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Abstract

In the previous decade, the advent of high-throughput sequencing makes it pos-

sible to acquire and analyze sequence data with low cost and high speed. Since

2015, nanopore-based single-molecule sequencing platforms can generate reads

longer than thousands of base pairs at high speed. However, when compared to

the accuracy of traditional sequencer, the sequencing accuracy of nanopore plat-

forms is relatively lower, which becomes a great challenge for sequence aligners.

In this thesis, we propose Burrows-Wheeler-transform-based aligner with Seed-

ing and Linking (BWSL) to efficiently align long nanopore reads. A three-stage

architecture involving seeding, linking and extending is designed for sensitive

mapping and accurate alignment. A great number of short seeds is generated to

ensure high mapping quality. The seeds are processed with novel algorithms to

efficiently be mapped to correct positions and generate accurate alignments.

The sensitivity of BWSL on synthetic MinION datasets outperforms current

state-of-the-art mappers. Using human chromosome 4 dataset as an example,

the sensitivity reaches as high as 98.35% in BWSL, which is 0.83% better than

GraphMap. Also, BWSL has high average alignment scores and great variant

calling accuracy.
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Chapter 1

Introduction

1.1 High-Throughput Sequencing

1.1.1 Overview of Sequencing Technologies

The Human Genome Project completed in 2003 provided the very first human

reference genome. Since then, the sequencing technologies have improved at the

extraordinarily fast pace. In comparison with traditional Sanger sequencing [1],

new methods enable faster and lower-cost sequencing. The new sequencing tech-

nologies are called high-throughput sequencing, or next-generation sequencing

(NGS).

According to a report provided by National Institutes of Health (NIH) of

United States [2] in 2016, generating a high quality human genome sequence

costs about 14 million USD in 2006, and it takes less than 1,500 by late-2015.

High-throughput sequencing opens a new era for biological and medical research.

Also, new computational methods are proposed to deal with the high volume data

generated by new sequencers.

1
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reference sequence

reads

sequence aligner

Figure 1.1: A sequence aligner maps reads onto correct positions on the reference.

1.1.2 Sequence Data Processing

Sequences generated by sequencers record piecewise information instead of a

whole picture of genome. Therefore, the sequence data need be arranged and

organized for further analysis. The arrangement is processed with two methods:

de novo assembly and reference-based alignment. A de novo assembly algorithm

merges related reads (short DNA sequences) and generates longer sequences,

called contigs. Contigs carry more information than raw reads and are helpful

for sequence analysis. A reference-based alignment algorithm maps reads onto

a pre-built reference sequence, as shown in Figure 1.1. The differences between

DNA sample and the reference are call variants, which are important messages

for further analysis. In this thesis, we focus on reference-based alignment, or

sequencing alignment.

In comparison with de novo assembly, sequence alignment is faster and re-

quires less sequencing depth with the guidance of the reference sequence. Since

modern sequencing machines generate high throughput sequencing results, it is

not time efficient to align sequences to references with dynamic-programming-

based optimal algorithms such as Needleman-Wunsch [3] algorithm and Smith-

Waterman [4]. To deal with this problem, a great variety of sequence aligners

are proposed. Hashing-based aligners such as BLAST [5] and NextGenMap [6]

make use of hash functions as a fast seeding strategy. Graph-based aligners such

as deBGA [7] and GraphMap [8] utilize graph structures as an efficient sequence
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searching algorithm. Index-based algorithms such as LAST [9], Bowtie2 [10] and

BWA-MEM [11] use pre-built indices to accelerate searching speed. Note that

aligners are not limited to only one of the classes. For example, GraphMap also

pre-builds an index for fast searching.

1.1.3 Short Read Sequencing

Popular DNA sequencing platforms such as HiSeq from Illumina and SOLiD from

Life Technologies (now Thermo Fisher) break DNA strands into reads and se-

quence the DNA subsequences. Reads are further divided into two groups: short-

reads (35-bp to 700-bp) and long-reads (longer than 700-bp) [12]. HiSeq and

SOLid systems generate reads with lengths range from 36 base pairs (bps) to 250

bps and are categorized as short-read sequencing platforms. The short-read se-

quencing platforms generate accurate results (more than 99%) with high through-

put and are now dominating the market.

However, both the sequencing-by-ligation approach adopted by SOLiD and

sequencing-by-synthesis approach adopted by HiSeq have their intrinsic limita-

tions against sequencing longer reads. With short reads, it is difficult to ana-

lyze long-range insertions or deletions (indels), structural variations, repetitive se-

quences and haplotypes. Even though many computational methods with heuris-

tics and statistical methods have been proposed to solve this issue [13], the con-

fidence of the analysis results is limited. Therefore, new technologies are needed

to sequence long reads with high quality and high throughput.

1.1.4 Single-Molecule Sequencing

After 2010, new technologies have emerged to generate longer reads. Pacific Bio-

sciences developed their PacBio sequencing system and Oxford Nanopore Tech-

nologies (ONT) built a system named MinION. The two systems are based on

single-molecule sequencing method. The adoption of single-molecule template
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enables the generation of long reads and simplifies sequencing preparation pro-

cess. Some researchers call the new systems third-generation sequencing plat-

forms [14] in comparison with second-generation sequencing counterparts such

as SOLid and HiSeq.

Among the third-generation sequencing systems, the MinION from ONT, a

portable commercially available since 2014, features its real-time streaming, sim-

ple preparation and ultra-long read lengths (up to hundreds of kb). It uses a bio-

logical pore to sense DNA molecules passing through and applies deep-learning-

based algorithms to analyze the responses of currents. ONT claims that these

ultra-long reads have great potential in high quality de novo assembly, variant

analysis, metagenomics, epigenetics and other biological/medical applications

[15].

1.2 Motivation

Despite being a promising sequencing technology, currently nanopore sequencing

is not able to generate long reads with high accuracy. While short read sequencers

have more than 99% sequencing accuracy, the accuracy for one-dimensional (1D)

ONT reads is only 83-85%. The accuracy for two-dimensional (2D) ONT reads

is around 95% after the R9 release in 2016 [16, 17], which is a great improvement

but is still inferior to accuracy of the short read counterparts. The relatively-low

sequencing accuracy makes it difficult for sequence mapping or alignment tools

to generate high-quality results. Traditional state-of-art sequence aligners such as

BWA-MEM [11] and Bowtie2 [10] are designed for high-quality reads. They are

not able to generate alignments with sufficient sensitivity if ONT reads are used

as inputs.

In 2016, GraphMap [8] is proposed as the very first sequence aligner designed

for nanopore data. GraphMap is able to map ONT sequences with more than 95%

sensitivity and high speed. However, we find that the alignment results generated
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by GraphMap have short Hamming distance with the reference, but the base call-

ing accuracy is low. Therefore, an algorithm to align ONT reads with both high

sensitivity and base-level accuracy is still needed.

1.3 Contribution

In this thesis, a novel long read sequence aligner is proposed, named Burrows-

Wheeler-transform-based aligner with Seeding and Linking (BWSL). BWSL is a

seed-and-extend aligner designed to deal with low-accuracy long reads. With its

three-stage architecture, BWSL aligns reads on the reference with great sensitivity

and base-level accuracy. First, Seeding Stage samples a great number of short

seeds to locate the rough position of a read. Second, Linking Stage uses a novel

queue-based algorithm to link the aligned seeds and suggest possible alignment

regions. Finally, Extending Stage splits a read into subsequences and generate

alignments step by step. Early termination mechanisms are designed to enhance

the time efficiency with little loss of alignment accuracy.

In our experiments, BWSL is the sequence aligner with highest sensitivity to

the best of our knowledge. Though GraphMap has close sensitivity, the base-level

accuracy of BWSL outperforms GraphMap.

1.4 Thesis Organization

In this chapter, we summarize the development of high-throughput sequencing,

discuss our motivation and present the main contributions of this thesis. The re-

mainder of the thesis is organized as follows. The background and related works

are introduced in Chapter 2. The proposed algorithms and our software imple-

mentation details are described in Chapter 3. The experiments are discussed in

Chapter 4. Finally, the conclusion is given in Chapter 5.
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Chapter 2

Background

2.1 Sequence Alignment with Dynamic Programming

In 1970, Needleman and Wunsch proposed a dynamic programming algorithm to

align two amino acid sequences [3]. This algorithm, called Needleman-Wunsch

algorithm, is capable of finding the optimal alignment of two sequences end-to-

end. In BWSL, Needleman-Wunsch algorithm is adopted with modification.

