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中文摘要

深度學習包含困難的非凸優化問題。大多數研究經常使用隨機梯度演算法
（SG）來優化這類模型。使用SG通常很有效，但有時並不那麼強大。近代的
研究探討了利用牛頓法作為替代的優化方法，但絕大部分研究只將其應用於
全連接神經網路。他們沒有探討諸如卷積神經網路等更為廣泛使用的深度學習
模型。其中一個原因是應用牛頓法於卷積神經網路的過程中牽涉到多個複雜的
運算，因此目前未有仔細的相關研究。在這篇論文中，我們給出詳細的建構模
組，當中包括函數、梯度及賈可比矩陣的運算和高斯-牛頓矩陣向量的乘積。這
些基本的模組非常重要。因為沒有它們，任何牛頓法於全連接神經網路的進步
沒辦法在卷積神經網路上嘗試。因此我們的研究將可能推動更多牛頓法於卷積
神經網路上的發展。我們完成一個簡單的MATLAB實作。實驗結果顯示這個方
法具有競爭力。

關鍵詞: 卷積神經網路,多類別分類,大規模學習,抽樣海森矩陣。
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ABSTRACT

Deep learning involves a difficult non-convex optimization problem, which is of-

ten solved by stochastic gradient (SG) methods. While SG is usually effective, it is

sometimes not very robust. Recently, Newton methods have been investigated as an

alternative optimization technique, but nearly all existing studies consider only fully-

connected feedforward neural networks. They do not investigate other types of net-

works such as Convolutional Neural Networks (CNN), which are more commonly used

in deep-learning applications. One reason is that Newton methods for CNN involve

complicated operations, and so far no works have conducted a thorough investigation.

In this thesis, we give details of building blocks including function, gradient, and Ja-

cobian evaluation, and Gauss-Newton matrix-vector products. These basic components

are very important because without them none of any recent improvement of Newton

methods for fully-connected networks can even be tried. Thus we will enable possi-

ble further developments of Newton methods for CNN. We finish a simple MATLAB

implementation and show that it gives competitive test accuracy.

KEYWORDS: Convolutional neural networks, multi-class classification, large-scale

classification, subsampled Hessian.

iii



doi:10.6342/NTU201802108

TABLE OF CONTENTS

口口口試試試委委委員員員會會會審審審定定定書書書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

中中中文文文摘摘摘要要要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. Optimization Problem of Feedforward CNN . . . . . . . . . . . . . 3

2.1 Convolutional Layer . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Zero Padding . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Pooling Layer . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Summary of a Convolutional Layer . . . . . . . . . 11

2.2 Fully-Connected Layer . . . . . . . . . . . . . . . . . . . . . 12
2.3 The Overall Optimization Problem . . . . . . . . . . . . . . . 13

III. Hessian-free Newton Methods for Training CNN . . . . . . . . . . . 14

3.1 Procedure of the Newton Method . . . . . . . . . . . . . . . . 14
3.2 Gradient Evaluation . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Padding, Pooling, and the Overall Procedure . . . . 21
3.3 Jacobian Evaluation . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Gauss-Newton Matrix-Vector Products . . . . . . . . . . . . . 24

IV. Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Generation of φ(Zm−1,i) . . . . . . . . . . . . . . . . . . . . . 27
4.2 Construction of Pm−1,i

pool . . . . . . . . . . . . . . . . . . . . . 32
4.3 Details of Padding Operation . . . . . . . . . . . . . . . . . . 34

iv



doi:10.6342/NTU201802108

4.4 Evaluation of vTPm−1
φ . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Gauss-Newton Matrix-Vector Products . . . . . . . . . . . . . 39
4.6 Mini-Batch Function and Gradient Evaluation . . . . . . . . . 41

V. Analysis of Newton Methods for CNN . . . . . . . . . . . . . . . . . 49

5.1 Memory Requirement . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Computational Cost . . . . . . . . . . . . . . . . . . . . . . . 51

VI. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1 Comparison Between Newton and Stochastic Gradient Methods 56

VII. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

v



doi:10.6342/NTU201802108

LIST OF FIGURES

Figure

2.1 An padding example with sm = 1 in order to set am = am−1. . . . . . 10
2.2 An illustration of max pooling to extract translational invariance fea-

tures. The image B is derived from shifting A by 1 pixel in the hori-
zontal direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vi



doi:10.6342/NTU201802108

LIST OF TABLES

Table

6.1 Summary of the data sets, where a0 × b0 × d0 represents the (height,
width, channel) of the input image, l is the number of training data, lt
is the number of test data, and nL is the number of classes. . . . . . . 55

6.2 Structure of convolutional neural networks. “conv” indicates a con-
volutional layer, “pool” indicates a pooling layer, and “full” indicates
a fully-connected layer. . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Test accuracy for Newton method and SG. For Newton method, we
trained for 250 iterations; for SG, we trained for 1000 epochs. . . . . . 58

vii



doi:10.6342/NTU201802108

CHAPTER I

Introduction

Deep learning is now widely used in many applications. To apply this technique, a

difficult non-convex optimization problem must be solved. Currently, stochastic gradi-

ent (SG) methods and their variants are the major optimization technique used for deep

learning (e.g., Krizhevsky et al., 2012; Simonyan and Zisserman, 2014). This situation

is different from some application domains, where other types of optimization methods

are more frequently used. One interesting research question is thus to study if other

optimization methods can be extended to be viable alternatives for deep learning. In

this thesis, we aim to address this issue by developing a practical Newton method for

deep learning.

Some past works have studied Newton methods for training deep neural networks

(e.g., Botev et al. 2017; He et al. 2016; Kiros 2013; Martens 2010; Vinyals and Povey

2012; Wang et al. 2015, 2018a). Almost all of them consider fully-connected feedfor-

ward neural networks and some have shown the potential of Newton methods for be-

ing more robust than SG. Unfortunately, these works have not fully established Newton

methods as a practical technique for deep learning because other types of networks such

as Convolutional Neural Networks (CNN) are more commonly used in deep-learning

applications. One important reason why CNN was not considered is because of the

very complicated operations in implementing Newton methods. Up to now no works

1
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have shown details of all the building blocks such as function, gradient, and Jacobian

evaluation, and Hessian-vector products. In particular, because interpreted-type lan-

guages such as Python or MATLAB have been popular for deep learning, how to easily

implement efficient operations by these languages is an important research issue.

In this thesis, we aim at a thorough investigation on the implementation of Newton

methods for CNN. We focus on basic components because without them none of any

recent improvement of Newton methods for fully-connected networks can be even tried.

We will enable many further developments of Newton methods for CNN and maybe

even other types of networks.

This thesis is organized as follows. In Chapter II, we begin with introducing CNN.

In Chapter III, Newton methods for CNN are introduced and the detailed mathematical

formulations of all operations are dervied. In Chapter IV, we provide details for an

efficient MATLAB implementation. Experiments to demonstrate the viability of New-

ton methods for CNN are in Chapter VI. In the same chapter, we also investigate the

efficiency of our implementation. Chapter VII concludes this work.

A MATLAB package of implementing a Newton method for CNN is available at

https://https://www.csie.ntu.edu.tw/˜cjlin/papers/cnn/

Programs used for experiments can be found at the same page.

This thesis is based on the paper by Wang et al. (2018b). We acknowledge the

support from Ministry of Science and Technology of Taiwan.
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CHAPTER II

Optimization Problem of Feedforward CNN

Consider a K-class problem, where the training data set consists of l input pairs

(Z0,i, yi), i = 1, . . . , l. Here Z0,i is the ith input image with dimension a0 × b0 × d0,

where a0 denotes the height of the input images, b0 represents the width of the input

images and d0 is the number of color channels. If Z0,i belongs to the kth class, then the

label vector

yi = [0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0]T ∈ RK .

A CNN utilizes a stack of convolutional and pooling layers followed by fully-

connected layers to predict the target vector. Let L be the number of layers, Lc be

the number of convolutional layers, and Lf be the number of fully-connected layers.

The images

Z0,i, i = 1, . . . , l,

are the input of layer 1. Subsequently we describe operations of convolutional layers,

pooling layers, and fully-connected layers.

2.1 Convolutional Layer

A hallmark of CNN is that both input and output of a convolutional layer are explic-

itly assumed to be images. We discuss the details between layers m− 1 and m. Let the

3
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input be an image of dimensions

am−1 × bm−1 × dm−1,

where am−1 is the height, bm−1 is the width, and dm−1 is the depth (or the number of

channels). Thus for every given channel, we have a matrix of am−1 × bm−1 pixels.

Specifically, the input contains the following matrices.
zm−1,i1,1,1

. . .

zm−1,iam−1,bm−1,1

 . . .


zm−1,i1,1,dm−1

. . .

zm−1,iam−1,bm−1,dm−1

 (2.1)

For example, at layer 1, usually d0 = 3 because of three color channels (red, green,

blue). For each channel, the matrix of size a0 × b0 contains raw pixel values of the

image.

To generate the output, we consider dm filters, each of which is a 3-D weight matrix

of size

hm × hm × dm−1.

Specifically, the jth filter includes the following matrices
wm,j1,1,1 wm,j1,hm,1

. . .

wm,jhm,1,1 wm,jhm,hm,1

 , . . . ,


wm,j1,1,dm−1 wm,j1,hm,dm−1

. . .

wm,jhm,1,dm−1 wm,jhm,hm,dm−1


and a bias term bmj . The main idea of CNN is to conduct convolutional operations, each

of which is the inner product between a small sub-image and a filter. We now describe

the details. Specifically, for the jth filter, we scan the entire input image to obtain small

regions of size (hm, hm) and calculate the inner product between each region and the

filter. For example, if we start from the upper left corner of the input image, the first

4
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sub-image of channel d is 
zm−1,i1,1,d . . . zm−1,i1,hm,d

. . .

zm−1,ihm,1,d . . . zm−1,ihm,hm,d

 .

We then calculate the following value.

dm−1∑
d=1

〈
zm−1,i1,1,d . . . zm−1,i1,hm,d

. . .

zm−1,ihm,1,d . . . zm−1,ihm,hm,d

 ,

wm,j1,1,d . . . wm,j1,hm,d

. . .

wm,jhm,1,d . . . wm,jhm,hm,d


〉

+ bmj , (2.2)

where 〈·, ·〉 means the sum of component-wise products between two matrices. This

value becomes the (1, 1) position of the channel j of the output image.

Next, we must obtain other sub-images to produce values in other positions of the

output image. We specify the stride sm for sliding the filter. That is, we move sm pixels

vertically or horizontally to get sub-images. For the (2, 1) position of the output image,

we move down sm pixels vertically to obtain the following sub-image:
zm−1,i1+sm,1,d . . . zm−1,i1+sm,hm,d

. . .

zm−1,ihm+sm,1,d . . . zm−1,ihm+sm,hm,d

 , d = 1, . . . , dm−1.

