
doi:10.6342/NTU201802828

國立臺灣大學電機資訊學院電機工程學研究所

碩士論文
Graduate Institute of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

以全域性空間時間特徵輔以序列式生成機制完成多工之

動作辨識及產生光流影像

Using Global Spatiotemporal Features with
Sequentially Pooling Mechanism for Multi-tasking of
Action Recognition and Optical Flow Estimation

葉佐新

Tso-Hsin, Yeh

指導教授 傅立成博士

Advisor: Li-Chen Fu, Ph.D.

中華民國 107年 7月
July, 2018

doi:10.6342/NTU201802828

謝

碩班的這兩年 我對學術研究的態度 分析和解決問題的能力有著

十足的成長 首先要感謝的就是指導老師傅立成教授 老師對於學術

研究的熱誠和追求卓越的堅持是我畢生仿效的對象 除此之外 老師

在待人處事上也提點了我許多 這一些都是受用無窮的人生經驗與智

慧 謝謝老師

另外 我也感謝實驗室 208的所有同學以及學弟們 謝謝你們跟我

一起奮戰努力 同心協力一起度過碩二的艱苦生活 也感謝你們跟著

我一起嬉鬧 打球以及從事娛樂活動 尤其是 vision組的子俊 侑寰

還有學弟宇閎 感謝你們陪著一起經歷 demo這充實又不堪回首的時
光

最後感謝我的家人以及女朋友的支持與陪伴 謝謝你們

i

doi:10.6342/NTU201802828

中文 要

在本篇中 我們提出了一個嶄新的深度學習架構來做動作辨識 近

期的深度學習研究議題中 動作辨識是一個越來越重要的領域 深度

學習方法已經被廣泛地運用且有能力產生泛化的模型 目前大部分存

在的方法不是使用 Two-Stream 就是使用 3D ConvNet的方法 前者

使用了單張彩色影像與多張疊在一起的光流影像當作架構的輸入 而

後者則是將輸入多張疊在一起的彩色影像 但會花較大時間及記憶體

上的代價 本篇提出的 ResFlow使用一個光流的數據庫以得到預處理
的模型 並且在動作的數據庫上作微調處理 此模型可視為一個提取

高維度特徵的模組來做動作辨識 在第一階段中 使用光流數據庫當

作一個預先學習的基礎 整合空間時間的特徵透過自動編碼機得架構

會從中間的高維度空間中被提取出來 在微調階段中 透過影片中分

解出的影像可以得到一組區域性整合空間時間的特徵 並且利用設計

的序列式機制 可以得到每一個區域性整合空間時間特徵的信心分

數 而利用這個信心分數可以有效率地得到全域性整合空間時間的特

徵 而這全域性整合空間時間的特徵可被拿來做動作辨識

關鍵字 動作辨識 光流 序列式機制

ii

doi:10.6342/NTU201802828

Abstract

In this thesis, we propose a brand-new architecture for action recogni-

tion. Recently, action recognition has been a rising issue in computer vision

field. Deep learning method has been widely-used and is capable of generat-

ing generic model. Most of existing methods use either two-stream, RGB and

stacking optical flow as inputs, or C3D, concatenating several RGB images

as input, which cost much prices on time and memory. SSAnet, the proposed

method, is pre-trained by optical flow dataset, FlyingChairs, and fine-tuned

with action dataset, UCF101 and HMDB51, as a high level feature extrac-

tor. With optical flow pre-trained in first stage, spatiotemporal features are

encoded in the latent high dimensional space in the middle of autoencoder

architecture. In fine-tuning stage, the extracted spatiotemporal features from

a set of frames from a video clip are given confidence scores by a designed

Sequential Mechanism. This Sequential Mechanism takes ordered feature

from the feature set as input and gives a confidence score to each feature to

aggregate sequential features into a condensed feature which is leveraged for

action recognition. This kind of design use only RGB images as input but with

temporal information encoded, pre-trained by optical flow, and sequentially

aggregate local spatiotemporal features into global spatiotemporal features in

high efficiency for action recognition.