Needleman-Wunsch algorithm can be divided into two steps: alignment ma-

trix filling and back tracing. In the alignment matrix filling step (Lines 3 to 7

in Algorithm 1), insertion matrix (I), deletion matrix (D) and general score ma-

trix (H) are generated using Equations 2.1 to 2.4. In the following equations,

R,Q,sm,ss,go,ge stands for reference sequence, query sequence, match score,

mismatch penalty, gap open penalty and gap extension penalty, respectively.

s(r,q) =

8
><

>:

sm if R(r) = Q(q),

ss otherwise.
(2.1)

I(r,q) = max

8
><

>:

H(r,q�1)+go,

I(r,q�1)+ge.
(2.2)

7
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D(r,q) = max

8
><

>:

H(r�1,q)+go,

D(r�1,q)+ge.
(2.3)

H(r,q) = max

8
>>>>><

>>>>>:

H(r�1,q�1)+ s(r,q),

I(r,q),

D(r,q).

(2.4)

Along with alignment matrix filling, tracing-back matrix (T ) is updated with

Equations 2.5 and 2.6. The dot symbol (·) in Equation 2.5 refers to the starting

point of an alignment. After filling all the matrices, the alignment is calculated

with back tracing. Back tracing starts from the bottom-right of tracing-back ma-

trix (T ) and extends along the directions of the arrows in tracing-back matrix (T ).

When extension reaches the top-left point of tracing-back matrix (T ), Needleman-

Wunsch algorithm ends and the optimal global alignment is obtained. An exam-

ple of the alignment of sequences ACGCTTG and AGCTTTG with Needleman-

Wunsch algorithm is shown in Figure 2.1. In this example {sm,ss,go,gm} are set

{5,�4,�8,�6}, which are identical to the default scoring parameters of BWSL.

The final score is 14 and the suggested alignment is marked as gray boxes.

T (x) =

8
>>>>>>>><

>>>>>>>>:

- if x = 1,

" if x = 2,

 if x = 3,

· otherwise.

(2.5)

T (r,q) = T

 
1+argmax

8
>>>>><

>>>>>:

H(r�1,q�1)+ s(r,q)

I(r,q)

D(r,q)

!
. (2.6)

One of the most widely-adopted modifications of Needleman-Wunsch algo-

rithm is Smith-Waterman algorithm [4], proposed in 1981. It differs from Needleman-

Wunsch algorithm in that Smith-Waterman algorithm has an additional zero term
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in Equation 2.4 to represent the beginning of a new alignment. Also, the align-

ment score calculated by Smith-Waterman algorithm is the maximum score of the

entire general score matrix (H), not the bottom-right score in Needleman-Wunsch

algorithm. These modifications make Smith-Waterman algorithm capable of find-

ing highest-scoring subsequences instead of aligning sequences from end to end.

This type of alignment strategy, called local alignment, is suitable for finding sim-

ilar regions in sequences regardless of their similarity. In nucleotide or protein

sequences, similar regions in two sequences carry important information for the

relationship between the sequences. Therefore, local alignment tools are widely

adopted in phylogenetics and other applications focused on local similarities. An

example of Smith-Waterman algorithm is shown in Figure 2.2.

BWSL is a global alignment tool so the core aligning algorithm is Needleman-

Wunsch algorithm. Besides, we borrow some ideas from Smith-Waterman algo-

rithm and modify our aligning algorithm. Therefore the two dynamic program-

ming methods are both introduced here.

2.2 String Searching with Indexes

2.2.1 Burrows-Wheeler Transform

Burrows-Wheeler transform (BWT) algorithm is proposed in 1994 as a special

character rearrangement in a data compression pipeline [18]. It is an effective

method to put identical characters together for a better compression rate. BWT is

a character string containing all last characters of the lexically sorted suffixes from

the original character string. To construct the BWT of a sequence X , a common

method is to apply Equation 2.7 to the suffix array (SA) of X , where the suffix

array records the indexes of the lexically sorted suffixes of X . Figure 2.3 shows an

example of the suffix array and BWT of sequence ACGCTTG$, where the dollar
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Algorithm 1 Needleman-Wunsch Algorithm with Affine Gaps
Input: Reference sequence R and query sequence Q.

Output: Alignment score score and alignment align.

1: align empty string

2: score 0

3: for r 0 to len(R)�1 do

4: for q 0 to len(Q)�1 do

5: Calculate I(r,q),D(r,q),H(r,q),T (r,q) with

Equations 2.2, 2.3, 2.4 and 2.6, respectively.

6: end for

7: end for

8: r len(R)�1, q len(Q)�1

9: score H(r,q)

10: Trace back from T (r,q) and update align.

11: return {score,align}

sign ($) is an end-of-sequence symbol.

BWT [i] =

8
><

>:

X [SA[i]�1] if SA[i] > 0,

$ if SA[i] = 0.
(2.7)

2.2.2 Ferragina-Manzini Index

In 2000, Ferragina and Manzini applied Burrows-Wheeler transform to string

searching [19]. They combined suffix array, BWT, and two auxiliary tables as a

compound index, called Ferragina-Manzini index (FM-index). Also, a fast string

searching method was proposed. The combination of FM-index and its corre-

sponding string searching method make the novel algorithm efficient to locate

substrings in the original string. Though there is extra memory usage, FM-index is

compressible with reasonable tradeoff in searching speed. Therefore, it is widely
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(a) The insertion matrix (I).

-

A C G C T T G

A
G
C
T
T
T
G

-16 -3 -9 -15 -21 -27

-22 -11 -7 -6 -12 -18

-28 -17 -6 -11 -1 -7

-34 -23 -14 -10 -9 4

-40 -29 -20 -18 -15 -4

-45 -35 -26 -24 -20 -10

-33

-24

-13

-2

9

1

-52 -40 -32 -21 -27 -15 -5

-8 -14 -20 -26 -32 -38 -44

-

-

-

-

-

-

-

(b) The deletion matrix (D).

0 -8
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A
G
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-3 1 2 -6 -12 -18

-26
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-38

-21 -12 -10 -7 4 17

-44

-27 -18 -16 -13 -2 9

-44

-33

-21

-13

-2

9
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-33 -24 -13 -19 -8 3 14

(c) The general scoring matrix (H).
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← ← ← ← ← ← ←
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↖

↑
↑
↑
↑
↑
↑
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↑
↑
↑
↑
↑

↖
↖
↑
↑
↑
↑

↖
↖ ↖
↑
↑
↑

↑
↑
↑

↑
↑
↑ ↖

(d) The tracing-back matrix (T ).

Figure 2.1: An example of Needleman-Wunsch algorithm.

used in modern genome alignment algorithms.

An example of the FM-index of ACGCTTG$ is shown in Figure 2.4. Count

table C is an array with size of s, where s is the size of the alphabet set (S). For

DNA sequences, S contains four types of nucleotides {A,C,G,T} and thus s = 4.

Occurrence table O is a two-dimensional table with size s⇥ n, where n is the

length of X . These tables are defined as follows:

C (a) = |{0 i n�1 : X [i] < a}| (2.8)

O(a, i) = |{0 j  i : BWT [ j] = a}| (2.9)
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(a) The insertion matrix (I).
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(b) The deletion matrix (D).
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T
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0

0 1 5 0 0 0

0

0 5 0 10 2 0

0

0 0 0 2 15 7

0

0 0 0 0 7 20

0

0 0 0 0 5 12

0

0
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0

1
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16

0
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H

(c) The general scoring matrix (H).

T
·

A C G C T T G

A
G
C
T
T
T
G
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↖

↖
· · · · · · ·

↖
↖

↖
↖

↖
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← · ·
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←
↖

·
·
·
·
·
·

·
·
·
·
·
·

↖
↖
·
·
·
·

·
· ↑
·
·
↖

·
·
·

↑
↖
· ↑

(d) The tracing-back matrix (T ).

Figure 2.2: An example of Smith-Waterman algorithm.

With the pre-calculated FM-index, the suffix array interval {R,R} of a query

sequence aW can be calculated with Equations 2.10 and 2.11:

R(aW ) = C (a)+O(a,R(W )�1)+1 (2.10)

R(aW ) = C (a)+O(a,R(W )) (2.11)

As shown in Equations 2.10 and 2.11, FM-index-based searching is operated

in reverse order, and thus it is also called backward searching [20]. Starting from

the end-of-sequence character ($), the suffix array interval of any query sequence
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$GTTCGCA
A$ C GTTCG

$GTTCGC A
$GTTC A GC

A$G GC C TT
G TC T $G CA
T GCA$G TC
T T GCA$G C

BWT

10 2 76543
7
0
1
3
6
2
5
4

Sorted suffix table

SA

Figure 2.3: An example of the suffix array and the BWT of sequence ACGCTTG$.

