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摘要 

網路位址轉換 (NAT) 是當今網路架構中最常見的中間元件之一。以網際網路

服務供應商為例，他們通常會在其內部網路中採用 NAT444架構來減輕 IPv4網路

位址耗盡問題。但是，由於網路位址轉換會將封包表頭資訊偽裝，並將由使用者端

裝置發送的所有資料流混雜在一起，因此將導致網路營運者很難辨識出每條資料

流，也很難對其網路有完整且全面的控制能力。不僅如此，此種技術也會產生許多

其他問題，例如規模性、可靠性與打破網路終端對終端原則等等。 

 因此，我們利用軟體定義式網路 (SDN) 技術來實作網路位址轉換，以達到更

細微的管控。藉由將傳統的網路位址轉換硬體替換為支援 OpenFlow協議的交換器

並統一接受中央控制器的控管，網路管理者將擁有網路的全局資訊，能做到以資料

流為基礎的網路行為管理。在本論文中，我們設計且實作出以 SDN為基礎的網路

位址轉換，並將其實作在樹梅派 (Raspberry Pi) 上作為一個初始模型。此外，我們

進一步利用 OpenFlow 協議支援的隊列模組，在以 SDN 為基礎的 NAT 架構網路

下，做到以資料流為基礎的服務品質加強。我們以效用函數與傳輸速率來估測每筆

資料流的使用者體驗，並將其規劃成一組最佳化問題，於考量公平性因素的同時計

算出得到最佳使用者體驗的頻寬分配方式。實驗結果顯示我們的實作能夠以 SDN

實現 NAT的功能，並做到以資料流為基礎的設定，進而達成服務品質加強。 

 

關鍵字：網路位址轉換、NAT444, 軟體定義式網路、服務品質、樹梅派(Raspberry 

Pi) 
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Abstract 

Network address translation (NAT) is one of the most commonly used middle-boxes 

in the network architectures nowadays. Take the Internet Service Providers (ISP) as an 

instance, they usually adopt the NAT444 architecture in their internal network to mitigate 

the IPv4 exhaustion problem. However, since NAT middle-boxes will masquerade the 

packet header information and mix-up all network traffic flows originating from user 

devices, the network operators could hardly identify the origin of the data flows or have 

an overall and complete control of their internal network. Moreover, such a technology 

also raises a variety of issues such as scalability, reliability, and breaking the end-to-end 

principle. 

Therefore, we utilize Software Defined Network (SDN) to implement the NAT 

function to achieve a more fine-grained control. By replacing the traditional NAT 

hardware with the OpenFlow switches and making them centrally controlled by the SDN 

controller, the network operators could have a global network view to manage the network 

behavior in a flow-based manner. In our work, we design and implement the SDN-based 

NAT architecture on a low-cost Raspberry Pi platform as a prototype. In addition, we 

exploit the queue module supported in the OpenFlow protocol to implement a flow-level 

QoS (Quality of Service) enforcement scheme in the SDN-based NAT. We use utility 

functions to measure the quality of experience of data flows with respect to the received 

data rate, and model the bandwidth allocation problem as an optimization problem to 

derive a solution with optimal utility scores while considering the fairness criterion. 

Experiment results show that our implementation could achieve the function of NAT and 
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could do flow-level configuration to perform the QoS enforcement. 

 

Keywords — Network address translation, NAT444, Software defined network, Quality 

of Service, Raspberry Pi 
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Chapter 1  

Introduction 

1.1  Network Address Translation 

 

Network Address Translation (NAT), which shares an IP address among multiple 

subscribers, is one of the most widely deployed network functions in today’s network. 

The basic mechanism of NAT is to map various IP/port combinations of flows from 

subscribers to a set of specially selected IP/port combinations. The NAT function is 

usually configured on the network edge router as a gateway allowing multiple devices in 

the inner private network to communicate with the Internet, as shown in Figure 1-1. Thus, 

these subscribers look like a single user from the Internet.  

 

 

 

 

 

 

In Figure 1-1, several devices with private IP addresses in the local area network of 

the NAT gateway connect to the wide area network by using a public IP 100.64.0.1. 

Consider an example that a host with the private IP 10.0.0.2 and the port number 10000 

try to establish a connection to a public server with the public IP 140.112.42.99 and the 

Figure 1-1 NAT gateway router 
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port number 12345. When the new traffic flow initiated by the host 10.0.0.2 arrives at the 

NAT gateway, a new port mapping is generated, let us say the port number 20000, and 

stored in the gateway. For every packet in the same data flow, the NAT gateway will 

modify the corresponding header fields according to the mapping information. In our 

example, the NAT gateway will modify the source IP field from 10.0.0.2 to 100.64.0.1 

and the source port field from 10000 to 20000, and then send out to the server 

140.112.42.99. For the packets sent back from the server, the NAT gateway will modify 

the destination IP field and destination port field based on the pre-stored port mapping 

information and send the packets back to the original host 10.0.0.2. The procedure is 

detailed in Figure 1-2. 

 

 

 

 

 

 

 

 

 

1.2  NAT 444 Architecture 

 

Because of the IPv4 exhaustion problem, most of the large scaled network 

architectures nowadays adopt multiple layer NAT middle-boxes to minimize the need for 

the public IP addresses. For instance, to accommodate more new customers and more 

Figure 1-2 NAT function example 
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emerging network devices, a lot of Internet Service Providers (ISP) choose to deploy the 

NAT 444 architecture in their internal network. The NAT 444 architecture is a two-layered 

NAT architecture consists of two kinds of NAT middle-boxes, the Carrier Grade NAT 

(CGNAT) and the Customer Premises Equipment (CPE), as illustrated in Figure 1-3.  

 

 

 

 

 

 

 

 

 

 

Under the NAT 444 architecture, the flows generated from the customers’ equipment 

need to pass through at least two gateways before reaching the IPv4 Internet. The first 

gateway is the CPE, which is usually a terminal hardware co-located with Digital 

Subscriber Line (DSL), cable, or fiber optic modem at tenant’s home or office by the ISP. 

The CPE provides the connectivity for user devices to access the core network, such as 

personal computers, cell phones, and IPTVs. The second one is the CGNAT, which is a 

large-scale NAT server deployed in the operator’s network. The NAT 444 architecture 

could effectively reduce the requirement of the public addresses in the ISP network by 

aggregating many private IP addresses into fewer public IP addresses. Before the 

adoption of IPv6 becomes widely popular, the NAT 444 architecture is still the major 

solution to mitigate the IPv4 depletion problem. 

Figure 1-3 NAT 444 architecture 
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1.3  Problems with Today’s NAT 

 

Despite the fact that the NAT 444 architecture is the most popular adopted solution 

to the IPv4 exhaustion problem, it is still not the sustainable solution. The NAT function 

introduces a variety of issues to the network. For example, as mentioned in section 1.2, 

the NAT 444 architecture contains multiple-layer NAT servers. In such a scenario, any 

traffic flow originating from the user devices will be masqueraded several times by the 

NAT middle-boxes before it reaches the wide area network. From the perspective of the 

ISP, the IP masquerading procedure results in difficulty to identify each data flow with 

modified packet header, so it is unlikely to perform the flow-based differentiated service 

in the ISP internal network. Therefore, the network managers could not have a complete 

and overall control of their internal network. 

The NAT 444 architecture also inherits the disadvantages from the tradition NAT. 

