R FIRFTAERTPBIREFT] T
AL~

Graduate Institute of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

FI* B PR s e 2 2400 2 BlA g~ 2
Using Image Classification Techniques to Recognize GUI

Elements in Web and Mobile Applications

HH 5

Qi-Zheng Lin

R 2~ L
Advisor: Farn Wang, Ph.D.

PER R 108 & 77
July, 2019

doi:10.6342/NTU201903613

>+ 2
A

CF LR R P R HED SR o AT R R P

o REE A AR - PR RAB IR Ra e o 2 AR EF LK

DERRMEHRESE - S o e FEL AP AT SR TS

2y

o E
fEREFORS REGIEF PR R A TR - Az R g
Woie EATIR (T4 & o M G FPR o

RisEdpA e+ Ry B mipad ﬁﬁﬁ& Kﬁﬁ@ﬁ&a@Jo

doi:10.6342/NTU201903613

EE ¥

HEFRPREFTEASRALZ T 2 SRR B0 a0 F FRNMF L
- B AR fwt A M b g AR T I T ik g
TgH B2 HE AL o Fl o o T 2 ST ARNR (TG s RS S
- BIMER IR -
FAEGRA NG AR PRERE > AP F R - BRAHKRE T RILRA G P
SR FE KGR RGEST R o BRI A R AR K ¢ F Y F 8 Rl ifenn
Ao AR R A PR B R R RA T AT o XA 0 FEd B A
P NPT UG R AT A DR & o Ao ko AP R Y B gl f R
WA AR R F 0 A2 SR b REET A

Bidhwme? NP R ET 31490 kR A2 ¢ A LeDRln 0 ¢ 3 5T
fo enfd s » 31 S A SRR BT gt TR R R B s SR e o A
PERT Ay TR 2 o T RARRIRR R AR DR i R
MEFER o et AR - BE U AT

B4 ITRERIE ~ BIHoS 8 - S SRR ARGV EH

doi:10.6342/NTU201903613

ABSTRACT

As the internet and smart phones become more and more common, plentiful web
and mobile applications show up. If an application is published with even some tiny flaws
in functionality or performance, it will fade away in the market rapidly, and the developers
will suffer tremendous losses. Consequently, how to test web and mobile applications
effectively and efficiently become an important issue.

When conducting software testing for GUI applications, we need a crawler to grab
the information of the GUI contents as much as possible in order to devise test scripts
accordingly. It is general that there are both text contents and image contents in GUI
applications. For the image contents, we may not always resolve the essence of them only
by a crawler. However, we can recognize the meaning of image contents with the aid of
image classification techniques. By doing so, we can understand the whole GUI contents
thoroughly and accurately and generate suitable test scripts.

In this thesis, we collect 31490 images of 57 different classes commonly seen in real
applications and use CNN to train a model to classify the images. We adopt some
appropriate methods of data augmentation to reach high accuracy of predicting image
contents in real-world applications. Besides, we build a framework update our model

continuously.

Keywords: software testing, image classification, convolutional neural network,

client-server model

doi:10.6342/NTU201903613

CONTENTS

E USRI £ 4 {407 WIS i
B2 BB & o e il
ABSTRACT et b ettt b e b et e e be e nre e beenree s i
CONTENTS ettt bttt be et e e be e et e e s be e s nbeesbeeenee e Y
LIST OF FIGURESot Vi
LIST OF TABLES ...ttt vii
Chapter 1 INTrOQUCTIONcueiiiiicieee e 1
1.1 BaCKgroUNG.........coviiiiiiii s 1
1.2 IMIOTIVALION ..ot 2
1.3 CONrIDULION....c.eiiiiiieic e 4
Chapter 2 PreliMINAries. 5
2.1 CTAWIEE . bbb 5
2.2 Convolutional Neural NetwWorkcccooiiiiiiiiiiieeie s 5
2.3 ONLING LEAIMNINGoitiitiitiiiieiieiieeee et 7
Chapter 3 Related WOTKoooie e 8
31 STKU e 8
3.2 CrAWIAX oot 9
33 TESSEIACT ...t 9
3.4 ACAAEMIC WOIK ..ot 10
Chapter 4 TCONNEL ..o bbbt 11
4.1 (@ 1T VT USSR 11
4.2 Data PreproCESSINGcceiviierieieieriesie sttt 12
iv