BWT is the last column of the sorted suffix table.

can be acquired iteratively. Ferragina and Mezini proved that R(aW ) R(aW ) if

and only if aW is a substring of X .

String searching allowing no mismatch is called exact searching. The time

complexity for searching a k-bp query exactly is O(k). After k iterations, {R,R}

represents the valid suffix array interval of the alignment. It is notable that the

suffix array interval is not the actual position of a query on the reference. An

additional transform shown in Equation 2.12 looks up the suffix array for actual

alignment positions:

pos = SA([R : R]) (2.12)

Despite being an efficient string searching data structure, the construction of

FM-index is not straightforward. The naive method to construct a BWT or a

suffix array requires memory space O(n2). Since there are more than 3 billion

nucleotide bases in a human genome, O(n2) memory usage is not practical for

most computing platforms. Therefore, a great amount of memory-efficient BWT

constructing algorithms are proposed such as BWT-IS [21], lightweight indexing
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X
10 2 76543

TTCGCA G $
SA 263107 5 4
BWT CTGA$G T C

Occurence Table 5310
TGCACount table

A
10 2 76543

111100 1 1
C 100000 1 2
G 222111 2 2
T 110000 2 2

Figure 2.4: FM-index is a data structure based on Burrows-Wheeler transform. It

is suitable for fast string searching. This figure shows an example of the FM-index

of sequence ACGCTTG$.

with external memory [22] and ropeBWT2 [23].

2.3 Related Works

2.3.1 BLAST: Basic Local Alignment Search Tool

Basic Local Alignment Search Tool (BLAST) [5] is a popular local alignment tool

based on heuristics against Smith-Waterman algorithm. The workflow of BLAST

is illustrated in Figure 2.5. BLAST is one the earliest and most popular sequence

aligners following the seed-and-extend paradigm. Since BWSL is also a seed-

and-extend based sequencer, we introduce BLAST in this section in spite of the

fact that it is not designed for NGS originally.

BLAST first constructs a k-mer table of the subject (reference) sequence. After
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Figure 2.5: The working flow of BLAST. (a) The results of matched k-mers. (b)

The linked two-hits. (c) The two-hits extended with ungapped extension. The

gray area shows an HSP. (d) The HSP is extended with gapped extension.

that, a query sequence is read and scanned through the k-mer table with a hash

function. If one query k-mer matches a subject k-mer, it is called a hit. For

two hits locating on the same diagonal and within a limited number of residues,

they are linked and extended ungappedly. If one ungapped extension segment has

a higher score than a threshold, it is called a high-scoring segment pair (HSP).

The HSPs are then extended using gapped Smith-Waterman algorithm and the

final alignment score is calculated. Even though lots of new sequence alignment

tools have emerged since the advent of next-generation sequencing, BLAST is

still adopted by lots of researchers.



doi:10.6342/NTU201701631

16
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snp

A

deletion

Croot
(AGC) match

snp

A
deletion
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G

deletion

snp

T
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insertion

G
match

insertion

C
snp
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insertion ACAGCT$

AAGCT$

AGCT$

Figure 2.6: BWA searches a read against a reference with a prefix trie. In this

example, the read is AGC, the reference is ACAGCT$, and the allowed mismatch

number is one.

2.3.2 BWA: Burrows-Wheeler Aligner

In the era of next-generation sequencing, there is a strong demand of fast align-

ment of numerous short reads against long references. Earlier methods have their

limitations: BLAST is not fast enough for this task, MAQ [24] does not sup-

port gapped alignments for single-end reads and other tools are not efficient in

terms of time or memory usage. To tackle this problem, Li and Durbin proposed

Burrows-Wheeler Aligner (BWA-backtrack) [20] in 2009. It is the most popular

next-generation sequencing alignment tool up to date and has been cited for more

than 11,300 times since June, 2017.

BWA-backtrack builds an implicit prefix trie based on the FM-index of the

reference sequence. To deal with gaps or mismatches (single nucleotide polymor-

phism, or snp), in each iteration, four possible aligning cases—match, mismatch,

insertion and deletion—of a substring of the read are updated in the prefix trie.

BWA-backtrack then traverses the trie iteratively to find the suffix array inter-
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val. To accelerate the algorithm, there are many techniques applied such as a

minimum-mismatch-bounding table D(·) and filtration strategies with heuristics

[20].

Besides BWA-backtrack, two newer versions of seed-and-extend-based BWA

are proposed: BWA-SW [25] and BWA-MEM [11]. Since BWA-backtrack is

designed for Illumina reads up to 100 bps, the two newer tools are extended to

align reads from 70 bps to 1 Mbps. The major difference between these two tools

is in the method of generating seeds. In BWA-SW, the FM-indexes of queries

are also constructed as a prefix directed acyclic word graph (prefix DAWG). Pre-

fix DAWGs help enhance traversing speed in the reference prefix trie. In BWA-

MEM, seeds are generated with supermaximal exact matches (SMEMs) [26]. Af-

ter seeding, BWA-MEM adopts an additional chaining stage to group the hits as a

filtration strategy. Both BWA-SW and BWA-MEM pass the seeds (or chains) to a

Smith-Waterman extender and then generate final outputs.

Currently the latest tool, BWA-MEM, outperforms BWA-backtrack and BWA-

SW for almost all kinds of reads. It is regarded as one of the state-of-the-art

aligners for modern sequencing applications. Besides Illumina sequences, BWA-

MEM starts to support ONT 2D sequences in recent versions.

2.3.3 GraphMap

Algorithms such as BWA-MEM [11] and Bowtie2 [10] have great performance on

high quality reads from tens-bp to million-bp. However, those algorithms are not

suitable for noisy long reads generated by novel single-cell sequencing platforms

such as MinION sequencer produced by Oxford Nanopore and PacBio systems by

Pacific Biosciences. GraphMap [8] is a fast and sensitive sequencer proposed to

deal with such sequences. First, it applies gapped q-grams [27] as a seeding strat-

egy. Second, candidate regions are selected with clustering hits along diagonals.

After that, a graph-based algorithm is applied to generate anchors in the candi-

date regions. The anchors are extended with Longest Common Subsequence in k
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Length Substrings (LCSk) algorithm [28] and refined by linear regression. Finally,

the alignment is generated using a dynamic-programming-based aligner [29].

GraphMap is one of the best aligners for sequencing potentially high-error-rate

reads in terms of its quality and speed. We compare the performance of BWSL

with that of GraphMap in this thesis. The details of the evaluations are described

in Chapter 4.
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Chapter 3

Algorithms and Software

Implementation

3.1 Overview

Third-generation sequencing platforms such as PacBio sequencers and nanopore

sequencers are able to generate ultra-long reads to up to hundreds of thousand

base pairs. The long read length makes it possible to detect long-range indels,

repeats and structural variations. However, the alignment of third-generation long

reads is much more difficult compared to traditional short read alignment due to

the limited sequencing accuracy. Therefore, we propose BWSL to tackle noisy

long reads.

BWSL consists of three main stages: seeding, linking and extending, as shown

in Figure 3.1. First, Seeding Stage samples reads to generate seeds and align the

seeds to the reference. The aligned seeds are called hits. Second, Linking Stage

transforms the hits to putative read positions (PRPs), and links these PRPs as

chains. Chains are potential candidates for correct alignment. Third, Extending

Stage applies dynamic programming to align the chains suggested by Linking

Stage and determines final alignments.

Seeding Stage, Linking Stage and Extending Stage are discussed in Section

19
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FM-index construction

reference sequence

Seeding

Link hits along diagonal lines as chains

Remove chains with few hits

Extend and align chains

alignments

Figure 3.1: The workflow for BWSL.

3.2, 3.3 and 3.4, respectively. Also, in Section 3.5 the software implementation

details are discussed.

3.2 Seeding Stage

In Seeding Stage, first seeds are sampled from each read. The sampling method

is discussed in Section 3.2.1. Second, the seeds are aligned to the reference with

the aid of FM-index. The details of the string searching algorithm is introduced

in Section 3.2.2.



doi:10.6342/NTU201701631

21

Reference (bp)

R
ea

d 
(b

p)

   
   

       

Figure 3.2: Seeding Stage samples k-consecutive base pairs from a read (i.e. k-bp

seeds) and aligns the seeds to the reference. The hits are marked as gray ellipses.