Then the (2, 1) position of the channel j of the output image is

dm−1∑
d=1

〈
zm−1,i1+sm,1,d . . . zm−1,i1+sm,hm,d

. . .

zm−1,ihm+sm,1,d . . . zm−1,ihm+sm,hm,d

 ,

wm,j1,1,d . . . wm,j1,hm,d

. . .

wm,jhm,1,d . . . wm,jhm,hm,d


〉

+ bmj . (2.3)

Assume that vertically and horizontally we can move the filter am and bm times, respec-

tively. Therefore,

am−1 = hm + (am − 1)× sm,

5
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bm−1 = hm + (bm − 1)× sm. (2.4)

By our notation, the output image has the size

am × bm × dm.

For efficient implementations, we can conduct all operations including (2.2) and (2.3)

by matrix operations. To begin, we concatenate the matrices of the different channels

in (2.1) to

Zm−1,i =


zm−1,i1,1,1 . . . zm−1,iam−1,1,1 zm−1,i1,2,1 . . . zm−1,iam−1,bm−1,1

... . . . ...
... . . . ...

zm−1,i1,1,dm−1 . . . zm−1,iam−1,1,dm−1 zm−1,i1,2,dm−1 . . . zm−1,iam−1,bm−1,dm−1

 , i = 1, . . . , l.

(2.5)

We note that (2.2) is the inner product between the following two vectors[
wm,j1,1,1 . . . wm,jhm,1,1 wm,j1,2,1 . . . wm,jhm,hm,1 . . . wm,jhm,hm,dm−1 bmj

]T
and [

zm−1,i1,1,1 . . . zm−1,ihm,1,1 zm−1,i1,2,1 . . . zm−1,ihm,hm,1 . . . zm−1,ihm,hm,dm−1 1

]T
.

Therefore, based on Vedaldi and Lenc (2015), we define the following two operators

vec(M) =
[
(M:,1)

T . . . (M:,n)T
]T ∈ Rmn×1, where M ∈ Rm×n, (2.6)

mat(v)m×n =


v1 v(n−1)m+1

... · · · ...

vm vnm

 ∈ Rm×n, where v ∈ Rmn×1, (2.7)

and the operator

φ : Rdm−1×am−1bm−1 → Rhmhmdm−1×ambm

6
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in order to collect all sub-images in Zm−1,i:

φ(Zm−1,i) ≡ mat
(
Pm−1
φ vec(Zm−1,i)

)
hmhmdm−1×ambm , m = 1, . . . , Lc, ∀i, (2.8)

where

Pm−1
φ ∈ Rhmhmdm−1ambm×dm−1am−1bm−1

.

We discuss the implementation details of (2.8) in Chapter 4.1. Then, we have φ(Zm−1,i)

derived as follows.

zm−1,i1,1,1 . . . zm−1,i1+(am−1)×sm,1,1 zm−1,i1,1+sm,1 . . . zm−1,i1+(am−1)×sm,1+(bm−1)×sm,1

zm−1,i2,1,1 . . . zm−1,i2+(am−1)×sm,1,1 zm−1,i2,1+sm,1 . . . zm−1,i2+(am−1)×sm,1+(bm−1)×sm,1

... . . . ...
... . . . ...

zm−1,ihm,hm,1 . . . zm−1,ihm+(am−1)×sm,hm,1 zm−1,ihm,hm+sm,1 . . . zm−1,ihm+(am−1)×sm,hm+(bm−1)×sm,1

... . . . ...
... . . . ...

zm−1,i1,1,dm−1 . . . zm−1,i1+(am−1)×sm,1,dm−1 zm−1,i1,1+sm,dm−1 . . . zm−1,i1+(am−1)×sm,1+(bm−1)×sm,dm−1

... . . . ...
... . . . ...

zm−1,ihm,hm,dm−1 . . . zm−1,ihm+(am−1)×sm,hm,dm−1 zm−1,ihm,hm+sm,dm−1 . . . zm−1,ihm+(am−1)×sm,hm+(bm−1)×sm,dm−1



.

(2.9)

By considering

Wm =


wm,11,1,1 wm,12,1,1 . . . wm,1hm,hm,dm−1

...
... . . . ...

wm,d
m

1,1,1 wm,d
m

2,1,1 . . . wm,d
m

hm,hm,dm−1

 ∈ Rdm×hmhmdm−1

and bm =


bm1

...

bmdm

 ∈ Rdm×1,

(2.10)

the following operations are conducted.

Sm,i = Wmφ(Zm−1,i) + bm1Tambm ∈ Rdm×ambm , (2.11)

7
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where

Sm,i =


sm,i1,1,1 . . . sm,iam,1,1 sm,i1,2,1 . . . sm,iam,bm,1

... . . . ...
... . . . ...

sm,i1,1,dm . . . sm,iam,1,dm sm,i1,2,dm . . . sm,iam,bm,dm

 and 1ambm =


1

...

1

 ∈ Rambm×1.

Next, an activation function is applied to scale the value.

zm,ia,b,d = σ(sm,ia,b,d), (2.12)

where a = 1, . . . , am, b = 1, . . . , bm, and d = 1, . . . , dm. For CNN, commonly the

following RELU activation function

σ(x) = max(x, 0) (2.13)

is used and we consider it in this work. The output becomes the following matrix

Zm,i =


zm,i1,1,1 zm,i2,1,1 . . . zm,iam,bm,1

. . .

zm,i1,1,dm zm,i2,1,dm . . . zm,iam,bm,dm

 . (2.14)

We then apply (2.8) to expand the output to form the matrix φ(Zm,i) and then substitute

φ(Zm,i) into (2.11), so we can continue the operations between layers m and m+ 1.

Note that by the matrix representation, the storage is increased from

am−1 × bm−1 × dm−1

in (2.1) to

(hmhmdm−1)× am × bm.

From (2.4), roughly (
hm

sm

)2

folds increase of the memory occurs. However, we gain efficiency by using fast matrix-

matrix multiplications in optimized BLAS (Dongarra et al., 1990).

8
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2.1.1 Zero Padding

To make (2.4) hold or am be larger, sometimes we enlarge the input image to have

zero values around the border. This technique, conducted before the mapping in (2.8),

is called zero-padding in CNN training. For example, we may set

am = am−1

in order to prevent the decrease of the image size. When

sm = 1,

we can pad the input image with

hm − 1

lines of zeros around every border. See Figure 2.1.

For our derivation, we represent the padding operation as the following linear oper-

ation:

Zm,i = mat(Pm−1,i
paddingvec(Zm−1,i))dm×ambm . (2.15)

2.1.2 Pooling Layer

For CNN, to reduce the computational cost, a dimension reduction is often applied

by using a pooling layer after each convolutional layer. Usually we consider an op-

eration that can (approximately) extract rotational or translational invariance features.

There are various types of pooling methods such as average pooling, max pooling, and

stochastic pooling. We consider max pooling in this chapter because it is the most used

setting for CNN. Here we show an example of max pooling by considering two 4 × 4

images, A and B, in Figure 2.2. The image B is derived by shifting A by 1 pixel in the

horizontal direction. We split two images into four 2 × 2 sub-images and choose the

9
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An input
image

0 · · · 0...
0 · · · 0

...
...

· · ·

· · ·
0 · · · 0...
0 · · · 0

0· · ·0 ...
0· · ·0

0· · ·0 ...
0· · ·0

hm − 1

hm − 1

hm − 1

hm − 1

am−1

bm−1

Figure 2.1: An padding example with sm = 1 in order to set am = am−1.
2 3 6 8
5 4 9 7
1 2 6 0
4 3 2 1

→ [
5 9
4 6

]

(a) Image A


3 2 3 6
4 5 4 9
2 1 2 6
3 4 3 2

→ [
5 9
4 6

]

(b) Image B

Figure 2.2: An illustration of max pooling to extract translational invariance features.
The image B is derived from shifting A by 1 pixel in the horizontal direction.

max value from every sub-image. In each sub-image because only some elements are

changed, the maximal value is likely the same or similar. This is called translational

invariance and for our example the two output images from A and B are the same.

Now we discuss the mathematical operation of the pooling layer. They are in fact

special cases of convolutional operations. AssumeZm−1,i is the input image (i.e., output

image of the previous convolutional layer). We partition every channel of Zm−1,i into

non-overlapping sub-regions by hm×hm filters with the stride sm = hm.1 By the same

definition as (2.8) we can generate the matrix

φ(Zm−1,i) = mat(Pm−1
φ vec(Zm−1,i))hmhm×dm−1ambm , (2.16)

1 Because of the disjoint sub-regions, the stride sm for sliding the filters is equal to hm.

10
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where

am =
am−1

hm
, bm =

bm−1

hm
. (2.17)

To select the largest element of each sub-region, there exists a matrix

Wm,i ∈ Rdmambm×hmhmdm−1ambm

so that each row of Wm,i selects a single element from vec(φ(Zm−1,i)). Therefore,

Zm,i = mat
(
Wm,ivec(φ(Zm−1,i))

)
dm×ambm . (2.18)

Note that different from (2.11) of the convolutional layer, Wm,i is a constant matrix

rather than a weight matrix. Further, because from (2.8)

vec(φ(Zm−1,i)) = Pm−1
φ vec(Zm−1,i),

we have

Zm,i = mat
(
Pm−1,i

pool vec(Zm−1,i)
)
dm×ambm

, (2.19)

where

Pm−1,i
pool = Wm,iPm−1

φ ∈ Rdmambm×dm−1am−1bm−1

.

We provide implementation details in Chapter 4.2. Note that pooling operations are

often considered as an (optional) part of the convolutional layer. Here we treat them as

a separate layer for the easier description of the procedure.

2.1.3 Summary of a Convolutional Layer

From the input Zm−1,i, we consider the following flow as one convolutional layer:

Zm−1,i → padding→ φ(Zm−1,i)→ S̄m,i → Z̄m,i → pooling→ Zm,i,

where

S̄m,i and Z̄m,i

are Sm,i and Zm,i in (2.11) and (2.14), respectively, if pooling is not applied.

11
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2.2 Fully-Connected Layer

After passing through the convolutional and pooling layers, we concatenate columns

in the matrix in (2.14) to form the input vector of the first fully-connected layer.

zm,i = vec(Zm,i), i = 1, . . . , l, m = Lc.

In the fully-connected layers (Lc < m ≤ L), we consider the following weight

matrix and bias vector between layers m− 1 and m.

Wm =



wm11 wm21 · · · wmnm−11

wm12 wm22 · · · wmnm−12

...
...

...
...

wm1nm
wm2nm

· · · wmnm−1nm


nm×nm−1

and bm =



bm1

bm2

...

bmnm


nm×1

, (2.20)

where nm−1 and nm are the numbers of neurons in layers m − 1 and m, respectively.2

If zm−1,i ∈ Rnm−1 is the input vector, the following operations are applied to generate

the output vector zm,i ∈ Rnm .

sm,i = Wmzm−1,i + bm, (2.21)

zm,ij = σ(sm,ij ), j = 1, . . . , nm. (2.22)

For the activation function in fully-connected layers, except the last layer, we also con-

sider the RELU function defined in (2.13). For the last layer, we use the following linear

function.

