contrast, our

system adjusts bandwidth usage ratio and charge clients with a fixed price.

Fourth, Mittal, Belding and Suri use the concept of Nash Equilibrium to model the

problem to select wireless access points[11]. This game theoretic work helps to capture

selfish mobile user behaviors in WiFi access network, but the focus of access point selec-

tion is different from our bandwidth sharing problem.

Fifth, Yaiche, Mazumdar and Rosenberg solve the optimal and fair bandwidth alloca-

4
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tion problem for elastic traffic in high speed network by using Nash Bargaining Solution

(NBS) concept [10]. The network resource allocation is resolved with dynamic pricing

mechanism, and fixed amount of bandwidth is allocated to users based on users’ band-

width requirements and their budgets. Although we both apply the concept of logarithm

utility to game formulation, we are different in user strategy spaces. We investigate a

novel bandwidth sharing problem with fixed pricing and dynamic access point bandwidth

sharing, which in many ways differs from theirs. Other than that, the Nash Equilibrium

approach we adopt is also different from their NBS approach.

Sixth, Manshaei et al. use a game-theoretic approach to study the competition be-

tween a licensed band operator (LBO) and a wireless social community operator (SCO)

for the subscription of users in a given area[13]. In this work, users select network service

based on coverage and subscription fee, while our model, by contrast, emphasizes on the

bandwidth sharing strategies in social community operators. In addition, our model can

also be applied to model both selfish and altruistic cases.

Seventh, Mazloumian et al.[15] discuss wireless social community systems with ad-

justable subscription fees. They compute optimal prices with both static and semi-dynamic

pricing which is achieved in incomplete information systems. Their basic model is also

inspired by FON. In contrast, we model the system in another approach which is an adap-

tive bandwidth controlling scheme for a fixed price system. Also, the proposed algorithms

based on our model is more applicable in real world systems.

Eighth, Sagduyu, Berry and Ephremides[16] discuss the problem of rate allocation.

Similar to our model, they also have different player modeling from the traditional ap-

proaches. Specifically, they model the players as selfish and malicious transmitters. Con-

trast to their approach, we focus on identifying players as either selfish or altruistic ones.

5
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Also, their discussion focuses on the analytical process whereas ours on implementation

for the real world system.

Nineth, Niyato and Hossain[17] discuss the spectrum sharing problem between a pri-

mary user and other secondary users in cognitive radio. They also investigate the sharing

scheme in both stationary and dynamic conditions. However, the distinction between

theirs and ours is that we design an applicable model for dynamic system whereas they

model such system as a dynamic game.

Tenth, Chao, Lin and Wei[14] formulates the bandwidth sharing problem as a game.

Specifically, the authors model mixed selfish and altruistic user behaviors in multihop

relay networks. However, their paper is to compare the effects of different types of users

coexisting in static wireless networks, our work, however, discusses the situations both in

static and dynamic context.

Finally, the book[18] written by MacKenzie, Dasilva and Tranter, discusses several

different game-theoretic applications in wireless networks. They also emphasize the im-

portance of cooperation in wireless systems. Nevertheless, the importance and implemen-

tation method in this book seem to be ambiguous as the concept of bandwidth sharing is

unclear. Therefore, our work is considered more comprehensive as it encompasses both

the analytical methods and its implementation.

1.3 modeling as normal form games

1.3.1 Overview

We first formulate our system as normal form games to identify the best responses of users

to prove the existence of a Nash Equilibria. As we mentioned earlier, there are three kinds

6
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Table 1.1: Characters in The Game Formulation

Player Notation Description Strategy Space
Selfish AP: Bill Bi Bandwidth Sellers 0 ≤ xBi ≤ 1
Altruistic AP: Linus Li Generous Bandwidth Givers 0 ≤ xLi ≤ 1
SS: Alien Ai Bandwidth Buyers J , NJ
Free SS: Linus or Bill LBi Free Roamers Always Join the Service

of players: Bills, Linuses, and Aliens. Bills and Linuses are access points (APs) in the

cooperative wireless networks, and Aliens are subscriber stations (SS) in the game. As

the FON access points, the owner (i.e. Bill and Linus) of access points can configure the

ratio of bandwidth to share.

In FON, people who share their WiFi connections at home are granted privilege to

use all the network’s wireless access points for free. In addition, we increase two more

characters: Bill as an SS, and Linus as an SS. However, we do not consider them as players

in our model since their uses are gratuitous as the only best strategy they have to choose is

to join the game and enjoy the free bandwidth. Although their behaviors in a SSmode seem

insignificant, their number still has a direct impact on our system as they share bandwidth

equally with Aliens. Bandwidth sharing affects the decision-making of the players in the

game, so the number ofWLAN SSs is viewed as an environment parameter in this chapter.

Bills and Linuses can decide the proportions of the bandwidth that they would like

to share or keep. But Alienes only have two choices, either join (J) or not join (NJ).

With that in mind, we formulate two types of games, Bill-versus-Aliens and Linus-versus-

Aliens. In a Bill versus Alien game, Bills decide the quantity of bandwidth to share (for

profits) and Aliens decide whether to join the service or not. In a Linus versus Alien game,

on the other hand, Linuses decide the quantity of bandwidth to share (for free) and Aliens

decide whether to join the service or not.
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1.3.2 Utility Function

The concept of utility is commonly used in economics to refer the levels of satisfaction

when the decision-makers receive the outcomes of their actions. Similarly, user preference

could be represented as utility functions. We thereby define satisfaction term, S, to denote

the satisfaction of using certain amount of bandwidth. Obviously, users can not execute

any meaningful application while the bandwidth usage is less than a threshold ϵ. When the

allocated bandwidth is less than ϵ,S is 0. Therefore, We adopt the widely used logarithmic

utility to denote the satisfaction of using bandwidth [10]. When users’ allocated bandwidth

exceeds threshold ϵ, their levels of satisfaction increases logarithmically.

Definition 1 Let b denotes the bandwidth that a user can use within the range of b > 0,

h > 0 and ϵ ≥ 1. Then we have the satisfaction function:

S(b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if b ≤ ϵ

h ln(b) if b > ϵ.

In the following sections, several terms are presented in each utility function, including

the satisfaction term derived from the above satisfaction functions.

In the normal form game, all the players of our games determine their strategies and

gain their utility function values immediately. Players are assured to access enough in-

formation to decide their best responses. Note that the information for each player only

includes the comprehensive system information before the games start. Like in the real

world, each player does not know the exact utility functions of other players. Now, we

discuss the utility functions of the three kinds of players.
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Table 1.2: Notations in the Game Theoretic Model

Notations Descriptions
b The bandwidth a user can use. b > 0.
h The satisfaction coefficient. h > 0.
ϵ Least bandwidth threshold. ϵ ≥ 1.
S The bandwidth usage satisfaction term.
upi(.) The utility function of the player. p = A, B or L, which denote Alien,

Bill or Linus, respectively.
xpi The percentage of the player’s bandwidth to be used by himself. p =

B, L or AP, which denote Bill, Linus, or any types of AP, respectively.
0 ≤ xpi ≤ 1.

np The number of players who choose to join the service. p = A or LB,
which denote Alien or free roamers (Linuses or Bills as SSs), respec-
tively. np ∈ ℵ.

Cpi The costs of the player for maintaining the AP. p = B or L, which denote
Bill or Linus, respectively.Cpi > 0.

bpi The total bandwidth a player has. p = B, L or AP, which denote Bill,
Linus, or any types of AP, respectively.bpi > 0.

hpi The satisfaction coefficient of the player. p = A, B or L, which denote
Alien, Bill or Linus, respectively. hpi > 0.

ϵpi Least bandwidth threshold of the player. p = A, B or L, which denote
Alien, Bill or Linus, respectively. ϵpi ≥ 1.

hpi ln(bpixpi) The satisfaction term in the player’s utility. p = B or L, which denote
Bill or Linus, respectively.

Zpi The bonus of the player’s utility function, the utility of free roaming
privilege. p = B or L, which denote Bill or Linus, respectively.Zpi > 0.

PA The payment of each Alien. PA > 0.
R The percentage that the administration allots to Bill from the payment.

0 < R < 1.
nAPAR The payment term of Bill’s utility function, the total utility from the

Aliens.
kLi The sharing coefficient of Linus. kLi > 0.
kLi ln[(1 −
xLi)bLi ]

The sharing term in Linus’s utility.

SAi The satisfaction term of Alien.
x̂Bk

The particular xBi that corresponding to a discontinuity point in the util-
ity curve.

nAtotal
The total number of Aliens in the system. nAtotal

∈ ℵ.
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Utility Function of Bill

As both a bandwidth user and a supplier, Bill optimizes his payoffs by compromising be-

tween using and selling his bandwidth. Bill’s utility function can be simply determined

by four terms: the payment from the Aliens, the costs of maintaining the AP, the satisfac-

tion function of using bandwidth, and the bonus of participating (i.e. when Bill acts as a

roaming SS someday, he can access the network freely).

Definition 2 Suppose a player operates as Bill (AP), Bi, i ∈ ℵ, the utility function

uBi(xBi) is:

uBi(xBi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

nAPAR− CBi + ZBi if bBixBi ≤ ϵBi

nAPAR− CBi+

hBi ln(bBixBi) + ZBi if bBixBi > ϵBi .

