
doi:10.6342/NTU201903613

國立臺灣大學電機資訊學院電機工程學研究所

碩士論文

Graduate Institute of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

利用影像分類技術識別網頁及手機程式中之圖形介面元件

Using Image Classification Techniques to Recognize GUI

Elements in Web and Mobile Applications

林其政

Qi-Zheng Lin

指導教授：王凡 博士

Advisor: Farn Wang, Ph.D.

中華民國 108 年 7 月

July, 2019

doi:10.6342/NTU201903613

i

誌謝

能完成這篇論文，首先要感謝我的指導教授王凡老師。在做研究的路上迷惘的

時候，是老師為我指引一條明路，讓我找到前進的方向。不單是學術上，老師更教

會了我許多做人處事的道理，著實令我獲益良多。

也要感謝實驗室的每一位成員。在學業上，我們互相幫忙、彼此照應，順利地

克服了各種困難。而當被學業的壓力壓得喘不過氣時，只要大家聚在一起吃喝玩樂，

享受片刻的閒暇，就能重新振作起來，繼續面對挑戰。

最後要謝謝我的父母還有盈茜，你們的支持與鼓勵一直都我前進的最大動力。

doi:10.6342/NTU201903613

ii

中文摘要

隨著網路與智慧型手機的普及，網頁及手機應用程式如雨後春筍般出現。若是

一個應用程式在功能上或性能上有缺陷的情況下上架，它很快就會在市場中消逝，

並造成開法者巨大的損失。因此，如何對網頁及手機應用程式進行有效的測試成為

一個至關重要的議題。

當進行圖形介面程式的測試時，我們需要一個爬蟲來盡可能攫取圖形介面中

的資訊，藉以設計相應的測試腳本。在圖形介面程式中，通常包含文字與圖像的部

分。對於圖像的部分，我們難以單憑網路爬蟲解析其本質。然而，藉由圖像分類的

技術，我們可以識別圖像所代表的意義。這麼一來，我們便能完整且準確的理解整

個圖形介面的內容，以產生適合的測試腳本。

在這篇論文中，我們蒐集了 31490 張應用程式中常見的圖示，包含 57 種不

同的種類，並利用卷積神經網路的技術在此資料集上訓練出圖像分類的模型。我

們採用了適當的資料擴增方法，使得在預測現實世界程式中的的圖像時能達很高

的準確度。此外，我們建立了一個可以持續更新模型的架構。

關鍵字：軟體測試、圖像分類、卷積神經網路、主從式架構

doi:10.6342/NTU201903613

iii

ABSTRACT

As the internet and smart phones become more and more common, plentiful web

and mobile applications show up. If an application is published with even some tiny flaws

in functionality or performance, it will fade away in the market rapidly, and the developers

will suffer tremendous losses. Consequently, how to test web and mobile applications

effectively and efficiently become an important issue.

When conducting software testing for GUI applications, we need a crawler to grab

the information of the GUI contents as much as possible in order to devise test scripts

accordingly. It is general that there are both text contents and image contents in GUI

applications. For the image contents, we may not always resolve the essence of them only

by a crawler. However, we can recognize the meaning of image contents with the aid of

image classification techniques. By doing so, we can understand the whole GUI contents

thoroughly and accurately and generate suitable test scripts.

In this thesis, we collect 31490 images of 57 different classes commonly seen in real

applications and use CNN to train a model to classify the images. We adopt some

appropriate methods of data augmentation to reach high accuracy of predicting image

contents in real-world applications. Besides, we build a framework update our model

continuously.

