國立臺灣大學生命科學院生化科技學系

碩士論文

Department of Biochemical Science and Technology College of Life Science National Taiwan University

Master Thesis

探討鄰苯二甲酸酯類影響大腸直腸癌腫瘤生成 之相關基因網絡

Study on the potential gene network associated with phthalate exposure and tumorigenesis in colorectal cancer cells

蘇俊融

Jun-Rong Su

指導教授:廖憶純博士

Advisor: Yi-Chun Liao, Ph.D.

中華民國 107 年 7 月

July 2018

目	錄		i
縮	寫表.		iii
中	文摘	要	vi
A	bstrac	et	viii
1.	研究	背景	
	1.1	鄰苯二甲酸酯類	
	1.2	鄰苯二甲酸酯類在台灣之流布狀況	
	1.3	台灣塑化劑事件及後續追蹤研究	
	1.4	鄰苯二甲酸酯類之癌細胞特性相關實驗	
	1.6	大腸直腸癌之流行病學	
	1.7	大腸直腸癌發展進程分期	
	1.8	大腸直腸癌致癌機制	6
	1.9	本論文之研究目的及重要性	7
2.	材料	與方法	9
	2.1	細胞製備	9
		2.1.1 細胞株	9
		2.1.2 藥品	9
		2.1.3 細胞培養液	9
		2.1.4 細胞培養	
		2.1.5 繼代培養	
		2.1.6 细胞冷凍保存與解凍細胞	
		2.1.7 細胞計數	11
	2.2	資料庫蒐集及分析	11
		2.2.1 蒐集微陣列資料庫	11
		2.2.2 鄰苯二甲酸酯類暴露之微陣列資料庫之前處理	
		2.2.3 差異表現基因之分析及基因模組之建立	
		2.2.4 基因網絡之功能及網絡間之交互作用	
		2.2.5 基因本體 (Ontology) 分析	
	2.3	細胞模式實驗	
		2.3.1 細胞增生分析	
		2.3.2 細胞移動分析	
		2.3.3 RNA 萃取	
		2.3.4 反轉錄製備 cDNA (complementary DNA)	
		2.3.5 定量聚合酶連鎖反應 (quantitative polymerase chain re	action,

	D(D)
2	(PCK)
3.	研究結果
	3.1 鄰苯二甲酸酯類暴露和大腸直腸癌進程之模組基因之基因本體分析
	(Ontological analysis)
	3.2 鄰苯二甲酸酯類暴露和大腸直腸癌進程之模組基因之基因調節網絡18
	3.3 鄰苯二甲酸酯類暴露可能誘發大腸癌腫瘤發生及加速癌化進程相關之潛
	在調節路徑
	3.4 鄰苯二甲酸酯類暴露及大腸癌化進程之差異表現基因之 GO terms20
	3.5 DEHP 暴露影響預測之目標基因表現量變化
	3.6 DEHP 毒性測試及對於人類大腸細胞增生之影響
	37 DFHP 暴露對於人類太陽細胞移動之影響 23
	38 Linonalysaccharide (IPS) 的 DFHP 共同異露對於細胞殺動、預測之日
	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
4	保本四次發火相關四丁之影音
4.	
	4.1 DEHP 泰蕗對於分析微陣列資料庫之差異表現基因於大腸細胞 CCD841
	及大腸癌細胞 SW480 之影響
	4.2 DEHP 暴露對於大腸細胞 CCD841 及大腸癌細胞 SW480 細胞增生能
	力之影響
	4.3 DEHP 暴露對於大腸細胞 CCD841 及大腸癌細胞 SW480 細胞移動能力
	之影響
	4.4 DEHP 暴露對於大腸細胞 CCD841 及大腸癌細胞 SW480 是否有誘導
	癌化之可能
	4.5 LPS 與 DEHP 共同暴露對於大腸細胞 CCD841 之影響
	4.6 DEHP 之代謝產物 MEHP 暴露對於癌化特性之影響
5.	结論 32
6	★老 資料 33
7	

縮寫表

縮寫	全名
ACF	Aberrant crypt focus
AJCC	American Joint Committee on Cancer
AKT1	AKT serine/threonine kinase 1
AKT2	AKT serine/threonine kinase 2
APC	Adenomatous polyposis coli
BCL2L11	BCL2 like 11
BBP	Benzyl butyl phthalate
BIRC5	Baculoviral IAP repeat containing 5
BP	Biological process
CCNB1	Cyclin B1
cDNA	Complemental DNA
CDK2	Cyclin dependent kinase 2
CDK4	Cyclin dependent kinase 4
CDC6	Cyclin dependent kinase 6
CDKN1A	Cyclin dependent kinase inhibitor 1A
CDKN1B	Cyclin dependent kinase inhibitor 1B
DBP	Dibutyl phthalate

DEG	Differentially expressed gene
DEHP	Di-(2-ethylhexyl) phthalate
DINP	Di-(iso-nonyl) Phthalate
DMEM	Dulbecco's Modified Eagle's Medium
DMSO	Dimethyl Sulfoxide
EGFR	Epidermal growth factor receptor
EMEM	Eagle's Minimum Essential Medium
FBS	Fetal bovine serum
FOXM1	Forkhead box M1
FOXO1	Forkhead box O1
FOXO3	Forkhead box O3
GO	Gene ontology
FYN	FYN proto-oncogene
HIF1A	Hypoxia inducible factor 1 subunit alpha
HSF1	Heat shock transcription factor1
HSP90AA1	Heat shock protein 90 alpha family class A
	member 1
HSP90AB1	Heat shock protein 90 alpha family class B
	member 1

	601510161016
IGF1R	Insulin like growth factor 1 receptor
MAPK1	Mitogen-activated protein kinase 1
MBP	Monobutyl Phthalate
MDB	Membrane desalting buffer
MEHP	Mono-(2-ethylhexyl) phthalate
MYC	MYC proto-oncogene
PBS	Phosphate-buffered saline
PDGFRB	Platelet derived growth factor receptor beta
PI3K	Phosphoinositide 3-kinase
PPARA	Peroxisome proliferator activated receptor alpha
PPI	Protein-protein interaction
qPCR	Quantitative polymerase chain reaction
RNA	Ribonucleic acid
SRC	SRC proto-oncogene
STAT3	Signal transducer and activator of transcription 3
VEGFA	Vascular endothelial growth factor A

中文摘要

鄰苯二甲酸酯類 (phthalates or phthalate esters) 為一種廣泛使用的塑化劑,容 易被釋放至環境中,透過呼吸系統或飲食過程,直接被攝取而危害消化系統。 Phthalate 亦為內分泌干擾物質, 關於其暴露所造成之健康危害, 大多著重在研究 乳癌、前列腺癌、生殖毒性及兒童發育方面的影響,對於大腸直腸癌方面的研究較 少,因此,闡明鄰苯二甲酸酯類對大腸直腸癌腫瘤生成的影響與機制為當務之急。 本論文藉由巨量生物資料庫,同時分析與 phthalate 暴露及大腸直腸癌腫瘤生成之 關鍵基因,並進一步使用大腸細胞株進行驗證,探討其可能之調控機制。本研究首 先搜尋基因資料庫 ArrayExpress 與 Gene Expression Omnibus,分析臨床大腸癌原 位、轉移及正常組織,和人類細胞暴露 phthalate 的基因表現數據,以線上平台 NetworkAnalyst 比對,找到差異表現基因 (differentially expressed genes; DEG),接 著,以分子網絡之整合性軟體 Cytoscape,進一步將 NetworkAnalyst 所找到之 DEG 重新進行關係串聯及視覺化,找到同時與 phthalate 暴露及大腸直腸癌發生 與進程高度相關的關鍵基因與調控路徑。預測的基因網絡結果顯示,phthalate 暴 露可能會影響以血管內皮生長因子 (vascular endothelial growth factor A; VEGFA) 為首之調控基因網絡,本研究進一步以人類正常大腸細胞株 CCD841 及大腸癌非 轉移細胞株 SW480,驗證 diethylhexyl phthalate (DEHP) 對此預測訊息傳導路徑之 影響,以即時定量 PCR 檢測基因表現的結果發現,上游目標基因 VEGFA、 PDGFRB、SRC 及 AKT1 等,在二種細胞株中皆如同預期在 DEHP 處理下有表 現量上升的情況;而在 CCD841 中,下游目標基因 CDKN1A(p21) 及 CDKN1B (p27) 的表現,會隨著 DEHP 濃度的上升而逐漸提高,但在 SW480 中則沒顯著 差異。另一方面,低濃度 DEHP(10² nM) 會使 SW480 細胞增生能力上升 1.2 倍, 而高濃度 DEHP 則會抑制 CCD841 及 SW480 細胞增生的能力,高濃度 DEHP (10⁶ nM) 還會使 CCD841 細胞移動能力增加 1.3 倍,但卻抑制 SW480 細胞移動 能力。綜合本研究之結果顯示,DEHP 單獨暴露可能不會直接影響大腸細胞腫瘤

發生以及加劇大腸直腸癌的進程。

關鍵字:大腸直腸癌、鄰苯二甲酸酯類、巨量生物資料庫、ArrayExpress、 NetworkAnalyst、差異表現基因、Cytoscape、調控路徑、血管內皮生長因子

Abstract

Phthalate or phthalate esters (PAEs) are widely used as plasticizers, which can be easily released into the environment. Phthalate can be directly absorbed through respiratory or digestive system. Phthalates are also endocrine-disrupting component and several studies regarding the effects of phthalate exposure are mainly focused on breast cancer, prostate cancer, reproductive toxicity and child development. However, the health effects of phthalate exposure on colorectal cancer are rarely discussed. Therefore, it is urgently needed to clarify the effect and mechanism of phthalates on colorectal tumorigenesis. In this study, emerging high-throughput omics technology is used to analyze the critical hub genes associated with phthalate exposure and colorectal tumorigenesis. The role of the critical hub genes in the predicted regulatory pathway are further validated using CRC cell lines exposed to phthalate. First, we analyze the gene expression database and compare the gene expressions of clinical primary CRC (pCRC), metastatic CRC (mCRC), normal colon tissues and human cells with phthalate exposure from ArrayExpress and Gene Expression Omnibus. Then NetworkAnalyst is used to determine the differentially expressed genes (DEG) in phthalate exposure (phthalate exposure vs. non-exposure), pCRC (primary CRC vs. normal colon) and mCRC (metastatic CRC vs. primary CRC). Furthermore, we establish and visualize the potential network to identify the potential hub genes and regulatory pathways associated with phthalate exposure in CRC by Cytoscape. The gene network shows that phthalate exposure may affect the vascular endothelial growth factor A (VEGFA)- mediated regulatory pathways. We next verify the predicted potential regulatory pathways using normal colon cell line CCD841 and non-metastasis colon cancer cell line SW480 treated with diethylhexyl phthalate (DEHP). Real-time PCR reveals that upstream regulatory genes, VEGFA, PDGFRB, SRC and AKT1, are up-regulated in the both cell lines. DEHP induces the expression of downstream regulatory genes, CDKN1A (p21) and CDKN1B (p27) in CCD841 cells whereas there is no difference in SW480 cells. On the other hand, the low dose (10^2 nM) of DEHP enhances 1.2-fold proliferative ability in SW480 cells and high dose (10⁶ nM) of DEHP inhibits the proliferation in both cell lines. Treatment of 10⁶ nM DEHP results in a 1.3-fold increase but decreases in cell migration in CCD841 and SW480 cells, respectively. To sum up, this study suggests that DEHP alone may not directly affect colorectal tumorigenesis and CRC progression.

Key words: phthalates, colorectal cancer, meta-biological database, ArrayExpress, NetworkAnalyst, differentially expressed gene, Cytoscape, regulatory pathway, vascular endothelial growth factor

1. 研究背景

1.1 鄰苯二甲酸酯類

鄰苯二甲酸酯類 (phthalates) 為無色、常溫為液態的半揮發有機物質,在水中 的溶解度很低,廣泛使用在工業製程,如聚氯乙烯 (PVC)、聚乙烯等塑膠製品的 生產,可以提高產品的彈性、透明度及耐用度。舉凡日常生活用品的衣服、器皿、 醫療設備及室內裝潢材料等 (Wams, 1987; Lorz et al., 2007)。塑化劑中 Di (2ethylhexyl) phthalate (DEHP) 亦廣泛添加於 PVC 的產品當中,且為目前台灣最為 普遍使用的鄰苯二甲酸酯類,其主要代謝產物為 Mono-(2-ethylhexyl) phthalate (MEHP) (Koch and Calafat, 2009; Li and Ko, 2012)。

由於 phthalate 與產品是以非共價鍵結形式結合,因此容易從產品中釋出,主 要透過食物及水,少部分是透過空氣及皮膚接觸,進入到人體使其暴露 (Wester et al., 1998)。環境中的 phthalate 由於會受到生物性降解、光降解和厭氧菌降解,通 常不會持續存在於戶外,因此室內濃度較高,也成為了主要暴露的場域 (Rudel and Perovich, 2009; Staples et al., 1997; Xie et al., 2007)。部分 phthalate 為內分泌干擾 物,如 DEHP、Di-butyl phthalate (DBP) 等會與雌激素受體結合,進而干擾生物體 荷爾蒙功能 (Pavan et al., 2001; Okubo et al., 2003),而被稱為環境荷爾蒙。

1.2 鄰苯二甲酸酯類在台灣之流布狀況

號稱為塑膠王國的台灣,日常的生活用品中有極高比例是塑膠製品,國人由食物中攝取的 DEHP 總量,每日每公斤體重高達 33.9 µg,超過美國所規定的 20 µg (Chen et al., 2008)。對於室內 PVC 材質地板以及延長線暴露檢測,空氣中逸散之 DEHP 最高濃度可達 1.28 mg/m³,而 DEHP 之粒狀粉塵濃度最高可達 1.87 mg/g、 DINP 54.24 µg/g (李家偉, 2008)。台灣南部之後勁溪沉積物中 DEHP 所測得之濃度,相較於日本、德國和馬來西亞河流來得高 (Lin et al., 2009),且高雄地區 20112013 年自來水中可檢測出 8 種 phthalates (Yang et al., 2014)。

1.3 台灣塑化劑事件及後續追蹤研究

起雲劑為合法的食品添加物,主要是有飲料增稠、 乳化穩定的作用,然而 2011 年台灣爆發塑化劑充當起雲劑添加事件,DEHP 為一種毒性大於三聚氰胺的 化工塑膠軟化劑,不肖業者以 DEHP 代替棕櫚油加到食品內,達到類似起雲劑的 效果。塑化劑事件爆發後,針對 2731 件食品進行 6 種 phthalate 進行檢測,發 現 DEHP 和 DINP 為主要之物質 (Wu et al., 2014)。針對 2009 到 2010 年,台 北地區 12 到 15 歲之青少年尿液,進行鄰苯二甲酸酯類代謝產物之分析,發現 MEHP 及 MBP 為主要之代謝產物 (Bao et al., 2015)。塑毒事件後,調查台灣 60 位兒童的尿液,發現其 DEHP 濃度明顯較高,且發現血清中含有較高濃度的 phthalate,與促甲狀腺激素之下降有關 (Wu et al., 2013)。國內研究也發現 phthalate 暴露會縮短女性之孕期,且造成子宮內膜異位;並造成男嬰之肛門與生殖器距離縮 短、睪丸不全、精蟲減少 (Li and Ko, 2012)。Phthalate 暴露也與誘發哮喘、出生體 重降低、過動、肺功能下降及乳腺癌有所關連 (Yen et al., 2011)。