σ(x) = x. (2.23)

2 nLc = dL
c

aL
c

bL
c

and nL = K is the number of classes.

12
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2.3 The Overall Optimization Problem

At the last layer, the output zL,i,∀i is obtained. We can check how close it is to the

label vector yi and consider the following squared loss in this work.

ξ(zL,i;yi) = ||zL,i − yi||2. (2.24)

Furthermore, we can collect all model parameters such as filters of convolutional

layers in (2.10) and weights/biases in (2.20) for fully-connected layers into a long vector

θ ∈ Rn, where n becomes the total number of variables from the discussion in this

chapter.

n =
Lc∑
m=1

dm × (hm × hm × dm−1 + 1) +
L∑

m=Lc+1

nm × (nm−1 + 1).

The output zL,i of the last layer is a function of θ. The optimization problem to

train a CNN is

min
θ
f(θ), (2.25)

where

f(θ) =
1

2C
θTθ +

1

l

l∑
i=1

ξ(zL,i;yi) (2.26)

and the first term with the parameter C > 0 is used to avoid overfitting.

13
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CHAPTER III

Hessian-free Newton Methods for Training CNN

To solve an unconstrained minimization problem such as (2.25), a Newton method

iteratively finds a search direction d by solving the following second-order approxima-

tion.

min
d
∇f(θ)Td+

1

2
dT∇2f(θ)d, (3.1)

where ∇f(θ) and ∇2f(θ) are the gradient vector and the Hessian matrix, respectively.

In this chapter we present details of applying a Newton method to solve the CNN prob-

lem (2.25).

3.1 Procedure of the Newton Method

For CNN, the gradient of f(θ) is

∇f(θ) =
1

C
θ +

1

l

l∑
i=1

(J i)T∇zL,iξ(zL,i;yi), (3.2)

where

J i =


∂zL,i

1

∂θ1
· · · ∂zL,i

1

∂θn

...
...

...

∂zL,i
nL

∂θ1
· · · ∂zL,i

nL

∂θn


nL×n

, i = 1, . . . , l, (3.3)

is the Jacobian of zL,i. The Hessian matrix of f(θ) is

∇2f(θ) =
1

C
I +

1

l

l∑
i=1

(J i)TBiJ i

14
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+
1

l

l∑
i=1

nL∑
j=1

∂ξ(zL,i;yi)

∂zL,ij


∂2zL,i

j

∂θ1∂θ1
· · · ∂2zL,i

j

∂θ1∂θn

... . . . ...

∂2zL,i
j

∂θn∂θ1
· · · ∂2zL,i

j

∂θn∂θn

 , (3.4)

where I is the identity matrix and

Bi
ts =

∂2ξ(zL,i;yi)

∂zL,it ∂zL,is

, t = 1, . . . , nL, s = 1, . . . , nL. (3.5)

From now on for simplicity we let

ξi ≡ ξi(z
L,i;yi).

If f(θ) is non-convex as in the case of deep learning, (3.1) is difficult to solve and

the resulting direction may not lead to the decrease of the function value. Thus the

Gauss-Newton approximation (Schraudolph, 2002)

G =
1

C
I +

1

l

l∑
i=1

(J i)TBiJ i ≈ ∇2f(θ) (3.6)

is often used. In particular, if G is positive definite, then (3.1) becomes the same as

solving the following linear system.

Gd = −∇f(θ). (3.7)

After a Newton direction d is obtained, to ensure the convergence, we update θ by

θ ← θ + αd,

where α is the largest element in {1, 1
2
, 1
4
, . . .} which can satisfy

f(θ + αd) ≤ f(θ) + ηα∇f(θ)Td, (3.8)

where η ∈ (0, 1) is a pre-defined constant. The procedure to find α is called a back-

tracking line search.

15
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Past works (e.g., Martens, 2010; Wang et al., 2018a) have shown that sometimes

(3.7) is too aggressive, so a direction closer to the negative gradient is better. To this

end, in recent works of applying Newton methods on fully-connected networks, the

Levenberg-Marquardt method (Levenberg, 1944; Marquardt, 1963) is used to solve the

following linear system rather than (3.7).

(G+ λI)d = −∇f(θ), (3.9)

where λ is a parameter decided by how good the function reduction is. Specifically, we

define

ρ =
f(θ + d)− f(θ)

∇f(θ)Td+ 1
2
(d)TGd

as the ratio between the actual function reduction and the predicted reduction. By using

ρ, the parameter λnext for the next iteration is decided by

λnext =



λ× drop ρ > ρupper,

λ ρlower ≤ ρ ≤ ρupper,

λ× boost otherwise,

(3.10)

where (drop,boost) are given constants. From (3.10) we can clearly see that if the

function-value reduction is not satisfactory, then λ is enlarged and the resulting direction

is closer to the negative gradient.

Next, we discuss how to solve the linear system (3.9). When the number of variables

n is large, the matrix G is too large to be stored. For some optimization problems

including neural networks, without explicitly storing G it is possible to calculate the

product between G and any vector v (Le et al., 2011; Martens, 2010; Wang et al.,

2018a). For example, from (3.6),

(G+ λI)v = (
1

C
+ λ)v +

1

l

l∑
i=1

(
(J i)T

(
Bi(J iv)

))
. (3.11)

16
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If the product between J i and a vector can be easily calculated, then G does not need to

be explicitly formed. Therefore, we can apply the conjugate gradient (CG) method to

solve (3.7) by a sequence of matrix-vector products. This technique is called Hessian-

free methods in optimization. Details of CG methods in a Hessian-free Newton frame-

work can be found in, for example, Algorithm 2 of Lin et al. (2007).

Because the computational cost in (3.11) is proportional to the number of instances,

subsampled Hessian Newton methods have been proposed (Byrd et al., 2011; Martens,

2010; Wang et al., 2015) to reduce the cost in solving the linear system (3.9). They

observe that the second term in (3.6) is the average training loss. If the large number

of data points are assumed to be from the same distribution, (3.6) can be reasonablely

approximated by selecting a subset S ⊂ {1, . . . , l} and having

GS =
1

C
I +

1

|S|
∑
i∈S

(J i)TBiJ i ≈ G.

Then (3.11) becomes

(GS + λI)v = (
1

C
+ λ)v +

1

|S|
∑
i∈S

(
(J i)T

(
Bi(J iv)

))
≈ (G+ λI)v.

A summary of the Newton method is in Algorithm 1.

3.2 Gradient Evaluation

In order to solve (3.7), ∇f(θ) is needed. It can be obtained by (3.2) if the Jacobian

matrix J i, i = 1, . . . , l is available; see the discussion on Jacobian calculation in Chap-

ter 3.3. However, we have mentioned in Chapter 3.1 that in practice, only a subset of J i

may be calculated. Thus here we present a direct calculation by a backward process.

Consider two layers m− 1 and m. The variables between them are Wm and bm, so

we aim to calculate the following gradient components.

∂f

∂Wm
=

1

C
Wm +

1

l

l∑
i=1

∂ξi
∂Wm

, (3.12)
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Algorithm 1 A standard subsampled Hessian Newton method for CNN.

1: Compute f(θ1).

2: for k = 1, . . . , do
3: Choose a set Sk ⊂ {1, . . . , l}.
4: Compute∇f(θk) and J i, ∀i ∈ Sk.

5: Approximately solve the linear system in (3.9) by CG to obtain a direction dk

6: α = 1.

7: while true do
8: Update θk+1 = θk + αdk and compute f(θk+1)

9: if (3.8) is satisfied then
10: break

11: end if
12: α← α/2.

13: end while
14: Calculate λk+1 based on (3.10).

15: end for

∂f

∂bm
=

1

C
bm +

1

l

l∑
i=1

∂ξi
∂bm

. (3.13)

Because (3.12) is in a matrix form, following past developments such as Vedaldi and

Lenc (2015), it is easier to transform them to a vector form for the derivation. To begin,

we list the following properties of the vec(·) function, in which ⊗ is the kronecker

product.

vec(AB) = (I ⊗ A)vec(B), (3.14)

= (BT ⊗ I)vec(A), (3.15)

vec(AB)T = vec(B)T (I ⊗ AT ), (3.16)

= vec(A)T (B ⊗ I). (3.17)

18
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We further define

∂y

∂(x)T
=


∂y1
∂x1

. . . ∂y1
∂x|x|

... . . . ...

∂y|y|
∂x1

. . .
∂y|y|
∂x|x|

 ,

where x and y are column vectors, and let

φ(zm−1,i) = Inm−1z
m−1,i, Lc < m ≤ L,

where Ip is the p× p identity matrix.

For the fully-connected layers, from (2.21), we have

sm,i = Wmzm−1,i + bm

= (I1 ⊗Wm) zm−1,i + (11 ⊗ Inm)bm (3.18)

=
(
(zm−1,i)T ⊗ Inm

)
vec(Wm) + (11 ⊗ Inm)bm, (3.19)

where (3.18) and (3.19) are from (3.14) and (3.15), respectively. For the convolutional

layers, from (2.11), we have

vec(Sm,i) = vec(Wmφ(Zm−1,i)) + vec(bm1Tambm)

= (Iambm ⊗Wm) vec(φ(Zm−1,i)) + (1ambm ⊗ Idm)bm (3.20)

=
(
φ(Zm−1,i)T ⊗ Idm

)
vec(Wm) + (1ambm ⊗ Idm)bm, (3.21)

where (3.20) and (3.21) are from (3.14) and (3.15), respectively.

An advantage of using (3.18) and (3.20) is that they are in the same form, and so are

(3.19) and (3.21). Thus we can derive the gradient together. We begin with calculating

the gradient for convolutional layers. From (3.21), we derive

∂ξi

∂vec(Wm)T
=

∂ξi

∂vec(Sm,i)T
∂vec(Sm,i)

∂vec(Wm)T

=
∂ξi

∂vec(Sm,i)T
(
φ(Zm−1,i)T ⊗ Idm

)
19
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= vec
(

∂ξi
∂Sm,i

φ(Zm−1,i)T
)T

(3.22)

and

∂ξi

∂(bm)T
=

∂ξi

∂vec(Sm,i)T
∂vec(Sm,i)

∂(bm)T

=
∂ξi

∂vec(Sm,i)T
(1ambm ⊗ Idm)

= vec
(

∂ξi
∂Sm,i

1ambm

)T
, (3.23)

where (3.22) and (3.23) are from (3.17). To calculate (3.22), φ(Zm−1,i) is available in

the forward process of calculating the function value.

For ∂ξi/∂Sm,i also needed in (3.22) and (3.23), it can be obtained by a backward

process. Here we assume that ∂ξi/∂Sm,i is available, and calculate ∂ξi/∂Sm−1,i for

layer m− 1.

