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摘摘摘要要要

隨著越來越多的量子位元能使用，量子邏輯閘的錯誤率變成急迫的議題。現

今有許多刻劃量子邏輯閘保真度的協議，像是量子過程解析。然而，因為量子過

程解析需要的資源成指數成長隨著量子位元數目變大，所以量子過程解析不在適

用。此外，量子過程解析無法區分態準備錯誤與測量錯誤與量子閘錯誤。隨機標

竿分析法能夠區分態準備錯誤與測量錯誤與量子閘錯誤且所需的資源少於量子過

程解析。現今，隨機標竿分析法比起量子過程解析被更頻繁的使用。然而，隨機

標竿分析法在實驗中有些不同於理論中的要求。也就是說，理論上的隨機標竿分

析法假設在實際實驗中是不實際的。我們在這篇論文中分析理論以及實驗的隨機

標竿分析法差別且介紹新的方法叫做基於原始閘的隨機標竿分析法。我們的基於

原始閘的隨機標竿分析法能夠更貼近實驗上的結果。透過數值模擬，我們展現我

們的基於原始閘的隨機標竿分析法比起理論隨機標竿分析法以及實驗隨機標竿分

析法有更多優勢。 關關關鍵鍵鍵字字字：：：量量量子子子過過過程程程解解解析析析，，，隨隨隨機機機標標標竿竿竿分分分析析析法法法，，，量量量子子子邏邏邏輯輯輯閘閘閘操操操

作作作，，，量量量子子子閘閘閘保保保真真真度度度
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Abstract

Recently with more and more qubits becoming available and functional, the er-

rors on qubit operations become an urgent issue. There are many protocols for char-

acterizing quantum gate operations such as quantum process tomography (QPT).

However, when the number of qubits become larger, QPT is no longer appropriate

due to its required resources exponentially growing with qubit size. In addition,

QPT mixes the state preparation and measurement (SPAM) errors with the gate

errors. Instead, randomized benchmarking (RB), another method for estimating the

gate error rate, can separate the SPAM errors from the gate errors. Moreover, the

resource requirement by RB is less than that by QPT. Nowadays, RB are frequently

used to characterize quantum gate operations. However, the situations to perform

RB in experiments is a little bit different from the RB theory requirements. That is,

the assumptions in some RB theory are impractical in the real experiments. We will

analyse the discrepancies and introduce our new method based RB, called primitive

randomized benchmarking (PRB). Our new method, PRB, can be made closer to

the real RB experiments. Through numerical simulations, we show that our pro-

posed PRB has several appealing advantages over RB and RB with decomposition

into primitive gates.

Keywords: Quantum process tomography, Randomized benchmarking,

Quantum gate operations, Gate fidelity
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Chapter 1

Introduction

There is no perfect thing in the world, neither do the computers. Classical com-

puters have errors, but they seem to work well. The secret is the error corrections.

The first step to correct the errors is to characterize the errors. Therefore, we follow

the classical procedure to first characterize the errors when we build quantum com-

puters. However, quantum computers are affected by noise much more easily than

classical computers because quantum states are much more fragile than classical

one, and even the heat fluctuation can destroy them at low temperature. One idea

is characterizing the noise as detailed as possible so that we can correct the tiny

errors caused by a small fluctuation. To follow the idea, quantum process tomog-

raphy (QPT) [2] is a method which can obtain the full information about the noise

on a process or a quantum gate. However, more details always come with more

resources, which makes QPT not friendly to experiments, not to mention that its

resource requirements grow exponentially with qubit size. Another way to charac-

terize the effect of quantum noise on a process or a quantum gate operation but not

to specify all the details of noise is the so-called randomized benchmarking (RB)

[6]. Because RB uses averaging to evaluate the effect of the noise, it requires less

resources than QPT. Another issue is that we may sometimes want to know only the

gate errors. However, running an experiment of a quantum circuit consisting of of

quantum gates usually requires three steps: state preparations, gate operations and

measurements. The errors, occurring on the first and last steps, are called the state

1
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preparations and measurement (SPAM) errors. Because the SPAM error is easier to

characterize, we only discuss issues on the gate errors. Thus, it is crucial to separate

the SPAM errors from the gate errors. Although QPT can get full information, it

mixes these errors. That is to say, it is sensitive to the SPAM errors. Compared

to QPT, RB is free from the SPAM errors due to its protocol design, which we

will discuss later. To visualize QPT, we can imagine the noise as a black box. For

different input states, the black box give us different corresponding output states.

The idea of QPT is that we characterize the black box by observing the output

states for different input states which were sent into the black box. Once we know

the details of the black box, we can predict the output state for any known input

state. To achieve the goal, we must send a lot of input states into the black box

and observe the corresponding output states. Knowing the effect of the black box

on the input states, we can calculate its effect on any other states. However, QPT

is a hard experimental procedure. If we have an N -dimensional Hilbert space, the

number of the set {ρi} of the required input states is N2. For each ρi, we have to

perform quantum state tomography to obtain the output state, i.e. determine the

density matrix consisting of N2 parameters. This implies that full quantum process

tomography needs to determine N4 numbers. For example, a process on single qubit

(N = 2) requires acquiring 16 data sets! This is why quantum process tomography

has so far been limited to very few qubits.

Another way to characterize the effect of the noise is RB, which is thought to be

more promising when facing more qubits. Because it uses average error value rather

the whole information of the noise, RB has only one relevant parameter to estimate

for the gate error rate, in contrast to N4 parameters of QPT. Another advantage

of RB is that it can separate the gate error from the SPAM error, whereas QPT

cannot. The RB protocol assumes that the preparation and measurement errors

are the same for every experiment. When the number of gates increases, the error

rate also increases. Thus, we can contribute this increasing error rate to the gate

operations. RB has only one parameter, called the depolarizing strength, which

2
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can be obtained from the decay of the survival probability with the Clifford gate

number. If the survival probability decays too fast, the uncertainty in fitting will

become too large to get the exact depolarizing strength. The experiment of two-

qubit gates in [7] reported the above situation. To deal with the problem, a method,

called character randomized benchmarking, has been proposed [8].

