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Neural Correlates for Location-Shared and Feature-Bound

Representations in Visual Working Memory: An MEG Study
Ya-Ping Chen

Abstract

Previous studies have shown that feature-integrated object representations are formed in
visual working memory (WM). While these findings highlighted the importance of spatial
location in feature binding in visual WM, the underlying neural substrates of
location-shared and feature-bound representations in visual WM were not fully investigated.
Here | address this issue in a visual WM task with a modified redundancy-gain paradigm,
using behavioral modeling and magnetoencephalograhy (MEG). In this study, participants
(N = 18) performed a WM task in which they viewed two types of feature (colors and
letters) in a two-object memory display, following a short delay, and a single object probe.
Their task was to indicate whether the probe item contained any feature in the memory
display, regardless of its location. | firstly conducted a race model inequality (RMI) test to
examine the response time (RT) data. The cumulative density function of the RT suggested
feature integration when the probe item contained two features regardless of its location.
Next, | found significant gamma activity in the parietal cortex for feature-bound
representations in both shared- and unshared-location conditions. Finally, the time-series
data confirmed the feature-bound effect in posterior parietal and early visual areas. In
conclusion, the results provide novel evidence in behavioral and neural measures and

suggest that feature-bound representations can be independent to object location.
Keywords: working memory, feature binding, object location, redundancy gain,

gamma-band activity
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Introduction

Humans exhibit remarkable flexibility to adapt to novel circumstances (Duncan, 2001,
2013). This cognitive flexibility in humans relies heavily on our brain to allocate attention
toward the information that is relevant to the immediate goals and to maintain the
information in working memory (WM) over time. Despite the unquestioned progress of
research on attention and WM to date (Awh, Vogel, & Oh, 2006; Chun & Johnson, 2011;
Gazzaley & Nobre, 2012; Jonides et al., 2008; Myers, Stokes, & Nobre, 2017), the
underlying mechanisms for the comparisons of perceptual inputs with the contents of WM
remain largely uninvestigated. In this study, | test whether the to-be-remembered
feature-bound and feature-unbound representations can be influenced by their spatial
locations during the WM-perceptual comparisons using behavioral modeling and

magnetoencephalography (MEG).

WM is the cognitive construct to bridge the gap between perception and higher-level
mental processes such as long-term memory (LTM), thinking, reasoning, and language
(Baddeley, 1986, 1992; Cowan, 1999). However, the capacity of visual WM is limited
(Cowan, 2001; Luck & Vogel, 1997) — only three or four units of information can be
maintained at a given instance. Extensive evidence has revealed that the WM capacity limit
can be determined by the number of individual items (Edin et al., 2009; Zhang & Luck,
2008) and varied across individuals (Luck & Vogel, 2013). These studies showed that WM
Is constrained to represent a set of discrete units or objects. The integrated objects, instead
of distinct features, are retained to form the WM contents. For example, evidence from

electrophysiological recordings in humans revealed that the maintenance-related
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event-related potential (ERP), known as “contralateral delay activity” (CDA) or “sustained
posterior contralateral negativity” (SPCN) shows a sustained activity throughout the
delayed period and scales with the number of maintained items in WM (Fukuda & Vogel,
2009). The amplitude of CDA reached a limit when the maintained items were
approximately four, suggesting no increase from four to six or eight items (Vogel &
Machizawa, 2004; Vogel, McCollough, & Machizawa, 2005). Moreover, the CDA
amplitude can only be accounted for integrated objects regardless of the number of features
or visual complexity (Luria & Vogel, 2011). These findings suggest that visual WM can

maintain up to three or four bound objects instead of separate features.

Accumulating behavioral and neural studies have also focused on the topic of feature
binding or feature integration in visual WM (Allen, Baddeley, & Hitch, 2006; Fitousi, 2018;
Klimesch, Freunberger, & Sauseng, 2010; Sala & Courtney, 2007; Schneegans & Bays,
2017; Shafritz, Gore, & Marois, 2002; Treisman & Zhang, 2006; Wheeler & Treisman,
2002). In particular, these studies highlighted the importance in the association of the
objects with their spatial locations (Hollingworth & Rasmussen, 2010; Treisman & Zhang,
2006; Van Dam & Hommel, 2010; Wang, Cao, Theeuwes, & Olivers, 2016). These
short-lived and feature-bound representations, i.e. object files (Kahneman, Treisman, &
Gibbs, 1992), contained the combination of different features and their perceptual
continuity as an object. According to the object file account, the spatial location may serve
as the nexus to bind features into an object. For example, the WM performance in a change
detection task can be impaired when task-irrelevant object location was changed in a test
array, relative to a memory array (Hollingworth & Rasmussen, 2010; Kondo & Saiki, 2012;

Saiki & Miyatsuji, 2007; Yang, Fan, Wang, Fogelson, & Li, 2017). These results suggest

2
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that location may influence object representations and attention can be guided to the

locations of the objects that match the to-be-remembered contents in visual WM.