Keywords: software testing, image classification, convolutional neural network,

client-server model

doi:10.6342/NTU201903613

iv

CONTENTS

誌謝 ... i

中文摘要 .. ii

ABSTRACT .. iii

CONTENTS .. iv

LIST OF FIGURES ... vi

LIST OF TABLES .. vii

Chapter 1 Introduction .. 1

 Background ... 1

 Motivation .. 2

 Contribution .. 4

Chapter 2 Preliminaries ... 5

 Crawler ... 5

 Convolutional Neural Network .. 5

 Online Learning .. 7

Chapter 3 Related Work .. 8

 Sikuli ... 8

 Crawljax ... 9

 Tesseract ... 9

 Academic Work .. 10

Chapter 4 IconNet .. 11

 Overview ... 11

 Data Preprocessing ... 12

doi:10.6342/NTU201903613

v

 Data Augmentation ... 13

4.3.1 Random Resized Cropping ... 13

4.3.2 Random Color Inverting ... 13

4.3.3 Color Jittering ... 14

 Network Architecture ... 15

 Implementation ... 16

Chapter 5 Online Learning based on Client-Server Model ... 18

5.1.1 Server .. 19

5.1.2 Client .. 20

Chapter 6 Experiments .. 22

 Dataset .. 22

 Results .. 23

Chapter 7 Conclusion .. 26

REFERENCE ... 27

doi:10.6342/NTU201903613

vi

LIST OF FIGURES

Fig. 1.1 Standard test flow chart .. 2

Fig. 1.2 Part of screenshot of the "Google News" website .. 3

Fig. 1.3 "User icons" from different applications .. 4

Fig. 4.1 Flow chart of our work ... 12

Fig. 4.2 Effect of random resized cropping on an image ... 13

Fig. 4.3 Screenshot of "MoPTT" ... 14

Fig. 4.4 Effect of color jittering on an image ... 15

Fig. 4.5 Illustration of network architecture .. 15

Fig. 5.1 Online learning framework ... 18

Fig. 5.2 Report page ... 21

Fig. 6.1 Validation accuracy... 24

doi:10.6342/NTU201903613

vii

LIST OF TABLES

Table. 4.1 Network architecture .. 15

Table. 5.1 Some sample images of the dataset .. 23

Table. 5.2 Test data .. 23

Table. 5.3 Accuracy ... 25

doi:10.6342/NTU201903613

1

Chapter 1 Introduction

 Background

As the internet and smart phones become more and more common, plentiful web

and mobile applications show up. Developers faced with fierce competition are required

to develop high-quality applications faster than their competitors do. If an application is

published with even some tiny flaws in functionality or performance, it can still reduce

the will of users to use it because there are so many substitutes for it. As a result, the

application will fade away in the market rapidly, and the developers will suffer

tremendous losses. Consequently, how to test web and mobile applications effectively

and efficiently become an important issue.

Fig. 1.1 is the standard test flow chart. We can see that software testing usually

contains the following steps:

1. Test plan: According to the specification about the requirements for functionality

or performance of the products provided by the users, define corresponding test

requirements. Meanwhile, arrange appropriate manpower, time, and resources.

2. Test design: Construct test procedures that can meet the test requirements defined

in the test plan. Design appropriate test cases, including test input, test conditions,

and expected results.

3. Test development: Implement reusable automated test procedures.

4. Test execution: Execute the test procedures and compare the expected results

with the actual ones.

5. Test evaluation: Generate test reports to show the results in an organized manner.

Evaluate the quality of the software under test (SUT).

doi:10.6342/NTU201903613

2

Fig. 1.1 Standard test flow chart

 Motivation

While the concept depicted in Fig. 1.1 is simple, to test a GUI application is quite

the opposite. When conducting software testing for GUI applications, we need a crawler

to grab the information of the GUI contents as much as possible in order to devise test

scripts accordingly. Although there are many helpful tools to do the task, obstruction still

exists.

Fig. 1.2 is part of the screenshot of "Google News" website. As illustrated in it, there

are icons that present corresponding meaning for every item, e.g., a magnifying glass icon

usually symbolizes "search". It is general that there are both text contents and image

contents in GUI applications.

For the image contents, we may not always resolve the essence of them only by a

crawler, i.e., simply inferring the meaning of an image component by its id, name, and

other attributes might not success.

doi:10.6342/NTU201903613

3

Fig. 1.2 Part of screenshot of the "Google News" website

However, for icons that aim at presenting similar concepts, they are often in similar

shapes. Fig. 1.3 shows "user icons" from different applications, including "Google News",

"MoPTT", "reddit", and "YouTube". As shown in Fig. 1.3, icons that represent the concept

of user are usually in the shape of a human’s outline. Thus, we can recognize the meaning

of icons with the aid of image classification techniques. By doing so, we can understand

the whole GUI contents not only thoroughly but also accurately and generate suitable test

scripts.

doi:10.6342/NTU201903613

4

Fig. 1.3 "User icons" from different applications

 Contribution

In this thesis, we have the following contribution:

 Figure out appropriate parameters to build and train a neural network to

recognize GUI elements in web and mobile applications

 Apply suitable data augmentation methods so the model can recognize GUI

elements in real-world applications.

