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摘要 

過去研究指出具有多重特徵的物體會以整合的形式表徵於工作記憶中。雖然這些

研究結果顯示空間位置在視覺工作記憶中的特徵整合扮演重要的角色，然而物體的空

間位置與工作記憶中特徵整合表徵的神經機制仍有待進一步的研究。在本研究中，我

藉由視覺工作記憶作業典範，並結合修正的「冗餘增益」派典、行為模型和腦磁圖，

探討空間位置對物體於工作記憶表徵特徵整合調節的神經機制。共有十八位健康成人

參與腦磁圖實驗，在進行實驗的記憶過程中，實驗參與者首先會同時看到並要記住兩

個物體，這兩個物體皆具有兩個特徵－字母和顏色，經過短暫的記憶維持階段後，實

驗參與者必須在測驗階段中指出此時出現的物體是否具備記憶物體的任一特徵(字母

或顏色)，此一判斷不須考慮物體的空間位置。我首先使用「賽跑模式不等式」檢驗

受試者的反應時間，反應時間的累積密度函數顯示，當測驗階段呈現的物體同時具有

記憶物體的兩個特徵時，會出現特徵共活化的現象並支持特徵連結的假設，而此現象

不受到特徵空間位置的影響。無論特徵位置改變與否，當物體以特徵整合的形式呈現

時，我在頂葉皆可以觀察到較強烈的 Gamma 波。最後，我以時間序列的結果支持特

徵整合發生在後頂葉與視覺皮質。這些研究結果支持了物體的特徵整合不會受到空間

位置改變的影響。 

 

關鍵詞：工作記憶、特徵連結、物體位置、冗餘增益、Gamma 波 
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Neural Correlates for Location-Shared and Feature-Bound 

Representations in Visual Working Memory: An MEG Study 

Ya-Ping Chen 

 

Abstract 

 

Previous studies have shown that feature-integrated object representations are formed in 

visual working memory (WM). While these findings highlighted the importance of spatial 

location in feature binding in visual WM, the underlying neural substrates of 

location-shared and feature-bound representations in visual WM were not fully investigated. 

Here I address this issue in a visual WM task with a modified redundancy-gain paradigm, 

using behavioral modeling and magnetoencephalograhy (MEG). In this study, participants 

(N = 18) performed a WM task in which they viewed two types of feature (colors and 

letters) in a two-object memory display, following a short delay, and a single object probe. 

Their task was to indicate whether the probe item contained any feature in the memory 

display, regardless of its location. I firstly conducted a race model inequality (RMI) test to 

examine the response time (RT) data. The cumulative density function of the RT suggested 

feature integration when the probe item contained two features regardless of its location. 

Next, I found significant gamma activity in the parietal cortex for feature-bound 

representations in both shared- and unshared-location conditions. Finally, the time-series 

data confirmed the feature-bound effect in posterior parietal and early visual areas. In 

conclusion, the results provide novel evidence in behavioral and neural measures and 

suggest that feature-bound representations can be independent to object location. 

 

Keywords: working memory, feature binding, object location, redundancy gain, 

gamma-band activity  
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Introduction 

Humans exhibit remarkable flexibility to adapt to novel circumstances (Duncan, 2001, 

2013). This cognitive flexibility in humans relies heavily on our brain to allocate attention 

toward the information that is relevant to the immediate goals and to maintain the 

information in working memory (WM) over time. Despite the unquestioned progress of 

research on attention and WM to date (Awh, Vogel, & Oh, 2006; Chun & Johnson, 2011; 

Gazzaley & Nobre, 2012; Jonides et al., 2008; Myers, Stokes, & Nobre, 2017), the 

underlying mechanisms for the comparisons of perceptual inputs with the contents of WM 

remain largely uninvestigated. In this study, I test whether the to-be-remembered 

feature-bound and feature-unbound representations can be influenced by their spatial 

locations during the WM-perceptual comparisons using behavioral modeling and 

magnetoencephalography (MEG). 

 

WM is the cognitive construct to bridge the gap between perception and higher-level 

mental processes such as long-term memory (LTM), thinking, reasoning, and language 

(Baddeley, 1986, 1992; Cowan, 1999). However, the capacity of visual WM is limited 

(Cowan, 2001; Luck & Vogel, 1997) – only three or four units of information can be 

maintained at a given instance. Extensive evidence has revealed that the WM capacity limit 

can be determined by the number of individual items (Edin et al., 2009; Zhang & Luck, 

2008) and varied across individuals (Luck & Vogel, 2013). These studies showed that WM 

is constrained to represent a set of discrete units or objects. The integrated objects, instead 

of distinct features, are retained to form the WM contents. For example, evidence from 

electrophysiological recordings in humans revealed that the maintenance-related 
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event-related potential (ERP), known as “contralateral delay activity” (CDA) or “sustained 

posterior contralateral negativity” (SPCN) shows a sustained activity throughout the 

delayed period and scales with the number of maintained items in WM (Fukuda & Vogel, 

2009). The amplitude of CDA reached a limit when the maintained items were 

approximately four, suggesting no increase from four to six or eight items (Vogel & 

Machizawa, 2004; Vogel, McCollough, & Machizawa, 2005). Moreover, the CDA 

amplitude can only be accounted for integrated objects regardless of the number of features 

or visual complexity (Luria & Vogel, 2011). These findings suggest that visual WM can 

maintain up to three or four bound objects instead of separate features. 