3.2.1 Seeds Sampling

BWSL maximizes the probability of finding correct alignment with lots of small

seeds. To sample as many seeds as possible without exhausting limited computing

resource, the design of the seed processing core needs to be fast and low-cost.

Therefore, we construct FM-index [22] for fast string search and then apply exact

search to every seed.

Assume that the sequencing accuracy for one base is q and there is no correla-

tion between bases. The expected hit number of seeds (S) with s k-bp seed seeds

is as follows:

S = sqk (3.1)

In the reference sequence, there might be some subsequences happening to be

identical with the seed at wrong positions. Such subsequences are called random

hits. Some random hits occur because of biological similarity between sequences,

and some are purely due to statistical randomness. Random hits mislead Linking

Stage into suggesting incorrect chains, so they are regarded as sampling noises.

Seeding Stage tries to raise the number of sampled seeds in the correct region

and to avoid generating too many random hits. In a n-bp reference the number
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of expected random hits (N) is shown in Equation 3.2. Thus, we define seed

significance factor (SSF) by dividing S by N, as shown in Equation 3.3.

N = (n� k)(
1
4
)k (3.2)

SSF =
S
N

=
s(4q)k

n� k
(3.3)

The parameters selected in Seeding Stage needs to follow two criteria:

1. Expected hit number S needs to be sufficiently high.

2. Seed significant factor SSF needs to be sufficiently high.

Equations 3.1 to 3.3 show that there is a tradeoff between S and SSF by changing

the seed length k. A longer seed length reduces the number of N and accelerates

Seeding Stage. However, with a longer length seeds at correct positions are more

likely to be dropped. This reduces S and has a negative impact to sequencing

sensitivity. By contrast, a shorter seed length results in higher sensitivity but needs

more computing time and memory. Empirically we suggest setting S and SSF

higher than 50 and 0.5, respectively.

3.2.2 Seeds Alignment

The sampled reads are aligned exactly to the reference sequence with pre-calculated

FM-index. Using the backward searching method with FM-index, the time com-

plexity for aligning a k-bp seed is bounded by O(k). The details of this string

searching algorithm are described in Section 2.2.

Besides exact search, FM-index is also used in inexact search algorithms

which generate alignments allowing mismatches. The algorithms usually use

heuristics to filter results likely to be incorrect and accelerate search time. The

inexact search algorithms have been used in lots of sequence aligners such as

BWA [20] and Bowtie2 [10], which are among of the most cited sequence aligners

ever. However, these two programs are designed for high quality reads and their
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inexact search algorithms are only optimized when the number of mismatches is

low. With increasing number of mismatches, the computing time of inexact search

grows very fast. Since the sequencing accuracy for long reads is relatively low, it

is inefficient to align whole long reads directly to the reference sequence inexactly.

On the other hand, inexactly aligning seeds instead of whole read is another op-

tion. This strategy benefits from the efficient inexact search algorithms developed

by previous researchers. However, in this case the number of expected random

hits (N) grows much faster than expected hit number (S) as shown in Equations

3.1 and 3.2. This results in a large number of noisy hits and much longer process-

ing time in looking up the suffix array table.

As a result, BWSL aligns seeds with exact search by default. It samples a large

number of reads to guarantee the expected hit number (S) is sufficient. Since the

aligning process is time-efficient, the high seed count does not have big negative

impact on the overall performance of BWSL in time. Also, our program supports

inexact search for applications requiring higher seeding sensitivity.

3.2.3 Filtration of Hits

A sensitive seeding algorithm maps seeds in a read sequence onto the correct

positions in the reference sequence. In addition to sensitivity, precision is also

an important factor when evaluating a seeding algorithm. An algorithm with high

precision reduces the number of random hits and thus is more efficient in both time

and memory usage. In BWSL, a hit filter is designed to improve the precision of

Seeding Stage with little loss in sensitivity.

As shown in Figure 3.3, each hit is extended with a short sequence in the tail. If

the Hamming distance between the additional tail sequence and the corresponding

reference sequence is less than or equal to a given threshold, the hit passes the

filter; otherwise it is removed. By default, the additional tail length (lt) is five

and the Hamming distance threshold (thd) is three. For an ONT 2D sequence

following the error profile shown in Section 4.2.1, the base sequencing accuracy
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(q) is 0.69. With the above parameters, the correct seed passing rate (CSPR) and

random seed passing rate (RSPR) are shown in Equations 3.4 and 3.5. In this case,

more than 95% hits belong to the read are kept and less than 37% random hits are

left. The hit filter accelerates the algorithm without much loss of sensitivity.

CSPR = 1�
lt�thd�1

Â
i=0

✓
lt
i

◆
(1�q)i(q)lt�i

�����
q=0.69,lt=5,thd=3

= 0.9653 (3.4)

RSPR = 1�
lt�thd�1

Â
i=0

✓
lt
i

◆
(1� 1

4
)i(

1
4
)lt�i

�����
lt=5,thd=3

= 0.3672 (3.5)

TTCGC G GA TGCCA

TTCGC G GA TGTA A

exact match
keep the hit if Hamming 
distance < threshold

A

A

Figure 3.3: An nine-bp seed is first exactly aligned to the reference. After that, the

next five nucleotides are sent to the hit filter. If the Hamming distance between

the seed and the reference (four in this example) is larger than the given threshold,

the seed is removed.

3.3 Linking Stage

The purpose of Linking Stage is to collect the hits generated in Seeding Stage

and use the hits to find possible regions for alignment. This stage can be further

divided into two steps. First the hits are projected along diagonal lines to estimate

the starting position of the read as shown in Section 3.3.1. Second we propose a

novel Queue-based Flexible Histogram with Partial Sorting (Q-FHPS) algorithm

to link the hits. Linked hits are called chains, which indicate highly possible
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regions for alignment. The details of Q-FHPS algorithm are introduced in Section

3.3.2.

Reference (bp)
R

ea
d 

(b
p)

   
   

       

Figure 3.4: Linking Stage translates hits into putative read positions, PRPs, and

links the PRPs as chains. The black dotted lines show three chains. The gray

dotted regions show the regions covered by the chains.

3.3.1 Putative Read Positions

The hits calculated in Seeding Stage record the mapping positions of the seeds

on the reference. Seeds sampled at different positions on a read have different

offsets. Here we translate the hits to putative read positions, PRPs[7], to represent

the putative starting position of each read. For a forward-strand hit, its PRP is

calculated by subtracting its read offset to hit position in Equation 3.6. For a

reverse-strand hit, its PRP is calculated with Equation 3.7.

PRPf orward = posre f �o f f setread (3.6)

PRPreverse = posre f +o f f setread + lengthseed� lengthread (3.7)

Figure 3.5 illustrates the differences between Equations 3.6 and 3.7. We can

regard PRPs as the topmost (bottommost) positions of diagonals extended from
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Figure 3.5: The PRP of a forward-strand hit and reverse-strand hit is calculated

separately with Equations 3.6 and 3.7. After the translation, the hits are mapped

to the starting positions of reads.

forward-strand (reverse-strand) hits. This translation removes the offsets on the

read axis and puts all hits in the same one-dimensional coordinate system.

3.3.2 Queue-Based Flexible Histogram and Partial Sorting

To link hits efficiently, we propose Queue-based Flexible Histogram and Partial

Sorting algorithm (Q-FHPS, Algorithm 2). Q-FHPS algorithm collects PRPs and

builds a flexible histogram in which the bins are not located with a fixed interval.

Also, to reduce computing time with as little loss of accuracy as possible, Q-

FHPS algorithm applies partial sorting strategy to select and update a fixed amount

of bins. The time and memory complexity of Q-FHPS algorithm is O(p log p)

and O(p logn), where p and n stands for the number of PRPs and the length of

reference sequence. The processing time of Q-FHPS algorithm is bounded by

sorting p PRPs. The other parts have O(p) time complexity.

To build the flexible histogram, a queue is designed to slide along the reference

sequence and scan the sorted PRPs. As illustrated in Figure 3.6, in each iteration

the distance between the front element in the queue and the current PRP is calcu-
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queue (first-in-first-out)

i

 lchainlchain

ii+1

(a)

queue (first-in-first-out)

i+1

 lchainlchain

(b)

Figure 3.6: An illustration of the sliding queue in Q-FHPS. (a) The element farther

than lchain from PRPi is popped from the queue. There are total six elements in

this FHPS bin (including PRPi itself). (b) PRPi is then pushed to the queue and the

reference point is changed to PRPi+1. There are five elements in the new FHPS

bin.

lated. If the distance is larger than the size of a chain lchain, the front element in

the queue is popped and this process repeats until the front element is within lchain

or the queue is empty. This process is shown from Lines 9 to 11 in Algorithm 2.