 Establish a framework to update the model continually.

doi:10.6342/NTU201903613

5

Chapter 2 Preliminaries

 Crawler

A crawler, which is also known as a "spider" or a "bot", is a computer program that

automatically browses documents on the World Wide Web. Crawlers are primarily

programmed to do repetitive actions so browsing is automated. Search engines use

crawlers most frequently to browse the internet and build an index. Other crawlers search

different types of information such as RSS feeds and email addresses. The term crawler

comes from the first search engine on the Internet: the Web Crawler.

Crawlers consume resources on visited systems and often visit sites without approval.

Issues of schedule, load, and "politeness" come into play when large collections of pages

are accessed. There are mechanisms for public sites not wishing to be crawled to make

this known to the crawling agent. For example, including a robots.txt file can request bots

to index only parts of a website, or nothing at all.

The number of Internet pages is very large; it is hard to make a complete index even

for the largest crawlers. For this reason, search engines strived to give relevant search

results in the early years of the World Wide Web, before 2000. Today, relevant results can

be given almost instantly.

 Convolutional Neural Network

In 1998, Yann LeCun et al proposed the very first notable Convolutional Neural

Network (CNN) model, LeNet-5 [1]. Although CNN was limited because of the

insufficient computing power in the following years, it made another breakthrough in

2012 that AlexNet won the champion on ImageNet Large Scale Visual Recognition

Competition with top-5 error of 15.3%, outperforming the second place. Nowadays, CNN

doi:10.6342/NTU201903613

6

becomes the most useful technique when dealing with tasks related to image processing

and computer vision.

CNN contains the following stages:

1. Convolutional layers: Convolutional layers use several filters to do convolution

operations on the images. This trick has two characteristics: locally connected

and weight sharing. Locally connected means it can help extract the high-level

features in the image locally. In this stage, filters with the size smaller than the

images are used. Next, filters move with the size of stride and do convolutional

operation with the corresponding area. Weight sharing means every part of the

image shares the same parameter, which help reduce the computation complexity.

𝑦𝑚,𝑛 = ∑ ∑ℎ𝑖,𝑗𝑥𝑚−𝑖,𝑛−𝑗

𝑘

𝑗=𝑘

𝑘

𝑖=−𝑘

2. Pooling layers: Convolutional neural networks may include local or global

pooling layers to streamline the underlying computation. Pooling layers reduce

the dimensions of the data by combining the outputs of neuron clusters at one

layer into a single neuron in the next layer. Local pooling combines small clusters,

typically 2×2. Global pooling acts on all the neurons of the convolutional layer.

In addition, pooling may compute a max or an average. Max pooling uses the

maximum value from each of a cluster of neurons at the prior layer. Average

pooling uses the average value from each of a cluster of neurons at the prior layer.

3. Fully connected layers: Finally, fully connected layers with output size equal to

the classes are used. This stage use features extracted in previous hidden layers

to do the final prediction.

doi:10.6342/NTU201903613

7

 Online Learning

Online learning is a machine learning method in which the data is provided in a

sequential manner and is used to update the best model for future data. Some techniques

are designed to learn linear models, such as Perceptron [2], Online Gradient Descent [3],

Passive Aggressive (PA) algorithms [4], Confidence-Weighted (CW) algorithms [5], etc.

As for nonlinear models, online learning with kernels can do the trick. These methods

received substantial interest from the community, and models of higher capacity such as

online multiple kernel learning were developed. While these models learn nonlinearity,

they are still shallow. Moreover, deciding the number and type of kernels is nontrivial;

and these methods are not explicitly designed to learn a feature representation.

Online learning can be directly applied to DNNs ("online backpropagation") but they

suffer from convergence issues, such as vanishing gradient and diminishing feature reuse.

Moreover, the optimal depth to be used for the network is usually unknown, and cannot

be validated easily in the online setting. Further, networks of different depth would be

suitable for different number of instances to be processed, e.g., for a small number of

instances, shallow networks that can end up a quick convergence would be preferred,

whereas, for a large number of instances, the long run performance would be enhanced

by using a deeper network. This makes model architecture selection very challenging.