Many protocols based on RB have been developed to solve different problems,

such as interleaved RB [9] and dihedral benchmarking [10]. We propose a new

method, called primitive RB (PRB), to deal with the rescaling problem. When

the number of qubits become larger, the number of Clifford gates also becomes

substantially large. This may cause the finite size bias or effect in a real experiment.

Moreover, each gate is composed of many primitive gates in a real experiment. When

the number of qubits becomes larger, the number of primitive gates to compose each

Clifford gate increases. Thus, the survival will decay fast using the original RB. Our

PRB tries to solve the two problems mentioned above.

This thesis is organized as follows. In Chap. 2, we introduce some mathematical

concepts an tools that are useful for describing and understanding the technique of

RB. In Chap. 3, we describe the main ideas and advantages of RB and PRB. In

Chap. 4, we present the protocols of how we perform simulations and describe the

noise models we use. In Chap. 5, we describe two problems which the original RB

face and present simulation results to show that our PRB can work better. In Chap.

6, we summarize what we have done and discuss the possible future works.

3
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Chapter 2

Mathematical background

In this chapter, some useful mathematical concepts and background essential for

RB are introduced.

2.1 Pauli group and Clifford group

The simplest Pauli group P1 on single qubit contains 16-element matrix group

consisting of the 2 × 2 identity matrix and all of the Pauli matrices

I =

1 0

0 1

 ,X = σ1 =

0 1

1 0

 , (2.1)

Y = σ2 =

0 −i

i 0

 ,Z = σ3 =

1 0

0 −1

 , (2.2)

combined with four multiplicative factors {+1,−1,+i,−i} with matrix multiplica-

tion as a group operation. Thus, the total 16-element P1 are

P1 = {±I,±iI,±X,±iX,±Y,±iY ,±Z,±iZ}. (2.3)

4
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The general Pauli group Pn on n qubits is generated from all n-fold tensor products

of Pauli matrices with overall phase {+1,−1,+i,−i}

Pn = {±1,±i} × {I, X, Y, Z}⊗n. (2.4)

Moreover, the commutator and anticommutator of Pauli matrices are

[σi, σj] = 2iεi,j,kσk, (2.5)

{σi, σj} = 2iδi,jI, (2.6)

where εi,j,k is the Levi-Civita antisymmetric tensor and δi,j is the Kronecker delta.

In this paper, we define Clifford group on n qubits Cn [11] different from the usual

one. Namely, we ignore the 8 different elements with different in each Clifford gate

global phases which make difference when operated on quantum computer because

the statistics of the measurement outcomes of U and eiφU are the same. This

definition is more convenient because the total number of group elements will be

less eight times than the usual one. The Cn is any unitary that take Pauli into

Pauli via conjugation.

Cn = {U ∈ U(2n)|σ ∈ ±P ∗
n ⇒ (UσU †) ∈ ±P ∗

n}/U(1) (2.7)

P ∗
n = Pn\{I⊗n} (2.8)

Take single qubit Clifford group C1 for example. We know that±P ∗
1 = {±X,±Y,±Z}.

The structure of P ∗
1 remains the same under conjugation. For example,

Y = −iXZ ⇒ UY U † = −iUXU †UZU † (2.9)

5
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Therefore, we don’t keep track of Y in all of this because if we know how X and

Z behave, we also get Y ’s behavior from Eq.(2.9). Moreover, from Eq.(2.5) X

and Z anticommuate and so do the UXU † and UZU †. The Clifford elements can

map X to any element of ±P ∗
1 ,which have 6 options and map Z to any element of

±P ∗
1 \{±UXU †} = {±Y,±Z}, which have 4 options. So, the number of elements

in C1 is 6 × 4 = 24. Table 2.1 shows the 24 gates in a single-qubit Clifford group,

which is 8 times less than the usual Clifford group.

Gate name θ nx ny nz
I 0 0 0 0
V 1

2
π 1 0 0

X π 1 0 0
V† −1

2
π 1 0 0

h† 1
2
π 0 1 0

Y π 0 1 0
h −1

2
π 0 1 0

S 1
2
π 0 0 1

Z π 0 0 1
S† −1

2
π 0 0 1

π 1√
2

1√
2

0

H π 1√
2

0 1√
2

π 0 1√
2

1√
2

π − 1√
2

1√
2

0

π 1√
2

0 - 1√
2

π 0 - 1√
2

1√
2

2
3
π 1√

3
1√
3

1√
3

-2
3
π 1√

3
1√
3

1√
3

2
3
π - 1√

3
1√
3

1√
3

-2
3
π - 1√

3
1√
3

1√
3

2
3
π 1√

3
- 1√

3
1√
3

-2
3
π 1√

3
- 1√

3
1√
3

2
3
π 1√

3
1√
3

- 1√
3

-2
3
π 1√

3
1√
3

- 1√
3

Table 2.1: 1-qubit Clifford group [4] θ is the rotation angle. nx, ny and nz
correspond to the weighted direction of rotation around x-axis, y-axis and z-axis,
respectively.

Indeed, the number of elements in the Clifford group Cn is [12]

|Cn| =
n∏
i=1

2(4i − 1) · 4i. (2.10)

6
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n |Cn|
1 24
2 11250
3 92897280
4 12128668876800
5 25410822678459187200

Table 2.2: Number of elements in the Clifford group Cn

As you can see from Fig.2.2 the number of Clifford group grows with n very quickly.

It is not wise to produce each of the all Clifford elements by individual pulse or way.

In fact, we can decompose each Clifford element into specific subgroup [12], called

generators, e.g., H, S and CNOT

H =
1√
2

1 1

1 −1

 , S =

1 0

0 i

 , CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (2.11)

However, there still are other choice to generate Clifford group. In this thesis, we

simulate different generator sets discussed later.

2.2 Average gate fidelity

To characterize the performance of gate operation, one needs to define a criterion.