 

Accumulating behavioral and neural studies have also focused on the topic of feature 

binding or feature integration in visual WM (Allen, Baddeley, & Hitch, 2006; Fitousi, 2018; 

Klimesch, Freunberger, & Sauseng, 2010; Sala & Courtney, 2007; Schneegans & Bays, 

2017; Shafritz, Gore, & Marois, 2002; Treisman & Zhang, 2006; Wheeler & Treisman, 

2002). In particular, these studies highlighted the importance in the association of the 

objects with their spatial locations (Hollingworth & Rasmussen, 2010; Treisman & Zhang, 

2006; Van Dam & Hommel, 2010; Wang, Cao, Theeuwes, & Olivers, 2016). These 

short-lived and feature-bound representations, i.e. object files (Kahneman, Treisman, & 

Gibbs, 1992), contained the combination of different features and their perceptual 

continuity as an object. According to the object file account, the spatial location may serve 

as the nexus to bind features into an object. For example, the WM performance in a change 

detection task can be impaired when task-irrelevant object location was changed in a test 

array, relative to a memory array (Hollingworth & Rasmussen, 2010; Kondo & Saiki, 2012; 

Saiki & Miyatsuji, 2007; Yang, Fan, Wang, Fogelson, & Li, 2017). These results suggest 
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that location may influence object representations and attention can be guided to the 

locations of the objects that match the to-be-remembered contents in visual WM. 

 

Although previous studies have shown that the feature-bound object representations can be 

mediated by their spatiotemporal coordinates (Hollingworth & Rasmussen, 2010; Treisman 

& Zhang, 2006; Van Dam & Hommel, 2010), other studies, however, suggest a privileged 

role of bound representations in visual WM relative to their locations (Logie, Brockmole, & 

Jaswal, 2011; Saiki, 2016). For example, Logie et al. (2011) examined the extent to which 

location, color and shape may contribute to feature binding in visual WM at varying 

retention intervals. Their results were contrary to the predictions from the object file 

account. They showed that the feature-bound representation in visual WM was not affected 

by task-irrelevant changes of location as well as shape and color. Moreover, similar 

findings were reported by a recent study (Saiki, 2016). In his study, the amount of feature 

(two features, one feature, and no feature) and location sharing between memory and probe 

items were both manipulated during the WM and perceptual comparisons. His results 

demonstrated that the advantage of feature binding occurs only in the feature-bound 

condition compared to one-feature condition regardless of location sharing. Together, these 

studies suggest that feature binding in WM may not be necessarily dependent upon 

location. 

 

The goal of this study was to investigate the cognitive and neural mechanisms of the role of 

spatial location on feature-bound representations during the comparisons of WM and 

perception. I test whether the to-be-remembered feature-bound and feature-unbound 

representations can be influenced by their locations in a WM task with a modified 
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redundancy-gain paradigm. In the task, participants viewed a memory array with two 

colored letters, following a short delay, and a probe array with one probe item (colored 

letter) and one non-target percentage sign (%). The probe item contained two features (e.g., 

letter and color), one feature (e.g., letter or color), or no target feature. Participants were 

instructed to remember all object features regardless of their locations and indicate whether 

the probe item contains at least one feature from the memory array. I firstly compared the 

response times (RTs) for the one-feature trials to the RTs for the two-feature trials using the 

race-model-inequality (RMI) test (Miller, 1982; Saiki, 2016). I evaluated whether the 

redundancy gain from the bound features can surpass the limit of independent processing of 

two distinct features. If feature binding occurred for the bound representations, faster RTs 

should be expected for the feature-bound condition compared to the one-feature condition. 

That is, the RMI would be violated because two distinct features are bound as an integrated 

or grouped object (Feintuch & Cohen, 2002; Mordkoff & Danek, 2011).  

 

Importantly, I explore the oscillatory correlates of WM-perceptual comparisons for 

feature-bound and feature-unbound representations. Previous studies have shown that 

gamma-band oscillations (30-80 Hz) are involved in the maintenance of relevant 

information in WM (Honkanen, Rouhinen, Wang, Palva, & Palva, 2015; Roux & Uhlhaas, 

2014; Roux, Wibral, Mohr, Singer, & Uhlhaas, 2012) and could be critical marker of local, 

cortical interactions involving neural excitation and inhibition (Fries, 2015; Fries, Reynolds, 

Rorie, & Desimone, 2001; Ray & Maunsell, 2015). Recent studies also showed that gamma 

activity in the parietal cortex was higher for the operation of feature binding than the single 

feature in WM (Morgan et al., 2011). Using anti-phase gamma stimulation over the left 
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temporal and parietal cortex, an enhanced effect was found for color-shape bound trials 

(Tseng, Chang, Chang, Liang, & Juan, 2016). 

 

Here I tested whether the target-related gamma oscillations (Landau, Schreyer, van Pelt, & 

Fries, 2015; Poch, Campo, & Barnes, 2014) could be modulation by location sharing during 

the comparisons. I also explored the neural originals of the gamma oscillations for both 

feature-bound and feature-unbound representations respectively. If feature binding cannot 

be influenced by their spatial locations, I predicted significant gamma activity for 

comparing bound representations with their WM contents irrespective of spatial locations.  

 

Finally, the event-related time-series data (event-related field, ERF) was also analyzed. I 

sought to test the load-dependent effect of WM (Kuo, Rao, Lepsien, & Nobre, 2009; Nobre, 

Griffin, & Rao, 2008). If feature binding occurs when two distinct features belong to a 

single object, I would predict an increase in ERF for two features which were not bound to 

a single object. If object representations were not necessarily bound to their locations, I 

would also expect no differences in ERF between the trials with shared locations versus the 

trials with unshared locations for the bound representations. I also test for the neural 

sources of the load-dependent effect.  
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Methods 

Participants 

Twenty healthy volunteers (mean age = 24 years, range = 20-29 years, 9 females) 

participated in this study. All participants were right-handed, according to the Edinburgh 

handedness inventory (Oldfield, 1971), with normal color vision and normal or 

corrected-to-normal visual acuity. They were provided with both verbal and written 

informed consent prior to the study and were financially reimbursed for their time. Data 

from two male participants were excluded from analysis due to excessive artifacts in the 

MEG data (more than 30% trials) or slow response time (over three standard deviations). 

