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摘要 

 近年來，根據影片了解人們動作的技術獲得越來越多的關注，因為其有廣大的

應用場域像是人機互動、智慧家庭、健康照顧以及監視系統。但是隨著視角的不同，

人的輪廓外觀也會跟著不同，這造成了從不同的視角進行動作辨識仍然是個挑戰。 

 在本論文中，我們學習了一個無關視角的姿勢特徵以進行跨視角動作辨識，另

一方面，考慮到人們的隱私問題，我們捨棄了彩度影像而只採用深度影像當作我們

系統的輸入。此提出的特徵提取模型運用深度卷積神經網路將來自不同視角的人

物姿勢轉換到共享的特徵空間中，然而訓練這樣的深度模型需要龐大的多視角影

像資料，人為蒐集和標注這樣的資料將會耗費不少的成本與精力，因此我們藉由合

成的方式產生了一個多視角的姿勢資料庫，在模擬環境中我們將人體的立體幾何

模型貼合到真實的動作捕捉資料上並且在虛擬環境裡進行多視角的深度影像拍攝。 

我們以無監督的方式在所創造的合成資料庫上進行無關視角姿勢特徵的學習，

此外，為了確保從合成資料到真實資料上的模型遷移性，我們採用了領域適應的技

巧去降低彼此的領域差異性。一個動作可以視為一連串的姿勢序列所組成，藉由長

短期記憶網路我們可以習得動作的時序模型。在實驗的部分，我們將所提出的方法

實作在兩個公開的多視角動作資料庫，其表現超越了幾個基本比較模型，並且同時

超越了許多當前最好的方法。 

 

關鍵字：動作辨識、跨視角、合成資料、領域適應 
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ABSTRACT 

Human action understanding from videos has raised lots of attention in computer 

vision recently because of its wide applications, such as human-robot interaction, smart 

home, health care, and surveillance systems. Recognizing human activities from different 

viewpoints is still a challenging problem since human shapes appear quite differently 

from different viewpoints. 

In this thesis, we learn a View-Invariant Pose (VIP) feature representation for cross-

view action recognition. Besides, considering privacy issue, we adopt depth video rather 

than RGB video as input to our system. The proposed VIP feature encoder is a deep 

Convolutional Neural Network (CNN) that transfers human poses from different 

viewpoints to a shared high-level feature space. Learning such a deep model requires a 

large corpus of multi-view data which is very expensive to collect and label. Therefore, 

we synthesize a Multi-View Pose (MVP) dataset by fitting human physical models with 

real motion capture data in the simulators and then render depth images from multiple 

viewpoints. 

The VIP feature is learned from the synthetic MVP dataset in an unsupervised way. 

Moreover, domain adaptation is employed to ensure the transferability from synthetic 

data to real data such that the domain difference is minimized. An action can be 

considered as a sequence of poses and the temporal progress is learned and modeled by 

Long Short-Term Memory (LSTM). In the experimental parts, our method is applied on 

two benchmark datasets of multi-view 3D human action and achieves superior 

performance when compared with baseline models as well as promising results when 

compared with several state-of-the-arts. 

Keywords: action recognition, cross-view, synthetic data, domain adaptation 
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Chapter 1 Introduction 

In this chapter, we first describe our motivation in Section 1.1. A complete literature 

review is presented in Section 1.2. In Section 1.3, we highlight our contributions, and in 

the last, we give the organization of this thesis in Section 1.4. 

1.1 Motivation 

Recently, human action recognition [1] from videos has raised lots of attention in 

computer vision because of its wide applications. The objective of action recognition is 

to automatically identify human activities from a given video. Many applications can 

benefit from such algorithms in real-world scenarios, such as human-robot interaction, 

smart home, health care, and surveillance systems. Over the last decade, action analysis 

evolved from earlier hand-crafted schemes which were limited to controlled environment 

settings to nowadays advanced algorithms that are learned from large-scale data and can 

be applied to complexed daily activities. Encouraged by the huge success of deep learning 

for image recognition problems [2-6], several works also tried to employ deep neural 

networks to tackle the problem of color-based action recognition [7-10]. 

As for the indoor surveillance systems applied to smart home and health care 

environments, there are other issues needed to be concerned. Among them, privacy issue 

attracts more and more attention recently. Hsu et al. [11] proposed a privacy free indoor 

action detection system using only depth videos which are less privacy sensitive. 

Moreover, compared with color sensors, depth cameras offer several advantages such as 

working under varying illumination conditions and being invariant to different colors and 

textures. Given such considerations, in this thesis we only adopt depth sensors to deal 

with the action analysis problem. 

With the high popularity of depth sensors, several methods [12-14] had been 
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proposed to address depth-based action recognition in the last few years. Among different 

types of feature representations, silhouettes and spatio-temporal interest points are the 

most commonly used ones. However, despite the impressive results achieved by these 

approaches, their performances drop sharply when the viewpoint changes. This is because 

these features are view-dependent and human shapes significantly vary due to different 

human orientations or camera settings (including height and distance). Figure 1-1 

illustrates some scenarios. The same action may look quite different when observed from 

different viewpoints, which limits the applicability of these methods when the recognition 

is performed from unseen views. Designing robust feature representations for video 

sequences is an important task. In this thesis, we propose a View-Invariant Pose (VIP) 

feature representation which is robust to viewpoint variations. 

Besides, we have noticed a coming trend, that instead of manually collecting large-

scale datasets, training on synthetic data could also bring competitive results while 

evaluating on real data [16-19]. This can bring lots of benefits in many cases. For instance, 

depth estimation based on color images usually requires a large quantity of accurately 

labeled data which however is impractical to be annotated manually. Varol et al. [18] 

automatically synthesized training images with ground truth depth maps by integrating 

human models with CMU motion capture data [20] and rendering with simulators. In this 

    

(a) Human orientations (b) Side-view 
camera setting 

(c) Surveillance-view 
camera setting 

Figure 1-1 Viewpoint variations in NTU RGB+D action recognition dataset [15]. Note 
that (b) and (c) show the difference between camera settings. 
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thesis, we synthesize a large-scale depth image dataset containing human poses shot from 

multiple viewpoints to help us subsequently learn the VIP feature, which reduces a 

significant amount of effort in collecting and annotating real data. 

However, there is an inevitable visual gap between the synthetic data and real data. 

The learned features from two different datasets reside in different domains. Thus, the so-

called domain adaptation [21] plays a crucial role to bridge the gap by mapping two 

domains into a common space. In this thesis, we develop a strategy to learn a domain-

invariant feature representation by the idea of adversarial training [22]. 

Recurrent Neural Network (RNN) has demonstrated its superior capability of 

modeling complex temporal dynamics in sequence-learning problems [23]. Given that an 

action can be seen as a sequence of poses, we adopt Long Short-Term Memory (LSTM) 

[24] to describe the temporal dependencies by feeding pose-related features sequentially. 

In summary, we propose a learning-based action recognition system which takes 

depth videos as input to identify human activities from different viewpoints. The cross-

view knowledge is learned from synthetic data in an unsupervised way and is also 

transferred to real data through adversarial domain adaptation. 

1.2 Literature Review 

We first give an introduction to action recognition using deep neural networks in 

Section 1.2.1, followed by several works tackling cross-view action recognition problem 

in Section 1.2.2. In Section 1.2.3, we introduce the domain adaptation and some related 

works. 

1.2.1 Action Recognition with Deep Neural Networks 

Due to the impressive results achieved by deep learning on image classification [2, 

3], image segmentation [5], object detection [4, 6], etc., so far there have been several 



doi:10.6342/NTU201802626

 4 

works which adopted deep neural networks to learn spatial and temporal information for 

action recognition [7-10]. 

Ji et al. [7] extended the traditional 2D Convolutional Neural Networks (CNNs) to 

3D CNNs where the temporal dimension is involved in convolutions. Tran et al. [8] 

designed a Convolutional 3D (C3D) architecture and found 3×3×3 the best kernel size to 

extract spatio-temporal feature. On the other hand, instead of extracting features with a 

single CNN, Simonyan and Zisserman [9] trained two CNNs, one for RGB image and the 

other one for optical flow, and combined the learned information with late fusion. 

Donahue et al. [10] proposed an end-to-end recurrent convolutional network which 

processes the input video frame with a CNN and learns the temporal information with a 

Recurrent Neural Network (RNN) by feeding in the CNN features sequentially (see 

Figure 1-2). However, these methods are not designed for cross-view action recognition 

as they cannot be generalized to different viewpoints. 

1.2.2 Cross-View Action Recognition 

Most existing action recognition methods have mainly focused on videos captured 

from a fixed viewpoint. However, the same human action may appear quite differently 

 
Figure 1-2 Long-term recurrent convolutional network proposed in [10]. 
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when observed from different viewpoints. A practical system should be capable of 

recognizing human activities from different or unseen viewpoints. In order to recognize 

actions across various views, a direct solution is to collect data from all possible views 

and train a separate model for each view. This approach does not scale well as it needs a 

large amount of labeled data for each view and this is infeasible as the number of action 

types increases. 

To address this issue, knowledge-transfer based methods [16, 25-33] become 

popular recently. They tried to find a view-invariant latent space where the learned 

features could be compatible among all different views. Rahmani et al. [27] designed a 

hand-crafted feature called Histogram of Oriented Principal Components (HOPC), which 

is robust to viewpoint variations, to detect and describe spatio-temporal interest points. 