We denote xBi as the percentage of Bill’s proportion of bandwidth that he keeps to

himself, and the first term nAPAR , thereby, is the payment term. The first term, nA, is

the number of Aliens who choose to join the service, and PA is the money that each Alien

pays for the administration. On the other hand,R is the percentage that the administration

allots to Bill from the payment, and the product nAPAR is the total profit Bill can receive

from selling his bandwidth. In the second term, CBi denotes the costs of maintaining the

AP, and third term is the satisfaction term of bandwidth usage, as it is previously defined.

In addition, Bill’s total bandwidth is denoted as bBi , his satisfaction coefficient hBi , and

his minimal bandwidth threshold for meaningful usage ϵBi . Note that all the parameters

with an “i” suffix denotes that the parameters might differ from different Bills because of

their various preferences and applications. We use similar notations in the following parts

of this chapter. The percentage of bandwidth Bill allocates to himself is denoted as xBi ;
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thus the bandwidth that Bill can use is bBixBi . And the last term, ZBi , is a positive “bonus

term,” representing the utility of Bills’ free roaming privilege. Note that when Bill is not

at home, he does not access the internet resources from his own access point, which means

the parameter xBi is set to zero intuitively.

Utility Function of Linus

Similar to Bill, Linus also behaves as both a bandwidth supplier and a user, and has almost

the same considerations as Bill; however, since he is an altruist in nature, he has a different

sharing term formula from Bill’s payment term. The sharing term represents the utility of

spiritual payoffs that Linus receives when he shares his bandwidth with others. Therefore,

Linus’ utility function can also be determined by four terms: the satisfaction function of

using bandwidth, the spiritual payoffs from sharing, the costs of maintaining the AP, and

the bonus of free roaming privilege.

Definition 3 Suppose a player operates as Linus (AP), Li, i ∈ ℵ, the utility function

uLi(xLi) is:

uLi(xLi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kLi ln[(1− xLi)bLi ]+

ZLi − CLi if bLixLi ≤ ϵLi

kLi ln[(1− xLi)bLi ]+

ZLi − CLi + hLi ln(bLixLi) if bLixLi > ϵLi .

The meaning of xLi , bLi , ϵLi , hLi , CLi , ZLi are similar to those of Bill’s, and the

remaining term is sharing term. We assume that Linus is a generous giver who likes to

share with others. This term reflects the utility that Linus gainwhen he shares [(1−xLi)bLi ]

amount of bandwidth. Since the sharing concept is similar to the satisfaction function, it
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is not surprising that their formulation are alike. Likewise, we define kLi as the sharing

coefficient. Note again that in the case of Linus, when Linus is not at home, he does not

access the internet resources from his own access point either, which means the parameter

xLi is set to zero intuitively. Since keeping the bandwidth to himself does not benefit him,

giving out is obviously the best alternative.

Utility Function of Alien

As a user, Alien has to pay for his wireless access, so what he concerns the most is the

quality of connection and the price to pay. As we mentioned, users evaluate their quality

of connection according to the satisfaction function. Also note that we assume that all

the subscriber stations(including free roamers and Aliens) equally divided the bandwidth,

which means a subscriber station in the system receives the same share of bandwidth as

others.

Definition 4 Suppose a player operates as Alien, Ai, i ∈ ℵ, the satisfaction term SAi is

the utility of using (
bAPi

(1−xAPi
)

nA+nLB
) amount of bandwidth allocated by the access point:

SAi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if bAPi
(1−xAPi

)

nA+nLB
≤ ϵAi

hAi ln(
bAPi

(1−xAPi
)

nA+nLB
) if bAPi

(1−xAPi
)

nA+nLB
> ϵAi .

We denote bAPi as the total bandwidth that the serving AP (Bill or Linus) has, and

xAPi as the percentage that the AP reserves for his own using. The total shared bandwidth

is bAPi(1 − xAPi). Similar to the previous formulation, hAi is the Alien’s satisfaction

coefficient. Note that this coefficient may be different from various Aliens since they

may use different type of network applications with different preferences. Furthermore,

this coefficient actually determines whether an Alien is choosy or not. That is, an Alien
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with high hAi is considered less choosy. In our system, the bandwidth is equally shared

among all SSs (i.e. Aliens, roaming Linuses, and roaming Bills). The number of Aliens

who choose to join the service is denoted as nA. Similarly, the total number of roaming

Linuses and Bills (as roaming users to the serving AP) in the cell is denoted as nLB. The

per-user shared bandwidth is thus bAPi
(1−xAPi

)

nA+nLB
.

The only two possible strategies that Alien can adopt is either join (J) or not to join

(NJ), and choosing not to join the game apparently brings zero utility. On the other hand,

if Alien chooses to join, the utility function is the satisfaction of using bandwidth minus

the payment to the administration, as it is given below.

Definition 5 Suppose a player operates as Alien, Ai, i ∈ ℵ, with PA > 0 denotes the

payment for the network access. The utility denoted by uAi is:

uAi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

SAi − PA if J

0 if NJ .

1.4 Bill versus Aliens Game

Now we formulate Bill versus Alien as a normal form game. On the basis of one AP

versus several SSs, we examine the existence of Nash Equilibria in the games of Bills

versus Aliens. Bill’s strategy is to decide the percentage of his total bandwidth allotting

for self using xBi and the percentage to sell (1 − xBi). Each Alien’s strategy is either to

join or not to join——when the condition is profitable, he joins; otherwise, not to join.

On the other hand, when the condition is not the most profitable for Bill, he tends to

change decisions. In other words, Alien can only passively choose to accept the current

condition or not; therefore, Bill’s decision is the key factor to reach the final equilibrium.
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Note that in our game model, we assume that the parameters are abiding during the game

period. Though it is fact that the users’ bandwidth needs may vary dramatically over

time, our assumption is still legitimate since a player takes longer time to accomplish the

desired purpose whereas the decision making changes from time to time in the micro-

scale game we discuss. Another important assumption of our game analysis is that all the

system parameters are known in the analytic processes. Thus,the analytic solution of Nash

Equilibria can be directly determined in theory.

To determine Bill’s maximal utility, we compute the first-order derivative of the utility

function: u′
Bi
(xBi):

u′
Bi
(xBi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if bBixBi ≤ ϵBi

hBi
xBi

if bBixBi > ϵBi .

Unfortunately, we fail to gain any useful information from this straightforward math-

ematical analysis since the fixed range of xBi is from 0 to 1. We could not find the local

maximum, let alone the Nash Equilibria. The curve of Bill’s utility function versus xBi

consists of a decreasing downward step function (nAPAR), a logarithmically increasing

satisfaction function (hBi ln(bBixBi)), and constant terms. Note that the constant terms are

insignificant since their only effect is to shift the curve upward or downward, which has

nothing to do with that at what xBi the maximum appears. And it is intuitive that nAPAR

is a decreasing downward step function.

When the provided bandwidthmeets anAlien’sminimal bandwidth threshold, he joins.

And once the Alien chooses to join, Bill receives constant profit from the Alien, as the way

payment is constant. The profit stays the same until the provided bandwidth no longer

satisfies that Alien. Until then, Bill receives zero profits from that Alien.
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Figure 1.1: Bill’s Utility versus the Number of Joining Aliens and xBi . Bill’s Total Utility
Function = Satisfaction Term + Payment Term + Constant
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Figure 1.2: Classification of Bill’s Utility Function Based on the Property of Local Max-
imum Points: (a) Case 1 (b) Case2

As shown in Fig. 1.1, we show a general case with 4 Aliens, the dashed line which

is logarithmically increasing indicates the satisfaction term, the utility from self using of

bandwidth. The lower line is, on the other hand, payment term, the profits gain from the

payment of Aliens. As xBi goes up, the bandwidth for sharing diminishes, and until the

bandwidth is too small to satisfy an Alien, he deviates from the system, then the Bill loses

one unit of payment. Thus, a single step the payment term drops causes one discontinuity

point in the curve. We can see that Bill’s utility function (the upmost curve in the graph) is

the superposition of the satisfaction term and the payment . The number of discontinuity

points is equal to the number of Aliens nAtotal
. For example, in the 4−Alien game in Fig.

1.1, there are 4 local optimums in the utility function.

The location of the discontinuity point is an important factor to decide the maximal
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utility. We can classify the utility curves into two groups as shown in Fig. 1.2(a), Case 1

shows that if the “tail” (i.e. the remaining portion after the discontinuity point to xBi = 1)

is too short to force the logarithmic term increase beyond the former local maximum value,

one of the discontinuity points. Thus, Bill must adjust xBi to make the exact number of

Aliens join to maximize his utility. To achieve this purpose, Bill’s best response is to adjust

the number of Aliens to a point where they will choose to join. The optimal point has to

be at one of the discontinuity points, which are denoted as x̂Bk
, k ∈ [1, nAtotal

]. When

(1− xBi) overtakes these values, the payment term then stops raising and the satisfaction

term decreases, thereby decreasing the overall utility. Case 2 of Fig. 1.2(b) shows that the

tail of the utility curve is long enough to exceed the value of the former local maximum.

Seemingly, the global maximum appears at the boundary point, xBi = 1 (i.e. Bill uses all

the bandwidth himself). Hence, Aliens refuse to join as it is out of service.

Also note that there also exists a curve which can be divided into both Case 1 and 2.

