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中文摘要 

 

隨著網路與智慧型手機的普及，網頁及手機應用程式如雨後春筍般出現。若是

一個應用程式在功能上或性能上有缺陷的情況下上架，它很快就會在市場中消逝，

並造成開法者巨大的損失。因此，如何對網頁及手機應用程式進行有效的測試成為

一個至關重要的議題。 

當進行圖形介面程式的測試時，我們需要一個爬蟲來盡可能攫取圖形介面中

的資訊，藉以設計相應的測試腳本。在圖形介面程式中，通常包含文字與圖像的部

分。對於圖像的部分，我們難以單憑網路爬蟲解析其本質。然而，藉由圖像分類的

技術，我們可以識別圖像所代表的意義。這麼一來，我們便能完整且準確的理解整

個圖形介面的內容，以產生適合的測試腳本。 

在這篇論文中，我們蒐集了 31490 張應用程式中常見的圖示，包含 57 種不

同的種類，並利用卷積神經網路的技術在此資料集上訓練出圖像分類的模型。我

們採用了適當的資料擴增方法，使得在預測現實世界程式中的的圖像時能達很高

的準確度。此外，我們建立了一個可以持續更新模型的架構。 

 

關鍵字：軟體測試、圖像分類、卷積神經網路、主從式架構 
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ABSTRACT 

 

As the internet and smart phones become more and more common, plentiful web 

and mobile applications show up. If an application is published with even some tiny flaws 

in functionality or performance, it will fade away in the market rapidly, and the developers 

will suffer tremendous losses. Consequently, how to test web and mobile applications 

effectively and efficiently become an important issue. 

When conducting software testing for GUI applications, we need a crawler to grab 

the information of the GUI contents as much as possible in order to devise test scripts 

accordingly. It is general that there are both text contents and image contents in GUI 

applications. For the image contents, we may not always resolve the essence of them only 

by a crawler. However, we can recognize the meaning of image contents with the aid of 

image classification techniques. By doing so, we can understand the whole GUI contents 

thoroughly and accurately and generate suitable test scripts. 

In this thesis, we collect 31490 images of 57 different classes commonly seen in real 

applications and use CNN to train a model to classify the images. We adopt some 

appropriate methods of data augmentation to reach high accuracy of predicting image 

contents in real-world applications. Besides, we build a framework update our model 

continuously. 

 

Keywords: software testing, image classification, convolutional neural network, 

client-server model 
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Chapter 1 Introduction 

 Background 

As the internet and smart phones become more and more common, plentiful web 

and mobile applications show up. Developers faced with fierce competition are required 

to develop high-quality applications faster than their competitors do. If an application is 

published with even some tiny flaws in functionality or performance, it can still reduce 

the will of users to use it because there are so many substitutes for it. As a result, the 

application will fade away in the market rapidly, and the developers will suffer 

tremendous losses. Consequently, how to test web and mobile applications effectively 

and efficiently become an important issue. 

Fig. 1.1 is the standard test flow chart. We can see that software testing usually 

contains the following steps: 

1. Test plan: According to the specification about the requirements for functionality 

or performance of the products provided by the users, define corresponding test 

requirements. Meanwhile, arrange appropriate manpower, time, and resources. 

2. Test design: Construct test procedures that can meet the test requirements defined 

in the test plan. Design appropriate test cases, including test input, test conditions, 

and expected results. 

3. Test development: Implement reusable automated test procedures. 

4. Test execution: Execute the test procedures and compare the expected results 

with the actual ones. 

5. Test evaluation: Generate test reports to show the results in an organized manner. 

Evaluate the quality of the software under test (SUT). 
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Fig. 1.1 Standard test flow chart 

 Motivation 

While the concept depicted in Fig. 1.1 is simple, to test a GUI application is quite 

the opposite. When conducting software testing for GUI applications, we need a crawler 

to grab the information of the GUI contents as much as possible in order to devise test 

scripts accordingly. Although there are many helpful tools to do the task, obstruction still 

exists. 

Fig. 1.2 is part of the screenshot of "Google News" website. As illustrated in it, there 

are icons that present corresponding meaning for every item, e.g., a magnifying glass icon 

usually symbolizes "search". It is general that there are both text contents and image 

contents in GUI applications. 