Although previous studies have shown that the feature-bound object representations can be
mediated by their spatiotemporal coordinates (Hollingworth & Rasmussen, 2010; Treisman
& Zhang, 2006; Van Dam & Hommel, 2010), other studies, however, suggest a privileged
role of bound representations in visual WM relative to their locations (Logie, Brockmole, &
Jaswal, 2011; Saiki, 2016). For example, Logie et al. (2011) examined the extent to which
location, color and shape may contribute to feature binding in visual WM at varying
retention intervals. Their results were contrary to the predictions from the object file
account. They showed that the feature-bound representation in visual WM was not affected
by task-irrelevant changes of location as well as shape and color. Moreover, similar
findings were reported by a recent study (Saiki, 2016). In his study, the amount of feature
(two features, one feature, and no feature) and location sharing between memory and probe
items were both manipulated during the WM and perceptual comparisons. His results
demonstrated that the advantage of feature binding occurs only in the feature-bound
condition compared to one-feature condition regardless of location sharing. Together, these
studies suggest that feature binding in WM may not be necessarily dependent upon

location.

The goal of this study was to investigate the cognitive and neural mechanisms of the role of
spatial location on feature-bound representations during the comparisons of WM and
perception. | test whether the to-be-remembered feature-bound and feature-unbound

representations can be influenced by their locations in a WM task with a modified
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redundancy-gain paradigm. In the task, participants viewed a memory array with two
colored letters, following a short delay, and a probe array with one probe item (colored
letter) and one non-target percentage sign (%). The probe item contained two features (e.g.,
letter and color), one feature (e.g., letter or color), or no target feature. Participants were
instructed to remember all object features regardless of their locations and indicate whether
the probe item contains at least one feature from the memory array. | firstly compared the
response times (RTs) for the one-feature trials to the RTs for the two-feature trials using the
race-model-inequality (RMI) test (Miller, 1982; Saiki, 2016). | evaluated whether the
redundancy gain from the bound features can surpass the limit of independent processing of
two distinct features. If feature binding occurred for the bound representations, faster RTs
should be expected for the feature-bound condition compared to the one-feature condition.
That is, the RMI would be violated because two distinct features are bound as an integrated

or grouped object (Feintuch & Cohen, 2002; Mordkoff & Danek, 2011).

Importantly, | explore the oscillatory correlates of WM-perceptual comparisons for
feature-bound and feature-unbound representations. Previous studies have shown that
gamma-band oscillations (30-80 Hz) are involved in the maintenance of relevant
information in WM (Honkanen, Rouhinen, Wang, Palva, & Palva, 2015; Roux & Uhlhaas,
2014; Roux, Wibral, Mohr, Singer, & Uhlhaas, 2012) and could be critical marker of local,
cortical interactions involving neural excitation and inhibition (Fries, 2015; Fries, Reynolds,
Rorie, & Desimone, 2001; Ray & Maunsell, 2015). Recent studies also showed that gamma
activity in the parietal cortex was higher for the operation of feature binding than the single

feature in WM (Morgan et al., 2011). Using anti-phase gamma stimulation over the left
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temporal and parietal cortex, an enhanced effect was found for color-shape bound trials

(Tseng, Chang, Chang, Liang, & Juan, 2016).

Here | tested whether the target-related gamma oscillations (Landau, Schreyer, van Pelt, &
Fries, 2015; Poch, Campo, & Barnes, 2014) could be modulation by location sharing during
the comparisons. | also explored the neural originals of the gamma oscillations for both
feature-bound and feature-unbound representations respectively. If feature binding cannot
be influenced by their spatial locations, | predicted significant gamma activity for

comparing bound representations with their WM contents irrespective of spatial locations.

Finally, the event-related time-series data (event-related field, ERF) was also analyzed. |
sought to test the load-dependent effect of WM (Kuo, Rao, Lepsien, & Nobre, 2009; Nobre,
Griffin, & Rao, 2008). If feature binding occurs when two distinct features belong to a
single object, |1 would predict an increase in ERF for two features which were not bound to
a single object. If object representations were not necessarily bound to their locations, |
would also expect no differences in ERF between the trials with shared locations versus the
trials with unshared locations for the bound representations. | also test for the neural

sources of the load-dependent effect.
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Methods
Participants

Twenty healthy volunteers (mean age = 24 years, range = 20-29 years, 9 females)
participated in this study. All participants were right-handed, according to the Edinburgh
handedness inventory (Oldfield, 1971), with normal color vision and normal or
corrected-to-normal visual acuity. They were provided with both verbal and written
informed consent prior to the study and were financially reimbursed for their time. Data
from two male participants were excluded from analysis due to excessive artifacts in the
MEG data (more than 30% trials) or slow response time (over three standard deviations).
All experimental materials and procedures were reviewed and approved by Research Ethics

Committee of National Taiwan University.

Stimuli

The setting of stimuli size and colors in this study were identical to those in Saiki’s study
(2016). Memory and probe arrays were composed of colored letter stimuli. Four capital
letters (K, M, P, S) and four colors (red, blue, green, yellow) were selected. Each letter was
1.68° visual angle in size and positioned in one of the two visual hemifields at a visual
angle of approximately 4° away from a central fixation point. The combination of letters
and colors was fully counterbalanced so that all the letter-color pairs were presented with
equal frequency. All of the visual stimuli were presented against a homogeneous grey
background. The stimuli were generated and delivered in Matlab (The MathWorks, Natick,

MA), using the Psychophysics Toolbox extensions (Brainard, 1997).
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Task Design
Main WM task. The task procedure is illustrated in Figure 1. Each trial began with a

centrally displayed fixation for 750 ms, which signaled the onset of the trial. Next, a display
consisting two unfilled square boxes (2.1° x 2.1° in size), one in each hemifield at a visual
angle of approximately 4° away from the central fixation point, was present for 750 ms.
After that, a memory array consisting of two colored letters, one inside each box, was
present for 250 ms. Participants were instructed to remember both letters and colors within
the memory array. Following a randomized retention interval (with boxes alone, 1250 -
1750 ms duration), a single probe letter in color was shown in one of the boxes with a
percentage sign (%) in another square for 500 ms. Participants were instructed to decide
whether the feature (letter or color) of the probe item had been present in the memory array,
regardless of the location of the to-be-remembered items, by pressing left or right button
using their left or right index finger. The assignment of left and right buttons for target

present and absent was counterbalanced across participants.