All experimental materials and procedures were reviewed and approved by Research Ethics 

Committee of National Taiwan University.  

 

Stimuli 

The setting of stimuli size and colors in this study were identical to those in Saiki’s study 

(2016). Memory and probe arrays were composed of colored letter stimuli. Four capital 

letters (K, M, P, S) and four colors (red, blue, green, yellow) were selected. Each letter was 

1.68° visual angle in size and positioned in one of the two visual hemifields at a visual 

angle of approximately 4° away from a central fixation point. The combination of letters 

and colors was fully counterbalanced so that all the letter-color pairs were presented with 

equal frequency. All of the visual stimuli were presented against a homogeneous grey 

background. The stimuli were generated and delivered in Matlab (The MathWorks, Natick, 

MA), using the Psychophysics Toolbox extensions (Brainard, 1997). 

 

doi:10.6342/NTU201801580 



 

7 
 

Task Design 

Main WM task. The task procedure is illustrated in Figure 1. Each trial began with a 

centrally displayed fixation for 750 ms, which signaled the onset of the trial. Next, a display 

consisting two unfilled square boxes (2.1° x 2.1° in size), one in each hemifield at a visual 

angle of approximately 4° away from the central fixation point, was present for 750 ms. 

After that, a memory array consisting of two colored letters, one inside each box, was 

present for 250 ms. Participants were instructed to remember both letters and colors within 

the memory array. Following a randomized retention interval (with boxes alone, 1250 - 

1750 ms duration), a single probe letter in color was shown in one of the boxes with a 

percentage sign (%) in another square for 500 ms. Participants were instructed to decide 

whether the feature (letter or color) of the probe item had been present in the memory array, 

regardless of the location of the to-be-remembered items, by pressing left or right button 

using their left or right index finger. The assignment of left and right buttons for target 

present and absent was counterbalanced across participants. 

 

I manipulated the number of features for the probe item. The probe item contained two 

features (grouped and separated conditions), one feature (letter-match and color-match 

conditions), and no features relative to the features in the memory array. In the two-feature 

condition, the probe contained the identical combination of the letter and the color from one 

of the memory items (grouped condition) or the color from one item and the letter from the 

other (separated condition). In the one-feature condition, the probe contained only a single 

feature from one of the memory items (letter-match condition and color-match condition). 

In the no-feature condition, the probe did not contain any colors or letters from the memory 

items.  
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Figure 1. Schematic of the main WM task. There were eight types of probes relative to the 

stimuli in the memory array. Participants were instructed to remember two two-feature 

(letter and color) objects regardless of their locations and to indicate whether any feature in 

the probe array was presented in the memory array.  
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More importantly, I manipulated location-sharing for the grouped and one-feature 

conditions. That is, the features of probe items matched the memory items in the same box 

(e.g. in the visual hemifield) for shared-location trials; by contrast, the features of the probe 

items matched the memory items in the different box (e.g. in the opposite visual hemifield) 

for unshared-location trials. In sum, there were eight types of probes: grouped-shared, 

grouped-unshared, letter-shared, letter-unshared, color-shared, color-unshared, separated, 

and no feature. The two-feature conditions contained grouped-shared, grouped-unshared, 

and separated trials. The one-feature conditions contained letter-shared, letter-unshared, 

color-shared, and color-unshared trials. The shared condition contained grouped-shared, 

letter-shared, and color-shared trials. The unshared condition contained grouped-unshared, 

letter-unshared, and color-unshared trials. In all conditions, half of the trials of the probe 

items were shown in the right hemifield and the other half were shown in the left hemifield. 

 

Visual localizer task. To identify the region of interest (ROI) in early visual areas that 

respond selectively to the locations of the visual stimuli, participants also performed a 

visual localizer task (Figure 2). Participants were instructed to view the stimuli passively 

without making any responses. Gabor patches, with one of four colors (the same colors 

used in the main task), were presented in the same size and at the same location as in the 

main task and were tagged at different frequencies (1.38 and 1.76 Hz) (see Baldauf & 

Desimone, 2014 for an example). There were four conditions in the localizer task: 2 

(frequency: 1.38 and 1.76 Hz) x 2 (hemifield: left and right). In each condition, there were 

eight blocks with the Gabor patch presented 20 times. The order of the blocks was 

counterbalanced across participants. The stimuli were presented with Presentation software 

(Neurobehavioral Systems, Albany, NY, USA). 
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Figure 2. Examples of the visual localizer task. Gabor patches were showed in one of the 

four colors used in the WM task and in the same size as the objects in the WM task. There 

were four conditions: two frequencies (1.38 Hz and 1.76 Hz) and two hemifields (right and 

left). Participants were instructed to view passively through all four conditions.  
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Experimental Procedure 

Participants were comfortably seated in a magnetically and electrically shielded room, 120 

cm from the screen on which the stimuli were projected. All participants were given written 

and verbal instructions for the tasks. They were also instructed to minimize their head 

movements, eye movements and blinks during the tasks and maintain fixation on a small 

marker at the center of the screen throughout the experiment and to respond as accurately 

and quickly as possible. Prior to the actual experiment, each participant completed one 

practice block of 48 trials. For the main WM task, participants completed five runs 

(including 3 blocks for each run and 48 trials for each block, 720 trials in total), with the 

rest periods being self-paced between blocks in each run. Of all the 720 trials, there were 

240 two-feature trials (120 grouped trials and 120 separated trials), 240 one-feature trials 

(120 letter-match trials and 120 color-match trials), and 240 no-feature trials. Half of 

grouped and half of one-feature trials were location shared. All of the trial types were 

intermixed in a randomised and unpredictable order. Participants completed the visual 

localizer task right after the main WM task. MEG recording time for each participant was 

approximately 100 minutes. A video camera installed inside the MEG chamber allowed 

monitoring of the participants’ behavior and compliance throughout the experiment. 