doi:10.6342/NTU201903613

4.3 Data AUGMENTALIONoviiviiiiiiisieieie e bbb 13

4.3.1 Random Resized Cropping......cccccccvereeieeiieeresieesee s eseesssesnessaans 13

4.3.2 Random Color INVErtiNGccccoveiveiiiieieese et 13

4.3.3 ColOr JILEIINGcceeiiieiecece e 14

4.4 Network ArchitECtUIecocovveiviiiiciiee e 15

4.5 IMPIEMENTALION ..o 16

Chapter 5 Online Learning based on Client-Server Model...........cccccovevveveiiieinennns 18
911 SBIVEN ..t 19

512 CHENE oo e 20

Chapter 6 EXPEIIMENTScviiieie ettt ettt reere s e e sreenee s 22
6.1 DALASEL ...t 22

0.2 RESUILS ..o 23

Chapter 7 CONCIUSION ..ot 26
REFERENC E ...ttt ettt ettt et nre e 27

\'

doi:10.6342/NTU201903613

LIST OF FIGURES

Fig. 1.1 Standard test FIOW CharT.........c.ooieiiie e s 2
Fig. 1.2 Part of screenshot of the "Google News" WebSIte ...t 3
Fig. 1.3 "User icons” from different applicationscccooovviiniiicienennc e 4
Fig. 4.1 FIOW Chart Of OUIr WOTKcooviiiiieice s 12
Fig. 4.2 Effect of random resized cropping 0N an imMagecccoovveeveeseeneneesennens 13
Fig. 4.3 SCreenshot Of "MOPT T ... e 14
Fig. 4.4 Effect of color jittering on an image.........cccoovverininiiiineee e 15
Fig. 4.5 [Hlustration of Network architeCturecccceoeieieiiniiiecee e 15
Fig. 5.1 Online learning frameWOrK...........c.cooiiiiiiieiees e 18
Fig. 5.2 REPOM PAGE....... et 21
Fig. 6.1 Validation ACCUTACYc.viieiiiiiiiiie et 24
vi

doi:10.6342/NTU201903613

LIST OF TABLES

Table. 4.1 Network arChiteCtureccooiii i et 15

Table. 5.1 Some sample images of the datasetccoovvieriiiiiniie e 23

Table. 5.2 TeSt AALA......ccvieiieiiec e 23

TADIE. 5.3 ACCUIACY ...eevieiieiiie ittt sttt ettt st teene e b e besneenneenes 25
vii

doi:10.6342/NTU201903613

Chapter 1 Introduction

1.1

Background

As the internet and smart phones become more and more common, plentiful web

and mobile applications show up. Developers faced with fierce competition are required

to develop high-quality applications faster than their competitors do. If an application is

published with even some tiny flaws in functionality or performance, it can still reduce

the will of users to use it because there are so many substitutes for it. As a result, the

application will fade away in the market rapidly, and the developers will suffer

tremendous losses. Consequently, how to test web and mobile applications effectively

and efficiently become an important issue.

Fig. 1.1 is the standard test flow chart. We can see that software testing usually

contains the following steps:

1.

Test plan: According to the specification about the requirements for functionality
or performance of the products provided by the users, define corresponding test
requirements. Meanwhile, arrange appropriate manpower, time, and resources.
Test design: Construct test procedures that can meet the test requirements defined
in the test plan. Design appropriate test cases, including test input, test conditions,
and expected results.

Test development: Implement reusable automated test procedures.

Test execution: Execute the test procedures and compare the expected results
with the actual ones.

Test evaluation: Generate test reports to show the results in an organized manner.

Evaluate the quality of the software under test (SUT).

1

doi:10.6342/NTU201903613

Testplan |—— Testdesign |— . Test Test execution |— Test evaluation
= development

Fig. 1.1 Standard test flow chart

1.2 Motivation

While the concept depicted in Fig. 1.1 is simple, to test a GUI application is quite
the opposite. When conducting software testing for GUI applications, we need a crawler
to grab the information of the GUI contents as much as possible in order to devise test
scripts accordingly. Although there are many helpful tools to do the task, obstruction still
exists.