Zheng and Jiang [31] built a transferable dictionary pair by forcing the videos of the same 

action from different views to have similar sparse representations. This method needs 

video-level feature-to-feature correspondence across different views, thereby limiting the 

scalability. Zhang et al. [30] assumed that there exists a smooth virtual path between two 

viewpoints and connected cross-view action descriptors by applying an infinite sequence 

of linear transformations on view-dependent features. Although this method can operate 

in the absence of paired features between source and target views, they still require some 

samples from target view for training. Wang et al. [28] proposed a cross-view action 

representation by expressing the appearance and motion variations with a hierarchical 

compositional tree structure. They learned a separate linear transformation for each body 

part and used samples from training views to interpolate unseen views. Even though this 

method can recognize actions from unseen views, it requires 3D skeleton data while 

training which is not always available. 
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Some methods relied on motion capture data to learn cross-view features. For 

example, Gupta et al. [29] used non-linear Circulant Temporal Encoding (nCTE) to find 

the best match for each training video in a large mocap database and synthesized multi-

view data for augmentation. Rahmani and Mian [26] proposed an Non-linear Knowledge 

Transfer Model (NKTM) such that knowledge from multiple views is transferred to a 

single predefined canonical view (see Figure 1-3). Rahmani et al. [25] further extended 

NKTM to Robust Non-linear Knowledge Transfer Model (R-NKTM) as shown in Figure 

1-4 that removes the need for pre-defining a canonical view which is actually action-

dependent. However, these methods cannot be applied to depth videos as they depend on 

dense trajectories which are not reliable in depth maps. 

 
Figure 1-3 Transferring source view and target view into a predefined canonical view 
through non-linear transformations [26]. 

 
Figure 1-4 The framework of Robust Non-linear Knowledge Transfer Model (R-
NKTM) proposed in [25]. 
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1.2.3 Domain Adaptation 

    Several works [16, 18, 19, 25, 26] synthesized data for training and applied the 

learned knowledge to real data. However, there may exist a domain shift as the synthetic 

data are generated or sampled within a different distribution from real data. As a result, 

domain adaptation [21] plays an essential role as it bridges the gap by moving two 

domains toward a shared space. Most previous methods worked on a fixed feature 

representation. Recently, there is a trend to combine feature learning and domain 

adaptation into a unified training process [34]. 

In addition to the main task, Ganin and Lempitsky [35] added a domain classifier as 

shown in Figure 1-5 to tell the domain from which the data came. They further proposed 

a gradient reversal layer to jointly learn the feature representation and align two domains 

by backpropagation. Other methods have integrated the adversarial training [22] and 

chosen an adversarial loss to minimize the domain shift by learning a feature 

representation that is not distinguishable between domains while discriminative of source 

labels. Tzeng et al. [36] designed a domain confusion loss to encourage the prediction of 

domain classifier to be a uniform distribution over domain labels. Chen et al. [19] 

synthesized training images for 3D human pose estimation based on 2D color images. 

 
Figure 1-5 Domain adaptation using gradient reversal layer [35]. 
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They added a domain mixer along with a pose regressor and showed that such a domain 

adaptation technique could significantly improve the main task on target data. 

1.3 Contributions 

In this thesis, we propose a learning-based action recognition system which takes 

depth video as input to identify human activities from different viewpoints. To our best 

knowledge, the presented work is the earliest one incorporating domain adaptation to 

address action recognition problem by learning from synthetic data. The contributions of 

this work are listed as follows: 

I. We propose a simple but efficient pipeline to synthesize a large-scale Multi-

View Pose (MVP) dataset. It consists of paired depth images containing human 

poses captured from multiple viewpoints. 

II. We design a framework to learn a View-Invariant Pose (VIP) feature 

representation from the synthetic MVP dataset in an unsupervised way. The VIP 

feature encodes human poses observed from different views into a shared view-

invariant feature space, thus benefits recognizing human activities from 

different views. 

III. We transfer the learned VIP knowledge from synthetic data to real data through 

adversarial domain adaptation. 

IV. We demonstrate that the proposed method can efficiently tackle the problem of 

cross-view action recognition while significantly reducing the amount of 

manual effort in collecting and annotating multi-view real data. 

1.4 Thesis Organization 

This thesis is organized as follows. In Chapter 2, we build up some prerequisite 

knowledge related to this work. In Chapter 3, we firstly describe how to synthesize a 
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dataset using simulators. Then, we present the framework of unsupervised learning for a 

pose feature, which is invariant to viewpoint variations, from the synthetic dataset. In 

addition, we describe how to transfer the learned knowledge from synthetic data to real 

data. Modeling temporal information is included in the end. In Chapter 4, the 

experimental results consolidate the effectiveness of our proposed method. This thesis is 

concluded in Chapter 5 with some future works. 
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Chapter 2 Preliminaries 

In this chapter, some prerequisite knowledge is introduced. Firstly, we describe about 

cluster analysis. Secondly, we briefly give the background of deep neural networks which 

includes the convolutional neural network and the recurrent neural network. Thirdly, 

concepts about generative adversarial network and domain adaptation are presented. 

2.1 Cluster Analysis and HDBSCAN 

Cluster analysis is the task of grouping a set of data in such a way that data belong 

to the same group (or called cluster) are more similar to each other while distinct to those 

in other groups (or clusters). In most cases, the data points live in a high-dimension space, 

and the similarity is defined by different distance measurements. 

 There is a diversity of clustering algorithms including hierarchical clustering, 

centroid-based clustering, distribution-based clustering, and density-based clustering. 

Choosing an appropriate algorithm and parameter settings like which distance function to 

use or the expected number of clusters depends on the individual dataset. Usually we 

cluster data in an unsupervised way such that we do not use any label information. Figure 

2-1 shows a clustering example. 

The most popular clustering algorithm is k-means because of its simplicity and 

intuitiveness. However, k-means does not always find the best result due to the fact that 

 
(a) 2D data points without labels 

 
(b) Clustering result 

Figure 2-1 A clustering example containing 2D data points from 3 clusters. 



doi:10.6342/NTU201802626

 11 

it is extremely sensitive to the k value which means the number of clusters, and it is also 

affected by noisy data and the initialization. 

In density-based clustering, clusters are defined as areas of higher density separated 

by areas of lower density. Those sparse areas are usually considered as noise or border 

points. The most popular algorithm is Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) [37]. The found clusters can be any shape, as opposed to k-means 

which assumes that clusters are convex shaped. 

Moreover, Hierarchical Density-Based Spatial Clustering of Applications with 

Noise (HDBSCAN) [38] is extended from DBSCAN by transforming into a hierarchical 

clustering algorithm, and it integrates the clustering results over the varying threshold 

value 𝜀. HDBSCAN algorithm consists of the following steps. 

First, it identifies the dense and sparse regions. It estimates density by defining 

𝑑89:;,=>?@(𝑎) as core distance meaning the distance to the 𝑚DEF-th nearest neighbor of 

a data point 𝑎. Then it further defines mutual reachability distance 𝑑:;G8H,=>?@ 𝑎, 𝑏  

between data points 𝑎 and 𝑏 as follows: 

 𝑑:;G8H,=>?@ 𝑎, 𝑏 = max 𝑑89:;,=>?@ 𝑎 , 𝑑89:;,=>?@ 𝑏 , 𝑑(𝑎, 𝑏) 	 (2.1) 

  
(a) Core distance of a point (b) Mutual reachability distance between two points 

Figure 2-2 Core distance and mutual reachability distance where 𝑚DEF = 5. 
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where 𝑑(𝑎, 𝑏) is the original distance metric between 𝑎  and 𝑏 . Under this mutual 

reachability distance, the dense points (with low core distance) remain the same distance 

from each other while those sparser (or noisy) points are pushed away to be at least their 

core distance from any other point. Figure 2-2 illustrates an example. 

Secondly, it considers the whole dataset as a weighted graph described by points as 

vertices and edges between any two points with weight equal to the mutual reachability 

distance. To speed up the algorithm, it builds a minimum spanning tree (MST) via Prim’s 

algorithm, resulting a minimal set of edges such that dropping any edge causes a 

disconnection of components, as shown in Figure 2-3 (a). 

Thirdly, it converts the MST into a hierarchy of connected components. It starts to 

drop edges with weights higher than a threshold 𝜀 to split the graph into connected 

components. By varying the threshold 𝜀 from high value to low value, it discovers a 

hierarchy of connected components (from completely connected to completely 

disconnected). Figure 2-3 (b) shows an example of hierarchical result. 

  
(a) Minimum spanning tree (b) Cluster hierarchy 

Figure 2-3 Minimum spanning tree and cluster hierarchy constructed by HDBCSAN 
[38]. 
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The next step is to condense down the large and complicated cluster hierarchy into 

a smaller tree with more data attached to each node. Let us denote 𝑚8NOPQ;  as the 

minimum cluster size. Walk through the hierarchy and check at each split if one of the 

new clusters created by the split has fewer points than 𝑚8NOPQ;. If it does, discard those 

points as noisy data. Figure 2-4 (a) shows an example of a condensed tree with a small 

number of nodes. 

The last step is to extract the flat clustering result. HDBSCAN combines all possible 

results from DBSCAN with respect to a given value of 𝑚DEF and all density levels 𝜆 =

1/𝜀	in	[0,∞). Gradually increasing 𝜆 (decreasing 𝜀) and assume cluster 𝑪P appears at 

level 𝜆=PZ 𝑪P . It defines the stability of a cluster 𝑪P as: 

 𝑆 𝑪P	 = 𝜆=G* 𝑎, 𝑪P	 − 𝜆=PZ 𝑪P	
G∈𝑪]	

 (2.2) 

where 𝜆=G* 𝑎, 𝑪P	  is the density level beyond which data point 𝑎 no longer belongs 

to cluster 𝑪P. Let 𝑪0,… , 𝑪=  be the collection of all clusters except the root 𝑪_ in the 

condensed tree as shown in Figure 2-4 (a). The final clustering result can be seen as a flat 

and non-overlapping partition by solving the following optimization problem of 

maximizing the sum of stabilities of the selected clusters. 