Firstly, the CGNAT are usually delivered by dedicated and proprietary hardware. 

Therefore, it suffers from low scalability and is hard to scale up or scale out to fit the ever-

changing network usage pattern. Besides, if a CGNAT is fully loaded, the others are not 

able to offload the congested traffic. Secondly, the traditional NAT is a stateful machine. 

Since the NAT server stores the dynamic IP/port mapping information in the memory, it 

cannot restore the information after experiencing a power outage or a server failure. Thus, 

it brings out the reliability issue. Lastly, the traditional NAT breaks the end-to-end 

principle. The NAT function gets involved with not only the network layer transmission 

of the packets but the transport layer as well. It will hide the transport layer information 

of subscribers’ machines behind it. As a result, it causes difficulties to perform the peer-
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to-peer applications such as VoIP and P2P file transfer. 

 

1.4  SDN-based QoS Aware NAT 

 

To address the issues of the traditional NAT and obtain a more fine-grained overall 

control, we utilize the Software Defined Network (SDN) technology to re-implement the 

NAT function. We replace the dedicated NAT servers by the OpenFlow switches and 

employ a central SDN controller to control the behavior of these switches. The NAT 

function is delegated to the central controller and the port mapping information is stored 

in the SDN controller rather than the switches. Therefore, with the global network view 

provided by the SDN controller, the network operators can not only easier to manage the 

underlying network infrastructure but also control the network behavior in a flow-level 

manner. The source of a traffic flow can be identified no matter how many NAT layers it 

transverses so that the per-flows control for each subscriber is possible to enforce.  

 There are more benefits of the SDN-based NAT. For instance, since the port 

mapping information is kept in the SDN controller, it could be restored to the recovered 

server or another backup server even though a power outage or failure happened. The 

controller can install the copy of the mapping table to the working switch and 

concurrently sets up new forwarding rules to detour the affected flows. Thus, the SDN-

based NAT could attain the stateless NAT and improve reliability. Besides, since the 

dedicated NAT servers are all replaced with the commercial OpenFlow switches, it makes 

it easier to manage and scale the network because they have a standardized structure to 

do mass production.  

In our work, we also exploit the queue module supported in OpenFlow protocol to 
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achieve the flow-based QoS aware bandwidth allocation in a hierarchical network 

structure like the NAT 444 architecture. We adopt the concept of the utility function to 

measure the quality of experience of a data flow with respect to the transmit rate, and 

model the bandwidth allocation as an optimization problem to derive an allocation to 

maximize the total utility score while achieving the utility proportional fairness. We 

implement the SDN-based QoS aware NAT and conduct simulations on a Raspberry Pi 

platform with OpenvSwitch installed as an OpenFlow switch. Experiment results show 

that our implementation could achieve the function of NAT and the flow-level QoS 

enforcement. 

 

1.5  Thesis Organization  

 

The rest of the paper is organized as follows. Chapter 2 introduces the literature 

related to our work. Chapter 3 describes our system architecture of the implementation of 

the SDN-based NAT and the QoS aware NAT respectively. Chapter 4 shows that how we 

model and analyze the bandwidth allocation problem and solve it by a heuristic greedy 

algorithm. Chapter 5 gives the simulation results of our proposed scheme. The conclusion 

and future work are discussed in Chapter 6. 
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Chapter 2  

Related Work 

There is literature proposed utilizing the SDN technology to realize the NAT 

function to solve the existing problems. To the best of our knowledge, the concept of the 

SDN-based NAT is firstly proposed in [1]. Gijeong K. et al. [1] described an SDN based 

fully distributed NAT traversal scheme for IoT global connectivity. In the past, the NAT 

traversal problem is addressed by adding an external public relay server to handle the 

connection [2][3]. The proposed scheme in [1] used the SDN switches and the SDN 

controller to replace the NAT gateway and the relay server to distribute the workload of 

NAT processing to devices and reduce transmission delay by packet switching instead of 

packet modification. However, to modify packet headers in the user devices, the devices 

also need to be under control of the controller so that additional configurations are needed. 

The authors in [4] also proposed an SDN-based solution to resolve the NAT traversal 

problem and improve the current ALG (Application Layer Gateway) solution for SIP/IMS 

multimedia services in the All-IP mobile networks. Marnel P. et al. [5] proposed a 

horizontal model mobility management in a wireless network, which has the combined 

functions of NAT management and MME (Mobility Management Entity) in the control 

layer. In [6], the authors proposed the use of an SDN gateway to perform a flow-based 

security mechanism for IoT devices. Their scheme conducted the traffic patterns analysis 

to determine and block specific malicious flows instead of blocking all suspected traffic 

flows from a NAT gateway. Although the related works listed above proposed various 

possible applications of the SDN-based NAT, they are all lack of simulation or 
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implementation in real hardware. 

In our work, we implement a QoS aware bandwidth allocation scheme in the SDN-

based NAT. Since the seminal papers of Kelly et al. [7][8] and Low et al. [9], the NUM 

(Network Utility Maximization) framework has become a well-studied QoS model which 

expresses the network resource allocation as an optimization problem[10][11][12][13]. 

Our implementation work is primarily motivated from FlowQoS [14] and Contextual 

Router [15]. In FlowQoS [14], the authors proposed an SDN-based QoS approach for 

application-based bandwidth allocation on a home gateway. They classified the traffic 

flows into different application types on the fly by a light-weighted inspection tool [16], 

and then configured bandwidth traffic shaper of each type to achieve the differentiated 

resource allocation. However, the bandwidth allocated for each application types in [14] 

is pre-defined by users statically so that it could not adapt to the dynamic network 

environment. Contextual Router [15], also motivated from [14], implemented a 

dynamical resource allocation on a home router. They exploited utility functions to define 

the quality of experience of applications and modeling the resource bandwidth problem 

as an optimization problem whose objective is to maximize the total utility value. 

Whereas, the utility functions used in [15] are simple piecewise linear functions that could 

not address the actual needs of existing network applications. Moreover, the optimization 

problem did not consider the fairness issue either.       
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Figure 3-1 SDN-based NAT444 architecture 

Chapter 3  

System Architecture 

In this chapter, we will describe how we implement the SDN-based NAT in detail. 

Figure 3-1 illustrates how we implement the SDN-based NAT in an NAT444-like 

architecture. 

  

 

 

 

 

 

 

 

 

In the SDN-based NAT, the traditional NAT middle-boxes are replaced with the 

OpenFlow switches, and the central controller will take control of all these switches via 

the southbound protocol. We delegate the NAT function to the SDN controller so that the 

NAT port mapping policy will be determined and stored in the central controller. The 

controller will install the rules of packet modification and packet forwarding to the 

switches according to the NAT mapping information. The switches do not get involved 

with the policy determination but only execute the installed rules in the flow table when 

data packets arrived. In the rest of this chapter, we describe the features and the 
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Figure 3-2 Ryu controller architecture 

 

implementation details of the proposed architecture. 

 

3.1 SDN Controller  

  

In our implementation, Ryu [17] is chosen as the SDN controller. It is a component-

based software defined networking framework developed in Python language. Ryu 

supports fully OpenFlow protocols from version 1.0 to 1.5. It also provides a great variety 

of RESTful API for developers to make it easier to create new network applications. The 

Ryu controller architecture is shown in Figure 3-2. 