After that, the size of the queue plus one (the current PRP itself) is the number

of elements in the current flexible histogram bin. In this queue-based algorithm,

the generated histogram does not have a fixed interval and the bins are dynami-

cally located. Therefore, the histogram is called flexible histogram. Also, since

PRPi denotes the ending position of the search window, in Line 14 the updated
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chain position is set to
PRPi +Q. f ront()

2
to approximate the middle position of

the chain.

To reduce the number of final outputs, we apply partial sorting in this algo-

rithm. First a given number of chains nchains is initialized. The position and size of

a chain are recorded and packed together. The size of a chain refers to the number

of PRPs within distance lchains from its central position. The chains only record the

top-nchains results, which are ranked by their sizes. If one flexible histogram bin

has fewer members than the smallest-sized chain in the inventory, it is not likely

to be a valid candidate and therefore discarded. With properly set nchains, par-

tial sorting reduces both time and memory complexity without sacrificing much

sensitivity.

3.4 Extending Stage

In Extending Stage, we apply a memory efficient algorithm, Genome Alignment

using Constant-memory Trace-back (GACT) [30], with modifications. GACT is

effective in reducing the computing complexity of traditional dynamic program-

ming algorithms. The details of GACT is described in Section 3.4.1. Also, we

propose novel dynamic filtration strategies to accelerate the aligning process, as

shown in Section 3.4.2.

3.4.1 Genome Alignment Using Constant-Memory Trace-Back

(GACT)

GACT is a tile-and-align-based global alignment algorithm based on Needleman-

Wunsch algorithm. It uses a constant-size tile to align subsequences. This method

is efficient in terms of both time and memory usage. Also, GACT is able to align

low-sequencing-accuracy long reads with little loss of speed and accuracy. Other

heuristic sequence alignment algorithms such as banded Smith-Waterman and X-
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Algorithm 2 Queue-Based Flexible Histogram and Partial Sorting
Input: Hit PRPs PRP, maximum number of chains nchain and size of a chain

lchain.

Output: Suggested chains C.

1: Sort PRP.

2: Initialize queue Q.

3: Initialize nchain empty chains C. //Each chain records its central

position and hit counts.

4: Q.push(PRP0).

5: for i 1 to size(PRP)�1 do

6: if Q.empty() then

7: Q.push(PRPi).

8: else

9: while Q. f ront() < PRPi� lchain do

10: Q.pop()

11: end while

12: c Q.size()+1 //c is the number of hits in chain

13: if c > min(C.hitcounts) then

14: Update argmin(C.hitcounts) with

(hitcounts c, position PRPi+Q. f ront()
2 ).

15: end if

16: end if

17: end for

18: return C
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Figure 3.7: Extending Stage is based on GACT with dynamic filtration strategy.

The solid line shows the final alignment. The gray boxes are the tiles used in

GACT. The first tile is larger than secondary tiles to tolerate short-range impreci-

sion of Linking Stage.

drop are restricted by the number of mismatches, while such number tends to be

large for noisy long reads [30]. Also, GACT is a hardware-compatible algorithm.

If needed, it is easy to be implemented on hardware systems such as ASICs and

FPGAs.

In this thesis, we implement a modified GACT. This algorithm starts from the

top-left part of the dynamic programming matrix and extends toward the bottom-

right. In each iteration, it calculates a T ⇥ T tile with RB-NWalign algorithm

(Algorithm 3). RB-NWalign algorithm is based on affine-gapped Needleman-

Wunsch algorithm [3]. A difference between RB-NWalign and original Needleman-

Wunsch algorithm is that RB-NWalign finds maximal alignment score on the

rightmost column and bottommost row of the alignment matrix instead of sim-

ply selecting the bottom-right value. The modified GACT is proposed in Algo-

rithm 4. After in-tile alignment, another tile is stitched to the current one at the

max-scoring position as shown in Lines 12 and 13 in Algorithm 4. If the whole

query or reference sequence is aligned, GACT terminates. Signal warning con-

trols the termination of the algorithm with a dynamic strategy, the details of which
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is described in Section 3.4.2.

Since indels may induce imprecision of chain positioning, the width (reference

side) of the first tile (w ft) is expanded handle the possible mismatch. The selection

of w ft is described in Section 4.3.3. Also, the size of the last tile is doubled in

both width and height to avoid the need to use more tiles when there are long

insertions or deletions in this tile. These parts are not shown in Algorithm 4 for

better readability but illustrated in Figure 3.7.

Algorithm 3 RB-NWalign
Input: Reference sequence R, query sequence Q.

Output: Offset on reference o f fR, offset on query o f fQ, alignment align and

alignment score score.

1: Build alignment matrix using affine-gapped Needleman-Wunsch(R,Q).

2: score maximal score on right and bottom edges.

3: Update o f fR,o f fQ and align.

4: return {o f fR,o f fQ,align,score}

3.4.2 Dynamic Filtration Strategies

Even with the delicate heuristics of GACT, extending a sequence is still a task

with very high time complexity. Moreover, since it is essential to provide enough

aligning candidates to ensure high sensitivity, the number of chains suggested by

Linking Stage is usually much larger than actual alignments. Therefore, how to

reduce the time cost for unnecessary sequences is crucial to the performance of a

long read aligner. Here we propose two dynamic filtration strategies in Extending

Stage to enhance efficiency of BWSL.

As shown in Line 14 in Algorithm 4, in each iteration the tile alignment score

is compared to an alignment terminating threshold. If the score is lower, the tile

is considered a weakly aligned tile; otherwise it is a strongly aligned one. Since

noisy long reads have low base sequencing accuracy, even in a correct alignment



doi:10.6342/NTU201701631

32

Algorithm 4 GACT with Dynamic Filtration Strategy
Input: Reference sequence R, query sequence Q, tile size T , suggested chain

position posR, terminating threshold th and degrade factor d.

Output: Alignment score score and alignment align.

1: align “”

2: total score 0

3: warning False

4: o f fR,o f fQ 0

5: posQ 0

6: i 0

7: while posR +T < len(R) or posQ +T < len(Q) do

8: subR R[posR : posR +T ]

9: subQ Q[posQ : posQ +T ]

10: o f fR,o f fQ, tb,score RB NWalign(subR,subQ)

11: align.append(tb)

12: posR posR +T �o f fR

13: posQ posQ +T �o f fQ

14: if score < th⇥di then // Dynamic filtration

15: if warning True then

16: return {total score+ score,align}

17: else

18: warning True

19: end if

20: else

21: total score total score+ score

22: warning False

23: end if

24: i i+1

25: end while

26: return {0,“”}
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there might be some weakly aligned tiles. If a high alignment terminating thresh-

old is set, extension is terminated when encountering such a tile in a correct align-

ment. On the other hand, a low threshold gives rise to heavy time cost with trying

too many incorrect alignments. Therefore, a fixed alignment threshold is not suit-

able for this kind of data. To deal with this problem, we design two filtration

strategies to dynamically determine whether extension should be terminated.

good 
alignment

potentially 
incorrect incorrect

strong tile

strong tile

weak tile weak tile

Figure 3.8: The finite state machine of two-level termination. This design helps

BWSL tolerate some poorly aligned regions in an alignment for a noisy long read.

The first strategy is to discount the termination threshold. Since a query-

reference combination is more likely to belong to a correct alignment if it is in

a late GACT phase, we prefer completing the alignment to terminating it early.

Even though this turns out not to be the best alignment, the cost is affordable.

The second strategy is called two-level termination. The design is inspired from

the 2-level adapting branch predictor [31], which is a widely used architecture

in Central Processing Units (CPU). The design of two-level termination is illus-

trated in the finite state machine in Figure 3.8 and shown from Lines 15 to 22 in

Algorithm 4. The finite state machine starts from the potentially incorrect state.

When a strong tile occurs, it enters the good alignment state. When encountering

a weakly aligned tile, the finite state machine enters the potentially incorrect state
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rather than terminates the alignment promptly. If in the potentially incorrect state

another weak tile is encountered, GACT ends; otherwise the finite state machine

goes back to the good alignment state. The two-level termination design tolerates

some poorly aligned regions in a long read alignment and helps raise sensitivity.