I manipulated the number of features for the probe item. The probe item contained two
features (grouped and separated conditions), one feature (letter-match and color-match
conditions), and no features relative to the features in the memory array. In the two-feature
condition, the probe contained the identical combination of the letter and the color from one
of the memory items (grouped condition) or the color from one item and the letter from the
other (separated condition). In the one-feature condition, the probe contained only a single
feature from one of the memory items (letter-match condition and color-match condition).
In the no-feature condition, the probe did not contain any colors or letters from the memory

items.
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One-Feature

Grouped-Feature Letter-Match Color-Match  Separated-Feature

Shared-Location | | I{ | *|% %|*| P %| - M %|-|K
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N J
Y
Memory Array Probe
0,
. . K|<[P . K%
750 ms 750 ms 250 ms 1250-1750ms 500 ms Until Response
>
Time

Figure 1. Schematic of the main WM task. There were eight types of probes relative to the
stimuli in the memory array. Participants were instructed to remember two two-feature
(letter and color) objects regardless of their locations and to indicate whether any feature in

the probe array was presented in the memory array.
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More importantly, | manipulated location-sharing for the grouped and one-feature
conditions. That is, the features of probe items matched the memory items in the same box
(e.g. in the visual hemifield) for shared-location trials; by contrast, the features of the probe
items matched the memory items in the different box (e.g. in the opposite visual hemifield)
for unshared-location trials. In sum, there were eight types of probes: grouped-shared,
grouped-unshared, letter-shared, letter-unshared, color-shared, color-unshared, separated,
and no feature. The two-feature conditions contained grouped-shared, grouped-unshared,
and separated trials. The one-feature conditions contained letter-shared, letter-unshared,
color-shared, and color-unshared trials. The shared condition contained grouped-shared,
letter-shared, and color-shared trials. The unshared condition contained grouped-unshared,
letter-unshared, and color-unshared trials. In all conditions, half of the trials of the probe

items were shown in the right hemifield and the other half were shown in the left hemifield.

Visual localizer task. To identify the region of interest (ROI) in early visual areas that
respond selectively to the locations of the visual stimuli, participants also performed a
visual localizer task (Figure 2). Participants were instructed to view the stimuli passively
without making any responses. Gabor patches, with one of four colors (the same colors
used in the main task), were presented in the same size and at the same location as in the
main task and were tagged at different frequencies (1.38 and 1.76 Hz) (see Baldauf &
Desimone, 2014 for an example). There were four conditions in the localizer task: 2
(frequency: 1.38 and 1.76 Hz) x 2 (hemifield: left and right). In each condition, there were
eight blocks with the Gabor patch presented 20 times. The order of the blocks was
counterbalanced across participants. The stimuli were presented with Presentation software

(Neurobehavioral Systems, Albany, NY, USA).
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Left Side Right Side

1.38 Hz

1.76 Hz

13.99sec

13.99sec

Figure 2. Examples of the visual localizer task. Gabor patches were showed in one of the
four colors used in the WM task and in the same size as the objects in the WM task. There
were four conditions: two frequencies (1.38 Hz and 1.76 Hz) and two hemifields (right and

left). Participants were instructed to view passively through all four conditions.
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Experimental Procedure

Participants were comfortably seated in a magnetically and electrically shielded room, 120
cm from the screen on which the stimuli were projected. All participants were given written
and verbal instructions for the tasks. They were also instructed to minimize their head
movements, eye movements and blinks during the tasks and maintain fixation on a small
marker at the center of the screen throughout the experiment and to respond as accurately
and quickly as possible. Prior to the actual experiment, each participant completed one
practice block of 48 trials. For the main WM task, participants completed five runs
(including 3 blocks for each run and 48 trials for each block, 720 trials in total), with the
rest periods being self-paced between blocks in each run. Of all the 720 trials, there were
240 two-feature trials (120 grouped trials and 120 separated trials), 240 one-feature trials
(120 letter-match trials and 120 color-match trials), and 240 no-feature trials. Half of
grouped and half of one-feature trials were location shared. All of the trial types were
intermixed in a randomised and unpredictable order. Participants completed the visual
localizer task right after the main WM task. MEG recording time for each participant was
approximately 100 minutes. A video camera installed inside the MEG chamber allowed

monitoring of the participants’ behavior and compliance throughout the experiment.

Behavioral Analysis

Two types of analysis were performed on behavioral data. First, | tested the difference in
three two-feature conditions (grouped-shared, grouped-unshared, separated) with one-way
repeated-measures analysis of variance (ANOVA) and the modulatory effect of shared

location for the grouped-match, color-matched, and letter-match conditions in a 3 (feature
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type: grouped, letter-feature, color-feature) x 2 (location type: shared, unshared)
repeated-measures ANOVA. The behavioural measures, including accuracy and reaction
times (RTs), were each analysed and only correct responses were included in the RT

analyses.