Keywords: action recognition, optical flow, sequential mechanism

iii

doi:10.6342/NTU201802828

Contents

謝 i

中文 要 ii

Abstract iii

Contents iv

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Literature Review . 2

1.2.1 Action Understanding . 2

1.2.2 Action Recognition . 3

1.2.3 Applications based on Convolution Neural Network 4

1.3 Challenge . 4

1.4 Contribution . 5

1.5 Thesis Organization . 6

2 Preliminary 7

2.1 Optical Flow . 7

2.1.1 Traditional Methods . 8

iv

doi:10.6342/NTU201802828

2.1.2 Autoencoders . 9

2.2 Action Recognition . 11

2.2.1 Two-Stream . 12

2.2.2 3D ConvNet . 13

2.3 Joint Learning . 16

2.3.1 Object and Action . 16

2.3.2 Optical Flow and Action . 17

3 Optical Flow Estimation 19

3.1 Design Concept . 19

3.2 Architecture . 21

3.2.1 Encoder . 21

3.2.2 Decoder . 22

3.3 Refinement Network . 23

3.4 Remarks . 25

4 Action Recognition 26

4.1 Optical Flow to Action Recognition . 26

4.2 ResFlow . 27

4.3 Sequentially Pooling Mechanism . 29

4.4 Implementation Details. 32

5 Experiment 34

5.1 Optical Flow Dataset . 34

5.1.1 FlyingChairs Dataset . 35

5.1.2 Sintel Dataset . 37

5.2 Action Recognition Dataset . 38

5.2.1 UCF101 Dataset . 38

5.2.2 HMDB51 Dataset . 41

5.2.3 Discussion . 41

5.3 Optical Flow Estimation . 41

v

doi:10.6342/NTU201802828

5.3.1 Comparison . 42

5.3.2 Refinement . 43

5.3.3 Sintel dataset . 45

5.3.4 Remark . 48

5.4 Action Recognition . 48

5.4.1 Spatiotemporal Feature . 49

5.4.2 Comparison . 50

5.4.3 Multitasking . 51

5.4.4 Remark . 52

6 Conclusion 56

Reference 57

vi

doi:10.6342/NTU201802828

List of Figures

2.1 Optical Flow. From left to right, they are the first image, the second

image, and the optical flow estimation. 8

2.2 Optical Flow Autoencoder. Traditional autoencoder using deep learning

architecture. 9

2.3 Two Stream. Two stream architecture include two stream, spatial stream

and temporal stream. 11

2.4 3D ConvNet. 3D ConvNets architecture. 14

2.5 Joint Learning of Object Detection and Action Recognition. Joint

learning of object detection and action recognition is described in the figure. 15