3.5 Software Implementation

3.5.1 The BWA Front-End

The foundations of BWSL are upon FM-index-based seed searching. To the best

of our knowledge, BWA [20] is the best open source tool to construct FM-indices

and search sequences with them. Therefore, BWA is adopted as the front-end of

the proposed aligner, in charge of the construction of FM-index and seeds align-

ment. Since BWA is written in C and the rest of the program is implemented

with C++, the C++ part is packed as a shared library and included by the C-

programmed part. The interface is properly handled by our compiling script.

In BWA, by default the suffix array file (.sa) only records every 32 indices to

save disk space. The rest index values can be calculated with traversing BWT.

Since in BWSL there are possibly a great amount of alignments for each seed,

traversing BWT occupies a large portion of the total execution time. To deal with

this problem, the suffix array file in BWSL records all the index values. This

effectively increases computing speed but adds disk space and memory usage.

3.5.2 Memory Management

For genome alignment application, the amount of reads to be processed is huge.

Also, for the alignment of large-scale genome such as human chromosome the

memory usage is high. Under such a condition, the classical memory management

method, allocate-then-free, costs a great deal of time on memory compaction.

Memory compaction is an operating-system-level function to manage mem-
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fragmented heap heap after 
compaction

occupied

empty

Figure 3.9: Operating system organizes the fragmented heap and clean up contin-

uos memory space using memory compaction.

ory. As illustrated in Figure 3.9, the occupied memory blocks in heap are usually

arranged with some space between blocks. Memory compaction is executed when

a task is trying to allocate a continuous memory space but there is no such space

in heap. The fragmented occupied blocks are put together and thus free blocks are

left together. A compaction process is composed of freeing and migrating mem-

ory. If a program continuously calls memory compaction, the sum of memory

freeing and migrating time may cost more than half of the total time.

BWSL resolves this issue by memory pre-allocation. For variables need be

allocated dynamically, a given space is initialized at the starting of the program.

When a task is finished, the memory space is not deleted in the heap. Instead, a

operation named reset is called as shown in the following codes:
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Figure 3.10: The hit positions are stored with a hybrid memory allocation method.

typedef struct{

int *array;

size_t used;

size_t size;

} array;

void freeArray(array *a){

free(a->array);

a->array = NULL;

a->used = a->size = 0; }

void resetArray(array *a){

a->used = 0; }

Memory pre-allocation avoids memory compaction and reduces computing

time. However, for variables with a wide range of size, pre-allocating has a huge

memory overhead. For example, in BWSL each read is split into short seeds and

the seeds are then aligned to the reference. The number of alignments of each seed

(hits) varies greatly. It is possible that the occurrence of hits for a seed located in

a repetitive region outnumbers that of a normal seed by more than a hundred

times. This issue is solved by using a hybrid method, as shown in Figure 3.10.

In this hybrid method, a fixed-size memory is pre-allocated. This space is set

to one fifth of the maximum hit number by default. Also, dynamically allocated

memory space is used to store hits when the number of hits exceeds the size of the

pre-allocated memory. The hybrid method saves memory compaction time and
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avoids using too much memory space.
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Chapter 4

Experiments

4.1 Overview of the Results of BWSL

BWSL is designed as an effective sequencer to align reads to correct positions

and generate near optimal alignments. In this chapter, the alignment results of

BWSL is analyzed and compared to that of GraphMap [8]. GraphMap is a well-

designed sequence aligner for nanopore reads, the details of which is described

in Section 2.3.3. It is the aligner with the highest sensitivity by 2016 to the best

of our knowledge. To evaluate the alignment results generated by different tools,

clear definitions for mapping accuracy (sensitivity) and base-level accuracy are

necessary. However, there are no universal definitions for both measurements in

genetic applications. Here we discuss common measurements of sensitivity and

base-level accuracy and introduce the measurements adopted by BWSL.

First, to precisely measure sensitivity, well-defined benchmarking tools such

as Rabema [32] provide unified approaches to determine mapping quality. How-

ever, the tools often need an extra full-sensitivity mapper to generate golden re-

sults, which is not efficient in time. Also, the scoring mechanisms for the ex-

tra mappers are not flexible enough. Therefore, easier definitions are currently

adopted by most sequence aligners. GraphMap defines the mapping of one read

correct if its position is less than or equal to ±50 bases from the golden posi-

39
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tion recorded by the simulator. Similar definitions are also adopted by popular

sequence aligners such as BWA-MEM [11], which uses a range of ±20 bases.

Here, we adopt the definition used by GraphMap because both tools focus on

long nanopore reads.

Second, the measurement of base-level accuracy is more complicated. In the

original manuscript of GraphMap, a true-positive base is defined as “a base was

considered correctly aligned if it was placed in exactly the same position as it

was simulated from” [8]. However, the simulation report does not always pro-

vide the mathematically optimal alignment of sequences. Figure 4.1a shows an

example taken from a real simulation report. The alignment between ”G-” and

”-A” is impossible for an aligner to figure out, and is not the mathematical opti-

mal alignment. Instead, Figure 4.1b shows the optimal alignment of the two se-

quences. Therefore, the definition used by GraphMap does not represent the real

base-level accuracy of bases mapping. Instead, average alignment score is used as

the primary base-level accuracy indicator. In this chapter, the term ”score” refers

to average alignment score unless stated otherwise. Average alignment score is

defined as:

Average alignment score =
Total alignment score

Total alignment length
(4.1)

We believe that the evaluation with average alignment score is more suitable to

compare scoring-table-based aligners because the tracing-back process (see Sec-

tion 2.1) depends on alignment score. In spite of the fact that the optimal score

need be calculated with a complete dynamic programming algorithm, a higher

average score reflects an alignment closer to optimum.
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A-GAC

A-AC A

C

G
alignment: MMDIMM, score: -5

(a)

AGAC

AAC A

C

G
alignment: MMMMM, score: 7

(b)

Figure 4.1: An example shows that the alignment recorded by the simulation re-

port is not always the optimal alignment. Here M,D, I stands for match/mismatch,

deletion and insertion, respectively. Alignment score is calculated with the default

settings of BWSL. (a) Alignment shown in the simulation report. The alignment

score is �5. (b) Mathematically optimal alignment. The alignment score is 7.

4.2 Alignment Results with Synthetic Data

4.2.1 Synthetic Datasets

A recent evaluation for MinION R9 shows that the sequencing accuracy of 1D

reads is improved to higher than 80% [16]. However, the volume of MinION R9

sequencing data is insufficient in comparison to the previous MinION systems.

Therefore, we adopt the error profile [8] leant from R7.3 data with LAST [9], as

shown in Table 4.1. Since the quality of R7.3 data (1D: 59%, 2D: 69%) is inferior

to current release, we only analyze our results with higher quality 2D parameters

in Table 4.1. The synthetic reads are simulated using PBSIM [33].

The reference sequences used in this section is shown in Table 4.2. All the

sequences are from frequently-used model organisms. Most of the reference se-

quences are identical to those adopted by GraphMap to avoid biased comparisons

toward BWSL. The simulated depth is set to 20 for shorter reference sequences; it

is set to 10 for C. elegans and human chromosome 4 references to save experiment

time.
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Table 4.1: Simulation parameters for ONT reads.

Simulator: PBSIM 1D reads 2D reads

Accuracy mean 0.59 0.69

Accuracy std 0.05 0.09

Accuracy min 0.40 0.40

Length mean 4400 5600

Length std 3900 3500

Length min 50 100

Length max 100000 100000

Error types ratio

(mismatch:insertion:deletion)
51:11:38 55:17:28

4.2.2 Evaluation of Sensitivity and Base-Level Accuracy

We evaluate the performance of BWSL and GraphMap with four indices: speed,

peak memory usage, sensitivity and average alignment score. Here speed is mea-

sured with average runtime for each read, and peak memory usage is measured

with resident set size (RSS). RSS refers to the portion of memory actually held

in main memory for the process. Table 4.3 shows the comparison on the datasets

shown in Table 4.2. Generally, BWSL has better alignment accuracy and GraphMap

is more computational efficient. For all five datasets BWSL is slower. It uses less

memory for small references but requires more for large ones. BWSL is a more

sensitive aligner than GraphMap by 0.24% to 1.19%. If measured with map-

ping error rate (defined as 1�sensitivity), the results of BWSL is only 37.70% to

91.24% to that of GraphMap. Also, BWSL has higher average alignment scores

by 3.1% to 3.9% with the same scoring matrix as GraphMap.

Table 4.4 shows the aligning characteristics of BWSL and GraphMap. Since

GraphMap tends to align sequences with a great number of matches, its identity

is higher than that of BWSL. On the other hand, GraphMap has to generate lots
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Table 4.2: Five synthetic datasets from 2-kbp to 2-Mbp.