  
(a) Condensed tree (b) Clustering result from condensed tree 

Figure 2-4 A condensed tree from the cluster hierarchy and the clustering result. The 
widths of lines represent the number of points in each cluster. 
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max
`a,…,`b

𝐽 = 𝛿P𝑆 𝑪P	
=

Pe0

	

subject	to	
𝛿P ∈ 0, 1 , 𝑖 = 2,… ,𝑚

𝛿o = 1, ∀𝑙 ∈ 𝑳
o∈𝑱t

 

(2.3) 

where 𝛿P  indicates whether cluster 𝑪P  is selected in the solution, 𝑳 =

𝑙|𝑪N	is	leaf	cluster  denotes the indexes of leaf clusters, and 𝑱N = 𝑗|𝑗 ≠

1	and	𝑪o	is	ascendant	𝑜𝑓	𝑪N  is the set of indexes of all clusters on the path from the 

root to 𝑪N. Figure 2-4 (b) illustrates an example of the optimization result. Besides, as a 

comparison between k-means and HDBSCAN shown in Figure 2-5, HDBSCAN can 

discard the noise from clustering result while k-means assigns each point including noise 

to a cluster. 

As a density-based clustering algorithm with few assumptions about data 

distribution and a small number of intuitive parameters, HDBSCAN is ideally suitable 

for exploratory data analysis. We utilize HDBSCAN to build a pose dictionary as 

described in Section 3.1.1. 

2.2 Convolutional Neural Network 

In recent years, Convolutional Neural Networks (CNNs) have brought an 

  
(a) k-means (b) HDBSCAN 

Figure 2-5 A comparison of clustering results between k-means and HDBSCAN. The 
gray points in (b) are considered as noise. 
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overwhelming success in the computer vision field, including image classification [2, 3], 

image semantic segmentation [5], object detection [4, 6], etc. 

Take the classification task for example, traditional frameworks consist of hand-

crafted feature extractors like HOG feature, and learnable classifiers such as Support 

Vector Machine (SVM). While the classifiers can learn by themselves to solve the 

optimization problems, usually we need to predefine the parameters of the feature 

extractors and it requires some domain knowledge and several trial and error for tuning. 

On the other hand, CNN-based frameworks are comprised of learnable feature extractors 

and learnable classifiers. Not only classifiers but also feature extractors can automatically 

tune their parameters by backpropagation in an end-to-end way, which increases the 

learning ability of the feature representations. 

CNNs are similar to traditional neural networks, where the convolution kernels are 

made up of learnable weights and biases, just like neurons. Each kernel receives some 

inputs, performs a dot product and is optionally followed by a non-linearity activation 

function. Figure 2-6 shows a common CNN architecture. In general, earlier layers extract 

low-level features, such as edge and corner, while following layers are responsible for 

high-level features, such as meaningful structures like objects, animals, human faces, etc. 

 
Figure 2-6 A common CNN architecture comprised of several convolutional layers. 
Every layer transforms the 3D input volume to a 3D output volume of neurons. 
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2.2.1 Convolutional Layer 

Each convolutional layer has multiple convolution kernels which perform a dot 

product with a specific input patch called receptive field. Each layer can have different 

number of kernels, which makes layers’ outputs differ in depth (or channel) dimension. 

Sometimes zero-padding around the border of the input makes the size of output feature 

map consistent with the input. During the forward pass, the convolution is conducted 

along the height and width dimensions with a pre-specified stride as illustrated in Figure 

2-7. The weights of each convolution kernel can be randomly initialized when trained 

from scratch. During training, the weights are updated through backpropagation with 

gradients of loss function. 

 

 

 
Figure 2-7 Forward pass of a 3×3 convolutional operation with stride equal to 1. 
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Different CNNs may end up with different number of layers, different kernel size, 

and different connectivity configurations. In the beginning, people tried to make the 

structure deeper with more powerful representations. However, considering the fact that 

models are hard to trained as going deeper, recent researchers focus on how to efficiently 

expand the model capacity while maintaining or reducing the number of parameters. As 

depicted in Figure 2-8, Google designed a family of “Inception module” [39, 40] which 

not only deeper the structure but also makes it wider. In the following, we will introduce 

one of them used in this thesis called Xception network. 

2.2.2 Xception Network 

To expand the capacity of Inception modules, Chollet [41] proposed a novel CNN 

structure called Xception which stands for “Extreme Inception” by replacing Inception 

modules with depth-wise separable convolutions. 

  
(a) Inception module V1 [39] (b) Inception module V3 [40] 

Figure 2-8 The family of Inception modules. 
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A traditional convolution kernel is tasked with simultaneously mapping spatial and 

cross-depth correlations. On the other hand, the depth-wise separable convolution, 

commonly called “separable convolution”, tries to decouple these two correlations by 

independently performing spatial convolution over each channel of input followed by a 

pointwise (1×1) convolution. Figure 2-9 illustrates the difference between the traditional 

and depth-wise convolution. 

The Xception network, as shown in Figure 2-10, has 36 convolutional layers formed 

into 14 modules, all of which are equipped with residual connections [3]. Such a design 

slightly outperforms Inception V3 [40] on the ImageNet dataset and significantly 

outperforms Inception V3 on JFT dataset while having roughly the same number of 

parameters. In this thesis, we use Xception network as pose feature extractor as described 

in Section 3.2.1. 

  

(a) Traditional convolution (b) Depth-wise convolution 
Figure 2-9 The difference between traditional and depth-wise convolution using 3×3 
convolution kernels. 
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2.3 Recurrent Neural Network and Long Short-Term 

Memory 

In this section, we briefly introduce the concept about Recurrent Neural Network 

(RNN) to make this thesis self-contained. 

RNN is a popular method for extracting features and modeling sequential or 

 
(a) Entry flow (b) Middle flow (c) Exit flow 

Figure 2-10 The Xception network architecture [41]. 

 

 
(a) A RNN cell (b) A LSTM cell 

Figure 2-11 Structures of the neurons in Recurrent Neural Networks (RNNs). 
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temporal data. The main difference between a RNN and a standard feedforward network 

is the feedback loop, which makes a recurrent connection in an unfolded network. With a 

self-connected cell as shown in Figure 2-11 (a), RNN is capable of modeling the 

contextual information from a sequence of length 𝑇 by the following equation: 

 ℎE = 𝜃 𝑊 ℎE�_, 𝑧E + 𝑏  (2.4) 

where 𝑧E and ℎE denote the input and hidden state at time step 𝑡 respectively, 𝑊 and 

𝑏 represent learnable weights and bias, and 𝜃 is the non-linear activation function. Each 

hidden state ℎE  is determined by the current input 𝑧E  and the previous hidden state 

ℎE�_. Theoretically, the last hidden state ℎ� contains the information about the whole 

sequence. 

 However, it is hard to train RNNs due to vanishing gradient and error blowing up 

problems, especially when the sequential data becomes longer. Long Short-Term Memory 

(LSTM) [24] remedies this issue by introducing gating mechanism to determine when the 

input is significant enough to remember, when it should forget information, and when it 

should output the value. It works tremendously well on a large variety of problems. 

As shown in Figure 2-11 (b), a LSTM cell has three gates, including forget gate, 

input gate, and output gate. In addition, different from the standard RNN, LSTM 

maintains a cell state 𝑐E along with the hidden state ℎE for each time step 𝑡. With such 

a design, it can capture long-term information through the following equations: 

 𝑓E = 𝜎 𝑊� ℎE�_, 𝑧E + 𝑏�  (2.5) 

 𝑖E = 𝜎 𝑊P ℎE�_, 𝑧E + 𝑏P  (2.6) 

 𝑜E = 𝜎 𝑊9 ℎE�_, 𝑧E + 𝑏9  (2.7) 

                    cE = 𝑓E ⊗ 𝑐E�_ + 𝑖E ⊗ tanh 𝑊8 ℎE�_, 𝑧E + 𝑏8  (2.8) 

                    ℎE = 𝑜E ⊗ tanh 𝑐E  (2.9) 

where 𝑓, 𝑖, 𝑜 correspond to forget gate, input gate, and output gate, respectively, all 𝑊 
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and 𝑏 are learnable weights and biases, and ⊗ denotes the element-wise product. 

 In this thesis, we utilize LSTM to capture the temporal progress within actions as 

described in Section 3.3. 

2.4 Generative Adversarial Network 

In this part, we briefly describe the Generative Adversarial Network (GAN) [22] to 

make the completeness of this thesis. Aiming at recovering or synthesizing signals with 

the similar distribution to the real data, GAN utilize two components, one is generator 

G 𝑧 :ℝD → ℝ�×�×� and the other one is discriminator D 𝑥 :ℝ�×�×� → ℝ, to optimize 

a two-player minimax game with the following objective function: 

 min
�
max
�

𝑉 𝐷, 𝐺 = 𝔼*~-��?� log𝐷 𝑥 + 𝔼Q~-� log 1 − 𝐷 𝐺 𝑧  (2.10) 

where 𝑥 ∈ ℝH×�×�  is an image sampled from the real data, 𝑧 ∈ ℝD  is a randomly 

sampled vector from a prior distribution 𝑃Q, and 𝐷 𝑥  represents the probability that 

image 𝑥 comes from real data. 

 Generator 𝐺  is responsible for generating images from a random vector while 

discriminator 𝐷 is tasked with distinguishing real images from those generated by 𝐺. 

Note that generator 𝐺  implicitly defines a generative distribution 𝑃�  behind the 

samples G 𝑧  obtained from 𝑧~𝑃�. 
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As shown in Figure 2-12, with Eqn. (2.10) optimized, generator 𝐺 learns how to 

produce images in ℝH×�×� lying with the same distribution of real data. Besides, Figure 

2-13 illustrates the adversarial training process. From left to right, the generative 

distribution gradually fits on real data distribution and the discriminator 𝐷 is unable to 

differentiate between the two distributions, i.e. 𝐷 𝑥 = _
0
. 

2.5 Domain Adaptation 

Due to the phenomenon called “domain shift”, machine learning models trained on 

some representations from one dataset do not generalize well to other datasets. In other 

words, models learned from the training domain (or source domain) cannot perform 

equally well on the testing domain (or target domain). The simplest solution is to fine-

tune the learned models on the task-specific domains. However, it is hardly to obtain 

enough labeled data to properly fine-tune especially when the models are deep multi-layer 

networks with a large number of parameters. 