 

 

 

 

 

 

 

 

 

  

 Ryu is developed as an event driven framework. When receiving a southbound 

message, an event corresponding to the message is dispatched and sent to the appropriate 

event handlers. The Ryu Apps developed by the network managers could register related 

event handlers to catch the events and further perform the desired control logic. In our 

work, we implement the NAT function as a Ryu application in Python language. The 
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application will catch the events indicating that there are new packets received from the 

data plane and apply the corresponding NAT functions. 

 

3.2 Southbound API 

  

Southbound API is the interface allows communications between the controller and 

the SDN switches. In our architecture, there are two kinds of Southbound API, OpenFlow 

[18] and OVSDB [19], in charge of different control messages respectively. 

 

3.2.1 OpenFlow Protocol 

The OpenFlow protocol, which is developed by the Open Networking Foundation 

(ONF), has become a standard of the southbound interface in recent years. It defines many 

kinds of control messages exchanged between the controller and the OpenFlow switches 

to realize fully operation and traffic engineering intelligence of the SDN network. We 

choose the version 1.3 since it is stable and commonly implemented on commercial 

hardware currently such as Pica8 and HP OpenFlow switches. In our architecture, the 

OpenFlow protocol is used to inform the controller the arrival of new packets at 

OpenFlow switches and install flow entries into the flow tables according to the NAT 

policy. Network application sitting on top of the controller can also leverage this protocol 

to obatain the status of the active flows in the network by analyzing the flow table.  

 

3.2.2 OVSDB Protocol 

The OVSDB protocol is the abbreviation of the Open vSwitch Database 

Management Protocol, which is used as a lightweight switch database server to store the 
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Table 3-1 Southbound API 

 

configuration information of an OpenFlow switch. In addition to the traffic engineering 

logic control, the protocol provides more physical hardware configurations that are not 

supported by the OpenFlow protocol. For example, the OVSDB protocol allows network 

managers to remotely create and delete ports, bridges, and queues of a switch. In our 

implementation, we configure the limited data rate of queues of OpenFlow switches as 

traffic shapers via the OVSDB protocol. 

The difference of two southbound API used in our work is listed in Table 3-1.   

 

 

 

 

 

 

3.3 Raspberry Pi as an OpenFlow Switch 

  

OpenFlow switches are the forwarding elements in the data plane under control of 

the SDN controller. When a packet arrives at an OpenFlow switch, the switch looks up 

the flow table to find a matching flow entry for the received packet and then execute the 

instructions in the rule; otherwise, the switch notifies the controller via the OpenFlow 

protocol to get installed related rules.  

Open vSwitch [20] is an open source multilayer virtual switch commonly deployed 

in large-scale computing environments. It was firstly designed for forwarding data traffics 

between different virtual machines or even virtual machines and physical machines. Open 

vSwitch is also designed to be compatible with modern switching chipsets so that it can 
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Figure 3-4 OpenFlow switch configurations Figure 3-3 Raspberry Pi 

be ported to the Linux-based platform.  

In our work, we install Open vSwitch on a Raspberry Pi [21] to make it an OpenFlow 

switch. Raspberry Pi is a small, low-cost, and easily programmed embedded machine. H. 

Kim [22] also suggested Raspberry Pi as an SDN forwarding element with Open vSwitch. 

Since the Raspberry Pi is equipped with an ARM-based processor, we cross compile the 

source code of Open vSwitch by gcc tool and port it into the Raspberry Pi. Moreover, the 

Raspberry Pi only has one Ethernet RJ45 port, so we use USB to Ethernet converters to 

create more Ethernet ports, as shown in Figure 3-3.  

 

 

 

 

 

 

 

 

The switch ports are bridged using the OVSDB tool to exchange the data packets 

between network interfaces. We also write a shell script running on the start-up of the 

switch. After a Raspberry Pi boots up, it automatically loads the Open vSwitch module, 

connects to the controller, and listens for OpenFlow and OVSDB messages. We detailed 

the configurations in Figure 3-4. 

 

3.4 SDN-based NAT Function 
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Figure 3-3 SDN-based NAT flow chart 

In this section, we describe how we realize the SDN-based NAT function. When a 

new data flow arrives at a switch, the switch will check if the flow matches any 

forwarding rule in the flow table. If a flow entry is matched, then the switch directly 

execute the actions in the rule and send out data packets. Otherwise, the switch will 

generate a PACKET_IN message and send it to the controller by the OpenFlow protocol 

along with a packet of the new flow. The controller determines and stores the NAT port 

mapping information according to the received packet. A NAT mapping table and a NAT 

port pool are also maintained in the controller to enable the policy. Finally, the controller 

derives a set of flow rules to install to the switch via OpenFlow OFPFlowMod method. 

We note that since the switches always send the unknown packets to the controller in the 

SDN, our proposed scheme does not increase the network overhead. The flow chart of 

the SDN-based NAT function is shown in Figure 3-5. 

 

 

 

 

 

 

 

 

 

 

 

We give an example of how the communication works. Consider a case as depicted 

in Figure 3-6, where a host with the IP 10.0.0.2 tries to communicate with a public server 
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Figure 3-4 SDN-based NAT system architecture 

 

Figure 3-5 NAT mapping table 

with the IP 140.112.42.99 through the double-layered NAT architecture. When the first 

packet of a new traffic flow generated by the host 10.0.0.2 arrives at switch S1, since the 

new flow will match no rules in the flow table, switch S1 will generate a PACKET_IN 

message and send the message and the packet to the controller. 

 

 

 

 

 

 

 

 

 

 

 

 

In this example, the NAT logics that we implement in the controller makes a decision 

to map the flow from 10.0.0.2:10000 to the port number 20000 in switch S1. Then, the 

controller stores the mapping information in the mapping table, as the first entry of the 

flow table of switch S1 listed at the bottom of Figure 3-6. The structure of the NAT 

mapping table is shown in Figure 3-7.  
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In this case, the forwarding rule includes these instructions: modify the destination 

MAC address to the MAC address of switch S2, modify the source IP address to the IP 

assigned to switch S1, modify the source port number to the NAT port 20000, and finally 

forward the packets to the switch S2. The process of the modifications can be achieved 

by OFPActionSetField function provided by OpenFlow, which is able to modify the 

packet header fields from the data link layer to the transport layer. A similar procedure is 

conducted when the flow arrives at switch S2.  

When the backward flow arrives at switch S2 and the controller is informed, the 

controller will check the stored mapping table and look up a record to remap the original 

source IP and the source port of the flow. In our case that switch S2 receives a flow with 

the destination IP 100.64.0.1 and the destination port number 30000, according to the 

mapping table, we could know that the flow is initially generated by the host with the IP 

10.0.0.2 and the port number 10000. Thus, the NAT function could install rules to switch 

S2 to modify the destination IP and the port number for the backward flow and send 

packets towards the host. We note that the ability to recognize the origination of a data 

flow is unattainable in traditional NAT since the mapping information is individually and 

locally stored. For example, when switch S2 receives the data flow with the source IP/port 

172.16.0.1:20000, switch S2 does not know the flow is initially created by the host 

10.0.0.1:10000. This unrevealed information causes difficulties of per-flows level 

network services. 