 

Behavioral Analysis 

Two types of analysis were performed on behavioral data. First, I tested the difference in 

three two-feature conditions (grouped-shared, grouped-unshared, separated) with one-way 

repeated-measures analysis of variance (ANOVA) and the modulatory effect of shared 

location for the grouped-match, color-matched, and letter-match conditions in a 3 (feature 
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type: grouped, letter-feature, color-feature) x 2 (location type: shared, unshared) 

repeated-measures ANOVA. The behavioural measures, including accuracy and reaction 

times (RTs), were each analysed and only correct responses were included in the RT 

analyses.  

 

Second, I conducted the RMI test (Miller, 1982; Mordkoff & Yantis, 1991) on RT data to 

evaluate whether the redundancy gain could be accounted by the separate-activation models 

(Raab, 1962) using the following inequality (see also Saiki, 2016): 

 

p (RT < t | F1 and F2) ≤ p (RT < t | F1) + p (RT < t | F2) 

where t equals time, and F1 and F2 stand for the two types of features respectively. 

 

In this analysis, trials with incorrect responses or the trials with long RT (> 3000 ms) or 

short RT (< 150 ms) were excluded. The inequality states that the cumulative probability of 

any given RTs for the two-feature trials (grouped, separated) never exceeds the sum of the 

cumulative probability of the RTs for the letter-match and color-match trials alone. 

According to the separate-activation models, the upper boundary of RTs in the two-feature 

conditions can be defined by the RMI. Thus, violation of the RMI indicates feature 

coactivation (e.g. faster RTs in the two-feature condition than the upper boundary of RTs). 

The feature coactivation effect can be used as an index of feature binding (Saiki, 2016). The 

violation of the RMI was evaluated in the following steps (Mordkoff & Danek, 2011; Saiki, 

2016): (1) for each subject, the values of RT corresponding to the 5th through 95th 

percentile (at 5% intervals) were computed for the two-feature trials and the sum of the 

percentiles of one-feature trials (letter-match and color-match); (2) The overall 19-point 
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cumulative density functions (CDF) were formed by simply averaging all the RTs at each 

percentile across subjects; (3) At each percentile, a one-tailed paired t test was performed to 

examine the difference in mean RT values between the two-feature condition and the sum 

of the one-feature conditions with the null hypothesis that the difference is zero or a 

negative value. 

 

MEG Acquisition and Recording Parameters 

MEG data were recorded using a 306-channel Triux system (Elekta Neuromag), with 102 

magnetometers and 204 orthogonal planar gradiometers (pairs of sensors measuring the 

longitudinal and latitudinal derivatives of the magnetic field) at the Imaging Center for 

Integrated Body, Mind, and Culture Research, National Taiwan University, Taipei, Taiwan. 

The signals had a sampling rate at 1000 Hz, and were band-pass filtered between 0.03-330 

Hz. Head position was monitored by four head position indicator (HPI) coils placed on the 

scalp, indicating the position of the head in the MEG helmet during recording. A digitizer 

(Polhemus, USA) was also be applied to digitize three fiducial landmarks (the nasion, left 

and right pre-auricular points), four HPI coils, and a number of additional head points for 

further alignment with individual T1-weighted structural MRI images. Vertical eye 

movements were recorded by MEG-compatible electrodes placed on the supraorbital ridges 

of the left eye [vertical electro-oculogram (VEOG)], and the horizontal eye movements by 

electrodes placed on the outer canthi of the right and left eyes [horizontal 

electro-oculogram (HEOG)]. Both VEOG and HEOG were recorded and subsequently used 

to remove trials contaminated by blinks or eye movements. 
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Structural MRI Acquisition and Scanning Parameters for MEG Analysis 

High resolution anatomical images (1 x 1 x 1 mm) were acquired from all participants by a 

T1-weighted MPRAGE sequence (FOV = 192 x 192 mm) on a Siemens 3T MAGNETON 

Prisma MRI scanner with a 20-channel coil at the Image Center for Integrated Body, Mind, 

and Culture Research, National Taiwan University, Taipei, Taiwan. 

 

MEG Data Analysis 

External noise was firstly removed from the MEG data using the signal space separation 

(SSS) method implemented in Elekta’s MaxFilter software. All MEG data processing and 

analysis were then carried out using SPM8 software (Wellcome Trust Centre for 

Neuroimaging, University College London, UK), FieldTrip toolbox (Oostenveld, Fries, 

Maris, & Schoffelen, 2011) and the in-house scripts in Matlab (The MathWorks). The data 

from the main WM task and the visual localizer task were processed separately. Four types 

of analysis were performed on the MEG data. First, I conducted a time-frequency analysis 

at the sensor level to explore the oscillatory correlates of feature integration. Second, a 

MEG source-level analysis was used to identify the neural origins in the gamma-band range 

of feature integration. Third, I examined the event-related field (ERF) data at the sensor 

level. Finally, I conducted a region-of-interest (ROI) analysis based on the visual localizers 

and tested for the neural origins of the ERF during feature binding. 