There have been attempts at making deep learning compatible with online learning.

However, that they operate via a sliding window approach with a mini-batch training

stage make them unsuitable for a streaming data setting.

doi:10.6342/NTU201903613

8

Chapter 3 Related Work

 Sikuli

Sikuli [6] was started in 2009 as an open-source research project in the User Interface

Design Group at MIT. It uses image recognition techniques powered by OpenCV to

identify GUI elements and provides a visual scripting API to operate GUI elements

automatically. It shows a brand-new way to automate software testing for GUI

applications.

When generating a test script by Sikuli, one can take a screenshot of the GUI

elements he wants to manipulates, and then the screenshot can be the target of a command

in the test script. Usable commands include click, hover, type, etc. If he runs the script,

Sikuli will search the target in the screen by image recognition and execute the command

he has ordered.

The most important revolution Sikuli achieved is readability and usability. Sikuli

makes writing programs more easily. It puts the screenshots in the code so people can see

what they want to control directly. If one wants to execute some mass and regular actions

with a computer, a programmer may use a command line tool or write a program to call

the API functions, but an ordinary person would be unable to do this. With the help of

Sikuli, people communicate with applications written by others no longer need to read

the obscure documents, nor do they have to understand what the underlying architecture

is. Combining usual ways to use a mouse and a keyboard with screenshots, one can easily

write a program that can be executed automatically.

Sikuli supports different languages and platforms. It supports scripting languages

including Python, Ruby, JavaScript, etc. One can programmatically control a web page,

doi:10.6342/NTU201903613

9

a desktop application running on Windows/Linux/Mac OS X, or even an iPhone or

Android application running in an emulator.

 Crawljax

Crawljax [7] is a well-known tool for crawling and testing modern web applications.

It can explore any JavaScript-based Ajax web application through an event-driven

dynamic crawling engine. It automatically produces a state-flow graph of the dynamic

DOM states and the event-based transition between them. This inferred state-flow graph

is powerful to facilitate the automation of many types of web analysis and testing

techniques.

However, it is still weak when bumping into the complex page. The main purpose

of Crawljax is to completely crawl through the pages. After that, nothing will be done

further. It will be a disaster if the crawled website page was designed badly or had

undergone code compression. Both of the cases are hard for human to read through, not

to mention making pattern analysis.

 Tesseract

Tesseract is an Optical Character Recognition (COR) engine. That is, it can

recognize the text embedded in images. It was originally developed at HP Laboratories in

1985. It was one of the top 3 engines in the 1995 UNLV Accuracy test. Between 1995

and 2006 it had little work done on it, but since then it has been improved extensively by

Google. The early versions of Tesseract could only accept TIFF images. Combined with

the Leptonica library now it can read a wide variety of image formats. The count of

languages it can recognize is over 100.

doi:10.6342/NTU201903613

10

 Academic Work

C.-H. Yu proposed Smart-Eye, a visualized service for web and mobile applications

[8]. By utilizing image classification, it helps software tester organize and label data for

the later testing scripts. Yu used RGB images as training data and applied a 6-layer

convolutional neural network. The resulting accuracy of validation was 82.4%.

C.-L. Li incorporated image classification with natural language processing (NLP)

to identify the topic of a GUI element by its attribute, including text and image [9]. Li

used residual network (resnet18 and resnet34) to perform image classification. As for

NPL, Li employed BoW, tf-idf, and LSI to transform words to vectors, and computed the

cosine similarity to the vectors of the corpus to determine the topic of an element.

doi:10.6342/NTU201903613

11

Chapter 4 IconNet

 Overview

We build and train a CNN model to recognize GUI elements. We first present an

overview of the whole procedures in this section and describe the implementation details

in the following sections.

As shown in Fig. 4.1, we first split the dataset into training data and validation data.