That is, the value of the middle maximal point has an identical value to the tail. Thus, in

such cases, Bill have identical and maximal utility profile at these points. Since it does not

make any difference for Bill to choose between these points, Bill will randomly choose

among these maximal points. Nevertheless, in any cases from above three categories,

each player has chosen his strategy and no player can benefit by changing his strategy

unilaterally. So our current set of strategy choices and the strategy set reaches a Nash

Equilibrium. Note that since Bill can maximize his strategy in this Nash Equilibrium, we

can infer that if any user deviate from their best response in the Nash Equilibrium profile,

the utility of Bill will be hurt, so the Nash Equilibrium itself also serve as a Pareto optimal

solution.

Assume that nAtotal
Aliens are in the game and sorted by hAi in an ascending order
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such that hAi ≤ hAj , for any i < j. From the definition of hA, Aj has greater satisfaction

than Ai under the same sharing setting. If Ai joins the service, then Aj joins. But it is

not necessarily true in contrast. Note that since Ai joins, Ai+1, Ai+2, ..., AnAtotal
also join.

When Ai joins but Ai−1 does not, the number of joining Aliens is nA = nAtotal
− i+ 1.

Corollary 1 (Best Response of Alien) Alien Ai chooses to join (J) when inequality (1.1)

holds; otherwise, Ai chooses NJ .

uAi = hAi ln(
bBi(1− xBi)

nA + nLB
)− PA ≥ 0

and

bBi(1− xBi)

nA + nLB
> ϵAi

⇒ xBi ≤ min{(1− nA + nLB

bBi

e
PA
hAi ), (1− ϵAi(nA + nLB)

bBi

)} (1.1)

In the Bill versus Alien game, the best response of Bill is to maximize his utility func-

tion uBi . As illustrated in Fig. 1.2, the global optimum is among one of the several local

maximum points (x̂Bk
, uBi(x̂Bk

)), or at the boundary point (xBi , uBi) = (1, uBi(xBi =

1)), where:

x̂Bk
= min{(1− nA + nLB

bBi

e
PA
hAi ), (1− ϵAi(nA + nLB)

bBi

)}.

As shown in Fig. 1.2, we denote the k−th local optimum from the left as (x̂Bk
, uBi(x̂Bk

)),
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where Bill maximizes xBi but still attracts totally nAtotal
− k+ 1 Aliens (i.e. Ak, Ak+1,...,

AnAtotal
) to join.

The global maximum of Bill’s utility is:

uBi(x
⋆
Bk
) = maxk∈[1,nAtotal

] {uBi(x̂Bk
), uBi(1)}.

Corollary 2 (Best Response of Bill) Bill’s best response is choosing xBi = x⋆
Bk

from (1.2)

to maximize his utility, where:

x⋆
Bk

= argmaxx {uBi(x̂Bk
), uBi(1)} (1.2)

From the previous discussion, it is obvious that the best response is to find the global

optimum of Bill’s utility. Note that x⋆
Bk

is also the best response as all other possible

uBi(xBi) values are dominated by uBi(x
⋆
Bk
).

Proposition 1 (Nash Equilibrium: Bill v.s. Alien) In the Nash Equilibrium, Bill uses

x⋆
Bk

percent of his own bandwidth and offers (1− x⋆
Bk
) to Aliens. Alien i joins the service

when hAi satisfies inequality (1.1) holds; otherwise, he does not join.

Proof:

As all players in a game choose their best responses respectively, no player will unilat-

erally deviate from the operating point, and thereby achieving a Nash Equilibrium. From

Corollary 1 and 2, we derive the Nash Equilibrium in Bill v.s. Alien game. x⋆
Bk

in (1.2) is

Bill’s best response. After x⋆
Bk

is determined, by sorting parameter hAi , Aliens’ strategy

set is determined.
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1.5 Linus versus Aliens Game

Similar to Bill, Linus has to allot his total bandwidth to the portion he reserves for himself,

xLi , as well as the portion he decides to share with others equivalently, (1− xLi). To find

the optimal value of the utility, we take the first and second order derivatives of uLi(xLi):

u′
Li
(xLi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−kLi
1−xLi

=
kLi

xLi
−1 if bLixLi ≤ ϵLi

(kLi
+hLi

)xLi
−hLi

xLi
(xLi

−1) if bLixLi > ϵLi .

u′′
Li
(xLi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−kLi
(xLi

−1)2 if bLixLi ≤ ϵLi

−hLi
(xLi

−1)2−kLi
x2
Li

x2
Li

(xLi
−1)2 if bLixLi > ϵLi .

(1.3)

Now, we derive the Nash Equilibrium in operating region with meaningful bandwidth

usage (i.e. bLixLi > ϵLi and Linus has non-zero utility). To find the maximum of utility

function, the first order derivative equals to 0 and the second negative.

Corollary 3 (Best Response of Linus) When bLixLi > ϵLi , to find the best response that

maximizes Linus’ utility, we have:

u′
Li
(xLi) =

(kLi + hLi)xLi − hLi

xLi(xLi − 1)
= 0

⇒ xLi =
hLi

kLi + hLi

. (1.4)

In accordance with (1.4), Linus’ best response is to set bandwidth usage ratio xLi .

From (1.3), u′′
Li
(xLi) < 0 is always true in operating region with meaningful bandwidth
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usage (i.e. bLixLi > ϵLi). Linus has the maximal utility with xLi given in (1.4). Unlike

the Bill game, uLi(xLi) is independent of the number of joined Aliens nA. In other words,

Linus’ best response xLi is similarly regardless of Aliens’ strategies. Thus, setting xLi to

the optimal value in (1.4) is also the best response for Linus.

Corollary 4 (Best Response of Alien) Alien Ai chooses to join (J) when inequality (1.5)

holds; Ai chooses NJ , otherwise.

uAi = hAi ln(
bLi(1− xLi)

nA + nLB
)− PA ≥ 0

and

bLi(1− xLi)

nA + nLB
> ϵAi

⇒ xLi ≤ min{(1− nA + nLB

bLi

e
PA
hAi ), (1− ϵAi(nA + nLB)

bLi

)} (1.5)

Proposition 2 (Nash Equilibrium I: Linus v.s. Alien) When bLixLi > ϵLi , Linus uses

hLi
kLi

+hLi
percent of his bandwidth in the Nash Equilibrium. All Aliens, when inequality

(1.6) holds, will join the service; otherwise, they will not.

hLi

kLi + hLi

≤ min{(1− nA + nLB

bLi

e
PA
hAi ), (1− ϵAi(nA + nLB)

bLi

)} (1.6)

Proof:

As Corollary 3 states, xLi in (1.4) shows the best response of Linus. Regardless of
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Aliens’ actions, Linus is fixed to the set xLi =
hLi

kLi
+hLi

, which implies that Linus has no

incentive to deviate from the equilibrium. Substitute xLi =
hLi

kLi
+hLi

in (1.5), an Alien’s

best response and the inequality condition (1.6) is then derived. With both Linus and

Aliens making their best choices, the Nash Equilibrium is then reached. On the other

hand, since (1.4) gives a unique solution and all parameters in (1.6) stay constant to a

given set of players, this Nash Equilibrium is then unique.

Proposition 3 (Nash Equilibrium II: Linus v.s. Alien)When bLixLi ≤ ϵLi , the condition

that Linus sets xLi = 0 and shares all of his bandwidth at the Nash Equilibrium. Aliens,

when inequality (1.7) holds, will join the service; otherwise, they will not join.

0 ≤ min{(1− nA + nLB

bLi

e
PA
hAi ), (1− ϵAi(nA + nLB)

bLi

)} (1.7)

Proof:

When bLixLi ≤ ϵLi , since u′
Li
(0) = 0 and u′′

Li
(0) = −kLi < 0, Linus has the maximal

utility at xLi = 0. We can then conclude that the setting xLi = 0 is his best response.

Since when bLixLi ≤ ϵLi , Linus does not benefit from keeping the bandwidth to himself,

namely, failing to get any payoffs from the satisfaction term, he will then certainly share

all of his bandwidth. Similar to the previous case, by substituting xLi = 0 in (1.5), an

Alien’s best response and inequality condition (1.7) are then derived.

1.6 Practical Protocol Design

In this section, we illustrate the ways to practically achieve the theoretic results in the

cooperative wireless networks. We have derived the theoretic Nash Equilibria of Linus-
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Aliens game and Bill-Aliens game previously, and also prove that when system parameters

are all known, the Nash Equilibria is then readily determined. Nevertheless, in real-world

systems, Aliens’ system parameters remain unknown to the access points, and so do the

access points’ and other Aliens’ system parameters to the Aliens. In response to that, an

ideal protocol should be able to achieve Nash Equilibrium convergence based on available

information in a practical system operation.

To simplify, the mobility of Aliens is modeled as two separate events: leaving one

cell and joining other cells. As the mobility problem could be decoupled, we can focus

our discussion on the interactions between the players within a single cell. In addition,

from the theoretic analysis stated in the previous section, the best response of Linus is

irrelevant to Aliens’ strategies; therefore, the choices of Aliens have no bearings on the

Nash equilibrium. On the other hand, since Linus always sets the bandwidth usage ratio

to hLi
kLi

+hLi
, Aliens then react accordingly. The dynamics in the Linus-versus-Aliens game

is trivial, so we only discuss the Bill-Aliens game here. Other than that, we also provide

a practical protocol that reaches to the steady state; namely, the Nash equilibrium.