1.4 鄰苯二甲酸酯類之癌細胞特性相關實驗

在乳癌細胞 MCF-7 (ERa+) 和乳癌細胞 MDA-MB-231 (ERa-) 暴露於 0.1-100 μM DEHP 時,有促進細胞增生之情形 (Tanay et al., 2014)。乳癌細胞 MDA-MB-231 (ERa-) 受到 DEHP (> 1.28x10⁵ nM) 暴露後,有顯著提升其入侵 (invasion) 能力,推測是透過活化 NF-κB 以及過表現 Matrix metalloproteinases-2/-9 (MMP-2/-9) (Zhang et al., 2016)。即使在低濃度 (10 nM) BBP、DBP 及 DEHP 暴露,皆 可以具有取代雌激素活性之能力,使得乳癌細胞 MCF-7 能透過 PI3K/ Akt 訊號 傳導途徑誘導細胞增生,且在具有 17β-estradiol (E2) 的情況下避免細胞凋亡 (Chen et al., 2016) °

BBP (100 μM)、DBP (10 μM) 及 DEHP (10 μM) 對於乳癌細胞 MCF-7 的增 生能力有顯著的提升,而 MDA-MB-231 則沒有此情形。此三種 phthalate 因為與 雌激素有相似的結構,因此在 MCF-7 細胞中,能抑制由 tamoxifen 所誘發的細胞 凋亡,並且推測此抑制作用與提升胞內 Bcl-2/Bax 的比值有關 (Kim et al., 2004)。 BBP 及 DBP 於 1 μM 濃度下會誘發乳癌細胞 MDA-MB-231 (ERa-) 增生及移動, 以及腫瘤形成。進一步發現 phthalates 會刺激細胞表面的 aryl hydrocarbon receptor (AhR),並誘發下游 cyclic AMP (cAMP)-PKA-CREB1 一連串的訊號傳遞 (Hsieh et al., 2012)。

DEHP 代謝產物 MEHP 可能會透過活化 Hedgehog (Hh) 訊息傳導路徑中的 下游標的,驅使前列腺癌的發展進程 (Yong et al., 2016)。DBP 會藉由上調 c-myc 及 cyclin D1 表現,以及下調 p21 來促進前列腺癌細胞 LNCaP 細胞增生。結合 動物實驗之結果也顯示,DBP 可能是藉由連結 TGF-β 與 ER 訊息傳導路徑,誘 導 LNCaP 癌細胞生長 (Lee et al., 2014)。

DEHP 暴露可以提升 interleukin-6 (IL-6) 及 IL8 的表現,而 DEHP 可以刺激非小型肺癌細胞之移動以及入侵能力,經實驗證明是透過 NF-κB 調節而提升 IL-6 來進行調控 (Wang et al., 2017)。Curcumin 可以透過抑制 AhR/ERK/SK1/S1P3 訊息傳導路徑,於肝臟腺癌細胞株 Huh7 達到抑制 DEHP 所誘導提升的細胞移動、 侵入及 cancer stem cell (CSC)-like 維持的能力 (Tsai et al., 2015)。Wilms' tumor 為 一有關抑癌基因 WT1 失活的腎臟癌,研究發現 MEHP 可以透過 NF-κB 訊息傳 導路徑來刺激 Wilms' tumor 發展進程 (Wang et al., 2017)。

人類大腸癌細胞 LS174T 受到 DEHP 處理後,會提高抗癌藥物抗性基因 MDR1 的表現,且有劑量效應 (Takeshita et al., 2006)。六種 phthalate 混合物 (DBP、 BBP、DEHP、DiNP、DNOP 及 DiDP) 當暴露濃度於 8.52x10⁻³ nM 及 8.52x10⁻⁴ nM 時,分別會提升大腸直腸腺癌細胞 HT29 細胞增生 10.94% 及 60.87%,而移 動能力在 8.52x10⁻⁴ nM 濃度上升約 38% (Yurdakok et al., 2015)。DEHP 及 MEHP 會增加大腸癌細胞 HCT116 及 SW480 的細胞存活率,並發現會藉由 epithelial mesenchymal transition (EMT) 促進 HCT116 細胞移動的能力 (Chen et al., 2018)。 DEHP 會於小鼠體內加劇 DMH 所誘發的大腸癌化情況,提供了 DEHP 可能與 其他致癌因子有結合之效果 (Chen et al., 2017)。

1.5 Di (2-ethylhexyl) phthalate (DEHP) 之生物體代謝反應

DEHP 經由呼吸、消化道及血液循環系統等路徑,進入到人體後會進行代謝反 應,首先會代謝成 Mono (2-ethylhexyl) phthalate (MEHP),之後進一步透過不同的 氧化反應,生成相關的氧化代謝產物 (Albro et al., 1982; Schmid & Schlatter, 1985)。 In vitro 相關研究發現,人類小腸及肝臟皆會產生水解產物 MEHP,以及 cytochrome P450 (CYP) 參與之 MEHP 氧化代謝產物,其中 MEHP、5-OH MEHP 及 5-oxo MEHP 皆會在人類及老鼠肝臟進行葡萄醣醛酸化 (glucuronidation) (Choi et al., 2012)。人類小腸透過酯類調控之路徑代謝,預期清除之 DEHP 約為人類肝 臟的 2.4 倍,而由 CYP 參與之氧化及脫烷反應所預期清除之 MEHP,效率則是 人類肝臟大於小腸 (Choi et al., 2013)。以同位素標定,觀察口服 DEHP,效率則是 人類肝臟大於小腸 (Choi et al., 2013)。以同位素標定,觀察口服 DEHP 之人體代 謝,發現 24 小時後約有 67% 的 DEHP 以代謝產物形式從尿液排出,如 5OH-MEHP、5cx-MEHP、5oxo-MEHP、MEHP 及 2cx-MMHP (Koch et al., 2004; Koch et al., 2005; Koch et al., 2006)。其中 MEHP 半衰期最短,而 5-cx-MEPP 及 2cx-MMHP 較長,作為測量 DEHP 在生物體內,隨時間代謝的主要指標;而 5oxo-MEHP 及 5OH-MEHP 則更能反映出 DEHP 在生物體內的短期暴露水平 (Koch et al., 2004; Koch et al., 2005; Preuss et al., 2005)。

1.6 大腸直腸癌之流行病學

大腸直腸癌自 2006 年首次超越肝癌,成為台灣癌症發生人數最多的癌症,且 截至 2017 年已第九度蟬聯十大癌症之首。大腸癌之發生人數自 1995 年起的 4217 例,提升至 2015 年的 15579 例,且大腸癌之標準化死亡率呈現增加的趨 勢,由 1995 年每十萬人口的 13.3 人增至 2016 年的 14.6 人,且每年死亡人數 約超過 5000 人 (衛生福利部國民健康署 2015 癌症登記年報)。與經濟合作暨發 展組織 (簡稱 OECD) 34 國家於 2016 年比較之結果,發生率及死亡率分別位居 第 5 名及第 11 名,顯示大腸癌議題在台灣極為重要 (衛生福利部國民健康署-健康久久網站)。

大腸癌之危險因子眾多,主要有老化 (Morikawa et al., 2013; Marley and Nan, 2016)、長期吸菸 (Chao et al., 2000)、飲酒過量 (Bardou et al., 2002)、炎性腸病 (Jess et al., 2012)、加工肉類 (Chan et al., 2011)、肥胖 (Moghaddam et al., 2007) 和罹患 第二型糖尿病 (Berster et al., 2008) 等 (註1)。較少患者則是源自家族遺傳病史 (Jasperson et al., 2010),如家族性大腸瘜肉進一步形成惡性腫瘤,以及遺傳非瘜肉 性大腸癌 (Lynch syndrome),佔大腸癌不超過 5% (Burn et al., 2013; Jang et al., 2010)。 註1: American Cancer Society- Colorectal Cancer Risk Factors

https://www.cancer.org/cancer/colon-rectal-cancer/causes-risks-prevention/riskfactors.html

1.7 大腸直腸癌發展進程分期

大腸癌患者之癌病程度,可依照癌症發展分期進行診斷,以及提出相應的治療 方案。對於大腸癌分期,普遍且實用性最高之分類系統,為美國癌症聯合委員會 (American Joint Committee on Cancer-AJCC) 之 TNM 系統。其中 T 為腫瘤之大 小及程度,藉此了解其癌症之發生位置;N 為癌症是否已擴散至鄰近之淋巴結, 而 M 則能了解癌症是否已擴散至遠端組織或是器官,發生轉移之狀況。TNM 系 統之數字則是根據癌化程度,再細分為更細微的發展進程(註2)。 根據 AJCC 之分期方式,國際癌症組織之「監控、流行病學及最終結果」計 畫之 2004 到 2010 年資料庫顯示,大腸癌及直腸癌確診之五年存活率,皆隨著 發展至後期,有顯著之下降之情況。如大腸癌及直腸癌分別在第一階段有 92% 及 87%,而到了晚期的第五個階段只剩下僅有的 11% 及 12% 的存活率,顯示大腸 直腸癌病之早期治療極為重要 (註3)。

註2: American Cancer Society- Cancer Staging

https://www.cancer.org/treatment/understanding-your-diagnosis/staging.html

\$±3: American Cancer Society- Survial Rates for Colorectal Cancer, by Stage <u>https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/survival-</u> <u>rates.html</u>

1.8 大腸直腸癌致癌機制

Aberrant crypt focus (ACF) 是大腸直腸癌形成初期之病理特徵 (Pretlow et al., 1991; Roncucci et al., 1991),其中細胞發生大規模的 adenomatous polyposis coli (APC) 基因突變或是缺失 (Powell et al., 1992; Ichii et al., 1992),進一步活化 Wnt/ β-catenin 訊號傳遞路徑,造成大腸癌的發生 (Sena et al., 2006)。APC 為大腸直腸 癌之抑癌基因,當 APC 功能缺失時會造成大腸瘜肉發生,提高罹患大腸直腸癌之 風險 (Aoki and Taketo, 2007)。目前已知之大腸直腸癌相關之訊息傳導路徑,包含 了 Wnt、PI3K-Akt-mTOR、K-ras/β-raf、Notch/bHLH、TGF-β、PKB 以及 Hedgehog signaling pathway。

當活化 Wnt/β-catenin 訊息傳導路徑,GSK3-b 對 β-catenin 的磷酸化作用會 消失,而 β-catenin 會與 T 細胞因子進行結合,造成細胞分裂且與癌症生成有關 (Xue et al., 2012; Herbst and Kollings, 2007)。Axin2 (Axin inhibition protein2) 為 Wnt/ β-catenin 訊息傳遞路徑中重要的調解者,參與調節細胞增生、移動、凋亡及其他 重要功能,研究也指出 Axin 的突變會導致大腸癌之發生 (Khan et al., 2011; Li et al., 2015)。此外, KRAS/BRAF/MEK 之訊息傳導路徑的活化會促進 Wnt/β-catenin 的訊息傳遞, 而促成腸腫瘤的生長和入侵。LRP6 磷酸化也常見於人類大腸直腸腫 瘤, 而 ERK 1/2 亦會透過磷酸化 LRP6 來連結 KRAS/MAPK 及 Wnt/β-catenin 訊息傳導路徑 (Lemieux et al., 2015)。

活化之 Akt 訊息傳遞路徑已被證實存在於約 60-70% 的人類大腸癌當中,且 PI3K/Akt 訊息傳導路徑之抑制劑已被推測為具有潛力的治療方案。約有 80% 之 人類大腸癌腫瘤具有 APC 之突變,且部分則是具有 β-catenin 之突變,且已被證 實會影響下游之 PI3K/Akt 訊息傳導路徑 (Pandurangan, 2013)。PI3K/Akt/mTOR 訊息傳導路經中,如 p-mTOR、Akt1 等皆在大腸直腸癌細胞中有過量表現 (Johnson et al., 2010)。

EGFR 訊息傳導路徑普遍在大腸直腸癌都有顯著上調之表現 (Jean et al., 2008),而 RAS 及 RAF 為 EGFR 訊息傳導路徑下游之蛋白,且 KRAS 及 BRAF 突變也普遍發生在大腸直腸腺癌細胞,對於 EGFR 抑制劑具有主要的抗衡 能力 (De Roock et al., 2008; Amado et al., 2008)。Notch 訊息傳導路徑參與決定細胞命運的過程,包含維持前驅細胞及幹細胞之平衡,以及對於細胞增生、分化及細胞凋亡都扮演重要的角色,Notch 訊息傳導機制也參與了大腸直腸癌的癌化過程 (Qiao and Wong, 2009)。Notch1 在大腸癌,對於活化 Wnt 訊息傳導路徑扮演重要 角色,並且與協助 β-catenin 進入細胞核內有關 (Ishiguro et al., 2017)。

1.9 本論文之研究目的及重要性

目前已知有關鄰苯二甲酸酯類 (phthalate) 暴露造成之危害,主要針對乳癌、 肝癌、攝護腺癌以及生殖毒性居多,對於大腸直腸癌之相關研究較缺乏。隨著大腸 直腸癌發生率的逐年攀升,以及高比例之外食人口,本研究旨在結合生物資訊巨量 分析及人類大腸細胞長期暴露模式,探究 phthalate 暴露對於大腸細胞生長之影響。 利用比對臨床大腸癌病人組織之基因資料庫,以及人類細胞暴露 phthalate 之基因 資料庫,找出 phthalate 暴露與大腸癌癌化進程相關之關鍵基因 (hub gene) 以及 可能之調控途徑網絡 (gene network) (Figure 1)。且根據食藥署調查,顯示國人於生 活中暴露量最多之 phthalate 種類為 Di(2-ethylhexyl) phthalate (DEHP),因此本研 究利用細胞暴露模式,驗證 DEHP 對於正常大腸細胞株 CCD841 及 人類非轉移 大腸癌細胞株 SW480 之癌化方面生長特性之影響,觀察細胞增生及移動能力,同 時驗證預測調控網絡之關鍵基因之變化 (Figure 1),分別探究其誘發大腸細胞癌化 及促進癌化進程發展之可能。 2. 材料與方法

2.1 細胞製備

2.1.1 細胞株

人類大腸癌細胞株 SW480 (ATCC[®] CCL-228TM)、人類大腸上皮細胞株 CCD841 (ATCC[®] CRL-1790TM)。

2.1.2 藥品

Bis (2-ethylhexyl) phthalate (PESTANALTM, analytical standard)

-Product number: 36735 (SIGMA-ALDRICH®)

-Purity: 99.7%

Lipopolysaccharides from Escherichia coli O26:B6

Product number: L8274 (SIGMA-ALDRICH®)

2.1.3 細胞培養液

Dulbecco's Modified Eagle's Medium (DMEM) (Gibco[®], 11965-092): 含有 4.5 g/L D-glucose (high) 及 L-glutamine, 不含 sodium pyruvate。 Eagle's Minimum Essential Medium (EMEM) (CORNING[®], 10-009-CV): 含有 1.5 g/L sodium bicarbonate、L-glutamine 及 sodium pyruvate.

