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中文摘要  

因中風導致神經麻痹是種很常見的疾病，臨床症狀常見為肌力不足、肌肉痙攣

及無法自主控制關節活動等病徵。通過長期反覆性的復健治療後，能夠有效幫助患

者恢復原有運動機能，並且可以防止發生二次併發症。以機器人輔助提供上肢復健，

可以為患者提供更好的復健療程同時減少治療師的負擔。本研究利用慣性測量單

元還原手臂運動的姿態，並結合肌電訊號來訓練深度學習模型，預測使用者手臂想

要動作的位置(方向和速度)，達到機器人主動控制與引導控制。 

於相關的文獻中，使用力/力矩感測器或肌電訊號的控制方式建立人機互動模

型在多軸主動控制上有較高的難度。本研究提出的深度學習模型架構與傳統模型

以及其他深度模型架構相比，擁有更高的準確率且對不同受試者的影響較小。此模

型更是可以透過少量的數據對特殊的病人進行微調，以實現更好的結果。 

本研究提出的方法經過三位健康受試者在線測試，並實現在上肢復健外骨骼

機器人 NTUH-II 上。實驗結果顯示本研究提出的方法於復健任務中的表現優於相

關的研究。此外，本方法能夠簡單的擴展為各種不同復健療程。 

關鍵字：復健機器人、手臂姿態、肌電訊號偵測、機器學習、主動控制、引導控制、

NTUH-II 
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 ABSTRACT 

Neural paralysis due to stroke is a common disease, and clinical symptoms are often 

characterized by insufficient muscle strength, muscle spasms and inability to control joint 

activity. Long-term repetitive rehabilitation treatment can effectively help patients to 

restore their original motor function and can prevent the secondary complications. Robot-

assisted upper limb rehabilitation can provide patients better rehabilitative treatment 

while reducing the burden on the therapist. In this study, the inertial measurement unit is 

used to estimate arm dynamics and is combined with muscle electromyography to train 

deep learning model for human arm joint angles prediction. This model can be applied to 

the active control and guide control of the robot arm. 

In the relevant literature, the use of force/torque sensors or myoelectric signals based 

control has a higher difficulty in establishing a human-robot interaction model for active 

rehabilitation. In this thesis, a learning model is proposed. Compared with the traditional 

model and other architecture of deep learning model, the proposed model in this study 

has a higher accuracy rate and has less impact on different subjects. This model can be 

fine-tuned to adapt special patients through a small amount of data to achieve better 

results. 

The method proposed in this study was online tested by three healthy subjects and 

implemented on the upper limb rehabilitation exoskeleton robot NTUH-II. The 

experimental results show that it outperforms than relevant research works. In addition, 

the method can be simply extended to various rehabilitation therapies. 

Keywords: rehabilitation robotics, arm dynamics, EMG sensing, machine learning, 

active control, guide control, NTUH-II 
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Chapter 1 Introduction 

In this chapter, first, we will introduce the motivation of this research. It contains the 

background of upper limb rehabilitation therapies and rehabilitation exoskeleton robot. 

Then, we will discuss the related state-of-the-art studies in rehabilitation robotics in the 

section of literature survey, which is followed by the contribution of this research. The 

last section so this chapter shows the organization of this thesis. 

1.1 Motivation 

In some research, statistics show that stroke is one of the common causes of severing 

disability and may cause total paralysis or half paralysis of the upper limb [1]. In the 

United State, from 2003 to 2013, each year about 795,000 people continue to experience 

a new or recurrent stroke (ischemic or hemorrhagic). Approximately 610,000 of these are 

first events and 185,000 are recurrent stroke events [2]. Disability of the upper limb 

caused by neurological or orthopedic clinically show characteristics of inadequate 

muscular strength, altered muscle group firing pattern or inability to voluntarily control 

the joint which may lead to worse conditions such as pain, stiffness or shoulder 

impingement syndrome [3]. Clinical studies have shown that long-term repetitive 

rehabilitation can help these patients regain their motor function and prevent the 

occurrence of complications. 

Traditionally, rehabilitation programs require therapists to help the patient perform 

repetitive and time-consuming movements [4]. However, with the trend of population 

aging, current medical service system is unable to meet the needs of every patient who 

needs it because of lack of human resources. Since each assistance requires a considerable 

amount of time and effort from the therapist, it is not possible to provide high quality and 

stable remedial exercises support by the therapy anytime, anywhere. 
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In order to overcome these problems in the medical service system, a feasible 

method is to involve robot-assisted devices to help the therapists with less effort in the 

rehabilitation program. With the intervention of robot-assisted rehabilitation, the 

requirement of offering high quality and stable training for every patient can be achieved 

because of the stability and accuracy of the robot system. The robotic device can not only 

provide the passive and active range of motion (ROM) exercise but also can record the 

biomedical and kinetic measurements online through bio-electrical signals, inertial 

measurement unit and kinetic measurements sensors in the rehabilitation program. These 

measurements can be used to further assess the improvement of the patient’s motor 

function by the therapists or doctors. In addition, in order to motivate patients to more 

enthusiastically carry out rehabilitation programs, robotic systems can be combined with 

virtual reality (VR) technology, which can transform the dull exercise into amusement 

games and simultaneously display the patient’s movement performance on the screen, 

which can speed up the process of functional recovery. Moreover, the performance of the 

patient in the VR game can also be used as another index for assessing the patient’s motor 

function. 

The robot-assisted rehabilitation therapeutic exercises basically can be divided into 

4 types: passive, active, active-assistive, and active-resistive. Depending on the condition 

of motor impairment, therapists or doctors will recommend the appropriate type of 

rehabilitation exercise to the patient. In the passive exercise, the patient’s affected side of 

the arm is guided by the robot arm to move, the common practice is doing repetitive 

motions along a predetermined trajectory. In clinical practice, another common treatment 

is bilateral rehabilitation, which can categorize as a special passive exercise. The patient's 

impaired arm is driven by the machine to do the same exercise as the healthy side arm. 

Specifically, voluntary movements of the intact limb may facilitate voluntary movements 
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in the paretic limb. Activating the primary motor cortex and supplementary motor area 

for the intact limb increases the likelihood of voluntary muscle contractions (i.e., motor 

synergies) in the impaired limb when symmetrical movements are executed [5]. Moreover, 

bilateral training is proven to be more effective in the rehabilitation of the early stages of 

stroke [6]. The other 3 types of exercise require the exoskeleton robot to follow the 

patient’s movement and then provide suitable human-robot cognitive interaction. In order 

to achieve that, the robot system needs to get the motion intention of the impaired arm or 

contralateral arm and then follow the corresponding movement. However, the extraction 

of motion intention is a tricky and time-consuming problem in the related research of 

exoskeleton robot. 

As we live in a big data era, transforming big data into valuable knowledge becomes 

much more important than ever [7]. Machine learning has been one of the most widely 

used methods in order to extract knowledge from a large amount of data in bioinformatics. 

The machine learning algorithm uses training data to reveal the underlying pattern, builds 

the model, and then make predictions on the new data based on the model. Conventional 

machine learning algorithms have limitations in dealing with raw data forms. So 

researchers have spent a lot of efforts to translate the original form into a suitable high 

abstract level feature with considerable field expertise [8]. On the other hand, deep 

learning is a new machine learning algorithm, which recently appeared in the capacity of 

big data and has overcome the former limitations, parallel and distributed computing, and 

sophisticated algorithms. But deep learning algorithms also shows that hard to converge 

and easy overfitting problems. In this thesis, we propose a new deep learning structure to 

decode human bio-signals to identify motion intentions. The proposed model can predict 

angles of the human arm, which can be used as a reference trajectory for any robotic arm 

to achieve human-machine synchronous movement. 
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1.2 Literature Survey 

According to the clinical and research findings, a current prominent rehabilitation 

technique is bilateral movement training. This protocol applies sound neurological 

interlimb coordination postulates in activating motor synergies between limbs [9]. 

Training patients with two-handed tasks improve the efficiency of arm movements on the 

impaired side [10] with changes accompanied by a reorganization of brain mappings on 

the affected hemisphere. Bilateral tasks require to operate the two arms together so that 

they cooperate to accomplish the aimed function. Evidences indicate that the 

simultaneous movement of both limbs helps the neuro-muscular system to regain some 

stability and improve usage of the impaired limb [11]. 

Robot-assisted therapy is able to provide high intensive and accurate movement and 

can lower the demand for therapists. In order to track the subject’s movement in the real 

world, the rehabilitation robot system is equipped with sensors to measure the user’s 

motion intention data from which we can extract human motion intention. There are 

several kinds of rehabilitation upper limb robot have been developed [12]. To date, in the 

field of rehabilitation robotics, the representative types of the subject’s movement intent 

on the upper limb include force/torque sensor (F/T sensor), inertial motion unit (IMU) 

and electromyography (EMG). 

F/T sensor is a mechanical technique mounted on exoskeleton robot. It is used to 

measure the interactive force and torque between the user and the robot. This type of 

control strategy requires a dynamic model to compute the joint force or kinematics that 

represents the human motion intention. The model is formed as a combination of inertia, 

gravitation, Coriolis and centrifugal effects. Here are some related works such as [13], 

[14], [15] which address active control for upper limb rehabilitation robotics using F/T 
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sensor. 

ETS-MARSE [13] map human intention by measured value from F/T sensor, but 

human joint torque is highly nonlinear and is controlled based on mathematical model, 

which causes the system to slightly vibrate. Artificial neural network (ANN) based on 

radial basis function (RBF) to solve the mapping problem has been used in [14], but it 

needs a long time training. In our previous work [15], a mathematical model based on 

active control along with a three-stage gravity compensation and reactive motion 

rescheduling model were proposed to improve the intention mapping problem and 

implement on NTUH-II. 

It is unreasonable to measure the force at a specific position of the arm using an F/T 

sensor, because human arms has multiple degrees of freedom, and the force point is 

multiple. Also, the interactive force and torque value of users are different, which results 

in that the patterns exerted by different subjects in the same task are not the same. Hence, 

active control based on the dynamic model is more difficult to establish when we want to 

extract motion intention information from the measured interaction force and torque. 

Moreover, if the user’s muscle strength is insufficient to exert the interactive force and 

torque, the F/T sensor cannot obtain the intention information. 

Another sensor that can be used to detect the motion intention of a human arm is the 

EMG sensor which detects the bioelectrical signal directly. There are some works use 

EMG to measure the contralateral hand's motion intention to achieve single joint bilateral 

rehabilitation [16], [17], or to measure the patient impaired arm EMG signal to achieve 

the single joint active rehabilitation task [18], for example, detect biceps and triceps EMG 

pattern for elbow rehabilitation task. Besides, other works [19], [20] use multi-channel 

EMG signals to estimate user’s arm position or joint angle with different types of model. 

Bravo [16] is a hand exoskeleton which can measure the EMG signals in extensor 



doi:10.6342/NTU201802164

 6 

digitorum, flexor digitorum and adductor pollicis to control the grasp force, achieving 

hand bilateral rehabilitation task. WEP [17] control wrist flex./ext. using Support Vector 

Machine (SVM) to classify different force intensity from the EMG signals. Active Cast 

[18] use frequency analysis of EMG signals to control elbow flex./ext.. The results show 

that the classifier is better than the regression model to classify the force into different 

value categories. 

Support Vector Regression (SVR) has been used to detect human arm motion 

position [19] and implement on teleoperate DLR Light-Weight Robot III. The same 

technique can also be used in the bilateral task. A musculoskeletal model has been used 

on BOTAS [20] that can estimate the joint angles of elbow and wrist. Their model 

assumes that each muscle is modeled as a property of a linear spring. Then, the joint angle 

is estimated under the assumption that the interaction force is zero. 

Although EMG can represent the pure intentions of humans, there are some 

limitations due to the complexity of the musculoskeletal system. When the motion pattern 

is only slightly different, it might cause a huge change in EMG signals. In order to more 

accurately decode human multi-joint intention, the inertial measurement unit (IMU) 

sensor is also used. There are some works [21], [22] only using IMU or combine IMU 

and EMG to decode human arm movement intention. 

In our previous work [21], NTUH-ARM uses IMU sensor to get human arm joint 

angle as a desired control input. The robot can achieve mirror therapy and can be 

controlled over a larger range of motion. Another work [22] combines EMG and IMU 

signals through ANN to predict elbow and forearm angles and implement on VR 

environment. The result shows that if only estimating current joint angles, we can get 

stable results. But there will be a large error in predicting. 

Consequently, most of the works related to EMG or EMG combined with IMU need 
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to train the model when a user starts to perform the task. This is time-consuming and takes 

a lot of effort due to the time for collecting data and training model is long. Although only 

one joint motion is considered, there is still a large estimation error in the estimated force 

or angle. 

1.3 Contribution 

This research will review the National Taiwan University Hospital-II (NTUH-II), a 

7 DOF exoskeleton upper arm rehabilitation robot, which has been approved clinical 

testing by the Department of Health IRB and National Taiwan University Hospital IRB. 