For the image contents, we may not always resolve the essence of them only by a 

crawler, i.e., simply inferring the meaning of an image component by its id, name, and 

other attributes might not success. 
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Fig. 1.2 Part of screenshot of the "Google News" website 

 

However, for icons that aim at presenting similar concepts, they are often in similar 

shapes. Fig. 1.3 shows "user icons" from different applications, including "Google News", 

"MoPTT", "reddit", and "YouTube". As shown in Fig. 1.3, icons that represent the concept 

of user are usually in the shape of a human’s outline. Thus, we can recognize the meaning 

of icons with the aid of image classification techniques. By doing so, we can understand 

the whole GUI contents not only thoroughly but also accurately and generate suitable test 

scripts. 
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Fig. 1.3 "User icons" from different applications 

 Contribution 

In this thesis, we have the following contribution: 

 Figure out appropriate parameters to build and train a neural network to 

recognize GUI elements in web and mobile applications 

 Apply suitable data augmentation methods so the model can recognize GUI 

elements in real-world applications. 

 Establish a framework to update the model continually. 
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Chapter 2 Preliminaries 

 Crawler 

A crawler, which is also known as a "spider" or a "bot", is a computer program that 

automatically browses documents on the World Wide Web. Crawlers are primarily 

programmed to do repetitive actions so browsing is automated. Search engines use 

crawlers most frequently to browse the internet and build an index. Other crawlers search 

different types of information such as RSS feeds and email addresses. The term crawler 

comes from the first search engine on the Internet: the Web Crawler. 

Crawlers consume resources on visited systems and often visit sites without approval. 

Issues of schedule, load, and "politeness" come into play when large collections of pages 

are accessed. There are mechanisms for public sites not wishing to be crawled to make 

this known to the crawling agent. For example, including a robots.txt file can request bots 

to index only parts of a website, or nothing at all. 

The number of Internet pages is very large; it is hard to make a complete index even 

for the largest crawlers. For this reason, search engines strived to give relevant search 

results in the early years of the World Wide Web, before 2000. Today, relevant results can 

be given almost instantly. 

 Convolutional Neural Network 

In 1998, Yann LeCun et al proposed the very first notable Convolutional Neural 

Network (CNN) model, LeNet-5 [1]. Although CNN was limited because of the 

insufficient computing power in the following years, it made another breakthrough in 

2012 that AlexNet won the champion on ImageNet Large Scale Visual Recognition 

Competition with top-5 error of 15.3%, outperforming the second place. Nowadays, CNN 
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becomes the most useful technique when dealing with tasks related to image processing 

and computer vision. 

CNN contains the following stages: 

1. Convolutional layers: Convolutional layers use several filters to do convolution 

operations on the images. This trick has two characteristics: locally connected 

and weight sharing. Locally connected means it can help extract the high-level 

features in the image locally. In this stage, filters with the size smaller than the 

images are used. Next, filters move with the size of stride and do convolutional 

operation with the corresponding area. Weight sharing means every part of the 

image shares the same parameter, which help reduce the computation complexity. 

𝑦𝑚,𝑛 = ∑ ∑ℎ𝑖,𝑗𝑥𝑚−𝑖,𝑛−𝑗

𝑘

𝑗=𝑘

𝑘

𝑖=−𝑘

 

2. Pooling layers: Convolutional neural networks may include local or global 

pooling layers to streamline the underlying computation. Pooling layers reduce 

the dimensions of the data by combining the outputs of neuron clusters at one 

layer into a single neuron in the next layer. Local pooling combines small clusters, 

typically 2×2. Global pooling acts on all the neurons of the convolutional layer. 

In addition, pooling may compute a max or an average. Max pooling uses the 

maximum value from each of a cluster of neurons at the prior layer. Average 

pooling uses the average value from each of a cluster of neurons at the prior layer. 