First, we consider that gate performance may be affected by the input state. For

example, in Fig.2.1 (a), the input state is the zero state|0〉, the ideal gate is taken

to be the identity gate I, and the noise can be imagined as Z. The noisy output

state in this case is still the zero state |0〉, which is the same as noiseless case. This

means that zero state |0〉 is robust under the Z noise. However, in Fig.2.1 (b), the

set up is all the same as in Fig.2.1 (a) expect that the input state is the plus state

|+〉 = |0〉+|1〉√
2

. In this case, the output state becomes the minus state |−〉 = |0〉−|1〉√
2

,

which is different from the noiseless case. Thus, we say that the plus state |+〉 is

not robust under the Z noise. Because the input state affects the performance of

7
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Figure 2.1: The performance of gate under different input states. ID is
identity gate which is our target gate and Z is Pauli-Z which is our noise. The input
state is (a) the zero state |0〉. We see the output state is the same at that of noiseless
case. The input state in (b) is the plus state |+〉. We see the output state changes
to the |−〉 state. That is, the |+〉 state is affected by the Z noise.

the gate, we have to take all the different input state into consideration. However,

because there are infinite number of input states, inputting them one by one will be

impossible and inefficient. A better way is averaging all of the effect caused by all

the input state. The definition of average fidelity of gate (channel) Favg [2] is

Favg(E) =

∫
dψ 〈ψ|E(ψ)|ψ〉 , (2.12)

where the integral is over the uniform Haar measure dψ on whole state space with

normalization
∫
dψ = 1. In RB, we usually extend Eq.(2.12) to

Favg(E ,U) =

∫
dψ 〈ψ|U †EU(ψ)|ψ〉 , (2.13)

where U represents ideal gate and E represents noisy implementation gate. Thus,

Eq.(2.13) shows how well E approximates U . If Favg(E ,U) = 1, E is implemented

perfectly like ideal gate U . However, if Favg(E ,U) < 1, it implies that E is imple-

mented with errors.

8
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2.3 Unitary 2-Design

Now, we have to integrate all the input states to obtain the average gate fidelity.

For a qubit, one may take the the whole input states to be all the pure states.

For example, the surface of the Bloch sphere represents all possible pure states as

shown in Fig.2.2. However, the number of pure states is infinite as the points on

the surface. In experiment, it would be impossible to test all the pure states. Thus,

we define a discrete set Uk with probability pk such that

K∑
k=1

pkU
†
kE(UkρU

†
k)Uk =

∫
U †E(UρU †)U dU. (2.14)

A discrete set Uk with this property is called unitary 2-design. Usually, we find that

such discrete set is uniformly distributed, that is pi = 1
K

. The main idea of unitary

Figure 2.2: Bloch sphere. The outer surface represents all the pure states on a
Bloch sphere, and the origin is a maximally mixed state.

2-design is that using finite elements to represent infinite elements’ behavior. Thus,

in experiment, we can design the system Hamiltonian to operate the finite elements.

In other words, averaging over a unitary 2-design set (uniform distribution over

the Clifford group) is equivalent to averaging over the uniform Haar distribution.

Moreover, randomly choosing a unitary element from the Clifford group is indistin-

guishable from choosing from the uniform Haar distribution as shown in Fig.2.3.

We say that Clifford group is unitary 2-design [13].

9
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Figure 2.3: The schematic diagram of Haar unitary [1]. (a) all the Haar
random unitary elements in the red region. (b) a distribution of the unitary design
of elements at the red dots. (c) We can design a system containing the specific
Hamiltonian. (d) If the unitary design set is a group, each element have its inverse
one. That is, each element can go back to identity.

2.4 Quantum channel

When we talk about the Schrodinger’s equation, we write down the state evo-

lution |ψf〉 = U |ψi〉. We say that the evolution U map initial state |ψi〉 to final

state |ψf〉. Generally, the state may not be pure state. Thus, we replace pure state

|ψ〉 with density operator ρ. Then, the mapping of density operator ρi to another

density operator ρf is called quantum channel. Usually, one uses E(ρ) to describe

the effect of a system of Hilbert space dimension d through a quantum channel in

operator-sum representation as

E(ρ) =
M∑
k=1

EkρE
†
k, (2.15)

10
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with the quantum (Kraus) operators Ek satisfying

M∑
k=1

E†kEk ≤ I, (2.16)

and 1 ≤M ≤ d2.

2.4.1 Depolarizing Channel

The depolarizing channel Fig.2.4 maps uniformly pure state into mixed state and

it is defined as follows,

E(ρ) = pρ+ (1− p) I
2

(2.17)

= (
1 + 3p

4
)ρ+

1− p
4

(XρX + Y ρY + ZρZ), (2.18)

where p is the depolarizing parameter. It implies that input state with probability

p remains unchanged and completely lose information with probability 1 − p. The

Kraus operators Ek are
√

1 + 3pI/2,
√

1− pX/2,
√

1− pY/2,
√

1− pZ/2.

Figure 2.4: Single qubit depolarizing channel [2]. It shows the effect of the
depolarizing channel on the Bloch sphere of a qubit system.

11
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2.4.2 Dephasing Channel

The dephasing quantum channel can be described by

E(ρ) = (
1 + p

2
)ρ+ (

1− p
2

)ZρZ. (2.19)

Dephasing channel implies that input state will lose phase information with prob-

ability 1 − p and remains unchanged with probability p. The Kraus operators are√
1+p

2
I,
√

1−p
2
Z. The dephasing channel shrink equator of pure states on the Bloch

sphere into elliptical ball, as shown in Fig.2.5.

Figure 2.5: Single qubit dephasing channel [2]. It shows the effect of the de-
phasing channel on the Bloch sphere of a qubit system.

12
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Chapter 3

Randomized Benchmarking

We introduce randomized benchmarking (RB) to characterize the gate perfor-

mance. Moreover, we propose a new method based on RB, called primitive random-

ized benchmarking (PRB).

3.1 Randomized Benchmarking

RB [6] was proposed for its less resource requirement compared to QPT. It

uses unitary 2-design (Clifford group) to obtain the average gate fidelity. The RB

procedure is as follows.

1. prepare an initial state ρ, which is usually the ground state |0〉 〈0|.

2. uniformly and randomly choose gate Ci from the Clifford group gate set.

3. apply the inverse gate Cinv = (
∏m

i=1 Ci)
† which will reverse the whole sequence

and the whole sequence become identity gate I.

4. repeatedly execute for the sequence, choose different sequences in length m and

vary length m

5. fit the survival probability = Apm+B, where A and B absorb the state preparation

and measurement (SPAM) error, and p is the depolarizing parameter.