 

Preprocessing. The continuous MEG signals were down-sampled to 250 Hz and low-pass 

filtered below 120 Hz. For the WM task, the continuous data were segmented into epochs 

from -1,000 ms to 1,500 ms relative to the onset of the probe and baseline-corrected with 
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the 200 ms pre-probe period. Only correct trials were retained for subsequent analyses. All 

the epochs were visually inspected for artifact rejection. Through visually detecting VEOG 

and HEOG for eye-movement artifacts (blinks or saccades), epochs with contamination and 

excess noise were excluded from subsequent analyses. Trials with unusually high variance 

were also removed using FieldTrip visual artifact rejection tool.  

 

Sensor-level time-frequency analysis. The artifact-free sensor-space epoched data were 

entered into time-frequency decomposition, using Morlet wavelets with a length of 7 cycles. 

The resulting power spectra of the gamma frequency were averaged according to feature 

types (grouped-shared, grouped-unshared, separated, one-feature-shared, 

one-feature-unshared) and probe locations within the array (left and right). The 

time-frequency data containing perceptual targets located on the right and left side in each 

condition were then combined by an averaging procedure that preserved the location of 

MEG sensors relative to the target side (contralateral and ipsilateral). That is, for all the 

feature types I tested for the presence of spatially target-specific modulations at gamma 

frequency bands (i.e. lateralized gamma power), at the moment when participants compared 

the visual display of the probe items with their WM contents. For this sensor-space 

time-frequency analysis, I only used the planar gradiometers. I combined the pairs of planar 

gradiometers using the Cartesian sum for each participant, producing a 102-channel 

combined planar gradiometer data set. Power differences for the lateralized gamma activity 

were tested for every time point between conditions using dependent sample t tests. I then 

corrected for multiple comparisons using a cluster-based non-parametric permutation 

approach (Maris & Oostenveld, 2007). We calculated the size of any significant clusters 

with consecutive t tests that were significant (p < .05, two-tails) either across neighbouring 
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sensors, time-points, or both. I calculated Monte Carlo p values on 1,000 random partitions 

in which left and right probe location were shuffled, thereby deriving a null distribution of 

the clustered test statistics that would be achieved by chance. Type I errors were thus 

reduced by controlling multiple comparisons across both sensor and time. Finally, the 

values (p < .05, two-tails) in this null distribution that was greater than the clustered 

statistics from the original data was treated as the corrected significant value. 

 

Sensor-level ERF analysis. The artifact-free sensor-space ERF epochs were 

baseline-corrected with the 100 ms pre-stimulus period. Epochs were averaged per 

condition for each participant. This procedure resulted in five conditions: grouped-shared, 

grouped-unshared, one-feature-shared, one-feature-unshared, and separated condition. The 

pairs of planar gradiometers were then combined using the root-mean-square values at each 

sensor for each participant, producing a 102-channel combined planar gradiometer data set. 

To test the feature-bound effect in the posterior region, the mean ERF would be extracted 

from the chosen sensors and two time windows. A 2 (time window: 250-400 ms, 400-550 

ms) x 3 (two-feature conditions: grouped-shared, grouped-unshared, and separated) 

repeated-measures ANOVA was conducted to explore the differential effect among 

two-feature conditions.  

 

Source analysis for ERF and time-frequency data. I conducted a beamformer analysis to 

characterize the neural sources of ERF and time-frequency power data from both the 

magnetometers and planar gradiometers. I firstly co-registered each individual’s MEG data 

based on their T1-weighted structural image using digitized scalp locations and fiducials. A 

semi-realistic single shell head model (Nolte, 2003) based on each individual’s brain was 
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constructed. For testing the neural origins of ERF data, a linear constrained minimum 

variance (LCMV) beamformer algorithm was used to identify the sources of the time-series 

effects at every vertex of a 7-mm grid covering the whole brain (Van Veen, Van Drongelen, 

Yuchtman, & Suzuki, 1997). Beamforming constructs a spatial filter, which is applied to 

the sensor data to reconstruct the signal at each grid point, with the aim of achieving unit 

bandpass response at the grid point while minimizing the variance passed from all other 

locations. The data at the source location of interest are given by multiplying the 

beamformer weights vector by the original sensor data. The process can be repeated across 

all grid locations to achieve a whole brain source reconstruction for each time point. The 

source analyses were performed for each condition. The source estimates of the individual 

subjects’ functional data were interpolated to their own structure image and then spatially 

normalized to the MNI brain. Finally, the statistical differences in source activity between 

conditions were computed using the non-parametric permutation approach (Maris & 

Oostenveld, 2007). The source analysis of the oscillatory activity was estimated by the 

Dynamic Imaging of Coherent Sources (DICS) beamformer algorithm (Gross et al., 2001). 

The time-frequency parameters were identical to the sensory-space analysis (Morlet 

wavelet with a length of 7 cycles). The source-analysis parameters were identical to the 

ERF source analysis.  