Fig. 1.2 is part of the screenshot of "Google News" website. As illustrated in it, there
are icons that present corresponding meaning for every item, e.g., a magnifying glass icon
usually symbolizes "search”. It is general that there are both text contents and image
contents in GUI applications.

For the image contents, we may not always resolve the essence of them only by a
crawler, i.e., simply inferring the meaning of an image component by its id, name, and

other attributes might not success.

doi:10.6342/NTU201903613

Google News

Top stories

For you

Saved searches

'ﬁ’ Favorites
Q,

Fig. 1.2 Part of screenshot of the "Google News" website

However, for icons that aim at presenting similar concepts, they are often in similar
shapes. Fig. 1.3 shows "user icons" from different applications, including "Google News",
"MOPTT", "reddit", and "YouTube". As shown in Fig. 1.3, icons that represent the concept
of user are usually in the shape of a human’s outline. Thus, we can recognize the meaning
of icons with the aid of image classification techniques. By doing so, we can understand
the whole GUI contents not only thoroughly but also accurately and generate suitable test

scripts.

doi:10.6342/NTU201903613

(a) Google News (b) MoPTT (c)reddit (d) YouTube

Fig. 1.3 "User icons" from different applications
1.3 Contribution

In this thesis, we have the following contribution:

® Figure out appropriate parameters to build and train a neural network to
recognize GUI elements in web and mobile applications

® Apply suitable data augmentation methods so the model can recognize GUI
elements in real-world applications.

® Establish a framework to update the model continually.

doi:10.6342/NTU201903613

Chapter 2 Preliminaries

2.1 Crawler

A crawler, which is also known as a "spider" or a "bot", is a computer program that
automatically browses documents on the World Wide Web. Crawlers are primarily
programmed to do repetitive actions so browsing is automated. Search engines use
crawlers most frequently to browse the internet and build an index. Other crawlers search
different types of information such as RSS feeds and email addresses. The term crawler
comes from the first search engine on the Internet: the Web Crawler.

Crawlers consume resources on visited systems and often visit sites without approval.
Issues of schedule, load, and "politeness™ come into play when large collections of pages
are accessed. There are mechanisms for public sites not wishing to be crawled to make
this known to the crawling agent. For example, including a robots.txt file can request bots
to index only parts of a website, or nothing at all.

The number of Internet pages is very large; it is hard to make a complete index even
for the largest crawlers. For this reason, search engines strived to give relevant search
results in the early years of the World Wide Web, before 2000. Today, relevant results can

be given almost instantly.
2.2 Convolutional Neural Network

In 1998, Yann LeCun et al proposed the very first notable Convolutional Neural
Network (CNN) model, LeNet-5 [1]. Although CNN was limited because of the
insufficient computing power in the following years, it made another breakthrough in
2012 that AlexNet won the champion on ImageNet Large Scale Visual Recognition

Competition with top-5 error of 15.3%, outperforming the second place. Nowadays, CNN
5

doi:10.6342/NTU201903613

becomes the most useful technique when dealing with tasks related to image processing
and computer vision.

CNN contains the following stages:

1. Convolutional layers: Convolutional layers use several filters to do convolution
operations on the images. This trick has two characteristics: locally connected
and weight sharing. Locally connected means it can help extract the high-level
features in the image locally. In this stage, filters with the size smaller than the
images are used. Next, filters move with the size of stride and do convolutional
operation with the corresponding area. Weight sharing means every part of the
image shares the same parameter, which help reduce the computation complexity.

k k
Ymn = Z Z hi jXm—in—j
i=—k j=k

2. Pooling layers: Convolutional neural networks may include local or global
pooling layers to streamline the underlying computation. Pooling layers reduce
the dimensions of the data by combining the outputs of neuron clusters at one
layer into a single neuron in the next layer. Local pooling combines small clusters,
typically 2x2. Global pooling acts on all the neurons of the convolutional layer.
In addition, pooling may compute a max or an average. Max pooling uses the
maximum value from each of a cluster of neurons at the prior layer. Average
pooling uses the average value from each of a cluster of neurons at the prior layer.