We use the training data to train for 100 epochs. Whenever an epoch of training is done,

we use validation data to see whether the validation accuracy is improved. If it is, we save

it as the best model.

doi:10.6342/NTU201903613

12

Fig. 4.1 Flow chart of our work

 Data Preprocessing

Grayscale

We always read images in grayscale in our whole work, including training and

predicting. Actually, the images in the data we use are all grayscale, even most of which

are binary. Thus, the converting procedure will actually has effect only when predicting

RGB images.

doi:10.6342/NTU201903613

13

 Data Augmentation

When undertaking a task related to deep learning, researchers are often faced with

lack of data, which would result in overfitting. Data augmentation is the easiest and most

common method to solve this problem. By modifying the original data, more data

different from the original ones can be generated.

4.3.1 Random Resized Cropping

This is a commonly used method for data augmentation. It randomly resizes the

original image with aspect ratio between 0.75 to 1.33 and crop part of it to generate more

data. Although the image is change, it would still be acceptable to belong to the original

class.

Fig. 4.2 Effect of random resized cropping on an image

4.3.2 Random Color Inverting

In the dataset we use, images are mostly with white background. Nonetheless, there

are sometimes icons with darker color as background in real-world. Fig. 4.3 shows a

screenshot of "MoPTT" application and grayscale version of it. We can see that the

background is darker than the foreground. It would be impracticable if we want to predict

this kind of images with a model trained by only images with white background. Hence,

we randomly invert the color of training data with probability of 0.5, hoping that our

model can predict images with either lighter color or darker color as background.

doi:10.6342/NTU201903613

14

Fig. 4.3 Screenshot of "MoPTT"

4.3.3 Color Jittering

Color jittering is to change the brightness, contrast, saturation, and hue of an image

randomly. Because the images we use are binary, we only change contrast and brightness

in this stage. Changing saturation and hue of binary images are useless. For similar reason

we mention above, we want our data to be as diverse as possible to simulate the real-

world data. Most images in the dataset we use are binary. Even with color invert, there

will be only images with white and black. Thus, we need color jitter to generate images

with different contrast. Fig. 4.4 shows some images after color jittering.

doi:10.6342/NTU201903613

15

Fig. 4.4 Effect of color jittering on an image

 Network Architecture

Layer Name Output Size 8-layer 14-layer 20-layer

conv1 30×30 3×3, 64 3×3, 64 3×3, 64

conv2_x 15×15 [
3 × 3, 64
3 × 3, 64

] × 1 [
3 × 3, 64
3 × 3, 64

] × 2 [
3 × 3, 64
3 × 3, 64

] × 3

conv3_x 8×8 [
3 × 3, 128
3 × 3, 128

] × 1 [
3 × 3, 64
3 × 3, 64

] × 2 [
3 × 3, 64
3 × 3, 64

] × 3

conv4_x 4×4 [
3 × 3, 256
3 × 3, 256

] × 1 [
3 × 3, 64
3 × 3, 64

] × 2 [
3 × 3, 64
3 × 3, 64

] × 3

 1×1 average pool, 57-d fc

Table. 4.1 Network architecture

Fig. 4.5 Illustration of network architecture

We first use a convolutional layer with output channel size equal to 64. The

following are three more blocks of convolutional layers and we set the stride to be 2 to

reduce the output size by half and double the channels. The last layer is fully connected

with output size equal to the number of classes we want to predict. All layers except the

last use ReLU activation.

doi:10.6342/NTU201903613

16

 Implementation

In the stage of random resized cropping, we mainly resize the images to 30×30. We

also conduct the experiment that compares the performance of different image size,

including 8×8, 15×15, and 60×60. We set batch size to 256. We use Stochastic Gradient

Descent as the optimization algorithm and cross entropy as the loss function. The learning

rate starts from 0.1 and is divided by 10 for every 30 epochs. The models are trained for

up to 100 epochs. We use a weight decay of 0.0001 and a momentum of 0.9.