If a data flow sent from the outside network to the inside network and there are no 

mapping records in the mapping table, it indicates the flow is initiated from an external 

server originally trying to connect to the devices in the local area network actively. In our 

work, we will ignore the flow for security concerns. The rationale behind the 

implementation here is the operation mode of the symmetric NAT. In the symmetric NAT, 
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only an external host that ever received a packet from an internal host can send a packet 

back. If an exception is needed in our implementation, such as providing a public service 

behind the NAT function, the related flow entries could be installed into the flow table in 

advance to enable the communication. 
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Figure 4-1 QoS Aware NAT architecture 

Chapter 4  

QoS Enabled NAT 

In this chapter, we discuss how we design and implement the QoS enabled SDN-

based NAT. There are many QoS metrics studied and discussed in the literature, such as 

packet loss, jitter, round trip latency, and data transmission rate. In our work, motivated 

from [14][15], we utilize the queue module in the OpenFlow switches to implement the 

flow-based bandwidth allocation to approach the QoS differentiation. We adopt utility 

functions to measure the quality of experience of traffic flows with respect to the 

transmission rate, and model the bandwidth allocation as an optimization problem to 

derive an allocation maximizing the total utility score while considering the fairness 

criterion. 

 

4.1  Design of QoS Enabled NAT  

   

In this section, we discuss how we design the QoS enabled NAT architecture. The 

architecture is illustrated in Figure 4-1. 
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4.1.1 Flow Classification  

When a new data flow arrives at a switch, the NAT function will be applied first. 

Then we categorize the flow into a certain application type, where the network manager 

could define the application types in advance. From the perspective of implementation, it 

is unlikely to assign a queue to each data flow in the run time. Therefore, we implement 

a queue for an application type in the OpenFlow switches so that we could do traffic 

shaping for each type. As long as a flow is classified, the flow is assigned to the 

corresponding queue based on its type by the OpenFlow OFPActionSetQueue method.  

We adopt the classification method in [14]. The authors in [14] use a simple DNS 

classifier and a light-weighted packet inspection tool Libprotoident [16] for application 

identification. The method requires the well-known five-tuples and the other four fields 

of the packet, first four bytes sent, first four bytes received, first payload size sent, and 

first payload size received. Although the OpenFlow switches only support the traffic 

engineering from the network layer 2 to layer 4, the controller still could retrieve the layer 

7 information from the packet payload to perform the classification. Previous work [23] 

shows that Libprotoident tool was properly able to classify 94% of 1,262,022 flows 

captured over 66 days.  

We note that the traditional NAT function might masquerade the information of the 

five-tuples and result in the categorization errors. With the SDN-based NAT, the origin 

information of the five-tuples could be obtained and further increase the accuracy of 

classification.  

 

4.1.2 Rate Controller 

To adapt to the dynamic network environment, we periodically configure the traffic 
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shaper of the queues to approach the QoS enforcement. First, we collect the flow statistic 

to know that how many active flows in the current network by analyzing the content of 

the flow tables. Second, we solve the bandwidth allocation problem, which is formulated 

as an optimization problem with the flow statistic information, to derive the best 

allocation method for each type in the present. The optimization problem will be 

discussed in section 4.2. Third, we configure the traffic shaper of the queues in the 

OpenFlow switches according to the optimal solution to enable the data rate limiting for 

each application type.  

Even though the OpenFlow protocol supports assigning flows into different queues, 

the configuration of the queues is done out of the protocol. In our prototype, we conduct 

the settings via the OVSDB protocol as introduced in section 3.2.2. 

 

4.2 Bandwidth Allocation Problem  

 

We model the bandwidth allocation problem as a nonlinear programming 

optimization problem. Without loss of generality, we consider a hierarchical network 

topology just like the NAT 444 architecture as shown in Figure 4-2. 

 

 

 

 

 

4.2.1 Basic Model  

Let N = {N𝑳1 ,N𝑳2 , …N𝑳𝑚} ∪ {N𝑈}  denotes the NAT middle boxes set in the 

Figure 4-2 Two-layer network architecture 
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network consists of one CGNAT gateway and 𝑚  CPEs, where N𝑳𝑖
  is the 𝑖𝑡ℎ  CPE 

gateway which directly connects to the user devices, and N𝑼 is the aggregated CGNAT 

server which connects to other CPEs. Let 𝒄 = {𝑐𝑳1 , 𝑐𝑳2 , … 𝑐𝑳𝑚} ∪ {𝑐𝑼} denotes the set of 

available capacity of the outer links of N. Then we could derive an upper bound of the 

total bandwidth allocation that controller could assign to N𝑳𝑖
 according to each data 

flows. For every N𝑳𝑖
 , let 𝒇𝑖,𝑗  denotes the 𝑗𝑡ℎ  traffic flow generated by a user 

connected to N𝑳𝑖
, and 𝑏𝑖,𝑗 represents the bandwidth allocation for 𝒇𝑖,𝑗 assigned by the 

controller, then first we have 

∑𝑏𝑖,𝑗 ≤ 𝑐𝑳𝑖

𝑛𝑳𝑖

𝑗=1

, ∀ 𝑖 ∈ {1, 2, …𝑚}                (1) 

, where 𝑛𝑳𝑖 is the total number of flows belong to N𝑳𝑖
. Moreover, the total allocated 

bandwidth could not exceed the available bandwidth of the bottleneck link of N𝑼, so we 

also have  

∑∑𝑏𝑖,𝑗

𝑛𝑳𝑖

𝑗=1

≤ 𝑐𝑼

𝑚

𝑖=1

                         (2) 

 In the flow classification procedure, each flow 𝒇𝑖,𝑗  would be categorized into a 

specific application type. Let 𝑇 = {𝑡1, 𝑡2,  … 𝑡𝐾} be the application type set defined by 

the network manager, where 𝐾  is the total number of types. The flow classification 

process could be considered as a function 𝜋 ∶ 𝒇 → 𝑇 that could map a traffic flow 𝒇𝑖,𝑗 

to an element 𝑡𝑘 in set 𝑇. The utility function 𝑈 ∶ (𝑡, 𝑏) → 𝑹+ ∪ {0} is also defined by 

the network manager and takes two value as its input parameters, the application type and 

the data rate of the flow. For a specific flow 𝒇𝑖,𝑗, the corresponding utility value 𝑢𝑖,𝑗 is 

calculated as 
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𝑢𝑖𝑗 = 𝑈(𝜋(𝒇𝑖,𝑗), 𝑏𝑖𝑗), ∀ 𝑖 ∈ {1, 2, …𝑚} and 𝑗 ∈ {1, 2, … 𝑛𝑳𝑖}.      (3) 

In our implementation, we assign a queue to each application type. The 

implementation leads to the fact that the flows still need to compete with the other flows 

in the same queue for available bandwidth allocated to the application type. Therefore, 

we assume that the bandwidth allocated for any two flows assigned to the same queue of 

N𝑳𝑖
 will be identical, as described in Assumption I. 

Assumption I: For any two traffic flows under the same NAT server, say 𝒇𝑖,𝑗 

and  𝒇𝑖,𝑗′  𝑤ℎ𝑒𝑟𝑒 𝑗 ≠ 𝑗
′ , if they also belong to the same application type, then the 

bandwidth allocated for 𝒇𝑖,𝑗 and 𝒇𝑖,𝑗′ will be identical. That is, if 𝜋(𝒇𝑖,𝑗) = 𝜋(𝒇𝑖,𝑗′), 

then 𝑏𝑖𝑗 = 𝑏𝑖𝑗′ , ∀ 𝑖 ∈ {1, 2, …𝑚}, 𝑗 and 𝑗′ ∈ {1,  2, … 𝑛𝑳𝑖}. 