3. Fully connected layers: Finally, fully connected layers with output size equal to
the classes are used. This stage use features extracted in previous hidden layers

to do the final prediction.

doi:10.6342/NTU201903613

2.3 Online Learning

Online learning is a machine learning method in which the data is provided in a
sequential manner and is used to update the best model for future data. Some techniques
are designed to learn linear models, such as Perceptron [2], Online Gradient Descent [3],
Passive Aggressive (PA) algorithms [4], Confidence-Weighted (CW) algorithms [5], etc.
As for nonlinear models, online learning with kernels can do the trick. These methods
received substantial interest from the community, and models of higher capacity such as
online multiple kernel learning were developed. While these models learn nonlinearity,
they are still shallow. Moreover, deciding the number and type of kernels is nontrivial,
and these methods are not explicitly designed to learn a feature representation.

Online learning can be directly applied to DNNs ("online backpropagation™) but they
suffer from convergence issues, such as vanishing gradient and diminishing feature reuse.
Moreover, the optimal depth to be used for the network is usually unknown, and cannot
be validated easily in the online setting. Further, networks of different depth would be
suitable for different number of instances to be processed, e.g., for a small number of
instances, shallow networks that can end up a quick convergence would be preferred,
whereas, for a large number of instances, the long run performance would be enhanced
by using a deeper network. This makes model architecture selection very challenging.
There have been attempts at making deep learning compatible with online learning.
However, that they operate via a sliding window approach with a mini-batch training

stage make them unsuitable for a streaming data setting.

doi:10.6342/NTU201903613

Chapter 3 Related Work

3.1 Sikuli

Sikuli [6] was started in 2009 as an open-source research project in the User Interface
Design Group at MIT. It uses image recognition techniques powered by OpenCV to
identify GUI elements and provides a visual scripting API to operate GUI elements
automatically. It shows a brand-new way to automate software testing for GUI
applications.

When generating a test script by Sikuli, one can take a screenshot of the GUI
elements he wants to manipulates, and then the screenshot can be the target of a command
in the test script. Usable commands include click, hover, type, etc. If he runs the script,
Sikuli will search the target in the screen by image recognition and execute the command
he has ordered.

The most important revolution Sikuli achieved is readability and usability. Sikuli
makes writing programs more easily. It puts the screenshots in the code so people can see
what they want to control directly. If one wants to execute some mass and regular actions
with a computer, a programmer may use a command line tool or write a program to call
the API functions, but an ordinary person would be unable to do this. With the help of
Sikuli, people communicate with applications written by others no longer need to read
the obscure documents, nor do they have to understand what the underlying architecture
is. Combining usual ways to use a mouse and a keyboard with screenshots, one can easily
write a program that can be executed automatically.

Sikuli supports different languages and platforms. It supports scripting languages
including Python, Ruby, JavaScript, etc. One can programmatically control a web page,

8

doi:10.6342/NTU201903613

a desktop application running on Windows/Linux/Mac OS X, or even an iPhone or

Android application running in an emulator.
3.2 Crawljax

Crawljax [7] is a well-known tool for crawling and testing modern web applications.
It can explore any JavaScript-based Ajax web application through an event-driven
dynamic crawling engine. It automatically produces a state-flow graph of the dynamic
DOM states and the event-based transition between them. This inferred state-flow graph
is powerful to facilitate the automation of many types of web analysis and testing
techniques.

However, it is still weak when bumping into the complex page. The main purpose
of Crawljax is to completely crawl through the pages. After that, nothing will be done
further. 1t will be a disaster if the crawled website page was designed badly or had
undergone code compression. Both of the cases are hard for human to read through, not

to mention making pattern analysis.
3.3 Tesseract

Tesseract is an Optical Character Recognition (COR) engine. That is, it can
recognize the text embedded in images. It was originally developed at HP Laboratories in
1985. It was one of the top 3 engines in the 1995 UNLV Accuracy test. Between 1995
and 2006 it had little work done on it, but since then it has been improved extensively by
Google. The early versions of Tesseract could only accept TIFF images. Combined with
the Leptonica library now it can read a wide variety of image formats. The count of

languages it can recognize is over 100.

doi:10.6342/NTU201903613

3.4 Academic Work

C.-H. Yu proposed Smart-Eye, a visualized service for web and mobile applications
[8]. By utilizing image classification, it helps software tester organize and label data for
the later testing scripts. Yu used RGB images as training data and applied a 6-layer
convolutional neural network. The resulting accuracy of validation was 82.4%.