 

Power and source analyses for the visual localizer task. Finally, I conducted power and 

source analyses for the visual localizer task. The MEG preprocessing were identical to 

those for the main task. I only describe the exceptions below. The visual localizer data were 

segmented into -1,000 ms to 10,664 ms for the 1.76 Hz condition and 13,996 ms for the 

1.38 Hz condition. I first conducted the frequency analysis to confirm the effect of 
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frequency tagging (Figure 3). The pipeline of the analysis of the visual localizer shows in 

Figure 4. The DICS technique was then applied for the source analysis. The resulting 

spatial filters were applied to the Fourier-transformed power based on the frequency of 

interest (1.76 Hz and 1.38 Hz, respectively). To reduce biases toward the center or the head, 

I computed the neural activity index (NAI) by dividing the estimated power at each grid 

point by an estimate of the noise (Mitra & Pesaran, 1999). This noise bias was estimated 

for each participant’s data. After that, the results of the NAI were coregistered on the 

subject’s structural MRI and spatially normalized to the MNI brain. I averaged the NAI 

results across participants to generate averaged NAI maps. To generate contralateral 

localizer maps, two contrasts were computed: left target with 1.38 Hz versus right target 

with 1.76 Hz and right target with 1.38 Hz versus left target with 1.76 Hz. Finally, I 

combined the contralateral localizer maps with visual maps based on the probabilistic 

estimates of visual areas from a previous study (Minini, Parker, & Bridge, 2010). This 

analysis resulted in two visual ROIs (left and right hemispheres). 
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Figure 3. Illustration of spectral power in the visual localizer task in left 1.38 Hz and right 

1.76 Hz conditions respectively. The results of frequency analysis confirmed the effect of 

the manipulation of the frequencies (1.38 Hz and 1.76 Hz) and the hemifields (left and 

right). 
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Figure 4. Schematic of the analysis procedure for regions of interest in visual areas: the 

DICS beamformer was applied to the Fourier-transformed power based on the frequency of 

interest. To generate contralateal localizer maps for each hemisphere, two contrasts were 

computed: left target with 1.38 Hz versus right target with 1.76 Hz and right target with 

1.38 Hz versus left target with 1.76 Hz. The resulting localizer maps were combined with 

visual maps from Minini et al. (2010)’s study. 
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Results 

Behavioral Results 

Table 1 shows the mean accuracy and mean RTs for the eight conditions. The accuracy data 

indicated no difference between grouped-shared, grouped-unshared, and separated trials (ps 

> .1). A 2 (location: shared, unshared) x 3 (feature type: grouped-feature, letter-match, 

color-match) repeated-measures ANOVA showed a significant main effect of feature type, 

F (2, 34) = 37.58, p < .001, ηp
2
 = .69, and a significant interaction between feature type and 

location, F (2, 34) = 5.02, p = .01, ηp
2
 = .23. Post-hoc tests revealed that accuracy was 

significantly higher on grouped-feature trials relative to letter-match trials and color-match 

trials (ps < .001), and letter-match trials showed higher accuracy in location-shared versus 

location unshared (p = .02). For the RT data, I conducted a 2 (location) x 3 (feature type) 

repeated-measures ANOVA. This analysis showed significant main effects of feature type, 

F (2, 34) = 49.19, p < .001, ηp
2
 = .74, and location, F (1, 17) = 9.09, p = .008, ηp

2
 = .35, and 

a significant interaction between feature type and location, F (2, 34) = 9.62, p < .001, ηp
2
 

= .36. These results indicated faster RT for grouped trials relative to letter-match and 

color-match trials and faster RT for location-shared relative to location-unshared trials on 

grouped-feature and letter-match trials but not on color-match trials (Figure 5). 
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Table 1  

Mean Accuracy and Response Time of Correct Response in Each Condition 
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Figure 5. Mean response times across three types of trial with location-shared and 

location-unshared were compared. The results showed that the feature-bound 

representations were modulated by features’ location on letter-match trials and grouped 

trials. Error bars indicate standard error of the mean (** p < .01). 
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RMI Results 

The CDFs of the RT data are displayed in Figure 6. According to the previous study (Saiki, 

2016), a cross between the curve of the CDF from the summation of two one-feature trials 

and the curve from the two-feature trials indicated feature coactivation. I thus firstly tested 

for feature coactivation effects on grouped and separated trials, respectively. On grouped 

trials, the violation of RMI was observed at the 5th to 25th percentiles [5th: t (17) = 3.11, p 

= .003; 10th: t (17) = 2.46, p = .012; 15th: t (17) = 2.99, p = .004; 20th: t (17) = 2.40, p 

= .015; 25th: t (17) = 2.28, p = .018 Figure 6a]. A significant violation was also found on 

separated trials at the 5th and 10th percentiles [5th: t (17) = 2.30, p = .017; 10th: t (17) = 

1.81, p = .044, Figure 6b]. Importantly, I examine the modulatory effect of location on 

feature-bound representations. The RMI tests (summed feature trials versus grouped trials) 

were conducted for shared location and unshared location respectively. In the 

location-shared conditions, the RMI violation was observed at the 5th to 20th percentiles 

[5th: t (17) = 3.76, p < .001; 10th: t (17) = 3.86, p < .001; 15th: t (17) = 2.92, p = .005; 20th: 

t (17) = 2.47, p = .012, Figure 6c]. The RMI violation was also found in the 

location-unshared conditions at the 10th and 15th percentiles [10th: t (17) = 1.90, p = .037; 

15th: t (17) = 2.09, p = .026, Figure 6d]. Overall, the RMI violation can be observed 

regardless of location sharing. 
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Figure 6. Cumulative density function (CDF) of RTs for the RMI test. Each graph shows 

the cumulative probability for RT for the two-feature condition and for the sum of the 

CDFs on letter- and color-match trials in the one-feature condition. (a) The CDFs of RTs in 

the grouped condition and one-feature condition. (b) The CDFs of RTs in the separated 

condition and one-feature condition. (c) The CDFs of RTs in the grouped-shared condition 

and one-feature-shared condition. (d) The CDFs of RTs in the grouped-unshared condition 

and one-feature-unshared condition. Asterisks indicate a significant difference between 

mean percentile RT (*p < .05, **p < .01, determined by one-tailed paired t tests). 
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MEG Results 

Time-frequency results and neural origins of gamma oscillations. I firstly tested the 

modulation of location on gamma power lateralization (contralateral relative to ipsilateral 

site to the probe hemifield) at the sensor level when the participants compared the incoming 

probe item with the WM contents. Four contrasts were conducted: (1) 

grouped-shared-feature vs. one-shared-feature, (2) grouped-unshared-featured vs. 