∂ξi

∂vec(Zm−1,i)T
=

∂ξi

∂vec(Sm,i)T
∂vec(Sm,i)

∂vec(φ(Zm−1,i))T
∂vec(φ(Zm−1,i))

∂vec(Zm−1,i)T

=
∂ξi

∂vec(Sm,i)T
(Iambm ⊗Wm)Pm−1

φ (3.24)

= vec
(

(Wm)T
∂ξi
∂Sm,i

)T
Pm−1
φ , (3.25)

where (3.24) is from (2.8) and (3.20), and (3.25) is from (3.16).

Then, because the RELU activation function is considered for the convolutional

layers, we have

∂ξi
∂vec(Sm−1,i)T

=
∂ξi

∂vec(Zm−1,i)T
� vec(I[Zm−1,i])T , (3.26)

where � is Hadamard product (i.e., element-wise products) and

I[Zm−1,i](p,q) =


1 if zm−1,i(p,q) > 0,

0 otherwise.

20



doi:10.6342/NTU201802108

For fully-connected layers, by the same form in (3.18), (3.19), (3.20) and (3.21), we

immediately get from (3.22), (3.23), (3.26) and (3.25) that

∂ξi

∂vec(Wm)T
= vec

(
∂ξi
∂sm,i

(zm−1,i)T
)T

, (3.27)

∂ξi

∂(bm)T
=

∂ξi

∂(sm,i)T
, (3.28)

∂ξi

∂(zm−1,i)T
=

(
(Wm)T

∂ξi
∂(sm,i)

)T
Inm−1

=
∂ξi

∂(sm,i)T
Wm, (3.29)

∂ξi

∂(sm−1,i)T
=

∂ξi

∂(zm−1,i)T
� I[zm−1,i]T . (3.30)

Finally, we check the initial values of the backward process. From the square loss in

(2.24), we have

∂ξi
∂zL,i

= 2(zL,i − yL,i),

∂ξi
∂sL,i

=
∂ξi
∂zL,i

.

3.2.1 Padding, Pooling, and the Overall Procedure

For the padding operation, from (2.15), we have

∂ξi

∂vec(Zm−1,i)T
=

∂ξi

∂vec(Zm,i)T
∂vec(Zm,i)

∂vec(Zm−1,i)T

=
∂ξi

∂vec(Zm,i)T
Pm−1,i

padding. (3.31)

Similarly, for the pooling layer, from (2.19), we have

∂ξi

∂vec(Zm−1,i)T
=

∂ξi

∂vec(Zm,i)T
Pm−1,i

pool . (3.32)

Following the explanation in Chapter 2.1.3, to generate ∂ξi/∂vec(Sm−1,i) from

∂ξi/vec(Sm,i), we consider the following cycle.

Sm−1 → Zm−1 → pooling→ padding→ φ(Zm−1,i)→ Sm.
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Therefore, by combining (3.25), (3.26), (3.31) and (3.32), details of obtaining ∂ξi/∂vec(Zm−1,i)T

is by
∂ξi

∂vec(Zm−1,i)
= vec

(
(Wm)T

∂ξi
∂Sm,i

)T
Pm−1
φ Pm−1

paddingP
m−1
pool . (3.33)

3.3 Jacobian Evaluation

For (3.6), the Jacobian matrix is needed and it can be partitioned into L blocks.

J i =

[
J1,i J2,i . . . JL,i

]
, m = 1, . . . , L, i = 1, . . . , l, (3.34)

where

Jm,i =

[
∂zL,i

∂vec(Wm)T
∂zL,i

∂(bm)T

]
.

The calculation is very similar to that for the gradient. For the convolutional layers,

from (3.22) and (3.23), we have

[
∂zL,i

∂vec(Wm)T
∂zL,i

∂(bm)T

]
=


∂zL,i

1

∂vec(Wm)T
∂zL,i

1

∂(bm)T

...

∂zL,i
nL

∂vec(Wm)T
∂zL,i

nL

∂(bm)T



=


vec(

∂zL,i
1

∂Sm,iφ(Zm−1,i)T )T vec(
∂zL,i

1

∂Sm,i1ambm)T

...

vec(
∂zL,i

nL

∂Sm,iφ(Zm−1,i)T )T vec(
∂zL,i

nL

∂Sm,i1ambm)T



=


vec
(
∂zL,i

1

∂Sm,i

[
φ(Zm−1,i)T 1ambm

])T
...

vec
(

∂zL,i
nL

∂Sm,i

[
φ(Zm−1,i)T 1ambm

])T
 . (3.35)

In the backward process, if ∂zL,i/∂vec(Sm,i)T is available, we calculate ∂zL,i/∂vec(Sm−1,i)T

for convolutional layer m − 1. From a derivation similar to (3.25) for the gradient, we
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have

∂zL,i

∂vec(Zm−1,i)T
=


∂zL,i

1

∂vec(Zm−1,i)T

...

∂zL,i
nL

∂vec(Zm−1,i)T



=


vec
(

(Wm)T
∂zL,i

1

∂Sm,i

)T
Pm−1
φ

...

vec
(

(Wm)T
∂zL,i

nL

∂Sm,i

)T
Pm−1
φ

 . (3.36)

Similar to (3.26),

∂zL,ij

∂vec(Sm−1,i)T
=

∂zL,ij

∂vec(Zm−1,i)T
� vec(I[Zm−1,i])T , j = 1, . . . , nL.

They can be written together as

∂zL,i

∂vec(Sm−1,i)T
=

∂zL,i

∂vec(Zm−1,i)T
�
(
1nL

vec(I[Zm−1,i])T
)
. (3.37)

For the padding operation and pooling layer, similar to (3.31) and (3.32), we have

∂zi

∂vec(Zm−1,i)T
=

∂zi

∂vec(Zm,i)T
Pm−1,i

padding (3.38)

and

∂zi

∂vec(Zm−1,i)T
=

∂zi

∂vec(Zm,i)T
Pm−1,i

pool (3.39)

respectively.

For the fully-connected layers, we follow the same derivation of gradient. Thus, we

get

∂zL,i

∂vec(Wm)T
=

[
vec(

∂zL,i1

∂sm,i
(zm−1,i)T ) . . . vec(

∂zL,inL

∂sm,i
(zm−1,i)T )

]T
(3.40)

∂zL,i

∂(bm)T
=

∂zL,i

∂(sm,i)T
(3.41)

∂zL,i

∂(zm−1,i)T
=

∂zL,i

∂(sm,i)T
Wm (3.42)
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∂zL,i

∂(sm−1,i)T
=

∂zL,i

∂(zm−1,i)T
�
(
1nL

I[zm−1,i]T
)

(3.43)

For layer L, because of using (2.24) and the linear activation function, we have

∂zL,i

∂(sL,i)T
= InL

.

3.4 Gauss-Newton Matrix-Vector Products

For solving (3.7), conjugate gradient (CG) methods are often applied and the main

operation at each CG iteration is the Gauss-Newton matrix-vector product.

From (3.34), we rearrange (3.6) to

G =
1

C
I +

1

l

l∑
i=1


(J1,i)T

...

(JL,i)T

Bi

[
J1,i . . . JL,i

]
(3.44)

and the Gauss-Newton matrix vector product becomes

Gv =
1

C
v +

1

l

l∑
i=1


(J1,i)T

...

(JL,i)T

Bi

[
J1,i . . . JL,i

]

v1

...

vL



=
1

C
v +

1

l

l∑
i=1


(J1,i)T

...

(JL,i)T


(
Bi

L∑
m=1

Jm,ivm

)
(3.45)

where

v =


v1

...

vL

 , vm =

vmw
vmb

 , m = 1, . . . , L.

In this subsection, we focus on the ith instance and give the implementation details of

calculating (3.45) for the whole data in Chapter 4.5.
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For the convolutional layers, from (3.35) and (3.45), we first calculate

Jm,ivm =


vec
(
∂zL,i

1

∂Sm,i

[
φ(Zm−1,i)T 1ambm

])T
vm

...

vec
(

∂zL,i
nL

∂Sm,i

[
φ(Zm−1,i)T 1ambm

])T
vm

 . (3.46)

To simplify (3.46), we use the following property

vec(AB)Tvec(C) = vec(A)Tvec(CBT )

to have for example, the first element in (3.46) is

vec

(
∂zL,i1

∂Sm,i
[
φ(Zm−1,i)T 1ambm

])T

vm

=
∂zL,i1

∂vec(Sm,i)T
vec

mat(vm)dm×(hmhmdm−1+1)

φ(Zm−1,i)

1Tambm


 .

Therefore,

Jm,ivm =
∂zL,i

∂vec(Sm,i)T
vec

mat(vm)dm×(hmhmdm−1+1)

φ(Zm−1,i)

1Tambm


 . (3.47)

After deriving (3.47), from (3.45), we sum results of all layers

L∑
m=1

Jm,ivm

and then calculate

qi = Bi(
L∑

m=1

Jm,ivm). (3.48)

From (2.24) and (3.5),

Bi
ts =

∂2ξi

∂zL,it ∂zL,is

=
∂2(
∑nL

j=1(z
L,i
j − yij)2)

∂zL,it ∂zL,is

=


2 if t = s,

0 otherwise,

(3.49)

and we derive qi by multiplying every element of
∑L

m=1 J
m,ivm by two.
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After deriving (3.48), from (3.35) and (3.45), we calculate

(Jm,i)Tqi

=

[
vec
(
∂zL,i

1

∂Sm,i

[
φ(Zm−1,i)T 1ambm

])
· · · vec

(
∂zL,i

nL

∂Sm,i

[
φ(Zm−1,i)T 1ambm

])]
qi

=

nL∑
j=1

qijvec

(
∂zL,ij

∂Sm,i
[
φ(Zm−1,i)T 1ambm

])

= vec

(
nL∑
j=1

qij

(
∂zL,ij

∂Sm,i
[
φ(Zm−1,i)T 1ambm

]))

= vec

((
nL∑
j=1

qij
∂zL,ij

∂Sm,i

)[
φ(Zm−1,i)T 1ambm

])

= vec

(
mat

((
∂zL,i

∂vec(Sm,i)T

)T
qi

)
dm×ambm

[
φ(Zm−1,i)T 1ambm

])
. (3.50)

Similar to the results of the convolutional layers, for the fully-connected layers, we

have

Jm,ivm =
∂zL,i

∂(sm,i)T
mat(vm)nm×(nm−1+1)

zm−1,i
11

 . (3.51)

(Jm,i)Tqi = vec

((
∂zL,i

∂(sm,i)T

)T
qi
[
(zm−1,i)T 11

])
. (3.52)
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CHAPTER IV

Implementation Details

Our goal in this chapter is to show that after some careful derivations, a Newton

method for CNN can be implemented by a simple and short program. Here we give

a MATLAB implementation though a modification for other languages such as Python

should be straightforward.