C.-L. Li incorporated image classification with natural language processing (NLP)
to identify the topic of a GUI element by its attribute, including text and image [9]. Li
used residual network (resnetl8 and resnet34) to perform image classification. As for
NPL, Li employed BoW, tf-idf, and LSI to transform words to vectors, and computed the

cosine similarity to the vectors of the corpus to determine the topic of an element.

10

doi:10.6342/NTU201903613

Chapter 4 IconNet

4.1 Overview

We build and train a CNN model to recognize GUI elements. We first present an
overview of the whole procedures in this section and describe the implementation details
in the following sections.

As shown in Fig. 4.1, we first split the dataset into training data and validation data.
We use the training data to train for 100 epochs. Whenever an epoch of training is done,
we use validation data to see whether the validation accuracy is improved. If it is, we save

it as the best model.

11

doi:10.6342/NTU201903613

5

Dataset

H_/

Split data

Training
data

™ Train

Save

Yes

Validation
data

Validation

¥

Save
checkpoint

best model

l

Accuracy is
improved

4.2 Data Preprocessing

Grayscale

Epoch is
100

Fig. 4.1 Flow chart of our work

We always read images in grayscale in our whole work, including training and

predicting. Actually, the images in the data we use are all grayscale, even most of which

are binary. Thus, the converting procedure will actually has effect only when predicting

RGB images.

12

doi:10.6342/NTU201903613

4.3 Data Augmentation

When undertaking a task related to deep learning, researchers are often faced with
lack of data, which would result in overfitting. Data augmentation is the easiest and most
common method to solve this problem. By modifying the original data, more data
different from the original ones can be generated.

4.3.1 Random Resized Cropping

This is a commonly used method for data augmentation. It randomly resizes the
original image with aspect ratio between 0.75 to 1.33 and crop part of it to generate more

data. Although the image is change, it would still be acceptable to belong to the original

w X pAs

(a) Before (b) After

class.

Fig. 4.2 Effect of random resized cropping on an image
4.3.2 Random Color Inverting

In the dataset we use, images are mostly with white background. Nonetheless, there
are sometimes icons with darker color as background in real-world. Fig. 4.3 shows a
screenshot of "MoPTT" application and grayscale version of it. We can see that the
background is darker than the foreground. It would be impracticable if we want to predict
this kind of images with a model trained by only images with white background. Hence,
we randomly invert the color of training data with probability of 0.5, hoping that our

model can predict images with either lighter color or darker color as background.

13

doi:10.6342/NTU201903613

Nie

moEEn

FiRE

e

mMOEEE
FiRE

gl 2]

FUNERES SURERS

(a) Original (b) Grayscale
Fig. 4.3 Screenshot of "MoPTT"

4.3.3 Color Jittering

Color jittering is to change the brightness, contrast, saturation, and hue of an image
randomly. Because the images we use are binary, we only change contrast and brightness
in this stage. Changing saturation and hue of binary images are useless. For similar reason
we mention above, we want our data to be as diverse as possible to simulate the real-
world data. Most images in the dataset we use are binary. Even with color invert, there
will be only images with white and black. Thus, we need color jitter to generate images

with different contrast. Fig. 4.4 shows some images after color jittering.