2.1.4 細胞培養

培養人類大腸癌細胞株 SW480 於添加 10% (v/v) fetal bovine serum (FBS)、 100 units/ml penicillin 和 100 µg/ml streptomycin (Gibco[®], 15140-122) 之 DMEM 中,於 37℃、5% CO₂ 的細胞培養箱進行培養。

培養人類大腸上皮細胞株 CCD841 於添加 10% (v/v) fetal bovine serum (FBS)、100 units/ml penicillin 和 100 µg/ml streptomycin (Gibco[®], 15140-122) 之 EMEM 中,於 37℃、5% CO₂ 的細胞培養箱進行培養。

2.1.5 繼代培養

SW480 cell line

將培養液 DMEM 吸除,以 3 ml 滅菌的 Phosphate-buffered saline (PBS) 潤洗 細胞後吸除,接著加入 1.5 ml 0.05% Trypsin-EDTA,並置於 37℃ 培養箱 5 分鐘, 之後加入 8.5 ml 含有 10% FBS 的 DMEM 培養液終止 Trypsin 作用。將細胞打 散後取出 1 ml 的細胞懸浮液,於含有 7 ml 10% FBS 培養液 DMEM 的 10 公 分培養皿中,置於 37℃、5% CO₂ 的細胞培養箱進行培養。

CCD841 cell line

將培養液 EMEM 吸除,以 3 ml 滅菌的 PBS 潤洗細胞後吸除,接著加入 1.5 ml 0.05% Trypsin-EDTA,並置於 37℃ 培養箱 5 分鐘,之後加入 4.5 ml 含有 10% FBS 的 DMEM 培養液終止 Trypsin 作用。將細胞打散後移置 15 ml 離心 管,以轉速 200 rcf 離心 5 分鐘,將上清液吸除後以 2 ml 10% FBS 培養液 EMEM 懸浮細胞,取出 1 ml 的細胞懸浮液,加到含有 7 ml 10% FBS 培養液 DMEM 的 10 公分培養皿中,置於 37℃、5% CO2 的細胞培養箱進行培養。

2.1.6 細胞冷凍保存與解凍細胞

Freezing:

將培養液吸除,以 3 ml 滅菌的 PBS 潤洗細胞後吸除,接著加入 1.5 ml 0.05% Trypsin-EDTA,並置於 37℃ 培養箱 5 分鐘,之後加入 4.5 ml 含有 10% FBS 的 DMEM 培養液終止 Trypsin 作用。將細胞打散後移置 15 ml 離心管,以轉速 200 rcf 離心 5 分鐘,將上清液吸除後以 1 ml 含有 5% Dimethyl Sulfoxide (DMSO) 及 10% FBS 之培養液懸浮細胞,將細胞移置細胞冷凍小管,並使用漸凍盒讓細胞 降至 -80℃,隔天再轉移至液態氮桶進行保存。

Thawing:

將細胞冷凍小管自液態氮桶取出,於 37℃ 水浴槽快速解凍約 2 分鐘,待細胞液溶解至液態,即將細胞液取出,轉移至含有細胞培養液之離心管,以轉速 200 rcf 離心 5 分鐘。將上清液吸除後,以 8 ml 之含有 10% FBS 的細胞培養液懸浮 細胞,將細胞液轉移至 10 cm 培養皿中,於 37℃、5% CO₂ 的細胞培養箱進行培養。

2.1.7 細胞計數

將細胞懸浮液以 pipet 進行吸放,使細胞能夠均勻分佈後,取出 20 μl 的細胞懸浮液至 1.5 ml 的 eppendorf,以等體積 20 μl 的 trypan blue stain (Gioco, 1525061),與細胞懸浮液均勻混合,接著吸取 10 μl 混合好的液體加到 counting chamber (Marienfeid-Superior, 0610039094) 上。以計數器計算九宮格四個角落方格 內的細胞數量,並以下述之公式計算出細胞濃度:

四個方格內細胞總數/4 X2 (trypan blue稀釋倍數) X 10⁴ (一格的體積為1/10⁴ml) = 細胞濃度 (顆/ml)

2.2 資料庫蒐集及分析

2.2.1 蒐集微陣列資料庫

為了研究 phthalates 暴露對於人類大腸細胞可能影響之相關基因,本研究主要從 ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) 搜尋 2005 年 1 月 1 日 至 2017 年 8 月 29 日,以關鍵字 *Homo sapiens* 及各種種類 phthalates,挑選使

用基因晶片平台 Affymetrix 的數據集,並剔除微陣列數據之 probe ID 無法正常 轉換之數據集,共計 4 筆與人類細胞及 phthalates 暴露相關之微陣列數據集,總 共有 32 筆樣本 (Table 1),用以進行本研究微陣列之巨量分析 (Figure 2A)。

為了研究人類大腸細胞癌化進程相關基因的影響,本研究從 ArrayExpress 搜 尋之微陣列數據集之資料,針對 2005 年 1 月 1 日至 2015 年 7 月 29 日,以 關鍵字 Homo sapiens、metastasis 及 colorectal cancer tissue 進行搜尋,剔除掉 29 個缺乏臨床資訊之微陣列數據集,共有 6 筆微陣列數據集、599 筆樣本 (Table 2) (劉梁明琦, 2016)。599 筆樣本使用之基因微陣列晶片平台,包含了 Affymetrix 和 Illumina,接著進行差異表現基因 (Differentially expressed gene-DEG) 探討及相關 網絡分析 (Figure 2B) (劉梁明琦, 2016)。

2.2.2 鄰苯二甲酸酯類暴露之微陣列資料庫之前處理

由網站 ArrayExpress 下載與本研究相關之數據集之 txt 檔,以 excel 開啟檔 案並將每筆樣本進行分類,設定在 #CLASS 的欄位,分別為有 phthalates 暴露之 實驗組,以及無 phthalates 暴露之控制組。接著以分析平台 NetworkAnalyst 進行 資料的處理及統整,於 *p*-value 為 0.01 的條件下,進行 Quantile normalization, 並進行 DE analysis (Differentially expressed analysis)。

2.2.3 差異表現基因之分析及基因模組之建立

利用 NetworkAnalyst 進行差異表現基因 differentially expressed genes (DEG) 及基因模組 (gene modules) 之分析。首先將先前預處理之基因微陣列數據集,設定 Benjamini-Hochberg's False Discovery Rate (FDR) cut-off *p*-values 值為 0.01,選择 Fisher's method (-2*∑Log(p)) 於 significance value 為 0.01 進行 *p*-values 之統合,找出 phthalates 暴露對於人類細胞株之差異表現基因 (DEG)。接著使用

protein-protein interaction (PPI), confidence score cutoff 為 950 (range from 400 to 1000) 條件下,根據所找到之 DEGs 進行基因功能之分群,建立基因模組。根據 分群之基因模組,能夠減少訊息傳遞網絡之複雜性,並保留最具代表性之基因功能 和基因聯結程度。

2.2.4 基因網絡之功能及網絡間之交互作用

由 NetworkAnalyst 所建構之基因模組,進一步使用線上分析軟體 Cytoscape, 重新建構出相關之基因功能網絡 (ontological gene network),以及建立基因交互作 用網絡 (gene network)。Cytoscape 為公開之生物資訊分析軟體,可安裝多種分析 軟體,具備不同資料處理能力,可以進行關係網絡以及基因傳導路徑之視覺化分析, 並藉由網絡之間的特性、基因功能進行整合,做出合適的基因網絡。

本研究使用 Clue GO 及 CluePedia 兩種分析軟體進行分析,分別以 ClueGO 建立差異表現基因之功能網絡,及使用 CluePedia 建立基因間交互關係之作用網 絡。將 NetworkAnalyst 所建立並擴增之 DEGs 相關之基因,匯入軟體之基因列表, 選用 ClueGO 中人類 GO 之生物資料庫進行功能檢索,透過 Benjamini-hochberg 的方法篩選出具統計意義之顯著性基因功能,並透過調整 Kappa 值評估功能之間 的相似程度,Kappa 值越高則功能相似性越低,越能找出更多不同的功能群。最後 勾選合適之 Kappa score,整合並繪製出基因功能之網絡圖。

2.2.5 基因本體 (Ontology) 分析

Gene ontology 之分析使用線上平台 DAVID 進行。針對由 NetworkAnalyst 所撷取出來的模組基因,進行基因功能上的分類。其中 gene ontology 分類主要有 三個類群,分別為分子功能 MF (molecular function)、生物性程序 BP (biological process) 及細胞組成 CC (cellular component)。利用所提供的基因列表,完成基因 的功能性分析,以便強調擁有最高關聯性的 GO 類群內所涵括之基因。

主要是將由 NetworkAnalyst 所建構之模組基因,分別是 phthalates 暴露、大腸直腸癌原位以及大腸直腸癌轉移部份,將欲探討之基因模組擷取出來後,分別將 基因列表上傳至 DAVID 進行基因功能性註解分析。本研究利用 EASE score (modified Fisher Exact *p*-value) 為 0.05 作為篩選依據,能夠挑選出最具有顯著差 異之基因功能群 (Table 3-5)。

2.3 細胞模式實驗

2.3.1 細胞增生分析

將非轉移大腸癌細胞株 SW480 及正常大腸細胞株 CCD841,以 100µl 之細 胞液分別細胞數為 3000 顆及 6000 顆至 96 孔盤,且 24 小時後以 DMSO control 以及含有 DEHP 濃度為 10²、10⁴ 及 10⁶ nM 的培養液,使細胞暴露於含 有 DEHP 的培養液,於 37℃、5% CO₂ 細胞培養箱進行培養。於開始暴露 DEHP 後的每 24 小時,以最後濃度為 2% 之 WST-1,反應一小時後以 ELISA reader 測量 450 nM 及 650 nM 吸光值,收取三個時間點 24、48 及 72 小時,以 450 nM 減掉 650 nM 之吸光值進行作圖。每次試驗皆同時以細胞數 2500、5000、7500、 10000 及 12500 顆,於 4 小時後以最後 WST-1 濃度為 2%,反應一小時後以 ELISA reader 測量 450 nM 及 650 nM 吸光值,做為細胞檢量線。

2.3.2 細胞移動分析

將非轉移大腸癌細胞株 SW480 及正常大腸癌細胞株 CCD841,於 24 小時 貼附 6-well plate 後,以 DEHP 濃度 $10^2 \times 10^4 \times 10^6$ nM 及 DMSO control,進行 48 小時細胞暴露。將 SW480 及 CCD841 細胞株懸浮,分別配製含有 10^6 顆/1 ml 及 4x10⁵ 顆/1 ml 於不含 FBS 的 medium。細胞液配製完成後,先在 lower chamber 加入含有 10% FBS 培養液 800 µl,之後將 8 m transwell (BD Falcon Cell Culture Inserts) 放入,接著於 upper chamber 加入已配製好之細胞液 250 µl,且使 最後 DEHP 濃度為 10²、10⁴、10⁶ nM 持續進行暴露,於 37℃、5% CO₂ 細胞培 養箱,進行 24 小時培養。

24 小時後將 upper chamber 及 24 孔盤內之細胞液吸除,且加入 700 μl 以 20% methanol 配製好的 0.5% crystal violet 於盤底,接著將 insert 放入使細胞能 夠進行染色及固定。染色 30 分鐘後將染劑吸除並以二次水清洗多餘的染劑,接著 以棉花棒清除 upper chamber 內的細胞,於風乾之後以相機拍下 transwell 內的三 個視野,進行細胞計數並將所得之數值平均後作圖。

2.3.3 RNA 萃取

將非轉移大腸癌細胞株 SW480 及正常大腸癌細胞株 CCD841,於 24 小時 貼附 6-well plate 後,以 DEHP 濃度 $10^2 \cdot 10^4 \cdot 10^6$ nM 及 DMSO control,進行 72 小時細胞暴露,並每 24 小時更換新的培養液進行重複暴露。使用 Machereynagel 的 RNA isolation kit,依照 NucleoSpin RNA protocol 進行實驗。將暴露 72 小時的細胞以含有 1% β-ME 的 350 µl RA1 破細胞,然後將細胞液移至 NucleoSpin Filter,以 11000 g 離心 1 分鐘後,將 collection tube 內之液體加入 350 µl 70% ethanol 混合均匀。接著將混合後之液體移至 NucleoSpin RNA Column 以 11000 g 離心 30 秒,並更換 collection tube。將 350 µl Membrane desalting buffer (MDB) 加入並以 11000 g 離心 1 分鐘,之後加入已配製好的 95µl rDNase reaction mixture (90 µl reaction buffer for rDNase + 10 µl rDNase) 於室溫下靜置 15 分鐘。之後依序加入 200 µl RAW2、600 µl RAW3 及 250 µl RAW3,加入後以 11000 g 離心 30 秒、30 秒及 1 分鐘。最後將 NucleoSpin RNA Column 移至 nucleasefree collection tube,以 60 µl RNase-free H₂O 回溶並以 11000 g 離心 1 分鐘。

15

2.3.4 反轉錄製備 cDNA (complementary DNA)

將利用 RNA isolation kit 所分離之 RNA,以 BIO-RAD 之 iScript cDNA Synthesis Kit 進行反轉錄聚合酶連鎖反應 (RT-PCR)。取1000 ng 的 RNA、4µl 5x iScript Reaction Mix 及 1µl iScript Reverse Transcriptase 至 PCR eppendorf,剩 下體積以 RNase-free H₂O 補至總體積 20µl,以 Biometra 的 T-Personal thermal cycler 進行 cDNA 合成。上蓋預熱至 95℃,25℃ 反應 5 分鐘、42℃ 反應 30 分鐘、85℃ 反應 5 分鐘及最後降溫至 14℃ 終止反應。

2.3.5 定量聚合酶連鎖反應 (quantitative polymerase chain reaction, qPCR)

以 BIO-RAD 之 CFX ConnectTM 進行 qPCR 定量,將製備好的 cDNA 取 0.5 µl、與 9.1 µl 無菌二次水、各 0.2 µl 20 uM 之正反股引子 (Table 6),以及 10 µl 2X iQTMSYBR[®]Green Supermix (BIO-RAD) 混合。cDNA以 two-step qPCR 進行 放大,第一步 95℃ 反應 5 分鐘;第二步 95℃ 反應 10 秒;第三步 55℃ 反應 30 秒;第四步 95℃ 反應 10 秒;第五步 65℃ 反應 5 秒及 95℃ 反應 50 秒。 而第二步到第三步進行 40 個循環反應。

16

3. 研究結果

本研究主要在探討鄰苯二甲酸酯類 (phthalates),對於大腸細胞生長特性之影響,以及是否具有誘發腫瘤發生以及加速癌化進程之可能,並分析其影響之潛在訊 息傳導路徑。本研究分為微陣列數據之收集、整合 phthalate 暴露與大腸癌發展進 程相關之差異表現基因、找出關聯性較高的基因模組、重建模組基因並預測與大腸 癌癌化相關之訊息傳導路徑。最後透過正常大腸細胞株 CCD841 以及大腸癌細胞 株 SW480 進行實驗驗證,確認預測傳導路徑內目標基因之表現,以及對於癌細胞 特性表現之影響。

首先蒐集 phthalate 暴露及大腸直腸癌癌化進程之微陣列數據,分別為 32 筆 (Figure 2A) 及 599 筆樣本 (Figure 2B)。將原始資料利用 Excel 進行預處理,接 著使用線上分析平台 NetworkAnalyst 進行 Normalization,找到三組之差異表現 基因,分別為 phthalate 暴露對上控制組、大腸正常細胞對上大腸原位癌細胞、大 腸原位癌細胞對上大腸轉移癌細胞。接著將找到之差異表現基因,根據基因功能特 性進行基因模組之分群,最後選定關聯性較大之基因模組,並使用分析軟體 Cytoscape 進行模組基因之重新視覺化及建構基因網絡。利用 Cytoscape 內建之軟 件 CluePedia 進行整合,找出各差異表現基因網絡之重疊部分,進而預測與 phthalate 暴露、大腸癌發展進程相關之訊息傳導路徑,並藉由細胞株 SW480 及 CCD841 進行細胞實驗,驗證預測路徑上的目標基因,以及檢測癌細胞發展進程之 特性表現 (Figure 1)。

3.1 鄰苯二甲酸酯類暴露和大腸直腸癌進程之模組基因之基因本

體分析 (Ontological analysis)