Figure 3.1: Randomized benchmarking sequence
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3.1.1 Advantage of using RB

There are several advantages of using RB to characterize the gate performance.

The first advantage is that RB can separate the gate error from the SPAM error.

The main idea is that the experiment on the RB sequence is composed of 3 parts:

state preparation, gate operation, and measurement. For different gate length m,

the survival probability will decay. However, the state preparation and measurement

are fixed for every sequence. Thus, the reason why the survival probability will drop

with the gate length is due to the gate error in each gate. With a longer gate length,

the survival probability becomes smaller. The second advantage is that it needs only

one input state which usually is computational basis |0〉. That’s because its following

random Clifford operations will take the input state into a uniformly distribution

on the whole unitary group. Here, we take one input state and randomized Clifford

operations rather than many input states to average over the whole input states.

The third advantage is that RB has a simple formula Apm + B for fitting [6] and

the average gate fidelity Favg is related to p through [8].

Favg =

∫
U †E(UρU †)U dU. (3.1)

=
1

K

K∑
k=1

C†kE(CkρC
†
k)Ck (3.2)

= p+
1− p

2n
(3.3)

The equality of Eq (3.2) is because Clifford group C is a unitary 2-design. Thus,

we can directly focus on Clifford group gates Ck to get the whole unitary gates.

Eq (3.3) comes from the reason that every quantum channel become depolarizing

channel after the randomized Clifford group gate operations Ck. The noiseless case

process is

Cinv ◦ Cm · · · ◦ C2 ◦ C1 ◦ ρ.

14
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With noise, the RB sequence becomes

Cinv ◦ Λ ◦ Cm ◦ · · ·Λ ◦ C2 ◦ Λ ◦ C1 ◦ ρ.

where Λ represents a noisy channel. After inserting C†1C1 between Λ and C2, the

sequence becomes

Cinv ◦ Λ ◦ Cm ◦ · · ·Λ ◦ C2 ◦ C1 ◦ C†1 ◦ Λ ◦ C1 ◦ ρ.

Noting that the insertion will not change the original sequence because of C†1C1 = I.

Moreover, we change notation D1 ≡ C1 such that

Cinv ◦ Cm ◦ Λ ◦ · · ·Λ ◦ C2 ◦ C1 ◦D†1 ◦ Λ ◦D1 ◦ ρ.

To here, it is a repeating procedure. We insert C†2C
†
1C1C2 between Λ and C2;

D2 ≡ C1C2 such that

Cinv ◦ Λ ◦ Cm · · ·D†2 ◦ Λ ◦D2 ◦D†1 ◦ Λ ◦D1 ◦ ρ.

Repeat and repeat, we can get

Cinv ◦D†m ◦ Λ ◦Dm · · ·D†2 ◦ Λ ◦D2 ◦D†1 ◦ Λ ◦D1 ◦ ρ

= Cinv ◦ {D†i ◦ Λ ◦Di}m ◦ ρ,

where Di = C1C2...Ci. Therefore, single gate and noise {Di ◦ Λ ◦ D†i} is similar

to Eq. (3.2) and the single noise channel Λ becomes the depolarizing channel [8].

Many gates and noise channels become Apm +B [6].

15
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3.2 PRB

We propose PRB based on RB. The difference is that we do not randomly choose

from the Clifford group. Instead, we choose gate from the primitive gate set. The

motivation is that, in experiment, we actually use some specific gate set, called

primitive gates, to generate the gates in the Clifford group. The Gottesman-Knill

theorem [14][15][16] states that the Clifford group can be generated by H, S and

CNOT. Moreover, for single-qubit case the generator become H and S. Therefore,

in experiment, people use different gate set that is easier to implement in their

experiment, called primitive gate, to construct the Clifford gates. For example, in

IBM transmon qubit system, people used the single-qubit gate set X-π
2

and virtual Z

[17] and the two qubit gate CNOT [18]. The UNSW team used in there silicon qubit

system the single-qubit gate set (I, X, Z, 2π/3, X/2, Z/2, H) [3], and the two-qubit

gate set (X/2, X/2 + CROT, Z-CROT, CROT and the virtual Z) [19]. Because

different Clifford gates can be generated by different combination of the primitive

gates, which means different physical processes, different Clifford gates may have

been through different noise channels. For example, in virtual-Z gate set [17], the

Clifford Z gate is noiseless due to its design. But for X gate and Y gate, they used

real control pulses to implement in reality, and these gates unavoidably have noise.

However, the original RB required every Clifford gate to have the same or close

enough error. Because there is a gap between the RB theory and experiments toward

noise for each Clifford gate, we propose a new method of PRB, trying to connect

the theory with experiments more effectively. PRB has the same procedure as RB,

but does not choose randomly the gates from the Clifford group. Instead, PRB

calculate the times and the probability distribution the primitive gates appear when

constructing each Clifford gate and choose the primitive gates randomly but with

appearance according to their probability distribution. For example, single qubit

Clifford gates in Table 3.1 are generated by the primitive gates (I,±X
2
,±Y

2
, X, Y ).

Each Clifford gate contains an average of 1.875 primitive gates. The distribution

of primitive gate appearance (I, X, X
2
,−X

2
, Y, Y

2
,−X

2
) is (1,4,12,8,4,8,8). Thus, we

16



doi:10.6342/NTU202100392

choose primitive gates from the appearance distribution. The PRB has the following

procedure:

1. prepare initial state ρ, which is usually the ground state |0〉 〈0|

2. randomly choose primitive gate Pi according to its appearance distribution for

the Clifford group

3. apply the inverse gate Pinv = (
∏m

i=1 Pi)
† which will reverse the whole sequence

back to the original initial state and the whole sequence become identity gate I.

4. repeatedly execute the sequence in length mp for some certain times, choose

different sequences in the same length mp then vary the length mp and repeat the

same procedure for the new length mp. Noting that here length m = mp

κ
is Clifford

gate number, mp is primitive gate number and κ is the average number of primitive

gate per Clifford gate on average.

5. fit the survival probability = Apm + B, where coefficients A and B absorb state

preparation and measurement (SPAM) error and p is depolarizing parameter.