Second, I conducted the RMI test (Miller, 1982; Mordkoff & Yantis, 1991) on RT data to
evaluate whether the redundancy gain could be accounted by the separate-activation models

(Raab, 1962) using the following inequality (see also Saiki, 2016):

p(RT<t|F1andF2) < p(RT<t|F1)+p(RT<t|F2)

where t equals time, and F; and F; stand for the two types of features respectively.

In this analysis, trials with incorrect responses or the trials with long RT (> 3000 ms) or
short RT (< 150 ms) were excluded. The inequality states that the cumulative probability of
any given RTs for the two-feature trials (grouped, separated) never exceeds the sum of the
cumulative probability of the RTs for the letter-match and color-match trials alone.
According to the separate-activation models, the upper boundary of RTs in the two-feature
conditions can be defined by the RMI. Thus, violation of the RMI indicates feature
coactivation (e.g. faster RTs in the two-feature condition than the upper boundary of RTs).
The feature coactivation effect can be used as an index of feature binding (Saiki, 2016). The
violation of the RMI was evaluated in the following steps (Mordkoff & Danek, 2011; Saiki,
2016): (1) for each subject, the values of RT corresponding to the 5th through 95th
percentile (at 5% intervals) were computed for the two-feature trials and the sum of the

percentiles of one-feature trials (letter-match and color-match); (2) The overall 19-point
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cumulative density functions (CDF) were formed by simply averaging all the RTs at each
percentile across subjects; (3) At each percentile, a one-tailed paired t test was performed to
examine the difference in mean RT values between the two-feature condition and the sum
of the one-feature conditions with the null hypothesis that the difference is zero or a

negative value.

MEG Acquisition and Recording Parameters

MEG data were recorded using a 306-channel Triux system (Elekta Neuromag), with 102
magnetometers and 204 orthogonal planar gradiometers (pairs of sensors measuring the
longitudinal and latitudinal derivatives of the magnetic field) at the Imaging Center for
Integrated Body, Mind, and Culture Research, National Taiwan University, Taipei, Taiwan.
The signals had a sampling rate at 1000 Hz, and were band-pass filtered between 0.03-330
Hz. Head position was monitored by four head position indicator (HPI) coils placed on the
scalp, indicating the position of the head in the MEG helmet during recording. A digitizer
(Polhemus, USA) was also be applied to digitize three fiducial landmarks (the nasion, left
and right pre-auricular points), four HPI coils, and a number of additional head points for
further alignment with individual T21-weighted structural MRI images. Vertical eye
movements were recorded by MEG-compatible electrodes placed on the supraorbital ridges
of the left eye [vertical electro-oculogram (VEOG)], and the horizontal eye movements by
electrodes placed on the outer canthi of the right and left eyes [horizontal
electro-oculogram (HEOG)]. Both VEOG and HEOG were recorded and subsequently used

to remove trials contaminated by blinks or eye movements.
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Structural MRI Acquisition and Scanning Parameters for MEG Analysis

High resolution anatomical images (1 x 1 x 1 mm) were acquired from all participants by a
T1-weighted MPRAGE sequence (FOV = 192 x 192 mm) on a Siemens 3T MAGNETON
Prisma MRI scanner with a 20-channel coil at the Image Center for Integrated Body, Mind,

and Culture Research, National Taiwan University, Taipei, Taiwan.

MEG Data Analysis

External noise was firstly removed from the MEG data using the signal space separation
(SSS) method implemented in Elekta’s MaxFilter software. All MEG data processing and
analysis were then carried out using SPM8 software (Wellcome Trust Centre for
Neuroimaging, University College London, UK), FieldTrip toolbox (Oostenveld, Fries,
Maris, & Schoffelen, 2011) and the in-house scripts in Matlab (The MathWorks). The data
from the main WM task and the visual localizer task were processed separately. Four types
of analysis were performed on the MEG data. First, | conducted a time-frequency analysis
at the sensor level to explore the oscillatory correlates of feature integration. Second, a
MEG source-level analysis was used to identify the neural origins in the gamma-band range
of feature integration. Third, | examined the event-related field (ERF) data at the sensor
level. Finally, | conducted a region-of-interest (ROI) analysis based on the visual localizers

and tested for the neural origins of the ERF during feature binding.

Preprocessing. The continuous MEG signals were down-sampled to 250 Hz and low-pass
filtered below 120 Hz. For the WM task, the continuous data were segmented into epochs

from -1,000 ms to 1,500 ms relative to the onset of the probe and baseline-corrected with
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the 200 ms pre-probe period. Only correct trials were retained for subsequent analyses. All
the epochs were visually inspected for artifact rejection. Through visually detecting VEOG
and HEOG for eye-movement artifacts (blinks or saccades), epochs with contamination and
excess noise were excluded from subsequent analyses. Trials with unusually high variance

were also removed using FieldTrip visual artifact rejection tool.