In the Bill-versus-Aliens game, Bill is the leader and Aliens are the followers. Bill

selects the optimized strategy to maximize his utility, and Aliens will then adjust their

best response according to Bill’s selected strategy (quantity of the offered bandwidth).

Moreover, Bill’s strategy x⋆
Bk

in the Nash equilibrium leads to the global optimum of Bill’s

utility u⋆
Bk
. Similarly, Linus-versus-Aliens game is also a leader-follower game. Linus

also has the maximal utility in the Nash equilibrium. The optimality of the game equilibria

is desirable since Bill and Linus both maximize their utility functions by setting up the

access points and sharing their bandwidth. As a result, the optimal theoretic equilibrium

and the corresponding practical implementation algorithm can facilitate the healthy growth
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of cooperative WiFi wireless access point deployment.

Algorithm: Finding Bill’s Best Response xBi

1. Initialize bool_stop← 0, ∆← 0
2. Initialize xmax ← 0, nmax ← nA(xBi = 0)
3. Initialize lower ← 0, upper ← 1
4. Initialize xBi(t)← 0
5. While bool_stop = 0
6. if ∆ = 0
7. While (upper − lower) ≥ ξ
8. Execute Algorithm:Binary Search
9. End While
10. Execute Algorithm:Update Maximum
11. ∆← ∆+ 1
12. xBi(t)← xmax· exp(∆ · PA ·R/hBi)
13. if xBi(t) ≥ 1
14. xBi(t)← xmax

15. bool_stop← 1
16. elseif ∆ > 0
17. if (uBi(t− 1)) ≥ umax

18. lower ← xBi(t− 1)
19. upper ← 1
20. xBi(t)← (upper + lower)/2
21. ∆← 0
22. nmax ← nA(t− 1)
23. elseif (uBi(t− 1)) < umax

24. ∆← ∆+ 1
25. xBi(t)← xmax · exp(∆ · PA ·R/hBi)
26. if xBi(t) ≥ 1
27. xBi(t)← xmax

28. bool_stop← 1
29. End While
30. Return xmax

Figure 1.3: Algorithm to Find Bill’s Best Response xBi

1.6.1 Algorithm Design

Since all the players strive to maximize their payoffs, a steady state will appear when Bill

achieves the maximum of his utility. When Bill keeps his behavior unchanged, the only

thing Aliens can do rationally is to react in their best response accordingly. In other words,

once Bill adopts his optimal strategy, Aliens will have no better strategy than remaining in

24



doi:10.6342/NTU201702251

Algorithm:Binary Search
1. if nA(t− 1) = nA(t− 3)
2. if uBi(t− 1) ≥ uBi(t− 3)
3. lower ← xBi(t− 1)
4. else
5. upper ← xBi(t− 1)
6. elseif nA(t− 1) > nA(t− 3)
7. if nA(t− 1) = nmax

8. lower ← xBi(t− 1)
9. upper ← xBi(t− 3)
10. else
11. upper ← xBi(t− 1)
12. elseif nA(t− 1) < nA(t− 3)
13. upper ← xBi(t− 1)
14. xBi ← (upper + lower)/2

Figure 1.4: Algorithm: Bill Computes The Local Maximum of Utility Function With
Binary Search

their current situation, and thus the set of strategy choices and the corresponding payoffs

constitute a Nash Equilibrium. Also note that the Aliens are not tend to deliberately tell a

falsehood for getting higher payoffs in the next round of our model. Precisely, if Aliens

give answers that contradict to the truth, in most cases, he might receive nothing in the

next round. Also, in the contrary case, it is impossible for one rational Alien to accept an

unacceptable condition. Thus, it is apparent that our focus is on how Bill determines xBi .

To find Bill’s optimal strategy, we should try to find the maximum value in Bill’s

utility function. The goal of our algorithm design is to compute the optimal bandwidth

usage ratio xBi that leads to the global maximum of Bill’s utility function. As discussed

in Section 3, the global optimum in the utility curve (similar to the ones illustrated in Fig.

1.1 and 1.2), are among one of the local optimums, namely, discontinuity points x̂Bk
, or

the boundary point xBi = 1 among nAtotal
discontinuity points.

Bill can compute his maximum utility by adopting a naive brute force method that

ranges from xBi = 0 to xBi = 1 with a step size ξ, which is, however, impractical and
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Algorithm: Update Maximum
1. xmax = (upper + lower)/2
2. if nA(t− 1) > nA(t− 3)
3. umax ← uBi(t− 1)
4. nmax ← nA(t− 1)
5. elseif nA(t− 1) < nA(t− 3)
6. umax ← uBi(t− 3)
7. nmax ← nA(t− 3)
8. elseif nA(t− 1) = nA(t− 3)
9. if uBi(t− 1) ≥ uBi(t− 3)
10. umax ← uBi(t− 1)
11. nmax ← nA(t− 1)
12. else
13. nmax ← (nA(t− 1) + 1)
14. umax ← {hBi ln(bBixmax) + nmaxPAR

−CBi + ZBi}

Figure 1.5: Algorithm: Update the Temporarily Maximum Values xmax, umax and nmax

inefficient. Since when the step size ξ is too large, we can barely find a local maximum,

let alone the global maximum utility. On the other hand, if the step size is too small, it is

also considered inefficient since it can never reach the steady state before an Alien joins

or leaves the system. Therefore, we need to introduce another protocol that is practical

and efficient.

The basic idea of the proposed algorithm is to find the global optimum by smartly

adjusting xBi . Although Aliens’ parameter is invisible to Bill, the number of potential

joined Aliens at a given xBi is observable and thereby helping Bill to estimate the current

situation to make the best choice. As shown in Fig. 1.1, the utility function is the sum of

a decreasing ladder-shaped term due to the dropping number of Aliens (i.e. the payment

term) and a rising logarithmic term (i.e. the satisfaction term). The discontinuity point

x̂Bk
surely is the local optimum, and the global optimum must be among these points or

at the point of xBi = 1.

Observation 1 If a better bandwidth usage strategy x†
Bi

leads to a greater utility uBi(x
†
Bi
)
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than the utility of the current strategy xBi , the inequality (1.8) holds:

uBi(x
†
Bi
) ≥ uBi(xBi) ⇒ n†

APAR− CBi + hBi ln(bBix
†
Bi
) ≥

nAPAR− CBi + hBi ln(bBixBi)

⇒ x†
Bi
≥ xBie

PAR(nA−n
†
A

)

hBi (1.8)

where n†
A is the number of joining Aliens when x†

Bi
is used.

Here we denote the i−th local optimum as x̂Bi . If we plan to search local optimal

values of xBi from small to large in x ∈ [0, 1], then we observe that the next (i+1)th local

optimum x̂Bi+1 is at least greater than or equal to x̂Bi · exp(PAR/hBi). This can be ex-

plained by the relationship between Bill’s utility function and the ladder-shaped payment

term, as illustrated in Fig. 1.1. Based on this observation, we can narrow down the xBi

domain to be searched in the proposed algorithm. If we set ∆ = nA − n†
A, the (i +∆)th

local optimum x̂Bi+∆ is at least greater than or equal to x̂Bi · exp(∆ · PA ·R/hBi).

Fig. 1.3 depicts the main algorithm for searching xBi best response. Bill gradually

amends his strategy according to the observed information (the number of joined Aliens)

in each round. The Algorithms in Fig. 1.4 and 1.5 are used by the main algorithm. Fig. 1.4

describes the binary search subroutine to find the local optimum, and Fig 1.5 describes the

algorithm that updates the temporarily maximum values after a local optimum is found.

The binary search method is used to narrow down the interval, where a local optimum

x̂Bk
exists. The bandwidth usage ratio at time t is denoted as xBi(t), and the correspond-

ing utility is uBi(t). The number of joined Aliens at t is denoted as nA(t). The Bill’s
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parameters in the previous two tests (i.e at time= t− 1 and t− 3) are stored for the binary

search computation.

Similarly, among all the visited local optimums, the global maximum values are stored

as xmax, umax, and nmax respectively. The maximum values are initialized with xmax = 0

as the finding process starts from 0 toward 1. The initial value of nmax is set to the number

of joined Aliens when Bill shares all his bandwidth (i.e. xBi = 0).

A discontinuity point x̂Bk
is where an Alien changes his mind from joining to not

joining. When Bill observes that the joining number of Aliens is different in the two

adjacent tests, he knows that the point of local optimum must exist in the close interval

between these two adjacent test points. The difference in the number of joining Aliens is

denoted as ∆. When ∆ = 0, the main algorithm applies iterative binary search method

(Line 7− 9 and Fig. 1.4) to find an unvisited x̂Bk
between the logarithmic segments. We

start finding x̂Bk
from left to right. When a local optimum is found, ∆ is increased, and

is used to jump to the right to another un-searched logarithmic segment of utility curve

for next round’s local optimum searching. The best response finding process starts from

the left and jumps to the right to find another local optimum until all local optimums are

visited. The main algorithm uses flag value bool_stop to stop the finding process.