 
Figure 2-12 The goal of the generator in GAN [22]. The generator tries to produce 
images with the similar distribution to real ones. 

 
Figure 2-13 Adversarial training process in GAN [22]. GAN is trained by 
simultaneously updating the discriminative function (blue, dashed line) to make it tell 
the difference between real data distribution (black, dotted line) and the generative 
distribution (green, solid line). 
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Domain adaptation is a technique that tackles this problem by adapting data from 

the source domain into the target domain while the main task such as classification is 

preserved in the target domain. Among all the methods, a popular way is to reconstruct a 

new representation space where the data from two domains are projected. It attempts to 

find a domain-invariant representation which is indistinguishable from domain to domain. 

Additionally, it learns main-task models with projected data from the source domain. As 

shown in Figure 2-14, when distributions of representations from two domains become 

closer, the learned models from source domain perform satisfactorily on the target domain. 

Moreover, recent works have focused on transferring deep neural network features 

from one labeled source domain to another target domain where the labeled data is sparse 

or non-existent, resulting semi-supervised or unsupervised domain adaptation problems. 

 
Figure 2-14 Domain adaptation attempts to minimize the domain shift. 

 
Figure 2-15 The general framework for adversarial domain adaptation proposed in [34]. 
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Based on the development of GAN [22], several approaches employ adversarial training 

between the feature encoder (i.e. generator) and the domain discriminator so as to find 

feature space which is not only uninformative about domain but also discriminative to 

main task. Tzeng et al. [34] proposed a universal framework for adversarial domain 

adaptation as shown in Figure 2-15. In this thesis, we use adversarial domain adaptation 

to align the features extracted from real data and synthetic data as described in Section 

3.2.2. 
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Chapter 3 Methodology 

In this thesis, we propose a depth-based cross-view action recognition system 

consisting of three parts: (1) collecting a synthetic Multi-View Pose (MVP) dataset (2) 

learning a View-Invariant Pose (VIP) feature representation from synthetic dataset and 

transferring the knowledge to real data through domain adaptation, and (3) modeling the 

temporal information with LSTM. 

3.1 Synthesize a Multi-View Pose Dataset 

Training deep networks is an optimization problem with respect to millions of 

parameters, which requires large amounts of labelled data to achieve acceptable 

performance. In our case, however, learning a deep View-Invariant Pose (VIP) feature 

representation requires a large corpus of multi-view data which is very hard and expensive 

to manually collect and label. 

Moreover, we have noticed a coming trend that training on synthetic data [16-19] 

could also bring competitive results while evaluating on real data, which reduces the 

amount of manual effort in collecting large-scale dataset. Inspired by [16], we design a 

simple but efficient pipeline to synthesize a Multi-View Pose (MVP) dataset which 

contains human poses captured from multiple viewpoints. The proposed pipeline can 

generate an infinite number of possible combinations of human poses, human geometries, 

 

Figure 3-1 Proposed pipeline for synthesizing a Multi-View Pose (MVP) dataset. 
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and viewpoints. Figure 3-1 gives an overview of the involved steps in collecting the 

synthetic MVP dataset. Firstly, we build a pose dictionary consisting of finite different 

poses. Secondly, we fit several human models with each pose in the dictionary. Thirdly, 

we use a simulator to render depth images from numerous viewpoints. The details are 

described in the following. 

3.1.1 Build a Pose Dictionary 

Given the fact that an action can be viewed as a sequence of poses, the possible pose 

space is much smaller than the possible action space. In addition, several bag-of-word 

based action recognition methods [42, 43] have discriminated actions by the occurrence 

of each pose-related codeword in an action. Based on these observations, learning a pose-

related feature could generalize well to action space with different kinds of sequence 

combinations. 

As we need to fit 3D human models with predefined poses in the simulator, we must 

rely on highly accurate skeleton data such as motion capture database. We choose CMU 

motion capture database [20] which contains more than 2500 motion sequences (over 4 

million poses) covering a variety of actions. It is captured with high-precision camera 

 
Figure 3-2 The setting of body markers in CMU motion capture database [20]. 
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array and body markers (see Figure 3-2), resulting in quite accurate 3D skeletal joint 

positions. This database is treated as the pose space from which we sample poses. 

In order to efficiently learn pose-related features from the pose space, we firstly build 

a dictionary containing the most representative poses. Unsupervised clustering algorithm 

is applied to the skeletons sampled from this pose space. Different from [16], HDBSCAN 

algorithm [38] rather than k-means is used for two reasons. First, the result from k-means 

is sensitive to the k value which indicates the number of clusters. Actually, we cannot 

determine in advance how many clusters could well represent the pose space. Second, k-

means is a hard-clustering algorithm which means that it assigns each data with a cluster 

including the noise. HDBSCAN copes with these issues as it can automatically find the k 

value by tuning two intuitive parameters and discard noisy data from the result by soft 

clustering. 

Besides, we design an orientation-based skeletal feature rather than a displacement-

based skeletal feature used in [16] to compare the similarity between two poses. We 

calculate rotation angles between body limbs. For example, we use 3 degrees of freedoms 

(DOFs) to represent a shoulder’s movement and 1 DOF to describe elbow’s. As a result, 

we use 19 DOFs in total (4 for left arm, 4 for right arm, 4 for left leg, 4 for right leg, 1 for 

head, and 2 for torso) to describe a skeleton (or pose) and use Euclidean distance to 

calculate the similarity. Unlike displacement-based feature, the designed feature is not 

only location-invariant but also scale-invariant and it brings more physical meaning with 

fewer parameters. 

By setting two parameters, minimum cluster size and minimum samples, we get 𝐾 

clusters from HDBSCAN algorithm. The pose with the highest score in each cluster is 

chosen as representative, thus forming a dictionary containing 𝐾 representative poses as 

shown in Figure 3-3 (left column). 
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Figure 3-3 Some representative poses in the pose dictionary. Left column: Skeleton 
data from CMU motion capture database [20]; Center column: Human models fitted 
with poses; Right column: Rendered depth images. 

 
3.1.2 Create 3D Human Models 

There are different ways to create 3D human models. In order to cover the variation 

in subjects, we utilize the open source MakeHuman software [44] to create different 3D 

human models provided with meta data. The created human models are able to be fit with 

predefined poses. With the graphical user interface (GUI) of MakeHuman shown in 

Figure 3-4, we could adjust the gender as well as the body figure such as height, weight, 

and muscle portion of human models. As depicted in Figure 3-5, we synthesize several 
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realistic human models with different combinations of gender, body shape, hair style, and 

clothes. 

 

 
(a) Choosing clothing style 

 
(b) Choosing gender and body figure 

Figure 3-4 The GUI of MakeHuman [44]. 
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3.1.3 Render Depth Images 

Our goal is to collect synthetic depth images of human poses captured from various 

viewpoints. We use the Blender software [45] which is an open source package so as to 

fit 3D human models into mocap data. As shown in Figure 3-6, a simulation environment 

is created. 

Blender normalizes the mocap skeletal data with respect to the size of human models. 

For each 3D human model, we re-target its rigs to fit all the poses in the pose dictionary. 

Figure 3-6 (b) illustrates an example of a 3D human model fitted with a pose. 

    

    

    
Figure 3-5 3D human models with different combinations of gender, body shape, hair 
style, and clothes created by MakeHuman [44]. 
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Moreover, in the Blender simulator, we uniformly place numerous virtual cameras 

with distinct latitudes and longitudes on a hemisphere surrounding the subject (see Figure 

3-7) and render depth images with normalized pixel value in 0, 255 . This process 

results in synthetic but realistic depth images. Different from [16], our pipeline does not 

include hidden point removal and surface fitting. Thus, we synthesize a large-scale MVP 

dataset containing paired depth images of human poses captured from multiple 

viewpoints as depicted in Figure 3-8. 

 

 
(a) The imported 3D human model with its rigs 

 
(b) Re-targeting into a predefined human pose 

Figure 3-6 The GUI of Blender [45]. 
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Figure 3-7 Multiple virtual cameras are uniformly placed around the subject. 
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3.2 Learn a View-Invariant Pose Feature 

In this section, we describe how to learn the View-Invariant Pose (VIP) 

representation that transfers human poses from any view to a shared high-level feature 

space. Moreover, the VIP knowledge is distilled from the MVP dataset and the 
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Figure 3-8 Some depth images in the synthetic Multi-View Pose (MVP) dataset. Note 
that the pixel value indicates the distance. The darker the pixel, the closer it is. 



doi:10.6342/NTU201802626

 35 

information of viewpoint is not required during the learning process. 

3.2.1 Unsupervised Learning 

 As depicted in Figure 3-9, the proposed architecture for learning VIP feature 

consists of two parts, one being an encoder 𝐸 and the other one being a pose classifier 

𝐶-. Here, an underlying assumption is that the same human pose observed from different 

viewpoints share the same high-level feature representation, which we believe should be 

quite reasonable. Convolutional Neural Networks (CNNs) have demonstrated their 

powerful capacities of extracting visual features over several image recognition problems 

[2-6]. We design the encoder 𝐸 as a CNN-based structure which extracts pose-related 

feature from different views into a universal feature space and we refer the extracted 

feature of image 𝑥 as VIP feature 𝑓*+,-. Then the pose classifier 𝐶- aims to tell which 

pose appears in the image 𝑥 based on 𝑓*+,-. 

While training such a framework, the input images 𝑥 come from the synthetic MVP 

dataset. Besides, we do not use any action label from mocap data but only the dummy 

pose label, making the training process unsupervised. For each pose 𝑘 = 1, 2, … , 𝐾 in 

the pose dictionary, the corresponding synthetic depth images rendered from all 

viewpoints are assigned the same dummy pose label 𝑘. The label contains no physical 

meaning but the dictionary index. 