For the discussion in Chapter III, we consider a single data instance, but for practical

implementations, all instances must be taken care of. In out implementation, we stored

Zm−1,i, ∀i = 1, . . . , l as the following matrix.[
Zm−1,1 Zm−1,2 . . . Zm−1,l

]
∈ Rdm−1×am−1bm−1l. (4.1)

Similarly, we stored ∂zL,i/∂vec(Sm,i)T as[
∂zL,1

1

∂vec(Sm,i)T
. . .

∂zL,l
1

∂vec(Sm,i)T
. . .

∂zL,1
nL

∂vec(Sm,i)T
. . .

∂zL,l
nL

∂vec(Sm,i)T

]T
∈ RlnL×dmambm .

(4.2)

4.1 Generation of φ(Zm−1,i)

MATLAB has a built-in function im2col that can generate φ(Zm−1,i) for sm = 1

and sm = hm. To handle general sm, we notice that φ(Zm−1,i) is a sub-matrix of the
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output matrix of using MATLAB’s im2col under sm = 1. In appendix we provide

an efficient implementation to extract the sub-matrix. However, in other languages a

subroutine like MATLAB’s im2col may not be available. Further, generating a larger

matrix under sm = 1 causes extra time and memory.

Therefore, here we show an efficient implementation to get φ(Zm−1,i) without re-

lying on a subroutine like MATLAB’s im2col. To begin we consider the following

linear indices1 (i.e., counting elements in a column-oriented way) of Zm−1,i:

1 dm−1 + 1 . . . (bm−1am−1 − 1)dm−1 + 1

2 dm−1 + 2 . . . (bm−1am−1 − 1)dm−1 + 2

...
... . . . ...

dm−1 2dm−1 . . . (bm−1am−1)dm−1


∈ Rdm−1×am−1bm−1

. (4.3)

Because every element in

φ(Zm−1,i) ∈ Rhmhmdm−1×ambm ,

is extracted from Zm−1,i, the task is to find the mapping between each element in

φ(Zm−1,i) and a linear index of Zm−1,i. Consider the following example.

am−1 = bm−1 = 2, dm−1 = 1, sm = 1, hm = 2.

Because dm−1 = 1, we omit the channel subscript. In addition, we also omit the instance

index i. Thus the image and its linear indices are
z11 z12

z21 z22

z31 z32

 and


1 4

2 5

3 6

 .
1Linear indices refer to the sequence of how elements in a matrix are stored. Here we consider a

column-oriented setting.
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We have

φ(Zm−1) =



z11 z21

z21 z31

z12 z22

z22 z32


.

Thus we store the following vector to indicate the mapping between linear indices of

Zm−1,i and φ(Zm−1,i).

[ 1 2 4 5 2 3 5 6 ]T . (4.4)

It also corresponds to row indices of non-zero elements in Pm−1
φ .

We begin with checking how linear indices of Zm−1,i can be mapped to the first

column of φ(Zm−1). For simplicity, we consider only channel j. From (2.9) and (4.3),

we have 

j zm−11,1,j

dm−1 + j zm−12,1,j

...
...

(hm − 1)dm−1 + j zm−1hm,1,j

am−1dm−1 + j zm−11,2,j

...
...

((hm − 1) + am−1)dm−1 + j zm−1hm,2,j

...
...

((hm − 1) + (hm − 1)am−1)dm−1 + j zm−1hm,hm,j



, (4.5)

where the left column gives the linear indices in Zm−1,i, while the right column shows
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the corresponding values. We rewrite linear indices in (4.5) as

0 + 0am−1

...

(hm − 1) + 0am−1

0 + 1am−1

...

(hm − 1) + 1am−1

...

0 + (hm − 1)am−1

...

(hm − 1) + (hm − 1)am−1



dm−1 + j. (4.6)

Clearly, every linear index in (4.6) can be represented as

(p+ qam−1)dm−1 + j, (4.7)

where

p, q ∈ {0, . . . , hm − 1}

correspond to the pixel position in the convolutional filter.2

Next we consider other columns in φ(Zm−1,i) by still fixing the channel to be j.

From (2.9), similar to the right column in (4.5), each column contains the following

elements from the jth channel of Zm−1,i.

zm−1,i1+p+asm,1+q+bsm,j , a = 0, 1, . . . , am − 1,

b = 0, 1, . . . , bm − 1, (4.8)

where (1 + asm, 1 + bsm) denotes the top-left position of a sub-image in the channel j

2 More precisely, p+ 1 and q + 1 are the pixel position.
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of Zm−1,i. From (4.3), the linear index of each element in (4.8) is

((1 + p+ asm − 1) + (1 + q + bsm − 1)am−1)dm−1 + j

= (a+ bam−1)smdm−1 + (p+ qam−1)dm−1 + j︸ ︷︷ ︸
see (4.7)

. (4.9)

Now we have known for each element of φ(Zm−1,i) what the corresponding linear

index in Zm−1,i is. Next we discuss the implementation details, where the code is shown

in Listing IV.1. First, we compute elements in (4.6) with j = 1 by applying MATLAB’s

bsxfun function on the following two arrays.

1

dm−1 + 1

...

(hm − 1)dm−1 + 1


and

[
0 am−1dm−1 . . . (hm − 1)am−1dm−1

]
.

The results is the following matrix

1 am−1dm−1 + 1 . . . (hm − 1)am−1dm−1 + 1

dm−1 + 1 (1 + am−1)dm−1 + 1 . . . (1 + (hm − 1)am−1)dm−1 + 1

...
... . . .

...

(hm − 1)dm−1 + 1 ((hm − 1) + am−1)dm−1 + 1 . . . ((hm − 1) + (hm − 1)am−1)dm−1 + 1


,

(4.10)

whose columns, if concatenated, lead to values in (4.6) with j = 1; see line 2 of the

code. To get (4.7) for all channels j = 1, . . . , dm−1, we apply bsxfun again to plus

the vector form of (4.10) and [
0 1 . . . dm−1 − 1

]
,

and then vectorize the resulting matrix; see line 3.

To obtain other columns in φ(Zm−1,i), next we calculate am and bm by (2.4) in lines

4-5. To get all linear indices in (4.9), we see that the second term corresponds to indices
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of the first column and therefore we must calculate the following column offset

(a+ bam−1)smdm−1, ∀a = 0, 1, . . . , am − 1,

b = 0, 1, . . . , bm − 1.

This is by a bsxfun to plus the following two arrays.
0

...

am − 1

× smdm−1 and
[
0 . . . bm − 1

]
× am−1smdm−1;

see line 6 in the code. Finally, we use another bsxfun to add the column offset and

the values in (4.6); see line 7.

The obtained linear indices are independent ofZ’s values. Thus the above procedure

only needs to be run once in the beginning. For any Z, we apply the indices to extract

φ(Z); see line 20-21 in Listing IV.1.

For φ(Zm−1,i) in the pooling layer, the same implementation can be used.

4.2 Construction of Pm−1,i
pool

Following (2.19), we assume that Zm−1,i and φ(Zm−1,i) are input and output be-

fore/after the pooling operation, respectively. In the beginning of the training proce-

dure, we use the proposed procedure in Chapter 4.1 to have φ(Zm−1,i) that partitions

each non-overlapping sub-regions; see (2.16) and (2.17). At each Newton iteration,

Listing IV.2 is a MATLAB implementation for constructing Pm−1,i
pool , ∀i. In line 13, we

handle the situation if

am−1 mod hm 6= 0 or bm−1 mod hm 6= 0. (4.11)

That is, we must ensure that (2.17) holds with am and bm being integers. If (4.11)

occurs, we simply discard the last several rows or columns in Zm−1,i to make am−1 and

32



doi:10.6342/NTU201802108

bm−1 be multiples of hm. In line 8, we extract the linear indices of Zm−1,i to appear

in vec(φ(Zm−1,i)), which as we mentioned has been generated in the beginning. The

resulting vector P contains

hmhmdm−1ambm

elements and each element is in the range of

1, . . . , dm−1am−1bm−1.

In line 9, we get

Zm−1,i, i = 1, . . . , l, (4.12)

which are stored as a matrix in (4.1). In line 23-24, we use P to generate

[
vec(φ(Zm−1,1)) · · · vec(φ(Zm−1,l))

]
∈ hmhmdm−1ambm × l. (4.13)

Next we rewrite the above matrix so that each column contains a sub-region:
zm−1,i1,1,1 zm−1,i1,1,2 . . . zm−1,l1+(am−1)×sm,1+(bm−1)×sm,dm−1

...
... . . . ...

zm−1,ihm,hm,1 zm−1,ihm,hm,2 . . . zm−1,lhm+(am−1)×sm,hm+(bm−1)×sm,dm−1

 ∈ Rhmhm×dm−1ambml.

(4.14)

We apply a max function to get the largest value of each column and its index in the

range of 1, . . . , hmhm. The resulting row vector has dmambml elements, where dm =

dm−1; see line 25. In line 26, we reformulate it to be

dm × ambml

as the output Zm,i, ∀i.

Next we find linear indices in the matrix (4.13) that corresponds to the largest ele-

ments obtained from (4.14).3 First we obtain linear indices of (4.1), which are in the

3Note that we do not really generate a sparse matrix Pm−1,i
pool in (2.19).

33



doi:10.6342/NTU201802108

range of

1, . . . , dm−1am−1bm−1l.

We store these indices in a matrix the same size as in (4.1); see line 19. Then we

generate

φ(linear indices of (4.1)), (4.15)

which has the same size as in (4.13); see line 28-29. Next, if we can find positions

in (4.15) that correspond to the largest elements identified earlier, then we have the

desired linear indices. We mentioned that in line 25, not only the maximal value in

each sub-region is obtained, but also we get the corresponding index in {1, . . . , hmhm}.

Therefore, for these max values, their linear indices in (4.14)4 are

 row indices of

max values in (4.14)

+ hmhm


0

...

dm−1ambml − 1

 . (4.16)

The reason is that hmhm is the column offset in (4.14). See line 30 for the implementa-

tion of (4.16). Next in line 31 we use (4.16) to extract values in (4.15) and obtain linear

indices in (4.1) for the selected max values. Similar to the situation in Chapter 4.1 for

φ(Zm−1,i), the index finding procedure in Listing IV.2 is conducted only once in the

beginning of the training process.

Note that because max pooling depends on Zm−1,i values, linear indices for Pm−1,i
pool

must be re-generated in the beginning of each Newton iteration.

4.3 Details of Padding Operation

To implement zero-padding, we first capture the linear indices of the input image in

the padded image. For example, if the size of the imput image is 3 × 3 and the output

4Also linear indices in (4.13) because (4.14) is separating each column in (4.13) to several columns.
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padded image is 5× 5, we have 

0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0


,

where “1” values indicate positions of the input image. Based on the column-major

order, we derive

pad idx one = {7, 8, 9, 11, 12, 13, 16, 17, 18}.