We apply the iterative binary search method to get a local optimum (Line 7 − 9),

then apply the “jump method” (Line 17− 28) to find other possible local optimums until

all xBi domain is searched. We range the interval between a lower bound lower and a

upper bound upper over the xBi domain. We update upper and lower in each iteration,

as described by the binary search algorithm in Fig. 1.4. The binary search iterations stop

when the interval is smaller than the accuracy threshold ξ (Line 7).

After a local optimum is found (and set ∆ > 0), based on what we have observed in
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Observation 1, we apply the term in (1.8) to “jump” to an un-searched xBi domain (Line

12 and Line 25) to start another round of local optimum searching. When ∆ > 0 (Line

16), which implies that an xBi jumping just occurs at (t − 1), then we need to reset the

searching interval. On the other hand, if the new utility uBi(t−1) is greater than umax the

maximal values among all previously visited local optimum, the utility curve is similar to

the Case 2 in Fig. 1.2, then we should search toward the right part of the logarithmical

element and reset lower and upper accordingly (Line 18−20). If the new utility uBi(t−1)

is less than umax, the utility curve is similar to the Case 1 in Fig. 1.2. Then we should

jump again (Line 24− 25). Line 13− 15 and Line 26− 28 check whether all xBi domain

has been searched (i.e. search location xBi(t) moves to the right and exceeds the domain

bound xBi ≥ 1), and stop the finding process if necessary.

With binary search iterations, we can find local optimums and compute umax, the opti-

mal utility until now, and the corresponding parameters umax and nmax. Use this iterative

method to update umax and xmax until the whole finding process is completed, we will

then get the final umax and xmax, which are the global optimum of the utility function and

Bill’s best response respectively.

Proposition 4 The proposed search algorithms will result in globally optimal strategies.

Proof:

As described above, those local optimal strategy points are discrete and distributed in

the strategy space, as these xBi values corresponding to peak locations in Fig. 1.1.

Since location of these local optimal points can be predicted, as described in inequality

(1.1), we can find globally optimal strategy by the following procedures:

1. Find a local optimal strategy xBi as ” known’ best strategy.
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2. Use the known best strategy to predict and check the location, in which a better

strategy may exist.

3. Compare those known local strategy and select the best one as known best strategy.

4. Repeat 1 ∼ 3 until all strategy space is checked.

To find local maximum of a single variable function, Golden search, Fibonacci search

and binary search are well-known one-order methods. However, they can only be applied

for uni-modal function, which monotonically increasing for x ≥ m and monotonically

decreasing for x ≥ m for a specific m in a domain space. To apply these methods into our

algorithm, we divide AP’s utility function into several segments according to number of

users joining the network. To be specific, the joint region of the two segments of n users

and n+1 users joining, with a unique local maximum at the discontinuity joint point, can

be seen a quisi-unimodal function. In other words, we check these discontinuity points

between neighboring segments to find optimal strategy. Therefore, by checking local point

of each set of two neighboring segments, Golden search, Fibonacci search and binary

search can be applied to find the local optima. Note that the three well-known algorithms

have the same average time complexity of O(log(n)).

1.6.2 Protocol Design

After describing the algorithms, we are now demonstrating how our algorithm works in

the real-world system. Our algorithms are designed in the case that more or equal Aliens

in the system than the number of those who would be theoretically potential to join in light

of the access point. Furthermore, our algorithms can resolve the problem when several

unknown user private information involved. Nevertheless, in the real-world system, some
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information is visible to access points, like the number of Aliens trying to connect, so we

design our algorithms exclusively for the conditions with non-zero Aliens. Therefore, if

we consider a extreme system with zero Aliens, since the condition can be aware by the

access points, Bill would conclude that the optimal bandwidth usage ratio is 1 immedi-

ately. After describing the applications of our algorithms, we move on to highlight the

incorporation between our algorithms with real-world systems.

To incorporate the proposed algorithm, we consider each two units of t (as mentioned

in our mechanism) as a round trip signaling. In each round trip signaling, the AP sends

each user signaling, which contains (1) the bandwidth to provide (2) sequence number X,

and each user replies an ACK to tell the APwhether he can accept the suggested amount of

bandwidth last round. By gathering the feedback from users’ ACK each round, the AP can

trace users’ behavioral patterns. Then, based on the derived information, he makes a de-

cision and starts the next round trip signaling. Detailed decision procedures are described

in the algorithm design.

In each round of the ask-and-reply procedures, users merely express their will without

paying anything. Until the end of the ask-and-reply procedures when Bill finds out his

optimal operating point, users are then charged for the service. In other words, our mech-

anism proposes a set of ask-and-reply procedures, which can derive optimal strategy for

AP with little signaling overheads. Since signaling takes less time to finish, the proposed

protocol is adaptive to dynamic and time-varying network scenarios. More details about

time of round trip signaling is then discussed in the following section.
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Figure 1.6: Utility Function from Brute Force Method

1.7 Performance Evaluation

As mentioned in protocol design, two units of t stand for round trip signaling time, we

use t as time unit here to evaluate bandwidth-sharing efficiency, including Convergence

to Equilibrium and Convergence Time.

1.7.1 Convergence to Equilibrium

To evaluate the efficiency and practicality of the proposed protocol implementation, we

come up with a discrete-time simulator to simulate the proposed protocol. Compared to

the theoretic optimal value, the operational steady state is impractical to implement in real

system. The optimal solution, then, is based on brute force method, choosing xBi from

0 and gradually increases xBi by adding ξ = 0.001. First, we draw a simple example

to demonstrate the dynamics and the convergence of the game. More simulation runs

and observations are then given in the forth-coming sub-sections. In this example, there

32



doi:10.6342/NTU201702251

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

χ B
i

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

450

500

t

U B
i

Figure 1.7: Convergence of Bill’s (a) Strategy and (b) Utility

are one Bill as AP, three Aliens with different preferences as SSs, and one Linus or Bill

as free roaming SS in the simulation scenario. We set the coefficients: PA = 100, and

the satisfaction coefficients for the three Aliens are thereby hA1 = 16.5, hA2 = 18, and

hA3 = 19, we can see that the first Alien is the most choosy user, but since their demands

are roughly similar, it is normal that they share similar coefficient values. We also have

hBi = 50, bBi = 2000, R = 0.5, and CBi = 5.

The utility function computed by brute force method is given in Fig. 1.6. The results

are as we predicted earlier. The discontinuity points are the results from the changing

number of joined Alien players. Each discontinuity point indicates one Alien chooses

NJ when Bill increases his own bandwidth utilization. That is, the leftmost discontinuity

point implies that the first Alien, the most picky one, with hA1 = 16.5, choosesNJ while

the other two still choose J . And the middle point indicates that the second Alien, with

hA2 = 18, chooses NJ and the one with hA3 = 19 remains his original choice. At the

rightmost point, the last Alien chooses NJ , and no Aliens stay in the system. The values

of xBi in those discontinuity points can be calculated by the method we described in the

previous section.
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The simulation results of the proposed protocol are given in Fig. 1.7, and 1.8. In

Fig. 1.7(a), we only pass through two big pulses and then converge to the steady state

rapidly. The steady state xBi matches the optimal solution computed with brute force

method, which is also the theoretic xBi solution in Nash equilibrium given by (1.2). In

Fig. 1.7(b), we can show the utility uBi of the proposed strategy implementation. Since we

apply a binary approach to approximate the steady state, the curve oscillates with smaller

amplitude to approach a stable state, and the simulated steady state uBi result matches the

theoretic value in the Nash equilibrium. Note that uBi steady state is the same as the global

maximum in Fig. 1.6. Compared with the brute force method, it takes less time to reach

the Nash equilibrium. Furthermore, if we relax the precision restriction to a scale that is

acceptable in real life, we can reduce the time cost to about 1/250. In Fig. 1.6, every

xBi increment is 0.001 and takes 1000 brute force iterations to scan. Contrast to that, our

proposed implementation takes much less iterations.

In Fig. 1.8, we contrast the utility variation of the free roamer (Bill or Linus as SS),

uLBi , with the utilities uAi of Aliens sharing the same access point. We can see in Fig.

1.8(a), the utility of the free roamer stays around a certain level because the free roamer

always joins for free services. In Fig. 1.8(b), as we expected, the most choosy Alien, A1

finally decides his best response, NJ , while the others still remain in the game. Then,

when an Alien’s utility function equals to zero, the Alien will no longer join the service.

The oscillation indicates the joining and leaving behavior of Aliens when Bill is adjusting

his bandwidth sharing ratio. We observe that Bill’s binary searching on xBi , as described

in Fig. 1.4, dominates the utility and the behaviors of Aliens. We can see that sometimes

negative utility emerges since an Alien has to pay for the service in the beginning of a

round. When the shared bandwidth is not enough and the payment reaches its sunk cost,
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Figure 1.8: Convergence of the Utility and Strategy of (a) Free Roamer (Bill or Linus as
SS) and (b) Aliens

the utility becomes negative, and the Alien no longer joins. As a matter of fact, when

uAi > 0, they choose J ; otherwise, NJ . We can observe that the degree of oscillation in

uAi is negatively correlated with hAi . As Bill’s strategy stabilizes, the degree of oscillation

becomes smaller. Compare uAi to uLBi , their oscillation tendency are about the same since

they equally share the same bandwidth. However, if more users access (i.e. less bandwidth

to be shared), their utilities decline as expected, and vice versa. Note that the amplitude

of oscillation of the free roamer is much smaller than the Aliens because he is less choosy

than the Aliens as his access is free.
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Figure 1.9: The Distribution of Convergence Time in The Game of (a) Three Aliens and
(b) Six Aliens (1000 Simulation Runs)
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1.7.2 Convergence Time

To explore the idea of the convergence time in these game models, we conduct 1,000

experiments for 3-Alien games and 6-Alien games respectively. As shown in Fig. 1.9, the

distribution of convergence time values is discrete. During the xBi estimation process, the

numbers of Aliens’ movement are within a finite discrete set. The convergence process is

rapid as observed in the 1,000 experiments.