The Figure 4-3 above depicts the queues implementation in an OpenFlow switch. 

 

 

 

 

 

 

Let 𝑐𝑳𝑖,𝑘 denotes the bandwidth assigned for type 𝑡𝑘 in N𝑳𝑖
 and 𝑛𝑳𝑖,𝑘 denotes 

the number of flows categorized into 𝑡𝑘  in N𝑳𝑖
 . The limitation of the bandwidth 

allocated to the queues of N𝑳𝑖
 could be described as 

∑𝑐𝑳𝑖,𝑘 ≤ 𝑐𝑳𝑖

𝐾

𝑘=1

, ∀ 𝑖 ∈ {1, 2, …𝑚}                 (4) 

Then, according to Assumption I, we have 

Figure 4-3 Queues implementation in a switch 
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𝑏𝑖,𝑗 =
𝑐𝑳𝑖,𝑘

𝑛𝑳𝑖,𝑘
.                             (5) 

 Finally, to achieve the best quality of experience, our target is to find a feasible 

bandwidth allocation to maximize total utility score. A bandwidth allocation 𝒃∗ =

 [𝑏∗1,1, 𝑏
∗
1,2,  … 𝑏

∗
𝑚,𝑛𝐿𝑚

] is a feasible allocation if and only if it meets all the constraints 

(1) to (5) in the above model. Our objective function could be denoted as 

  max∑∑𝑢𝑖𝑗

𝑁𝐿𝑖

𝑗=1

𝑚

𝑖=1

.                            (6) 

 

4.2.2 Utility Function 

Take the NUM (Network Utility Maximization) problem [8][9] as a reference, we 

adopt utility functions to capture the bandwidth requirements of different applications. A 

utility function, which is defined by the network manager in advance, is designed to 

determine a utility value given an application type and a specifically allocated bandwidth. 

A variety of previous works [10][11][12][13] discussed how utility functions have effects 

on user’s quality of experience and how to design these functions. In these works, most 

of them considered a utility function 𝑈 has properties as follows. 

a) 𝑈 is an increasing and continuous function 

b) 𝑈 is a first and second differentiable function 

c) 𝑈 is usually a sigmoidal-like function or a concave function 

Essentially, all network applications could be classified into two categories, elastic 

and inelastic [24]. An elastic application is a TCP friendly application that could adapt its 

rate to maximize throughput in different network conditions [25]. Examples of such 

applications include E-mail, web access, and file transferring service. For this class of 

applications, an increasing concave function is ideal to model the utility as a function of 
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allocated bandwidth. The logarithm function is the most commonly used concave 

function to quantify the utility score. In general, we set two parameters for each 

application types respectively, 𝑏𝑚𝑖𝑛 and 𝑏𝑚𝑎𝑥. For each applications, the utility score 

will be set to 0 if the assigned rate is less than 𝑏𝑚𝑖𝑛, and will be set to 1 if the assigned 

rate is larger than 𝑏𝑚𝑎𝑥. The general form of the utility function of an elastic service 𝑡 

is shown as follows. 

𝑈(𝑡, 𝑏𝑖,𝑗) = {

𝑙 𝑜𝑔( 1 + 𝑘 ∗ 𝑏𝑖,𝑗)

𝑙 𝑜𝑔( 1 + 𝑘 ∗ 𝑏𝑚𝑎𝑥)
,  0 ≤ 𝑏𝑖,𝑗 < 𝑏𝑚𝑎𝑥

      1                    ,  𝑏𝑖,𝑗 ≥ 𝑏𝑚𝑎𝑥

            (7) 

However, most of the network traffics in current networks are generated by real-time 

applications, such as video streaming, teleconferencing, and VoIP, which are considered 

as inelastic applications. Inelastic applications are generally delay and data rate sensitive 

and usually require a minimum transmission rate to enable the service. Therefore, existing 

works utilize the sigmoidal-like (logistic) function to model the utility function of 

inelastic applications. Similarly, the utility score will be set to 0 if the assigned rate is less 

than 𝑏𝑚𝑖𝑛, and will be set to 1 if the assigned rate is larger than 𝑏𝑚𝑎𝑥. The general form 

of the utility function of an inelastic service 𝑡 could be described as follows. 

𝑈(𝑡, 𝑏𝑖,𝑗) =  

{
 
 

 
      0                ,  0 ≤ 𝑏𝑖,𝑗 < 𝑏𝑚𝑖𝑛

1

1 + 𝑒−𝑘(𝑏𝑖,𝑗−𝑏0)
     , 𝑏𝑚𝑖𝑛 ≤ 𝑏𝑖,𝑗 ≤ 𝑏𝑚𝑎𝑥

  1             ,  𝑏𝑖𝑗 > 𝑏𝑚𝑎𝑥

            (8) 

If the allocated bandwidth is close to 𝑏𝑚𝑖𝑛, we expect the utility score would be 

nearly close to 0, say 𝛿; if the allocated bandwidth is approaching to 𝑏𝑚𝑎𝑥, we expect 

the utility score would nearly equal to 1, say 1 − 𝛿. Substitute the parameters into (8) 

then we have 
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{
    𝑈(𝑡, 𝑏𝑚𝑎𝑥) =  

1

1 + 𝑒−𝑘(𝑏𝑚𝑎𝑥−𝑏0)
=  1 − 𝛿

𝑈(𝑡, 𝑏𝑚𝑖𝑛) =  
1

1 + 𝑒−𝑘(𝑏𝑚𝑖𝑛−𝑏0)
=  𝛿

              (9) 

Solve the simultaneous equations (9) then we could obtain the parameters of the 

sigmoid function as follows. 

𝑘 =  
2 log (

1 − 𝛿
𝛿

)

𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛
 , 𝑏0 =

𝑏𝑚𝑎𝑥 + 𝑏𝑚𝑖𝑛
2

             (10) 

As the smaller 𝛿 is set, the function is more like a simple step function. Note that 

sigmoid function is not a concave function, which might make the optimization problem 

become non-convex and local optimum solution might be in existence. 

 

4.2.3 Utility Proportional Fairness 

Fairness is a critical issue when it comes to the problems about allocating insufficient 

resources. An unfair bandwidth sharing might cause part of user data flows greedily 

occupy available resources and result in bandwidth starvation of the other flows. Many 

works studied how to allocate bandwidth fairly among the competing user flows to 

prevent flows from monopolizing limited resources. Kelly [7] had argued that utility 

fairness, rather than traditional bandwidth fairness, could more appropriately address the 

utility requirements of users and achieve better application layer fairness. H. Shi [26] had 

also argued that proportional fairness might be a better choice than well-known max-min 

fairness in the constrained rate allocation problems.  

Utility proportional fairness is firstly defined in [27], and the definition is shown 

below. 