14

doi:10.6342/NTU201903613

A

(a) Before (b) After
Fig. 4.4 Effect of color jittering on an image
4.4 Network Architecture
Layer Name | Output Size 8-layer 14-layer 20-layer
convl 30x30 3x3, 64 3x3, 64 3x3, 64
3% 3,64 3% 3,64 3% 3,64
com2x | 15315 [0 e lx 1[5 5l %2 355 edl
3><3,128 3 X 3,64 3 X 3,64
conv3_x 88 [33128 %1 [3x36al X2 [3x3ea) ¥3
3% 3,256 3 X 3,64 3 X 3,64
conv4_x dxa 3 x 3,256 5% 3, ol %2 5% 3, o) X3
1x1 average pool, 57-d fc

30x30x1 30x30x64

Table. 4.1Network architecture

15x15x6415x15x64

8x8x128 8xB8x128

Ax4x256

Ax4x256

]

—

f

conv2 X

convl

convd x
conv3 x =

Fig. 4.5

Illustration of network architecture

/

avg pooling

256

fe

We first use a convolutional layer with output channel size equal to 64. The

following are three more blocks of convolutional layers and we set the stride to be 2 to

reduce the output size by half and double the channels. The last layer is fully connected

with output size equal to the number of classes we want to predict. All layers except the

last use ReLU activation.

15

doi:10.6342/NTU201903613

4.5 Implementation

In the stage of random resized cropping, we mainly resize the images to 30x30. We
also conduct the experiment that compares the performance of different image size,
including 8x8, 15x15, and 60x60. We set batch size to 256. We use Stochastic Gradient
Descent as the optimization algorithm and cross entropy as the loss function. The learning
rate starts from 0.1 and is divided by 10 for every 30 epochs. The models are trained for

up to 100 epochs. We use a weight decay of 0.0001 and a momentum of 0.9.

Algorithm 3: train(training_data, model)

for input, label in training_data:
input < data_augmentation(input)
output <— model(input)
losses <— loss_function(output, label)
gradients < backpropogation(loss)
model.weights < stochastic_gradient_descent(model.weights, gradients)

end for

16

doi:10.6342/NTU201903613

Algorithm 4: main(data_directory)

training_data, validation_data <— split(data_directory)
model < initialize_model()
learning_rate < 0.1
best_accuracy < 0
for epoch < 1to 100

if epoch mod 30 ==

learning_rate < learning_rate / 10

end if

train(training_data, model)

accuracy <— validation(validation_data, model)

is_best <— accuracy > best_accuracy

best_accuracy <— max(accuracy, best_accuracy)
save_checkpoint(model)
if is_best:
save_best_model(model)
end if

end for

17

doi:10.6342/NTU201903613

Chapter 5 Online Learning based on Client-Server

Model

We build an online learning framework based on client-server model for users to use
our model and update it. Users can get our model from the server and use it to predict the
images appear in their SUT. If they think the predictions are incorrect, they can send back
the images along with the corresponding labels that they think are correct. After theses
data are checked by the inspector, the server can retrain the model.

5. Periodic check

2. Upload image-label pairs

Client U Server U Inspector

1. Send model 4. Return corrected data

3. Present uploaded data

(©

Fig. 5.1 Online learning framework
This framework contains the following use cases:
1. Send model:
2. Upload image-label pairs
3. Reviewing labeled examples via web pages.
4. Periodic training of new models.
(1) Training new models when there are no new labels, including refining

models and retraining completely new models.

18

doi:10.6342/NTU201903613

(2) Training new models when there are new labels.

5. Get online new models.
5.1.1 Server

We set up a web server with Flask, which is a micro web framework written in
Python. The server can respond to two kinds to requests: “"get model™ and "upload data".
For "get model™, the server sends back the latest model to the user who makes the request.
For "upload data", the server will receive an image-label pair from the client and then
save the image to the corresponding directory under the "upload™ directory according to
the label. We run a thread that check whether there are images in the "upload” directory
at 0 o’clock every day. If there are, the server will train the model with the images in the

"upload" directory and then move them to the "trained" directory.

19

doi:10.6342/NTU201903613

Algorithm 5: Server

function get_model():
return model
function upload_data(image, label):
save image to upload/label/
function check():
start a thread that calls check() after 86400 seconds
if upload/ is not empty:
train the model with the images in upload/
function main():
compute the remaining time t to 0 o'clock

start a thread that calls check() after t seconds

5.1.2 Client

The client can predict images in his SUT with the model received from the server.
After he uses the model to predict the images, a report page will show up. This page

contains three columns: "image", "prediction”, and "check". As the names suggest, the
columns of "image" and "prediction" show the images and the corresponding predictions
given by the model. The column of "check" is for the user to check whether the
predictions are correct. If he thinks the predictions are incorrect, he can click the "Wrong"
radio button and select correct labels with the drop-down list.