During the xBi estimation process, the number of Aliens’ moves, either joining or leav-

ing, are in a finite discrete set. Additionally, the convergence time is dominated mainly by

the number of the binary search iterations, which completely depends on the distribution of

Aliens’ preference parameters. Each binary search iteration costs up to ⌈log(2)(1/ξ)⌉+ 1

stages, where ⌈x⌉ is the ceiling function of x.

The maximum number of binary search is bounded by

min{⌈log(exp(PAR/hBi
))(1/ξ)⌉, nA + 1}

which is equivalent to

min{⌈−hBi ln ξ
PAR

⌉, nA + 1}.

As mentioned before, each stage is equal to two time slots, since access point and

clients play sequential game alternatively. Therefore, the maximum convergence time for

our algorithm is

2(⌈−log2ξ⌉+ 1) ·min{⌈−hBi ln ξ
PAR

⌉, nA + 1}. (1.9)
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Note that the former term is a constant, and the latter is proportional to nA, which refers

to the number of joined Aliens. The number of joined Aliens nA is bounded by the total

number of Aliens in the cell, nAtotal
. Moreover, on the basis of the observations in the 1,000

simulation runs, the convergence time is usually much smaller than the (1.9) convergence

bound, which is 88 and 106 time slots in the 3-Alien and 6-Alien case respectively. In

the 3-Alien simulation, the average convergence time is 32.690 time slots. The worst

case is 80 slots, which occurs only once among 1,000 runs. In the 6-Alien simulation, the

average convergence time is 38.104 time slots. The worst case is 106 slots, which also

only occurs once among 1,000 runs. Given the same accuracy requirement ξ, the time

complexity reduction from the proposed algorithm is significant compared to the brute

force method. In addition, the convergence values of the bandwidth sharing ratio closely

match the theoretic Nash Equilibrium results in all of these simulation runs. The average

difference between the theoretic values and the converged xBi results is 5.1752× 10−4.

1.7.3 Ratio of Bandwidth Usage

To capture the bandwidth usage behaviors, we have conducted 1,000 experiments. Each

experiment has two free roamers and seven Aliens, and all the system parameters are ran-

domly generated. We can see the distribution of the ratio of self bandwidth usage xBi

as shown in Fig. 1.10. The ratio of bandwidth to sell is 1 − xBi . We find that Bill’s

strategy xBi varies significantly in those experiments, and similar results are also found

in other game settings. The main reason is that the Nash equilibrium is directly related

to the players’ utility preference. Note that the convergence in the experimental results

also match the theoretic Nash equilibrium. Both Bill’s and Alien’s valuation toward the

bandwidth utilization make a great influence on the converged xBi . As the system param-
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eters are randomly generated, the value of xBi varies from time to time. We also observe

that only a subset of relevant players, those whose utility preference parameters are within

the region, might lead to the acceptance of Bill’s offered bandwidth, thereby affecting the

system equilibrium.

1.7.4 User Participation

The effect of the number of users and the Bill’s bandwidth offering on Bill’s utility are

illustrated in Fig. 1.11. We simulate the system with one free roamer (i.e. one Linus or

Bill as SS), four Aliens with their satisfaction coefficient, hAi , generated randomly during

each experiment. Fig. 1.11(a) shows Bill’s utility versus the number of joined Aliens,

each little circle denotes the Nash equilibrium in one experiment.

We can see the circles gathering to about four columns, where the numbers of par-

ticipants are one, two, three, and four respectively. Only one rare exception appears at

nA = 0 (i.e. no one uses), which is considered to be an extreme case since all the Aliens

are being too picky to join the system. However, this extreme case can still occur at an

extreme low odds. We can see when the number of joined Aliens goes up, so does the

utility of Bill, because the effect of the payment term is much greater than the satisfaction

term in Bill’s utility function. The result is as expected: the more Bill shares, the more

profit he gains, which is the core incentive that sustains the whole community. Also, we

can see that in each of the column, the density of the circles is increasing. This implies

that our system is quite efficient, in the equilibria with the same number of Aliens, the

better results are more likely to be achieved (i.e. Bill is apt to achieve higher utility).

Similarly, Fig. 1.11(b) shows Bill’s utility versus xBi , which also has four columns,

corresponding to the columns in the left graph. We have observed that when more Aliens
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join, Bill can get more utility. Hence, we can easily distinguish these blocks, that is, from

the highest to the lowest, four Aliens, three Aliens, two Aliens, and one Alien joining

respectively. One exceptional circle at xBi = 1 is the case that no Alien uses the service

and Bill keeps all his bandwidth to himself. Note that the four blocks of Nash equilibrium

results are determined by the values of the four discontinuity local optimum points in

Bill’s utility, which is similar to the case shown in Fig. 1.1. Bill’s best response is to

adjust xBi to the point where the Aliens will be just in. With the prerequisite that Aliens

keep joining, Bill will maximize the bandwidth for self use. Again, we can see that the

proposed algorithm is efficient since it is denser when xBi is larger.

1.7.5 User Mobility

WLAN users move around in the networks. Our problem formulation and the proposed

scheme could readily accommodate the user mobility issue which in the game is modeled

as one player adding or exiting the game. Fig. 1.12 shows the system dynamic as an Alien

first moves out of the system (at t=300) and then moves back to the system (at t=600).

Aliensmay destroy the equilibrium bywithdrawing from the service and joining halfway

through. This simulation is meaningful since in the real world, it is an important issue for

wireless mobile networks to deal with the problem that a user takes part in or moves off a

service halfway when an equilibrium has already reached. We can see that there are three

major pulses in our graph, each lasts comparatively very short period of time. The first,

the one relatively longer than the other two, is the time to obtain the first equilibrium for

the three Aliens who participate the game from the beginning. The second pulse (t=300) is

the time recovering from transient state, that is, an Alien withdrawing halfway. The third

pulse (t=600) is the time recovering from the condition that an Alien joins. The graph
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Figure 1.11: Bill’s Utility versus the (a) Number of Aliens and (b) xBi (1 Bill, 1 Free
Roamer and 4 Aliens)
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Figure 1.12: The Convergence of (a) xBi and (b) uBi when an Alien Breaks the Equilib-
rium by Leaving and Joining the System

also demonstrates the efficiency of our algorithm to handle leaving and joining events.

Compared to the convergence time to achieve the first equilibrium, it only takes half of

the time to reach the equilibrium when joining, and two third of the time when leaving. As

expected, the converged xBi are identical with the first one as all the terms are the same.

Also note that the traits of the lower graph are almost the same as the upper one, except

for a slight time delay as the utility is the response to the previous round’s strategy.

1.7.6 Variation in User Characteristics

Fig. 1.13(a) shows the relation between Bill’s utility and the standard deviation of Alien’s

satisfaction coefficient. We can see clearly that it is trending down. The greater the dis-

similarity the Aliens have, i.e. more often the extreme cases occur, the more inevitable
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Figure 1.13: The Variation in Aliens’ Characteristics hAi Affects Bill’s (a) Utility and (b)
Strategy
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Figure 1.14: σ of nA versus σ of hAi

for Bill to give up catering those choosy Aliens. When the dissimilarity is greater, Bill’s

best response is to reserve all the bandwidth for himself instead, as shown in Fig. 1.13(b).

Note that Fig. 1.13(b) has a downward tendency in the beginning, which is because that

when all the Aliens act similarly, it is easier for Bill to anticipate their behaviors. Thus,

Bill can adopt the fairly accurate best strategy to reserve more bandwidth for self use. In

Fig. 1.14, we can see that when the difference between the Aliens is greater, the more

various the final Aliens number is. The reason is also same as our previous explanation;

since the difference between the Aliens causes the distinctions of the bandwidth that Bill

would like to share, it is intuitive that the number of Aliens will vary from the bandwidth

in extreme cases. Our figure shows that when the difference between Aliens is lower than

a certain value ( σ ≈ 1, as shown in the figure), the number of Aliens usually stays the

same. When the difference is higher than the value, meaning, it enters the extreme area,
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the number of Aliens varies with hAi .

1.8 Extension to Non-logarithmic Utility

So far we have investigated the problem with the logarithm bandwidth satisfaction term

in the utility function. The logarithmic utility is one of the most frequently used form in

game theoretic research. Nevertheless, this study can be applied to all forms of utility

functions. No matter the function is linear, convex, concave, or mixed, if the function

is non-decreasing, then the proposed scheme can be applied. Since the satisfaction term

represents the utility of using bandwidth, it is intuitively a non-decreasing function.

We hereby demonstrate several examples of applying logarithmic utility to different

forms of utility functions. One of the examples of linear utility function is shown in Fig.