For the encoder 𝐸, we utilize the “Xception network” [41] which is comprised of 

depth-wise separable convolutions. The last fully-connected layer is replaced with a 𝑛-

 
Figure 3-9 Unsupervised training architecture for learning View-Invariant Pose (VIP) 
feature from synthetic data. 
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neuron layer as a bottleneck layer, resulting VIP feature 𝑓*+,- as a n-dimension vector. 

As for the pose classifier 𝐶- , we design a simple one-layer fully-connected network 

followed by a softmax activation, consisting of 𝐾  neurons corresponding to each 

dummy pose label. 

The inputs to our training architecture are synthetic depth images 𝑥 ∈ 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 

sampled from synthetic MVP dataset with the corresponding ground truth dummy pose 

labels 𝑦D9F;. With the goal of achieving view-invariant, the VIP feature 𝑓*+,- is enforced 

to encode only the pose information regardless of viewpoints. We consider VIP loss 𝐿+,- 

as the standard cross-entropy of pose classification as listed below. Here, syn is an 

abbreviation for synthetic. 

 𝐿+,- = − 𝑦D9F; = 𝑘
§

¨e_

log 𝑝*,¨
*∈F©Z

 (3.1) 

 𝑝* = 𝐶- 𝑓*+,-  (3.2) 

 𝑓*+,- = 𝐸 𝑥  (3.3) 

where 𝑥 ∈ ℝH×�×� is the input image, 𝑓*+,- ∈ ℝZ refers to the encoded VIP feature of 

image 𝑥, 𝑝* ∈ ℝ§ indicates the softmax activations of the pose classifier, 𝑝*,¨ ∈ ℝ is 

the k-th element of 𝑝* , meaning the probability of image 𝑥  being pose 𝑘 , and ∙  

denotes Iverson bracket. Note that for a particular pose 𝑘, we sample the input images 

from multiple views during training. We use this architecture to find a high-level feature 

space shared by all possible views. To be more specific, regardless of the input view, we 

encourage the VIP features to be as similar as possible for all views of the same pose. The 

detailed architecture design and training process are presented in Section 4.2.2 and 

Section 4.2.3. 
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To qualitatively visualize the view-invariant property, we project the learned high-

dimension VIP features 𝑓*+,- extracted from synthetic MVP dataset to a 2D space by t-

SNE [46]. As we can see in Figure 3-10, each cluster represents VIP features of the same 

pose from different views. That is to say, the VIP features look quite similar across 

different viewpoints in the high-dimension space, which demonstrates that the encoder 

𝐸 do extract the pose information excluding viewpoints as we expect. 

 

Figure 3-10 2D t-SNE visualization of View-Invariant Pose (VIP) features extracted 
from synthetic MVP dataset. Each cluster represents the same pose from various views. 
Due to the limit of palettes, the same color might appear multiple times. 
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3.2.2 Adversarial Domain Adaptation 

 After we obtained the VIP feature encoder 𝐸 learned from the synthetic MVP 

dataset, here comes a concern about whether we directly adopt it on the real data. In other 

words, do VIP features of a pose from synthetic MVP dataset and those of a similar pose 

from real dataset appear similar? Ideally, training and testing data should live in the same 

domain, such that the model learned from training data can be applied to testing data with 

no degradations. However, there is a visual gap between the synthetic and real depth 

images (see Figure 3-11) as well as their corresponding VIP features (see Figure 3-12), 

  
(a) Real depth images from UWA 3D 
multi-view activity II dataset [27]. 

(b) Synthetic depth images from synthetic 
MVP dataset. 

Figure 3-11 The visual difference between real and synthetic depth images. Note that 
real images contain blurred contours caused by noise. 

 

Figure 3-12 2D t-SNE visualization of the domain shift between View-Invariant Pose 
(VIP) features extracted from synthetic and real images. Orange points represent VIP 
features from synthetic data while blue points denote the VIP features from real data. 
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causing the phenomenon called “domain shift”. 

It has been shown that a trained CNN model can be adapted to a new domain through 

fine-tuning. However, in our case, there is no such a large multi-view real dataset with 

pose labels, it is not suitable to directly fine-tune the encoder 𝐸. As a result, we utilize 

domain adaptation technique where source (or training) data and target (or testing) data 

come from similar but different distributions. Inspired by [35], we add a domain classifier 

𝐶�  along with the existing encoder 𝐸  and pose classifier 𝐶- , combining domain 

adaptation and VIP feature learning into a unified training process (see Figure 3-13). The 

encoded VIP feature 𝑓*+,- is sent to the pose classifier 𝐶- for dummy pose prediction, 

as well as to domain classifier 𝐶� for domain prediction. 

We consider a VIP feature 𝑓*+,- to be domain-invariant if a strong domain classifier 

𝐶�  cannot distinguish from two domains. In our case, we refer the source domain to 

synthetic data and target domain to real data. The adversarial training technique [22] is 

utilized to jointly align the distributions of VIP features across two domains and transfer 

the view-invariant property to target domain. 

Now the inputs to our training architecture are not only synthetic depth images 𝑥 ∈

 
Figure 3-13 Unsupervised training architecture for learning View-Invariant Pose (VIP) 
feature with domain adaptation. 
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𝑠𝑦𝑛 with dummy pose labels 𝑦D9F; but also real depth images 𝑥 ∈ 𝑟𝑒𝑎𝑙 without pose 

labels. It is an unsupervised domain adaptation with the absence of target pose labels. We 

design two loss functions 𝐿¬9=GPZ  and 𝐿89Z�  for adversarial domain adaptation as 

follows: 

 𝐿¬9=GPZ = − log 𝑑*
*∈:;GN

− log 1 − 𝑑*
*∈F©Z

 (3.4) 

 𝐿89Z� = − 0.5	log 𝑑* + 0.5	log 1 − 𝑑*
*

 (3.5) 

 𝑑* = 𝐶�(𝑓*+,-) (3.6) 

where 𝑑* ∈ ℝ denotes the probability of image 𝑥 coming from real domain, 𝐿¬9=GPZ 

is the domain loss, and 𝐿89Z� is the confusion loss. Note that during domain adaptation, 

all training data are unpaired, which means that there are no one-to-one corresponding 

images across domains. 

Our proposed framework has two major differences from [35]. First, instead of using 

a gradient reverse layer that encourages a common domain by reversing the gradients, we 

confuse the domain classifier 𝐶� by enforcing it to output a uniform distribution over 

domain labels with Eqn. (3.5) for all synthetic and real images. This advantage is also 

reported in [36]. Second, an adversarial scheme is used to update the networks. The 

process of learning VIP feature with domain adaptation is summarized in Algorithm 1. 

We train the networks in three stages. Such a training scheme is observed more stable and 

less sensitive to the optimization parameters [47]. The architecture design of the domain 

classifier and training details are described in Section 4.2.2 and Section 4.2.3. 
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Figure 3-14 shows the qualitative process of domain adaptation observed from 

TensorBoard. Each figure illustrates the projected VIP features by t-SNE [46]. Note that 

the two domains gradually align to each other. Specifically, the domain shift is minimized 

during the learning process. 



doi:10.6342/NTU201802626

 42 

  
(a) Before domain adaptation (b) Iteration 1 

  

(c) Iteration 2 (d) Iteration 3 

 

 

(e) Iteration 4  

Figure 3-14 The process of learning View-Invariant Pose (VIP) feature with domain 
adaptation by Algorithm 1. Orange points represent VIP features from synthetic data 
while blue points denote the VIP features from real data. Note that the domain shift is 
minimized during the learning process. 
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3.3 Model Temporal Information 

So far we have learned a VIP feature encoder 𝐸 which maps human pose observed 

from any arbitrary view into a view-invariant space. However, the encoded VIP feature 

𝑓*+,-  only contains static and spatial information, the temporal information has to be 

further combined to describe actions. In this section, we introduce how to model the 

temporal progress in actions using LSTM [24]. 

With the temporal variations in each action, Recurrent Neural Networks (RNNs) are 

appealing in that they can directly map varying-length inputs. Although RNNs have 

demonstrated superior capabilities of modeling complex temporal dynamics in an input 

sequence, traditional RNNs are limited to learning long-term temporal dependencies 

because of the vanishing and exploding gradient problems. LSTM overcomes these 

challenges by introducing the gating mechanism and demonstrates its power on a large 

variety of problems. 

Figure 3-15 illustrates an overview of the proposed pipeline for recognizing actions 

in videos captured from different viewpoints. Given an input video of length 𝑇, 𝑋 =

𝑥E|𝑡 = 1, 2, … , 𝑇 , we consider an action as a sequence of poses and use the trained 

encoder 𝐸 to extract the VIP feature 𝑓*?
+,- from each input frame. Thus, we transform 

the input video 𝑋 into a sequence of VIP features, 𝐹°+,- = 𝑓*?
+,-|𝑡 = 1, 2, … , 𝑇 . The 

LSTM module acts as an action classifier 𝐶±  running through the sequence of the 

 
Figure 3-15 Modeling temporal information in an action sequence using LSTM. 
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extracted VIP features to model the temporal dependency. 

The LSTM module learns the long-term dynamic which is discriminative to the 

action recognition task. The input to the LSTM module is a sequence of VIP features 

𝐹°+,- = 𝑓*?
+,-|𝑡 = 1, 2, … , 𝑇  with 𝑓*?

+,- = 𝐸 𝑥E  and the output is a probability 

distribution 𝑎° ∈ ℝ²  over all action classes. The objective of the LSTM module is to 

minimize the action loss 𝐿G8EP9Z as the following: 

 𝐿G8EP9Z = − 𝑦G8EP9Z = 𝑐 log 𝑎°,8

²

8e_°

 (3.7) 

 𝑎° = 𝐶± 𝐹°+,-  (3.8) 

where 𝑎°,8 ∈ ℝ is the 𝑐-th element of 𝑎°, which indicates the probability of video 𝑋 

belonging to 𝑐-th action class, 𝐶 is the number of action types, and 𝑦G8EP9Z denotes the 

ground truth action label. The action labels from training data are now required to train 

the LSTM module, which makes the training process supervised. 