3.2.1 Advantages of PRB over RB

Compared with RB, PRB is more flexible and has more data points for a given

sequence length. For example, RB sequence length is [1,2,3,4,5]. If each Clifford gate

is composed by 2 primitive gates on average, we need to apply 2 pulses to achieve

one Clifford gate on average. When we do the RPB, the primitive gate sequence

length will be converted to Clifford gate length. Thus, the PRB primitive gate

sequence length [1,2,3,4,5] is converted to Clifford gate sequence length as [0.5, 1,

1.5, 2, 2.5]. We can see that PRB can have more data points for a given m value than

RB because PRB can have the data on rational numbers, but RB only have data

on integer numbers. PRB can be more reliable than RB when gate fidelity is low.

Low gate fidelity will cause the RB sequence curve to drop too fast to have small

deviation. The low gate fidelity usually happens when the number of qubits becomes

large. Vandersypen’s group reported that [7] they did find the gate fidelity due to

the large uncertainty when performing the fitting. Therefore, they proposed the
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Clifford gate Physical gates
1 I
2 Y/2, X/2
3 −X/2,−Y/2
4 X
5 −Y/2,−X/2
6 X/2,−Y/2
7 Y
8 −Y/2, X/2
9 X/2, Y/2
10 X, Y
11 Y/2,−X/2
12 −X/2, Y/2
13 Y/2, X
14 −X/2
15 X/2,−Y/2,−X/2
16 −Y/2
17 X/2
18 X/2, Y/2, X/2
19 −Y/2, X
20 X/2, Y
21 X/2,−Y/2, X/2
22 Y/2
23 −X/2, Y
24 X/2, Y/2,−X/2

Table 3.1: The decomposition table of the single qubit Clifford gates [5]

18
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character randomized benchmarking [8] to deal with the large uncertainty. In PRB,

we handle this problem by more intuitively way that is adding more data points in

between. PRB can have acceptable accuracy even when the maximum Clifford gate

sequence length is small. That the number of maximum sequence length is small

means people can perform fewer physical operations, or pulses. Thus, PRB is more

friendly for the experiment. The reason is that the RB decay curve constructed by

the PRB method can provide have more information when sequence length is small.

Once more information about the decay behavior when the sequence length is small

is known, it helps to fit the function Apm +B more accurately.

3.3 DRB

Direct randomized benchmarking (DRB) is another method for characterizing

gate fidelity [20]. The DRB procedure is as follows.

1. prepare an initial state ρ, which is usually the ground state |0〉 〈0|.

2. uniformly and randomly choose a gate Ci from the Clifford group gate set and

decompose the Clifford gate into its corresponding primitive gates.

3. randomly choose primitive gate Pi according to a user-defined distribution

4. apply a gate Dt which transforms the whole circuit into a multi-qubit computa-

tional basis state.

5. repeatedly execute the sequence in length mp for some certain times, choose

different sequences in the same length mp, then vary the length mp and repeat the

same procedure for the new length mp.

6. fit the survival probability = Apmp +B, where coefficients A and B absorb state

preparation and measurement (SPAM) error and p is depolarizing parameter.

3.3.1 A comparison between PRB and DRB

The similarity between PRB and DRB is that both use the primitive gate distri-

bution to benchmarking the gate fidelity. However, the goal of DRB is to evaluate
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the gate fidelity of the primitive gate set by the user-defined primitive gate distri-

bution. This is useful for strong gate-dependent error. For example, in their paper,

they want to evaluate the error of CNOT gate whose error rate is higher than other

single qubit gates. They use two distributions with CNOT appearance probabilities

of pCNOT = 0.75 and pCNOT = 0.25 within one primitive gate, respectively. That

is, at step 3, we have probability pCNOT = 0.75 (or pCNOT = 0.25) of choosing a

CNOT gate. If the error rate of CNOT gate dominates, then the the error rate

for pCNOT = 0.75 distribution is three times larger than that for pCNOT = 0.25

distribution. However, PRB try to evaluate the average error rate per Clifford gate

which is with the same goal as the original RB. PRB’s goal is to solve the gap of

the primitive gate decomposition of the Clifford gate between the theory and the

experiment. Thus, we have to transform the primitive gate length into the Clifford

gate length for PRB (c.f. DRB) and thus the distribution is not user-defined for

PRB (c.f. DRB). We observe that using a wrong distribution of choosing primitive

gates for PRB fails to obtain a result consistent with the experiment value, which

will be discussed in section 5.1.
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Chapter 4

Protocols

In this Chapter, we simulate RB, RB with decomposition and PRB behaviors

under different types of noise.

4.1 Protocols

4.1.1 Protocol of RB

The protocol of RB is as follows.

1. Prepare an initial state ρ

2. Uniformly and randomly choose Clifford gates C from Clifford group

3. Apply the inverse gate Cinv =
∏m

i=1(Ci)
† and perform the measurements.

4. Repeatedly execute the sequence of length m, choose different sequences of length

m and repeat step 3. Vary the length m and repeat steps 3 and 4.

5. Fit Apm +B by using the weighted least squares method and set B = 1
2
.

At step 1, we usually let ρ = |0〉 〈0| because |0〉 〈0| is a common computational basis

state. After step 3, noiseless RB sequence becomes

Cinv ◦ Cm · · · ◦ C2 ◦ C1 = I, (4.1)

and we measure the RB sequence and always get survival probability equal 1. That

is, the initial state doesn’t change after the RB sequence. However, in real world,
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because noise is everywhere, the noisy RB sequence becomes

˜Cinv ◦ C̃m · · · ◦ C̃2 ◦ C̃1 6= I, (4.2)

where C̃i with i = 1, 2...m is noisy a Clifford gate. In contrast to the ideal RB

sequence, the resultant state after the noisy RB sequence cannot maintain at the

same initial state. The survival probability drops when the sequence length m

increases.

4.1.2 Protocol of RB with decomposition

In realistic experiment, we usually have to decompose each Clifford gate. That

is, Clifford gates are not operated individually directly. Some specific gates, called

the primitive gates, are used or combined to construct the Clifford gates. Thus, RB

with decomposition by the primitive gates has the following steps

1. Prepare an initial state ρ

2. Uniformly and randomly choose Clifford gates C from Clifford group

3. Apply the inverse gate Cinv =
∏m

i=1(Ci)
†.