Sensor-level time-frequency analysis. The artifact-free sensor-space epoched data were
entered into time-frequency decomposition, using Morlet wavelets with a length of 7 cycles.
The resulting power spectra of the gamma frequency were averaged according to feature
types (grouped-shared, grouped-unshared, separated, one-feature-shared,
one-feature-unshared) and probe locations within the array (left and right). The
time-frequency data containing perceptual targets located on the right and left side in each
condition were then combined by an averaging procedure that preserved the location of
MEG sensors relative to the target side (contralateral and ipsilateral). That is, for all the
feature types | tested for the presence of spatially target-specific modulations at gamma
frequency bands (i.e. lateralized gamma power), at the moment when participants compared
the visual display of the probe items with their WM contents. For this sensor-space
time-frequency analysis, | only used the planar gradiometers. | combined the pairs of planar
gradiometers using the Cartesian sum for each participant, producing a 102-channel
combined planar gradiometer data set. Power differences for the lateralized gamma activity
were tested for every time point between conditions using dependent sample t tests. | then
corrected for multiple comparisons using a cluster-based non-parametric permutation
approach (Maris & Oostenveld, 2007). We calculated the size of any significant clusters

with consecutive t tests that were significant (p < .05, two-tails) either across neighbouring
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sensors, time-points, or both. I calculated Monte Carlo p values on 1,000 random partitions
in which left and right probe location were shuffled, thereby deriving a null distribution of
the clustered test statistics that would be achieved by chance. Type | errors were thus
reduced by controlling multiple comparisons across both sensor and time. Finally, the
values (p < .05, two-tails) in this null distribution that was greater than the clustered

statistics from the original data was treated as the corrected significant value.

Sensor-level ERF analysis. The artifact-free sensor-space ERF epochs were
baseline-corrected with the 100 ms pre-stimulus period. Epochs were averaged per
condition for each participant. This procedure resulted in five conditions: grouped-shared,
grouped-unshared, one-feature-shared, one-feature-unshared, and separated condition. The
pairs of planar gradiometers were then combined using the root-mean-square values at each
sensor for each participant, producing a 102-channel combined planar gradiometer data set.
To test the feature-bound effect in the posterior region, the mean ERF would be extracted
from the chosen sensors and two time windows. A 2 (time window: 250-400 ms, 400-550
ms) x 3 (two-feature conditions: grouped-shared, grouped-unshared, and separated)
repeated-measures ANOVA was conducted to explore the differential effect among

two-feature conditions.

Source analysis for ERF and time-frequency data. | conducted a beamformer analysis to
characterize the neural sources of ERF and time-frequency power data from both the
magnetometers and planar gradiometers. I firstly co-registered each individual’s MEG data
based on their T1-weighted structural image using digitized scalp locations and fiducials. A

semi-realistic single shell head model (Nolte, 2003) based on each individual’s brain was
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constructed. For testing the neural origins of ERF data, a linear constrained minimum
variance (LCMV) beamformer algorithm was used to identify the sources of the time-series
effects at every vertex of a 7-mm grid covering the whole brain (Van Veen, VVan Drongelen,
Yuchtman, & Suzuki, 1997). Beamforming constructs a spatial filter, which is applied to
the sensor data to reconstruct the signal at each grid point, with the aim of achieving unit
bandpass response at the grid point while minimizing the variance passed from all other
locations. The data at the source location of interest are given by multiplying the
beamformer weights vector by the original sensor data. The process can be repeated across
all grid locations to achieve a whole brain source reconstruction for each time point. The
source analyses were performed for each condition. The source estimates of the individual
subjects’ functional data were interpolated to their own structure image and then spatially
normalized to the MNI brain. Finally, the statistical differences in source activity between
conditions were computed using the non-parametric permutation approach (Maris &
Oostenveld, 2007). The source analysis of the oscillatory activity was estimated by the
Dynamic Imaging of Coherent Sources (DICS) beamformer algorithm (Gross et al., 2001).
The time-frequency parameters were identical to the sensory-space analysis (Morlet
wavelet with a length of 7 cycles). The source-analysis parameters were identical to the

ERF source analysis.

Power and source analyses for the visual localizer task. Finally, I conducted power and
source analyses for the visual localizer task. The MEG preprocessing were identical to
those for the main task. | only describe the exceptions below. The visual localizer data were
segmented into -1,000 ms to 10,664 ms for the 1.76 Hz condition and 13,996 ms for the

1.38 Hz condition. | first conducted the frequency analysis to confirm the effect of
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frequency tagging (Figure 3). The pipeline of the analysis of the visual localizer shows in
Figure 4. The DICS technique was then applied for the source analysis. The resulting
spatial filters were applied to the Fourier-transformed power based on the frequency of
interest (1.76 Hz and 1.38 Hz, respectively). To reduce biases toward the center or the head,
I computed the neural activity index (NAI) by dividing the estimated power at each grid
point by an estimate of the noise (Mitra & Pesaran, 1999). This noise bias was estimated
for each participant’s data. After that, the results of the NAI were coregistered on the
subject’s structural MRI and spatially normalized to the MNI brain. I averaged the NAI
results across participants to generate averaged NAI maps. To generate contralateral
localizer maps, two contrasts were computed: left target with 1.38 Hz versus right target
with 1.76 Hz and right target with 1.38 Hz versus left target with 1.76 Hz. Finally, |
combined the contralateral localizer maps with visual maps based on the probabilistic
estimates of visual areas from a previous study (Minini, Parker, & Bridge, 2010). This

analysis resulted in two visual ROIls (left and right hemispheres).
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Figure 3. Illustration of spectral power in the visual localizer task in left 1.38 Hz and right
1.76 Hz conditions respectively. The results of frequency analysis confirmed the effect of
the manipulation of the frequencies (1.38 Hz and 1.76 Hz) and the hemifields (left and

right).
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Figure 4. Schematic of the analysis procedure for regions of interest in visual areas: the
DICS beamformer was applied to the Fourier-transformed power based on the frequency of
interest. To generate contralateal localizer maps for each hemisphere, two contrasts were
computed: left target with 1.38 Hz versus right target with 1.76 Hz and right target with
1.38 Hz versus left target with 1.76 Hz. The resulting localizer maps were combined with

visual maps from Minini et al. (2010)’s study.
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Results
Behavioral Results