1.15(a). It is obvious since it is the combination of a linear function with positive slope

(i.e. the satisfaction term) and a downward step function which reflects the behavior of the

consumers (i. e. the payment term). On the other hand, Fig. 1.15(b) shows the feasibility

of our decision algorithms in linear cases. The properties and the tendency of the figure

in the logarithm case are observed here. The convergence is rapid and meets the theoretic

result.

Now we examine a more general case based on the convex form of satisfaction, as

is shown in Fig. 1.16. Similar to the previous cases, Fig. 1.16(b) shows the property of

prompt convergence. Even though the difference between the convex formulation and the

original logarithm formulation is remarkable (i. e. convex versus concave), the method-

ology we proposed is still applicable.

Eventually, after illustrating the applicability in both convex and concave cases, we

give a general case example. Suppose the satisfaction function is the combination of sev-
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Figure 1.15: Linear Bandwidth Utility: (a) Bill’s utility function (b) Convergence of the
strategy
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Figure 1.16: Convex Bandwidth Utility: (a) Bill’s utility function (b) Convergence of the
strategy
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eral segments which can be either convex or concave. As shown in Fig. 1.17(a), the dotted

line is the payment term and the lower line is the bandwidth satisfaction term. The up-

per bold line represents the summation of the two terms, that is, the total utility function

of Bill. As shown in Fig. 1.17(b), the convergence is still rapid and approximates the

theoretic Nash Equilibrium value.

Finally, Wewould like to end this section by proving the applicability of the algorithms

proposed by us. In general, if the satisfaction function is not strictly increasing, more than

one Nash Equilibrium may exist. However, the following proposition still holds:

Proposition 5 For any non-decreasing satisfaction function, there exists at least one Nash

Equilibrium.

Proof: We prove this by first justifying the existence of the best response of the access

point. First, with a non-decreasing satisfaction function, the access point will derive equal

or higher satisfaction if more bandwidth (or larger xBi) is used by himself. Secondly,

payment made by Aliens is exactly a non-increasing function of access point’s self-using

bandwidth. In other words, if more bandwidth is used by the AP, then less bandwidth can
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be sold to Aliens, and thus leading to smaller or equal payment from Aliens. Therefore,

given any possible profile of Aliens’ join decision, the best response of AP is to decide the

single variable, i.e., optimal xBi , to maximize the sum of both non-decreasing satisfaction

function and non-increasing payment function. With the convex and compact domain

space of xBi and single-variable finite function, a global optimal strategy must exist, so

the best response of AP exists.

Moreover, given a specified xBi , Aliens has their best response as described in Corol-

lary 1. As we know, NE is the cross-set of all players’ best response. Since the best

response of all players exist, the cross-set solution exists and thus NE exists.

1.9 Conclusion

In this chapter, we investigate the game theoretic model of the cooperative wireless net-

working service where Linus, Bill, and Alien are the three types of players in the game,

and each player maximizes his own utility function. We first formulate the Bill-Alien

game to model the bandwidth selling of Bill WLAN access point and the participating

strategies of Alien WLAN clients. Then we formulate Linus-Alien game to model the

bandwidth sharing of Linus WLAN access point and the participating strategies of Alien

WLAN clients. Nash equilibria are derived in both models. The equilibria lead to the

maximal utility of Bill and Linus respectively. Practical protocol implementation is also

proposed for the network management. Simulation results show that the proposed imple-

mentation converges rapidly to the optimal bandwidth sharing equilibrium, which closely

matches the theoretic Nash equilibria. Even though the problem formulation is based on

WiFi bandwidth sharing by altruistic user and selfish users, this study might be applied to

other resource sharing problems, where both altruistic and selfish users exist.
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Chapter 2

Bio-inspired Proximity Discovery and

Synchronization for D2D

Communications

2.1 Introduction

Device-to-device (D2D) communication is an emerging technology. This technology en-

ables a wireless communication device to connect to another device directly. Recently,

3GPP started discussing proximity based services (ProSe)[19][20] for D2D communica-

tion in LTE. Proximity discovery is a key component for D2D communication.

Take public safety application as an example, devices are usually distributed in a broad

area as shown in Fig. 2.1. Infrastructure nodes may be unavailable due to the damage

from a disaster. When some devices are outside the base station’s (BS) coverage, a dis-

tributed mechanism is required for devices to achieve proximity discovery and synchro-

nization. The proximity discovery in general can be categorized into two different prob-
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Figure 2.1: An example of a firefly spanning tree (each edge denotes a possible connection
between two edges) of a D2D graph. By selecting the (heavy) edges by the proposed
algorithm, the tree spanning every device makes the network synchronized.

lems, physical communication[26] and application level discovery. The integration of

two proximities is desired because the signaling procedures can be reduced. For example,

physical-level proximity discovery requires signal exchange among devices. Application-

level proximity discovery requires the devices to find other devices with the same interests.

Thus, integration of proximity discovery in view of physical communication and applica-

tion is needed.

Previous works applied this sync method in different manners. Wener-Allen et al.

implemented decentralized RFA (reachback firefly algorithm) on TinyOS-based motes,

and provided theoretic improvement[22]. Tyrrell et al. studied an exquisite design[23] and

its application[24]. Lucarelli and Wang described the general model, and the convergent

condition[25]. Nevertheless, in all conventional work above, the topology (physical layer

radio connectivity topology) model is always idealized.

Our LTE-A D2D simulator is constructed based on the LTE simulator [27]. It includes
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Figure 2.2: The simulation results of applying basic firefly algorithm on graphs with dif-
ferent scales. The test cases are randomly generated graphs with 10, 20, 50, 100, 300, 500,
800 and 1000 nodes. Each dot indicates the divergence times within 1000 trials for each
test case. The detailed parameters are given in Table 2.1.

a link level simulator and a system level simulator. As observed in simulations, the net-

work topology significantly affects the convergence. As shown in Fig. 2.2, if we naively

apply the basic firefly algorithm in randomly generated topologies, a substantial ratio of

systems are even unable to achieve the state sync. In current systems, like D2D commu-

nications in LTE-A, the significant growth of involved devices makes the complexity of

the network marking increase. This implies that the basic firefly algorithm is no longer

suitable to emerging communications. Thus, it is imperative to create a new replacement

which is adaptable to all kinds of topology. In this chapter, a distributed topology-adaptive

algorithm named firefly spanning tree (FST) is proposed. FST is an algorithm based on the

basic firefly algorithm and a spanning tree algorithm, it is able to transform an divergent

graph into a convergent graph as shown in Fig. 2.1. In simulation, the algorithm not only

preserves all the benefits from the original one, additionally it outperforms other common

sync methods [31] under the LTE-A D2D circumstance.
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2.2 Basic Firefly Algorithm

In the real world, synchronization between one another is one of the the largest problems

that a swarm of fireflies have to face every day. This is a totally self-organized synchro-

nization problem, resembling the one we face in communications. Surprisingly, by simply

applying their innate flashes, the tough problem has an elegant solution.

Basically, the synchronous flashing progress can be modelled as the behaviour of a

population of identical integrate-and-fire oscillators. It can be expressed as a phase func-

tion φi(t) which is integrated from zero to a certain threshold φth. When φth is reached,

the oscillator flashes, or “fires.” After firing, φi(t) is reset to zero. If not coupled with

others, i.e. no firing signal is detected, the oscillator will naturally fire with a period equal

to T . This may be described as dφi(t)
dt = φth

T .

When coupled to others, an oscillator is receptive to the firing signal of its neighbours.

When a given oscillator fires, it pulls the others up by a fixed amount ϵ, or brings them to

φth, whichever is less, i.e., φi(t) = φth ⇒ ∀j ̸= i : φj(t+) = min(φth,φj(t) + ϵ). If the

threshold φth is normalized to 1, when a node j fires at t = τj , the above equation can be

transformed into a piecewise linear function, φi(τj)+∆φ(φi(τj)) = min(αφi(τj)+β, 1)

with α = ebϵ and β = ebϵ−1
eb−1 , where∆φ and b denote the phase increment function and the

dissipation factor, respectively.

It has already been proven that, provided that certain constraints (e.g. α > 1, β > 0,

and full meshed) on the coupling between entities are met, for an arbitrary number of

entities and independent of the initial condition, the network always synchronizes. Plenty

of aspects such as the effect of propagation delay, channel attenuation, and noise have

also been addressed in the literature [23] [24]. Optimal selection of the parameters has

also been completely discussed in some solid works. Thus, the scope of this chapter will
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Figure 2.3: The flowchart of firefly algorithm.

not cover the above issues again.

2.3 Proximity Discovery and Synchronization

The basic concept of firefly algorithm can be applied to D2D networks as shown in Fig.

2.3. In this chapter, we proposed a distributed mechanism to achieve proximity discovery

and synchronization. This mechanism enables neighbour discovery and service discovery

simultaneously. In addition, it also achieves synchronization in physical communication

timing and service interests in our application.