Definition I: A bandwidth allocation 𝑥∗ = {𝑥1
∗, 𝑥2

∗,  … 𝑥𝑅
∗ } is utility proportional fair 

if it is feasible, and for any other feasible allocation 𝑥′ = {𝑥1
′ , 𝑥2

′ ,  … 𝑥𝑅
′ }  where 𝑥∗ ≠
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𝑥′, we have  

∑
𝑥𝑟
′ − 𝑥𝑟

∗

𝑈𝑟(𝑥𝑟∗)
≤ 0

𝑟∈𝑅

                        (11) 

Utility proportional fairness could ensure the data flows to obtain the essential 

quality of service. In [28][29][30], the authors discussed how to derive an allocation with 

optimal total utility value while satisfying the condition of utility proportional fairness. 

Different from the objective functions of the traditional NUM problems, they considered 

maximizing the product of utility scores rather than the summation of utility scores, which 

is equivalent to maximizing the summation of the nature logarithm of utility scores. 

Therefore, we replace the objective function of (6) for maximizing the summation of the 

nature logarithm of utility scores as described in next section. 

 

4.3 Heuristic Algorithm 

 

To find a bandwidth allocation 𝐛∗  to maximize the total utility score while 

achieving utility proportional fairness, the optimization problem could be modeled as 

Problem (12), and the notations are described in Table 4-1.  

𝐛∗ = arg max∑∑log [𝑈(𝜋(𝒇𝑖,𝑗),  𝑏𝑖,𝑗)]

𝑛𝑳𝑖

𝑗=1

𝑚

𝑖=1

                  

              subject to   ∑𝑏𝑖,𝑗 ≤ 𝑐𝑳𝑖

𝑛𝑳𝑖

𝑗=1

  

                         ∑∑𝑏𝑖,𝑗

𝑛𝑳𝑖

𝑗=1

≤ 𝑐𝑼

𝑀

𝑖=1
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                         ∑ 𝑐𝑳𝑖,𝑘 ≤ 𝑐𝑳𝑖

𝐾

𝑘=1

 

                         𝑏𝑖,𝑗 = 
𝑐𝑳𝑖,𝑘

𝑛𝑳𝑖,𝑘
 

                         𝑏𝑖,𝑗 ≥ 0          

         ∀ 𝑖 ∈ {1,  2, …𝑚},   𝑗 ∈ {1,  2, …𝑛𝑳𝑖}             (12) 

 

Notation Description  

N𝑼 The aggregated CGNAT server which connects to the other CPEs 

N𝑳𝑖
 The 𝑖𝑡ℎ CPE gateway which directly connects to the user devices 

𝑚 The number of the CPE gateways 

𝑛𝑳𝑖 The number of flows belong to CPE gateway N𝑳𝑖
 

𝒇𝑖,𝑗 The 𝑗𝑡ℎ traffic flow generated by a user connected to N𝑳𝑖
  

𝑏𝑖,𝑗 The bandwidth allocation for the flow 𝒇𝑖,𝑗 

𝑇 The application type set defined in advance 

𝐾 The number of application types in 𝑇 

𝜋 
The flow classification function 𝜋 ∶ 𝒇 → 𝑇, which could map a traffic 

flow 𝒇𝑖,𝑗 to an element in set 𝑇 

𝑈 
The utility function 𝑈 ∶ (𝑡, 𝑏) → 𝑹+ ∪ {0}, which gives a utility score for 

a flow with type 𝑡 and bandwidth 𝑏 

𝑐𝑼 The available capacity of the outer link of N𝑼 

𝑐𝑳𝑖 The available capacity of the outer link of N𝑳𝑖
 

𝑐𝑳𝑖,𝑘 The bandwidth assigned to type 𝑡𝑘 in N𝑳𝑖
 

𝑛𝑳𝑖,𝑘 The number of flows categorized into 𝑡𝑘 in N𝑳𝑖
 

 

Table 4-1 Notation table 

 

4.3.1 Problem Analysis 

The objective function in Problem (12) is to maximize the summation of nature 

logarithm of utility functions. Although our utility functions contain the sigmoid function, 

which is a non-concave function, the natural logarithms of our utility functions are all 

concave functions. 

In elastic service case, the utility function 𝑈(𝑥) is a logarithm function just like 
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Equation (7). Since 𝑈(𝑥) is a strictly concave function and 0 ≤ 𝑈(𝑥) ≤ 1 in the range 

of [0, 𝑏𝑚𝑎𝑥 ], it follows 
𝑑𝑈(𝑥)

𝑑𝑥
> 0  and 

𝑑2𝑈(𝑥)

𝑑𝑥2
< 0 . The first derivative of the nature 

logarithm of the logarithm utility function could be calculated as 

𝑑𝑙𝑜𝑔(𝑈(𝑥))

𝑑𝑥
=  

1

𝑈(𝑥)
∙
𝑑𝑈(𝑥)

𝑑𝑥
  

≥ 0                               (13) 

, and the second derivative could be calculated as  

𝑑2𝑙𝑜𝑔(𝑈(𝑥))

𝑑𝑥2
=
𝑑

𝑑𝑥
(
1

𝑈(𝑥)
∙
𝑑𝑈(𝑥)

𝑑𝑥
) 

                               =
1

𝑈2(𝑥)
[
𝑑2𝑈(𝑥)

𝑑𝑥2
∙ 𝑈(𝑥)  − (

𝑑𝑈(𝑥)

𝑑𝑥
)

2

]     

≤ 0                                   (14) 

The first and second derivative of 𝑈(𝑥) in the range of [𝑏𝑚𝑎𝑥, ∞] are both zero. 

Therefore, by 
𝑑𝑙𝑜𝑔(𝑈(𝑥))

𝑑𝑥
≥ 0 and 

𝑑2log (𝑈(𝑥))

𝑑𝑥2
≤ 0, we know the nature logarithm of our 

elastic utility function is a concave function. 

 On the other hand, in the inelastic service case, the utility function 𝑈(𝑥)  is a 

sigmoid function as Equation (8). In the range of [𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥], we have 𝛿 ≤ 𝑈(𝑥) ≤ 1 −

𝛿  where 𝛿  is a small positive value nearly close to zero. Although 𝑈(𝑥)  is a non-

concave function, 𝑈(𝑥) is still a strictly increasing function. Hence, we have 
𝑑𝑈(𝑥)

𝑑𝑥
> 0. 

The first derivative of the nature logarithm of the sigmoid function could be calculated as  

𝑑𝑙𝑜𝑔(𝑈(𝑥))

𝑑𝑥
=  

1

𝑈(𝑥)
∙
𝑑𝑈(𝑥)

𝑑𝑥
  

> 0                              (15) 

 Then, the second derivative could be calculated as 

 

(by 𝑈(𝑥) ≥ 0,
𝑑𝑈(𝑥)

𝑑𝑥
> 0, and

𝑑2𝑈(𝑥)

𝑑𝑥2
< 0) 

 

(by 𝑈(𝑥) ≥ 0 𝑎𝑛𝑑 
𝑑𝑈(𝑥)

𝑑𝑥
> 0) 

 

(by 𝑈(𝑥) > 0 𝑎𝑛𝑑 
𝑑𝑈(𝑥)

𝑑𝑥
> 0) 
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𝑑2 log(𝑈(𝑥))

𝑑𝑥2
 

           =
1

𝑈2(𝑥)
[
𝑑2𝑈(𝑥)

𝑑𝑥2
∙ 𝑈(𝑥)  − (

𝑑𝑈(𝑥)

𝑑𝑥
)

2

] 

         = (1 + 𝑒−𝑘(𝑥−𝑏0))2 ∙ [
𝑘2𝑒−2𝑘(𝑥−𝑏0)(1 − 𝑒𝑘(𝑥−𝑏0))

(1 + 𝑒−𝑘(𝑥−𝑏0))4
−

𝑘2𝑒−2𝑘(𝑥−𝑏0)

(1 + 𝑒−𝑘(𝑥−𝑏0))4
] 

=
−𝑘2𝑒−𝑘(𝑥−𝑏0)

(1 + 𝑒−𝑘(𝑥−𝑏0))2
                                        (16) 

 We have known that 𝑘 =  
2 log(

1−𝛿

𝛿
)

𝑏𝑚𝑎𝑥−𝑏𝑚𝑖𝑛
  in Equation (10), and since 𝑏𝑚𝑎𝑥 > 𝑏𝑚𝑖𝑛 

and 𝛿 > 0, we have 𝑘 > 0. Therefore, by Equation (12), we also have 
𝑑2𝑙𝑜𝑔(𝑈(𝑥))

𝑑𝑥2
< 0. 