由 ArrayExpress 之搜尋結果,鄰苯二甲酸酯類 (phthalates) 暴露與大腸癌進 程相關之微陣列數據,分別為 4 筆 (32 個樣本) (Table 1)及 5 筆 (599 個樣本) (Table 2)。將 NetworkAnalyst 所篩選之差異表現基因 (Differentially expressed gene; DEG)建立基因模組,挑選關聯性較高之基因模組,利用 Cytoscape 之 ChueGO 重新進行視覺化,分別繪製出 phthalate 暴露之 DEG 基因網絡、大腸癌原位對上 正常組織之 DEG 基因網絡,以及大腸癌原位對上大腸癌轉移癌之 DEG 基因網 絡 (Figures 3A-3C)。根據分析其基因模組功能之顯示,phthalate 暴露影響之主要 基因功能群為:血管上皮生長因子活化之血小板衍生生長因子受體訊息傳導路徑、 細胞膜長鏈胺基酸運送之調節、背部神經節發育、藉由正向調節 RNA 聚合酶 II 啟動子之脂質調控、細胞分裂週期之 G1/S 過渡期之負向轉錄調節、CRD (coding region instability determinant) 調節之 mRNA 穩定、參與心臟之血管新生素活化之 訊號傳遞路徑及應對錳誘發之內質網壓力之反應 (Figure 3A)。影響原位大腸癌之 發展進程的基因群,其功能與細胞分化、糖解作用調節、氧化壓力所誘發之細胞死 亡以及氧化磷酸化的調節有關 (Figure 3B) (劉梁明琦,2016)。影響大腸癌轉移之 發展進程主要基因群,其功能則是與轉化生長因子刺激之細胞反應調節、上皮細胞 與間葉組織之轉變、腸內分泌細胞之分化,以及參與在生長荷爾蒙所參與的 JAK-STAT cascade 訊息傳導路徑 (Figure 3C) (劉梁明琦, 2016)。

3.2 鄰苯二甲酸酯類暴露和大腸直腸癌進程之模組基因之基因調節網絡

將進行基因功能分析之模組基因,利用 Cytoscape 內建之軟件 CluePedia 進 行基因調節網絡之分析。首先個別將 phthalate 暴露、大腸癌原位以及大腸癌轉移 之差異表現基因,依照個別建立之模組基因繪製出基因網絡 (Figures 4A-4C),接 著將三個 DEG 基因網絡合併,找出三個基因網絡之交集及聯集。最後整合之基因 網絡,為與鄰苯二甲酸酯類暴露有關,且可能誘發大腸直腸癌發展進程相關之潛在 訊息傳導路徑 (Figure 4D)。

3.3 鄰苯二甲酸酯類暴露可能誘發大腸癌腫瘤發生及加速癌化進 程相關之潛在調節路徑

將 phthalate 暴露、大腸癌原位以及大腸癌轉移之整合性基因網絡建構之後, 擷取整合性基因網絡內的基因,利用 Cytoscape 內建之 CluePedia,進行基因間活 化及抑制關係分析,可以找出有關 phthalates 暴露後,可能誘發大腸直腸癌進程發 展之關鍵基因及其調控路徑 (Figure 5)。潛在調控路徑之 27 個基因包含了 VEGFA (vascular endothelial growth factor A)
PDGFRB (platelet derived growth factor serine/threonine kinase 1) · HSP90AA1 (heat shock protein 90 alpha family class A member 1)
SIRC5 (baculoviral IAP repeat containing 5)
HIF1A (hypoxia inducible factor 1 subunit alpha)
> FYN (FYN proto-oncogene)
> HSF1 (heat shock transcription class B member 1) · EGFR (epidermal growth factor receptor) · PPARA (peroxisome proliferator activated receptor alpha)
AKT2 (AKT serine/threonine kinase 2)
FOXO3 (forkhead box O3) STAT3 (signal transducer and activator of transcription 3) MYC (MYC proto-oncogene)
CCNB1(cyclin B1)
MAPK1 (mitogen-activated protein kinase 1) SCL2L11 (BCL2 like 11) CDK2 (cyclin dependent kinase 2) CDK4 (cyclin dependent kinase 4)
CDC6 (cyclin dependent kinase 6)
IGF1R (insulin like growth factor 1 receptor)、CDKN1B (cyclin dependent kinase inhibitor 1B) 及 CDKN1A (cyclin dependent kinase inhibitor 1A) •

由所預測之潛在調控路徑可以看到,當細胞受到 phthalates 暴露,可能會影響 上游之基因,如 VEGFA、PDGFRB、SRC 及 AKT1 等,進而促使細胞趨向有關 大腸癌前期之差異表現基因的路徑,如 FOXO1、HSP90AB1、EGFR 及 PPARA 等,最後走向大腸癌後期轉移癌部分之差異表現基因所調控之路徑,如 FOXO3、 CCNB1、STAT3、MYC、CDKN1A、CDKN1B 及 IGF1R 等 (Figure 5)。VEGFA 為 血管內皮生長因子,在許多癌症當中皆有上調表現之情況,表現量也與癌症發展進 程有關,參與了誘導血管新生、細胞增生及移動之能力。AKT1 為 serine 與 threonine 之激酶,會受到 PDGF 之活化,也具有使參與細胞凋亡物質失活之能力。 根據微陣列資料庫最初所找到之差異表現基因,包含了 VEGFA 以及 CCNB1,因 此本研究選定 VEGFA 及相鄰調控之 PDGFRB 作為預測調控路徑上,前期可能 會誘發腫瘤發生之關鍵性基因,作為 phthalate 暴露下可能會誘發之大腸癌癌化之 訊息傳導路徑。

3.4 鄰苯二甲酸酯類暴露及大腸癌化進程之差異表現基因之 GO terms

由 DAVID 之資料分析,根據 p-value 選取排名前 20 之 BP (biological process)。Phthalate 暴露之 DEG 基因網絡為 181 個基因 (Table 3),生物性進程 之功能包含 positive regulation of transcription、protein phosphorylation、negative regulation of apoptotic process、 negative regulation of transcription from RNA polymerase II promoter、regulation of cell proliferation 及 signal transduction 等。大 腸癌原位之 DEG 基因網絡為 366 個基因 (Table 4),分析之生物性功能結果包含 phosphorus metabolic process (25.1%)、 positive regulation of biosynthetic process (18.9%)、positive regulation of macromolecule (18.0%)、regulation of cell proliferation (18.6%)、positive regulation of nitrogen compound metabolic process (16.4%)、regulation of transcription (36.7%)、 regulation of RNA metabolic process (29.0%)、 regulation of apoptosis (17.8%) 及 intracellular signaling cascade (23.0%) 等等。而大腸癌轉移部 份之 DEG 基因網絡為 145 個基因 (Table 5),生物性進程功能之分析結果為包含 phosphate metabolic process (29.0%)、 regulation of cell proliferation (26.2%)、 intracellular signaling cascade (31.7%)、 positive regulation of cell proliferation (26.2%)、

process (23.4)、 positive regulation of macromolecule biosynthetic process (22.8%)、 positive regulation of nitrogen compound metabolic process (22.0%)、 positive regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process (21.4%)、 positive regulation of transcription (20.0%)、 regulation of apoptosis (22.1%) 及 protein kinase cascade (15.2%) 等。

3.5 DEHP 暴露影響預測之目標基因表現量變化

為了瞭解鄰苯二甲酸酯類是否會影響在 3.3 節預測的訊息傳導路徑,本研究 利用人類正常大腸細胞株 CCD841 及人類大腸癌非轉移細胞株 SW480 進行基 因表現檢測,以臺灣國人較常接觸到的 Di (2-ethylhexyl) phthalate (DEHP) 進行不 同濃度 (10²、10⁴、10⁶ nM) 的處理,針對預測路徑之上下游基因,進行 real-time PCR (qPCR) 檢測其基因表現量之變化。

CCD841 細胞株源自於懷胎 21 週女嬰的大腸上皮細胞,其細胞型態與正常 組織內上皮細胞相似,因此作為本研究探討 DEHP 是否具有誘發大腸細胞發生癌 化之細胞株。而 SW480 來自 50 歲成年男子之大腸上皮組織,其為大腸腺癌之原 位癌細胞,具有 epidermal growth factor (EGF) 之表現,由於 SW480 細胞株尚未 具有轉移之特性,因此可作為本研究探討 DEHP 是否會促進大腸癌癌化進程之發 生。

在正常大腸細胞株 CCD841 之實驗結果,其下游目標基因 CDKN1A(p21) 以 及 CDKN1B(p27),隨著 DEHP 濃度的上升皆有逐漸提高表現量之趨勢,而在 10⁴ 及 10⁶nM 組別中,皆有顯著之差異表現 (Figure 6A)。而大腸癌細胞株 SW480 之 qPCR 之結果,其 p21 及 p27 與控制組並沒有顯著之差異 (Figure 6B)。p21 及 p27 皆為 cyclin-dependent kinase inhibitor,主要擔任調控細胞週期 G1 phase (Sherr and Roberts, 1999)。

21

接著我們針對預測路徑上游之目標基因進行探討,在 CCD841 細胞株中,血 管上皮生長因子 VEGFA 以及血小板衍生生長因子受體 PDGFRB,皆隨著 DEHP 濃度上升,有表現量提高的情形,且分別在 10⁴ nM、10⁶ nM 處理下有顯著差異 (*p* < 0.1) (Figure 6A)。VEGFA 在許多腫瘤中,都有受到顯著正向調控的情況,主要 參與誘導細胞增生、移動及血管新生等功能 (Verheul and Pinedo, 2000);而 PDGFRB 則是對心血管系統之正常發育有重要功能 (Hellstrorm et al., 1999)。而在 其他相關之目標基因,如 FOXM1、SRC、AKT1、EGFR 以及 IGF1R,在有 DEHP 暴露的組別中皆有提高表現量之情形 (Figure 6A)。FOXM1 在細胞增生方面擔任 活化者 (activator) 的角色,於 M phase 被磷酸化後調控細胞週期之基因表現 (Wierstra and Alves, 2007);AKT1 則是會受到 PDGF 之活化 (Romashkova and Makarov, 1999),且會抑制細胞凋亡相關之因子 (Kennedy et al., 1997);表皮生長因 子 EGFR 則是會造成細胞增生 (Rubin Grandis et al., 1997);IGF1R 則是作為抗細 胞凋亡之調節者,進而提高細胞之存活,在較惡性之組織有高度過量表現 (Peruzzi et al., 1999;Larsson et al., 2005)。

另一方面,在癌細胞株 SW480 中,VEGA、PDGFRB、SRC、AKT1、FOXO1 以及 IGF1R 之基因表現量,在 DEHP處理後皆有上升趨勢,且 BIRC5 及 HSF1 皆有表現量提高之情形 (Figure 6B)。BIRC5 為細胞凋亡之抑制角色,在胎兒發展 過程及大多數腫瘤都有高度表現之情形 (Chiou et al., 2003); HSF1 則是會受到磷 酸化而抑制,進而與 heat shock protein 90 結合 (Ali et al., 1998)。

3.6 DEHP 毒性測試及對於人類大腸細胞增生之影響

為瞭解 DEHP 是否會影響大腸細胞生長特性的改變,本研究對 CCD841 及 SW480,進行不同濃度 DEHP(10²、10⁴、10⁶ nM)之暴露。

根據橫軸為 DEHP 暴露濃度之結果 (Figures 7A, 7B) 可以得知,正常大腸細胞株 CCD841,在不同 DEHP 濃度暴露下,細胞存活率約為 50%~110%。非轉移

大腸癌細胞株 SW480,其細胞暴露之結果,其三天暴露之細胞存活率約為 70%~120%。兩種大腸細胞株隨著 DEHP 暴露濃度的提高,存活率都有逐漸下降 的趨勢。

根據橫軸為暴露天數之結果 (Figures 7C, 7D),以暴露 DEHP 低、中、高三個 濃度之組別作圖 $(10^2 \times 10^4 \times 10^6 \text{ nM})$ 。由 T-test 之統計結果可以看到,CCD841 細胞株在高濃度組別 (10^6 nM) 的第二天及第三天,與控制組相比明顯下降 (p < 0.1)。 SW480 細胞株在 DEHP 暴露第三天,高濃度 (10^6 nM) 的組別與控制相比,其增 生能力顯著下降 (p < 0.05);然而在低濃度 (10^2 nM) 的處理,卻有提高細胞增生 之現象。

由細胞株 SW480 及細胞株 CCD841 細胞增生之結果,可以得知 DEHP 對於細胞之毒性並不強,在高濃度暴露下皆有顯著抑制細胞增生能力之影響。

3.7 DEHP 暴露對於人類大腸細胞移動之影響

為了瞭解 DEHP 是否影響大腸細胞之移動能力,使用大腸正常細胞株 CCD841 及大腸癌細胞株 SW480,在不同 DEHP 濃度 $(10^2 \times 10^4 \times 10^6 \text{ nM})$ 處理 下,進行細胞移動試驗。實驗結果顯示,CCD841 細胞細胞移動能力會隨著 DEHP 暴露濃度上升而增加,於 10^6 nM DEHP 處理時有顯著之提升 (p < 0.05) (Figures 8A,9A)。而 SW480 細胞的移動能力隨著 DEHP 暴露濃度越高有下降之趨勢,於 10^4 nM (p < 0.05) 及 10^6 nM (p < 0.1) 之組別有顯著差異 (Figures 8B,9B)。

3.8 Lipopolysaccharide (LPS) 與 DEHP 共同暴露對於細胞移動、

預測之目標基因及發炎相關因子之影響

發炎反應對於癌症發展進程,具有重要的影響,在許多研究中發現發炎會刺激 癌細胞生長,甚至吸引其他癌細胞聚集,進而分泌造成更多發炎因子導致惡性循環, 相關發炎因子也會促進癌細胞的移動及轉移 (Coussens and Werb, 2002)。因此本研究想要進一步探討, DEHP 與促進發炎因子如 Lipopolysaccharide (LPS), 針對大腸細胞同時進行暴露, 探討在 LPS 造成發炎的情況下, DEHP 是否會對大腸細胞造成更顯著之影響。LPS 為格蘭氏陰性菌外套膜上的脂多醣, 其中的 lipid A 作為主要與細胞表面受體交互作用的角色, 會與細胞膜上具有的 CD14/TLR4/MD2 receptor 的細胞結合, 促使細胞分泌相關的發炎因子造成發炎反應, 如 TNF-α 及 IL 1-β (Dinarello, 1991; Raetz and Whitfield, 2002) 等。

將人類正常大腸細胞 CCD841,暴露於高濃度之 DEHP (10⁶ nM) 及 LPS (1 µg/mL),觀察細胞移動能力及預測之上游目標基因 VEGFA 的表現量變化。兩次 實驗結果發現,在 LPS 共同暴露下 DEHP 對於 CCD841 之細胞移動無顯著之影 響 (Figure 10A)。另一方面,qPCR 之結果顯示上游預測之目標基因 VEGFA 的表 現量,在同時有 LPS 暴露之組別,有再更進一步上升的趨勢 (Figure 10B)。本研 究針對 LPS 所誘發之發炎因子 IL 1-β 之基因表現進行檢測,結果顯示 LPS 及 DEHP 各別處理之組別與共同暴露之組別,對於 IL 1-β 的表現皆有提升之情況, 但沒有顯著差異 (Figure 10B)。另一方面,檢測大腸癌細胞 SW480 暴露 DEHP, 是否影響發炎因子 IL 1-β 表現量。結果顯示低濃度 DEHP (10² nM) 處理有提高 IL 1-β 表現的趨勢,在中高濃度暴露 (10⁴、10⁶ nM) 之組別則沒有顯著之影響 (Figure 10C)。

24

4. 討論

4.1 DEHP 暴露對於分析微陣列資料庫之差異表現基因於大腸細

胞 CCD841 及大腸癌細胞 SW480 之影響

本研究針對 phthalate 暴露以及大腸直腸癌發展進程,利用線上平台軟體進行 潛在之訊息傳導路徑預測分析,依序利用 NetworkAnalyst 及 Cytoscape,找出差 異表現基因並繪製可能之訊息傳導路徑。

分析結果可以觀察到,血管內皮生長因子 (VEGFA) 所誘發之相關訊息傳導路 徑為預測潛在之上游基因 (Figure 5)。VEGFA 與誘發血管新生有關,而血管新生 在癌症發展進程中扮演重要的角色,以利於提供癌細胞生長及轉移足夠的氧氣及 養分 (Nishida et al. 2006)。qPCR 實驗結果也可以看到,VEGFA 之基因表現量在 大腸細胞株 CCD841 及大腸癌細胞 SW480,於 DEHP 暴露之組別皆有表現量較 高的情形 (Figures 6A, 6B)。在先前研究當中,dibutyl phthalate (DBP) 暴露 (2.56x10⁵ nM) 對於 mural granulosa 細胞,亦有顯著提升 VEGFA 表現之情形 (Adir et al. 2017)。在相關之動物實驗中也發現,DEHP 暴露會加劇由 1,2dimethylhydrazine (DMH) 所誘發之結腸腫瘤,同時 VEGF 之表現量更加提升 (Chen et al., 2017)。