Algorithm 3: train(training_data, model)

for input, label in training_data:

input ← data_augmentation(input)

output ← model(input)

losses ← loss_function(output, label)

gradients ← backpropogation(loss)

model.weights ← stochastic_gradient_descent(model.weights, gradients)

end for

doi:10.6342/NTU201903613

17

Algorithm 4: main(data_directory)

training_data, validation_data ← split(data_directory)

model ← initialize_model()

learning_rate ← 0.1

best_accuracy ← 0

for epoch ← 1 to 100

if epoch mod 30 == 0

learning_rate ← learning_rate / 10

end if

train(training_data, model)

accuracy ← validation(validation_data, model)

is_best ← accuracy > best_accuracy

best_accuracy ← max(accuracy, best_accuracy)

save_checkpoint(model)

if is_best:

save_best_model(model)

end if

end for

doi:10.6342/NTU201903613

18

Chapter 5 Online Learning based on Client-Server

Model

We build an online learning framework based on client-server model for users to use

our model and update it. Users can get our model from the server and use it to predict the

images appear in their SUT. If they think the predictions are incorrect, they can send back

the images along with the corresponding labels that they think are correct. After theses

data are checked by the inspector, the server can retrain the model.

Fig. 5.1 Online learning framework

This framework contains the following use cases:

1. Send model:

2. Upload image-label pairs

3. Reviewing labeled examples via web pages.

4. Periodic training of new models.

(1) Training new models when there are no new labels, including refining

models and retraining completely new models.

doi:10.6342/NTU201903613

19

(2) Training new models when there are new labels.

5. Get online new models.

5.1.1 Server

We set up a web server with Flask, which is a micro web framework written in

Python. The server can respond to two kinds to requests: "get model" and "upload data".

For "get model", the server sends back the latest model to the user who makes the request.

For "upload data", the server will receive an image-label pair from the client and then

save the image to the corresponding directory under the "upload" directory according to

the label. We run a thread that check whether there are images in the "upload" directory

at 0 o’clock every day. If there are, the server will train the model with the images in the

"upload" directory and then move them to the "trained" directory.

doi:10.6342/NTU201903613

20

Algorithm 5: Server

function get_model():

 return model

function upload_data(image, label):

 save image to upload/label/

function check():

 start a thread that calls check() after 86400 seconds

 if upload/ is not empty:

 train the model with the images in upload/

function main():

 compute the remaining time t to 0 o'clock

 start a thread that calls check() after t seconds

5.1.2 Client

The client can predict images in his SUT with the model received from the server.

After he uses the model to predict the images, a report page will show up. This page

contains three columns: "image", "prediction", and "check". As the names suggest, the

columns of "image" and "prediction" show the images and the corresponding predictions

given by the model. The column of "check" is for the user to check whether the

predictions are correct. If he thinks the predictions are incorrect, he can click the "Wrong"

radio button and select correct labels with the drop-down list.

After the user checks all the results, he can click the submit button to submit the

image that are marked as "Wrong" along with the corresponding labels to the server. What

will happen next has mentioned in the previous section.

doi:10.6342/NTU201903613

21

Fig. 5.2 Report page

doi:10.6342/NTU201903613

22

Chapter 6 Experiments

 Dataset

We use the dataset "Common Mobile/Web App Icons" from kaggle and rearrange

31490 images of 57 different classes from it. Each of them has the size of 200×200. Some

sample images of every class are shown in Table 4.1. We further split the data into training

and validation data randomly. Training data contains 23639 images and validation data

contains 7851 images.

Class Example Images Class Example Images

add

airplane

battery

bell

Bluetooth

bulb

calculator

calendar

call

camera

car

cart

clock

closed_lock

cloud

coin

copy

crop

cut

delete

document

down_arrow

email

eye

Facebook

fire

flag

folder

gift

heart

help

home

info

left_arrow

doi:10.6342/NTU201903613

23

menu

microphone

moon

music

mute

no

open_lock

pinpoint

play

refresh

right_arrow

search

send

settings

share

star

tag

thumbs_up

trophy

up_arrow

user

warning

yes

Table. 6.1 Some sample images of the dataset

We also collect 53 images in real-world applications including "Google News",

"Medium", "MoPTT", "reddit", "露天拍賣", and "YouTube" as test data to see whether

our model can recognize icons in real-world applications correctly.

Application Images

Google News
Medium
MoPTT
reddit

露天拍賣

YouTube

Table. 6.2 Test data

 Results

Fig. 6.1 shows the validation accuracy of different network architecture. We can see

that all of them would converge around 40 epoch. The accuracy of 8-layer network is

doi:10.6342/NTU201903613

24

slightly lower than the others.