After the user checks all the results, he can click the submit button to submit the

image that are marked as "Wrong" along with the corresponding labels to the server. What

will happen next has mentioned in the previous section.
20

doi:10.6342/NTU201903613

Submit

|Image || Prediction || Check

— | mem * Correct
Fpp— Wrong, truth 1z | Bluetooth

o inoint * Correct
piip Wrong, truth is | Bluetooth

q search * Correct
Wrong, truth 1z | Bluetooth

i star * Correct
Wrong, truth 1z | Bluetooth

A ||lup_arrow * Correct
P_ Wrong, truth is | Bluetooth

@ ser * Correct
— Wrong, truth 1z | Bluetooth

'Q, bell * Comeet

Wrong, truth 1z | Bluetooth

Q cearch * Correct
Wrong, truth 1z | Bluetooth

* star * Correct
Wrong, truth 1z | Bluetooth

Fig. 5.2 Report page

21

doi:10.6342/NTU201903613

Chapter 6 Experiments

6.1 Dataset

We use the dataset "Common Mobile/Web App Icons™ from kaggle and rearrange
31490 images of 57 different classes from it. Each of them has the size of 200x200. Some
sample images of every class are shown in Table 4.1. We further split the data into training
and validation data randomly. Training data contains 23639 images and validation data

contains 7851 images.

Class Example Images Class Example Images

add |+ <+ ED:I e || airplane [~ o éx+
battery ([IlRED T ; bell Q ‘ @ O
Bluetooth * *@ R * bulb | ‘é Q @ Q
calculator | = @ calendar @@mus T ””” 1
call | @ A\ Q)) .| camera |{@REQ) & .m
car @-@Mﬁ" cart -Eﬁ Eggh
clock ®E):| E] ’@ closed_lock
cloud | @ @B coin
cooy |B LI @] erop
cut 3{) ;)é % >E delete
document B D % down_arrow \]HI/ ° g !
email |yl & ot Q eye KOO @OErD
Facebook E. .i fire o @ @(@7 @j
flag f“’ |\Z FIZ folder |5 ﬁzl:yﬁ
v B o v@@ov
help | &M w ? ? home ﬁ@ @
info i @@ @ @ left_arrow % 6[

22

doi:10.6342/NTU201903613

menu ==@ E] == | Microphone
moon (§ music
mute no
open_lock pinpoint
play refresh
right_arrow| = 2> => > D search
send ﬁ » \/ o ¥ | settings
share C@ e O(g 0(2 O<2 star
tag | P @0’ @ | thumbs_up
trophy 9 z ?@! up_arrow
user ‘;‘ &@ 8 | warning
e |V VD

0 YR @@

-0, 0 8 %O
{c}

SO OXK e
& O |we
B&OQ P &

* O WW W
SES &
®@% o o[f]
AH0040

Table. 6.1Some sample images of the dataset

We also collect 53 images in real-world applications including "Google News",

"Medium", "MoPTT", "reddit”, "#& = 43 ¢ ", and "YouTube" as test data to see whether

our model can recognize icons in real-world applications correctly.

Application Images

Google News =090 Q% 2 a
Medium Q O %
MoPTT 2002Q2¢
reddit 4 QCO® A vy RAB
Bt

B OO i = = ft
YouTube “T B
Table. 6.2Test data
6.2 Results

Fig. 6.1 shows the validation accuracy of different network architecture. We can see

that all of them would converge around 40 epoch. The accuracy of 8-layer network is

23

doi:10.6342/NTU201903613

slightly lower than the others.

100 4

80 4

—_—
(]
o~
~—
> 604
®)
O
| -
)
O
O 40
©
20 [—— 8-layer
- 14-layer
— 20-layer
0 20 40 60 80 100

epoch

Fig. 6.1 Validation accuracy

Table 4.3 and table 4.4 show accuracy and elapsed time under different
circumstances respectively. We can see that an 8-layer network architecture is enough to
do the task well with accuracy up to 96.9%. Not surprisingly, a network with more layers
spends more time on training, loading model, and predicting image. However, because a
deeper network has more representational power, it can increase the accuracy a little bit.
The accuracy of a 20-layer network is 97.1%.