4. Decompose each Clifford gate into primitive gates and execute and measure the

sequence with m Clifford gates.

5. Repeatedly execute the sequence of the length m, choose different sequences of

length m and repeat step 3 and 4. Vary length m and repeat step 3, 4, and 5.

6. Fit Apm +B by using the weighted least squares method and set B = 1
2
.

We see that the difference between the RB theory and realistic RB experiment im-

plementation is the decomposition of Clifford gates. The simple RB theory assumes

that every Clifford gate has the same error. However, when we execute each single

Clifford gate, we decompose the Clifford gate into the combination of the primitive

gates which are often also Clifford gates. For example, a Hadamard gate can be

achieved by a π
2

rotation around the Y-axis, followed by a π rotation around the

X-axis. That is, H = XπYπ/2. Here, Xπ and Yπ/2 are the primitive gates and also
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the Clifford gates. In simple RB theory, we consider this Hadamard gate have an

error, but, in experiment, due to decomposition, it has twice the errors if assuming

that each Clifford gates has the same error. We will see the contradiction in the

simulation results in Chapter 5. To solve this problem, we propose that RB with

decomposition has to rescale the number of gate length. That is, we do not view a

Clifford gate with decomposition as one single gate length. Instead, we evaluate it

by how many primitive gates on average it needs . The procedure of the rescaled

RB with decomposition is as follows.

Steps 1-5 are the same as RB with decomposition described above.

Step 6. Fit Apḿ+B by using weighted least squares and set B = 1
2
, where ḿ = m ·κ

and κ is the average number of primitive gates needed to construct a Clifford gate.

For example, the primitive gate set {I,±Xπ/2,±Yπ/2, Xπ, Yπ} can construct the

whole single-qubit Clifford group Table 3.1. We add up all the primitive gates

used in decomposition table and divide by 24, the number of single-qubit Clifford

group elements. The average number of the primitive gates per Clifford gate used is

1.875. In this case, κ = 1.875, we rescale the number of single Clifford gate length

1 to 1.875.

4.1.3 Protocol of PRB

Although RB with decomposition can be modified by rescaling, we find that the

rescale method fails when face large κ. To solve this problem, we propose another

protocol, called PRB, which has the following steps:

1. Prepare an initial state ρ.

2. Randomly choose primitive gates Pi not uniformly but weighted according to the

decomposition table or the appearance distribution.

3. Apply the inverse gate Pinv =
∏m

i=1(Pi)
†, and perform the measurements.

4. Repeatedly execute the sequence of length m̀, choose different sequences of length

m̀ and repeat step 3. Vary length m̀ and repeat steps 3 and 4. Here m̀ is the prim-

itive gate length not the Clifford gate length.
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6. Fit Apm +B by using the weighted least squares methods and set B = 1
2
, where

m = m̀
κ

.

Noting that step 2 is different from the above protocols, in which we do not choose

the primitive gate uniformly. Instead, we calculate the number of occurrences on

the decomposition table, and use their appearance distribution to choose the prim-

itive gates. The idea comes from the experiment. For experimentalists, they want

to know what physical operations (primitive gates) to compose the corresponding

Clifford gates. They experience that some operations (primitive gates) appear more

frequently than the others. Since the Clifford gates are chosen randomly and uni-

formly, why don’t we randomly choose the primitive gates according to their occur-

rences frequency to construct the Clifford gates? The first immediate advantage of

PRB is that it can provide more data points for give m value due to m = m̀
κ

. RB and

RB with decomposition have only integer Clifford gate numbers m. However, PRB

can have fraction Clifford gate number m = m̀
κ

from m̀. For example, m̀ = {1, 2, 3}

and κ = 1.875, the resultant Clifford gate number m = { 1
1.875

, 2
1.875

, 3
1.875
}. The sec-

ond advantage is that for each data point (each Clifford gate number), the standard

deviation is smaller than RB with decomposition. The reason is that each data

point provided by RB with decomposition is an average value. For example, some

Clifford gates have 3 primitive gates, some have 1 and so on. So we use the average

number κ to represent. Situations worsen when κ increases. Despite such elegant

advantages, whether the behavior of PRB is the same as RB is still not very clear.

Although numerical simulations seem to support that, shown in chapter 5. We still

need an analytical proof on justification.

4.2 Effect of the noise

In this section, we construct the effect of noise on the gate operations from two

different ways.
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4.2.1 Noisy channel as a map

In the simple RB theory, the noise assumption is that each noise can be written as

a quantum channel (map). Thus, we use quantum channel Eq.(2.18) and Eq.(2.19)

as the noise channels. The noisy RB sequence of Eq.(4.2) becomes

Cinv ◦ E ◦ Cm · · · E ◦ C2 ◦ E ◦ C1 ◦ ρ, (4.3)

where E is either Eq.(2.18) or Eq.(2.19). For RB with decomposition, the noisy

sequence Eq.(4.2) becomes

Cinv ◦ Eκ ◦ Cm · · · Eκ ◦ C2 ◦ Eκ ◦ C1 ◦ ρ, (4.4)

where κ is the average number of the primitive gates per Clifford gate. For PRB,

the noisy sequence Eq.(4.4) become

Cinv ◦ E ◦ Pm · · · E ◦ P2 ◦ E ◦ P1 ◦ ρ. (4.5)

where P is a primitive gate.

4.2.2 Noise in the Hamiltonian

Figure 4.1: Silicon qubit device [3]

We simulate the gate errors of the silicon quantum dot qubits made by UNSW’s

group [3]. They made silicon qubits by MOS technique. They use a DC magnetic

field to produce the Zeeman effect to split the energy levels of the group state |0〉
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Figure 4.2: Primitive gate implantation [3]

and the excited state |1〉, and use the AC magnetic field to perform the electron

spin resonance (ESR) to control qubit rotation (see Fig.4.1). In the rotating frame,

the effective Hamiltonian can be written as

H = Ωxσx + Ωyσy + εzσz (4.6)

with Ωx = Ωy = 285.7(kHz) and εz ∼ 16.7(kHz).