Organism Strain
Whole genome

size (bps)

Number of

chromosomes

Simulated

depth

N. meningitidis Z2491 2,184,406 1 20

E. coli K-12, MG1655 4,641,652 1 20

S. cerevisiae S288C 12,157,105 17 20

C. elegans WBcel235 100,286,401 7 10

H. sapiens, Chr4 GRCh38.p7 190,214,555 1 10

of gaps to align the regions with low numbers of matches. This results in its high

ratio of gaps and longer alignment lengths. However, the alignment score cal-

culated by GraphMap is lower than that of BWSL, showing that the results of

BWSL are closer to optimum. Table 4.5 shows the alignment results of five syn-

thetic datasets generated with chromosome 1 to 5 from S. cerevisiae (with whole

S. cerevisiae genome as reference). The alignment results of the sub-datasets do

not show significant correlation with the size of synthetic templates.

4.2.3 Visualization of Alignment Results

To further analyze the results, the SAM [34] files generated by BWSL and GraphMap

are visualized with Integrative Genomics Viewer (IGV) [35, 36]. Figure 4.2 illus-

trates the visualization results for the E. coli dataset shown in Table 4.2. The range

of the sample regions is 42-kb, which is the maximum visualizable range allowed

under our IGV settings. Five regions are selected with an interval of 1,000,000

bases. The visualization results show that generally both tools map reads onto cor-

rect positions, but BWSL has much higher sequencing quality. The sequencing

depth is 20X for this dataset.
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Table 4.3: Comparing the alignment results by BWSL with GraphMap on syn-

thetic ONT 2D datasets.

Sensitivity Score Time (ms) Peak RSS (MB)

N. meningitidis, 2.2 Mbp, 7,890 reads

GraphMap 0.9876 2.3278 22.19 431

BWSL 0.9933 2.4060 28.72 166

E. coli, 4.6 Mbp, 16,565 reads

GraphMap 0.9889 2.3193 23.11 538

BWSL 0.9952 2.3916 38.88 300

S. cerevisiae, 12 Mbp (17 chromosomes), 43,494 reads

GraphMap 0.9809 2.3342 23.11 981

BWSL 0.9928 2.4084 72.53 712

C. elegans, 100 Mbp (7 chromosomes), 179,086 reads

GraphMap 0.9726 2.3434 84.37 3,065

BWSL 0.9750 2.4346 365.23 4,371

H. sapiens, Chr4, 190 Mbp, 248,068 reads

GraphMap 0.9755 2.3302 161.5 4,677

BWSL 0.9838 2.4175 1,492.23 6,780

4.2.4 Variant Analysis of Alignment Results

The sequencing results are further translated to pileup format with with SAM-

tools [34]. After that, BCFtools [37] is used to call variants from the data. The

command we use is as follows:

samtools mpileup -ugf ref.fa in.sam |

bcftools call -vmO z -o out.vcf.gz

The alignment results of E. coli and C. elegans datasets are analyzed, as shown

in Table 4.6. Since the reads are simulated from reference, a lower number

of variants called refers to better alignment quality. In the E. coli (20X depth)



doi:10.6342/NTU201701631

45

Table 4.4: The comparison of characteristics of alignments generated by BWSL

and GraphMap with 248,068 synthetic reads generated with H. sapiens chromo-

some 4.

Length Indentity Gaps
Hamming

distance
Total score

GraphMap 5,940.72 0.7554 0.1214 1,453.13 13,843.06

BWSL 5,883.96 0.7505 0.0893 1,467.77 14,224.47

dataset, both tools generate high-quality results and BWSL slightly outperforms

GraphMap (number of variants: 2 vs. 11). To further compare the alignment

quality of the two tools, a lower-depth dataset (C. elegans, 10X) is tested. In this

experiment, the number of variants called with the BWSL alignments is less than

one hundredth to that of GraphMap, showing the great alignment quality of the

proposed method.

Also, the aligners’ abilities to detect variants are tested and compared with

C. elegans dataset, as shown in Table 4.7. Point mutations (86,066) are added to

the reference and synthetic reads with mutations are then generated. The num-

ber of point mutations follows the average proportion of nucleotide differences

between humans, one in 1,000 to 1,500 [38]. Here a true positive is defined as

calling a mutation with perfectly identical position, reference nucleotide type and

alternative nucleotide type. BWSL greatly outperforms GraphMap in terms of

precision (92.44% to 21.01%), but both aligners call a small number of variants

with less than 1% sensitivity. This results show that there is still great room for

improvement for the variant calling abilities of current nanopore aligners.

4.3 Parameters Selection Guidelines

In this section, important parameters used in BWSL are analyzed and discussed

and the parameters selection guidelines are provided. We generate 5,479 reads
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Table 4.5: Comparing the alignment results by BWSL with GraphMap on syn-

thetic ONT 2D datasets for S. cerevisiae chromosome 1 to 5 (the rest are not

listed here).

Sensitivity Score Time (ms) Peak RSS (MB)

S. cerevisiae, Chr1, 230 Kbp

GraphMap 0.9794 2.3253 27.96 610

BWSL 0.9915 2.41 82.27 894

S. cerevisiae, Chr2, 813 Kbp

GraphMap 0.9850 2.3407 28.75 521

BWSL 0.9867 2.4212 73.49 970

S. cerevisiae, Chr3, 317 Kbp

GraphMap 0.9710 2.322 28.41 495

BWSL 0.9833 2.401 100.65 910

S. cerevisiae, Chr4, 1.5 Mbp

GraphMap 0.9788 2.3287 28.72 551

BWSL 0.9867 2.4168 86.39 1,012

S. cerevisiae, Chr5, 577 kbp

GraphMap 0.9899 2.3313 27.82 506

BWSL 0.9880 2.4179 74.77 952

from chromosome 4 of S. cerevisiae and align them to whole S. cerevisiae genome

(12,157,105-bp). Computing time and peak memory usage is recorded to repre-

sent computing efficiency. Sensitivity and average alignment score are shown to

evaluate the quality of the results. To analyze the computing time of different

functions and stages in BWSL, Linux kernel profiling tool perf is used as a pro-

filer. For simplicity, profiled functions not belonging to any specific stage (e.g.

malloc) or occupying less than 1% of the total runtime are not listed in the follow-

ing comparisons.
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(a)

(b)

(c)

(d)

Figure 4.2: Visualize the alignment results of synthetic E. coli dataset with IGV

from (a) 999 to 42,049 (b) 1,000,999 to 1,042,049 (c) 2,000,999 to 2,042,049 (d)

3,000,999 to 3,042,049 bases.

4.3.1 Max Number of Hits Allowed

The number of hits is associated with the number of expected random hits (N)

as shown in Equation 3.2. The expected number of hits is easily to be estimated

with a simple probabilistic model. However, some subsequences have a great

number of alignments in the genome if they locate in repetitive regions. Such

hits are not helpful for finding the correct mapping and have a high cost of both

time and memory usage. Therefore, for a seed with number of alignments higher

than a threshold called Max Number of Hits Allowed (MNHA), it is discarded.
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Table 4.6: The number of variants called by GraphMap and BWSL on two syn-

thetic datasets with different depths.

Dataset
Variants called:

BWSL

Variants called:

GraphMap

E. coli, 20X 2 11

C. elegans, 10X 21 2,313

Table 4.7: The sensitivity and precision of GraphMap and BWSL results on syn-

thetic C. elegans dataset with 86,066 point mutations added.

Dataset:

C. elegans, 10X
Sensitivity Precision

BWSL 0.43% 92.44%

GraphMap 0.99% 21.01%

MNHA is defined in proportion to the number of expected random hits, as shown

in Equation 4.2, where n,k,cMNHA stand for the length of reference, seed length

and MNHA coefficient, respectively. Parameters k,cMNHA are 8 and 10 by default.

MNHA = cMNHA(n� k)(
1

4
)k = cMNHAN (4.2)

MNHA coefficient is selected empirically. Experiments in Table 4.8 shows

the results under different MNHA coefficients. There is no significant difference

in average alignment score with varying MNHA coefficients. The computing time

and memory usage increase as there are more hits allowed. As for mapping sen-

sitivity, it grows with MNHA when the coefficient is low. However, for the tested

dataset the increase stops when cMNHA grows from 10 to 15. This is likely because

repetitive hits disrupt the linking efficiency. Our final choice for HMHA is 10 to

maximize sensitivity.
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Table 4.8: Comparison of different MNHA coefficients on 5,479 synthetic ONT

2D reads from S. cerevisiae.