VEGFA 會參與細胞移動,許多研究中顯示抑制 VEGFA 之表現會使能細胞 移動能力下降 (Zhang et al., 2015; Niu et al., 2016)。在本研究中,大腸細胞株 CCD841 隨著 DEHP 暴露濃度之上升,其細胞移動之能力有提升之情形,且在高 濃度組別 (10⁶ nM) 中有顯著差異 (Figure 8A, Figure 9A),推測其移動能力提升可 能是受到 DEHP 所誘導的 VEGFA 表現所調控。然而考量到 VEGFA 之 qPCR 的 cycle number 超過 30,顯示其表現量很低,加上 CCD841 高濃度 DEHP 之暴 露組別中,細胞移動能力約只有提升 1.25 倍左右,並不顯著 (Figure 9A),且尚未 確認是否有其蛋白質釋放分泌至胞外,因此暫未利用 siRNA 針對 VEGFA 進行
反驗證。未來可以先利用 ELISA kit 進行初步檢測培養基中是否有 VEGFA,之後 進一步利用血管內皮細胞進行 *in vitro* angiogenesis assay,探討其促進血管新生之 情況。

PI3K/AKT/mTOR 訊息傳導路徑對於細胞週期之調控扮演重要角色。在本研 究中,針對預測途徑上之目標基因 AKT1 之 qPCR 結果,在 CCD841 及 SW480 雨株細胞,皆在 DEHP 暴露之組別有表現量上升之情形,尤以中濃度暴露 (10⁴ nM) 最為顯著 (Figures 6A, 6B)。在相關的先前研究中,也發現了 DEHP 暴露會促進人 類肝臟上皮細胞 Hep3B 的細胞增生,除了會加速細胞週期,同時透過 PI3K 抑制 劑發現,此增生之現象為 PI3K-AKT-mTOR 訊息傳導路徑所調節 (Chen et al., 2013)。相似之作用在人類乳癌細胞株 MCF-7 中也有觀察,作者發現由低濃度之 BBP、DBP (10-10⁴ nM) 及 DEHP (10-10³ nM) 暴露,除了具有雌激素之活性,所 誘發的細胞增生之現象,亦是由 PI3K-AKT 之訊息傳導路徑所調節 (Chen and Chien, 2014; Chen et al., 2016)。許多已知相關研究指出 AKT 具有磷酸化之能力, 抑制 CDKN1A (p21) 及 CDKN1B (p27),而促進細胞增生及移動能力 (Cai et al., 2010; Zhang et al., 2014),然而在本研究中儘管大腸細胞受到 DEHP 暴露後,AKT1 之表現有上升之情形,但 p21 及 p27 之表現卻未受到 AKT1 抑制,反而呈現上 升的趨勢 (Figures 6A, 6B),可以推測在大腸細胞中,受到 DEHP 暴露之 AKT1 角色,可能不具有調控細胞週期抑制角色 p21 及 p27 之能力。

4.2 DEHP 暴露對於大腸細胞 CCD841 及大腸癌細胞 SW480

細胞增生能力之影響

由線上分析之結果可以得知,受到 phthalate 影響而有差異表現之基因,其功 能主要與細胞週期 G1/S 過渡之調控及血管上皮生長因子所調控之訊息傳導路徑 等有關 (Figure 3A)。細胞增生實驗之結果顯示 DEHP 對於大腸細胞無顯著毒性, 而在高濃度組別中 (10⁶ nM) 皆有抑制細胞增生之影響,但在大腸癌細胞株 SW480 低濃度之組別 (10² nM),卻有提高細胞增生之效果 (Figures 7C, 7D)。先 前已有研究顯示,缺乏 p53 之人類肝臟細胞株 Hep3B 在經過 24 小時 DEHP 暴露後,在 1.25x10⁵ nM 及 2.5x10⁵ nM 組別中,有顯著增加細胞存活的情況 (Chen et al., 2013)。在另一篇研究中也有提到 DEHP 10⁴ nM 的處理,會增加人類 乳癌細胞 MCF-7 的細胞增生能力,且有劑量效應 (Blom et al., 1998)。部分先前 針對人類細胞暴露 DEHP 之細胞增生研究中,也有抑制及下調細胞增生的情形, 例如: 膠質母細胞瘤細胞 LN-229 在 DEHP 濃度 6x10⁶ nM 之暴露下,其細胞生 長被抑制約 47% (Sims et al., 2014);前列腺癌細胞株 LNCap 的細胞增生能力會 受到 DEHP 抑制 (Hruba et al., 2014)。

針對 DEHP 對大腸細胞增生能力之影響,根據本研究與先前相關研究之實驗 結果,可以推估 DEHP 本身毒性不高,且針對不同細胞進行暴露時,由於細胞本 身特性之差異,比如對於 DEHP 之各濃度暴露可能有不同耐受性,因而反應在細 胞增生之結果,而有提升或是抑制的狀況。在大腸癌細胞株 SW480 中 qPCR 實 驗結果顯示,可以抑制 CDK 使得細胞週期停滯的 p21 及 p27,其表現量在高濃 度組別 (10⁶ nM) 中皆為下降之趨勢 (Figure 6B),其結果與細胞增生之實驗結果 相左 (Figure 7D),因此推測影響其細胞生長之關鍵基因應該不是 p21 及 p27 ; 然而在正常大腸細胞株 CCD841 之 qPCR 結果中 (Figure 6A),其 p21 及 p27 之表現隨著 DEHP 濃度增加皆有提升之趨勢,且在 p21 的中高濃度 (10⁴、10⁶ nM) 組別有顯著之差異,其與細胞增生之高濃度組別 (10⁶ nM) 有相反之結果 (Figure 7C),推測正常大腸細胞株 CCD841 之細胞增生,於 DEHP 暴露下可能是透過提 升 p21 之表現而達到抑制增生之效果。

4.3 DEHP 暴露對於大腸細胞 CCD841 及大腸癌細胞 SW480 細

胞移動能力之影響

在 DEHP 對大腸細胞移動能力的影響方面,我們發現 CCD841 細胞株會隨 著 DEHP 暴露濃度的上升,細胞移動能力有顯著提升之情形 (Figures 8A,9A);但 是 SW480 細胞株則隨著 DEHP 濃度上升,細胞移動能力顯著下降 (Figures 8B, 9B)。在其他先前研究中發現,人類造血幹細胞及其前驅細胞,在低濃度 DEHP (約 2.56x10⁴ nM) 處理 24 小時後,細胞移動之能力降低約 70% (Manz et al., 2015); 而在另一篇研究中發現,人類早幼骨髓性白血病細胞 HL-60 在較低濃度 DEHP 之處理後 (約 2.5x10⁵ nM),有較顯著抑制細胞移動能力之情況 (約 37%),而隨著 時間增加其抑制情況有減緩的情形 (Manz et al., 2014)。

CDKN1A(p21)為一個重要的 cyclin-dependent kinase 的抑制劑,調節細胞週 期 G1 phase 的進程,而在許多研究中,p21 所活化的 kinase 皆會造成細胞移動 或是侵入能力提升之現象。有大腸癌細胞研究顯示,由紅松所萃取出之重要油脂會 藉由抑制 p21 所活化之 kinase 1,而達到抑制細胞增生及移動的情形 (Sun-Mi et al., 2014)。也有研究指出由 p21 所活化之 kinase 1 會藉由 ERK 及 AKTdependent 訊息傳導路徑,刺激大腸癌細胞增生、移動或是侵入 (Huynh et al., 2010)。 而由我們 qPCR 之實驗結果可以看到,在 SW480 高濃度 DEHP 處理之組別, 其 p21 及 p27 的表現量皆有較低的情形 (Figure 6B),而細胞移動之結果也有明 顯降低 (Figures 8B, 9B),因此可以推估 SW480 細胞株移動能力之下降,可能與 p21 調節有關,進而降低細胞移動之能力。

4.4 DEHP 暴露對於大腸細胞 CCD841 及大腸癌細胞 SW480

是否有誘導癌化之可能

Phthalate 除了被視為內分泌干擾物質,亦對於細胞的腫瘤生成或癌化進程, 有潛在的影響。目前已發表的研究中,在肝癌、乳癌及前列腺癌發現,部分 phthalate 具有誘發腫瘤生成,亦或是提升癌細胞增生、移動及侵入的能力,如在人類前列腺 癌細胞株 LNCaP 中, DEHP 之代謝產物 MEHP 會透過 hedgehog 訊息傳導路徑, 加速前列腺癌之發展進程 (Yong et al., 2016); DEHP 會誘導肝癌之發生,但不是 透過 peroxisome proliferator-activated receptor alpha (PPARA) 所調節之訊息傳導路 徑 (Ito et al., 2007); 低濃度之 phthalate 亦會誘發人類乳癌細胞之細胞增生 (Chen and Chien, 2014)。

本研究旨在探討 phthalate 是否對於大腸細胞有誘發腫瘤生成或加速癌化進 程之能力,因此分別針對正常大腸細胞 CCD841 及大腸癌細胞 SW480 進行相關 之實驗。在細胞增生之實驗,DEHP 之暴露對於正常細胞株 CCD841 在高濃度 (10⁶ nM) 之組別中 (Figure 7C),不僅沒有提升之現象反而有顯著抑制之效果。而 在大腸癌細胞株 SW480,高濃度 (10⁶ nM) 之組別同樣具有抑制之效果,而低濃 度 (10⁴ nM) 組別雖然有提升細胞增生之能力,但上升幅度不算明顯 (Figure 7D)。 而細胞移動之能力結果也顯示,細胞株 SW480 在受到 DEHP 暴露後皆呈現下降, 且有劑量效應;而細胞株 CCD841 儘管在高濃度 (10⁶ nM) DEHP 暴露組別中有 提升之情形,但上升之幅度亦不高 (Figure 9A)。

因此針對癌細胞之特性檢測,本研究推測 DEHP 對於大腸細胞,可能沒有誘發腫瘤生成或加速癌化進程之能力。研究顯示 1,2-dimethylhydrazine (DMH) 能誘發小鼠結腸腫瘤之形成,同時使小鼠暴露 DEHP 發現,aberrant crypt foci (ACF) 之 形成及腫瘤發生率皆高於單純以 DMH 所誘導之實驗組,同時 VEGF 之表現量 在同時有 DEHP 暴露之組別也更高,顯示 DEHP 可能具有加劇 DMH 所誘導之 大腸癌的能力 (Chen et al., 2017)。相關的研究證實單獨只有 DEHP 的暴露可能對 於誘發大腸癌化沒有直接影響,但在有其他致癌因子狀況存在下,可能會有加劇其 腫瘤發生之情形。

4.5 LPS 與 DEHP 共同暴露對於大腸細胞 CCD841 之影響

本實驗探討 DEHP 對於大腸細胞之影響,在正常大腸細胞 CCD841 細胞移動能力,雖然在 DEHP 處理下有提升之情況,但幅度不算明顯。已知發炎反應在 癌症發展進程中扮演重要的功能,因此想利用促進發炎因子使細胞產生發炎之情 況,探討發炎狀態下 DEHP 對細胞的影響。

有關 DEHP 與發炎之相關研究,早在 2003 年就已發現 DEHP 在老鼠及人 類血液中,具有可能誘發發炎反應之能力 (Gourlay et al., 2003)。DEHP 暴露會造 成初級培養的子宮內膜細胞,發炎因子 IL-8 的 mRNA 及蛋白質表現量上升,並 且推測 PPAR gamma 可能為調節此發炎反應之受體 (Huang et al., 2016)。人類臍 靜脈內皮細胞在受到 DEHP 處理後,發炎相關分子 ICAM-1 及 IL-8 表現量皆 有上升,且透過抑制劑發現 DEHP 活化發炎因子之情況可能是透過 ERK 及 p38 MAPK 訊息傳導路徑 (Wang and Dong, 2012)。DEHP 處理會增加由巨噬細胞 THP-1 所釋放 發炎細胞激素及相關之化學因子,如 TNF-a、IL-1β、IL-8 及 IL-6 等,加劇所造成的發炎反應 (Nishioka et al., 2012)。

本研究以正常人類大腸細胞 CCD841 進行 LPS 及 DEHP 之處理,結果發現 LPS 及 DEHP 暴露皆會提高發炎因子 IL-1β 之表現,顯示發炎情況有所提高 (Figure 10B);然而在兩次細胞移動結果可以看到,LPS 及 DEHP 共同暴露並 沒有提高細胞移動之能力,顯示出 LPS 對於細胞株 CCD841 所誘發之發炎反應,對於 DEHP 暴露並沒有太大的影響 (Figure 10A)。另一方面,相關研究中顯示 LPS 可以透過增加 NF-κB 結合到 VEGFR-3 promoter,上調 VEGFR-3 之表現量,進而促進大腸癌細胞之移動及侵入能力 (Zhu et al., 2016),而本研究中 CCD841 同時暴露 LPS 及 DEHP,儘管進一步提高了相關基因 VEGFA 之表現 (Figure 10B),但針對細胞移動無顯著之影響,顯示出 DEHP 與 LPS 共同暴露下,預測 上游基因 VEGFA 之表現量變化,可能沒有參與 CCD841 細胞移動能力之調控。

4.6 DEHP 之代謝產物 MEHP 暴露對於癌化特性之影響

已知 DEHP 進入到小鼠體內後,會經由代謝相關之酵素 lipase,將 DEHP 水 解成 MEHP,並進一步經由其他酵素,如 UDP-glucuronyltransferase (UGT) 作用 後經由尿液排出,或經由 alcohol dehydrogenase (ADH) 及 aldehyde dehydrogenase (ALDH) 氧化,透過 cytochrome P450 進一步形成氧化代謝物 (Albro and Lavenhar, 1989; Ito et al., 2005)。相關研究顯示,高濃度 (1000 µM) MEHP 對於人類胚胎幹 細胞 (hESC cell) 具細胞毒性,且會影響其正常發育 (Shi et al., 2013)。

針對癌化特性相關之研究,發現 MEHP 會促進人類睪丸胚胎癌細胞 NT2/D1 的侵入及移動 (Yao et al., 2012); MEHP 會透過 hedgehog 訊息傳導路徑促進前列 癌細胞 LNCaP 的發展進程 (Yong et al., 2016),亦會透過 DNA 甲基化影響前列 腺癌發展 (Wu et al. 2017); MEHP 針對人類肝細胞,亦會抑制由 TGF beta 1 所誘 發之細胞凋亡反應 (Hasmall et al., 1999)。本研究透過細胞模式暴露 DEHP,試圖 探討 DEHP 對於大腸細胞之直接影響,然而實際動物生理之情況,仍有其他代謝 相關酵素參與,直接或是間接性的影響 DEHP 對於大腸的作用,因此採用細胞模 式進行之實驗結果,可能無法完整反映 DEHP 於人體內所造成之影響。

5. 結論

本研究利用現有之微陣列資料庫,分析並預測鄰苯二甲酸酯類 (phthalate) 誘 導大腸腫瘤生成,或加速癌化進程相關之潛在調控路徑。由線上分析及基因表現量 之變化結果,得知細胞在 Di (2-ethylhexyl) phthalate (DEHP) 暴露下,可能會對上 游基因 VEGF 所活化之訊息傳導路徑,有正向調控之影響,然而實際影響之訊息 傳導路徑尚未清楚。而由癌細胞特性之檢測結果得知,DEHP 之暴露對於細胞增 生無顯著之影響,造成之細胞移動能力上升幅度也不明顯,推測單獨處理 DEHP, 可能不足以產生誘發腫瘤生成或加速癌化進程之影響。

6. 參考資料

李家偉 (2008), 室內鄰苯二甲酸酯類暴露與兒童健康之相關性--子計畫 四: 室 內含鄰苯二甲酸酯類之民生消費品逸散特性及影響因子之研究, 行政院國家科學 委員會專題研究計畫。

劉梁明琦 (2016),以巨量基因資料分析雙酚 A 對於大腸癌癌化之潛在路徑並探究 大腸癌轉移之目標基因,碩士論文,國立清華大學,生醫工程與環境科學系。

衛生福利部國民健康署 (2015) 癌症登記年報。

Adir M, Combelles CMH, Mansur A, Ophir L, Hourvitz A, Orvieto R, Dor J, Machtinger R. Dibutyl phthalate impairs steroidogenesis and a subset of LH-dependent genes in cultured human mural granulosa cell *in vitro*. Reprod Toxicol. (2017) 69:13-18.