NTUH-II can individually control elbow and shoulder or simultaneously. First, a 

complementary filter is designed to accurately and stably estimate human arm joint angles 

and angular velocities. Second, we found that the muscular deformation of the arm causes 

the measurement error at large angles, so we design muscle compensation method to get 

more accurate and stable results. Third, a deep learning method based Multi-stream 

LSTM Dueling (MS-LSTM Dueling) model is proposed to predict the human arm 

trajectory. The mode inputs are filtered IMU signals and EMG features we extracted from 

pre-processed EMG signal using time-frequency analysis. Compared to the traditional 

regression model or other architecture of the deep learning model, MS-LSTM Dueling 

model can more accurately predict the human arm trajectory. Fourth, we design a fine-

tune method to let pre-trained model get a better result by using a small training data from 

a special user. Fifth, by using the predicted trajectory, the robotic arm can be coordinated 

with the human arm. Thus, the rehabilitation robot can implement the treatment exercises 

of active rehabilitation and guide rehabilitation. For the active rehabilitation, robot will 

follow subject’s volitional movement. The guide rehabilitation can be divided into two 

parts, one is bilateral rehabilitation, and the other is lead rehabilitation. During bilateral 
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rehabilitation, patient’s health arm will guide his/her impaired arm to do exercise. On the 

contrary, therapist's arm will guide patient’s impaired arm to move in the lead 

rehabilitation. The MS-LSTM Dueling model will guarantee robot arms move 

simultaneously with no delay in guide mode, so the patient feels comfortable. In active 

rehabilitation, the reference trajectory generated by MS-LSTM Dueling mode can make 

robot follow the user arm motion. 

1.4 Thesis Organization 

In this thesis, we will concentrate on the development of active therapies on upper 

limb exoskeleton rehabilitation robot, NTUH-II. The organization of this thesis is listed 

as follows. 

Chapter 1 has introduced the motivation, contribution of this research, and a general 

description of state-of-the-art studies in human motion intention extraction by both F/T 

sensor and EMG. 

In Chapter 2, a detailed description of the mechanical structure of the upper limb 

rehabilitation exoskeleton robot, NTUH-II, IMU, EMG and related devices will be given. 

Next, we will give an overview of some preliminary theories behind this research and 

categories of robot stroke rehabilitation exercise. 

Chapter 3 is the core of this research, where we elaborate the details of theory step 

by step. First, the sensor device and signal pre-processing of IMU and EMG are 

introduced. The architecture of the motion prediction regression model and the control 

strategy are also addressed in this chapter. 

Chapter 4 shows the experimental results implemented on NTUH-II based on the 

proposed theory. The effectiveness of the proposed method is verified in the experiments. 

Finally, the conclusions of this research are shown in Chapter 5. 
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Chapter 2 System Overview and Preliminaries 

This chapter introduces the hardware and software of the rehabilitation robot system. 

And then, the external sensor of IMU and EMG and the general categories of robot-

assisted rehabilitation exercise will be introduced. The last part of this chapter will show 

traditional regression algorithm and the state-of-the-art deep learning method. 

2.1 Upper Limb Rehabilitation Robot NTUH-II 

 In this section, an overview of the newly developed upper limb exoskeleton 

rehabilitation robot NTUH-II is presented. 

Compared with our previous designed rehabilitation robot NTUH-ARM and other 

rehabilitation robots Hocoma, NTUH-II [23] contains more intuitive human-robot 

structure with 8 degrees of freedom (DOF) and also possesses larger ROM which 

approaches human-like ROM. Thus, all kinds of the training program can be implemented 

for a patient with orthopedic or neurologic motor function disorders on either left or right 

side of the upper limb. Two F/T sensors install on NTUH-II and external IMU and EMG 

devices allow this robot system to assist patient with not only active mode but also guide 

mode of rehabilitation exercise. 

2.1.1 Mechanical Structure 

In order to provide more rehabilitation treatment for upper limb dyskinesia patients, 

NTUH-II developed more subtly by combining the previous experience of NTUH-ARM. 

The main upgrade of NTUH-II contains the following points 1). Shoulder joint have 

larger ROM and sufficient DOF to fit the human activity angle, 2). Intuitive human-robot 

joint mapping relationship, and 3). easy to switch the left and right arm setting (i.e., it can 

provide therapy for either left or right arm). 
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NTUH-II is an 8-DOF exoskeleton-type robot arm which contains 8 electrical 

actuators and 2 ATI 6-axis F/T sensors. The mechanical structure of NTUH-II is shown 

in Fig. 2.1, where the variables iX  and iZ  ( 0,1,..., ,...,7)i V  describe the coordinate 

of joint i , additionally, the joint V  is a virtual joint for the purpose of building Denavit–

Hartenberg (D-H) model, the variables ,2 ,5 ,6 ,7, , ,r r r r     and ,8r  represent the 5 active 

revolute joints, and the rest of variables ,1 ,3,r ra d   and ,3ra   represent the 3 active 

prismatic joints on robot NTUH-II. The above subscript r  means robot arm. This figure 

also illustrated the locations of two F/T sensors mounted on NTUH-II, the first is placed 

at the upper arm and the second is at the hand grip. The detailed D-H symbolic parameters 

of the robot kinematics are list in TABLE 2.1 

 

Fig. 2.1 The mechanical structure of NTUH-II. 

 



doi:10.6342/NTU201802164

 11 

TABLE 2.1 Denavit–Hartenberg parameters of NTUH-II. 

Axis ,r i  
,r id  

,r ia  ,r i  Home 

1 0 ,1rd  
,1ra  0 0 

2 ,2r  0 ,2ra  0 0 

3 0 ,3rd  ,3ra  2  2  

4 0 ,4rd  0 0 0 

5 ,5r  0 0 2  2  

6 ,6r  ,6rd  0 2  0 

V ,7r  0 0 2  0 

7 0 ,7rd  0 0 0 

8 ,8r  ,8rd  0 0 0 

 

Among these 8 active DOFs, there are 2 prismatic DOFs utilized to adjust the 

position of robot’s shoulder joint to match human’s glenohumeral (GH) joint, which 

causes a critical issue during shoulder motion [24-26]. Moreover, ,1ra  corresponds to 

horizontal direction and ,3rd  corresponds to vertical direction. There are 4 DOFs related 

to shoulder movements, which are ,2r  , for horizontal abduction/adduction, ,5r  , for 

shoulder flexion/extension (or abduction/adduction if it is used with ,2r  ), ,6r  , for 

external/internal rotation, and ,3ra , for traction. The remaining 2 DOFs for elbow and 

wrist motion include ,7r  corresponding to elbow flexion/extension, and ,8r , related to 

wrist pronation/supination. 

Two ATI force/torque sensors, installed on the upper arm and hand grip, respectively, 

are used to measure the applied forces from the subjects. The function specification, 
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ROMs of NTUH-II and of human[27], and maximum allowable torque in continuous 

operation of respective joints are shown in TABLE 2.2. 

 

TABLE 2.2 Introduction and purpose for each joint of NTUH-II. 

Joint DOF Function 
NTUH-II 

ROM 

Human 

ROM 

Max 

Torque 

(Nm) 

1 ,1ra  Left and Right Adjustment 66 (cm) - 127.79 

2 ,2r  Horizontal 

Abduction/Adduction 
140 / 20  90 / 45  57.92 

3 ,3rd  Up and Down Adjustment 52 (cm) - 40.91 

4 ,3ra  
Forward and Backward 

Adjustment ( or Traction) 
20 (cm) - 18.4 

5 ,5r  
Shoulder Flexion/Extension 180 / 0  180 / 60  108.64 

Shoulder Abduction/Adduction 180 / 0  180 / 45  108.64 

6 ,6r  
Shoulder Internal/External 

Rotation 
70 / 90  70 / 90  57.92 

7 ,7r  Elbow Flexion/Extension 120 / 0  150 / 0  103.04 

8 ,8r  Wrist Pronation/Supination 90 / 90  80 / 80  15.36 

 

 

2.1.2 Software 

The control strategy and graphical user interface (GUI) of this machine are 

developed using LabVIEW 2011 on the PC side. The flowchart showed in Fig. 2.2 is used 

in the rehabilitation process 
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Fig. 2.2 The flowchart of the human-machine interface. 

 

At the beginning of the treatment, when the welcome page is ready for the user to 

log in to therapist’s or engineer’s account, the login page will pop up. The next page 

allows the therapist to select the patient from the patient database. In this step, the system 

also provides a rich interface, such as creating/modifying a patient's information, 

searching for information, or recording data for a certain subject. After selecting the 

subject, the therapist can adjust the robot configuration so that the robot shoulder rotation 

center is aligned with the patient's GH joint, and the initial shoulder flexion angle is set 

to make the patient feel comfortable. Once the above settings are complete, the therapist 

can choose a different mode of treatment for the patient. 

2.1.3 Safety Issue 

Safety is one of the most important problems to be concerned in the process of 

rehabilitation. In robot-assisted rehabilitation, the patient's limb is supported by a robot 

rather than therapists, so it is important to establish a system to ensure safe operation 
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during the entire movement, including emergency human intervention 

During the robot movement, the emergency stop button on the power cabinet and 

the convenient handy emergency stop button as shown in Fig. 2.3(a) are available for the 

therapist to design for emergency use. The two emergency stop buttons are connected to 

the power supply, and when one of the buttons is pressed, the motor closes immediately, 

then triggers the permanent magnet brakes to stop each movement, including a natural 

descent caused by gravity. When any danger or discomfort occurs, the therapist can use 

the emergency stop button to stop the action. In addition, a convenient handy pause button 

as shown in Fig. 2.3(b) is prepared for the patient. If the patient feels uncomfortable, it 

can be pressed to pause all movements at any time 

 

(a) 

 

(b) 

Fig. 2.3 The emergency stop buttons and a convenient handy pause button. 

 

In addition to the safety of the hardware design, we also embed a variety of security 

mechanisms and virtual stop/pause buttons in the control strategy and GUI. The safety 

system will always monitor the joint position, angular velocity and current of each motor 

during the movement. Once an anomaly occurs or any of the above measurements exceed 

its security threshold, the movement will stop immediately and the robot configuration 

will be automatically locked by the motor brakes. There is also a virtual button in the GUI 

that commands the motor to move along the direction so that the robot's joints move down 
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the position immediately, rather than pause the motor. When the patient feels 

uncomfortable, the function helps to release the patient's arm. All of these hardware and 

software safeguards provide a more secure rehabilitation exercise. 

2.2 IMU and EMG Instrument 

In order to measure the kinematics and muscles activation of human upper limb, we 

use 2 Myo armbands to acquire IMU and EMG signals. The details of the device 

introduction will be presented below. 

Myo armband (Fig. 2.4 left) is a wireless sensor including 8 EMG channels and 9-

axis IMU sensor (3-axis gyroscopes, 3-axis accelerometers, and 3-axis magnetometers) 

which is manufactured by Thalmic Labs. The data measured by Myo armbands will be 

transmitted to the computer via Bluetooth or USB receiver (Fig. 2.4 right). The sampling 

rates of the Myo armband are 50 Hz for IMU and 200 Hz for EMG. Myo armbands can 

be worn on the human upper arm and forearm to measure the arm position, velocity, 

acceleration, and muscles activity. With this device, we can reduce plenty of cables that 

have the possibility of dragging and inconvenient when performing exercises in the 

exoskeleton robot. Thalmic Labs also provides software development toolkits (SDK) for 

C++ language. We reused it implement on python language and made a GUI for easy to 

use. The data communicating between Myo armband (python) and NTUH-II control 

program (LabVIEW) is through web socket (UPD or TCP). 
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Fig. 2.4 Myo armband (left) and USB receiver (right). 

 

2.3 Therapeutic Exercises 

Basically, the therapeutic exercises of robot-assisted rehabilitation can be 

categorized into 4 types, namely, passive mode, active mode, active-assistive mode, and 

active-resistive mode of treatment. All these modes of treatment are designed with 

patterns similar to those conventional rehabilitation programs for both neurologic and 

orthopedic motor impairments. The doctor or physical therapist can suggest a suitable 

mode of therapeutic exercise for a patient according to different condition or stage of 

motor impairment. Inspired by the bilateral model of traditional rehabilitation therapy, we 

set up a new robot-assisted mode named guided control. The detail of the guide mode will 

show below. 

2.3.1 Active Mode 

Patients with mild disability (Brunnstrom stage in high motor level) and enough 

muscle strength in the affected arm (Manual Muscle Testing ≈ grade 3) are suitable for 

active mode. In active mode therapy, patients perform a full range of exercise exercises 

by voluntarily moving the injured limb without extra help from the exoskeleton robot. In 

other words, the patient moves freely and the robot is placed to follow the patient’s 

movements. The main purpose of active therapy is to enhance motor learning (through a 

series of processes related to repetitive exercise leading to long-term changes in motor 
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ability) and further induce brain lesions to rearrange and improve muscle strength as well 

as impaired arm flexibility. Furthermore, during active exercise, the motion and biological 

data of patients’ impaired arm can be measured and recorded by sensors. We can further 

use this data to evaluate and analysis of motor function improvements. 

2.3.2 Guide Mode 

The guide mode exercise is suitable for the patient with lower motor stages 

(Brunnstrom stage), resulting in limited limb or restricted limb. During exercise, patients’ 

impaired limb will be fully supported by the rehabilitation robot to complete the exercise. 

This mode can be used as bilateral exercise or lead excercise. The difference between 

bilateral excercise and lead excercise is that bilateral training is suitable for patients with 

semi-paralysis, the robotic arm will do the same mirror action as the healthy arm, while 

lead training is suitable for patients both arms are impaired, the robotic arm will do the 

motion as same as therapist’s health arm motion. The goal of this mode is to prevent 

secondary complications due to fixation (such as joint degeneration, joint contracture, 

muscle atrophy, etc.) caused by stroke. In addition, rehabilitation robot training is 

performed in this guide mode to induce neural facilitation or cortical activation, and to 

contribute to a higher level of recovery. 