It is obtained in the begining of the training procedure and it will be used in the fol-

lowing situations. First, pad idx one contains row indices in Pm−1
padding of (2.15) that

correspond to the input image. We can use it to conduct the padding operation in (2.15).

Second, from (3.33), in gradient and Jacobian evaluations, we need

vTPm−1
padding.

This can be considered as the inverse of the padding operation: we would like to remove

zeros and get back the original image.

MATLAB implementations are shown in Listing IV.4 and IV.5, where Listing IV.4

is for generating the indices and Listing IV.5 is for the padding operation (2.15). In

line 12 of Listing IV.4, we use the MATLAB bulit-in function padarray to pad zeros

around the input image. Because Zm−1,i,∀i are stored as a matrix in (4.1), in line 8 of

Listing IV.5, we extend pad idx one to conver all instances:pad idx one
pad idx one

+ ambm

pad idx one

+ 2ambm
. . .

 . (4.17)
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These values indicate the new column indices of original columns in Zm−1,i,∀i. In line

9 of Listing IV.5, we create the zeros of the output padding image. By using values in

(4.17), in line 10 of Listing IV.5, we put the input Zm−1,i to the corresponding positions

of the output padding image.

4.4 Evaluation of vTPm−1
φ

For (3.25) and (3.36), the following operation is applied.

vTPm−1
φ , (4.18)

where

v = vec
(

(Wm)T
∂ξi
∂Sm,i

)
for (3.25) and

v = vec

(
(Wm)T

∂zL,ij

∂Sm,i

)
, j = 1, . . . , nL (4.19)

for (3.36).

Consider the same example in Chapter 4.1. We note that

(Pm−1
φ )Tv = [ v1 v2 + v5 v6 v3 v4 + v7 v8 ]T , (4.20)

which is a kind of “inverse” operation of φ(Zm−1): we accumulate elements in φ(Zm−1)

back to their original positions in Zm−1. In MATLAB, given indices in (4.4), a function

accumarray can directly generate the vector (4.20).

To calculate (3.25) over a batch of instances, we aim to have
(Pm−1

φ )Tv1

...

(Pm−1
φ )Tvl


T

. (4.21)
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We can manage to apply MATLAB’s accumarray on the vector
v1

...

vl

 (4.22)

by giving the following indices as the input.

(4.4)

(4.4) + am−1bm−1dm−11ambmdm−1hmhm

(4.4) + 2am−1bm−1dm−11ambmdm−1hmhm

...

(4.4) + (l − 1)am−1bm−1dm−11ambmdm−1hmhm


, (4.23)

where

am−1bm−1dm−1 is the size of Zm−1,i, and

ambmdm−1hmhm is the size of φ(Zm−1,i) and vi.

That is, by using the offset (i− 1)am−1bm−1dm−1, accumarray accumulate vi to the

following positions:

(i− 1)am−1bm−1dm−1 + 1, . . . , iam−1bm−1dm−1. (4.24)

We can easily rearrange the resulting vector by reshape and transpose operator to

get the matrix (3.25), where each row is corresponding to an instance. We show the

program in Listing IV.6, where line 8 generates the indices shown in (4.23) and V(:) in

line 9 is the vector (4.22).

Following the same idea, to calculate (3.36) over a batch of instances, we do not

have to calculate (4.18) nL times. Notice that (3.36) is equivalent to(
(Pm−1

φ )T
[

vec
(

(Wm)T
∂zL,i

1

∂Sm,i

)
. . . vec

(
(Wm)T

∂zL,i
nL

∂Sm,i

)])T
. (4.25)
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We can calculate v by vectorizing the result of fast matrix-matrix multiplication.

v =


vec
(

(Wm)T
∂zL,i

1

∂Sm,i

)
...

vec
(

(Wm)T
∂zL,i

nL

∂Sm,i

)
 = vec

(
(Wm)T

[
∂zL,i

1

∂Sm,i . . .
∂zL,i

nL

∂Sm,i

])
. (4.26)

By passing the appropriate input indices to accumarray, we can calculate

(Pm−1
φ )T

[
(4.26)

]
.

So the calculation is fallen back to the same case as evaluating (3.25). That is, after

having (4.26), we calculate (4.18) once instead of calculating (4.18) and (4.19) nL times.

The input indices for accumarray are easy to be obtained. Before the transpose

operation in (4.25), the linear indices for each column, i.e.

(Pm−1
φ )Tvec

(
(Wm)T

∂zL,iu

∂Sm,i

)
, ∀u = {1, . . . , nL}

is start from

(u− 1)lam−1bm−1dm−1 + 1.

Therefore, we can apply accumarray on the vector (4.26) with the following input

indices. 

(4.23)

(4.23) + lam−1bm−1dm−11ambmdm−1hmhm

(4.23) + 2lam−1bm−1dm−11ambmdm−1hmhm

...

(4.23) + (nL − 1)lam−1bm−1dm−11ambmdm−1hmhm


.

The program is the same as Listing IV.6, except that we pass the value of the product of

n L and S k for the parameter S k.

38



doi:10.6342/NTU201802108

4.5 Gauss-Newton Matrix-Vector Products

Because (3.45) is the form of summation of every instance, in the view of MATLAB

implementation, we extend (3.45) to the whole data set in a matrix form.

Gv =
1

C
v +

1

l

l∑
i=1


(J1,i)T

...

(JL,i)T


(
Bi

L∑
m=1

Jm,ivm

)

=
1

C
v +

1

l


(J1,1)T . . . (J1,l)T

... . . . ...

(JL,1)T . . . (JL,l)T




B1
∑L

m=1 J
m,1vm

...

Bl
∑L

m=1 J
m,lvm

 . (4.27)

To derive (4.27), we first calculate
∑L

m=1 J
m,1vm

...∑L
m=1 J

m,lvm

 . (4.28)

From (3.47), for a particular m, we have


Jm,1vm

...

Jm,lvm

 =



∂zL,1

∂vec(Sm,1)T
vec

mat(vm)

φ(Zm−1,1)

1Tambm




...

∂zL,l

∂vec(Sm,l)T
vec

mat(vm)

φ(Zm−1,l)

1Tambm






=


∂zL,1

∂vec(Sm,1)T
pm,1

...

∂zL,l

∂vec(Sm,l)T
pm,l

 ,

where

mat(vm) ∈ Rdm×(hmhmdm−1+1)
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and 
pm,1

...

pm,l

 = vec

mat(vm)

φ(Zm−1,1) · · · φ(Zm−1,l)

1Tambm · · · 1Tambm


 . (4.29)

A MATLAB implementation for (4.28) is shown in Listing IV.7. We store the model

in a structure of different layers. Thus in lines 11 and 13 we respectively obtain

Zm−1,i (after padding) and
∂zL,i

∂vec(Sm,i)T
, i = 1, . . . , l.

In line 14, we calculate (4.29) to derive pm,1, . . . ,pm,l. In line 15, we separately calcu-

late
∂zL,i

∂vec(Sm,i)T
pm,i, i = 1, . . . , l.

In line 16, we sum of the results of each layer.

After deriving (4.28), from (3.48) and (4.27), we must calculate
q1

...

ql

 =


B1
∑L

m=1 J
m,1vm

...

Bl
∑L

m=1 J
m,lvm

 . (4.30)

From (3.49), (4.30) can be derived by multiplying every element of (4.28) by two.

When (4.30) is available, from (4.27), the following matrix-vector product is needed.
(J1,1)T . . . (J1,l)T

... . . . ...

(JL,1)T . . . (JL,l)T




q1

...

ql


For the layer m, from (3.50), the calculation is written as

l∑
i=1

vec

(
mat

((
∂zL,i

∂vec(Sm,i)T

)T
qi

)
dm×ambm

[
φ(Zm−1,i)T 1ambm

])
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= vec


[

mat(rm,1)dm×ambm . . . mat(rm,l)dm×ambm

]

φ(Zm−1,1)T 1ambm

...
...

φ(Zm−1,l)T 1ambm



 ,

(4.31)

where 
rm,1

...

rm,l

 =


(

∂zL,1

∂vec(Sm,1)T

)T
q1

...(
∂zL,l

∂vec(Sm,l)T

)T
ql

 . (4.32)

A MATLAB implementation for (4.31) is shown in Listing IV.8. In line 12, we

separately calculate rm,1, . . . , rm,l by (4.32). In line 18, we build
φ(Zm−1,1)T 1ambm

...
...

φ(Zm−1,l)T 1ambm

 .

In line 19, we calculate (4.31). In line 20, we derive the result of (4.27) for the mth

layer.

4.6 Mini-Batch Function and Gradient Evaluation

Later in Chapter 5.1 we will discuss details of memory usage. One important con-

clusion is that in many places of the Newton method, the memory consumption is pro-

portional to the number of data. This fact causes difficulties in handling large data sets.

Therefore, here we discuss some implementation techniques to address the memory

difficulty.

In subsampled Newton methods discussed in Chapter 3.1, a subset S of the train-

ing data is used to derive the subsampled Gauss-Newton matrix for approximating the

Hessian matrix. While a motivation of this technique is to trade a slightly less accurate
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direction for shorter running time per iteration, it is also useful to reduce the memory

consumption. For example, at the mth convolutional layer, we only need to store the

following matrices
∂zL,i

∂vec(Sm,i)T
, ∀i ∈ S (4.33)

for the Gauss-Newton matrix-vector products.

However, function and gradient evaluations must use the whole training data. Fortu-

nately, both operations involve the summation of independent results over all instances.

Here we follow Wang et al. (2018a) to split the index set {1, . . . , l} of data to, for ex-

ample, R equal-sized subsets S1, . . . , SR. We then calculate the result corresponding to

each subset and accumulate them for the final output. Take the function evaluation as

an example. For each subset, we must store only

Zm,i, ∀m, ∀i ∈ Sr.

Thus, the memory usage can be dramatically reduced.

For the Gauss-Newton matrix-vector product, to calculate (4.33), we needZm,i, ∀i ∈

S. However, under the mini-batch setting, the needed values may not be kept. Our strat-

egy is to let the last subset SR be the same subset used for the sub-sampled Hessian.