Albro PW, Corbett JT, Schroeder JL, Jordan S, Matthews HB. Pharmacokinetics, interactions with macromolecules and species differences in metabolism of DEHP. Environ Health Perspect. (1982) 45:19-25.

Albro PW, Lavenhar SR. Metabolism of di(2-ethylhexyl)phthalate. Drug Metab Rev. (1989) 21:13-34.

Ali A, Bharadwaj S, O'Carroll R, Ovsenek N. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol. (1998) 18:4949-4960.

Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, et al. Wildtype KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. (2008) 26:1626–1634.

Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci. (2007) 120:3327-3335.

Bao J, Zeng XW, Qin XD, Lee YL, Chen X, Jin YH, Tang NJ, Dong GH. Phthalate Metabolites in Urine Samples from School Children in Taipei, Taiwan. Arch Environ Contam Toxicol. (2015) 69:202-207.

Bardou M, Montembault S, Giraud V, Balian A, Borotto E, Houdayer C, Capron F, Chaput J-C, Naveau S. Excessive alcohol consumption favours high risk polyp or colorectal cancer occurrence among patients with adenomas: a case control study. Gut. (2002) 50:38–42.

Berster JM, Göke B. Type 2 diabetes mellitus as risk factor for colorectal cancer. Arch Physiol Biochem. (2008) 114:84-98.

Blom A, Ekman E, Johannisson A, Norrgren L, Pesonen M. Effects of xenoestrogenic environMental pollutants on the proliferation of a human breast cancer cell line (MCF-7). Arch Environ Contam Toxicol. (1998) 34:306-310.

Burn J, Mathers J, Bishop DT. Genetics, inheritance and strategies for prevention in populations at high risk of colorectal cancer (CRC). Recent Results Cancer Res. (2013) 191:157-183.

Cai WJ, Wang MJ, Ju LH, Wang C, Zhu YC. Hydrogen sulfide induces human colon cancer cell proliferation: role of Akt, ERK and p21. Cell Biol Int. (2010) 34:565-572.

Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, et al. Red and processed meat and colorectal cancer incidence: Meta-analysis of protective studies. PloS One. (2011) 6:E20456.

Chao A, Thun MJ, Jacobs EJ, Henley SJ, Rodriguez C, Calle EE. Cigarette smoking and colorectal cancer mortality in the cancer prevention study II. J Natl Cancer Inst. (2000) 92:1888-1896.

Chen FP, Chien MH. Lower concentrations of phthalates induce proliferation in human breast cancer cells. Climacteric. (2014) 17:377-384.

Chen FP, Chien MH, Yuchern IY. Impact of low concentrations of phthalates on the effects of 17β-estradiol in MCF-7 breast cancer cells. Taiwan J Obstet Gynecol. (2016) 55:826-834.

Chen HP, Lee YK, Huang SY, Shi PC, Hsu PC, Chang CF. Phthalate exposure promotes chemotherapeutic drug resistance in colon cancer cells. Oncotarget. (2018) 9:13167–13180.

Chen HP, Pan MH, Chou YY, Sung C, Lee KH, Leung CM, Hsu PC. Effects of di (2-ethylhexyl) phthalate exposure on 1,2-dimethylydrazine-induced colon tumor

promotion in rats. Food Chem Toxicol. (2017) 103:157-167.

Chen ML, Chen JS, Tang CL, Mao IF. The internal exposure of Taiwanese to phthalate—An evidence of intensive use of plastic materials. Environ Int. (2008) 34:79-85.

Chen X, Qin Q, Zhang W, Zhang Y, Zheng H, Liu C, Yang Y, Xiong W, Yuan J. Activation of the PI3K-AKT-mTOR signaling pathway promotes DEHP-induced Hep3B cell proliferation. Food Chem Toxicol. (2013) 59:325-333.

Chiou SK, Jones MK, Tarnawski AS. Survivin - an anti-apoptosis protein: its biological roles and implications for cancer and beyond. Med Sci Monit. (2003) 9:PI25-29.

Choi K, Joo H, Campbell JL Jr, Andersen ME, Clewell HJ 3rd. *In vitro* intestinal and hepatic metabolism of Di(2-ethylhexyl) phthalate (DEHP) in human and rat. Toxicol *In Vitro*. (2013) 27:1451-1457.

Choi K, Joo H, Campbell JL Jr, Clewell RA, Andersen ME, Clewell HJ 3rd. *In vitro* metabolism of di(2-ethylhexyl) phthalate (DEHP) by various tissues and cytochrome P450s of human and rat. Toxicol *In Vitro*. (2012) 26:315-322.

Coussens LM, Werb Z. Inflammation and cancer. Nature. (2002) 420:860-867.

De Roock W, Piessevaux H, De Schutter J, Janssens M, De Hertogh G, Personeni N, et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol. (2008) 19:508–515.

Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood. (1991) 77:1627-1652.

Gourlay T, Samartzis I, Stefanou D, Taylor K. Inflammatory response of rat and human neutrophils exposed to di-(2-ethyl-hexyl)-phthalate-plasticized polyvinyl chloride. Artif Organs. (2003) 27:256-260.

Hasmall SC, James NH, Macdonald N, West D, Chevalier S, Cosulich SC, Roberts RA. Suppression of apoptosis and induction of DNA synthesis *in vitro* by the phthalate

plasticizers monoethylhexylphthalate (MEHP) and diisononylphthalate (DINP): a comparison of rat and human hepatocytes *in vitro*. Arch Toxicol. (1999) 73:451-456.

Hellström M, Kalén M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. (1999) 126:3047-3055.

Herbst A, Kollings FT. Wnt signaling as a therapeutic target for cancer. Methods Mol Biol. (2007) 361:63-91.

Hrubá E ,Pernicová Z, Pálková L,Souček K, Vondráček J, Machala M. Phthalates deregulate cell proliferation, but not neuroendocrine transdifferentiation, in human LNCaP prostate cancer cell model. Folia Biol (Praha). (2014) 1:56-61.

Hsieh TH, Tsai CF, Hsu CY, Kuo PL, Lee JN, Chai CY, Wang SC, Tsai EM. Phthalates induce proliferation and invasiveness of estrogen receptor-negative breast cancer through the AhR/HDAC6/c-Myc signaling pathway. FASEB J. (2012) 26:778-787.

Huang Q, Zhang H, Chen YJ, Chi YL, Dong S. The Inflammation Response to DEHP through PPARγ in Endometrial Cells. Int J Environ Res Public Health. (2016) 13(3). pii: E318.

Huynh N, Liu KH, Baldwin GS, He H. P21-activated kinase 1 stimulates colon cancer cell growth and migration/invasion via ERK- and AKT-dependent pathways. Biochim Biophys Acta. (2010) 1803:1106-1113.

Ichii S, Horiil A, Nakatsuru S, Furuyama J, Utsunomiya J, Nakamura Y. Inactivation of both APC alleles in an early stage of colon adenomas in a patient with familial adenomatous polyposis (FAP). Hum Mol Genet. (1992) 1: 387-390.

Ishiguro H, Okubo T, Kuwabara Y, Kimura M, Mitsui A, Sugito N, Ogawa R, Katada T, Tanaka T, Shiozaki M, Mizoguchi K, Samoto Y, Matsuo Y, Takahashi H, Takiguchi S. NOTCH1 activates the Wnt/β-catenin signaling pathway in colon cancer. Oncotarget. (2017) 8:60378–60389.

Ito Y, Yamanoshita O, Asaeda N, Tagawa Y, Lee CH, Aoyama T, Ichihara G,

(法) (法)

Furuhashi K, Kamijima M, Gonzalez FJ, Nakajima T. Di(2-ethylhexyl)phthalate induces hepatic tumorigenesis through a peroxisome proliferator-activated receptor alpha-independent pathway. J Occup Health. (2007) 49:172-182.

Ito Y, Yokota H, Wang R, Yamanoshita O, Ichihara G, Wang H, Kurata Y, Takagi K, Nakajima T. Species differences in the metabolism of di(2-ethylhexyl) phthalate (DEHP) in several organs of mice, rats, and marmosets. Arch Toxicol. (2005) 79:147-154.

Jang E, Chung DC. Hereditary Colon Cancer: Lynch Syndrome. Gut Liver. (2010) 4:151–160.

Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and Familial Colon Cancer. Gastroenterology. (2010) 138: 2044–2058.

Jean G.W, Shah S.R. Epidermal growth factor receptor monoclonal antibodies for the treatment of metastatic colorectal cancer. Pharmacotherapy. (2008) 28:742–754.

Jess T, Rungoe C, Peyrin-Biroulet. Risk of colorectal cancer in patients with ulcerative colitis: A meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol. (2012) 10:639-645.

Johnson SM, Gulhati P, Rampy BA, Han Y, Rychahou PG, Doan HQ, Weiss HL, Evers BM. Novel expression patterns of PI3K/Akt/mTOR signaling pathway components in colorectal cancer. J Am Coll Surg. (2010) 210:767-776, 776-778.

Kennedy SG, Wagner AJ, Conzen SD, Jordán J, Bellacosa A, Tsichlis PN, Hay N. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. (1997) 11:701-713.

Khan NP, Pandith AA, Hussain MU, Yousuf A, Khan MS, Wani KA, Mudassar S. Novelty of *Axin 2* and lack of *Axin 1* gene mutation in colorectal cancer: a study in Kashmiri population. Mol Cell Biochem. (2011) 355:149-155.

Kim IY, Han SY, Moon A. Phthalates inhibit tamoxifen-induced apoptosis in MCF-7 human breast cancer cells. J Toxicol Environ Health A. (2004) 67:2025-2035.

Koch HM, Bolt HM, Angerer J. Di(2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP. Arch Toxicol. (2004) 78:123-130.

Koch HM, Bolt HM, Preuss R, Angerer J. New metabolites of di(2ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch Toxicol. (2005) 79:367-376.

Koch HM, Calafat AM. Human body burdens of chemicals used in plastic manufacture. Philos Trans R Soc Lond B Biol Sci. (2009) 364:2063-2078.

Koch HM, Preuss R, Angerer J. Di(2-ethylhexyl)phthalate (DEHP): human metabolism and internal exposure-- an update and latest results. Int J Androl. (2006) 29:155-165.

Larsson O, Girnita A, Girnita L. Role of insulin-like growth factor 1 receptor signalling in cancer Br J Cancer. (2005) 92:2097–2101.

Lee HR, Hwang KA, Choi KC. The estrogen receptor signaling pathway activated by phthalates is linked with transforming growth factor-beta in the progression of LnCap prostate cancer models. Int J Oncol. (2014) 45:595-602.

Lemieux E, Cagnol S, Beaudry K, Carrier J, Rivard N. Oncogenic kras signaling promotes the Wnt/beta-catenin pathway through LRP6 in colorectal cancer. Oncogene. (2015) 34:4914-4927.

Li JH, Ko YC. Plasticizer incident and its health effects in Taiwan. Kaohsiung J Med Sci. (2012) 28:S17-21.

Lin C, Lee CJ, Mao WM, Nadim F. Identifying the potential sources of di-(2-ethylhexyl) phthalate contamination in the sediment of the houjing river in southern Taiwan. J Hazard Mater. (2009) 161:270-275.

Li S, Wang C, Liu X, Hua S, Liu X. The role of axin2 in tumorigenesis and epigenetic regulation. Fam Cancer. (2015) 14:325-331.

Lorz PM, Towae FK, Enke W, Jäckh R, Bhargava N, Hillesheim W. Phthalic Acid

始 . 酒

and Derivatives in Ullmann's Encyclopedia of Industrial Chemistry. Wiley Online Library. (2007) doi:10.1002/14356007.a20_181.pub2.

Manz P, Cadeddu RP, Wilk M, Fischer JC, Fritz B, Haas R, Wenzel F. Influence of Di (2-ethylhexyl) phthalate on migration rate and differentiation of human hematopoietic stem and progenitor cells (CD34+). Clin Hemorheol Microcirc. (2015) 61:111-118.

Manz P, Cadeddu RP, Wilk M,Fritz B, Haas R, Wenz elF. Impact of Di(2ethylhexyl)phthalate on migration rate of human promyelocytic leukemia cells (HL-60). Clin Hemorheol Microcirc. (2014) 58:241-246.

Marley AR, Nan H. Epidemiology of colorectal cancer. Int J Mol Epidemiol Genet. (2016) 7:105–114.

Moghaddam AA, Woodward M, Huxley R. Obesity and Risk of Colorectal Cancer: A Meta-analysis of 31 Studies with 70,000 Events. Cancer Epidemiol Biomarkers Prev. (2007) 16:2533-2547.

Morikawa T, Kuchiba A, Lochhead P, Nishihara R, Yamauchi M, Imamura Y, Liao X, Qian ZR, Ng K, Chan AT, Meyerhardt JA, Giovannucci E, Fuchs CS, Ogino S. Prospective analysis of body mass index, physical activity, and colorectal cancer risk associated with β-catenin (CTNNB1) status. Cancer Res.(2013) 73:1600-1610.

Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in Cancer. Vasc Health Risk Manag. (2006) 2:213-219.

Nishioka J, Iwahara C, Kawasaki M, Yoshizaki F, Nakayama H, Takamori K, Ogawa H, Iwabuchi K. Di-(2-ethylhexyl) phthalate induces production of inflammatory molecules in human macrophages. Inflamm Res. (2012) 61:69-78.

Niu J, Sun Y, Guo Q, Niu D, Liu B. miR-1 Inhibits Cell Growth, Migration, and Invasion by Targeting VEGFA in Osteosarcoma Cells. Dis Markers. (2016) 2016:7068986.

Okubo T, Suzuki T, Yokoyama Y, Kano K, Kano I. Estimation of estrogenic and antiestrogenic activities of some phthalate diesters and monoesters by MCF-7 cell proliferation assay in vitro. Biol Pharm Bull. (2003) 26:1219-1224.

Pandurangan AK. Potential targets for prevention of colorectal cancer: a focus on PI3K/Akt/mTOR and Wnt pathways. Asian Pac J Cancer Prev. (2013) 14:2201-2205

Pavan B, Biondi C, Ferretti ME, Lunghi L, Paganetto G. Phthalic acid mimics 17beta-estradiol actions in WISH cells. Toxicol Lett. (2001) 118:157-164.

Peruzzi F, Prisco M, Dews M, Salomoni P, Grassilli E, Romano G, Calabretta B, Baserga R. Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis. Mol Cell Biol. (1999) 19:7203-7215.

Pretlow TP, Barrow BJ, Ashton WS, O'Riordan MA, Pretlow TG, Jurcisek JA, Stellato TA. Aberrant crypts: putative preneoplastic foci in human colonic mucosa. Cancer Res. (1991) 51:1564-1567.

Preuss R, Koch HM, Angerer J. Biological monitoring of the five major metabolites of di-(2-ethylhexyl)phthalate (DEHP) in human urine using column-switching liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. (2005) 816:269-280.

Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B, Kinzler KW. APC mutations occur early during colorectal tumorigenesis. Nature. (1992) 359:235-7.