3. Fully connected layers: Finally, fully connected layers with output size equal to 

the classes are used. This stage use features extracted in previous hidden layers 

to do the final prediction. 
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 Online Learning 

Online learning is a machine learning method in which the data is provided in a 

sequential manner and is used to update the best model for future data. Some techniques 

are designed to learn linear models, such as Perceptron [2], Online Gradient Descent [3], 

Passive Aggressive (PA) algorithms [4], Confidence-Weighted (CW) algorithms [5], etc. 

As for nonlinear models, online learning with kernels can do the trick. These methods 

received substantial interest from the community, and models of higher capacity such as 

online multiple kernel learning were developed. While these models learn nonlinearity, 

they are still shallow. Moreover, deciding the number and type of kernels is nontrivial; 

and these methods are not explicitly designed to learn a feature representation. 

Online learning can be directly applied to DNNs ("online backpropagation") but they 

suffer from convergence issues, such as vanishing gradient and diminishing feature reuse. 

Moreover, the optimal depth to be used for the network is usually unknown, and cannot 

be validated easily in the online setting. Further, networks of different depth would be 

suitable for different number of instances to be processed, e.g., for a small number of 

instances, shallow networks that can end up a quick convergence would be preferred, 

whereas, for a large number of instances, the long run performance would be enhanced 

by using a deeper network. This makes model architecture selection very challenging. 

There have been attempts at making deep learning compatible with online learning. 

However, that they operate via a sliding window approach with a mini-batch training 

stage make them unsuitable for a streaming data setting. 
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Chapter 3 Related Work 

 Sikuli 

Sikuli [6] was started in 2009 as an open-source research project in the User Interface 

Design Group at MIT. It uses image recognition techniques powered by OpenCV to 

identify GUI elements and provides a visual scripting API to operate GUI elements 

automatically. It shows a brand-new way to automate software testing for GUI 

applications. 

When generating a test script by Sikuli, one can take a screenshot of the GUI 

elements he wants to manipulates, and then the screenshot can be the target of a command 

in the test script. Usable commands include click, hover, type, etc. If he runs the script, 

Sikuli will search the target in the screen by image recognition and execute the command 

he has ordered. 

The most important revolution Sikuli achieved is readability and usability. Sikuli 

makes writing programs more easily. It puts the screenshots in the code so people can see 

what they want to control directly. If one wants to execute some mass and regular actions 

with a computer, a programmer may use a command line tool or write a program to call 

the API functions, but an ordinary person would be unable to do this. With the help of 

Sikuli, people communicate with applications written by others no longer need to read 

the obscure documents, nor do they have to understand what the underlying architecture 

is. Combining usual ways to use a mouse and a keyboard with screenshots, one can easily 

write a program that can be executed automatically. 

Sikuli supports different languages and platforms. It supports scripting languages 

including Python, Ruby, JavaScript, etc. One can programmatically control a web page, 
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a desktop application running on Windows/Linux/Mac OS X, or even an iPhone or 

Android application running in an emulator. 

 Crawljax 

Crawljax [7] is a well-known tool for crawling and testing modern web applications. 

It can explore any JavaScript-based Ajax web application through an event-driven 

dynamic crawling engine. It automatically produces a state-flow graph of the dynamic 

DOM states and the event-based transition between them. This inferred state-flow graph 

is powerful to facilitate the automation of many types of web analysis and testing 

techniques. 

However, it is still weak when bumping into the complex page. The main purpose 

of Crawljax is to completely crawl through the pages. After that, nothing will be done 

further. It will be a disaster if the crawled website page was designed badly or had 

undergone code compression. Both of the cases are hard for human to read through, not 

to mention making pattern analysis. 

 Tesseract 

Tesseract is an Optical Character Recognition (COR) engine. That is, it can 

recognize the text embedded in images. It was originally developed at HP Laboratories in 

1985. It was one of the top 3 engines in the 1995 UNLV Accuracy test. Between 1995 

and 2006 it had little work done on it, but since then it has been improved extensively by 

Google. The early versions of Tesseract could only accept TIFF images. Combined with 

the Leptonica library now it can read a wide variety of image formats. The count of 

languages it can recognize is over 100. 
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 Academic Work 

C.-H. Yu proposed Smart-Eye, a visualized service for web and mobile applications 

[8]. By utilizing image classification, it helps software tester organize and label data for 

the later testing scripts. Yu used RGB images as training data and applied a 6-layer 

convolutional neural network. The resulting accuracy of validation was 82.4%. 