2.4 Complementary Filter 

In order to get accuracy and stable kinematics signal, we need a good filter to filter 

signals. A simple estimating technique that is often used in the flight control industry to 

combine measurements is the complementary filter [28]. This filter is usually designed 

without mentioning the Wiener or Kalman filter, although it is related to them. Fig. 2.5 

shows the basic complementary filter where x and y are noise measurements of some 

signal z and �̂� is the estimate of z produced by the filter. Assume that the noise in x is 
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mostly low frequency and the noise in y is mostly high frequency. Then G(𝑠) can be 

made a high-pass filter to filter out the low frequency noise in x. If G(𝑠) is high-pass, 

then [1 − 𝐺(𝑠)]  is the complement, i.e., a low=pass filter which filter out the low-

frequency noise in y. No detailed description of the noise processes is considered in 

complementary filtering. 

 

Fig. 2.5 Basic complementary filter. 

 

2.5 Traditional Regression Model 

2.5.1 Support Vector Regression 

Support Vector Machine (SVM) [29] can be used to deal with classification problems 

in addition to regression problems. The so-called regression refers to each entity 

corresponding to the instance’s label is a continuous real number, rather than discrete 

different categories (in SVM is often represented by integers). SVM, which deals with 

regression problems, is called Support Vector Regression (SVR). 

Similar to SVM, the goal of SVR is to find the optimum hyperplane in space. Unlike 

SVM looking for a hyperplane that divides data into one, while the SVR is looking for a 

hyperplane that can accurately predict the distribution of data. Suppose the training data 

is represented as (𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛) ∈ ℝ𝑑 ×ℝ, where x is input attributes, y is the target 

value, ℝ𝑑 denotes the space of the input patterns. In ℇ − 𝑆𝑉 regression, the goal has 

been to find a function 𝑓(𝑥) that has at most ℇ deviation from the actually obtained 

targets 𝑦𝑖 for all the training data and meanwhile as flat as possible. The case of linear 
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function f has been described in the form as 

   ,f x x b    (2.1) 

For this, it is required to minimize the Euclidean norm i.e. ‖𝜔‖2. Formally this can be 

written as a convex optimization problem by requiring 
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where 𝜉𝑖 , 𝜉𝑖
∗  are slack variables to cope with otherwise infeasible constraints of the 

optimization problem. The constant C > 0 determines the tradeoff between the flatness 

of f and the amount up to which deviations larger than ε are tolerated. 

2.5.2 K-Nearest Neighbor Regression 

Nonparametric regression is a collection of techniques for fitting curves with little 

prior knowledge of their shape. The simplest algorithm to implement it is the k-nearest 

neighbor (k-NN) [30]. 

The k-NN regression is commonly based on the distance between a sample and the 

training dataset. Assume x is input with d features (𝑥1, 𝑥2, … , 𝑥𝑑) and training set D with 

n samples. Normally we choose Euclidean distance as distance function, is defined as 
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    (2.3) 

The predicted value of x is decided by the great number of the value among k nearest 

sample in D. 

Since K-NN is an instance-based learning method, given the stored training sets, the 

new samples’ value is got only to find the most similar records in a training set. Therefore, 

when the training set grows, the memory space and computation time should be 
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considered. 

2.6 Deep Learning Model 

We will briefly introduce some important deep learning architecture used in this 

thesis. More detail about each model can be found in the reference. 

2.6.1 Convolutional Neural Network 

Convolutional neural networks (CNN) [31], which has successfully been applied to 

analyzing the image, is a class of deep feed-forward artificial neural networks that can 

explore the relationship between adjacent positions. CNN is proposed to reduce the 

number of parameters and extract feature pattern better than fully-connected layer. They 

are also known as shift invariant or spatially invariant artificial neural networks, based on 

their shared weight structure and translational invariance characteristics. 

The convolutional layer is the core component of the CNN, which completes most 

of the computational heavy work. When we dealing with high-dimensional inputs such 

as images, it is impractical to connect neurons to all neurons in the previous layers. Instead, 

we will connect each neuron to only a local region of the input volume. The connections 

are local in space (along in width and high) but always fill along the entire depth of the 

input volume. Convolutional layer uses a weighting matrix called a filter (or feature) to 

handle the image, which detects specific properties such as diagonal edges, vertical edges 

and so on. Moreover, as the image progresses through each layer, the filters are able to 

recognize more complex attributes. Compared with other image classification algorithms, 

CNN uses relatively few preprocessing. This means that the filters in the traditional 

algorithms of network learning are designed by hand. This feature, independent of prior 

knowledge and human design, is a major advantage. Fig. 2.6 (A) shows an example in 

convolutional layer. Each neuron in the convolutional layer is connected only to a local 
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region in the input volume spatially. (B) shows the whole computation in one neuron, 

same as neuron networks. 

 

(A) 

 

(B) 

Fig. 2.6 (A) An example input volume in red and example volume of neurons in the 

first convolutional layer. (B) computation process in one neural. 

 

2.6.2 Recurrent Neural Network 

Recurrent neural network (RNN) not only takes the current input samples but also 

takes their previously perceived content as their input, normal neural network doesn’t 

have this characteristic. RNN can be considered multiple copies of the same network, and 

each copy sends a message to a successor. As shown in Fig. 2.7, this kind of chain-like 

property revels that RNN are closely related to sequences and lists. One of the attractions 

of RNN is that they may be able to connect the previous information to the current task, 

such as using previous video frames might inform the understanding of the present frame. 

It is often said that RNN has memory, in other words, RNN shares weights over time. The 

basic structure is described by the following set of equations [32]: 

  1t xh t h th  h W x W h   (2.4) 

  t hy thy W h   (2.5) 

where 𝒉𝑡 ∈ ℝ𝑚 is the state vector, 𝒙𝑡 ∈ ℝ𝑝 is the input, and 𝒚𝑡 ∈ ℝ𝑚 is the output. 

The function ℎ(∙)  apply to vector pointwise and commonly set to tanh(∙) . For the 
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coefficient matrices, we have 𝑾𝑥ℎ ∈ ℝ𝑚×𝑝, 𝑾ℎ ∈ ℝ𝑚×𝑚,𝑾ℎ𝑦 ∈ ℝ𝑚×𝑚. 

 

Fig. 2.7 Basic RNN architecture and unfold like. 

 

Fig. 2.8 LSTM cell contains four interacting layers. 

 

In theory, RNN is absolutely capable of handling case of “long-term dependencies”, 

but in practice, RNN doesn’t seem to be able to learn them. In fact, the basic RNN usually 

facing gradient vanishing and gradient exploding problem which make RNN get bad 

results. This is partly because the information flowing passes many stages of 

multiplication. To address this problem, a variation of RNN with so-called Long Short-

Term Memory units (LSTM) was proposed [33] and is largely used in sequences 

generation [34]. LSTM contain information outside the normal flow of the recurrent 

network in a gated cell. Cells decide what to store and when to allow reads, writes, and 

erasures by gates that open and close. LSTM single cell shown in Fig. 2.8, architecture is 

defined by the following set of equations 



doi:10.6342/NTU201802164

 23 

  1 1t xi t hi t ci t ii W x W h W c b        (2.6) 

  1 1+t xf t hf t cf t ff W x W h W c b       (2.7) 

  1 1tanht t t i xc t hc t cc f c i W x W h b       (2.8) 

  1t xo t ho t co t oo W x W h W c b       (2.9) 

  tanht t th o c   (2.10) 

where   is the logistic sigmoid function, and i , f , o  and c  are respectively the 

input gate, forget gate, output gate, cell and input activation vectors, all of which are the 

same size as the hidden vector h  . The weight matrix subscripts have the obvious 

meaning, for example, hiW  is the hidden-input gate matrix, xoW  is the input-output gate 

matrix etc. The weight matrices from the cell to gate vectors (e.g. ciW ) are diagonal, so 

element m  in each gate vector only receives input from element m  of the cell vector. 

The bias terms (which are added to i , f , c  and o ) have been omitted for clarity. 

During training stage, we use backpropagation through time algorithm [35] to update 

network parameters. One difficulty when training LSTM with the full gradient is that the 

derivatives sometimes become excessively large, leading to numerical problems. To 

prevent this, all the experiments should clip the derivative of the loss with respect to the 

network inputs to the LSTM layers (before the sigmoid and tanh functions are applied) 

to lie within a predefined range. 

2.6.3 Convolutional LSTM 

The medical data like EMG signals with a lot of channels record continuously. The 

signal of the same channel at a different time is related, the signal between different 

channels also has the mutual influence. The fully connected LSTM (FC-LSTM) 

framework shown in the previous section provides a general framework for sequence 
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learning problems. However, the FC-LSTM does not take spatial correlation into 

consideration. Convolutional LSTM (ConvLSTM) network [36] have been proposed to 

overcome this difficulty. In order to model well the spatiotemporal relationships, they 

extend the idea of FC-LSTM to ConvLSTM which has convolutional structures in both 

the input-to-state and state-to-state transitions. 

The main disadvantage of FC-LSTM in processing spatiotemporal data is that it must 

expand the input into a one-dimensional vector before processing, result in the loss of all 

spatial information in the process. To overcome this problem, all inputs 1,..., tX X , cell 

outputs 1,..., tC C , hidden states 1,..., tH H , and gates , , t t ti f o  of the ConvLSTM are 3D 

tensors whose last two dimensions are spatial dimensions (rows and columns). The 

ConvLSTM determines the future state of a certain cell in the grid by the inputs and past 

states of its local neighbors. This can easily be achieved by using a convolution operator 

in the state-to-state and input-to-state transitions as shown in Fig. 2.9. The key equations 

of ConvLSTM are shown below 
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where ‘ ’ denotes the convolution operator and ‘ ’, as before, denotes the Hadamard 

product. If we view the states as the hidden representations of moving objects, a 

ConvLSTM with a larger transitional kernel should be able to capture faster motions 

while one with a smaller kernel can captures slower motions. 

To ensure that the state has the same number of rows as the input and the same 

number of columns, padding is needed before applying the convolution operation. Here, 
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the padding of the hidden state on the boundary point can be considered as using the state 

of the outside world for calculation. Usually, before the first input comes, we initialize all 

the states of LSTM to zero which corresponds to “total ignorance” of the future. Similarly, 

if we perform zero-padding on the hidden states, we are actually setting the state of the 

outside world to zero and assume no prior knowledge about the outside. By padding states, 

we can handle boundary points in different ways, which is useful in many cases. 

 

Fig. 2.9 Inner structure of ConvLSTM. 
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Chapter 3 Design Motion Prediction based Control 

System 

The hardest part to control an exoskeleton robot is human-robot synergy. Usually, 

the movement of the machine has a delay relative to the movement of the human arm, 

which can make the user feel more resistance or be restrained. If we can predict the motion 

of the arm and let the machine move along with the human intent, it is an effective way 

to reduce the delay, so that users feel smooth in the motion. Traditionally, researchers use 

F/T sensors to get human arm movement intention or EMG signal to recognize movement 

intention direction. Those methods are hard to decode multi-joint movement, and it 

remains a problem with the delay which makes subjects feel uncomfortable and difficult 

to control the exoskeleton robot. 

For the purpose of decoding multi-joint arm intention and reducing control delay 

time, we use human arm dynamics and EMG signals which can reflect movement 

intention as model input. We have proposed Multi-stream LSTM Dueling (MS-LSTM 

Dueling) model which can accurately predict joint angles of the human arm. After that, 

the predicted human joint angle becomes the input of the robot controller that can control 

the robot arms to move synchronously with the human arm. 

In order to train our deep learning model, we need to collect the arm movement data 

from different subjects. Because of the huge differences between individuals, the 

researchers traditionally trained a model for each participant in a specific rehabilitation 

task. This is bound to require a large amount of data to be collected in each task and each 

participant, and it will take a lot of time in experimental setup and data collection. In fact, 

our data collection process does not require human arm to perform motions with the robot 

arm, unlike [37] which needs subjects to perform motion on the robot arm, in our case 
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subjects can perform motions in free space and do the motion whatever they want. The 

whole process here is compared with the traditional collection methods are more flexible 

and easier, and collection time is also greatly reduced. Moreover, subjects can also collect 

their data at home using the method we have designed. Through the proposed data 

collection method, we can collect the angles of the arm joints, the movement speed and 

the EMG signal of the subject. 

3.1 Estimate Human Arm Dynamics and Muscle Activity 

3.1.1 IMU subsystem and signal pre-processing 

In this work, we use two Myo armbands, each with 3-axis magnetometer, 3-axis 

gyroscope, and 3-axis accelerometer, which altogether are called IMU. IMU signals 

sampling rate is 50 Hz and is located on the channel 4 of the Myo armband. One Myo 

armband is placed in the upper arm such that it is at 5 cm above the middle of lateral and 

medial epicondyle with channel 3 being located on biceps brachii, whereas the other 

armband is placed in the forearm such that it is at 6 cm below the middle of lateral and 

medial epicondyle with channel 3 being located on supinator. Both Myo armband’s 

channel 4 will be on the top of the arm. The placement of both Myo armbands is as shown 

in Fig. 3.1. We obtain the stable rotation angle and angular velocity of each armband by 

using the complementary filter from IMU data. Finally, the angle of the human arm joint 

is obtained from the rotation angle of the two Myo armbands. 