The basis states is

|0〉 =

1

0


|1〉 =

0

1


The equation of motion in Schrodinger picture is

i~
d

dt
|ψs〉 = H |ψs〉 .

We choose a value of εz every 400 µs from a Gaussian distribution with standard

deviation being 16.7 kHz to simulate the Z-detuning noise in the experiment. Since

the Hamiltonian Eq. (4.6) is time-independent in each gate time, the time evolution

operator can be written as U = e−iHt. Moreover, the control ESR pulses are taken

as square pulses. To get the evolution operator, we first define Hamiltonian with
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square pulse scheme as

H = exΩxσx + eyΩyσy + εzσz, (4.7)

where ex and ey is either 0 or 1. If the value is 0, it means that there is no pulse, and

if the value is 1, it means that a pulse is activated. The evolution time is decided

by the angle θ we want,

t =
θ

2 · 285.7 kHz
. (4.8)

To expand U = e−iHt, we normalize H and t,

Ĥ =
H√

(exΩx)2 + (eyΩy)2 + (εz)2
(4.9)

t̂ = t ·
√

(exΩx)2 + (eyΩy)2 + (εz)2. (4.10)

Thus, the time evolution operator is

U = exp{−iHt} (4.11)

= cos
(
t̂
)
I− i sin

(
t̂
)
Ĥ. (4.12)

Moreover, the noise effect from the Hamiltonian in the setup breaks the assumption

of the simple theory of RB. First, the noise is non-Markovian because we change the

noise strength every 400 µs, while RB assumes the noise being Markovian. Thus,

the simple RB fitting formula does not work. An empirical formula to deal with the
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problem is used in [21] and [3] to add a parameter α into original RB formula

F = Apm +B

= Apm +
1

2

=
A

2
(1− 2r)m +

1

2

=
A

2
exp{m ln (1− 2r)}+

1

2

' A

2
exp{−2mr}+

1

2

(4.13)

as

F ' A

2
exp{−2(mr)α}+

1

2
. (4.14)

We will also use Eq. (4.14) as our fitting formula for RB and PRB simulations.
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Chapter 5

Simulation results

5.1 Results of rescaling

In this section, we consider noise channel as a map, the same assumption used

in the simple theory of RB [6] and verify that the results of RB with decomposition

need to be rescaled.

5.1.1 Depolarizing channel

We set depolarizing strength p = 0.9 in Eq. (2.18) as our theoretical (true) value

for the depolarizing channel. First, we show that RB with decomposition needs

rescaling. We see from Fig.5.1(a) that the RB simulations give the exact theoretical

value p=0.9 but the simulations of RB with decomposition give the wrong value

p=0.82 . The effect of decomposition really exists. Moreover, in a real experiment,

the decomposition is unavoidable. Thus, we suggest that the simulation result of RB

with decomposition needs rescaling. After rescaling, the p is corrected to approach

the right value as shown in Fig.5.1(b). Second, we show that when κ is large, the

rescaling does not work that well. We see from Fig.5.2(b) that for the case of κ = 3.5

the difference in value p after rescaling is larger than that of κ = 1.875. The reason

is that when κ is large, the standard deviation of the simulation result becomes

large. Thus, we introduce PRB to solve this problem. We see from Fig.5.5(b) that
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(a)

(b)

Figure 5.1: Simulation results of RB (red line) and RB with decomposition
(green line) for κ = 1.875 under the depolarizing channel. (a) Simulation
results without rescaling. (b) Simulation results with rescaling.
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(a)

(b)

Figure 5.2: Simulation results of RB (red line) and RB with decomposition
(green line) for κ = 3.5 under the depolarizing channel. (a) Simulation results
without rescaling. (b) Simulation results with rescaling.
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(a)

(b)

Figure 5.3: Simulation results of RB (red line) and RB with decomposition
(green line) for κ = 1.875 under the dephasing channel. (a) Simulation results
without rescaling. (b) Simulation results with rescaling.
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(a)

(b)

Figure 5.4: Simulation results of RB (red line) and RB with decomposition
(green line) for κ = 3.5 under the dephasing channel. (a) Simulation results
without rescaling. (b) Simulation results with rescaling.
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(a)

(b)

Figure 5.5: Simulation results of RB (red line), RB with decomposition
(green line) and PRB (blue line) for κ = 1.875 under the depolarizing
channel. (a) Simulation results without rescaling. (b) Simulation results with
rescaling.
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(a)

(b)

Figure 5.6: Simulation results of RB (red line), RB with decomposition
(green line) and PRB (blue line) for κ = 3.5 under the depolarizing chan-
nel. (a) Simulation results without rescaling. (b) Simulation results with rescaling.
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(a)

(b)

Figure 5.7: Simulation results of RB (red line), RB with decomposition
(green line) and PRB (blue line) for κ = 1.875 under the dephasing chan-
nel. (a) Simulation results without rescaling. (b) Simulation results with rescaling.
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(a)

(b)

Figure 5.8: Simulation results of RB (red line), RB with decomposition
(green line) and PRB (blue line) for κ = 3.5 under the dephasing channel.
(a) Simulation results without rescaling. (b) Simulation results with rescaling.
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(a)

(b)

(c)

(d)

Figure 5.9: Comparison between the standard deviations of the simulation
resultant value p for different RB schemes: RB (red line), RB with de-
composition (green line) and PRB (blue line). (a) Standard deviation for
κ = 1.875 under the depolarizing channel. (b) Standard deviation for κ = 3.5 under
the depolarizing channel. (c) Standard deviation for κ = 1.875 under the dephasing
channel. (d) Standard deviation for κ = 3.5 under the dephasing channel.
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(a)

(b)

(c)

(d)

Figure 5.10: Comparison between the deviations of the simulation resultant
value p for different RB schemes: RB (red line), RB with decomposition
(green line) and PRB (blue line). (a) Deviation for κ = 1.875 under the
depolarizing channel. (b) Deviation for κ = 3.5 under the depolarizing channel. (c)
Deviation for κ = 1.875 under dephasing channel. (d) Deviation for κ = 3.5 under
the dephasing channel.
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simulation result of PRB after rescaling gives a closer value of p than that of RB with

decomposition for κ = 1.875. This is also evident for κ = 3.5 shown in Fig.5.6(b).