C.-L. Li incorporated image classification with natural language processing (NLP) 

to identify the topic of a GUI element by its attribute, including text and image [9]. Li 

used residual network (resnet18 and resnet34) to perform image classification. As for 

NPL, Li employed BoW, tf-idf, and LSI to transform words to vectors, and computed the 

cosine similarity to the vectors of the corpus to determine the topic of an element. 
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Chapter 4 IconNet 

 Overview 

We build and train a CNN model to recognize GUI elements. We first present an 

overview of the whole procedures in this section and describe the implementation details 

in the following sections. 

As shown in Fig. 4.1, we first split the dataset into training data and validation data. 

We use the training data to train for 100 epochs. Whenever an epoch of training is done, 

we use validation data to see whether the validation accuracy is improved. If it is, we save 

it as the best model. 
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Fig. 4.1 Flow chart of our work 

 Data Preprocessing 

Grayscale 

We always read images in grayscale in our whole work, including training and 

predicting. Actually, the images in the data we use are all grayscale, even most of which 

are binary. Thus, the converting procedure will actually has effect only when predicting 

RGB images. 
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 Data Augmentation 

When undertaking a task related to deep learning, researchers are often faced with 

lack of data, which would result in overfitting. Data augmentation is the easiest and most 

common method to solve this problem. By modifying the original data, more data 

different from the original ones can be generated. 

4.3.1 Random Resized Cropping 

This is a commonly used method for data augmentation. It randomly resizes the 

original image with aspect ratio between 0.75 to 1.33 and crop part of it to generate more 

data. Although the image is change, it would still be acceptable to belong to the original 

class. 

 

Fig. 4.2 Effect of random resized cropping on an image 

4.3.2 Random Color Inverting 

In the dataset we use, images are mostly with white background. Nonetheless, there 

are sometimes icons with darker color as background in real-world. Fig. 4.3 shows a 

screenshot of "MoPTT" application and grayscale version of it. We can see that the 

background is darker than the foreground. It would be impracticable if we want to predict 

this kind of images with a model trained by only images with white background. Hence, 

we randomly invert the color of training data with probability of 0.5, hoping that our 

model can predict images with either lighter color or darker color as background. 
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Fig. 4.3 Screenshot of "MoPTT" 

4.3.3 Color Jittering 

Color jittering is to change the brightness, contrast, saturation, and hue of an image 

randomly. Because the images we use are binary, we only change contrast and brightness 

in this stage. Changing saturation and hue of binary images are useless. For similar reason 

we mention above, we want our data to be as diverse as possible to simulate the real-

world data. Most images in the dataset we use are binary. Even with color invert, there 

will be only images with white and black. Thus, we need color jitter to generate images 

with different contrast. Fig. 4.4 shows some images after color jittering. 
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Fig. 4.4 Effect of color jittering on an image 

 Network Architecture 

Layer Name Output Size 8-layer 14-layer 20-layer 

conv1 30×30 3×3, 64 3×3, 64 3×3, 64 

conv2_x 15×15 [
3 × 3, 64
3 × 3, 64

] × 1 [
3 × 3, 64
3 × 3, 64

] × 2 [
3 × 3, 64
3 × 3, 64

] × 3 

conv3_x 8×8 [
3 × 3, 128
3 × 3, 128

] × 1 [
3 × 3, 64
3 × 3, 64

] × 2 [
3 × 3, 64
3 × 3, 64

] × 3 

conv4_x 4×4 [
3 × 3, 256
3 × 3, 256

] × 1 [
3 × 3, 64
3 × 3, 64

] × 2 [
3 × 3, 64
3 × 3, 64

] × 3 

 1×1 average pool, 57-d fc 

Table. 4.1 Network architecture 

 

 

Fig. 4.5 Illustration of network architecture 

We first use a convolutional layer with output channel size equal to 64. The 

following are three more blocks of convolutional layers and we set the stride to be 2 to 

reduce the output size by half and double the channels. The last layer is fully connected 

with output size equal to the number of classes we want to predict. All layers except the 

last use ReLU activation. 
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 Implementation 

In the stage of random resized cropping, we mainly resize the images to 30×30. We 

also conduct the experiment that compares the performance of different image size, 

including 8×8, 15×15, and 60×60. We set batch size to 256. We use Stochastic Gradient 

Descent as the optimization algorithm and cross entropy as the loss function. The learning 

rate starts from 0.1 and is divided by 10 for every 30 epochs. The models are trained for 

up to 100 epochs. We use a weight decay of 0.0001 and a momentum of 0.9. 