The 3-axis accelerometer allows us to obtain the rotation angles w.r.t X- and Y-axis, 

but the accelerometer is only suitable for measuring the angle in the stationary state, and 

the measurement accuracy under movement is poor. Similarly, the 3-axis magnetometer 

can obtain the angles between X-, Y- and Z-axis and the geomagnetic field repetitively, 

whereby they can also be converted to the rotation angles, however subject to 
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measurement of turbulence due to motion and vulnerability to the surrounding magnetic 

field interference. On the contrary, the gyroscope can measure the angular velocity of the 

object with sufficient accuracy, so that the angle of rotation through integration of the 

velocity can be obtained, despite the error of the angle may accumulate over time. This 

shows that magnetometer and accelerometers have high-frequency noise, gyroscope has 

low-frequency noise, and such a situation is very suitable for the use of complementary 

filters. The design of the filter is shown in the Fig. 3.2. 

 

Fig. 3.1 Placement of two Myo armbands (left arm). 

 

 

Fig. 3.2 The architecture of complementary filter which can complement each one of 

the shortcomings of the signal. Through the complementary filter, we can get the 

accuracy of the object’s rotation angle and angular velocity. 
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What is shown below are equations for the digital complementary filter. 

    yaw, , 1 ,1gyro mag

t yaw t t yaw ta v t a           (3.1) 

     , ,

, , 1 1
2

mag acc

X t X tgyro

X t X t ta v t a
 

  

 
        

 

  (3.2) 

 a
t






 
  (3.3) 

where yaw,t  is the current filtered angle of yaw-axis, , 1yaw t   is the angle of previous 

time, ,X t  is the current filtered angle of roll-axis and pitch-axis 
t

gyrov  is the angular 

velocity measurement of current time from the gyroscope, ,

acc

X t   is the current 

measurement angle from accelerometer, ,

mag

X t   is the current measurement angle from 

magnetometer, and a is determined from time constant 𝜏. The time constant of a filter is 

the relative duration of signal it will act on. For a low-pass filter, signals much longer than 

the time constant pass through unaltered while signals shorter than the time constant is 

filtered out. The opposite is true for a high-pass filter. So, when the desired time constant 

and the sample rate are decided, the filter coefficient a will be determined. 

Fig. 3.3 shows each Myo armband’s coordinate system on which the rotation angle 

we obtained is based. After we get each axis’s rotation angle, namely, 0,roll  , 0, pitch  , 

0, yaw  , 1,roll  , 1, pitch   and 1, yaw  , where 0   represent forearm coordinate system, 1  

represent upper arm coordinate system, and we can use these as arm joint rotation angles. 

The transformation equation is shown below 
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Fig. 3.3 Two Myo armbands’ principal axes. 

 

3.1.2 Human Arm Angle Calibration 

Because the Myo armband is a ring-mounted sensor attached to the human epidermis, 

and human arm is not a homogeneous cylinder, the position of the sensor changes when 

the arm is moving, it causes the wrong calculation of the angles. Fig. 3.4 shows an 

example of doing elbow flexion causes sensor measurement inaccuracy. It’s easy to find 

that when the elbow join reaches 90°, the IMU sensor only reaches about 75°. 

  
(A) (B) 

Fig. 3.4 Example of an inaccurate sensor measurement caused by muscle deformation. 

 

In order to counteract the muscle-shape variation of each individual (there's a lot of 

difference in muscle deformation for everyone), a calibration measurement is needed to 

obtain the compensation value for muscle deformation before the experiment begins. We 

use four basic motions which are shoulder flex./ext. from 90°  to 170° , horizontal 
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abd./add. from 0°  to 80° , ext./int. rotation from −30°  to 30° , and elbow flex./ext. 

from 0° to 85° to get the value of the compensation. This process needs to be done 

when the human arm sits on the exoskeleton because the robotic arm can provide an 

accurate angle of measurement and we will use it as ground truth. The robot arm will 

passively move while we record both the robot joint angle and estimated joint angle of 

the human arm. 

 real h

real

k
 




   (3.5) 

  1h h k     (3.6) 

where real   is ground truth joint angle, h   is human joint angle, k is muscle 

compensation value, and h  is our final estimated human joint angle. 

Fig. 3.5 shows the result of doing muscle calibration. The black line represents robot 

arm angle which means ground truth angle, the red line represents the measured angle 

after muscle compensation, and the green dash line represents the measured angle without 

muscle compensation. It’s clear to see that if no muscle compensation, there is always a 

bias between our measured angles and the ground truth. Because of the design of the 

special mechanism, our robot arm produces a certain amount of deformation when it is 

horizontally moving, which will result in a small amount of error in our final 

measurements as shows in Fig. 3.5 (A) during 3s to 5s. Fig. 3.5 (C) shows that ext./int. 

rotation angle will be influenced by muscle deformation. After testing on 5 subjects, the 

measured mean absolute error with muscle compensation is shown in TABLE 3.1, which 

reveals that our method can accurately measure the joint angle of the human arm. For the 

sake of comparison, the measurement mean absolute error without muscle compensation 

is also shown in TABLE 3.2. 
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(A) (B) 

  

(C) (D) 

Fig. 3.5 Result of muscle calibration (A) shoulder flex./ext., (B) horizontal abd./add., 

(C) ext./int. rotation, (D) elbow flex./ext. 

 

TABLE 3.1 Measurement error test on five subjects with muscle compensate. 

Motion type 
Horizontal 

abd./add. 

Shoulder 

flex./ext. 

Ext./int. 

rotation 

Elbow 

flex./ext. 

Mean absolute  

error (degrees) 
1.23° 1.2° 1.19° 1.63° 

 

TABLE 3.2 Measurement error test on five subjects without muscle compensate. 

Motion type 
Horizontal 

abd./add. 

Shoulder 

flex./ext. 

Ext./int. 

rotation 

Elbow 

flex./ext. 

Mean absolute  

error (degrees) 
2.53° 3.72° 1.19° 3.78° 
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3.1.3 EMG Subsystem and Signal Pre-processing 

In previous work, Two Myo armbands were used to get arm dynamics. Each device 

can also get 8 EMG channel signals to record the status of muscle activation of upper arm 

and forearm at the same time. The EMG sampling rate of Myo armband is 200 Hz. 

The signals we measure are mixed with various noises [38]. Moreover, because the 

Myo armband is a ring-shaped sensor, there will be a very serious crosstalk problem [39] 

on the obtained signals. As a result, the actual EMG signal from the muscles is reduced. 

Therefore, the original signal needs to be pre-processed by a series of signals processing 

to increase the signal-to-noise ratio. 

In addition to the problem of crosstalk, there are two main noises in the EMG signal. 

The first is artifact noise, which occurs when motion comes up and where electrodes, skin, 

and muscle shift with respect to one another. The frequency of artifact noise is low-

frequency noise and is in the range of 1-10Hz. The other kind of noise is electromagnetic 

noise which is also called power line noise. The human body can be regarded as a 

conductor and is constantly receiving electrical as well as electromagnetic radiation, 

especially from the power line. The magnitude of electromagnetic noise is usually greater 

than that of the EMG signal. 

In order to eliminate the artifact noise, the raw EMG signal is filtered by a high-pass 

filter (fourth-order Butterworth filter) with cut-off frequency 10 Hz. For the 

electromagnetic noise, we apply a 60 Hz notch filter to remove it. After filter the signal, 

we have two methods to extract time domain features and frequency domain features. In 

the time domain, for the purpose of obtaining the smooth signal, we use full wave 

rectification and then processed through moving average with triangular sample window 

(length 100ms) to quantify muscle activities over a time period. The moving average 

method can be expressed as 
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where N   is length (samples) of window function, iEMG   is the i  -th channel of 

filtered EMG signal, iMA   is the i  -th channel of EMG signal after moving average, 

MA   is the vector form of signals after moving average, and m   is the number of 

channels ( 16m   in this work). 

In the frequency domain, we use Short-time Fourier Transform (STFT) to transform 

signals to the frequency domain, and the window function we choose hamming window 

has 19 samples as shown in Fig. 3.6 (B). Fig. 3.6 (A) shows the window function of Myo 

armband which has 19 samples ( 19N  ) and the total weight of all samples are triangle. 

Due to our system is digital we use discrete-time STFT, the equation shown below 

        , j n

n

x n m x n w n m e 






 STFT   (3.9) 

where  x n   is input signal and  w n   is window function, m   is discrete and    is 

continuous, but the STFT is performed on a computer using the Fast Fourier Transform 

(FFT), so both variables are discrete and quantized. The number of frequency band is 

selected 10, so the dimension of EMG features are 10 × 16 , where 16 is number of 

channels. 
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(A) (B) 

Fig. 3.6 (A) Example of a triangular window for moving average. (B) Example of the 

Hamming window. 

 

Fig. 3.7 Flow of signal processing. 

 

The full signal processing is shown in Fig. 3.7. Note that, after applying STFT, which 

means time-frequency analysis, on a segmented window. The frequency domain features 

we get which are complex values, but we only use its magnitude as our model input 

features. Meanwhile, the processed EMG in one hand can also be input features. On the 

other hand, it can also serve as an important information for future assessment of patients’ 

rehabilitation status. 

3.1.4 Data Acquisition 

Before training our designed model, we need to collect training data. Training data 

are collected on both the health side of the subject which can make basic motions. Unlike 

our previous work [37], not only use Myo armband but also use BioRadio which is also 
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an EMG data collections devices through bipolar electrodes. Setup BioRadio device 

needs a lot of time and subjects also need to take off their clothes which is very 

inconvenient. Moreover, subjects have to perform 1). relax arm 2). follow robot make 

interactive force as small as possible (mimicking isometric contraction) 3). exert weak 

force on robot 4). exert strong force on exoskeleton robot actively. More irritating things 

is that each action needs to be repeated three times and requires at least 10 minutes, and 

for each different rehabilitation therapy need to repeat the same collection process. For 

example, if we have four rehabilitation therapies the total time we need at least 160 

minutes. This collection method needs to be performed on every subject before 

experiments. 

In our work, we have simplified the whole process, and we just need to get the 

subjects to move their arms in the free space after wear Myo armbands and no need to be 

on the robot arm. We ask subjects to move their arm in air arbitrary in one-minute and 

then after one-minute rest perform next session. For each subject, we need to collect eight 

sessions and the total time are less than 30 minutes. During movement, we record subjects’ 

arm dynamics which include four arm joint angles, all sensors’ angular velocities and all 

sensors’ accelerometer reading (total 16-dimensional). Also, processed EMG signals (16-

dimensional) and EMG features (160-dimensional) are recorded simultaneously. Since 

the period of software control loop in our exoskeleton robot, NTUH-II is 50ms (20Hz), 

the arm dynamics (IMU signals) and pre-processed EMG signals sampling rate are also 

downsampled at 20Hz. Additionally, we design a Graphical User Interface (GUI) for 

convenience. With this application, for those who are not professionals such as physical 

therapists or doctors can also easily use to collection patients’ data or use for joints 

estimate. Fig. 3.8 shows our designed interface. (A) shows our main operating interface 

and can also be used to connect Myo armbands to transmit measurement data via UDP or 
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TCP to any other application, also user can set the sampling rate for a special case. (B) 

shows our advance setting page. The default value is the best value we choose for easy 

use; the user can modify to other values they want. Our data collection method only needs 

to collect data before training model or when need to fine-tune a special subject. More 

often, when new participants come in, they can use our existing models directly. 

Compared to the previous approach, the method we propose has little time for new 

participants to spend on data acquisition. 

 

(A) 

 

(B) 

Fig. 3.8 GUI for our application. 
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3.2 Motion Prediction Regression Model 

In this section, we use deep learning model to fuse two cross-domain data. By 

discovering common patterns in a large number of data, the use of different subjects can 

also show good generalization. We also design the corresponding fine-tune method for 

our deep learning model to be better adapted to new subjects. 

3.2.1 One Stream LSTM Model 

Since we have cross-domain features, it is important to make the most of this features 

rather than just using a single domain usually can get better results. There are many ways 

to fuse data, the simplest of which is to concatenate all the features before input to the 

deep learning model. This approach can often get good results; the neural network can 

learn to assign different weights to different domain features. Thus, based on the model 

structure used in the [40], we change the input part to the fusion of the arm dynamic data 

and the EMG signals. In order to facilitate the comparison of the latter, we name it LSTM 

model (one stream LSTM). Compared with the traditional regression model, the deep 

learning model can do end-to-end training, which means we can directly get all arm joint 

angle in one model, not four models. This approach can reduce both the number of models 

and the global optimization since the optimization of each small part of the model does 

not guarantee global optimization. 

Fig. 3.9 shows the whole model architecture. First, we concatenate the arm dynamics 

and EMG frequency domain features, where D𝑡 represent arm dynamics which include 

human arm joint angles, angular velocities, and acceleration read from IMU sensor at the 

current time, E𝑡  represent EMG features extract through STFT at the current time. 

Second, we input consecutive data to linear LSTM layers (basic LSTM). Thus, the model 

not only inputs current data but also inputs previous n time steps data (we set 𝑛 = 20). 
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The dependency on consecutive data is a significant issue. Quite a few models use sliding 

context windows to process partial data of interest [41], which precludes the dependent 

data outside the context window. LSTM have the ability to selectively contain and pass 

information across time steps with hidden states. Third, the LSTM layer’s output will 

input to fully connected layer and finally generate future time arm joint angles. 