Table 1 shows the mean accuracy and mean RTs for the eight conditions. The accuracy data
indicated no difference between grouped-shared, grouped-unshared, and separated trials (ps
> .1). A 2 (location: shared, unshared) x 3 (feature type: grouped-feature, letter-match,
color-match) repeated-measures ANOVA showed a significant main effect of feature type,
F (2, 34) =37.58, p <.001, npz = .69, and a significant interaction between feature type and
location, F (2, 34) = 5.02, p = .01, npz = .23. Post-hoc tests revealed that accuracy was
significantly higher on grouped-feature trials relative to letter-match trials and color-match
trials (ps < .001), and letter-match trials showed higher accuracy in location-shared versus
location unshared (p = .02). For the RT data, | conducted a 2 (location) x 3 (feature type)
repeated-measures ANOVA. This analysis showed significant main effects of feature type,
F (2, 34) = 49.19, p <.001, #,° = .74, and location, F (1, 17) = 9.09, p = .008, 5,> = .35, and
a significant interaction between feature type and location, F (2, 34) = 9.62, p < .001, npz
= .36. These results indicated faster RT for grouped trials relative to letter-match and

color-match trials and faster RT for location-shared relative to location-unshared trials on

grouped-feature and letter-match trials but not on color-match trials (Figure 5).
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Table 1
Mean Accuracy and Response Time of Correct Response in Each Condition

Two-Feature

Grouped No-Feature

Separated
Shared Unshared

RT(ms) 4945%552 5109%55.1 504.1£559 671.1£109.0

Accuracy (%) 9851 1.7 08.1+34 98.5f26 9020t74

One-Feature
Letter-Match Color-Match

Shared Unshared Shared Unshared

RT (ms) 5505 £62.7 576.8 £64.0 590.6 £75.7 5855 789

Accuracy (%) 95.213.6 0261438 83.9+10.6 856%93
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Figure 5. Mean response times across three types of trial with location-shared and
location-unshared were compared. The results showed that the feature-bound
representations were modulated by features’ location on letter-match trials and grouped

trials. Error bars indicate standard error of the mean (** p < .01).
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RMI Results

The CDFs of the RT data are displayed in Figure 6. According to the previous study (Saiki,
2016), a cross between the curve of the CDF from the summation of two one-feature trials
and the curve from the two-feature trials indicated feature coactivation. I thus firstly tested
for feature coactivation effects on grouped and separated trials, respectively. On grouped

trials, the violation of RMI was observed at the 5th to 25th percentiles [5th: t (17) = 3.11, p

003; 10th: t (17) = 2.46, p = .012; 15th: t (17) = 2.99, p = .004; 20th: t (17) = 2.40, p

.015; 25th: t (17) = 2.28, p = .018 Figure 6a]. A significant violation was also found on
separated trials at the 5th and 10th percentiles [5th: t (17) = 2.30, p = .017; 10th: t (17) =
1.81, p = .044, Figure 6b]. Importantly, I examine the modulatory effect of location on
feature-bound representations. The RMI tests (summed feature trials versus grouped trials)
were conducted for shared location and unshared location respectively. In the
location-shared conditions, the RMI violation was observed at the 5th to 20th percentiles
[5th: t (17) = 3.76, p < .001; 10th: t (17) = 3.86, p < .001; 15th: t (17) = 2.92, p = .005; 20th:
t (17) = 247, p = .012, Figure 6¢]. The RMI violation was also found in the
location-unshared conditions at the 10th and 15th percentiles [10th: t (17) = 1.90, p = .037,;
15th: t (17) = 2.09, p = .026, Figure 6d]. Overall, the RMI violation can be observed

regardless of location sharing.
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Figure 6. Cumulative density function (CDF) of RTs for the RMI test. Each graph shows
the cumulative probability for RT for the two-feature condition and for the sum of the
CDFs on letter- and color-match trials in the one-feature condition. (a) The CDFs of RTs in
the grouped condition and one-feature condition. (b) The CDFs of RTs in the separated
condition and one-feature condition. (c) The CDFs of RTs in the grouped-shared condition
and one-feature-shared condition. (d) The CDFs of RTs in the grouped-unshared condition
and one-feature-unshared condition. Asterisks indicate a significant difference between

mean percentile RT (*p < .05, **p < .01, determined by one-tailed paired t tests).
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MEG Results