Then we can preserve the needed Zm,i for subsequent operations.
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Listing IV.1: MATLAB implementation for φ(Zm−1,i)

1 function idx = indicator_im2col(a,b,d,h,s)

2 first_channel_idx = bsxfun(@plus, ([0:h-1]*d+1)', [0:h-1]*a

*d);

3 first_col_idx = bsxfun(@plus, first_channel_idx(:), [0:d

-1]);

4 out_a = floor((a - h)/s) + 1;

5 out_b = floor((b - h)/s) + 1;

6 column_offset = bsxfun(@plus, [0:out_a-1]', [0:out_b-1]*a)*

s*d;

7 idx = bsxfun(@plus, column_offset(:)', first_col_idx(:));

8 end

9 model(m).indicator = indicator_im2col(param.wdimages_pad0,param

.htimages_pad0,param.chimages0,param.wdfilters(m),param.

strides(m));

10 function phiZ = cal_phiZ(param, model, batch_idx, m)

11 if m > 1

12 if param.padflags(m-1) == 1

13 phiZ = padding(param,model(m-1).Z,m-1,model(m-1).

pad_idx);

14 else

15 phiZ = model(m-1).Z;

16 end

17 else

18 phiZ = model(m).Z0(:,param.batch_idx_current);

19 end

20 phiZ = reshape(phiZ,[],param.sample_inst);

21 phiZ = phiZ(model(m).indicator,:);

22

23 if m == 1

24 phiZ = reshape(phiZ,param.wdfilters(m)*param.wdfilters(

m)*param.chimages0,[]);

25 else

26 phiZ = reshape(phiZ,param.wdfilters(m)*param.wdfilters(

m)*param.chimages(m-1),[]);

27 end

28 end
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Listing IV.2: MATLAB implementation for Pm−1
pool

1 function [param, model] = maxpooling(param, model, m)

2

3 a = param.htimages(m);

4 b = param.wdimages(m);

5 d = param.chimages(m);

6 h = param.wdpool(m);

7 S_k = param.num_sampled_data;

8 P = model(m).idx_phiZ_pool;

9 Z = model(m).Z;

10

11 rm_idx = [];

12 pool_idx = [1:d*a*b*S_k];

13 if (mod(a,h) > 0 || mod(b,h) > 0)

14 newa = a - mod(a,h); newb = b - mod(b,h);

15 remained_idx = bsxfun(@plus,[1:newa]',[0:newb-1]*a);

16 remained_idx = bsxfun(@plus,remained_idx(:),[0:S_k-1]*a*b);

17 Z = Z(:,remained_idx(:));

18

19 pool_idx = reshape(pool_idx,d,[]);

20 pool_idx = pool_idx(:,remained_idx(:));

21 end

22

23 Z = reshape(Z,[],S_k);

24 Z = Z(P,:);

25 [Z, WS] = max(reshape(Z,h*h,[]));

26 model(m).Z = reshape(Z,d,[]);

27

28 pool_idx = reshape(pool_idx,[],S_k);

29 pool_idx = pool_idx(P,:);

30 WS = WS + h*h*([0:floor(a/h)*floor(b/h)*d*S_k-1]);

31 model(m).pool_idx = pool_idx(WS);
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Listing IV.3: MATLAB implementation for evaluating (3.32)
1 function output = maxpooling_grad(param,m,input,pool_idx)

2

3 a = param.wdimages(m);

4 b = param.htimages(m);

5 d = param.chimages(m);

6 S_k = param.num_sampled_data;

7

8 output = zeros(d,a*b*S_k);

9 output(pool_idx) = reshape(input,[],1);

Listing IV.4: MATLAB implementation for the index of zero-padding
1 function [pad_idx] = padding_idx(param,m)

2

3 if m == 0

4 a = param.wdimages0;

5 b = param.htimages0;

6 else

7 a = param.wdimages_pool(m);

8 b = param.htimages_pool(m);

9 end

10

11 p = (param.wdfilters(m+1)-1)/2;

12 newa = a+2*p; newb = b+2*p;

13 pad_idx = repmat(p+(1:a)', b,1) + repeat_elements(newa*(p+(0:b

-1)'), a);
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Listing IV.5: MATLAB implementation for zero-padding
1 function output = padding(param,Z,m,pad_idx_one)

2

3 a = param.wdimages_pad(m);

4 b = param.htimages_pad(m);

5 d = param.chimages(m);

6 S_k = param.num_sampled_data;

7

8 idx = reshape(bsxfun(@plus, pad_idx_one, [0:S_k-1]*a*b), [], 1)

;

9 output = zeros(d,a*b*S_k);

10 output(:,idx) = Z;

Listing IV.6: MATLAB implementation to evaluate vTPm−1
φ

1 function vTP = vTP(param, model, S_k, m, V)

2 % V: a matrix with #cols = S_k

3

4 a_prev = param.htimages(m-1);

5 b_prev = param.wdimages(m-1);

6 d_prev = param.chimages(m-1);

7

8 idx = reshape(bsxfun(@plus, model(m).idx_phiZ(:), [0:S_k-1]*

d_prev*a_prev*b_prev), [], 1);

9 vTP = reshape(accumarray(idx, V(:), [d_prev*a_prev*b_prev*S_k

1]), [], S_k)';
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Listing IV.7: MATLAB implementation for Jv
1 function Jv = Jv(param, model, v_in, subset_idx)

2

3 n = param.n;

4 nL = param.nL;

5 L = param.L;

6 S_k = param.num_sampled_data;

7 Jv = zeros(nL*S_k, 1);

8

9 for m = param.L : -1 : param.LC+1

10 n_m = param.neurons(m+1);

11 v = reshape(v_in(n(m)+1:n(m+1)), n_m, []);

12 p = v * [model(m-1).Z; ones(1, S_k)];

13 if m < L

14 p = p';

15 p = repeat_elements(p, nL);

16 p = sum(model(m).dZLdS_T.*p, 2);

17 else

18 p = p(:);

19 end

20 Jv = Jv + p;

21 end

22

23 for m = param.LC : -1 : 1

24 a = param.wdimages(m);

25 b = param.htimages(m);

26 d = param.chimages(m);

27 v = reshape(v_in(n(m)+1:n(m+1)), d, []);

28 phiZ = [cal_phiZ(param, model, subset_idx, m); ones(1, a*b*

S_k)];

29 p = reshape(v * phiZ, [], S_k);

30 p = p';

31 p = repeat_elements(p, nL);

32 p = sum(model(m).dZLdS_T.*p, 2);

33 Jv = Jv + p;

34 end
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Listing IV.8: MATLAB implementation for JTq
1 nL = param.nL;

2 S_K = param.sample_inst;

3 idx = param.batch_idx_current;

4 lambda = param.lambda;

5 C = param.C;

6 q = model(1).Jv;

7 for m = param.LC : -1 : 1

8 ZsT = model(m).ZsT;

9 Z = model(m-1).Z;

10 d = param.chimages(m);

11 v = cgparam(m).p;

12 r = arrayfun(@(i) ZsT(1+(i-1)*nL:i*nL,:)' * q(1+(i-1)*nL:i*

nL),[1:S_K],'un',0);

13 r = horzcat(r{:});

14 r = reshape(r,d,[]);

15 if m > 1

16 Z_pad = padding(param,Z,m-1,model(m-1).pad_idx);

17 end

18 phiZ = cal_phiZ(param,model,idx,m,Z_pad);

19 r = reshape(r*[phiZ' ones(size(phiZ,2),1)],[],1);

20 model(m).Gv = (lambda + 1/C)*v + r/S_K;

21 end
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CHAPTER V

Analysis of Newton Methods for CNN

In this chapter, based on the implementation details in Chapter IV, we analyze the

memory and computational cost per iteration. We consider that all training instances

are used. If the subsampled Hessian in Chapter III is considered, then in the Jacobian

calculation and the Gauss-Newton matrix vector products, the number of instances l

should be replaced by the subset size |S|.

In this discussion we exclude the padding operation and the pooling layer because

first they are optional steps and second they are not the bottleneck.

5.1 Memory Requirement

(1) Weight matrix and bias vector: For every layer, we must store

Wm and bm, m = 1, . . . , L.

From (2.10) and (2.20), the memory usage is

O

(
Lc∑
m=1

dm × (hmhmdm−1 + 1) +
L∑

m=Lc+1

nm × (nm−1 + 1)

)
.

(2) To construct φ(Zm−1,i), in Chapter 4.1, we store each position’s corresponding
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linear index in Zm−1,i.

O

(
Lc∑
m=1

hmhmdm−1ambm

)
.

(3) Function evaluation: From Chapter II, we store

Zm,i, m = 0, . . . , L, i = 1, . . . , l.

Therefore, the memory usage is

O

(
l ×

(
Lc∑
m=0

dmambm +
L∑

m=Lc+1

nm

))
.

(4) Gradient evaluation: From Chapter 3.2, because

∂ξi
∂vec(Sm−1,i)T

, m = 2, . . . , L, ∀i.

is only used in backward process. We just store this matrix for two adjacent layers.

Therefore, the memory usage is

O

l × ∑
{m,m+1}

dmambm

 , 1 ≤ m < Lc

in convolutional layers or

O

l × ∑
m∈{m,m+1}

nm

 , Lc < m < L

in fully-connected layers. The following matrix must be stored.

∂ξi
∂vec(Wm)T

, and
∂ξi

∂(bm)T
, m = 1, . . . , L, ∀i.

Therefore, the memory usage is

O

(
l ×

(
Lc∑
m=1

dm
(
hmhmdm−1 + 1

)
+

L∑
m=Lc+1

nm (nm−1 + 1)

))
.
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(5) Jacobian evaluation and Gauss-Newton matrix-vector products: Besides Wm and

Zm−1,i, from (3.36), (3.47), (3.50), we explicitly store

∂zL,i

∂vec(Sm,i)T
, m = 1, . . . , L, ∀i.

Thus, the memory usage is

O

(
l × nL ×

(
Lc∑
m=1

(dmambm) +
L∑

m=Lc+1

nm

))
.

5.2 Computational Cost

To avoid clutter, we show the computational cost formth conolutional/fully-connected

layer.

(1) Function evaluation:

• Convolutional layers: From (2.8), (2.11), and (2.12), the computational cost

is

O(l × hmhmdm−1dmambm).

• Fully-connected layers: From (2.21) and (2.22), the computational cost is

O(l × nmnm−1)

(2) Gradient evaluation:

• Convolutional layers: From (3.22) and (3.23), the computational cost is

O(l × hmhmdm−1dmambm).

From (3.25) and (3.26), the computational cost is

O(l × am−1bm−1dm−1dmambm).
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Therefore, the total computational cost for the gradient evaluation is

O(l × am−1bm−1dm−1dmambm).

• Fully-connected layers: For (3.27) and (3.28), the computational cost is

O(l × nmnm−1).

For (3.29) and (3.30), the computational cost is similar. Therefore, the total

computational cost is

O(l × nmnm−1).

(3) Jacobian evaluation:

• Convolutional layers: From (3.35), the computational cost is

O
(
l × nL × dmambm(hmhmdm−1 + 1)

)
.

From (3.36), the computational cost is

O
(
l × nL × (dmambmhmhmdm−1 + hmhmam−1bm−1dm−1)

)
.

The computational cost of (3.37) can be omitted. Therefore, the total compu-

tational cost is

O(l × nL × dmambmhmhmdm−1).

• Fully-connected layers: From (3.40) and (3.42), the computational cost is

O(l × nL × nmnm−1).