 

Fig. 3.9 One Stream LSTM model. 

 

3.2.2 Multi-stream LSTM Dueling Model 

In general, when initializing a neural network, each weight is with the same random 

distribution, which for example, can be a normal distribution with zero mean and standard 

deviation equal 0.05. The scope of parameter initialization is critical for the mode update, 

and their parameter updates tend to be in different directions and values for cross-domain 

features. Obviously, the data that come out of the arm dynamics, keep a strong linear 

relationship, whereas the EMG signals hold a non-linear relationship. As a result of these 

differences, the use of different architectures to handle data of different characteristics 

can be better. The idea of using multiple information sources in neural network language 

modeling and video action recognition modeling has been implemented before and it was 

shown that the neural network models benefitted from the extra information provided. In 

[42], the author proposed two stream LSTM language model which leads to a lower word 

error rate (WER). Similarly, Multi-Stream Bi-Directional Recurrent Neural Network was 

proposed in [43] to predict an action label. Those model have two common properties: 1) 
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multiple input sequences are fed to the network as parallel streams, and inputs from each 

stream are propagated to parallel hidden layers; 2) Multiple parallel hidden layers are then 

connected to the same output layer. Usually, the two stream outputs are concatenated and 

sent to one or two fully-connected layers and are then output as final results. 

Fig. 3.10 shows our first design Multi-stream LSTM model. The first stream network 

we use FC-LSTM to decode arm dynamics because it is good for solving linear relational 

data. The design of architecture in the second stream network is inspired by [40], but we 

change FC-LSTM to ConvLSTM [36]. The EMG features will go through two 

convolutional layers, pooling layers, and another two convolutional layers and pooling 

layer, and then the final pooling layer before they reach ConvLSTM layer. Finally, we 

concatenate the outputs of FC-LSTM and ConvLSTM together through three fully-

connected layers to generate our results. For the hyper-parameters of our model here we 

set, the first two convolutional layers have 16 filters, each with size 3 × 1, and last two 

convolutional layers have 32 filters, each with size 3 × 1, wheres max pooling is used in 

our pooling layers, and relu is used as the activation function for convolutional layers. 

The FC-LSTM layer, hidden size is 64 and ConvLSTM layer has 64 filters in total, each 

with size 3 × 1. The two fully-connected layers have 64 units and the output layer has 4 

units. The activation function of fully-connected layers are all linear function. 
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Fig. 3.10 Multi-stream LSTM model. 

 

However, simply concatenating multiple streams may not be a good way. Inspired 

by Dueling Network [44] which has gained success in deep reinforcement learning, it lets 

the final layer separate value and advantage, and then add them elementwise to get final 

results. So, we let first stream output as the value and the second stream output as the 

stimulation, and add them elementwise in the final output to obtain four arm joint angles. 

Fig. 3.11 shows our new designed Multi-stream LSTM Dueling (MS-LSTM Dueling) 

model. The model’s hyper-parameters are the same as those of previously designed model, 

but the difference is that the value layer has 4 units and the stimulation layer also have 4 

units. The total number of parameters is less than that of the previous model but can get 

higher accuracy and more robust results. 
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Fig. 3.11 Multi-stream LSTM dueling model. 

 

3.3 Fine Tune of the Model 

In practice, deep neural networks like CNN or LSTM has a huge number of 

parameters, often in the range of millions. Training a deep learning model on a small 

dataset greatly affects the neural network’s ability to generalize, often result in overfitting. 

As a result, it is more common in practice to fine-tune the existing networks, which are 

trained on large datasets, by continuing to train the smaller datasets we own. Assuming 

that our dataset is not quite different from the context of the original dataset, the pre-

trained model will have learned the characteristics associated with our own problem. For 

instance, the pre-trained network on a large and diverse dataset like the ImageNet captures 

universal features like curves and edges in its early layers, that are relevant and useful to 

most of the classification problems. However, not all situations can be fine-tuned, but 

there are some common rules of thumb own the 4 major scenarios. 1). New dataset is 
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large and similar to the original dataset. As we have more data and not significantly 

different from the context of dataset which the pre-trained model is trained on, if we try 

to fine-tune the entire network, we can be confident that we will not overfit. 2). New 

dataset is small and similar to original dataset. Because of the small amount of data, it is 

not a good idea to fine-tune the entire neural network due to the overfitting problem. Since 

the data is similar to the origin data, we expect that the higher-level features in neural 

network are also relevant to this dataset as well. Hence, the best idea might be fixed low-

level layers of the neural network and tune the high-level layers’ parameters. 3). New 

dataset is large and very different from the original dataset. Since the dataset is very large, 

we may expect that we are able to train the neural network from scratch. However, in 

practice, initialization from the weight of the pre-trained model is usually still beneficial. 

In this case, we would have enough data and confidence to fine-tune the entire network. 

4). New dataset is small but very different from the original dataset. Since dataset is small, 

it is likely best to only train a linear classifier or regressor. Furthermore, since the dataset 

is very different, it may not be the best to train the classifier or regressor at the top of the 

neural network, which might contain more dataset-specific features. Instead, it might 

better train a traditional classifier or regressor, like SVM/SVR, to be activated somewhere 

in the early part of the network. 

Obviously, there must be a difference in the amount of muscle activity in each person, 

so the second stream is the most influential in our MS-LSTM Dueling model. If we want 

to improve the performance of the model for the new subjects, we need to collect some 

data from the subjects before the experiment begins. We will use new collected data to 

fine-tune the pre-trained model, which is in line with the second scenario mentioned 

above. Fig. 3.12 shows our designed fine-tuning method, where gray dash line represents 

the fixed layer, which means we won’t change its weights during fine-tuning stage. This 
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is because the first few layers capture common features related to our new problems, such 

as curves and edges. We want to keep these weights unchanged. Instead, we let the 

network focus on learning the dataset-specific features of subsequent layers. Besides, we 

use a smaller learning rate to train the network. Since our pre-trained weights are pretty 

good already as compared to the random initialization weights, we don't want to distort 

them too quickly and too much. We make the initial learning rate 5 times smaller than the 

initial learning rate for initial training. 

 

Fig. 3.12 Two Stream LSTM model fine-tune architecture. 

 

3.4 Control of Robot System 

We test the real-time performance of the proposed mode on the upper limb 

rehabilitation exoskeleton robot NTUH-II which we have introduced in Chapter 2.1. The 

PID controller we use is EPOS which is built in the motor already. Each joint has a 

standard PID controller. The output joint angles of our model will be set as controller’s 
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reference trajectory and the velocity is the first order difference of the angle trajectories. 

We adjust the parameters of the controller so that it can track the reference trajectory as 

quickly as possible. Fig. 3.13 shows our whole control diagram where 𝜽𝑆,𝑡, �̇�𝑆,𝑡  are 

angles and angular velocities calculated by complementary filter regarded in the sensors’ 

coordinate system, 𝜽𝐻,𝑡, �̇�𝐻,𝑡 are angles and angular velocities regarded in human arm’s 

joint coordinate system, �̂�𝐻,𝑡, �̇̂�𝐻,𝑡  are angles and angular velocities estimated after 

muscle compensation, �̂�𝐻,𝑡+𝑘 is the model outputs of human arm joint angles at k time 

steps ahead latent treated as reference trajectory to the controller, and �̇̂�𝐻,𝑡+𝑘 is the first 

derivative of �̂�𝐻,𝑡+𝑘 represent human arm joint angular velocities. Note that 𝜏𝑅 is the 

controller’s output torque to control motor motion and 𝜽𝑅 , �̇�𝑅 are robot joint angles and 

angular velocities that will be feed back to the controller. The motion prediction 

regression model (MPRM) is our best designed MS-LSTM dueling model. 

 

Fig. 3.13 Control diagram for guide mode and active mode. 

 

3.4.1 Guide Mode 

The guide model can be divided into bilateral mode and lead mode. In lead mode, 
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the therapist will wear two Myo armbands on the same side as the patient's impaired arm 

and perform standard treatment movement, whereby the robot arm will do the same to 

drive the patient's impaired arm to do rehabilitation as shown in Fig. 3.14 (A). This mode 

is suitable for the patient whose both limbs are affected and under low-level motor. The 

therapist who leads patients to do rehabilitation can let the patient quickly familiarize 

himself/herself with the process and strengthen his/her confidence. 

Bilateral mode is suitable for patients with semi-paralysis. Two Myo armbands are 

worn in the patient's healthy arm which performs the specified rehabilitation movement, 

and the impaired arm which sits on the robot arm will be moved through mirroring motion 

by the robot arm as shown in Fig. 3.14 (B). With our motion perdition regression model, 

the robot arm will move synchronously with the therapist arm or the patient’s healthy arm. 

Note that, we have to reverse the direction of horizontal abd./add. and ext./int. rotation 

angles in this mode. 

  

(A) (B) 

Fig. 3.14 (A) In lead mode, two Myo armbands are worn on the therapist’s arm with 

the same side of patients impaired arm. (B) In bilateral mode, two Myo armbands are 

worn on the patient’s healthy arm. 

 

As a comparison, we will remove our designed model, directly using the estimate 

human arm’s joint angles from IMU as reference trajectory to the controller. The control 

diagram is shown in Fig. 3.15. 
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Fig. 3.15 Control diagram without MPRM for guide mode. 

 

3.4.2 Active Mode 

The patients after reveiving full rehabilitation about their ROM could then undertake 

active mode therapy. In this therapy, two Myo armbands are worn in patients impaired 

arm and then the patient actively move their arm as shown in Fig. 3.16. The motion 

prediction regression model generates future joint angles and angular velocities to the 

controller making the exoskeleton robot follow the human arm’s motion. The control 

diagram is shown in Fig. 3.13. 

 

Fig. 3.16 In active mode, two Myo armbands are worn on the patient’s impaired arm. 
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Chapter 4 Experimental and Results 

In this chapter, the training detail of motion prediction regression model and the 

result of comparison with different models as well as different training data will be shown. 

Next, the experiment protocol includes single joint task, multi-joint task, and evaluation 

index are introduced. In guide mode, the proposed method is compared with that only 

using IMU sensor based control system. In active mode, the proposed method is compared 

with EMG based motion intention recognition model [37]. After the experiment setup, 

the results are shown and discussed. 

4.1 Model Training 

We collect 8 health subject’s left and right arm data. To test our designed model’s 

ability, we select 5 sessions data out of 3 subjects as training data, the remaining 3 sessions 

data out of the 3 subjects and 8 sessions data out of other 5 subjects are all set as testing 

data. Note that, we use EMG features in training all deep learning model, but use 

processed EMG in traditional machine learning model because high dimensional features 

will cause curse of dimensionality [45]. To test the impact of different training data 

volume on the model, we train 4 different models, where one with 1 subject as training 

data (means his 5 session data for training, remaining as testing), one with 3 subjects as 

training data, one with 5 subjects as training data, and one with 7 subjects as training data. 

Before training models, we need to test our controller’s ability to obtain the time for the 

future prediction of the proposed model. A predefined trajectory is given to the controller 

to calculate average delay time and set it as look-ahead time for model prediction. After 

test, our controller has 4-time steps delay. The controller sampling rate is 20Hz. All deep 

learning models are trained in 200 epochs with Adam [46] optimizer. The learning rates 

we set 0.001. Since our model is doing the regression task, we select mean squared error 
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as the loss function shown below 

  
4 2

1 1

1 N

ij ij

i j

loss
N

 
 

    (4.1). 

where ij  is the ground truth value, ij  is the model output value, N is the total number 

of samples in one batch, j represents joint numbers. 

4.2 Offline Evaluation Indexes and Result 

In order to verify the performance and generalization ability of proposed model, we 

use mean absolute error (MAE) and standard deviations to evaluate the results. The 

equation is shown below: 
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  (4.3) 

where K   is the number of subjects, N   is the number of sample from the 

corresponding subject and J   is the number of joints. MAEk   represent k-th subject 

mean absolute error. In order to demonstrate the ability of our models to be used on new 

users, we define validation MAE is MAE calculate from remained 3 sessions’ data of 

training subject, test MAE is MAE calculate from test subjects’ all sessions data. 

Fig. 4.1 ~ Fig. 4.2 shows the comparison between offline predict trajectory 

performed on two different models. Fig. 4.1 shows the predict human joint angle based 

on MS-LSTM Dueling model. To contrast the traditional machine learning model with 

the deep learning model, the results of SVR model is shown in Fig. 4.2. One subject’s 

results are selected in the following figures for both models. 
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(A)  Trajectory of horizontal abd./add. 

 

(B)  Trajectory of shoulder flex./ext. 

 

(C)  Trajectory of ext./int. rotation 

 

(D)  Trajectory of elbow flex./ext. 

Fig. 4.1 Predict trajectory of four joint angle based on MS-LSTM Dueling model. 

 



doi:10.6342/NTU201802164

 51 

 

(A)  Trajectory of horizontal abd./add. 

 

(B)  Trajectory of shoulder flex./ext. 

 

(C)  Trajectory of ext./int. rotation 

 

(D)  Trajectory of elbow flex./ext. 