2.6 Joint Learning of Optical Flow and Action. Joint learning of optical

flow estimation and action recognition. 17

3.1 Autoencoder Architecture Architecture of our designed autoencoder. . . 20

3.2 Encoder (a) Architecture of encoder. 21

3.3 Decoder (a) Architecture of Decoder. 22

3.4 Optical Flow Refinement Process flow of optical flow refinement. . . . 23

4.1 Overall Architecture. The overall Architecture which contains both op-

tical flow estimation task and action recognition task. 27

4.2 Aggregation of Spatiotemporal Features. Process of aggregating spa-

tiotemporal features for action recognition. 28

4.3 Sequentially Pooling Mechanism. Process flow of Sequentially Pooling

Mechanism at time t. 30

vii

doi:10.6342/NTU201802828

4.4 Details of SPM. This is a simplified visualization of SPM. 33

5.1 Optical Flow. Optical flow is calculated from evaluating the motion of

first image and second image. Based on the first image, optical flow rep-

resents the moving displacement of the pixel along X− and Y axis. . . . 35

5.2 FlyingChairsDataset Visualization. Wevisualize the FlyingChairs dataset

which is an optical flow dataset. From left to right, there are the first im-

age, second image, and corresponding optical flow ground-truth in each

row. 36

5.3 Sintel dataset. We visualize Sintel dataset which is a optical flow dataset.

Each row represents a sequence of first image, second image, and corre-

sponding optical flow from left to right. 37

5.4 UCF101. UCF101 dataset is an action dataset which contains 101 action

categories with 13320 total action video clips. 39

5.5 HMDB51. HMDB51 dataset is an action dataset which contains 51 action

categories with 6766 total action video clips. 40

5.6 Optical Flow Refinement Visualization. The progress of optical flow

refinement are shown as the figure. 44

5.7 FlyingChairs Visualization. We visualize the optical flow estimation of

our proposed ResFlow v2 on FlyingChairs dataset. 46

5.8 Visualization of Sintel Optical Flow Estimation. The images are the

optical flow estimation on Sintel dataset without finetuning but pre-train

on FlyingChairs. 47

5.9 Visualization of Sintel Optical Flow Estimation. The images are the

optical flow estimation on Sintel dataset and finetuning on Sintel dataset. 47

5.10 Optical Flow Refinement Visualization. We visualize the optical flow

estimation of an action, playingviolin, in the figure. The camera is stable

while only the human and the violin is moving. 53

viii

doi:10.6342/NTU201802828

5.11 Optical Flow Refinement Visualization. We visualize the optical flow

estimation of an action, batting, in the figure. The camera is stable while

only the human is moving. 54

5.12 Optical Flow Refinement Visualization. We visualize the optical flow

estimation of an action, throwingball, in the figure. The camera is mov-

ing which cause camera motions while the human is moving as well. . . . 55

ix

doi:10.6342/NTU201802828

List of Tables

5.1 Optical Flow Estimation Comparison. We evaluate the performance of

optical flow estimation of our proposed ResFlow v1 and ResFlow v2 on

FlyingChairs dataset and compare themwith the state-of-the-art FlownetS,

FlownetC, and SpyNet. 43

5.2 Optical Flow Refinement Evaluation. We evaluate the performance of

optical flow estimation of our proposed ResFlow v1 and ResFlow v2 on

FlyingChairs dataset at all stages. ResFlow v2 obviously outperforms

ResFlow v1 due to the EPE is smaller. 45

5.3 Spatiotemporal Features Impact. We directly use ResFlow which is

pretrained on optical flow dataset to predict action recognition in condition

of fixing the convolution layers. We evaluate the performance of ResFlow

on UCF101 dataset as well as HMDB51 dataset and compare ResFlow

with the state-of-the-art which are trained from scratch. 49

5.4 Action Recognition Evaluation. We finetune our ResFlow thoroughly,

which is pretrained on optical flow dataset, on UCF101 dataset. We evalu-

ate the performance of ResFlow onUCF101 dataset and compare ResFlow

with the state-of-the-art. 50

5.5 Multitasking comparison. Multitasking comparison on optical flow es-

timation and action recognition. 51

x

doi:10.6342/NTU201802828

Chapter 1

Introduction

In this chapter, we first describe our motivation in details in Section 1.1. An overview

of action recognition is illustrated in Section 1.2. Challenges and contributions of this

work is elaborated in Section 1.3 and Section 1.4, respectively, and the organization of

this thesis is listed in Section 1.5.

1.1 Motivation

Action recognition is a popular topic in recent years and it is still a very challenging

task with high computational cost in computer vision field. As a matter of fact, action

recognition is crucial for our daily life, e.g., it will help a lot for families taking care of

elderly people due to the fact that people can understand what happened to the elders and if

some accidents occured, they can access the information right away with the surveillance

system. Also, some actions are unusual in certain circumstance, so the action recognition

system can help to alarm the facilities to watch certain area and prevent the occurrence of

events happen in advance.