As the LSTM module is learned based on view-invariant features, we can generalize 

to different views with the same LSTM module even if the training data come from 

specific views. The architecture design of the LSTM module and training details are 

presented in Section 4.2.2 and Section 4.2.3. 
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Chapter 4 Experiments 

In this chapter, we introduce the experiments which validates our proposed method. 

Before the experimental demonstrations, we give brief summaries of the used public 

action datasets. Then, the implementation details are presented. To quantify the view-

invariant property of the proposed VIP feature, cross-view pose classification is also 

conducted on the synthetic MVP dataset. 

As for cross-view action recognition, we compare our method with various state-of-

the-arts on two public datasets, including NTU RGB+D action recognition dataset [15] 

and UWA 3D multi-view activity II dataset [27]. In order to show the effectiveness of the 

proposed VIP feature and domain adaptation, we also compare it with some alternative 

features. The quantitative experimental results confirm the advantages of our proposed 

method. 

4.1 Action Datasets 

 To verify the performance of the proposed method, it is evaluated on two public 

benchmark datasets which are NTU RGB+D action recognition dataset [15] and UWA 

3D multi-view activity II dataset [27]. Both of them are challenging datasets which have 

cross-view setting where the training data and testing data come from different viewpoints, 

thus they are suitable for validating cross-view action recognition methods. 

4.1.1 NTU RGB+D Action Recognition Dataset 

This dataset [15] is currently the largest publicly available dataset for 3D human 

action recognition, which contains more than 56,000 videos and 4 million frames. It is 

collected by Microsoft Kinect v2 and labeled with 60 action classes including daily, 

health-related, and interactive actions: drink water, eat meal/snack, brushing teeth, 

brushing hair, drop, pickup, throw, sitting down, standing up, clapping, reading, writing, 
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tear up paper, wear jacket, take off jacket, wear a shoe, take off a shoe, wear on glasses, 

take off glasses, put on a hat/cap, take off a hat/cap, cheer up, hand waving, kicking 

something, put something inside pocket / take out something from pocket, hopping, jump 

up, make a phone call/answer phone, playing with phone/tablet, typing on a keyboard, 

pointing to something with finger, taking a selfie, check time, rub two hands together, nod 

head/bow, shake head, wipe face, salute, put the palms together, cross hands in front, 

sneeze/cough, staggering, falling, touch head (headache), touch chest (stomachache), 

touch back (backache), touch neck (neckache), nausea or vomiting condition, use a fan 

(with hand or paper)/feeling warm, punching/slapping other person, kicking other person, 

pushing other person, pat on back of other person, point finger at the other person, 

hugging other person, giving something to other person, touch other person's pocket, 

handshaking, walking towards each other, and walking apart from each other. 

The actions are performed by 40 subjects with different scales. Three cameras are 

used to capture action videos simultaneously from three horizontal angles: −45°, 0°, and 

45°. Every subject performs each action twice while facing the left and right camera 

respectively. 

Table 4-1 The camera settings of NTU RGB+D action recognition dataset [15]. 

Setup No. Height (m) Distance (m) Setup No. Height (m) Distance (m) 

1 1.7 3.5 10 1.8 3.0 

2 1.7 2.5 11 1.9 3.0 

3 1.4 2.5 12 2.0 3.0 

4 1.2 3.0 13 2.1 3.0 

5 1.2 3.0 14 2.2 3.0 

6 0.8 3.5 15 2.3 3.5 

7 0.5 4.5 16 2.7 3.5 

8 1.4 3.5 17 2.5 3.0 

9 0.8 2.0    
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Moreover, 17 camera settings listed in Table 4-1 are adopted to get more viewpoint 

variations. Combined with different human orientations, the dataset is collected from 80 

distinct viewpoints. Therefore, it is suitable for validating cross-view action recognition 

methods. In addition to depth videos, RGB videos, infrared videos, and 3D coordinates 

of 25 body joints are also provided in this dataset. Figure 4-1 shows some sample frames 

of drinking water from different views. The viewpoint and large intra-class variations 

make this dataset very challenging. This dataset is highly suitable for data-hungry 

algorithm for the task of depth-based or skeleton-based human activity analysis. 

4.1.2 UWA 3D Multi-View Activity II Dataset 

This dataset [27] is comprised of 30 daily-life human actions performed by 10 

subjects with different scales: one-hand waving, one-hand punching, two-hand waving, 

two-hand punching, sitting down on floor, standing up, vibrating, falling down, holding 

chest, holding head, holding back, walking, irregular walking, lying down, turning 

 
Figure 4-1 Multi-view RGB and depth images of drinking water from NTU RGB+D 
action recognition dataset [15]. 
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around, drinking, phone answering, bending, jumping jack, running, picking up, putting 

down, kicking, jumping, dancing, moping floor, sneezing, sitting down on chair, squatting, 

and coughing. 

Each subject performs all 30 actions in a continuous manner for 4 times. Each time 

it is captured from a specific viewpoint (front, left, right, and top) using the Microsoft 

Kinect v1, thus the video acquisition from 4 views is nonsynchronous. Besides, the videos 

are preprocessed by cropping the continuous sequences of each action. 

This dataset is challenging since the videos are recorded at different times from 

varying viewpoints and the data contains high similarity across action classes. For 

instance, phone answering and drinking have very similar arm movements. Moreover, in 

the top-view setting, the lower body parts are not properly captured due to self-occlusion. 

Figure 4-2 shows some sample frames of one-hand waving from different views. 

4.2 Implementation Details 

In this section, we describe the implementation details in the experiments including 

synthesizing a Multi-View Pose (MVP) dataset, architecture designs, training details, and 

    

    
(a) View1 (b) View 2 (c) View 3 (d) View 4 

Figure 4-2 Multi-view RGB and depth images of one-hand waving from UWA 3D 
multi-view activity II dataset [27]. Note that some body parts might not be fully 
captured by the camera. 
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the pipeline of action recognition. 

4.2.1 Synthesize a Multi-View Pose Dataset 

In order to efficiently learn the View-Invariant Pose (VIP) feature, we synthesize a 

Multi-View Pose (MVP) dataset. It contains synthetic depth images of human poses 

captured from multiple viewpoints. 

We sample 100,000 poses out of 4 million poses from CMU motion capture database 

[20] so as to find representative poses in the pose space. Using HDBSCAN clustering 

algorithm [38], we get 𝐾 = 195 clusters from by setting the minimum cluster size to 20 

and minimum samples to 25. Thus, we build a dictionary consisting of 195 poses with 

each treated as a different pose and given a unique dummy pose label. 

Considering the variation of subjects in action datasets, we utilize an open source 

package, MakeHuman simulator [44], to create 12 human models with different 

combinations of gender, body shape, hair style, and clothes as shown in Figure 3-5. 

Moreover, we utilize another open source package, Blender [45], to simulate a virtual 

environment and re-target each human model with all different poses in the pose 

dictionary as shown in Figure 3-6 (b). 

To render depth images from multiple viewpoints, 180 virtual cameras with distinct 

polar angles ∅·¸¹º» ∈ 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°  and azimuthal 

angles ∅GQP= ∈ {0°, 20°, 40°, 60°, 80°, 100°, 120°, 140°, 160°, 180°, 200°, 220°, 240°, 

260°, 280°, 300°, 320°, 340°, 360°} are uniformly placed on a hemisphere around the 

subject as depicted in Figure 3-7. To sum up, we synthesize a MVP dataset containing 

depth images of 195 poses with 12 human models captured from 180 viewpoints. 

Therefore, the dataset includes 421200 195×12×180  depth images. Figure 3-8 

illustrates some samples. We utilize the same synthetic MVP dataset to generalize the VIP 
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feature representation for both NTU RGB+D action recognition dataset [15] and UWA 

3D multi-view activity II dataset [27]. 

4.2.2 Architecture Design 

In this part, we describe the detailed design of our proposed architecture, including 

the encoder, pose classifier, and domain classifier as shown in Figure 3-13 and the LSTM 

module as depicted in Figure 3-15. 

For the encoder 𝐸, we use the “Xception network” [41] which consists of depth-

wise separable convolutions and the last fully-connected layer is replaced with a 256-

neuron layer followed by a tanh activation. Thus, the extracted VIP feature 𝑓*+,- ∈ ℝ012 

is a 256-dimension vector and each neuron in 𝑓*+,- is activated in −1, 1 . 

As for the pose classifier 𝐶-, since we build a pose dictionary containing 195 poses 

in the synthetic MVP dataset, we design a simple one-layer fully-connected neural 

network with 195 neurons followed by a softmax activation, corresponding to each pose 

in the dictionary. 

On the other hand, for the domain classifier 𝐶�, a 3-layer neural network is designed. 

The first two layers are both comprised of 64 neurons followed by a leaky ReLU [48] 

with slope equal to 0.3 and the last layer aims at binary classification using one neuron 

with sigmoid activation. 

For the LSTM module, we design a 2-layer stacked LSTM with 256 hidden units 

and aggregate the outputs from all layers with residual connection [3]. Namely, we sum 

the outputs of all LSTM layers instead of using only the last one. A fully-connected layer 

with 128 neurons followed by a ReLU activation [49] and a dropout layer [50] are further 

added on the top of the stacked LSTM. In the last, we add a fully-connected layer with 𝐶 

neurons followed by a softmax activation where 𝐶 denotes the number of action types. 
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4.2.3 Training Details 

As shown in Figure 4-3, it is a three-stage training process in our framework. The 

first two stages are used for learning VIP feature encoder for real data and the last one is 

for learning action information. 