Algorithm 3: train(training_data, model) 

for input, label in training_data: 

input ← data_augmentation(input) 

output ← model(input) 

losses ← loss_function(output, label) 

gradients ← backpropogation(loss) 

model.weights ← stochastic_gradient_descent(model.weights, gradients) 

end for 
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Algorithm 4: main(data_directory) 

training_data, validation_data ← split(data_directory) 

model ← initialize_model() 

learning_rate ← 0.1 

best_accuracy ← 0 

for epoch ← 1 to 100 

if epoch mod 30 == 0 

learning_rate ← learning_rate / 10 

end if 

train(training_data, model) 

accuracy ← validation(validation_data, model) 

is_best ← accuracy > best_accuracy 

best_accuracy ← max(accuracy, best_accuracy) 

save_checkpoint(model) 

if is_best: 

save_best_model(model) 

end if 

end for 
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Chapter 5 Online Learning based on Client-Server 

Model 

We build an online learning framework based on client-server model for users to use 

our model and update it. Users can get our model from the server and use it to predict the 

images appear in their SUT. If they think the predictions are incorrect, they can send back 

the images along with the corresponding labels that they think are correct. After theses 

data are checked by the inspector, the server can retrain the model. 

 

Fig. 5.1 Online learning framework 

This framework contains the following use cases: 

1. Send model: 

2. Upload image-label pairs 

3. Reviewing labeled examples via web pages. 

4. Periodic training of new models. 

(1) Training new models when there are no new labels, including refining 

models and retraining completely new models. 
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(2) Training new models when there are new labels. 

5. Get online new models. 

5.1.1 Server 

We set up a web server with Flask, which is a micro web framework written in 

Python. The server can respond to two kinds to requests: "get model" and "upload data". 

For "get model", the server sends back the latest model to the user who makes the request. 

For "upload data", the server will receive an image-label pair from the client and then 

save the image to the corresponding directory under the "upload" directory according to 

the label. We run a thread that check whether there are images in the "upload" directory 

at 0 o’clock every day. If there are, the server will train the model with the images in the 

"upload" directory and then move them to the "trained" directory. 
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Algorithm 5: Server 

function get_model(): 

    return model 

function upload_data(image, label): 

    save image to upload/label/ 

function check(): 

    start a thread that calls check() after 86400 seconds 

    if upload/ is not empty: 

        train the model with the images in upload/ 

function main(): 

    compute the remaining time t to 0 o'clock 

    start a thread that calls check() after t seconds 

 

5.1.2 Client 

The client can predict images in his SUT with the model received from the server. 

After he uses the model to predict the images, a report page will show up. This page 

contains three columns: "image", "prediction", and "check". As the names suggest, the 

columns of "image" and "prediction" show the images and the corresponding predictions 

given by the model. The column of "check" is for the user to check whether the 

predictions are correct. If he thinks the predictions are incorrect, he can click the "Wrong" 

radio button and select correct labels with the drop-down list. 

After the user checks all the results, he can click the submit button to submit the 

image that are marked as "Wrong" along with the corresponding labels to the server. What 

will happen next has mentioned in the previous section. 
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Fig. 5.2 Report page 
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Chapter 6 Experiments 

 Dataset 

We use the dataset "Common Mobile/Web App Icons" from kaggle and rearrange 

31490 images of 57 different classes from it. Each of them has the size of 200×200. Some 

sample images of every class are shown in Table 4.1. We further split the data into training 

and validation data randomly. Training data contains 23639 images and validation data 

contains 7851 images. 