Deep learning has been widely used to solve problems in various fields, including

action recognition, object recognition, etc. Moreover, models generated by deep learning

methods aremore generic and stable compared to traditional methods. Despite the fact that

the extracted features by traditional methods has more physical semantic meanings, that

by deep learning methods has much more flexibility to learn some abstract features. The

1

doi:10.6342/NTU201802828

deeper the architecture is, the more abstract the extracted features will be. Consequently,

most researchers use Convolutional Neural Network (CNN) to extract spatial and temporal

features to predict action recognition.

From our point of view, recent researches on action recognition utilize CNN to extract

the spatial and temporal features and pass these features through a designed mechanism

so as to aggregate these local features into global features. Finally, with a fully connected

layer, action recognition result is predicted. Therefore, designing a suitable and robust

mechanism is another important point to be focused on.

To sum up, we aim to design a CNN architecture to extract spatial and temporal fea-

tures and a mechanism to aggregate these features to predict action class. In the thesis,

we propose a network structure named ResFlow which generates both optical flow esti-

mation and action recognition result with a well-designed CNN architecture and a novel

mechanism named Sequentially Pooling Mechanism.

1.2 Literature Review

In Section 1.2.1 and Section 1.2.2, we give a brief introduction of action understanding

and action recognition, respectively. Applications based on Convolution Neural Networks

are introduced in Section 1.2.3.

1.2.1 Action Understanding

Basically, deep learning methods via Convolution Neural Network (CNN) dominates

traditional machine learning methods. However, traditional methods are still vital to im-

prove performance, and action recognition results are on the basis of the extracted features

generated by these methods. STIP in [1] is one of the widely-used method to improve ac-

tion recognition accuracy. Noticeably, action recognition results of traditional methods

are complemented to that of deep learning methods. To sum up, the design of architecture

is extremely important while traditional methods can be useful auxiliary tools to enhance

performance.

2

doi:10.6342/NTU201802828

Normally, the pipeline can be separated into three parts, which are feature extraction,

spatial and temporal features encoding, and classification. Nowadays, all feature extrac-

tion methods can be organized into two main categories, which are traditional math mode

and deep learning Convolution Neural Network (CNN) features. Not until deep learn-

ing starting to be popular, the traditional method had been the main-stream of predicting

optical flow. Nevertheless, more and more researchers devoted into investigating action

recognition via deep learning methods in recent years.

1.2.2 Action Recognition

Apart from action detection or action segmentation, action recognition is attempted

to analyze which action occurred in a video clip, while action detection needs additional

work to predict not only what but also where the action occurred. Action segmentation is

defined as detecting when the action happened. In this thesis, we aims at action recogni-

tion as our final goal. Generally, there are two main categories to solve action recognition

problem via CNN, which are two-stream, [2–9], and 3D ConvNet, [10–12]. Two-stream

architecture, on the one hand, takes a RGB image and stacking optical flows as input sep-

arately. Theoretically, they extract spatial features through the network with RGB image

as input while the other stream extracts temporal features. Usually, they fuse spatial in-

fromation from RGB stream and temporal information from optical flow stream into spa-

tiotemporal features. Objectively, speaking two-stream architecture method outperforms

the other one, but optical flows need to be calculated beforehand in order to be fed into

two-stream network. In other words, they consider RGB stream as extracting spatial infor-

mation and flow stream as extracting temporal information, respectively. In general, there

are two thoughts to deal with these features, one is focus on integrating extracted features

and the other one is designing a mechanism to predict accurate action recognition. For

instance, integrating spatial and temporal feature into spatiotemporal feature among the

convolution layers includes insertion, concatenating, adding, etc. Contrarily, by utilizing

the design mechanism, spatiotemporal information is generated from spatial and temporal

information to predict action recognition, such as [2], [4], [6], [7]. On the other hand, 3D

3

doi:10.6342/NTU201802828

ConvNet stacks several RGB images together as input. With no complex computational

preprocessing, 3D ConvNet only stacks RGB images in a time interval as input, but much

more memory and time is required for 3D convolution due to the bigger input size. En-

coding both spatial and temporal information via 3D convolution at the same time, 3D

ConvNet still has its limits due to the fact that the vital information may vary in each time

interval while 3D ConvNet treats them as the same since the same 3D convolution kernel

issued. In 3D ConvNets, there is no exact differences dealing with important and useless

information, but extract the spatiotemporal feature in a fixed pattern without flexibility.