Similarly, the first and second derivative of 𝑈(𝑥) in the range of [𝑏𝑚𝑎𝑥, ∞] and [0, 𝑏𝑚𝑖𝑛] 

are both zero. Therefore, by 
𝑑𝑙𝑜𝑔(𝑈(𝑥))

𝑑𝑥
≥ 0 and 

𝑑2log (𝑈(𝑥))

𝑑𝑥2
≤ 0, the nature logarithm of 

an inelastic utility function is a concave function. 

As the objective function in the Problem (12) is the summation of concave functions, 

the Problem (12) is a convex optimization problem. We note that the plateaus might exist 

in the optimization problem because of the non-strictly concavity. 

 

4.3.2 Greedy Approach Algorithm  

From the analysis in Section 4.3.1, we know that the Problem (12) is a convex 

optimization problem so that there are no local optimal solutions in this problem. 

Moreover, since we need to solve the problem periodically to adapt to the dynamically 

changing network environment, we tend to find an approach that could derive a solution 

as quickly as possible. Therefore, it is naïve to adopt a greedy approach to solve our 

bandwidth allocation problem. In our work, we exploit the concept of the greedy breadth 

first search algorithm in our approach. The pseudo code of our algorithm is shown as 
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below. 

 

 

 

 

 

 

 

We represent the allocation in our algorithm as a vector indicating the bandwidth 

allocated to each type of each CPE. At the initial stage, the initial solution could be any 

feasible solution satisfying the constraints in Problem (12). We choose the initial 

allocation that equally shares the available bandwidth to each flow solution. The reason 

is that this allocation manner is similar to the traditional best-effort delivery so that the 

solution we obtain will be definitely better than the result of the best effort delivery. 

Moreover, it is easy to calculate as well. The initial search space S contains the initial 

solution only. For every iteration of the algorithm, we pop out a solution V from the 

search space and derive the successors according to the distance d, which means find all 

the feasible solutions whose Manhattan distance to the solution V is equal to d. The 

distance d is designed to escape from the plateaus mentioned in section 4.3.1. Motivated 

from the well-known simulated annealing algorithm, we use an exponential function to 

adjust the value of d dynamically based on the current search space size. Finally, the 

current optimal solution is updated and only the solution whose utility score is equal to 

the current optimum will be inserted into the search space. The loop breaks when the 

search space is empty and the current optimum is outputted as the solution. 
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Chapter 5  

Evaluation 

In our experiment, we conduct simulations by some synthetic data to investigate our 

implementation.  

  

5.1  Experiment Setup   

 

 

 

 

 

 

 

 

Figure 5-1 our implementation of the SDN-based one-layered NAT prototype with 

the setting of IP addresses. The OpenFlow switch on the Raspberry Pi connects two 

laptops, which serves as the client and the applciaiton server respectively. The controller 

is co-located at the application server laptop running as a virtual machine to simplify the 

experiment structure. The Raspberry Pi connects two different network segments, the 

internal network 192.168.0.0/24 and the external network 10.0.0.0/24.  

We define four application types in our simulations, WEB, FILE, VOIP, and VIDEO. 

The WEB type and the FILE type are the elastic applications with the logarithm utility 

Figure 5-1 Experiment environment 
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functions, and the VOIP type and the VIDEO type are the inelastic applications with the 

logistic utility functions. We set the value 𝛿 as 0.001. The utility functions in terms of 

the allocated bandwidth are depicted in Figure 5-2 and the parameter settings are listed.  

 

 

 

 

 

 

 

 

 

 

 

We simulate the network traffic flows using the traffic generator Iperf [31] to 

evaluate our implementation. The configuration interval of the controller is set as one 

second because that is the minimal idle_timeout value of the flow entry defined in the 

OpenFlow protocol. 

 

5.2  Experiment Results 

 

In this section, we will show that our implementation of the SDN-based NAT 

function could operate correctly. Afterward, we generate synthetic data to evaluate the 

QoS aware function in our work. 

Figure 5-2 Utility functions 
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5.2.1 NAT Function 

To demonstrate the NAT function, we employ the Iperf tool to generate couples of 

TCP connections from the client to the server of the topology in Figure 5-1. The 

executions of Iperf client and server are shown in Figure 5-3 and 5-4. 

 

 

 

 

In Figure 5-3, three TCP connections are generated from the client with IP 

192.168.0.2 and the port numbers are 49406, 49407, and 49408 respectively to the server 

listening on IP/port 10.0.0.2:5001. Whereas, in Figure 5-4, we observe that the source of 

the connections received at the server are form the IP 10.0.0.1 and the port numbers are 

19520, 57567, and 39924. The results represent that our Raspberry Pi applies the NAT 

function on these connections successfully. Figure 5-5 shows the mapping table retrieved 

from the controller. Every entry in the mapping table records an IP address and port 

translation for a specific traffic flow. With this information, even if the location of the 

Figure 5-3 Iperf terminal in the server   Figure 5-4 Iperf terminal in the client 

Figure 5-5 The NAT mapping table in the controller 
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network manager is outside the network segment 192.168.0.0/24, they can still recognize 

the un-masqueraded information of these connections. 

 

5.2.2 Synthetic Data 

In this section, we generate synthetic data to evaluate the flow-based differentiated 

bandwidth allocation scheme in our work. In the synthetic data, we consider a simple 

scenario as shown in Figure 5-6. The blocks in Figure 5-6 represent how many different 

types of flows are created and the start/end time of these flows. For example, in this 90-

second network script, there are three FILE-type flows simulating the large file 

transferring as the background network traffic. At the fifth second, the client generates 

five VIDEO-type flows and the flows are lasting for 30 seconds. We could also see that 

there are three FILE-type flows, four VOIP-flows, and five VIDEO-type flows competing 

for the available bandwidth at the 20th second.  

The controller periodically solves the bandwidth allocation problem and configures 

the rate limiting of the traffic shapers every second. We suppose the total available 

bandwidth is 30 Mbps so that we could see the effect that the flows compete for available 

bandwidth with each other. Figure 5-7 shows how our implementation distributes the 

Figure 5-6 Synthetic data 
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available bandwidth to different application types of traffic in synthetic data I. 