one-unshared-feature, (3) grouped-shared-feature vs. separated-feature, and (4) 

grouped-unshared-feature vs. separated-feature. I observed significant effects of sensors in 

all contrasts. Significant effects of sensors were observed over the posterior parietal sensors 

from 580 to 612 ms for grouped-shared-feature vs. one-shared-feature trials (corrected p 

= .013), over the frontal and parietal sensors from 500 to 530 ms for 

grouped-unshared-feature vs. one-unshared-feature trials (corrected p = .033), over the 

frontal and parietal sensors from 500 to 600 ms for grouped-shared-feature vs. 

separated-feature trials (corrected p = .03), and over the frontal and parietal sensors from 

520 to 550 ms for grouped-unshared-feature vs. separated-feature trials (corrected p = .024). 

The beamformer source analysis showed stronger neural responses for in gamma rhyme in 

the right parietal cortex by contrasting left hemifield with right hemifield for both shared 

location and unshared location trials. These results are illustrated in Figure 7.   
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Figure 7. Sensor space and cortical source of gamma oscillation results. (a) Scalp 

topography of the difference in gamma lateralization between grouped-shared and 

one-shared trials. The gamma lateralization over frontal and parietal areas was observed 

when compared grouped-feature trials to one-feature trials in shared and unshared 

conditions respectively. (b) The gamma source results on grouped-shared, 

grouped-unshared, one-shared, and one-unshared trials respectively. The DICS beamformer 

analysis showed stronger gamma only in grouped-shared and grouped-unshared conditions. 
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Event-related fields and ROI source analyses. Finally, I tested the neural correlates of 

feature coactivation effect (Saiki, 2016) in the posterior brain regions and the difference in 

neural activity among three two-feature conditions (i.e. grouped-shared, grouped-unshared, 

and separated trials) during the WM-perceptual comparison. These results are illustrated in 

Figure 8. The mean ERFs were extracted from the posterior sensors (see Figure 8 for an 

example). A 2 (time window: 250-400 ms, 400-550 ms) x 3 (two-feature condition) 

repeated-measures ANOVA was then conducted. There was a significant main effect of 

two-feature condition, F (2,34) = 11.61, p < .001, and a significant interaction between time 

window and condition, F (2,34) = 3.19, p = .05. This interaction arose from greater activity 

on separated trials relative to both grouped-shared (p = .002) and grouped-unshared (p 

< .001) during the late time window (400-550 ms). However, no difference in activity was 

observed during the early time window. The source analysis using the LCMV beamformer 

showed greater neural responses in the right parietal cortex for the separated trials relative 

to grouped-shared and grouped-unshared trials respectively. The ROI-based analyses in the 

right parietal and visual ROIs confirmed these results (Figure 9).  
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Figure 8. Sensor-space ERF results on grouped-shared, grouped-unshared, and separated 

trials. The gray bar and black bar indicated the early and late time window in the analysis. 

(a) Topography of the difference between separated and grouped trials from 428 to 460 ms. 

(b) The power value of each condition was extracted from the sensor in the blue square. 

The activity from 400 to 550 ms in separated condition was significantly higher than those 

in grouped-shared and grouped-unshared conditions. 
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Figure 9. Source and ROI-based results of ERF. The black arrows indicate the differential 

effect between separated and grouped conditions. (a) The source-level ERFs in left and 

right posterior parietal cortex show that there is greater activity on separated trials relative 

to grouped-shared and grouped-unshared trials. (b) The ERF in the bilateral visual ROI 

from the visual localizer task showed that there are also greater activities on separated trials 

relative to grouped-shared and grouped-unshared trials. 
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Discussion 

The purpose of this study was to investigate whether the feature-bound representations can 

be influenced by the location during the WM-perceptual comparisons. The behavioral 

results showed that participants responded faster on grouped trials versus one-feature trials 

for both shared-location and unshared-location. The RMI test also indicated that feature 

binding could occur independently of the location factor. Significant gamma activity was 

found in the parietal cortex for feature-bound representations regardless of the locations. 

Finally, the ERF data confirmed the effects of feature-bound in the posterior parietal and 

visual areas in both shared-location and unshared-location conditions. Together, these 

results provide further evidence in behavioural and neural correlates of WM-perceptual 

comparisons and suggest that feature-bound representations are not necessarily modulated 

by their locations. 

 

In line with the previous findings, the behavioral data suggest that the integrated objects, 

instead of individual features, form the WM contents (Edin et al., 2009; Luck & Vogel, 

1997; Luck & Vogel, 2013; Zhang & Luck, 2008). These studies also suggest that the 

feature binding can be implicit and automatic in WM. My results also replicate the 

behavioral findings from the recent study by Saiki (2016). I showed that feature binding 

can be observed in the two-feature condition when color and letter were grouped into a 

single object. Moreover, the violations of the RMI tests were found on both shared- and 

unshared-location trials. However, these results were inconsistent with the predictions by 

the object file theory (Kahneman et al., 1992; Noles, Scholl, & Mitroff, 2005). The object 

file account proposed that feature integration may occur when the probe was present at the 
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same location as the memory items. The RT RMI tests in the current study did not fully 

support the object file account (see Saiki, 2016 for a similar finding).  