Fig. 6.1 Validation accuracy

Table 4.3 and table 4.4 show accuracy and elapsed time under different

circumstances respectively. We can see that an 8-layer network architecture is enough to

do the task well with accuracy up to 96.9%. Not surprisingly, a network with more layers

spends more time on training, loading model, and predicting image. However, because a

deeper network has more representational power, it can increase the accuracy a little bit.

The accuracy of a 20-layer network is 97.1%.

When the size of the input images is equal to 30×30, the test accuracy is the highest.

The reason might be that the size the images in real-world applications are close to 30×30.

If the size is smaller than 30×30, there is no enough information for the model to

recognize different images. If the size is bigger than 30×30, the images in real-world

doi:10.6342/NTU201903613

25

applications need to be resized to bigger size and would be distorted because of

interpolation.

With data augmentation, we can effectively predicting icons in real-world

applications well. Although we have all binary images in our dataset, by augmenting them

to mimic real images as similar as possible, the network can learn good knowledge from

augmented data to deal with the real-world problem.

 Accuracy

 Training (%) Validation (%) Test (%)

Network Architecture

8-layer 89.8 95.6 94.3

14-layer 92.2 96.9 90.6

20-layer 92.1 97.1 90.6

Size of Input Image

8 80.7 87.7 64.2

15 88.1 94.3 88.7

30 89.8 95.6 94.3

60 85.8 94.4 75.5

Without Data Augmentation 89.6 95.5 35.9

With Data Augmentation 89.8 95.6 94.3

Table. 6.3 Accuracy

 Elapsed time

 Training (min) Loading (sec) Predicting (ms)

Network Architecture

8-layer 26 3.44 4.26

14-layer 26 3.49 5.26

20-layer 32 3.52 6.32

Size of Input Image

8 24 3.44 4.24

15 25 3.50 4.57

30 26 3.44 4.26

60 46 3.47 4.37

Without Data Augmentation 24 3.40 4.26

With Data Augmentation 26 3.44 4.26

Table 4.4 Elapsed time

doi:10.6342/NTU201903613

26

Chapter 7 Conclusion

In this thesis, we use CNN to train a model to recognize GUI elements in web and

mobile applications. With a 20-layer neural network, the validation accuracy is 97.1%

and the test accuracy is up to 90.6%. We also try to resize the input image to different size

and compare the results. To recognize GUI elements in real-world applications, it would

be appropriate if we set the size of images to be 30×30. With the size equal to 30×30, the

test accuracy is up to 94.3. Because there are only binary images in our datasets, we use

appropriate data augmentation methods to increase the test accuracy from 35.9% to 94.3%.

doi:10.6342/NTU201903613

27

REFERENCE

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. J. P. o. t. I. Haffner, "Gradient-based learning

applied to document recognition," vol. 86, no. 11, pp. 2278-2324, 1998.

[2] F. Rosenblatt, "The perceptron: a probabilistic model for information storage and

organization in the brain," vol. 65, no. 6, p. 386, 1958.

[3] M. Zinkevich, "Online convex programming and generalized infinitesimal gradient

ascent," in Proceedings of the 20th International Conference on Machine Learning

(ICML-03), 2003, pp. 928-936.

[4] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer, "Online

passive-aggressive algorithms," vol. 7, no. Mar, pp. 551-585, 2006.

[5] M. Dredze, K. Crammer, and F. Pereira, "Confidence-weighted linear

classification," in Proceedings of the 25th international conference on Machine

learning, 2008, pp. 264-271: ACM.

[6] T. Yeh, T.-H. Chang, and R. C. Miller, "Sikuli: using GUI screenshots for search

and automation," in Proceedings of the 22nd annual ACM symposium on User

interface software and technology, 2009, pp. 183-192: ACM.

[7] A. Mesbah, E. Bozdag, and A. Van Deursen, "Crawling Ajax by inferring user

interface state changes," in 2008 Eighth International Conference on Web

Engineering, 2008, pp. 122-134: IEEE.

[8] C.-H. Yu, "Using image classification for automatic page analysis on the testing of

Web APPs", Master Thesis of Dept. Electrical Engineering, National Taiwan

University, Jan. 2018.

doi:10.6342/NTU201903613

28

[9] C.-L. Li, "Predicting the topics of GUI elements with both NLP and image

classification techniques", Master Thesis of Dept. Electrical Engineering, National

Taiwan University, Jul. 2018.