Time-frequency results and neural origins of gamma oscillations. | firstly tested the
modulation of location on gamma power lateralization (contralateral relative to ipsilateral
site to the probe hemifield) at the sensor level when the participants compared the incoming
probe item with the WM contents. Four contrasts were conducted: (1)
grouped-shared-feature vs. one-shared-feature, (2) grouped-unshared-featured vs.
one-unshared-feature, (3) grouped-shared-feature vs. separated-feature, and (4)
grouped-unshared-feature vs. separated-feature. | observed significant effects of sensors in
all contrasts. Significant effects of sensors were observed over the posterior parietal sensors
from 580 to 612 ms for grouped-shared-feature vs. one-shared-feature trials (corrected p
= .013), over the frontal and parietal sensors from 500 to 530 ms for
grouped-unshared-feature vs. one-unshared-feature trials (corrected p = .033), over the
frontal and parietal sensors from 500 to 600 ms for grouped-shared-feature vs.
separated-feature trials (corrected p = .03), and over the frontal and parietal sensors from
520 to 550 ms for grouped-unshared-feature vs. separated-feature trials (corrected p = .024).
The beamformer source analysis showed stronger neural responses for in gamma rhyme in
the right parietal cortex by contrasting left hemifield with right hemifield for both shared

location and unshared location trials. These results are illustrated in Figure 7.
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Figure 7. Sensor space and cortical source of gamma oscillation results. (a) Scalp
topography of the difference in gamma lateralization between grouped-shared and
one-shared trials. The gamma lateralization over frontal and parietal areas was observed
when compared grouped-feature trials to one-feature trials in shared and unshared
conditions respectively. (b) The gamma source results on grouped-shared,
grouped-unshared, one-shared, and one-unshared trials respectively. The DICS beamformer

analysis showed stronger gamma only in grouped-shared and grouped-unshared conditions.
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Event-related fields and ROI source analyses. Finally, | tested the neural correlates of
feature coactivation effect (Saiki, 2016) in the posterior brain regions and the difference in
neural activity among three two-feature conditions (i.e. grouped-shared, grouped-unshared,
and separated trials) during the WM-perceptual comparison. These results are illustrated in
Figure 8. The mean ERFs were extracted from the posterior sensors (see Figure 8 for an
example). A 2 (time window: 250-400 ms, 400-550 ms) x 3 (two-feature condition)
repeated-measures ANOVA was then conducted. There was a significant main effect of
two-feature condition, F (2,34) = 11.61, p < .001, and a significant interaction between time
window and condition, F (2,34) = 3.19, p = .05. This interaction arose from greater activity
on separated trials relative to both grouped-shared (p = .002) and grouped-unshared (p
<.001) during the late time window (400-550 ms). However, no difference in activity was
observed during the early time window. The source analysis using the LCMV beamformer
showed greater neural responses in the right parietal cortex for the separated trials relative
to grouped-shared and grouped-unshared trials respectively. The ROI-based analyses in the

right parietal and visual ROIs confirmed these results (Figure 9).
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Figure 8. Sensor-space ERF results on grouped-shared, grouped-unshared, and separated
trials. The gray bar and black bar indicated the early and late time window in the analysis.
(a) Topography of the difference between separated and grouped trials from 428 to 460 ms.
(b) The power value of each condition was extracted from the sensor in the blue square.
The activity from 400 to 550 ms in separated condition was significantly higher than those

in grouped-shared and grouped-unshared conditions.
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Figure 9. Source and ROI-based results of ERF. The black arrows indicate the differential
effect between separated and grouped conditions. (a) The source-level ERFs in left and
right posterior parietal cortex show that there is greater activity on separated trials relative
to grouped-shared and grouped-unshared trials. (b) The ERF in the bilateral visual ROI
from the visual localizer task showed that there are also greater activities on separated trials

relative to grouped-shared and grouped-unshared trials.
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Discussion

The purpose of this study was to investigate whether the feature-bound representations can
be influenced by the location during the WM-perceptual comparisons. The behavioral
results showed that participants responded faster on grouped trials versus one-feature trials
for both shared-location and unshared-location. The RMI test also indicated that feature
binding could occur independently of the location factor. Significant gamma activity was
found in the parietal cortex for feature-bound representations regardless of the locations.
Finally, the ERF data confirmed the effects of feature-bound in the posterior parietal and
visual areas in both shared-location and unshared-location conditions. Together, these
results provide further evidence in behavioural and neural correlates of WM-perceptual
comparisons and suggest that feature-bound representations are not necessarily modulated

by their locations.

In line with the previous findings, the behavioral data suggest that the integrated objects,
instead of individual features, form the WM contents (Edin et al., 2009; Luck & Vogel,
1997; Luck & Vogel, 2013; Zhang & Luck, 2008). These studies also suggest that the
feature binding can be implicit and automatic in WM. My results also replicate the
behavioral findings from the recent study by Saiki (2016). | showed that feature binding
can be observed in the two-feature condition when color and letter were grouped into a
single object. Moreover, the violations of the RMI tests were found on both shared- and
unshared-location trials. However, these results were inconsistent with the predictions by
the object file theory (Kahneman et al., 1992; Noles, Scholl, & Mitroff, 2005). The object

file account proposed that feature integration may occur when the probe was present at the
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same location as the memory items. The RT RMI tests in the current study did not fully

support the object file account (see Saiki, 2016 for a similar finding).

| speculate that the inconsistent results between my study and the object file account may
arise from the feature types. In the current study, RMI tests showed that feature
coactivation (letter and color) occurred in all two-feature conditions — not only grouped
trials but also separated trials. However, Saiki (2016) reported the feature coactivation
(shape and color) effect on grouped trials only. The effects of the one-feature and
two-feature object were also different in location-sharing. For example, the location benefit
in RT was observed on shape-match trials (Saiki, 2016) and on letter-match trials (the
current study), not on color-match trials in both studies. Since previous studies have shown
that WM performance may vary across stimulus types (Alvarez & Cavanagh, 2004,
Treisman & Zhang, 2006), | suggest that feature types could influence the degree of
features binding during WM-perceptual comparisons. Future work should systematically

manipulate the feature types and test how they affect the features binding in WM.