Fig. 4.2 Predict trajectory of four joint angle based on SVR model. 
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(A) SVR model (B) MS-LSTM Dueling model 

Fig. 4.3 Compare hand position is 3D space reconstruct from arm joint angles of the 

different model. 

 

The y-axis of Fig. 4.1 ~ Fig. 4.2 is joint angle (degrees) and the x-axis is time 

(second). The green line is the current arm joint angles, the black line is joint angles 4-

time steps ahead which we can see horizontal translation between the green line and black 

line. The red dashed line represents joint angles of model output. The closer the red line 

to the black line, the higher the accuracy of the model. MS-LSTM Dueling model shows 

good performance to predict joint angles, whereas SVR model output has large bias and 

variation in each joint. In addition, the most important point is that the SVR model cannot 

learn to predict the start point. For instance, SVR model cannot predict when the arm 

starts to move in shoulder flex./ext. at 6s but MS-LSTM Dueling model can achieve that. 

Fig. 4.3 shows hand position reconstructed from four joint angles for both model 

outputs. The green line is current position and blue time is the future position both in 

space, and these two lines will overlap together. Due to each joint angle output from SVR 

model has a bias, the predicted hand position shows large bias. 

The result of different models’ performance is shown in TABLE 4.1 and the MAE 

of single-joint for different models are shown in TABLE 4.2. The lower standard 

deviation, the smaller difference in the performance of different people, the better 

generalization ability of the model. The lower MEA, the more accuracy of the model 
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outputs. We can see from the table that the proposed model has the best performance and 

the performance improved in testing data after fine-tuning the model. 

TABLE 4.1 Performance of different models. 

Model type σ Total MAE 
Validation 

MAE 
Test MAE 

SVR 0.52º 3.16º 2.69º 3.43º 

KNR 0.60º 4.84º 4.18º 5.24º 

LSTM 0.82º 4.17º 3.48º 4.58º 

MS-LSTM 0.30º 1.44º 1.24º 1.55º 

MS-LSTM Dueling 0.25º 0.97º 0.74º 1.11º 

MS-LSTM Dueling 

Fine-tune 
0.20º 0.90º / 0.90º 

 

TABLE 4.2 Total mean absolute error (degrees) of different models in single-joint. 

Model type 
Horizontal 

abd./add. 

Shoulder 

flex./ext. 

Ext./int. 

rotation 

Elbow 

flex./ext. 

SVR 3.69º 2.84º 2.35º 3.74º 

KNR 5.91º 4.27º 5.01º 4.19º 

LSTM 5.24º 3.04º 3.47º 4.95º 

MS-LSTM 1.22º 0.86º 2.05º 1.61º 

MS-LSTM Dueling 0.80º 0.73º 1.06º 1.33º 

MS-LSTM Dueling 

Fine-tune 
0.78º 0.63º 1.04º 1.17º 

 

The performance of models which is trained on different training data volumes are 

shown in TABLE 4.3 and the MAE of single-joint are shown in TABLE 4.4. The results 

show that the more training data, the better performance of the model. But except for the 

first one, the difference between the other performance is very small. 
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TABLE 4.3 Performance of MS-LSTM Dueling model trained on different training data 

volumes. 

Data volume σ Total MAE 
Validation 

MAE 
Test MAE 

1train-7test 0.77º 2.33º 0.76º 2.55º 

3train-5test 0.25º 0.97º 0.74º 1.11º 

5train-3test 0.21º 0.96º 0.74º 1.10º 

7train-1test 0.18º 0.84º 0.73º 0.99º 

 

TABLE 4.4 Total mean absolute error (degrees) in single-joint. 

Data volume 
Horizontal 

abd./add. 

Shoulder 

flex./ext. 

Ext./int. 

rotation 

Elbow 

flex./ext. 

1train-7test 1.80º 1.59º 2.16º 3.78º 

3train-5test 0.80º 0.73º 1.06º 1.33º 

5train-3test 0.79º 0.69º 1.08º 1.27º 

7train-1test 0.69º 0.60º 0.95º 1.10º 

 

All subjects’ result distribution of different models and different training data 

volumes are shown in Fig. 4.4. From (A) we can see that after fine-tune stage, MS-LSTM 

Dueling model can get minimum variance. From (B) it shows that similar distribution if 

the model is trained on data from multiple subjects. 

  

(A) Different models (B) Different training data volumes 

Fig. 4.4 Boxplot of (A) different models and (B) different training data volumes for all 

subjects’ result distribution. 
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4.3 Real-time Experiment Protocol 

In order to evaluate our system, we design two kinds of experiment, which are 

single-joint exercises and multi-joint exercises in each of two modes (guide mode and 

active mode) to verify the effectiveness of the proposed model. We select the model which 

trained with 5 sessions data out of 3 subjects. There are 3 healthy subjects invited for 

these real-time experiments. Their ages range from 22 to 25 and the gender of this group 

contains two males (one subject’s data used as training data, another is new subject) and 

one female (new subject). Additionally, they don’t have any upper limb impairment, to 

imitate the patient, the subject’s left arm is set as the impaired arm and right arm is set as 

the healthy arm. 

The experiments are designed to evaluate the single-joint and multi-joint 

performance of the proposed system. We choose horizontal abd./add., shoulder flex./ext., 

ext./int. rotation, elbow flex./ext., exercises for the single-joint evaluation, and select 

feeding (two joint) and greeting (four joint) exercise for multi-joint evaluation. The 

desired trajectories are shown in Fig. 4.5 and corresponding joint angles detail are listed 

in TABLE 4.5. The first four exercises in single-joint are common upper limb 

rehabilitation exercises for regaining motor functions in elbow and shoulder joints and 

the rest of two task-oriented exercises are used for improving motor control. Moreover, 

feeding exercise is composed of elbow flex./ext. and horizontal abd./add. in specific upper 

limb configuration, which can be achieved by controlling NTUH-II with the predefined 

pose (shoulder flexion at 65 degrees and shoulder external rotation at 20 degrees). 

Greeting exercise is composed of four joint with free motion. During the experiments, a 

monitor in front of the subject shows the current joint angles as the visual feedback to the 

subjects. Each task should be performed for 3 repetitions. 
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TABLE 4.5 Experiment protocol of single-joint and multi-joint tasks 

Task Protocol 

Single joint 

1. Horizontal abd./add. : S: 0 P: 60 E: 0

2. Shoulder flex./ext.    : S: 90 P: 150 E: 90

3. Ext./int. rotation       : S: 0 P: 30 P: 30 E: 0

4. Elbow flex./ext.        : S: 0 P: 60 E: 0

  

  

   

  

 

 

   

 

 

Multi-joint 

5. Feeding (two joint) :

      Horizontal abd./add. : free

      Shoulder flex./ext.     : 65

      Ext./int. rotation        : 20

      Elbow flex./ext.         : free

6. Greeting (four joint) : all joi





nt free

 

 

 

Fig. 4.5 Desired trajectory for subjects 

 

The performance of evaluation will be separated into two parts according to 

rehabilitation mode. For guide mode, mean absolute error MAE and average delay time 

DT are used to evaluate the motion prediction regression model accuracy and 

effectiveness. when the MAE and DT time is small, which means the robot can meet the 

human arm current motion simultaneous. The MAE of tracking error is shown in (4.2) 

and average delay time can be calculated as 
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    (4.4) 

where H  is human arm joint angle, R  is robot joint angle and R  is robot angular 

velocity. Delay time only be calculated during motion stage since there is no delay when 

the robot remains stationary. To evaluate motion smoothness, another index 
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“dimensionless-squared-jerk” (DLJ) which evaluates the square jerk magnitude with 

normalized unit in each joint is used. The expression is shown below: 
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       (4.5) 

where 1n   and 2n   are start time and end time, peak   is peak value of robot angular 

velocity, t  is sampling time. 

In active mode, there are two indexes to evaluate the performance during static 

period and moving period. First, the average interactive force during moving period 

moavg F  is defined as 

   mo
moT
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  (4.6) 

where F  is the interactive force on the direction of task recorded by the F/T sensor 

placed on the end-point and moT  is the time during the moving period. This evaluation 

indicator shows whether the model makes robot arm to coordinate with users. 

Another index is the standard deviation of joint angle during static period st  , 

which represents the performance when the subject tries to halt at some place. st  can 

be computed as 
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  (4.7) 

where st ,cT  is the time during c -th static period, b  is the number of joint in the task 

and ,st c  is the mean value of joint angle in the c -th static period. 
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4.4 Real-time Experiment Result 

4.4.1 Performance for Bilateral Mode Exercise 

Fig. 4.6-Fig. 4.8 shows the joint angle comparison between experiments performed 

by IMU based control in left column and MS-LSTM Dueling model based control in right 

column. The y-axis of the figure is joint angle (degrees) and the x-axis is time (second). 

Specific in Fig. 4.7(C), the trajectories of feeding (two joint) task are displayed in 2-

dimensional joint space where the x-axis and y-axis are both joint angles (degrees). One 

subject’s results are selected in the following figures for every task. TABLE 4.6-TABLE 

4.8 shows average evaluation results of all subjects for each task. 

In IMU based control, the current human arm angle is used as a reference trajectory, 

allowing the robotic arm to track the trajectory. As shown in the figure of left column 

where the reference trajectory (red solid lines) overlap the human arm trajectory (green 

dashed line). In MS-LSTM Dueling model based control, the predict human arm angle is 

used as a reference trajectory. This allows the robot arm to start in advance to achieve a 

synchronized movement with the human arm as shown in the figure of right column 

where the human arm trajectory (green dashed line) is very close to the robot arm 

trajectory (black solid lines). 

  

(A1) Horizontal abd./add. (A2) Horizontal abd./add. 
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(B1) Shoulder flex./ext. (B2) Shoulder flex./ext. 

  

(C1) Ext./int. rotation (C2) Ext./int. rotation 

  

(D1) Elbow flex./ext. (D2) Elbow flex./ext. 

Fig. 4.6 Real arm angle (green dashed line), predict joint angle as reference trajectory 

(red solid line) joint angle and robot joint angle (black solid line) of IMU control (left 

column) and MS-LSTM Dueling model control (right column) for single-joint tasks in 

bilateral rehabilitation. 

 

TABLE 4.6 shows average results of all subjects for single-joint tasks in bilateral 

mode where Normalized index represent value of Proposed index value divided by IMU 

index value. The smaller of normalized value, the better of our proposed method. Both 

MAE and DT are very small in our proposed method, reflecting the high synchronism 
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between the robot and the human arm. Since the output of the model has a slight 

oscillation, the smoothness of the movement of the robot arm is not as good as that of the 

IMU based control as shown in DLJ index, but the difference is small. It is difficult to 

feel that the smoothness of using MS-LSTM Dueling mode control is worse than using 

IMU signal directly control. 

TABLE 4.6 Evaluation results of single-joint tasks in bilateral mode. 

Single Joint Index IMU Proposed Normalized(1) 

Horizontal abd./add 

MAE (degrees) 3.15º 0.91º 0.29 

DT (sec) 0.44 0.075 0.17 

DLJ (107) 5.61 6.98 1.24 

Shoulder flex./ext. 

MAE (degrees) 2.8º 1.33º 0.48 

DT (sec) 0.344 0.161 0.47 

DLJ (107) 11.57 14.94 1.29 

Ext./int. rotation 

MAE (degrees) 2.63º 1.44º 0.55 

DT (sec) 3.182 0.414 0.13 

DLJ (107) 27.99 25.50 0.91 

Elbow flex./ext. 

MAE (degrees) 3.2º 0.62º 0.19 

DT (sec) 0.325 0.016 0.05 

DLJ (107) 3.26 4.16 1.27 

 

Fig. 4.7 (A) and (B) illustrate each joint trajectory in feeding task. (C) shows the 

joint trajectories in 2D-space which can better reflect the coordination of the two-axis 

movement. We don’t expect horizontal or vertical lines in 2D-space diagram, which 

means that the two joints cannot coordinate motion. Compare left column figures with 

right column figures, the results are basically the same as the single joint task. It can be 

said that the feeding (two joint) experiment is as good as the single joint tasks 
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performance. Both methods embody good two-joint coordination performance but IMU 

control shows a high delay time which makes the subject feel more difficult to control. 

TABLE 4.7 shows average experiment results of all subjects for feeding task in 

bilateral mode. The results are as good as the single-joint tasks performance. 

  

(A1) Horizontal abd./add. (A2) Horizontal abd./add. 

  

(B1) Elbow flex./ext. (B2)Elbow flex./ext. 

  

(C1) Joint angle (C2) Joint angle 

Fig. 4.7 Real arm angle (green dashed line), predict joint angle as reference trajectory 

(red solid line) joint angle and robot joint angle (black solid line) of IMU control (left 

column) and MS-LSTM Dueling model control (right column) for feeding (two-joint) 

task in bilateral mode. 
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TABLE 4.7 Evaluation results of feeding task in bilateral mode. 

Feeding Index IMU Proposed Normalized(1) 

Horizontal abd./add. 

MAE (degrees) 1.91º 1.28º 0.67 

DT (sec) 0.376 0.033 0.09 

DLJ (107) 9.64 11.18 1.16 

Elbow flex./ext. 