(4) Gauss-Newton matrix-vector products:

• Convolutional layers: From (3.47) and (3.50), the computational cost is

O
(
l × (dmhmhmdm−1ambm + nLd

mambm)
)
.
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• Fully-connected layers: From (3.51) and (3.52), the computational cost is

O (l × (nmnm−1 + nLnm)) .
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CHAPTER VI

Experiments

We choose the following image data sets for experiments. All the data sets are

publicly available1 and the summary is in Table 6.1.

• MNIST: This data set, containing hand-written digits, is a widely used benchmark

for data classification (LeCun et al., 1998).

• SVHN: This data set consists of the colored images of house numbers (Netzer

et al., 2011).

• CIFAR10: This data set is a famous colored image classification benchmark

(Krizhevsky and Hinton, 2009).

• smallNORB: This data set is built for 3D object recognition (LeCun et al., 2004).

The original dimension is 96× 96× 2 because every object is taken two 96× 96

grayscale images from the different angles. These two images are then placed in

two channels. For the dimensionality reduction, we downsample each channel of

every object with the max pooling (h = 3, s = 3) to the dimension 32× 32.

All the data sets were pre-processed by the following procedure.

1All data sets used can be found at https://www.csie.ntu.edu.tw/˜cjlin/

libsvmtools/datasets/.
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Table 6.1: Summary of the data sets, where a0 × b0 × d0 represents the (height, width,

channel) of the input image, l is the number of training data, lt is the number

of test data, and nL is the number of classes.

Data set a0 × b0 × d0 l lt nL

MNIST 28× 28× 1 60, 000 10, 000 10

SVHN 32× 32× 3 73, 257 26, 032 10

CIFAR10 32× 32× 3 50, 000 10, 000 10

smallNORB 32× 32× 2 24, 300 24, 300 5

(1) Min-max normalization. That is, for every image Z0,i, we have

Z0,i ← Z0,i −min

max−min
,

where max/min is the maximum/minimum value in Z0,i.

(2) Zero-centering. This is commonly applied before training CNN (Krizhevsky et al.,

2012; Zeiler and Fergus, 2014). That is, for every image Z0,i, we have

Z0,i ← Z0,i −mean(Z0,i),

where mean(Z0,i) is the mean value in Z0,i.

We consider two simple CNN structure shown in Table 6.2. The parameters used in

our algorithm are given as follows. For the initialization, we follow He et al. (2015) to

randomly set the weight values from the N (0, 1) distribution and multiply by√
2

nmin
,

where

nmin =


dm−1 × am−1 × bm−1 if m ≤ Lc,

nm−1 otherwise.
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For a CG procedure, we terminate it when the following relative stopping condition sat-

isfies or the number of CG iterations reaches a maximal number of iterations (denoted

as CGmax).

||(G+ λI)d+∇f(θ)|| ≤ σ||∇f(θ)||, (6.1)

where σ = 0.1 and CGmax = 250. For the implementation of the Levenberg-Marquardt

method, we set the initial λ1 = 1 and (drop, boost, ρupper, ρlower) constants in (3.10) are

(2/3, 3/2, 0.75, 0.1). In addition, the sampling rate for the Gauss-Newton matrix is set

to 1% and the value of C in (2.26) is set to 0.01l.

6.1 Comparison Between Newton and Stochastic Gradient Meth-

ods

In this chapter, the goal is to compare SG methods with the proposed subsampled

Newton method for CNN. For SG methods, we consider mini-batch SG with momen-

tum. We use the python deep learning library, Keras (Chollet et al., 2015), to implement

it. To have a fair comparison between SG and subsampled Newton methods, the fol-

lowing conditions are fixed.

• Initial points.

• Network structures.

• Objective function.

• Regularization parameter.

The training mini-batch size is 128 for all SG experiments. The initial learning rate

is selected from {0.003, 0.001, 0.0003, 0.0001} by five-fold cross validation.2 When

2We split the training data by stratified sampling for the cross validation.
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Table 6.2: Structure of convolutional neural networks. “conv” indicates a convolutional

layer, “pool” indicates a pooling layer, and “full” indicates a fully-connected

layer.

model-3-layers model-5-layers

filter size #filters stride filter size #filters stride

conv 1 5× 5× 3 32 1 5× 5× 3 32 1

pool 1 2× 2 - 2 2× 2 - 2

conv 2 3× 3× 32 64 1 3× 3× 32 32 1

pool 2 2× 2 - 2 - - -

conv 3 3× 3× 32 64 1 3× 3× 32 64 1

pool 3 2× 2 - 2 2× 2 - 2

conv 4 - - - 3× 3× 64 64 1

pool 4 - - - - - -

conv 5 - - - 3× 3× 64 128 1

pool 5 - - - 2× 2 - 2

conducting the cross validation and training process, the learning rate is adapted to the

Keras framework’s default scheduling with a decaying factor 10−6 and the momentum

coefficient is 0.9.

From the results shown in Table 6.3, we can see that
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Table 6.3: Test accuracy for Newton method and SG. For Newton method, we trained

for 250 iterations; for SG, we trained for 1000 epochs.

model-3-layers model-5-layers

Newton SG Newton SG

MNIST (99.15, 99.25)% 99.15% 99.46% 99.35%

SVHN (92.91, 92.99)% 93.21% 93.49% 94.60%

CIFAR10 (77.85, 79.41)% 79.27% 76.7% 79.47%

smallNORB (98.14, 98.16)% 98.09% 97.68% 98.00%
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CHAPTER VII

Conclusions

In this study, we establish all the building blocks of Newton methods for CNN. A

simple and elegant MATLAB implementation is developed for public use. Based on our

results, it is possible to develop novel techniques to further enhance Newton methods

for CNN.
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APPENDICES
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APPENDIX A. List of Symbols

Notation Description

yi The label vector of the ith training instance.

Z0,i The input image of the ith training instance.

l The number of training instances.

K The number of classes.

θ The model vector (weights and biases) of the neural network.

ξ The loss function.

ξi The training loss of the ith instance.

f The objective function.

C The regularization parameter.

L The number of layers of the neural network.

Lc The number of convolutional layers of the neural network.

Lf The number of fully-connected layers of the neural network.

nm The number of neurons in the mth layer (Lc < m ≤ L).

n The total number of weights and biases.

am the height of the data at the mth layer (0 ≤ m ≤ Lc).

bm the width of the data at the mth layer (0 ≤ m ≤ Lc).

dm the depth (or the number of channels) of the data at the mth layer (0 ≤

m ≤ Lc).

hm the height (width) of the filters at the mth layer.

Wm The weight matrix in the mth layer.

bm The bias vector in the mth layer.
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Notation Description

Sm,i The output matrix of the function (Wm)Tφ(Zm−1,i)+bm1Tambm in themth

layer for the ith instance (1 ≤ m ≤ Lc).

Zm,i The output matrix (element-wise application of the activation function on

Sm,i) in the mth layer for the ith instance (1 ≤ m ≤ Lc).

sm,i The output vector of the function (Wm)Tzm−1,i + bm in the mth layer for

the ith instance (Lc < m ≤ L).

zm,i The output vector (element-wise application of the activation function on

sm,i) in the mth layer for the ith instance (Lc < m ≤ L).

σ The activation function.

J i The Jacobian matrix of zL,i with respect to θ.

I An identity matrix.

αk A step size at the kth iteration.

ρk The ratio between the actual function reduction and the predicted reduction

at the kth iteration.

λk A parameter in the Levenberg-Marquardt method.

N (µ, σ2) A Gaussian distribution with mean µ and variance σ2.

APPENDIX B. Alternative Method for the Generation of

φ(Zm−1,i)

For the alternative method here, we use MATLAB’s im2col with sm = 1 and

extract a sub-matrix as φ(Zm−1,i).

We now explain each line of the program. To find Pm−1
φ , from (2.9) what we need is

to extract elements in Zm−1,i. Some elements may be extracted multiple times. For the
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extraction it is more convenient to chapter on the linear indices of elements in Zm−1,i.

Following MATLAB’s setting, for an a× b matrix, the linear indices are

[ 1, . . . , a, a+ 1, . . . , ab ] ,

where elements are mapped to the above indices in a cloumn-wise setting. In line 2,

we start with obtaining the linear indices of the first row of Zm−1,i, which corresponds

to the first channel of the image. In line 3, we use im2col to build φ(Zm−1,i) under

sm = dm−1 = 1, though contents of the input matrix are linear indices of Zm−1,i rather

than values. For φ(Zm−1,i) under sm = dm−1 = 1, the matrix size is

hmhm × āmb̄m,

where from (2.4),

ām = am−1 − hm + 1, b̄m = bm−1 − hm + 1.

From (2.9), when a general sm is considered, we must select some columns, whose

column indices are the following subset of {1, . . . , āmb̄m}:

1bm ⊗




0

...

am − 1

 sm + 1am

+




0

...

bm − 1

 sm
⊗


ām

...

ām


am×1

, (B.1)

where am and bm are defined in (2.4). More precisely, (B.1) comes from the following
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mapping between the first row of φ(Zm−1,i) in (2.9) and {1, . . . , āmb̄m}:

(1, 1)

(1 + sm, 1)

...

(1 + (am − 1)sm, 1)

(1, 1 + sm)

(1 + sm, 1 + sm)

...

(1 + (am − 1)sm, 1 + sm)

...



−→




0

...

am − 1

 sm + 1am + 0ams
mām


0

...

am − 1

 sm + 1am + 1ams
mām

...



Next we discuss how to extend the linear indices of the first channel to others. From

(2.5), each column of Zm−1,i contains values of the same pixel in different channels.

Therefore, because we consider a column-major order, indices in Zm−1,i for a given

pixel are a continuous segment. Then in (2.9) for φ(Zm−1,i), essentially we have dm−1

segments ordered vertically and elements in two consecutive segments are from two

consecutive rows inZm−1,i. Therefore, the following index matrix can be used to extract

all needed elements in Zm−1,i for φ(Zm−1,i).

linear indices of Zm−1,i for

1st channel of φ(Zm−1,i)


hmhm×ambm

⊗1dm−1+




0

...

dm−1 − 1

⊗ 1hmhm

⊗1Tambm .
(B.2)

The implementation is in line 10 and we use a property of MATLAB to add a matrix

and a vector. Thus the ⊗ operation in the second term in (B.2) is not needed.
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Listing B.1: Matlab implementation for Pm−1
φ

1 function indicator = indicator_im2col(a,b,d,h,s)

2 input_idx = reshape(([1:a*b]-1)*d+1,a,b);

3 output_idx = im2col(input_idx,[h,h],'sliding');

4 a_bar = a - h + 1;

5 b_bar = b - h + 1;

6 a_idx = 1:s:a_bar;

7 b_idx = 1:s:b_bar;

8 select_idx = repelem(a_idx,1,length(a_idx)) + a_bar*repmat(

b_idx-1,1,length(b_idx));

9 output_idx = output_idx(:,select_idx);

10 output_idx = repmat(output_idx,d,1) + repelem([0:d-1]',h*h

,1);

11 end
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