Qiao L, Wong BC. Role of Notch signaling in colorectal cancer. Carcinogenesis. (2009) 30:1979-1986.

Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. (2002) 71:635-700.

Romashkova JA, Makarov SS. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature. (1999) 401:86-90.

Roncucci L, Medline A, Bruce WR. Classification of aberrant crypt foci and microadenomas in human colon. Cancer Epidemiol Biomarkers Prev. (1991) 1:57-60.

Rubin Grandis J, Chakraborty A, Melhem MF, Zeng Q, Tweardy DJ. Inhibition of

epidermal growth factor receptor gene expression and function decreases proliferation of head and neck squamous carcinoma but not normal mucosal epithelial cells. Oncogene. (1997) 15:409-416.

Rudel RA, Perovich LJ. Endocrine disrupting chemicals in indoor and outdoor air. Atmospheric EnvironMent. (2009) 43:170-181.

Schmid P, Schlatter C. Excretion and metabolism of di(2-ethylhexyl)phthalate in man. Xenobiotica. (1985) 15:251-256.

Sena P, Saviano M, Monni S, Losi L, Marzona L, et al. Subcellular localization of beta-catenin and apc proteins in colorectal preneoplatic and neoplastic lesions. Cancer Lett. (2006) 241:203-212.

Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. (1999) 13:1501-1512.

Shi C, Chen X, Cai XH, Yu WD, Liang R, Lu Q, Shen H. Cytotoxic effects of mono-(2-ethylhexyl) phthalate on human embryonic stem cells. Chin Med J (Engl). (2013) 126:1714-1719.

Sims JN, Graham B, Pacurari M, Leggett SS, Tchounwou PB, Ndebele K. Di-Ethyl hexyl phthalate (DEHP) Modulates Cell Invasion, Migration and Anchorage Independent Growth through Targeting S100P in LN-229 Glioblastoma Cells. Int J Environ Res Public Health. (2014) 11:5006–5019.

Staples CA, Peterson DR, Parkerton TF, Adams WJ. The environmental fate of phthalate esters: A literature review. Chemosphere. (1997) 35:667-749.

Sun-Mi Cho, Eun-Ok Lee, Sung-Hoon Kim, and Hyo-Jeong Lee. Essential oil of Pinus koraiensis inhibits cell proliferation and migration via inhibition of p21-activated kinase 1 pathway in HCT116 colorectal cancer cells. BMC Complement Altern Med. (2014) 14:275.

Takeshita A, Inagaki K, Igarashi-Migitaka J, Ozawa Y, Koibuchi N. The endocrine disrupting chemical, diethylhexyl phthalate, activates MDR1 gene expression in human colon cancer LS174T cells. J Endocrinol. (2006) 190:897-902.

始 . 酒

Tanay DM, Kumar M, Thakur IS. Differential toxicological endpoints of di(2ethylhexyl) (DEHP) exposure in MCF-7 and MDA-NB-231 cell lines: Possible estrogen receptor alpha (eralpha) independent modulations. Indian J Exp Biol. (2014) 52:1052-1061

Tsai CF, Hsieh TH, Lee JN, Hsu CY, Wang YC, Kuo KK, Wu HL, Chiu CC, Tsai EM, Kuo PL. Curcumin Suppresses Phthalate-Induced Metastasis and the Proportion of Cancer Stem Cell (CSC)-like Cells via the Inhibition of AhR/ERK/SK1 Signaling in Hepatocellular Carcinoma. J Agric Food Chem. (2015) 63:10388-10398

Verheul HM, Pinedo HM. The role of vascular endothelial growth factor (VEGF) in tumor angiogenesis and early clinical development of VEGF-receptor kinase inhibitors. Clin Breast <u>Cancer</u>. (2000) Suppl 1:S80-4.

Wams TJ. Di-ethyl-hexyl phthalate as an environmental contaminant—a review. The Science of the Total EnvironMent. (1987) 66:1-16.

Wang J, Dong S. ICAM-1 and IL-8 are expressed by DEHP and suppressed by curcumin through ERK and p38 MAPK in human umbilical vein endothelial cells. Inflammation. (2012) 35:859-870.

Wang Y, Zhao M, Liu J, Ni J, Jiao Y, Bai C. Up regulation of IL-6 is involved in di (2-ethylhexyl) phthalate (DEHP) induced migration and invasion of non small cell lung cancer (NSCLC) cells. Biomed Pharmacother. (2017) 89:1037-1044.

Wang Z, Shao M, Liu Y. Promotion of Wilms' tumor cells migration and invasion by mono-2-ethyhexyl phthalate (MEHP) via activation of NF-κB signals. Chem Biol Interact. (2017) 270:1-8.

Wester RC, Melendres J, Sedik L, Maibach H, Riviere JE. Percutaneous absorption of salicylic acid, theophylline, 2, 4-dimethylamine, diethyl hexyl phthalic acid, and p-aminobenzoic acid in the isolated perfused porcine skin flap compared to man *in vivo*. Toxicol Appl Pharmacol. (1998) 151:159-165.

Wierstra I, Alves J. FOXM1, a typical proliferation-associated transcription factor. Biol Chem. (2007) 388:1257-1274.

Wu CF, Chang-Chien GP, Su SW, Chen BH, Wu MT. Findings of 2731 suspected

phthalate-tainted foodstuffs during the 2011 phthalates incident in Taiwan. J Formos Med Assoc. (2014) 113:600-605.

Wu JH, Chen J, Wang Y, Xia B, Wang R, Zhao Y, Wang QX, Song Q, Yao SH, Zhang YH, Sun ZY. Effect of Mono-2-ethyhexyl Phthalate on DNA Methylation in Human Prostate Cancer LNCaP Cells. Biomed Environ Sci. (2017) 30:641-648.

Wu MT, Wu CF, Chen BH, Chen EK, Chen YL, Shiea J, et al. Intake of phthalatetainted foods alters thyroid functions in Taiwanese children. (2013) PloS One. 8:e55005.

Xie Z, Ebinghaus R, Temme C, Lohmann R, Caba A, Ruck W. Occurrence and airsea exchange of phthalates in the Arctic. Environ Sci Technol. (2007) 41:4555-4560.

Xue B, Dunker AK, Uversky VN. The roles of intrinsic disorder in orchestrating the Wnt-pathway. J Biomol Struct Dyn. (2012) 29:843-861.

Yang GC, Yen CH, Wang CL. Monitoring and removal of residual phthalate esters and pharmaceuticals in the drinking water of Kaohsiung city, Taiwan. J Hazard Mater. (2014) 277:53-61.

Yao PL, Lin YC, Richburg JH. Mono-(2-Ethylhexyl) Phthalate (MEHP) Promotes Invasion and Migration of Human Testicular Embryonal Carcinoma Cells. Biol Reprod. (2012) 86:160.

Yen TH, Lin-Tan DT, Lin JL. Food safety involving ingestion of food and beverages prepared with phthalate-platicizer-containing clouding agents. J Formos Med Assoc. (2011) 110:671-684.

Yong W, Jiao C, Jianhui W, Yan Z, Qi P, Xiu W, Zuyue S, Yunhui Z. Mono-2ethyhexyl phthalate advancing the progression of prostate cancer through activating the hedgehog pathway in LNCaP cells. Toxicol *In Vitro*. (2016) 32:86-91.

Yurdakok Dikmen B, Alpay M, Kismali G, Filazi A, Kuzukiran O, Sireli UT. *In Vitro* Effects of Phthalate Mixtures on Colorectal Adenocarcinoma Cell Lines. J Environ Pathol Toxicol Oncol. (2015) 34:115-123.

Zhang S, Cheng B, Li H, Xu W, Zhai B, Pan S, Wang L, Liu M, Sun X. Matrine

inhibits proliferation and induces apoptosis of human colon cancer LoVo cells by inactivating Akt pathway. Mol Biol Rep. (2014) 41:2101-2108.

Zhang S, Ma J, Fu Z, Zhang Z, Cao J, Huang L, Li W, Xu P, Cao X. Promotion of breast cancer cells MDA-MB-231 invasion by di(2-ethylhexyl)phthalate through matrix metalloproteinase-2/-9 overexpression. Environ Sci Pollut Res Int. (2016) 10:9742-9749.

Zhang W, Zou C, Pan L, Xu Y, Qi W, Ma G, Hou Y, Jiang P. MicroRNA-140-5p inhibits the progression of colorectal cancer by targeting VEGFA. Cell Physiol Biochem. (2015) 37:1123-1133.

Zhu G, Huang Q, Zheng W, Huang Y, Hua J, Yang S, Zhuang J, Wang J, Chang J, Xu J, Ye J. LPS Upregulated VEGFR-3 Expression Promote Migration and Invasion in Colorectal Cancer via a Mechanism of Increased NF-κB Binding to the Promoter of VEGFR-3. Cell Physiol Biochem. (2016) 39:1665-1678.

7. 圖和表

(A) Microarray dataset collection and integration

 (a) Process the datasets of phthalate exposure and CRC progression collected from ArrayExpress

(b) Normalization and combining the *p*-value of microarray datasets

(c) Differential expression analysis (DEA) (NetworkAnalyst)

(B) Gene module construction and extraction (NetworkAnalyst)

 (a) Networks of DEGs for phthalate exposure (phthalate exposure vs. non-exposure), pCRC (pCRC vs. normal colon) and mCRC (pCRC vs. mCRC)

(b) Gene module analysis of networks for phthalate exposure, pCRC, mCRC

(C) Gene network integration for target gene regulatory pathway (Cytoscape)

(a) Reconstruction of gene network for DEGs (phthalate exposure, pCRC, mCRC)

(b) Identification of potential pathways from merged networks

(c) Selection of target genes in predicted pathways with high connectivity.

(D) Validation of target genes for predicted regulatory pathway in human CRC SW480 cell and normal colon cell CCD841

- (a) qPCR determination for expression of target genes
- (b) WST-1 assay for cell viability and proliferation
- (c) Cell migration assay for metastatic capability

Figure 1. 本論文之研究流程 (Flow chart of this study)

Figure 2.

- (A) NetworkAnalyst 篩選人類細胞暴露鄰苯二甲酸酯類之相關基因微陣列數據集 流程
- (B) Networkanalyst 篩選人類大腸細胞癌化進程之基因微陣列數據集之流程

Figure 3. Phthalates 暴露、大腸癌原位 (pCRC) 以及大腸癌轉移 (mCRC) 之模 組基因之基因功能

模組基因功能之分析由 Cytoscape 內建之分析軟體 ClueGO 所完成 (A) Phthalate 暴露之模組基因功能、(B) 大腸癌原位之模組基因功能,及(C) 大 腸癌轉移之模組基因功能

Figure 4. Phthalates 暴露、大腸癌原位 (pCRC)、大腸癌轉移 (mCRC) 之模組基 因之基因調控網絡。

模組基因調控之基因網絡由 Cytoscape 內建之軟體 CluePedia 所完成。 (A) Phthalates 暴露模組基因之基因網絡、(B) 大腸癌原位模組基因之基因網絡 (pCRC)、(C) 大腸癌轉移模組基因之基因網絡 (mCRC),以及 (D) Phthalates 暴露、 大腸癌原位以及大腸癌轉移之模組基因之整合基因網絡。

Figure 5. Phthalates 暴露、大腸癌原位以及大腸癌轉移之模組基因網絡之潛在基因訊息傳導路徑。

黃色圈為 phthalate 暴露之差異表現基因;綠色圈為大腸癌原位與 phthalate 暴露之共有差異表現基因;藍色圈為大腸癌原位、轉移及 phthalate 暴露之共有差異表現基因;紅色圈為大腸癌轉移與 phthalate 暴露之共有差異表現基因。 紅色箭頭為活化關係;藍 T 字線為抑制關係。有太陽標誌之基因,為最初 phthalate 暴露之微陣列利用 NetworkAnalyst 所找到之差異表現基因。

Figure 6. (A) 正常大腸細胞 CCD841 及 (B) 大腸癌非轉移細胞株 SW480,暴露 不同濃度 DEHP (10², 10⁴& 10⁶ nM) 72 小時,利用 real-time PCR 檢測目標基因 之表現。

橫座標軸為不同 DEHP 之暴露濃度,縱軸為暴露 DEHP 組相對於控制組之比值。 **為 p-value 小於 0.05 有顯著差異之組別 *為 p-value 小於 0.1 有顯著差異之組別

Figure 7. 正常大腸細胞 CCD841 及大腸癌非轉移細胞株 SW480 暴露不同濃度 DEHP (10², 10⁴& 10⁶ nM),每 24 小時檢測細胞增生之情形。

(A)(B) 橫軸為不同 DEHP 暴露濃度,(C)(D) 橫軸為不同天數,縱軸為暴露
DEHP 組對於控制 組細胞數之增生比值。
*為 p-value 小於 0.05 有顯著差異之組別
*為 p-value 小於 0.1 有顯著差異之組別

(B) Cell migration of SW 480

Figure 8. (A) 正常大腸細胞 CCD841 及 (B) 大腸癌非轉移細胞株 SW480 ,暴 露不同濃度 DEHP (10², 10⁴& 10⁶ nM) 48 小時,將細胞移至 transwell 於 24 小 時後檢測細胞移動之視野。 Ctrl 對照組為 DMSO

Figure 9. (A) 正常大腸細胞 CCD841 及 (B) 大腸癌非轉移細胞株 SW480,暴露 不同濃度 DEHP (10², 10⁴& 10⁶ nM) DEHP 細胞移動量化之結果。

橫座標軸為不同 DEHP 暴露濃度,縱軸為為暴露 DEHP 組對於控制組細胞數之 移動比值。

**為 p-value 小於 0.05 有顯著差異之組別

*為 p-value 小於 0.1 有顯著差異之組別

Figure 10. (A) 正常大腸細胞 CCD841 暴露 Lipopolysaccharide (LPS) 及 DEHP (10⁶ nM) 24 小時之細胞移動能力 (B) 正常大腸細胞 CCD841 於 Lipopolysaccharide (LPS) 及 DEHP (10⁶ nM) 暴露 72 小時 , VEGFA 及發炎 因子 IL-1β 之基因表現 (C) 大腸癌細胞 SW480 暴露不同濃度 DEHP (10²,

Table 1. 本研究使用之人類細胞株經鄰苯二甲酸酯類暴露之基因微陣列數據集

1018

A CO

法法 、酒

ArrayExpress	Treatment	Species	Sample	Array	Array platform
Accession			source	numbe	r
E-GEOD-48990	DEHP	Human	HepaRG cells	12	Affymetrix Human
					Genome U133 Plus 2.0 Array
E-GEOD-46909	DEHP	Human	Human T cells	8	Affymetrix Human
					Genome U133 Plus 2.0 Array
E-GEOD-46909	MEHP	Human	Human T cells	8	Affymetrix Human
					Genome U133 Plus 2.0 Array
E-GEOD-43653	DEHP	Human	Endometrial cancer	r 4	Affymetrix Human
			cell line (ECC-1)		Genome U133 Plus 2.0 Array

Microarray datasets used for meta-analysis of phthalate exposure

Table 2. 本研究使用之人類大腸細胞癌化進程之基因微陣列數據集 (劉梁明琦, 2016)

Microarra	/ datasets	used for	' meta-anal	ysis of	f normal	colon,	pCRC	and mCRC
						,		

ArrayExpress	Species	Sample	Array	Array platform
Accession		source	number	
E-GEOD-53799	Human Norm	al Colons, Primary	45	Affymetrix CytoScan
	tumor	s, liver metastasis		HD array 2.8M
E-GEOD-26571	Human Norm	al Colons, Primary	28	Affymetrix GeneChip
	tumor	s, liver metastasis		HuGeneFL Array
E-GEOD-62321	Human Norm	al Colons, Primary	57	Affymetrix GeneChip
	tumor	s, liver metastasis		Human Genome HG-U133B
E-GEOD-49355	Human Norm	al Colons, Primary	57	Affymetrix GeneChip
	tumor	s, liver metastasis		Human Genome HG-U133A
E-GEOD-68468	Human Norm	al Colons, Primary	355	Affymetrix GeneChip
	tumor	s, liver metastasis		Human Genome HG-U133A
E-GEOD-50760	Human Norm	al Colons, Primary	57	Illumina Human-6 v2
	tumor	s, liver metastasis		Expression BeadChip