When the size of the input images is equal to 30x30, the test accuracy is the highest.
The reason might be that the size the images in real-world applications are close to 30x30.
If the size is smaller than 30%x30, there is no enough information for the model to
recognize different images. If the size is bigger than 30x30, the images in real-world

24

doi:10.6342/NTU201903613

applications need to be resized to bigger size and would be distorted because of
interpolation.

With data augmentation, we can effectively predicting icons in real-world
applications well. Although we have all binary images in our dataset, by augmenting them
to mimic real images as similar as possible, the network can learn good knowledge from

augmented data to deal with the real-world problem.

Accuracy
Training (%) Validation (%) Test (%)
8-layer 89.8 95.6 94.3
Network Architecture 14-layer 92.2 96.9 90.6
20-layer 92.1 97.1 90.6
8 80.7 87.7 64.2
Size of Input Image 15 88.1 4.3 88.7
30 89.8 95.6 94.3
60 85.8 94.4 75.5
Without Data Augmentation 89.6 95.5 35.9
With Data Augmentation 89.8 95.6 94.3
Table. 6.3Accuracy
Elapsed time
Training (min) Loading (sec) Predicting (ms)
8-layer 26 3.44 4.26
Network Architecture 14-layer 26 3.49 5.26
20-layer 32 3.52 6.32
8 24 3.44 4.24
Size of Input Image 15 25 3.50 4.51
30 26 3.44 4.26
60 46 3.47 4.37
Without Data Augmentation 24 3.40 4.26
With Data Augmentation 26 3.44 4.26

Table 4.4 Elapsed time

25

doi:10.6342/NTU201903613

Chapter 7 Conclusion

In this thesis, we use CNN to train a model to recognize GUI elements in web and
mobile applications. With a 20-layer neural network, the validation accuracy is 97.1%
and the test accuracy is up to 90.6%. We also try to resize the input image to different size
and compare the results. To recognize GUI elements in real-world applications, it would
be appropriate if we set the size of images to be 30x30. With the size equal to 30x30, the
test accuracy is up to 94.3. Because there are only binary images in our datasets, we use

appropriate data augmentation methods to increase the test accuracy from 35.9% to 94.3%.

26

doi:10.6342/NTU201903613

REFERENCE

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. J. P. 0. t. I. Haffner, "Gradient-based learning
applied to document recognition,” vol. 86, no. 11, pp. 2278-2324, 1998.

[2] F. Rosenblatt, "The perceptron: a probabilistic model for information storage and
organization in the brain," vol. 65, no. 6, p. 386, 1958.

[3] M. Zinkevich, "Online convex programming and generalized infinitesimal gradient
ascent," in Proceedings of the 20th International Conference on Machine Learning
(ICML-03), 2003, pp. 928-936.

[4] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer, "Online
passive-aggressive algorithms,” vol. 7, no. Mar, pp. 551-585, 2006.

[5] M. Dredze, K. Crammer, and F. Pereira, "Confidence-weighted linear
classification,” in Proceedings of the 25th international conference on Machine
learning, 2008, pp. 264-271: ACM.

[6] T. Yeh, T.-H. Chang, and R. C. Miller, "Sikuli: using GUI screenshots for search
and automation,” in Proceedings of the 22nd annual ACM symposium on User
interface software and technology, 2009, pp. 183-192: ACM.

[7] A. Mesbah, E. Bozdag, and A. Van Deursen, "Crawling Ajax by inferring user
interface state changes,” in 2008 Eighth International Conference on Web
Engineering, 2008, pp. 122-134: IEEE.

[8] C.-H.Yu, "Using image classification for automatic page analysis on the testing of
Web APPs", Master Thesis of Dept. Electrical Engineering, National Taiwan

University, Jan. 2018.

27

doi:10.6342/NTU201903613

[9] C.-L. Li, "Predicting the topics of GUI elements with both NLP and image
classification techniques”, Master Thesis of Dept. Electrical Engineering, National

Taiwan University, Jul. 2018.

28

doi:10.6342/NTU201903613