The mechanism achieves proximity discovery by sending and detecting proximity sig-

nals (PSs) among devices as shown in Fig. 2.4. Each device possesses a counter and

broadcasts PSs periodically. The counter value increases by time and a threshold is set

for the counter. Devices detecting the PSs will increase the counter value by a fixed rate.
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Figure 2.4: The signaling flow of D2DUEs’ synchronization. The timing of UE#1∼UE#3
sending proximity signals (PSs) were presented in the figure. As the UE’s counter ex-
ceeded the threshold, the UE will broadcast the PS, and the UEs receiving the signal will
increment its counter. After several repetitions, the synchronization is finally reached once
and for all.
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Once the counter reaches the threshold, the device will broadcast the PS, and then reset

the counter back to the initial value like zero. The PS is broadcast to the neighbouring

devices, and those devices increase their counter values accordingly. This process of PS

broadcast and detection will continue until all the devices achieve synchronization in the

period of signal broadcast. Note that the rate of increment and threshold may be different

for different applications/services/groups.

Take LTE-A system as an example, predetermined RACH codes (or other CDMA

codes) or preambles can be used to transmit the PS in the proposed scheme. Different

codes indicate different application interests. This implies that a device may transmit

multiple codes to indicate its interest in these multiple applications. Transmission in dif-

ferent radio transmission opportunity (e.g. RACH resource) can also be used to indicate

different application interest.

After synchronization is reached within the group, several communication activities

can be done. For example, the mechanism might be served as a keep-alive signaling

method. It can also be directly applied to activate data session between devices. For

instance, the PS may use two different codes (e.g. a pair RACH code). One code indi-

cates standby and continue to the sever as the synchronization/keep-alive purpose. The

other code triggers other events. We further assume that user equipments are full-duplex

devices which are capable of simultaneously transmitting and receiving proximity signals.

LTE-ARACH preambles are OFDM symbols, and different preambles may be transmitted

in parallel without inter-group interference. However, intra-group proximity signal inter-

ference may still arise due to collision or misalignment. Such interference will influence

the counter value increment. That is, devices may only detect 1 preamble while more than

two devices are sending the proximity signal. Firefly algorithm still holds in this case.
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For the purpose of reducing the signaling process in both physical and application

levels of proximity discovery, we introduce the concept of firefly synchronization into

D2D communications. The properties of the algorithm are quite suitable to an idealized

system, like a full meshed network. However, in real systems, an idealized topology is not

a common case. To our best knowledge, currently there is no such research that focuses

on applying similar algorithms on any randomly generated topology.

2.4 Firefly Spanning Tree

AD2D network can be formulated into a graphG(V,E), where vertices V are independent

devices and edgesE are communication links. Links can beweighted by the strength of the

PS. For preserving all the benefits of themechanism in any randomly generated topologies,

first we need to find a basic structure which is able to sustain the state of synchronization.

By conducting several experiments, we found that the structure of trees may be a good

candidate. In theorem 1, the stability of trees can be verified by mathematical induction.

Theorem 1 For any acyclic graph (i.e., tree, connected graph without simple cycles),

by applying the firefly algorithm, the synchronization of nodes is always achieved and

sustained.

Proof:

Mathematical induction can be used to prove that the above statement in the theorem

always holds.

The basis: Show that the statement holds for the node number n = 2. Based on [21],

when there are only two nodes (i.e. full meshed network with two nodes), the system can

be synchronized. The inductive step: Show that if the trees with k nodes (i.e. n = k)
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hold, then any acyclic structures with n = k + 1 nodes will also hold.

A new tree T ′ with k+1 nodes can be achieved by inserting a new node L to a k-node

tree T . One new connection is established between L and any of the nodes P in T . Since

φP (t) = φL(t), ∀P, ∃t, the derivation can be divided into three conditions based on the

impact of phase shift φP (t) from φT−{P}(t) after the insertion of L:

1. No phase shift occurs (i.e. φP (t) = φT−{P}(t)): this means that the synchronizing

situation of T ′ is equal to T . That is, the convergence is immediately completed.

2. Phase shift occurs (i.e. φP (t) ̸= φT−{P}(t)), and P reaches the threshold: P re-

ceives a PS from T−{P} at t0, which means the entering ofLmakes P temporarily

unsynchronized from T − {P}. If the PS makes P saturate (i.e. αφP (t0) + β ≥ 1)

, L will also be lifted to saturation by P ’s PS since φP (t
−
0 ) = φL(t

−
0 ). As a result,

the condition of T ′ is equal to T .

3. Phase shift occurs, but P does not reach the threshold: If the PS at t0 does not

make P saturate (i.e. φP (t
+
0 ) = αφP (t0) + β < 1), P and L are temporarily

unsynchronized. At the moment just before P ’s next saturation, say t1, the phase

of L is φL(t
−
1 ) = φL(t0) + (1 − (αφP (t0) + β)) = (1 − α)φP (t0) + (1 − β).

After that, the PS from P is received by L, we have: φL(t
+
1 ) = min(1,α((1 −

α)φP (t0) + (1 − β)) + β). Since α > 1 and αφP (t0) + β < 1, we have α((1 −

α)φP (t0) + (1 − β)) + β − 1 = (1 − α)(αφP (t0) + β − 1) > 0, which means

φL(t
+
1 ) = min(1,α((1−α)φP (t0) + (1− β)) + β) = 1 = φP (t

+
1 ). As a result, the

condition of T ′ is equal to T .

Since both the basis and the inductive step have been performed, by mathematical

induction, the statement always holds.
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After finding a suitable structure, we still need a practical communication algorithm for

transforming a network with random topology into an acyclic tree. A distributed algorithm

for solving this problem is proposed. Inspired by the well-known GHS algorithm[29], we

propose the Firefly Spanning Tree (FST) Algorithm which involves the construction of

a robust spanning tree with the strongest signal strength on graphs in a fully distributed

manner. It is radically different from the classical sequential problem, yet the most basic

still approach resembles the well-known Boruvka’s algorithm.

At the beginning of the algorithm, devices know only the weights of the links which

are connected to them. After the time of linearithmic scale (i.e. the asymptotic time com-

plexity is O(V logV )), as the output of the algorithm, every device knows which of its

links belong to the FST and synchronizes with the remaining neighbours. Note that the

process involves two different proximity signals. PS_H is used for the synchronization be-

tween subgraphs, and PS_G is used for the regular operation of the basic firefly algorithm

throughout the network. The pseudocode of FST algorithm is as described in Algorithm 1

and 2. Basically, FST is designed based on the two properties: greedy choice property and

optimal substructure. By applying the two-level firefly algorithm and a greedy algorithm,

we can combine all the available subgraphs into one spanning tree, i.e. the robustness of

FST can be guaranteed. That is, the sum of signal strength, i.e. the weight of FST, is

greater than or equal to the weight of every other spanning tree. The exact validity of FST

can be mathematically proved by contradiction.

2.5 Numerical Results

In this section, system level simulations are carried out. Referring to [30] and [27], we

construct a LTE-A D2D network simulator. The parameters are given in Table 2.1. As
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shown in Fig. 2.5, the performance results are presented for different network sizes. Each

case is evaluated in average convergence time within 1000 trials (randomly generated

topologies with fixed nodes). Note that the convergence time here is the measure of how

fast the devices reach the state of complete synchronization. The average convergence

time is the mean of the 1000 trials. Since currently there is no other related work which is

under the framework of LTE-A, the compared algorithms are chosen from other existing

wireless communication systems [28]. Obviously, the centralized algorithms are invalid

to our system. In addition, when we tried to implement the decentralized algorithms on

our simulator, we found that most of them are either incompatible to the LTE-A system

or unable to converge in random topologies. After thorough investigation, we only found

the algorithm of clock-sampling mutual network synchronization (CS-MNS) [31]. As we

can see in Fig. 2.5, the proposed FST outperforms CS-MNS in any size network. Also,

we can observe that FST is even more efficient in larger systems due to the linearithmic

time complexity.

Another performance evaluation is the exchanging messages during the converging

progress. In Fig. 2.6, we can see that the trade-off of fast convergence is the number of

exchanging messages. However, we can see that the deal is quite worthwhile. While FST

largely outperforms CS-MNS in convergence time, the discrepancy of the two algorithms

are always subtle. In fact, when in large networks (e.g. the case of 500 nodes), FST even

narrowly defeated CS-MNS in terms of number of messages exchanged.

2.6 Conclusion

In this chapter, we proposed a distributed mechanism for D2D network ProSe, especially

in LTE-A systems. The mechanism is able to achieve proximity discovery and synchro-
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Figure 2.5: The simulation results of applying FST and CS-MNS on networks with dif-
ferent scales. The test cases are randomly generated networks with 100, 200, 300, 500
devices. Each dot indicates the average convergent time within 1000 trials for each test
case.

Figure 2.6: The comparison in exchanging message numbers. Each dot indicates the av-
erage number of messages exchanged during the converging procedure within 1000 trials
for each test case.

Table 2.1: Simulation Parameter Values
Device Power 23 dBm (220 mW)
Threshold -95 dBm (3.16 ∗ 10−10mW)
Device Density 50 devices in 100 m * 100 m areas
Propagation Model Outdoor non-line-of-sight (dB)

PNLOS = 43.5 + 25log10(d) if d < 60m

PNLOS = 40.0 + 40log10(d) otherwise
Shadowing Standard Deviation 10 dB
Time Slot 1 ms
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nization at the same time, in both physical and application level. Some essential operations

can also be accomplished at the same time. In addition, a practical algorithm called FST is

also given for resolving the problems caused by different topologies. Finally, the numer-

ical results on LTE-A simulator show that the algorithm outperforms the other existing

algorithms.
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