1.2.3 Applications based on Convolution Neural Network

Applications based on Convolution Neural Networks are varied, e.g. object classifi-

cation, object detection, action recognition, action detection, image super-resolution, etc.

Recently, as the rising of popularity in deep learning, more and more applications are on

the basis of CNN to extract features since it is easier to implement only if we can access

sufficient data. Moreover, the trained model is much more generic and it can be further

utilized in other fields.

1.3 Challenge

Nevertheless, there is still no a certain conclusion whether two stream approaches

dominate 3D ConvNet approaches or vice versa. Now that many studies have shown the

optical flow has strong representation for temporal information, why shall not we train

an autoencoder with multiple pairs of RGB images as input and optical flows as output?

Spatiotemporal features will be encoded due to the characteristic of autoencoder; other-

wise, optical flow should never been decoded. Under this assumption, we may be able

to leverage the spaiotemporal features from each time step for action recognition. How-

ever, unlike 3D ConvNet that stacks several RGB frames together at each time step to get

longer period of temporal information, it is challenging to use only multiple pairs of RGB

frames to predict action recognition. That is to say, two stream architecture normally has

4

doi:10.6342/NTU201802828

more than one optical flow stacking and 3DConvNet architecture has several RGB images

stacking together which means that at each time step both of the two methods obtain much

more temporal information rather than using multiple pairs of RGB images and aggregat-

ing the local spatiotemporal features in higher dimension domain. Ironically, using mul-

tiple pairs of RGB frames from each time step rather than stacking RGB frames together

is much more reasonable because each time interval has a unique local spatiotemporal

information which should be treated individually, and the stacking optical flows include

the temporal information afterward which is not applicable in real-world. Still, designing

a good mechanism to aggregate these local spatiotemporal features remains difficulties.

From the perspective of [13], it is feasible to combine a two stream architecture into

the 3D ConvNet way. Via training an autoencoder with optical flow, it is reasonable to

get spatiotemporal information which is important for action recognition. Although local

spatiotemporal feature in a time interval has been encoded, it is still challenging to ag-

gregate ordered local spatiotemporal features generated at each time step of a video clip.

Furthermore, due to the fact that we only consider a pair of RGB images as input, each lo-

cal sptiotemporal feature represents the information of previous frame and current frame.

Therefore, how to aggregate these local spatiotemporal features sequentially in temporal

order by a well-designed mechanism is another challenging issue.

1.4 Contribution

ResFlow, the proposed method, is capable of generating spatiotemporal features with-

out feeding optical flows as input into network and can aggregate local spatiotemporal

features into global spatiotemporal features by a well-designed Sequential Mechanism.

Training an autoencoder with multiple pairs of RGB images as input and optical flow as

output, ResFlow is able to obtain local spatiotemporal features form each image pair. De-

spite the fact that local spatiotemporal features are generated, there are still some issues.

ResFlow consider the spatiotemporal feature in each time step as local spatiotemporal fea-

ture which is fed to a Sequentially Pooling Mechanism, SPM , so as to aggregate these

local spatiotemporal features into a global spatiotemporal feature. By leveraging SPM

5

doi:10.6342/NTU201802828

which sequentially gives a confidence score to each local spatiotemporal feature, global

spatiotemporal feature has strong strength in predicting action recognition which encodes

sequentially temporal spatiotemporal information other than ignoring temporal ordered

spatiotemporal feature, i.e., conduct averaging, or max-pooling on local spatiotemporal

features as global spatiotemporal feature.