 

I speculate that the inconsistent results between my study and the object file account may 

arise from the feature types. In the current study, RMI tests showed that feature 

coactivation (letter and color) occurred in all two-feature conditions – not only grouped 

trials but also separated trials. However, Saiki (2016) reported the feature coactivation 

(shape and color) effect on grouped trials only. The effects of the one-feature and 

two-feature object were also different in location-sharing. For example, the location benefit 

in RT was observed on shape-match trials (Saiki, 2016) and on letter-match trials (the 

current study), not on color-match trials in both studies. Since previous studies have shown 

that WM performance may vary across stimulus types (Alvarez & Cavanagh, 2004; 

Treisman & Zhang, 2006), I suggest that feature types could influence the degree of 

features binding during WM-perceptual comparisons. Future work should systematically 

manipulate the feature types and test how they affect the features binding in WM. 

 

The discrepancy from the current findings and Saiki’s (2016) work may also result from the 

existence of non-target items. In the current study, I showed one probe item and a filler (i.e. 

a percentage sign) at the same time in boxes in each hemifield. This manipulation allows 

controlling the physical inputs from both visual hemifields across all feature types. 

However, the filler in the opposite hemifield may be likely to affect the allocation of 

attention on the target probe. Moreover, color and letter may reflect different levels of 

familiarity or superiority in real life (Mcclelland & Rumelhart, 1981). For example, if 

participants adopt a verbal strategy to perform the task, letter may cause stronger 

doi:10.6342/NTU201801580 



 

33 
 

interference with color in our case but shape may cause less interference with color. In sum, 

these factors may result in inconsistencies between the current results and others.  

 

Importantly, I showed stronger lateralized gamma power with increased activity 

contralateral to the attended location and decreased activity contralateral to the unattended 

location for grouped object relative to single feature and for both shared and unshared 

locations. Similar modulations on lateralized gamma power were also found when I 

compared grouped-shared trials relative to separated trials and grouped-unshared trials 

relative to separated trials respectively. The results suggest that the gamma oscillations play 

an important role in feature integration in WM. 

 

Studies in humans and monkeys have showed that increased activity in the gamma-band is 

related to attentional and mnemonic processes (Bauer, Oostenveld, Peeters, & Fries, 2006; 

Brovelli, Lachaux, Kahane, & Boussaoud, 2005; Buzsáki & Wang, 2012; Jensen, Kaiser, & 

Lachaux, 2007; Tallon-Baudry, Bertrand, Peronnet, & Pernier, 1998). For example, Fries, 

Reynolds, Rorie, and Desimone (2001) demonstrated that selective attention can influence 

the patterns of oscillatory synchrony between neural populations across different cortical 

areas with the enhancement of high-frequency oscillations (i.e. gamma) in occipital cortex. 

They showed that when attended items were represented by neurons that were able to 

communicate on such a fast temporal scale during gamma-frequency range, their impact 

was enhanced, leading to a more efficient selection of behaviorally relevant stimulus (see 

also Womelsdorf, Fries, Mitra, & Desimone, 2006). Moreover, other studies also found 

strong gamma activity during encoding and maintenance of WM (Mainy et al., 2007; 
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Sauseng & Klimesch, 2008; Tallon-Baudry et al., 1998). My results in lateralized gamma 

power are consistent with these findings. 

 

The source results also suggest that gamma oscillation in parietal cortex may provide a 

putative mechanism for top-down control on feature binding. For example, an MEG study 

by Morgan et al. (2011) demonstrated greater gamma activity in the parietal cortex when 

colors and angles were integrated relative to single features during WM maintenance. A 

recent study using brain stimulation technique (e.g. transcranial alternative current 

stimulation) applied gamma frequency, theta frequency, and sham stimulations over the 

temporal and parietal cortex when participants were being performed a WM task with the 

manipulation of feature-only and color-shape binding (Tseng et al., 2016). They 

demonstrated that the anti-phase gamma stimulation had an influence on binding trials. 

Together, these results suggest that gamma oscillation is critical in the comparison process, 

particular in matching top-down (WM contents) and bottom-up (perceptual) information 

(Herrmann, Munk, & Engel, 2004). 

 

While I did not observe any modulatory effect in early visual areas in the gamma band 

(Magazzini & Singh, 2018; Wilson, McDermott, Mills, Coolidge, & Heinrichs-Graham, 

2018), the ERF results assured the feature binding effects in posterior parietal and early 

visual areas, indicating stronger activity for separated features relative to grouped-shared 

features and grouped-unshared features. To further examine the time course of ERF data, I 

divided the time-series into early and late time windows. This ERF analysis showed that the 

differential effects among two grouped feature conditions and separated feature conditions 

only occur in the late time window (400 ms – 550 ms). These results also support a recently 
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described load-dependent effect (e.g. N3rs) related to searching within WM (Kuo, Rao, 

Lepsien, & Nobre, 2009; Nobre, Griffin, & Rao, 2008). In their studies, the amplitude of 

the N3rs increase monotonically with the increasing load of retrospective search from 

within WM representations. The amplitude of the N3rs carried according to the degrees of 

feature coactivation, being smaller for grouped-shared features and grouped-unshared 

features compared to separated features. The N3rs therefore reflects time-consuming 

evaluation of the degrees of feature coactivation for putative probe items. Together with 

behavioral and gamma oscillation data, the ERF results also support the feature-bound 

representation independent to location congruency. 

 

In conclusion, the current results from the behavioral and MEG data suggest that the 

location may have no or little influence on feature-bound representations during the 

comparisons of WM representation with perceptual information. These findings are 

compatible with previous findings that parietal cortex supports integration of visual features 

(Shadlen & Movshon, 1999; Shafritz et al., 2002). This study provides novel evidence in 

behavioral modeling and the oscillatory mechanisms which underlie the comparison of 

feature-bound and feature-unbound representations during the comparisons between WM 

and perception and the comparison process is associated with the gamma oscillation.  
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