In order to have a good initialization for the VIP feature encoder 𝐸 while learning 

with domain adaptation as described in Algorithm 1, the encoder is firstly pre-trained 

without domain adaptation as the framework shown in Figure 3-9. The 180 virtual 

viewpoints in the synthetic MVP dataset are randomly split into training and testing set 

which cover 162 and 18 views respectively. The encoder is initialized as the ImageNet 

pre-trained Xception model [41] and fine-tuned on the synthetic MVP dataset. Given 𝑥 ∈

𝑠𝑦𝑛 and 𝑦D9F;, we update the encoder and pose classifier by using stochastic gradient 

descent with mini-batch of 32 samples to minimize VIP loss 𝐿+,-, Eqn. (3.1), through 

backpropagation. The network is updated by Adam optimizer [51] with initial learning 

rate equal to 1×10�� and the training process is monitored with early stopping. 

The original input to Xception network is a three-channel RGB image. In our case, 

 
Figure 4-3 The training stages in our proposed method. DA is an abbreviation for 
domain adaptation. 
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we duplicate the depth image to fit three channels, making the input dimension consistent. 

Besides, the input images are augmented by random flipping horizontally and random 

zooming during training. 

Then the VIP knowledge is further adapted to NTU RGB+D action recognition 

dataset [15] and to UWA 3D multi-view activity II dataset [27] respectively. Note that all 

training data for learning VIP feature with domain adaptation are unpaired, which means 

that there are no one-to-one corresponding images across domains. As summarized in 

Algorithm 1, we set Iters. of VIP feature with domain adaptation to 4, Iters. of VIP feature 

to 1, Iters. of domain classifier to 2, and Iters. of encoder to 1. Stochastic gradient descent 

with mini-batch of 32 samples is utilized and the learning process is optimized by Adam 

optimizer with initial learning rate equal to 5×10�2. Each batch contains half of real data 

and half of synthetic data. 

The last step is to learn the temporal information. The input sequence is down-

sampled with ratio equal to 5 and each sampled point is randomly shifted along time 

domain for data augmentation. We use stochastic gradient descent with mini-batch of 8 

samples and update the LSTM by backpropagation through time using Adam optimizer 

with initial learning rate equal to 1×10��. The encoder 𝐸 is fixed while training on 

UWA 3D multi-view activity II dataset. However, since the NTU RGB+D action 

recognition dataset contains several actions involving object interactions like drink water, 

eat meal/snack, brushing teeth, brushing hair, drop, pickup, reading, writing, tear up 

paper, wear jacket, take off jacket, wear a shoe, take off a shoe, wear on glasses, take off 

glasses, put on a hat/cap, take off a hat/cap, put something inside pocket /take out 

something from pocket, make a phone call/answer phone, playing with phone/tablet, 

typing on a keyboard, taking a selfie, and use a fan. We jointly fine-tune the encoder with 

learning rate equal to 5×10�2  while updating LSTM on NTU RGB+D dataset. The 
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encoder is expected to further extract object interaction while maintaining view-invariant 

property. The learning process is also monitored with early stopping. 

In an addition, NTU RGB+D action recognition dataset has both one-person actions 

and two-person interactions. For those samples with two peoples, we predict the action 

type for each person and average the result. 

As for the platform, we utilize Keras, which is a high-level API running on top of 

TensorFlow, CNTK, and Theano, as the deep learning platform. The whole algorithm is 

implemented with Python 3.6. For computation resource, we use a personal computer 

with Intel 4-core i7-6700 3.4 GHz CPU and a single GPU of GTX 1080Ti for all the 

training processes. 

4.3 Cross-View Pose Classification 

To quantify the view-invariant property of the proposed VIP feature, we design an 

experiment for cross-view pose classification. Due to the fact that we only have multi-

view data with pose labels on the synthetic MVP dataset. We conduct on synthetic MVP 

dataset. 

All 180 viewpoints are split into 162 training views and 18 testing views. 20 

percentage of the data in training views further serve as validation data. Thus, we have 

303264 training samples, 75816 validation samples, and 42120 testing samples. Each data 

is associated with a dummy pose label. Note that training data and validation data share 

the same viewpoints while testing data have distinct views. We use the same trained VIP 

feature encoder and pose classifier and report the accuracy. 

Table 4-2 Pose classification accuracy on the synthetic MVP dataset. 

Validation data Testing data 

97.4 % 95.5 % 
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The result is listed in Table 4-2. Even if the pose is observed from novel viewpoints 

(testing data), we can still achieve high accuracy by 95.5 %, which demonstrates the 

robustness of VIP feature to viewpoint variations. 

In addition, Figure 4-4 qualitatively visualize the view-invariant property by 

concatenating the extracted 𝑓*+,- ∈ ℝ012 of the same pose observed from 180 views as 

an 180×256 image. Each element in 𝑓*+,-is normalized into 0, 255 . As expected, the 

VIP features appear very similarly across all 180 viewpoints for each pose. 
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4.4 Action Recognition Results 

To validate the effectiveness of our proposed method for action recognition, we 

compare the performance with several state-of-the-arts. According to the input modalities, 

 
(a) Pose 1 

 
(b) Pose 2 

 
(c) Pose 3 

 
(d) Pose 4 

 
(e) Pose 5 

 
(f) Pose 6 

 
(g) Pose 7 

 
(h) Pose 8 

Figure 4-4 Qualitative visualization of view-invariant property. Each image represents 
a pose in the synthetic MVP dataset. Each row in an image denotes a VIP feature 
𝑓*+,- ∈ ℝ012  extracted from a specific view. The 180 rows correspond to 180 
viewpoints of the same pose. 
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they can be categorized into the following types: 

I. RGB-based methods: Action Tube [52], AND-OR Graph (AOG) [28], Dense 

Trajectories (DT) [53], Long-term Recurrent Convolutional Network (LRCN) 

[10], Hankelets [54], Two-stream CNN (Two-Stream) [9], 3D convolution 

(3D Conv) [7], non-linear Circulant Temporal Encoding (nCTE) [29], Non-

linear Knowledge Transfer Model (NKTM) [26], and Robust Non-linear 

Knowledge Transfer Model (R-NKTM) [25] 

II. Depth-based methods: Histogram of Oriented 4D Normals (HON4D) [12], 

Super Normal Vector (SNV) [13], 2D Histogram of Oriented Gradients 

(HOG0 ) [14], Long-Term Motion Dynamics (LTMD) [55], Comparative 

Coding Descriptor (CCD) [56], Discriminative Virtual Views (DVV) [32], 

Continuous Virtual Path (CVP) [30], Histogram of Oriented 3D Point Cloud 

(HOPC) [27], and Human Pose Model with Temporal Modeling (HPM+TM) 

[16] 

III. Skeleton-based methods: Skeletal Quads [57], Lie Group [58], Deep RNN, 

Deep LSTM, Part-aware LSTM [15], Hierarchically Bidirectional RNN 

(HBRNN) [59], Deep Learning on Lie Group (LieNet) [60], Spatio-

Temporal LSTM with Trust Gates (ST-LSTM+TG) [61], Spatio-Temporal 

Attention LSTM (STA-LSTM) [62], Histograms of 3D joint locations 

(HOJ3D) [63], and Actionlet Ensemble (AE) [64] 

IV. Multi-modality methods: Deep Shared-Specific Component Analysis and 

Structure Sparsity Learning Machine (DSSCA-SSLM) [65] and Depth+ 

Skeleton with Rank Pool (D+S-RP) [66] 

The quantitative results of these state-of-the-arts are reported from their original 

papers and [15, 25, 27, 61]. Our proposed method is denoted as VIP w/ DA (View-
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Invariant Pose with Domain Adaptation). In addition to other compared methods, we also 

report the performance of some baseline models defined by ourselves, including: 

I. Xception + LSTM: We use Xception network [41] as encoder to extract 

spatial feature and use LSTM module to capture temporal features in actions. 

We initialize the Xception from the ImageNet pre-trained model. The 

Xception and LSTM module are jointly trained end-to-end only under the 

supervision of action labels provided by action datasets. Note that the 

encoder does not learn the VIP knowledge in advance. 

II. VIP w/o DA: We firstly train the encoder to learn VIP knowledge from the 

synthetic MVP dataset as the framework depicted in Figure 3-9. No more 

domain adaptation is conducted. Then we model the temporal information 

under the supervision of action labels provided by action datasets. 

4.4.1 Action Recognition Pipeline 

The proposed system pipeline for action recognition is summarized in Figure 4-5. 

Depth sensors such as Kinect and Xtion PRO are able to segment the human bodies from 

the input depth video in real-time. 

We firstly crop the boundary of human segmentation and resize to a 128×128 

 
Figure 4-5 The pipeline of action recognition from input video. 
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image for each input frame. The depth values are further normalized into −1, 1 . To 

represent an action as a sequence of poses, we feed forward the resized images 𝑥 through 

the encoder 𝐸 and temporally align the extracted VIP features 𝑓*+,-. Thus we transform 

the input video 𝑋 to a sequence of VIP features 𝐹°+,-. Then the LSTM module runs 

through the VIP features and we take the action label with maximum probability as the 

predicted output. 

4.4.2 The Result of NTU RGB+D Action Recognition Dataset 

We follow the cross-subject and cross-view evaluations suggested by [15] and report 

the classification accuracy in percentage. For the cross-subject protocol, all 40 subjects 

are split into training and testing sets with each containing 20 subjects. On the other hand, 

for the cross-view protocol, all the samples recorded by camera 1 and camera 2 are used 

for training while the samples captured by camera 3 are for testing. 

Table 4-3 shows the performance of several methods. Since there are few RGB-

based methods implemented on this dataset, we choose skeleton-based methods as 

alternatives to compare with. Our method (VIP w/ DA) outperforms all existing methods 

on both cross-subject and cross-view evaluations. Although skeleton data are somewhat 

immune to viewpoint variations, they cannot include interactions with environmental 

objects. Our method achieves 86.5 % in cross-view evaluation, which is about 3.4% better 

than the nearest competitor, D+S-RP [66]. It is worthy to note that our method only 

depends on depth information that is less privacy sensitive. Besides, while the training 

and testing data share the viewpoints (cross-subject setting), our proposed method reaches 

a superior performance by 86.1 %. 
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From the results of baseline models, pre-learning VIP information (VIP w/o DA) can 

significantly benefit the results compared with Xception + LSTM by 14.5% higher in 

cross-subject setting and 12.7% higher in cross-view setting. It also leads to a faster 

convergence. In addition, domain adaptation can further boost the performance by 1.8% 

higher in cross-subject setting and 3.8% higher in cross-view setting. Hence, the result 

shows the effectiveness and applicability of our proposed method. 