Num. of hits Sensitivity Score Time (ms)
Peak

RSS (MB)

cMNHA = 1 4,205.66 0.4563 2.6693 17.13 401

cMNHA = 5 65,492.60 0.9839 2.4190 75.71 676

cMNHA = 10 97,447.12 0.9867 2.4168 86.39 1,012

cMNHA = 15 108,256.73 0.9865 2.4165 90.43 1,294

4.3.2 Number of Chains

The number of chains suggested by Linking Stage is an important factor of the

aligning efficiency of BWSL. A sufficient number of chains is important for high

mapping sensitivity. When the reference sequence is large, the number of random

hits is increasing and the linking results tend to be more noisy, so the number of

chains should also increase to absorb the uncertainty. We design Equation 4.3 to

handle the uncertainty with taking a square root of the length of reference, where

cNC is the number of chains coefficient. The square root function is an empirical

selection to slowly raise the number of chains with the increase of reference size.

NC = cNC

p
n

1,000
(4.3)

Different cNC is tested as shown in Table 4.9. Average alignment score and

peak memory usage are indifferent with the change of cNC, and there is a tradeoff

between sensitivity and average time. By default, cNC is set to 5. This coefficient

can be freely adjusted by users depending on applications. Table 4.10 shows the

profiling results with different cNC values. With a higher cNC, Extending Stage

occupies a larger proportion of the total computing time, from 41.77% (cNC = 3)

to 56.80% (cNC = 8). The change of cNC has little effect on the runtime of Seeding

Stage, Linking Stage and others.
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Table 4.9: Comparison of different NC coefficients on 5,479 synthetic ONT 2D

reads from S. cerevisiae.

Sensitivity Score Time (ms) Peak RSS (MB)

cNC = 3 0.9856 2.4181 73.76 1,010

cNC = 5 0.9867 2.4168 86.39 1,012

cNC = 8 0.9885 2.4151 102.87 1,011

Table 4.10: Profiling results with different NC coefficients on 5,479 synthetic

ONT 2D reads from S. cerevisiae.

Seeding Stage Linking Stage Extending Stage Others and < 1%

cNC = 3
22.97%

(16.93 ms)

17.22%

(12.70 ms)

41.77%

(30.81 ms)

18.04%

(13.31 ms)

cNC = 5
20.16%

(17.42 ms)

14.53%

(12.55 ms)

48.82%

(42.18 ms)

16.49%

(14.25 ms)

cNC = 8
16.66%

(17.14 ms)

12.26%

(12.61 ms)

56.80%

(58.43 ms)

14.28%

(14.69 ms)

4.3.3 The size of the First Tile

BWSL applies an incremental alignment strategy to enhance efficiency in Extend-

ing Stage. In this strategy, the design of the first alignment tile is critical because

it it a filter to control whether a chain is passed to the rest extending tiles. As dis-

cussed in Section 3.4, the first tile is larger in width in comparison to other tiles.

By default the width of the first tile is 1,000 bases and that of the rest is 200 bases.

This is to deal with the uncertainty of chain positions suggested by Linking Stage.

With the same height (200 bases) as other tiles, the first tile occupies a large pro-

portion (more than 40%) of total time, as shown in Table 4.13. Therefore, to raise

extending efficiency, it is important to reduce the time cost of the first tile.

First, reducing the width of the first tile (w ft) is a possible solution to enhance
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Table 4.11: Comparison of different widths of first Extending tile on 5,479 syn-

thetic ONT 2D reads from S. cerevisiae.

Sensitivity Score Time (ms) Peak RSS (MB)

w ft = 600 0.9766 2.4140 74.75 1,003

w ft = 800 0.9845 2.4159 83.25 1,006

w ft = 1,000 0.9867 2.4168 86.39 1,021

w ft = 1,200 0.9869 2.4169 94.49 1,012

Table 4.12: Comparison of different heights of first Extending tile on 5,479 syn-

thetic ONT 2D reads from S. cerevisiae.

Sensitivity Score Time (ms) Peak RSS (MB)

h f t = 50 0.9801 2.4209 85.61 1,006

h f t = 100 0.9867 2.4168 86.39 1,012

h f t = 200 0.9870 2.4168 105.62 1,021

efficiency since it decreases the size of the matrices used in our dynamic program-

ming algorithm. Different w ft values are tested, as shown in Table 4.11. In this ex-

periment, computing time and sequencing sensitivity increase with higher widths,

while sequencing sensitivity encounters small marginal effect from w ft = 1,000

to w ft = 1,200. This is because indels in some reads move the correct alignments

away from diagonals. The precise starting positions for such reads are difficult

to calculate with our linking algorithm. For nanopore reads, the number of in-

dels is high due to the limited accuracy, raising the uncertainty in Linking Stage.

Therefore, a large enough w ft is necessary to capture the uncertainty. Otherwise

sensitivity drops even though the rough position of the correct chain is found. The

above experiment shows that the uncertainty of chain positions can be absorbed

with setting w ft at 1,000 bases. To avoid sacrificing sensitivity, it is not suggested

to cut w ft to speed up the algorithm.

Second, different heights of the first tile (h f t) are tested. The filtration thresh-
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Table 4.13: Profiling results with different heights of first Extending tile on 5,479

synthetic ONT 2D reads from S. cerevisiae.

Extending Stage:

first tile

Extending Stage:

secondary tiles
Others and < 1%

h f t = 50
14.11%

(12.08 ms)

33.19%

(28.41 ms)

52.69%

(45.11 ms)

h f t = 100
27.24%

(23.53 ms)

21.58%

(18.64 ms)

51.18%

(44.21 ms)

h f t = 200
44.71%

(47.22 ms)

14.04%

(14.83 ms)

41.25%

(43.57 ms)

olds are set with Equation 4.4:

th f t = 0.8h f t (4.4)

The experimental and profiling results are shown in Tables 4.12 and 4.13. It is

shown that setting h f t to 100 bases has a sensitivity close to that of 200 bases and

has a speedup of 18%. If reducing h f t further to 50 bases, there is a significant

drop of sensitivity. Therefore, by default h f t is set to 100 bases for the high

sensitivity and speed.

The reason accounting for low sensitivity at 50-base-height is that the align-

ment results generated with a very shallow tile are possibly far from optimal. With

error propagation, the extension of a correct chain might be terminated early and

sensitivity drops. Also, the computing time under 50-base-height is close to that of

100-base-height. The reason is that the filtration efficiency of the first tile degrades

with decreasing height. Though the filtration threshold is set with a universal for-

mula (Equation 4.4), a shorter alignment length makes the filter more vulnerable

to the randomness in reads. With lower filtration efficiency of the first tile, more

secondary tiles are used for extending. It is shown that under 50-base-height the

time cost of secondary tiles is relatively higher in the profiling results.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, Burrows-Wheeler-transform-based aligner with Seeding and Link-

ing (BWSL) is proposed to map noisy long reads accurately and generate high-

quality alignments.

BWSL uses a three-stage architecture—seeding, linking and extending—to

effectively sample seeds from a read, estimate read position and generate high-

quality alignment. Novel algorithms such as Q-FHPS and dynamic extending

filters are designed for efficient computing.

Compared to state-of-the-art aligners on synthetic datasets, BWSL outper-

forms all others in terms of sensitivity. The mapping error rates of BWSL are

only by 37.70% to 99.24% to those of the next best mapper, GraphMap. Also,

the alignment quality of BWSL outperforms GraphMap with the number of false

positives only one hundredth (21 vs. 2,313) in 10X synthetic C. elegans dataset.

In conclusion, BWSL is a powerful tool to efficiently process long reads with rel-

atively low accuracy and enables further applications based on such reads in the

future.

53
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5.2 Future Work

First, despite being an aligner with high aligning quality, BWSL has relatively

lower computational efficiency. Profiling results show that Extending Stage occu-

pies a large proportion of BWSL’s runtime. Also, BWSL samples a great number

of seeds for high sensitivity. However, this strategy generates a lot of random hits,

which use large memory. If more accurate seeding and chain selection algorithms

are designed, the computational efficiency is likely to be improved.

Second, BWSL adopts reads globally to the reference. Because of the limi-

tation of tile size, it is difficult for our algorithm to align reads with long-range

variations. Applying new dynamic programming strategies or using local align-

ment algorithms are possible solutions to this issue.

Last, some experiments are not tested in this thesis because of the lack of time

and computing resources. For example, entire human genome is not tested with

BWSL because of the limited memory of our machines. This can be solved with

using a more powerful computing platform such as Amazon Web Services (AWS)

or improving our program with methods mentioned above.
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