Third, we show in Fig.5.9(a) that the standard deviation of the simulation result of

p value of PRB is smaller than that of RB with decomposition after rescaling for

κ = 1.875. This is even so for κ = 3.5 as shown in Fig.5.9(b). With small standard

deviation, we can reduce the repeated number to obtain the p value with the same

accuracy. To emphasize this propriety, and mimic a more realistic case. We add the

SPAM error and choose p for each gate set from a normal distribution with mean

= 0.9 and standard deviation = 0.00999 rather than a fixed p value. By adding

above two factors, we can approximate our simulations closer to real experiments

than before. Moreover, the uncertainty become larger. It is impossible to get the

exact value because of finite sample size effect in an experiment. With a limited

resource, experimentists can do only finite repetition on RB sequences. Thus, PRB

with a smaller standard deviation than others has its advantage. This is, we can just

perform a few repeated experiments using PRB, and we can get value p closer to the

exact theoretical value than other RB schemes. Under the depolarizing channel, the

simulation result of value p of PRB has smaller deviations than those of RB with

decomposition as shown in Figs.5.10(a) and 5.10(b). Moreover, the p value obtained

by PRB is closer to exact value than that obtained by RB with decomposition as

shown in Fig.5.11(a) and 5.11(b). That is, PRB is more accurate when the repeated

number is small, and thus is friendly to experiments because experimentists can not

do the same experiments unlimited times.

5.1.2 Dephasing channel

We set dephasing strength p = 0.9 in Eq. (2.19) for the dephasing channel.

First, we show in Fig.5.3 that rescaling is needed under the dephasing channel .

Second, when κ is large, rescaling works less well as shown in Fig.5.4(b). Third,

the standard deviation of value p obtained by PRB is also smaller for the dephasing

channel. But different from depolarizing channel is that when κ(= 1.875) is small,
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UNSW RB PRB PRB w/ PRB w/
group half sequence uniform distribution

1000r 1.7(3) 1.76(2) 1.70(8) 1.70(0) 1.405
p 0.997 0.997 0.997 0.997
A 0.538 0.538 0.54 0.54
α 0.8(1) 0.817 0.826 0.795 0.812

Table 5.1: Simulation results of the value of r, p, A and α.

PRB for the dephasing channel does not work better than RB with decomposition.

The reason is that RB sequence from Clifford group can transform any map into a

depolarizing channel, but PRB sequence from an appearance distribution can not

exactly transform any map into depolarizing channel, especially when κ is small.

But when κ = (3.5) is big, PRB works better. We think that the uncertainty in

value p at κ = 3.5 is larger than PRB’s approximation. Moreover, PRB has more

data points for fitting for a given m value when κ(= 3.5) is larger.

5.2 Noise from the Hamiltonian

5.2.1 Good model verified

In this section, we show that our model is good enough to explain noise in silicon

qubit [3].

We construct our Hamiltonian in Chapter 4 and compare our simulation result

with the experiment result in Fig.5.12(a). We observe that our RB simulation curve

in Fig.5.12(b) and p value in Table are very close to the real experiment. We can

state with confidence that our model is good enough to explain the experiment

results.

5.2.2 PRB work

We note that the simulation result of PRB in Fig.5.12(c) can give us the same

result as RB. Moreover, if we simulate PRB’s distribution not from decomposition

table but from a uniform distribution, we see that the p value obtained by this way
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from Fig.5.12(d) is not right.

5.2.3 PRB under small repetition

With a small standard deviation in p value of PRB, we reduce the number of

repetitions. We see that a small number of repetitions, PRB is closer to exact

value with a smaller deviation as shown in Fig.5.13(a). We also test the case when

PRB is performed with a half maximum sequence length, the result is shown in

Fig.5.13(b). For both the situations, we can state that PRB work better than RB

with decomposition when the number of repetitions is small.
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(a)

(b)

(c)

(d)

Figure 5.11: Comparison of deviation in p value v.s.repeated number be-
tween RB with decomposition (green dots) and PRB (blue dots). (a)
Standard deviation κ = 1.875 in depolarizing channel. (b) Standard deviation
κ = 3.5 in depolarizing channel. (c) Standard deviation κ = 1.875 in dephasing
channel (d) Standard deviation κ = 3.5 in dephasing channel
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(a)

(b)

(c)

(d)

Figure 5.12: Simulation results of the noise from the Hamiltonian to mimic
the real experimental result.(a) Experimental result from the UNSW’s group
[3]. (b) RB simulation result. (c) PRB simulation result. (d) PRB under uniform
distribution.
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(a)

(b)

Figure 5.13: Comparison of error rate r v.s. repeated number between RB
with decomposition and PRB with the number of repetition.(a) the same
as [3].(b) a half of that in (a).
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Chapter 6

Conclusions

We have pointed out that there is a gap between the RB theory and real exper-

imental implementation. The results of RB with decomposition of primitive gates

obtained in an experiment needs rescaling. The rescaling works well for small values

of average number of primitive gates per Clifford gate κ. When the value of κ be-

comes large, the standard deviation of p value obtained becomes big, which in turn

causes rescaling not working that well. The solution we propose is PRB. PRB has

the following advantages.

First, PRB can have more data points than RB for a given Clifford gate length,

especially when κ is large. Second, PRB is more accurate when the number of rep-

etitions is small because of its small standard deviation, especially when κ is large.

Third, PRB can still work well with a reduced maximum gate length in a sequence.

For large qubit system, each Clifford gate need more primitive gates. It implies large

κ. The RB curve for multi-qubit gate may decay too fast to get a reliable result

[7]. Also, limited numbers of measurements and repetitions cause finite sample size

effect. PRB can help because of its nice feature of small standard deviation. We

believe that PRB can work well toward a large qubit system. We have performed

numerical simulation to demonstrate our proposed PRB can work better than RB

and RB with decomposition scheme. It would be desired to show analytically that

PRB actually work. This will be one of our major future works.

46



doi:10.6342/NTU202100392

Appendix A

Appendix Title

This is the appendix.
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