GO term	Gene	No	<i>p</i> -value	
positive regulation of transcription	AKT1 CEBPA CEBPD E2F1 HRAS	44	2.4E-16	
from RNA polymerase II promoter	IKZF1 JUN KLF2 MYB RB1		19	
protein phosphorylation	AKT1 AKT3 FYN JAK2 LCK MERTK	36	7.7E-21	
	PINK1 RAF1 AURKA AURKB			
negative regulation of apoptotic	AKT1 BCL2 FKBP8 HTATIP2 MDM4	34	6.4E-19	
process	RAF1 SRC AURKA BIRC5 CDK1			
negative regulation of transcription	CEBPA DDX20 E2F1 IKZF1 MDM4	33	2.5E-12	
from RNA polymerase II promoter	MYB RB1 YBX1 AURKB CALR			
positive regulation of transcription,	E2F1 JUN KLF2 MYB RB1 SRC ATF4	32	1.7E-15	
DNA-templated	AR AHR AXIN1			
transcription, DNA-templated	CEBP1 CEBPD E2F1 IKZF1 KLF2 RB1	30	2.9E-2	
	AR AGO1 AHR BIRC5			
negative regulation of cell proliferation	CEBPA DDX20 HRAS JAK2 JUN MDM4	28	6.8E-15	
	NDRG1 RB1 RBM5 RAF1			
positive regulation of cell proliferation	BCL2 HRAS SHC1 AR BIRC5 CALR	28	3.5E-13	
	CDX2 CDC20 CDC25B CTGF			
cell proliferation	AKT1 BCL2 HRAS LRP1 MDM4 RAF1	26	7.2E-14	
	SRC AR AURKB CDC25A			
signal transduction	AKT1 AKT2 AKT3 HRAS JAK2 RAF1	26	3.9E-4	
	SHC1 SRC AR ANGPT2			
response to drug	ABL1 BCL2 FYN JUN LCK SRC CALR	25	9.8E-15	
	CTNNB1 CENPF			
negative regulation of transcription,	CEBPA CEBPD E2F1 IKZF1 JUN MYB	24	2.1E-9	
DNA-templated	RB1 SRC AHR BIRC5			
regulation of transcription, DNA-	ABL1 E2F1 MYB YBX1 ATF4 AR AHR	24	3.8E-2	
templated	CALR CDX1 CDX2			
protein autophosphorylation	ABL1 AKT1 JAK2 SRC AURKA AURKB	23	4.7E-18	
	CDK5 ERN1 EGFR ERBB2			
apoptotic process	AKT2 BCL2L11 BCL2 FKBP8 HTATIP2	22	4.4E-7	
	JAK2 RB1 RBM5 RAF1 APAF1			
G2/M transition of mitotic cell cycle	WEE1 AURKA BIRC5 CDC25A CDC25B	20	2.1E-16	
	CDC25C CHEK1 CCNB1 CDK1 CDK2			
positive regulation of gene expression	E2F1 HRAS ATF4 AR CALR CAV1	20	3.1E-11	
positive regulation of gene expression	E2F1 HRAS ATF4 AR CALR CAV1 CTGF CDK1 CDK6 ERBB2	20	3.1E-11	

		4010101	
	CDK1 CDK2 CDK5 EIF2AK3	7-1-	THE REAL
positive regulation of cell migration	AKT2 HRAS JAK2 CDH13 COL1A1	19	6.8E-13
	EGFR FLT1 HSPA5 IGF1R	-	A A
transcription from RNA polymerase II	CEBPA CEBPD JUN MYB RBMX YBX1	19	6.5E-6
promoter	ATF4 AHR CDX1 CDX2		07010101010101010
Table 4 GO term of 366	genes in pCRC	Joseph Harris	A A
--	-----------------------------------	---------------	----------
GO term	Gene	No	p-value
Phosphorus metabolic process	PDPK1, ADAM10, CDC14B, EPHA4,	92	7.80E-29
	EPHA7, EPHB1, JAK1, PTK2, SMAD2,	1	14
	SMG1	14 - A	· · ·
Phosphate metabolic process	PDPK1, ADAM10, CDC14B, EPHA4,	92	7.80E-29
	EPHA7, EPHB1, JAK1, PTK2, SMAD2,		
	SMG1		
Protein amino acid phosphorylation	PDPK1, ADAM10, EPHA4, EPHA7,	71	7.10E-25
	EPHB1, JAK1, PTK2, SMAD2, SMG1,		
	ABI1		
Positive regulation of biosynthetic	BCL11B, GLI3, IKZF1, KLF13, KLF2,	69	2.00E-22
process	NKX2-1, NOTCH1, NOTCH4, PRDM16,		
	SMAD2		
Positive regulation of cellular	BCL11B, GLI3, IKZF1, KLF13, KLF2,	68	4.40E-22
biosynthetic process	NKX2-1, NOTCH1, NOTCH4, PRDM16,		
	SMAD2		
Positive regulation of macromolecule	BCL11B, GLI3, IKZF1, KLF13, KLF2,	66	8.60E-22
biosynthetic process	NKX2-1, NOTCH1, NOTCH4, PRDM16,		
	SMAD2		
Phosphorylation	PDPK1, ADAM10, EPHA4, EPHA7,	73	1.30E-21
	EPHB1, JAK1, PTK2, SMAD2, SMG1,		
	ABI1,		
Positive regulation of macromolecule	BCL11B, GLI3, IKZF1, KLF13, KLF2,	74	1.60E-20
metabolic process	NKX2-1, NOTCH1, NOTCH4, PRDM1,		
	PRDM16		
Regulation of cell proliferation	ADAM10, BCL11B, BCL2L1, FOSL2,	68	8.00E-19
	GLI3, KAT2B, NOTCH1, NOTCH4,		
	SMAD2, SMAD4		
Positive regulation of nitrogen	BCL11B, GLI3, IKZF1, KLF13, KLF2,	60	4.30E-18
compound metabolic process	NKX2-1, NOTCH1, NOTCH4, PRDM16,		
	SMAD2		
Positive regulation of gene expression	BCL11B, GLI3, IKZF1, KLF13, KLF2,	56	1.60E-17
	NKX2-1, NOTCH1, NOTCH4, PRDM16,		
	SMAD2		

CDC Tabl 1004 £ 766 :

		10101:434	The second
Regulation of transcription	AFF4, BCL11A, BCL11B, BACH2,	134	2.00E-17
	CNOT6, DNMT3A, E2F2, E2F5, ELF3,	4	
	ERF	-	
Regulation of transcription DNA-	BCL11B, BACH2, DNMT3A, E2F2,	105	3.10E-17
dependent	E2F5, ELF3, ERF, FOSL2, IKZF1, IKZF3	ママ 変	· · · · · · · · · · · · · · · · · · ·
Regulation of RNA metabolic process	BCL11B, BACH2, DNMT3A, E2F2,	106	5.10E-17
	E2F5, ELF3, ELAVL1, ERF, FOSL2,		
	IKZF1		
Regulation of transcription from RNA	BCL11B, DNMT3A, ERF, FOSL2,	62	7.40E-17
polymerase II promoter	IKZF1, IKZF3, KLF13, NKX2-1,		
	NOTCH1, PRDM1		
Positive regulation of transcription	BCL11B, GLI3, IKZF1, KLF13, KLF2,	54	9.00E-17
	NKX2-1, NOTCHJ1, NOTCH4,		
	PRDM16, SMAD2		
regulation of apoptosis	BCL11B, BCL2L1, BCL2L11, BCL2L14,	65	1.50E-16
	CFLAR, EPHA7, GLI3, NOTCH1, PERP,		
	RAB27A		
Intracellular signaling cascade	PDPK1, CD36, G3BP1, JAK1, NOTCH4,	84	2.60E-16
	PARK7, RAB11A, RAB27A, RAP1A,		
	RAP2A		
regulation of programmed cell death	BCL11B, BCL2L1, BCL2L11, BCL2L14,	65	3.60E-16
	CFLAR, EPHA7, GLI3, NOTCH1, PERP,		
	RAB27A		
Regulation of cell death	BCL11B, BCL2L1, BCL2L11, BCL2L14,	65	4.00E-16
	CFLAR, EPHA7, GLI3, NOTCH1, PERP,		
	RAB27A		

Table 5 GO term of 14	5 genes in mCRC	大陽 王子	
GO term	Gene	No	p-value
Phosphate metabolic process	PDPK1, CDC14B, EPHA4, JAK1, SMAD2,	42	1.20E-15
	BRD4, CREB1, CDK1, CDK2, CDK3	48	14
Phosphorus metabolic process	PDPK1, CDC14B, EPHA4, JAK1, SMAD2,	42	1.20E-15
	BRD4, CREB1, CDK1, CDK2, CDK3		
Regulation of cell proliferation	BCL6, GLI2, GLI3, NOTCH1, NOTCH4,	38	1.30E-15
	SMAD2, SMAD4, TBX5, CDH5, CDC6		
Protein amino acid phosphorylation	PDPK1, EPHA4, JAK1, SMAD2, BRD4,	35	2.20E-15
	CREB1, CDK1, CDK2, CDK3, CDK4		
Intracellular signaling cascade	PDPK1, EPHA4, JAK1, SMAD2, BRD4,	46	1.20E-14
	CREB1, CDK1, CDK2, CDK3, CDK4		
Positive regulation of cellular	GLI2, GLI3, IKZF1, NOTCH1, NOTCH4,	34	3.20E-14
biosynthetic process	SMAD2, SMAD4, SP1, TBX5, CREB1		
Positive regulation of biosynthetic	GLI2, GLI3, IKZF1, NOTCH1, NOTCH4,	34	4.80E-14
process	SMAD2, SMAD4, SP1, TBX5, CREB1		
Positive regulation of macromolecule	GLI2, GLI3, IKZF1, NOTCH1, NOTCH4,	33	5.50E-14
biosynthetic process	SMAD2, SMAD4, SP1, TBX5, CREB1		
Positive regulation of gene	GLI2, GLI3, IKZF1, NOTCH1, NOTCH4,	31	9.60E-14
expression	PRDM1, SMAD2, SMAD4, SP1, TBX5		
Positive regulation of macromolecule	GLI2, GLI3, IKZF1, NOTCH1, NOTCH4,	37	1.10E-13
metabolic process	PRDM1, SMAD2, SMAD4, SP1, TBX5		
Positive regulation of nitrogen	GLI2, GLI3, IKZF1, NOTCH1, NOTCH4,	32	2.30E-13
compound metabolic process	SMAD2, SMAD4, SP1, TBX5, CREB1		
Phosphorylation	PDPK1, EPHA4, JAK1, SMAD2, BRD4,	35	4.40E-13
	CREB1, CDK1, CDK2, CDK3, CDK4		
Positive regulation of nucleobase,	GLI2, GLI3, IKZF1, NOTCH1, NOTCH4,	31	6.10E-13
nucleoside, nucleotide and nucleic	SMAD2, SMAD4, SP1, TBX5, CREB1		
acid metabolic process			
Positive regulation of transcription	GLI2, GLI3, IKZF1, NOTCH1, NOTCH4,	29	1.90E-12
	SMAD2, SMAD4, SP1, TBX5, CREB1		
Positive regulation of cell	BCL6, GLI2, NOTCH1, NOTCH4, CDK2,	25	3.50E-12
proliferation	CDK4, CDK6, CDKN1A, CDKN1B, EDN1		
Regulation of apoptosis	BCL6, BCL2L11, GLI3, NOTCH1, RAB27A,	32	7.10E-11
	TBX5, CREB1, CTSB, CDK1, CDKN1A		
Regulation of programmed cell death	BCL6, BCL2L11, GLI3, NOTCH1, RAB27A,	32	9.10E-11
	TBX5, CREB1, CTSB, CDK1, CDKN1A		

Table 5 GO term of 145 genes in mCRC

		10101:33	The second second
Regulation of cell death	BCL6, BCL2L11, GLI3, NOTCH1, RAB27A,	32	1.00E-10
	TBX5, CREB1, CTSB, CDK1, CDKN1A	A	
Protein kinase cascade	JAK1, NOTCH4, DUSP8, EDN1, FGFR1,	22	1.40E-10
	FLT1, INSR, IGF1R, MAPK1, MAPK9		14
Regulation of transcription from	BCL6, GLI2, IZKF1 NOTCH1, PRDM1,	30	1.50E-10
RNA polymerase II promoter	SKIL, SMAD2, SMAD4, SP1, TBX5		

ene		sequence
18S	Sense	5'-CTTAGAGGGACAAGTGGCG- 3'
	Anti-sense	5'-ACGCTGAGCCAGTCAGTGTA- 3'
CDKN1A (p21)	Sense	5'-AATAAGGAAGCGACCTGCAACCG- 3'
	Anti-sense	5'-CACAGAACCGGCATTTGGGGAAC- 3'
CDKN1B (p27)	Sense	5'-GACTCTCAGGGTCGAAAACGGCG- 3'
	Anti-sense	5'-CAGGCTTCCTGTGGGCGGATTAG- 3'
VEGFA	Sense	5'- TTGCTGCTCTACCTCCACCAT -3'
	Anti-sense	5'- GGTGATGTTGGACTCCTCAGTG -3'
PDGFRB	Sense	5'- ACTACATCTCCAAAGGCAGCACCT -3'
	Anti-sense	5'- TGTAGAACTGGTCGTTCATGGGCA -3'
FOXM1	Sense	5'- TGCCCAGATGTGCGCTATTA -3'
	Anti-sense	5'- TCAATGCCAGTCTCCCTGGTA -3'
SRC	Sense	5'- TCCTCGTGCGAGAAAGTGAG -3'
	Anti-sense	5'- CAGCTTGCGGATCTTGTAGTG -3'
AKT1	Sense	5'- TTCTGCAGCTATGCGCAATGTG -3'
	Anti-sense	5'- TGGCCAGCATACCATAGTGAGGTT -3'
IGF1R	Sense	5'- TGGAGATCATCAGCAGCATCA -3'
	Anti-sense	5'- GGCGTAAGGCTGTCTCTCGTC -3'
EGFR	Sense	5'- TGCACCTACGGATGCACTG -3'
	Anti-sense	5'- CGATGGACGGGATCTTAGGC -3'
FOX01	Sense	5'- TACGAGTGGATGGTCAAGAGC -3'
	Anti-sense	5'- TGAACTTGCTGTGTAGGGACA -3'
BIRC5	Sense	5'- CGACCCCATAGAGGAACATAA -3'
	Anti-sense	5'- TTCTTGACAGAAAGGAAAGCG -3'
HIF1A	Sense	5'- CCACAGGACAGTACAGGATG -3'
	Anti-sense	5'- TCAAGTCGTGCTGAATAATACC -3'
FYN	Sense	5'- ACCTCCATCCCGAACTACAAC -3'
	Anti-sense	5'- CATAAAGCGCCACAAACAGTG -3'
PPARA	Sense	5'- TTCGCAATCCATCGGCGAG -3'
	Anti-sense	5'- CCACAGGATAAGTCACCGAGG -3'
HSF1	Sense	5'- GGGAACAGCTTCCACGTGTT -3'
	Anti-sense	5'- TGGAACTCCGTGTCGTCTCT -3'
HSP90AA1	Sense	5'- AATGCTTAGAACTATTTACTGAACTAGCAGAA- 3'
	Anti-sense	5'- GTCCTCGTGAATTCCAAGCTTT- 3'

CCNB1	Sense	5'- AATAAGGCGAAGATCAACATGGC- 3'
	Anti-sense	5'- TTTGTTACCAATGTCCCCAAGAG -3'