There are several special features of the proposed system in this thesis. They are listed

as below:

1. ResFlow is able to generate optical flow estimation and action recognition results

simultaneously by multi-tasking;

2. ResFlow uses only RGB images to predict action recognition as well as optical flows

in real-time efficiently;

3. A smart yet simple way is proposed to extract spaiotemporal features via an autoen-

coder.

4. Local spatiotemporal features are sequentially aggregated into global spatiotem-

poral features with a specially designed Sequentially Pooling Mechanism and the

mechanism can be feasible for a number of applications.

1.5 Thesis Organization

The organization is listed as follow. In Chapter 2, we introduce the concept of optical

flow and algorithms to estimate optical flow. In Chapter 3, we introduce our designed

autoencoder for estimating optical flow, and our overall ResFlow is elaborated in details

in Chapter 4. Experimental results and comparison are shown in Chapter 5. Finally, this

thesis is concluded in Chapter 6.

6

doi:10.6342/NTU201802828

Chapter 2

Preliminary

In this chapter, we first describe what optical flow is and how optical flow is gen-

erated from both the traditional methods and the deep learning methods in Section 2.1.

Action recognition is illustrated in Section 2.2 including classical deep learning methods

for action recognition, two stream and 3D ConvNet, in Section 2.2.1 and Section 2.2.2,

respectively. Finally, joint learning is elaborated in Section 2.3 with two design related to

action recognition which will be introduced in Section 2.3.1 and Section 2.3.2.

2.1 Optical Flow

Optical flow is a crucial factor for predicting action recognition. Optical flow is de-

fined as the pattern of apparent motion of objects, edges, and surfaces in a scene which is

caused by the relative motion between an observer and a scene, as illustrated in [14], [15].

Also, it is used to describe the visual motion, e.g., an object is in the middle-left of a static

scene at first, but it moves to middle-right of the same scene at next time step. Then, op-

tical flow stores two channels value which are moving displacement along X and Y axis,

respectively, denoted as u and v. Therefore, optical flow has been widely used in the

field of action related works. Examples of optical flow can be seen in Fig. 2.1. Literally,

image1 and image2 are the sequenced images at time t and time t + 1, respectively. On

the rand-hand side, the optical flow corresponding to these two images is shown. Since

optical flow is based on first image to caculate the displacement of each pixel along X

7

doi:10.6342/NTU201802828

Image1 Image2 Ground-Truth

Figure 2.1: Optical Flow. From left to right, they are the first image, the second image,
and the optical flow estimation.

and Y axis, the position of moving objects are obviously the same as where they belongs

to image1. The colored optical flow are based on a color wheel to be generated due to the

fact that optical flow has only two channels originally.

First, traditional methods to calculate optical flow are introduced in Section 2.1.1.

In Section 2.1.2, we illustrate features and recent works using deep learning methods to

generate optical flow in details.

2.1.1 Traditional Methods

Lucas-Kanade, [16], provides a naive method to calculate optical flow in year 2,000.

The proposed algorithm is based on the least square criterion in a small sub-area which

represents all pixels in the image to calculate optical flow between two image under

the condition of assuming optical flow in a local neighborhood is essentially constant.

Due to only considering a set of pixels, the generated optical flow is sparse. Oppo-

sitely, Farneback, [17], provides another classical method for computing dense optical

flow which considers all pixels in an image. Viewing an image as two dimensional signal,

Farneback utilizes binomial equation to calculate dense optical flow. Above methods are

based on mathematical equations, but has some drawbacks to consider all kinds of con-

dition into account. Therefore, some researchers start focusing on deep learning to solve

this problem.

8

doi:10.6342/NTU201802828

RGB Optical flow

Figure 2.2: Optical Flow Autoencoder. Traditional autoencoder using deep learning
architecture.