In Figure 5-7, we could see that the bandwidth allocated for the FILE type decreases 

to about 16 Mbps at the fifth second since the VIDEO type flows are activated. The 

bandwidth allocated for the FILE type and the VIDEO type both decrease at the tenth 

second because of the VOIP-type flows. However, the decreasing margins of the FILE 

type and the VIDEO type at the tenth second are apparently different, which is the result 

of current optimal allocation for maximizing the total utility score among all flows. Our 

optimization problem judges that decreasing the bandwidth allocated for the FILE type 

more is more profitable than decreasing the bandwidth of the VIDEO type. We also see 

that, after some flows leave the network, the released bandwidth could be re-allocated to 

the existing flows again, as the situation at the thirty-fifth second.  

In addition, we also measure the actual data transmission rate of each flow in the 

OpenFlow switch. We utilize the byte_count field of the flow entry, which records the 

Figure 5-7 Bandwidth configuration result of synthetic data 
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total number of bytes transmitted from the time when the flow entry is installed, to 

calculate the data transmission rate. The comparison of the actual transmission rate and 

the configuration value in synthetic data for each type is depicted in Figure 5-8.  

 From the experiment results, we could see the actual data transmission rate of each 

type quite fits the configured value by the controller well. In other words, our 

implementation is capable of achieving per-flows identification of the network traffic and 

can perform the flow-based management.   

  

 (a) FILE type (b) WEB type 

  
 (c) VOIP type (d) VIDEO type 

Figure 5-8 Comparison of transmission rate and assigned available bandwidth for different 

application types 
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We further compare the theoretical utility score that could be obtained by the 

controller’s configuration and the real utility score calculated from the actual transmission 

rate, and the result from the beginning to the 45th second is shown in Figure 5-9.  

 

 

 

 

 

 

 

 

 

 

In Figure 5-9, at the time that the red arrows indicate, we observe that the actual 

utility score drops dramatically compared to the theoretical value. We find that the timing 

when the utility value drops is coherent with the timing when new flows are generated or 

existing flows terminate in Figure 5-6. When new flows are generated, the bandwidth 

allocation of the existing flows will be reduced to accommodate the new flows so that the 

congestion might be detected. When detecting the network congestion, according to the 

TCP protocol, the sender will decrease the congestion window to the half of the current 

amount and perform the slow start algorithm. Therefore, the actual transmit rate will be 

decreased suddenly and the utility score is dramatically declined.  

 

 

 

Figure 5-9 Utility scores comparison of synthetic data I 
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On the other hand, when a flow leaves the network, the utility score also drops 

because we could not estimate the exact time the flow leaves. Figure 5-10 shows such an 

example. In our work, the configure interval is set as one second, which is the minimal 

value of the idle_timeout in the OpenFlow protocol. Suppose the actual data transmission 

rate of the flow in Figure 5-10 is always 10 Mbps, then the data rate we measure between 

time t-1 and time t will be 10 Mbps. However, if the flow ends at the time t + 0.25, the 

flow entry will be deleted after one more second when the flow stops transmitting data. 

Therefore, when we try to access the flow table at the time t + 1, the flow entry will still 

in the flow table and we will consider that the flow still exists. Consequently, when we 

measure the data rate from time t to time t + 1, it will be only 2.5 Mbps and results in 

the decline of the utility. 

We generate another synthetic data in which the network changes more frequently 

to conduct the simulation. Suppose the arrival of network traffic flows is a Poisson 

process with mean 𝜆 is 5 seconds, and the existing time of each flow is an exponential 

distribution with different mean values. For each event when a flow starts, the type of the 

flow could be one of the types we defined in section 5.1 in different probabilities. The 

probabilities and the exponential mean values are listed in Table 5-1, and the theoretical 

utility scores and the utility scores obtained from the simulation is compared in Figure 5-

11. 

 

Figure 5-8 Utility drops due to flow ending   
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In Figure 5-11, we see that the total utility score oscillated more frequently than the 

result of the synthetic data I because the flows leave and arrives more frequently in the 

synthetic data II. We can also see that after the utility score decreases, it will return to the 

theoretical value soon at the next second if there are no flows changing in the network. 

Therefore, if the OpenFlow protocol could support a smaller timeout value in the future 

or a more precise flow detection mechanism is conducted, the performance could be 

further improved. 

  

   

Table 5-1 Parameters setting in synthetic data II 

 

Figure 5-9 Utility scores comparison of synthetic data II 
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Chapter 6  

Conclusion and Future Work  

6.1  Conclusion  

  

The contribution of this work is to design an SDN-based NAT architecture and 

implement it on a real hardware platform. We use a low-cost Raspberry Pi installed with 

Open vSwitch as the OpenFlow switch, and use Ryu as the controller in our 

implementation. With the global network view provided by SDN, we can achieve flow-

level configuration to perform flow-level services that are disabled by the traditional 

distributed NAT. Furthermore, we implement a flow-based bandwidth allocation scheme 

in the SDN-based NAT. Considering both of the utility maximization and the utility 

proportional fairness, we formulate the bandwidth allocation as an optimization problem 

and solve it by a greedy heuristic algorithm. Then we use the solution to configure the 

traffic shapers in the OpenFlow switch to achieve the flow-based QoS enforcement. 

Finally, we conduct simulations in our prototype. The experiment results show that our 

implementation could achieve the NAT function properly and could identify each data 

flow to perform the flow-based QoS enforcement. 

 

6.2  Future Work 

 

Firstly, since the implementation of this work is a prototype, we consider a simple 



doi:10.6342/NTU201702463

41 

 

topology in our experiment. To investigate the proposed architecture more thoroughly, 

simulations in the more large-scale topologies will be needed. Although creating a more 

complicated network topology in the network emulator tools such as Mininet [34] is 

relatively easy, the network behaviors on a real testbed might still be different from those 

on the emulators. Besides, there are several limitations of the emulators. For example, a 

Mininet-based emulated network cannot exceed the CPU or the available bandwidth on a 

single physical server, and it cannot run non-Linux applications either currently. 

Therefore, our future work might consider building a more large-scale testbed to conduct 

the simulations. 

Secondly, the SDN-based NAT architecture enables the logically central software 

management among the hardware-distributed OpenFlow switches. In the past, a dedicated 

NAT server is designed to apply the NAT function to the data flows that pass it all the 

time. Future works might consider using the SDN-based NAT architecture to enable the 

NAT functions in the OpenFlow switches dynamically. For instance, if the ISP detects the 

decreasing workload of an OpenFlow switch that substitutes a CGNAT, the ISP might 

consider disabling the NAT function of the switch or directly shutting down the switch to 

reduce the total power consumption in their internal network. Traditionally, the detouring 

work need the reconfiguration of CPE settings and it will involve great human efforts. 

With the help of the traffic engineering capability provided by SDN, the affected traffic 

flows could be easily redirected to another operating OpenFlow switch without disturbing 

the subscribers’ traffic.  

Thirdly, in our implementation and experiment, we observe that the utility score 

might decrease when the network changes. It is limited by the current OpenFlow 

restriction that the minimal idle_timeout value is one second so that we cannot know the 

exact time when a flow ends. Our implementation could be improved if there are other 
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ways that can precisely detect the current flow in the network, including the number of 

current flows, the classified application type of current flows, and the data transmission 

rates of current flows. For example, sFlow [33] is a scalable network traffic monitoring 

tool in data networks with several packet sampling mechanisms. It could be an option that 

extends the functionality of sFlow to meet our requirements and integrate it into our 

implementation. 
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