MAE (degrees) 3.33º 1.35º 0.41 

DT (sec) 0.338 0.049 0.14 

DLJ (107) 9.19 11.30 1.23 

Average 

MAE (degrees) 2.62º 1.32º 0.50 

DT (sec) 0.357 0.041 0.11 

DLJ (107) 9.42 11.24 1.19 

 

Fig. 4.8 (A)-(B) illustrate each joint trajectory in greeting task. Because we allow 

the subjects to move completely free, there are some deviations in the trajectory. We can 

see that both IMU based control and the proposed method have a slight concussion on the 

trajectory because there's a little bit of shake in the arm when subjects are completely free 

to move. 

  

(A1) Horizontal abd./add. (A2) Horizontal abd./add. 
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(B1) Shoulder flex./ext. (B2) Shoulder flex./ext. 

  

(C1) Ext./int. rotation (C2) Ext./int. rotation 

  

(D1) Elbow flex./ext. (D2) Elbow flex./ext. 

Fig. 4.8 Real arm angle (green dashed line), predict joint angle as reference trajectory 

(red solid line) joint angle and robot joint angle (black solid line) of IMU control (left 

column) and MS-LSTM Dueling model control (right column) for greeting (four-joint) 

task in bilateral mode. 

 

TABLE 4.8 shows the average evaluation results of all subjects for greeting (four-

joint) task. When all the joints are moving together, the model also shows a better output 

stability. This is because, in the model training stage, we do the global optimization for 

the four outputs at the same time. So in the real-time experiment, four joint movements 



doi:10.6342/NTU201802164

 64 

can also have a better performance. 

TABLE 4.8 Evaluation results of greeting task in bilateral mode. 

Greeting Index IMU Proposed Normalized(1) 

Horizontal abd./add. 

MAE (degrees) 3.26º 1.17º 0.36 

DT (sec) 0.473º 0.132º 0.28 

DLJ (107) 15.60 22.91 1.47 

Shoulder flex./ext. 

MAE (degrees) 0.8º 0.66º 0.83 

DT (sec) 0.274 0.041 0.15 

DLJ (107) 23.04 26.44 1.15 

Ext./int. rotation 

MAE (degrees) 0.44º 0.42º 0.95 

DT (sec) 2.27 0.801 0.35 

DLJ (107) 24.40 27.96 1.15 

Elbow flex./ext. 

MAE (degrees) 1.54º 0.98º 0.64 

DT (sec) 0.325 0.04 0.12 

DLJ (107) 8.06 9.03 1.12 

Average 

MAE (degrees) 1.51º 0.8075º 0.53 

DT (sec) 0.8355 0.2535 0.30 

DLJ (107) 17.69 21.59 1.22 

 

4.4.2 Performance for Lead Mode Exercise 

Fig. 4.9-Fig. 4.11 shows the joint angle comparison between experiments performed 

by IMU based control and MS-LSTM Dueling model based control in lead mode. The 

layout of the figures is the same as the previous bilateral mode. In lead mode, we want to 

verify that MS-LSTM Dueling model can also be applied to the same side arm (left arm) 

of the therapist, driving the robot arm movement. The movement pattern shown in the 

figures are very similar to bilateral mode. The detail of evaluation index values is shown 
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in TABLE 4.9-TABLE 4.10. It is clear that the performance in lead mode is almost the 

same as in bilateral mode, which proves that the method we propose can be used both on 

the patient's contralateral arm and on the same side arm of the therapist. 

  

(A1) Horizontal abd./add. (A2) Horizontal abd./add. 

  

(B1) Shoulder flex./ext. (B2) Shoulder flex./ext. 

  

(C1) Ext./int. rotation (C2) Ext./int. rotation 
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(D1) Elbow flex./ext. (D2) Elbow flex./ext. 

Fig. 4.9 Real arm angle (green dashed line), predict joint angle as reference trajectory 

(red solid line) joint angle and robot joint angle (black solid line) of IMU control (left 

column) and MS-LSTM Dueling model control (right column) for single-joint tasks in 

lead mode. 

 

TABLE 4.9 shows the detail of average evaluation results of all subjects for single-

joint tasks. The results are close to bilateral mode. 

TABLE 4.9 Evaluation results of single-joint tasks in lead mode. 

Single Joint Index IMU Proposed Normalized(1) 

Horizontal abd./add. 

MAE (degrees) 2.95 1.13 0.38 

DT (sec) 0.446 0.169 0.38 

DLJ (107) 6.04 6.73 1.11 

Shoulder flex./ext. 

MAE (degrees) 2.45 1.08 0.44 

DT (sec) 0.351 0.149 0.42 

DLJ (107) 19.09 19.81 1.04 

Ext./int. rotation 

MAE (degrees) 2.2 0.83 0.38 

DT (sec) 3.355 0.354 0.11 

DLJ (107) 22.88 24.13 1.05 

Elbow flex./ext. 

MAE (degrees) 3.2 1.09 0.34 

DT (sec) 0.323 0.179 0.55 

DLJ (107) 2.84 3.26 1.15 
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Fig. 4.10 (A) - (B) illustrate each joint trajectory in feeding task and (C) shows two-

joint trajectory in 2D-space. TABLE 4.10 shows the average evaluation results of all 

subjects for feeding task in lead mod. 

  

(A1) Horizontal abd./add. (A2) Horizontal abd./add. 

  

(B1) Elbow flex./ext. (B2) Elbow flex./ext. 

  

(C1) Joint angle (C2) Joint angle 

Fig. 4.10 Real arm angle (green dashed line), predict joint angle as reference trajectory 

(red solid line) joint angle and robot joint angle (black solid line) of IMU control (left 

column) and MS-LSTM Dueling model control (right column) for feeding (two-joint) 

task in lead mode. 
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TABLE 4.10 Evaluation results of feeding task in lead mode. 

Feeding Index IMU Proposed Normalized(1) 

Horizontal abd./add. 

MAE (degrees) 2.37 1.91 0.81 

DT (sec) 0.416 0.068 0.16 

DLJ (107) 14.24 15.86 1.11 

Elbow flex./ext. 

MAE (degrees) 3.88 1.74 0.45 

DT (sec) 0.355 0.042 0.12 

DLJ (107) 13.44 16.28 1.21 

Average 

MAE (degrees) 3.12 1.83 0.59 

DT (sec) 0.385 0.055 0.14 

DLJ (107) 13.84 16.07 1.16 

 

Fig. 4.11 shows each joint trajectory in greeting task. By comparing IMU based 

control (left column) with MS-LSTM Dueling model based control (right column), we 

can see that the output of the proposed model has some turbulence. As in bilateral mode, 

the arm itself has a little shock when it's doing completely free motion, and it's also not 

easy to stabilize in lead mode with a non-habitual hand. Moreover, the model has a little 

turbulence itself, as shown in the offline result. 

  

(A1) Horizontal abd./add. (A2) Horizontal abd./add. 
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(B1) Shoulder flex./ext. (B2) Shoulder flex./ext. 

  

(C1) Ext./int. rotation (C2) Ext./int. rotation 

  

(D1) Elbow flex./ext. (D2) Elbow flex./ext. 

Fig. 4.11 Real arm angle (green dashed line), predict joint angle as reference trajectory 

(red solid line) joint angle and robot joint angle (black solid line) of IMU control (left 

column) and MS-LSTM Dueling model control (right column) for greeting (four-joint) 

task in lead mode. 

 

TABLE 4.11 shows detailed result of average evaluation index values for greeting 

task. The MAE of the proposed method reduces at least 50% compare with IMU based 

control and DT of the proposed model reduces at least 70% compare with IMU based 

control. Additionally, the DLJ index of IMU control is only higher 24%, which is hard to 
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feel the difference for the subject. 

TABLE 4.11 Evaluation results of greeting task in lead mode. 

Greeting Index IMU Proposed Normalized(1) 

Horizontal abd./add. 

MAE (degrees) 3.31 1.43 0.43 

DT (sec) 0.473 0.161 0.34 

DLJ (107) 13.37 15.16 1.13 

Shoulder flex./ext. 

MAE (degrees) 0.725 0.345 0.48 

DT (sec) 0.271 0.02 0.07 

DLJ (107) 16.68 17.82 1.07 

Ext./int. rotation 

MAE (degrees) 0.74 0.56 0.76 

DT (sec) 2.218 0.947 0.43 

DLJ (107) 15.11 19.34 1.28 

Elbow flex./ext. 

MAE (degrees) 1.48 0.63 0.42 

DT (sec) 0.303 0.009 0.03 

DLJ (107) 77.59 100.24 1.29 

Average 

MAE (degrees) 1.56 0.74 0.47 

DT (sec) 0.82 0.28 0.35 

DLJ (107) 30.68 38.14 1.24 

 

From the bilateral and lead experiment above, we can conclude that using the MS-

LSTM Dueling model to control the robotic arm in guide mode can achieve higher 

synchronization with the human arm, and have strong stability. 
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4.4.3 Performance for Active Mode Exercise 

  

(A) Horizontal abd./add. (B) Shoulder flex./ext. 

  

(C) Ext./int. rotation (D) Elbow flex./ext. 

Fig. 4.12 End-point interactive force for single-joint tasks in active mode. 

 

 

 

  

(A) Feeding (B) Greeting 

Fig. 4.13 End-point interactive force for multi-joint tasks (feeding and greeting) in 

active mode. 
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The result of single-joint and multi-joint tasks in active mode are shown in Fig. 4.12-

Fig. 4.13. The y-axis is interactive force (Newton) and the x-axis is the time (second). In 

the single-joint task, except ext./int. rotation, the other three tasks need to exert a little 

force at start to make the model output future position let the robot arm to move. The 

force is very small during motion stage. At the end-point, the subject still needs to exert 

force to hold arm stop in the air, so in the figures, there is no zero force except for the 

greeting task. In the greeting task, the F/T sensor will be perpendicular to the hand at the 

end point, and will not receive the force exerted by the hand. It has shown in Fig. 4.13 (B) 

at time 10.5s – 12.5s. The force exerted in the multi-joint task is larger than that in the 

single-joint task, due to we have to exert force to multi-directions. 

The average evaluation results of all subjects in active mode are shown in TABLE 

4.12 and TABLE 4.13. The average interactive force during moving period has 

signification improvement in both single-joint and multi-joint tasks. Our proposed 

method reduces 40% interative force compare with MIRM based control and reduces 60% 

interactive force compare with F/T sensor based control. The performance of proposed 

active control method outperforms the F/T sensor based active control method in either 

moving or static period. The standard deviation of joint angle during static period of the 

proposed method is a little higher than that of MIRM control. Because our method 

considers IMU singles which is very sensitive to small activities and there's a small 

amount of vibration in the arm when human moving their arm. Moreover, MIRM model 

only considers EMG signals, it only gives human arm moving directions. Those cause 

our method not as good as MIRM but the values are still in the acceptable range. 

In the greeting task, the F/T control and MIMR can only control two-joint at the 

same time, the subject cannot control each joint independently. Our proposed method can 

control four-joint independently which is more fitting human's normal movement and 
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experiment results are even better. 

 

TABLE 4.12 Evaluation results of single-joint tasks in active mode. 

 F/T sensor MIRM Proposed 

Single joint 𝑎𝑣𝑔(|𝐹𝑚𝑜|) 𝜎𝑠𝑡 𝑎𝑣𝑔(|𝐹𝑚𝑜|) 𝜎𝑠𝑡 𝑎𝑣𝑔(|𝐹𝑚𝑜|) 𝜎𝑠𝑡 

Horizontal 

abd./add. 
3.52 1.46 3.83 0.36 1.89 0.31 

Shoulder 

flex./ext. 
12.75 1.41 6.90 0.23 2.86 0.56 

Ext./int. 

rotation 
-- -- -- -- 1.86 0.78 

Elbow 

flex./ext. 
12.71 2.82 10.98 0.64 6.79 0.63 

Average 9.66 1.89 7.24 0.41 3.85 0.50 

Normalized 0.40 0.26 0.53 1.22 1 1 

 

TABLE 4.13 Evaluation results of multi-joint tasks in active mode. 

 F/T sensor (two-joint) MIRM (two-joint) Proposed 

 𝑎𝑣𝑔(|𝐹𝑚𝑜|) 𝜎𝑠𝑡 𝑎𝑣𝑔(|𝐹𝑚𝑜|) 𝜎𝑠𝑡 𝑎𝑣𝑔(|𝐹𝑚𝑜|) 𝜎𝑠𝑡 

Feeding 6.87 2.62 12.03 0.40 7.85 0.50 

Normalized 1.14 0.19 0.65 1.25 1 1 

Greeting 14.61 1.78 8.89 0.46 5.54 0.65 

Normalized 0.38 0.37 0.62 1.41 1 1 
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Chapter 5 Conclusion 

In this thesis, motion prediction based on Multi-Stream LSTM Dueling model for 

control of upper limb exoskeleton robot is proposed. The MS-LSTM Dueling model 

predicts the joint angles of the human arm to be moving, and then input the angles to the 

controller such that the moving of the robotic arm is synchronized with the arm. To 

achieve accurate predictions, our model requires two inputs, human arm dynamics and 

EMG features. In particular, we have designed the internal architecture of the model to 

deal with the different characteristics of the input signal. In order to get accurate angles 

of the current human arm joints, we design a complementary filter and the compensation 

for muscle deformation. EMG features are obtained by short-time Fourier transform and 

the preprocessed EMG signals are recorded, which can be used for subsequent evaluation 

and analysis. We provide active mode and guide mode which include bilateral and lead 

mode control on exoskeleton robot. 