2.1.2 Autoencoders

Flownet, [18], as one of state-of-the-art in the field of optical flow estimation provides

a novel idea to generate accurate optical flow via an autoencoder. Autoencoder, [19],

is a useful unsupervised architecture to learn and extract vital features in the learning

progress. Flownet leverages the characteristic of autoencoder and changes the architecture

to supervised learning by feeding two RGB images as input data and the corresponding

optical flow as ground truth. Moreover, they argue that adding variational image resolution

into the learning procedure increases the performance rather than using naive interpolation

methods. This is the first proposed method to generate optical flow by deep learning

method.

As shown in Fig. 2.2, the overall architecture is an autoencoder using a pair of RGB

images as input to generate corresponding optical flow with refinement network. Lever-

aging optical flow with autoencoder architecture, it is feasible to solve the optical flow

estimation problem. Encoder is composed of several convolution layers and activations

so as to extract spatial features and temporal features simultaneously. The encoded fea-

tures should include the relationship among the same pixel in two images which represent

the moving displacement of that pixel. Furthermore, the shape of each objects or back-

ground is encoded as well due to the fact that the edges should be detected and recognized

so as to generate accurate optical flow. In the decoder part, not only the decoded features

but also the features from encoder are used to generate final optical flow at each stage.

9

doi:10.6342/NTU201802828

Since the quality of predicted optical flow should be guaranteed, additional refinement

network is inserted which constraints the predicted optical flow at each stage. As shown

in figure, features are extracted via convolutional layers which is important to produce

from large-scale to fine-grained information for optical flow in encoder part. In decoder

part, optical flow are generated stage by stage with refinement network. As going deeper,

the feature map size decreases while the channels increases until reaching the middle of

the architecture. The architecture is roughly symmetric, which means the feature map size

corresponding to the same layer is equivalent.

Except for Flownet, there are still other solutions to this problem. Flownet2.0, [20],

is an advanced version of Flownet with several submodules to estimate accurate optical

flow. Each submodule is an autoencoder for optical flow estimation, that is to say, each

submodule generates a predicted optical flow but incrementally improves the quality of op-

tical flow estimation. As a result, the final optical flow is predicted stage by stage. Due to

the fact that the concatenating submodules can only deal with larger scale of displacement,

so [20] argues that adding a small-displacement submodules handling small-displacement

parallel to the other concatenating submodules. Finally, the final predicted optical flow

is produced by fusing two optical flow together. SPynet, [21], provides another point of

view, feeding original resized RGB images corresponding to the resolution at each stage

to estimate optical flow by adding and upsampling them element-wisely. In short, SPynet

utilizes each optical flow estimation at each stage with a upsampling layer to generate

final optical flow, like residually adding one to each other. Not surprisingly, this kind of

design focuses on large-scale displacement optical flow estimation because the input of

the smallest resolution is a RGB image and it is hard to generate fine-grained optical flow

in larger resolution because there is insufficient convolution kernels to extract detailed

features. Another work, [22], argues that unsupervising is benefit to train an optical flow

estimation network.

10

doi:10.6342/NTU201802828

C
on
v

B
N

R
eL

u

C
on
v

B
N

R
eL

u

C
on
v

B
N

R
eL

u

C
on
v

B
N

R
eL

u

C
on
v

B
N

R
eL

u

C
on
v

B
N

R
eL

u

Spatial Convolution Stream

Temporal Convolution Stream

R
G
B

O
pt
ic
al

Fl
ow

In
pu

tv
id
eo

C
la
ss

Fu
si
on

Figure 2.3: Two Stream. Two stream architecture include two stream, spatial stream and
temporal stream.

2.2 Action Recognition

Action recognition using deep learning methods are introduced in this section. There

are two perspectives, two-stream and 3D ConvNet, to solve action recognition problems.

Generally, two-stream architecture includes two kinds of input, RGB and optical flow

from which extracts spatial and temporal features respectively. 3D ConvNet takes an op-

posite way, stacking several RGB images, to extract spatial and temporal features simul-

taneously. In Section 2.2.1 and Section 2.2.2, two stream architecture and 3D ConvNet

are well explained in details.