4.4.3 The Result of UWA 3D Multi-View Activity II Dataset 

We follow the cross-view evaluation provided in [27] where videos from two views 

are used for training and videos from the remaining views are used for testing respectively. 

It leads to 12 different cross-view combinations in this evaluation protocol. 

Table 4-3 Comparison of action recognition accuracy (%) on the NTU RGB+D Action 
Recognition Dataset [15]. Our proposed method is denoted as VIP w/ DA. Our defined 
baseline models are Xception + LSTM and VIP w/o DA. 

Methods Data type Cross-subject Cross-view 
HON4D [12] Depth 30.6 7.3 

SNV [13] Depth 31.8 13.6 
HOG0 [14] Depth 32.2 22.3 

Skeletal Quads [57] Skeleton 38.6 41.4 
Lie Group [58] Skeleton 50.1 52.8 
Deep RNN [15] Skeleton 56.3 64.1 
HBRNN [59] Skeleton 59.1 64.0 

Deep LSTM [15] Skeleton 60.7 67.3 
LieNet [60] Skeleton 61.4 67.0 

Part-aware LSTM [15] Skeleton 62.9 70.3 
LTMD [55] Depth 66.2 - 

ST-LSTM+TG [61] Skeleton 69.2 77.7 
STA-LSTM [62] Skeleton 73.4 81.2 

DSSCA-SSLM [65] RGB + Depth 74.9 - 

D+S-RP [66] Depth+ 
Skeleton 75.2 83.1 

Xception + LSTM Depth 69.8 70.0 
VIP w/o DA Depth 84.3 82.7 
VIP w/ DA Depth 86.1 86.5 
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The quantitative results are summarized in Table 4-4. Our proposed method (VIP w/ 

DA) outperforms most state-of-the-arts and performs equally well when compared with 

D+S-RP [66] by achieving 84.9 % average accuracy. D+S-RP depends on not only depth 

data but also skeleton data which may not always be accurately acquired in real 

applications due to self-occlusion. Take a skeleton-based method such as Lie group [58] 

for example, Lie group performs badly on 𝑉_�0 , 𝑉_Ã0 , 𝑉_�Ã , and 𝑉�Ã0 , which means the 

skeleton data are not reliable. However, VIP w/ DA outperforms D+S-RP on these 

Table 4-4 Comparison of action recognition accuracy (%) on the UWA 3D multi-view 
activity II dataset [27]. Each column represents a different cross-view setting. For 
example, 𝑉_0�  means the model is trained on view 1 and view 2 while tested on view 3.  
Our proposed method is denoted as VIP w/ DA. Our defined baseline models are 
Xception + LSTM and VIP w/o DA. 

Methods Data 
type 𝑉_0�  𝑉_0Ã  𝑉_�0  𝑉_�Ã  𝑉_Ã0  𝑉_Ã�  𝑉0�_  𝑉0�Ã  𝑉0Ã_  𝑉0Ã�  𝑉�Ã_  𝑉�Ã0  Avg 

CCD [56] Depth 10.5 13.6 10.3 12.8 11.1 8.3 10.0 7.7 13.1 13.0 12.9 10.8 11.2 

HOJ3D [63] Skeleton 15.3 28.2 17.3 27.0 14.6 13.4 15.0 12.9 22.1 13.5 20.3 12.7 17.7 

DVV [32] Depth 23.5 25.9 23.6 26.9 22.3 20.2 22.1 24.5 24.9 23.1 28.3 23.8 24.1 

AOG [28] Depth 29.3 31.1 25.3 29.9 22.7 21.9 25.0 20.2 30.5 27.9 30.0 26.8 26.7 

HON4D [12] Depth 31.1 23.0 21.9 10.0 36.6 32.6 47.0 22.7 36.6 16.5 41.4 26.8 28.9 

SNV [13] Depth 31.9 25.7 23.0 13.1 38.4 34.0 43.3 24.2 36.9 20.3 38.6 29.0 29.9 

Action Tube [52] RGB 49.1 18.2 39.6 17.8 35.1 39.0 52.0 15.2 47.2 44.6 49.1 36.9 37.0 

CVP [30] Depth 36.0 34.7 35.0 43.5 33.9 35.2 40.4 36.3 36.3 38.0 40.6 37.7 37.3 

AE [64] Skeleton 45.0 40.4 35.1 36.9 34.7 36.0 49.5 29.3 57.1 35.4 49.0 29.3 39.8 

AOG [28] RGB 47.3 39.7 43.0 30.5 35.0 42.2 50.7 28.6 51.0 43.2 51.6 44.2 42.3 

LRCN [10] RGB 53.9 20.6 43.6 18.6 37.2 43.6 56.0 20.0 50.5 44.8 53.3 41.6 40.3 

Lie Group [58] Skeleton 49.4 42.8 34.6 39.7 38.1 44.8 53.3 33.5 53.6 41.2 56.7 32.6 43.4 

Hankelets [54] RGB 46.0 51.5 50.2 59.8 41.9 48.1 66.6 51.3 61.3 38.4 57.8 48.9 51.8 

HOPC [27] Depth 52.7 51.8 59.0 57.5 42.8 44.2 58.1 38.4 63.2 43.8 66.3 48.0 52.2 

Two-Stream [9] RGB 63.0 47.1 55.8 60.6 53.4 54.2 66.0 50.9 65.3 55.5 68.0 51.9 57.6 

DT [53] RGB 57.1 59.9 54.1 60.6 61.2 60.8 71.0 59.5 68.4 51.1 69.5 51.5 60.4 

3D Conv [7] RGB 59.5 59.6 56.6 64.0 59.5 60.8 71.7 60.0 69.5 53.5 67.1 50.4 61.0 

nCTE [29] RGB 55.6 60.6 56.7 62.5 61.9 60.4 69.9 56.1 70.3 54.9 71.7 54.1 61.2 

NKTM [26] RGB 60.1 61.3 57.1 65.1 61.6 66.8 70.6 59.5 73.2 59.3 72.5 54.5 63.5 

R-NKTM [25] RGB 64.9 67.7 61.2 68.4 64.9 70.1 73.6 66.5 73.6 60.8 75.5 61.2 67.4 

HPM+TM [16] Depth 80.6 80.5 75.2 82.0 65.4 72.0 77.3 67.0 83.6 81.0 83.6 74.1 76.9 

D+S-RP [66] 
Depth + 
Skeleton 

86.8 87.0 80.7 89.1 78.1 80.9 86.5 79.3 85.1 86.9 89.4 80.0 84.2 

Xception + 
LSTM 

Depth 42.9 43.8 47.7 48.7 32.0 30.2 68.0 39.7 63.6 28.3 61.0 36.1 45.2 

VIP w/o DA Depth 76.1 79.8 73.7 80.5 71.4 72.8 74.7 73.0 74.7 75.0 77.3 74.4 75.3 

VIP w/ DA Depth 85.8 86.5 85.7 87.3 80.5 81.0 85.9 86.1 85.1 83.2 88.8 82.7 84.9 
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evaluation settings, which demonstrates our robustness. Besides, domain adaptation gives 

a significant improvement by 9.6 % in average compared with VIP w/o DA. 

We can see that the deep learning-based methods such as Action Tubes [52] and 

LRCN [10] achieve low accuracies as they were proposed for recognizing actions from a 

specific view. DT [53] has a relatively high performance because the dense trajectories of 

videos obtained from side views are similar. 

The overall performances of depth-based methods such as CCD [56], HON4D [12], 

SNV [13], and HOPC [27] are low because depth appearances of several actions look 

quite different across views. The performance of skeleton-based methods is worse on this 

dataset since the skeleton data is not well provided for some actions such as phone 

answering, drinking, sneezing or is not available for some actions like lying down and 

falling down. 

The result demonstrates that the proposed VIP feature is capable of mapping view-

dependent pose information into a view-invariant space. Besides, it also demonstrates that 

the learned VIP knowledge from synthetic data can be transferred to real data through 

adversarial domain adaptation. 

It is interesting to note that for several actions in this dataset such as holding back, 

holding head, coughing, and sneezing, there are no similar actions included in the CMU 

motion capture database [20]. However, we can still achieve high performance for these 

activities, which demonstrates the generalization ability of our proposed VIP feature. 
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Chapter 5 Conclusion and Future Works 

In this thesis, we propose a cross-view action recognition system which takes depth 

video as input to recognize human activities from different viewpoints. We use a deep 

Convolutional Neural Network (CNN) to extract View-Invariant Pose (VIP) feature by 

mapping human poses observed from different viewpoints into a shared view-invariant 

feature space. 

In order to train such a deep network, we design a simple but efficient pipeline to 

synthesize a Multi-View Pose (MVP) dataset which contains depth images of human 

poses captured from multiple views. The VIP knowledge is distilled from the synthetic 

MVP dataset in an unsupervised way and further transferred to real data through 

adversarial domain adaptation. As for recognizing actions from input video, we adopt 

Long Short-Term Memory (LSTM) to mine the temporal dependencies. Experimental 

results show that the proposed method achieves promising performance over state-of-the-

arts on two benchmark multi-view 3D human action datasets. 

Regarding future works, analyzing the relations between action labels and pose 

labels in real data will benefit domain adaptation, making it semi-supervised. In addition, 

we notice that action detection system is more practical in real applications where the 

input is an untrimmed video sequence. Different from action recognition system, not only 

the action categories but also the temporal locations are analyzed. We expect that the VIP 

feature will also be applicable for cross-view action detection. 
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