The discrepancy from the current findings and Saiki’s (2016) work may also result from the
existence of non-target items. In the current study, | showed one probe item and a filler (i.e.
a percentage sign) at the same time in boxes in each hemifield. This manipulation allows
controlling the physical inputs from both visual hemifields across all feature types.
However, the filler in the opposite hemifield may be likely to affect the allocation of
attention on the target probe. Moreover, color and letter may reflect different levels of
familiarity or superiority in real life (Mcclelland & Rumelhart, 1981). For example, if

participants adopt a verbal strategy to perform the task, letter may cause stronger
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interference with color in our case but shape may cause less interference with color. In sum,

these factors may result in inconsistencies between the current results and others.

Importantly, 1 showed stronger lateralized gamma power with increased activity
contralateral to the attended location and decreased activity contralateral to the unattended
location for grouped object relative to single feature and for both shared and unshared
locations. Similar modulations on lateralized gamma power were also found when |
compared grouped-shared trials relative to separated trials and grouped-unshared trials
relative to separated trials respectively. The results suggest that the gamma oscillations play

an important role in feature integration in WM.

Studies in humans and monkeys have showed that increased activity in the gamma-band is
related to attentional and mnemonic processes (Bauer, Oostenveld, Peeters, & Fries, 2006;
Brovelli, Lachaux, Kahane, & Boussaoud, 2005; Buzsaki & Wang, 2012; Jensen, Kaiser, &
Lachaux, 2007; Tallon-Baudry, Bertrand, Peronnet, & Pernier, 1998). For example, Fries,
Reynolds, Rorie, and Desimone (2001) demonstrated that selective attention can influence
the patterns of oscillatory synchrony between neural populations across different cortical
areas with the enhancement of high-frequency oscillations (i.e. gamma) in occipital cortex.
They showed that when attended items were represented by neurons that were able to
communicate on such a fast temporal scale during gamma-frequency range, their impact
was enhanced, leading to a more efficient selection of behaviorally relevant stimulus (see
also Womelsdorf, Fries, Mitra, & Desimone, 2006). Moreover, other studies also found

strong gamma activity during encoding and maintenance of WM (Mainy et al., 2007;
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Sauseng & Klimesch, 2008; Tallon-Baudry et al., 1998). My results in lateralized gamma

power are consistent with these findings.

The source results also suggest that gamma oscillation in parietal cortex may provide a
putative mechanism for top-down control on feature binding. For example, an MEG study
by Morgan et al. (2011) demonstrated greater gamma activity in the parietal cortex when
colors and angles were integrated relative to single features during WM maintenance. A
recent study using brain stimulation technique (e.g. transcranial alternative current
stimulation) applied gamma frequency, theta frequency, and sham stimulations over the
temporal and parietal cortex when participants were being performed a WM task with the
manipulation of feature-only and color-shape binding (Tseng et al., 2016). They
demonstrated that the anti-phase gamma stimulation had an influence on binding trials.
Together, these results suggest that gamma oscillation is critical in the comparison process,
particular in matching top-down (WM contents) and bottom-up (perceptual) information

(Herrmann, Munk, & Engel, 2004).

While | did not observe any modulatory effect in early visual areas in the gamma band
(Magazzini & Singh, 2018; Wilson, McDermott, Mills, Coolidge, & Heinrichs-Graham,
2018), the ERF results assured the feature binding effects in posterior parietal and early
visual areas, indicating stronger activity for separated features relative to grouped-shared
features and grouped-unshared features. To further examine the time course of ERF data, |
divided the time-series into early and late time windows. This ERF analysis showed that the
differential effects among two grouped feature conditions and separated feature conditions

only occur in the late time window (400 ms — 550 ms). These results also support a recently
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described load-dependent effect (e.g. N3rs) related to searching within WM (Kuo, Rao,
Lepsien, & Nobre, 2009; Nobre, Griffin, & Rao, 2008). In their studies, the amplitude of
the N3rs increase monotonically with the increasing load of retrospective search from
within WM representations. The amplitude of the N3rs carried according to the degrees of
feature coactivation, being smaller for grouped-shared features and grouped-unshared
features compared to separated features. The N3rs therefore reflects time-consuming
evaluation of the degrees of feature coactivation for putative probe items. Together with
behavioral and gamma oscillation data, the ERF results also support the feature-bound

representation independent to location congruency.

In conclusion, the current results from the behavioral and MEG data suggest that the
location may have no or little influence on feature-bound representations during the
comparisons of WM representation with perceptual information. These findings are
compatible with previous findings that parietal cortex supports integration of visual features
(Shadlen & Movshon, 1999; Shafritz et al., 2002). This study provides novel evidence in
behavioral modeling and the oscillatory mechanisms which underlie the comparison of
feature-bound and feature-unbound representations during the comparisons between WM

and perception and the comparison process is associated with the gamma oscillation.
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