In the related work, the EMG based control methods have large estimation errors, 

long setup time and is only available for single-joint or coupled multi-joint (two joints 

moves dependently) movement. Besides, the F/T sensor based control methods have 

disadvantages that the user should exert the interactive force on the location of the sensor 

and it is difficult to model the mapping from sensor values to human intention. The 

proposed model can predict the user’s intended motion position. Because we use 

convolutional layer to extract higher EMG patterns, LSTM layer to extract time-sequence 

features and do end-to-end global optimization, our model can predict the four joint 

angles of the human arm at the same time and can conquer some changes in EMG patterns. 

We use a large number of data from different subjects to train the model. So, even when 

a new subject came in, they could still directly do the rehabilitation therapy. As a result, 
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the setup time before the therapy can be reduced to less than 5 minutes. 

The results of offline experiments show that the MS-LSTM Dueling model has the 

better accuracy than other deep learning models and traditional regression models. The 

more different subjects’ data in training data, the better result we get. But after more than 

3 different subjects’ data, the accuracy only improves a little. In the real-time experiment, 

the subjects were asked to perform the single- and multi-joint tasks in both guide mode 

and active mode. In the guide mode which contains bilateral and lead mode, we compare 

IMU control with MS-LSTM Dueling mode control. The results show that the proposed 

method reduces 50% of mean average error of joint angle between human arm and robot 

arm, and reduces 70% of delay time to allow users to feel better human-robot coordination. 

The performance of standard deviation of joint angle during static period has slightly 

decreased but still in the acceptable range. In active mode, compared to the MIRM based 

control, the proposed method 40% of interactive force is decreased. We improve 60% of 

stability during static period compared with F/T sensor based control but slightly 

decreased compare with MIRM based control. Nevertheless, it is still in an acceptable 

range and subjects rarely to feel the difference. 

This work allows patients to take voluntary exercises in either bilateral mode or 

active mode rehabilitation therapy. It also allows therapists to assist in training patients in 

lead mode. In addition, it is easy to extend to different types of rehabilitation tasks in the 

future. The proposed method can be integrated not only in NTUH-II but also in any robot 

arm that achieves multi-joint movement independently. 



doi:10.6342/NTU201802164

 76 

REFERENCE 

[1] J. G. BROEKS, G. Lankhorst, K. Rumping, and A. Prevo, "The long-term 

outcome of arm function after stroke: results of a follow-up study," Disability and 

rehabilitation, vol. 21, no. 8, pp. 357-364, 1999. 

[2] D. Mozaffarian, E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha, M. Cushman, 

S. R. Das, S. De Ferranti, J. P. Després, and H. J. Fullerton, "Executive summary: 

heart disease and stroke statistics-2016 update: a report from the American Heart 

Association," Circulation, vol. 133, no. 4, pp. 447-454, 2016. 

[3] H. Veeger and F. Van Der Helm, "Shoulder function: the perfect compromise 

between mobility and stability," Journal of biomechanics, vol. 40, no. 10, pp. 

2119-2129, 2007. 

[4] J. McCabe, M. Monkiewicz, J. Holcomb, S. Pundik, and J. J. Daly, "Comparison 

of robotics, functional electrical stimulation, and motor learning methods for 

treatment of persistent upper extremity dysfunction after stroke: a randomized 

controlled trial," Archives of physical medicine and rehabilitation, vol. 96, no. 6, 

pp. 981-990, 2015. 

[5] J. H. Cauraugh and J. J. Summers, "Neural plasticity and bilateral movements: a 

rehabilitation approach for chronic stroke," Progress in neurobiology, vol. 75, no. 

5, pp. 309-320, 2005. 

[6] K. C. Stewart, J. H. Cauraugh, and J. J. Summers, "Bilateral movement training 

and stroke rehabilitation: a systematic review and meta-analysis," Journal of the 

neurological sciences, vol. 244, no. 1, pp. 89-95, 2006. 

[7] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. 

Byers, "Big data: The next frontier for innovation, competition, and productivity," 

2011. 

[8] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, vol. 521, no. 7553, 

p. 436, 2015. 

[9] S. P. Swinnen, "Intermanual coordination: from behavioural principles to neural-

network interactions," Nature Reviews Neuroscience, vol. 3, no. 5, p. 348, 2002. 

[10] S. M. Waller, M. Harris-Love, W. Liu, and J. Whitall, "Temporal coordination of 

the arms during bilateral simultaneous and sequential movements in patients with 

chronic hemiparesis," Experimental brain research, vol. 168, no. 3, pp. 450-454, 

2006. 

[11] S. M. Waller and J. Whitall, "Bilateral arm training: why and who benefits?," 

NeuroRehabilitation, vol. 23, no. 1, pp. 29-41, 2008. 

[12] R. Gopura, D. Bandara, K. Kiguchi, and G. K. Mann, "Developments in hardware 

systems of active upper-limb exoskeleton robots: A review," Robotics and 

Autonomous Systems, vol. 75, pp. 203-220, 2016. 

[13] M. Rahman, M. Rahman, M. Saad, C. Ochoa-Luna, S. Ferrer, and P. Archambault, 

"Control of an upper extremity exoskeleton robot to provide active assistive 

therapy," in Modelling, Identification & Control (ICMIC), 2013 Proceedings of 

International Conference on, 2013, pp. 105-110: IEEE. 

[14] A. M. Khan, D.-w. Yun, M. A. Ali, J. Han, K. Shin, and C. Han, "Adaptive 

impedance control for upper limb assist exoskeleton," in Robotics and Automation 

(ICRA), 2015 IEEE International Conference on, 2015, pp. 4359-4366: IEEE. 

[15] H.-Y. Li, L.-Y. Chien, H.-Y. Hong, S.-H. Pan, C.-L. Chiao, H.-W. Chen, L.-C. Fu, 

and J.-S. Lai, "Active control with force sensor and shoulder circumduction 



doi:10.6342/NTU201802164

 77 

implemented on exoskeleton robot NTUH-II," in Intelligent Robots and Systems 

(IROS), 2016 IEEE/RSJ International Conference on, 2016, pp. 2406-2411: IEEE. 

[16] D. Leonardis, M. Barsotti, C. Loconsole, M. Solazzi, M. Troncossi, C. Mazzotti, 

V. P. Castelli, C. Procopio, G. Lamola, and C. Chisari, "An EMG-controlled 

robotic hand exoskeleton for bilateral rehabilitation," IEEE transactions on 

haptics, vol. 8, no. 2, pp. 140-151, 2015. 

[17] Z. O. Khokhar, Z. G. Xiao, and C. Menon, "Surface EMG pattern recognition for 

real-time control of a wrist exoskeleton," Biomedical engineering online, vol. 9, 

no. 1, p. 41, 2010. 

[18] T. Lenzi, S. M. M. De Rossi, N. Vitiello, and M. C. Carrozza, "Intention-based 

EMG control for powered exoskeletons," IEEE transactions on biomedical 

engineering, vol. 59, no. 8, pp. 2180-2190, 2012. 

[19] J. Vogel, C. Castellini, and P. van der Smagt, "EMG-based teleoperation and 

manipulation with the DLR LWR-III," in Intelligent Robots and Systems (IROS), 

2011 IEEE/RSJ International Conference on, 2011, pp. 672-678: IEEE. 

[20] T. Kawase, T. Sakurada, Y. Koike, and K. Kansaku, "Estimating joint angles from 

biological signals for multi-joint exoskeletons," in Systems, Man and Cybernetics 

(SMC), 2014 IEEE International Conference on, 2014, pp. 1470-1474: IEEE. 

[21] W.-W. Wang and L.-C. Fu, "Mirror therapy with an exoskeleton upper-limb robot 

based on IMU measurement system," in Medical Measurements and Applications 

Proceedings (MeMeA), 2011 IEEE International Workshop on, 2011, pp. 370-375: 

IEEE. 

[22] D. Blana, T. Kyriacou, J. M. Lambrecht, and E. K. Chadwick, "Feasibility of using 

combined EMG and kinematic signals for prosthesis control: a simulation study 

using a virtual reality environment," Journal of Electromyography and 

Kinesiology, vol. 29, pp. 21-27, 2016. 

[23] C. H. Lin, W. M. Lien, W. W. Wang, S. H. Chen, C. H. Lo, S. Y. Lin, L. C. Fu, and 

J. S. Lai, "NTUH-II robot arm with dynamic torque gain adjustment method for 

frozen shoulder rehabilitation," in 2014 IEEE/RSJ International Conference on 

Intelligent Robots and Systems, 2014, pp. 3555-3560. 

[24] C. A. Doorenbosch, A. J. Mourits, D. H. Veeger, J. Harlaar, and F. C. van der 

Helm, "Determination of functional rotation axes during elevation of the shoulder 

complex," Journal of Orthopaedic & Sports Physical Therapy, vol. 31, no. 3, pp. 

133-137, 2001. 

[25] P. W. McClure, L. A. Michener, B. J. Sennett, and A. R. Karduna, "Direct 3-

dimensional measurement of scapular kinematics during dynamic movements in 

vivo," Journal of Shoulder and Elbow Surgery, vol. 10, no. 3, pp. 269-277, 2001. 

[26] M. J. Bey, S. K. Kline, R. Zauel, T. R. Lock, and P. A. Kolowich, "Measuring 

dynamic in-vivo glenohumeral joint kinematics: technique and preliminary 

results," Journal of biomechanics, vol. 41, no. 3, pp. 711-714, 2008. 

[27] I. a. A. Lab. (2012). "Normal ROM,". Available: 

https://assessmentandinterventiongroup8.wordpress.com/rom/normal-rom/. 

[28] W. T. Higgins, "A comparison of complementary and Kalman filtering," IEEE 

Transactions on Aerospace and Electronic Systems, no. 3, pp. 321-325, 1975. 

[29] S. R. Gunn, "Support vector machines for classification and regression," ISIS 

technical report, vol. 14, no. 1, pp. 5-16, 1998. 

[30] N. S. Altman, "An introduction to kernel and nearest-neighbor nonparametric 

regression," The American Statistician, vol. 46, no. 3, pp. 175-185, 1992. 

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep 

https://assessmentandinterventiongroup8.wordpress.com/rom/normal-rom/


doi:10.6342/NTU201802164

 78 

convolutional neural networks," in Advances in neural information processing 

systems, 2012, pp. 1097-1105. 

[32] A. Cleeremans, D. Servan-Schreiber, and J. L. McClelland, "Finite state automata 

and simple recurrent networks," Neural computation, vol. 1, no. 3, pp. 372-381, 

1989. 

[33] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural 

computation, vol. 9, no. 8, pp. 1735-1780, 1997. 

[34] A. Graves, "Generating sequences with recurrent neural networks," arXiv preprint 

arXiv:1308.0850, 2013. 

[35] P. J. Werbos, "Backpropagation through time: what it does and how to do it," 

Proceedings of the IEEE, vol. 78, no. 10, pp. 1550-1560, 1990. 

[36] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, 

"Convolutional LSTM network: A machine learning approach for precipitation 

nowcasting," in Advances in neural information processing systems, 2015, pp. 

802-810. 

[37] L.-K. Liu, L.-Y. Chien, S.-H. Pan, J.-L. Ren, C.-L. Chiao, W.-H. Chen, L.-C. Fu, 

and J.-S. Lai, "Interactive torque controller with electromyography intention 

prediction implemented on exoskeleton robot NTUH-II," in Robotics and 

Biomimetics (ROBIO), 2017 IEEE International Conference on, 2017, pp. 1485-

1490: IEEE. 

[38] R. H. Chowdhury, M. B. Reaz, M. A. B. M. Ali, A. A. Bakar, K. Chellappan, and 

T. G. Chang, "Surface electromyography signal processing and classification 

techniques," Sensors, vol. 13, no. 9, pp. 12431-12466, 2013. 

[39] M. Solomonow, R. Baratta, M. Bernardi, B. Zhou, Y. Lu, M. Zhu, and S. Acierno, 

"Surface and wire EMG crosstalk in neighbouring muscles," Journal of 

Electromyography and Kinesiology, vol. 4, no. 3, pp. 131-142, 1994. 

[40] P. Xia, J. Hu, and Y. Peng, "EMG‐Based Estimation of Limb Movement Using 

Deep Learning With Recurrent Convolutional Neural Networks," Artificial 

organs, vol. 42, no. 5, pp. E67-E77, 2018. 

[41] I. Kuzborskij, A. Gijsberts, and B. Caputo, "On the challenge of classifying 52 

hand movements from surface electromyography," in Engineering in Medicine 

and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, 

2012, pp. 4931-4937: IEEE. 

[42] E. Arisoy and M. Saraçlar, "Multi-stream long short-term memory neural network 

language model," in Sixteenth Annual Conference of the International Speech 

Communication Association, 2015. 

[43] B. Singh, T. K. Marks, M. Jones, O. Tuzel, and M. Shao, "A multi-stream bi-

directional recurrent neural network for fine-grained action detection," in 

Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on, 

2016, pp. 1961-1970: IEEE. 

[44] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas, 

"Dueling network architectures for deep reinforcement learning," arXiv preprint 

arXiv:1511.06581, 2015. 

[45] P. Indyk and R. Motwani, "Approximate nearest neighbors: towards removing the 

curse of dimensionality," in Proceedings of the thirtieth annual ACM symposium 

on Theory of computing, 1998, pp. 604-613: ACM. 

[46] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv 

preprint arXiv:1412.6980, 2014. 

 