Class Example Images Class Example Images 

add 
 

airplane 
 

battery 
 

bell 
 

Bluetooth 
 

bulb 
 

calculator 
 

calendar 
 

call 
 

camera 
 

car 
 

cart 
 

clock 
 

closed_lock 
 

cloud 
 

coin 
 

copy 
 

crop 
 

cut 
 

delete 
 

document 
 

down_arrow 
 

email 
 

eye 
 

Facebook 
 

fire 
 

flag 
 

folder 
 

gift 
 

heart 
 

help 
 

home 
 

info 
 

left_arrow 
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menu 
 

microphone 
 

moon 
 

music 
 

mute 
 

no 
 

open_lock 
 

pinpoint 
 

play 
 

refresh 
 

right_arrow 
 

search 
 

send 
 

settings 
 

share 
 

star 
 

tag 
 

thumbs_up 
 

trophy 
 

up_arrow 
 

user 
 

warning 
 

yes 
 

  

Table. 6.1 Some sample images of the dataset 

We also collect 53 images in real-world applications including "Google News", 

"Medium", "MoPTT", "reddit", "露天拍賣", and "YouTube" as test data to see whether 

our model can recognize icons in real-world applications correctly. 

Application Images 

Google News  
Medium  
MoPTT  
reddit  

露天拍賣  

YouTube 
 

Table. 6.2 Test data 

 Results 

Fig. 6.1 shows the validation accuracy of different network architecture. We can see 

that all of them would converge around 40 epoch. The accuracy of 8-layer network is 
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slightly lower than the others. 

 

Fig. 6.1 Validation accuracy 

Table 4.3 and table 4.4 show accuracy and elapsed time under different 

circumstances respectively. We can see that an 8-layer network architecture is enough to 

do the task well with accuracy up to 96.9%. Not surprisingly, a network with more layers 

spends more time on training, loading model, and predicting image. However, because a 

deeper network has more representational power, it can increase the accuracy a little bit. 

The accuracy of a 20-layer network is 97.1%. 

When the size of the input images is equal to 30×30, the test accuracy is the highest. 

The reason might be that the size the images in real-world applications are close to 30×30. 

If the size is smaller than 30×30, there is no enough information for the model to 

recognize different images. If the size is bigger than 30×30, the images in real-world 
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applications need to be resized to bigger size and would be distorted because of 

interpolation. 

With data augmentation, we can effectively predicting icons in real-world 

applications well. Although we have all binary images in our dataset, by augmenting them 

to mimic real images as similar as possible, the network can learn good knowledge from 

augmented data to deal with the real-world problem. 

  Accuracy 

  Training (%) Validation (%) Test (%) 

Network Architecture 

8-layer 89.8 95.6 94.3 

14-layer 92.2 96.9 90.6 

20-layer 92.1 97.1 90.6 

Size of Input Image 

8 80.7 87.7 64.2 

15 88.1 94.3 88.7 

30 89.8 95.6 94.3 

60 85.8 94.4 75.5 

Without Data Augmentation 89.6 95.5 35.9 

With Data Augmentation 89.8 95.6 94.3 

Table. 6.3 Accuracy 

  Elapsed time 

  Training (min) Loading (sec) Predicting (ms) 

Network Architecture 

8-layer 26 3.44 4.26 

14-layer 26 3.49 5.26 

20-layer 32 3.52 6.32 

Size of Input Image 

8 24 3.44 4.24 

15 25 3.50 4.57 

30 26 3.44 4.26 

60 46 3.47 4.37 

Without Data Augmentation 24 3.40 4.26 

With Data Augmentation 26 3.44 4.26 

Table 4.4 Elapsed time 
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Chapter 7 Conclusion 

In this thesis, we use CNN to train a model to recognize GUI elements in web and 

mobile applications. With a 20-layer neural network, the validation accuracy is 97.1% 

and the test accuracy is up to 90.6%. We also try to resize the input image to different size 

and compare the results. To recognize GUI elements in real-world applications, it would 

be appropriate if we set the size of images to be 30×30. With the size equal to 30×30, the 

test accuracy is up to 94.3. Because there are only binary images in our datasets, we use 

appropriate data augmentation methods to increase the test accuracy from 35.9% to 94.3%. 
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