11

doi:10.6342/NTU201802828

2.2.1 Two-Stream

Two-stream architecture literally means two types of input data, RGB image and opti-

cal flows, feeding into two parallel stream. On the one hand, the stream which input data

is RGB frame represent spatial stream. Spatial stream focus on the context relationship

among pixels in a single RGB image and extract vital cue in spatial information which

leads to accurate action recognition. On the other hand, optical flow represents the tem-

poral information between two RGB images, so the stream with optical flow as input data

is temporal stream. Temporal stream mainly focus on the context relationship between

images in a sequence of video frames. This stream extracts crucial temporal information

for improving action recognition accuracy. As a matter of fact, after important features

are extracted from each stream, action recognition relies heavily on aggregated method, in

other words, the way to fuse spatial features and temporal features is extremely important

for a machine to recognize an action. As shown in Figure 2.3, each stream contains several

convolution unit which includes convolution layer, activation function, etc. The input of

two stream architecture are RGB image and stacked optical flows which is fed into spatial

stream and temporal stream. Due to the fact that optical flow are encoded with temporal

information, the stream with optical flow as input represents temporal stream. Likewise,

the spatial stream aims to extract spatial relationship among pixels in a single RGB image,

so it named after it.

Originally, in [23], the fusion is inserted after fully connected layer, but [24] discover

that fusion after the last convolution layer boosts the performance. Afterward, [8] and [6]

argue that early interaction between spatial stream and temporal stream improves perfor-

mance. Not only after the last convolution layer before fully-connected but also previous

convolution layers are built with connection to generate spatiotemporal features in the

earlier stage. To sum up, extracting spatiotemporal features which is composed of spatial

features and temporal features is extremely important for action recognition problems.

As shown in Fig. 2.3, two stream architecture has two streams, spatial stream and

temporal stream. The original input video can be pre-processed into RGB frame and op-

tical flows. The spatial stream is mainly focus on extracting spatial features in an image

12

doi:10.6342/NTU201802828

while temporal convolution stream is mainly focus on temporal relationship among each

time step due to the input is stacked optical flows. For instance, it is feasible to feed an

RGB image of a video clip at time t, and send a stacked optical flow which is generated

from a video clip from time t − 5 to t + 5 if stacked optical flow length is equal to 10.

Each stream contains several convolution layers and activations to extract features, but

with some minor changes depending on each work.

Despite the fact that spatiotemporal features is vital for action recognition, integrating

spatiotemporal features in each time step as well as fusing spatial features and temporal

features account for a large proportion of action recognition prediction. [7] compare sev-

eral aggregation methods for two-stream architecture, e.g. mean-pooling, max-pooling,

VLAD [25], etc. For different dataset, aggregation methods influence the performance

significantly with the same architecture, so choosing suitable aggregation method is an-

other challenging issue. [2] provide a novel mechanism to adaptively pool useful features

so as to integrate each local spatiotemporal features into global spaiotemporal features

for action recognition prediction. [4] suggest that all features generated from both spatial

stream and temporal stream should be categorized to specified attributes which is initial-

ized VLAD. Leveraging unsupervised method to extract useful information from each

attribute in the learning progress, [4] result in a good performance.

Although two-stream have shown promising results, optical flow estimation should be

pre-calculated for temporal stream. Due to this limit, two-stream architecture is hard to

achieve real-time. Also, the learned spatiotemporal information is fused by other mecha-

nism or special design unlike 3D ConvNet directly extracting spatiotemporal information

via 3D kernel. To sum up, two-stream is still one of the best architecture for action recog-

nition though it has some drawbacks.

2.2.2 3D ConvNet

3DConvNet is another deep learning architecture, apart from simply using two-dimensional

convolution kernel to extract spatial and temporal features as illustrated in two-stream

architecture, it utilizes three-dimensional convolution encoding spatial and temporal in-

13

doi:10.6342/NTU201802828

3D
C
on
v

B
N

R
eL

u

3D
C
on
v

B
N

R
eL

u

3D
C
on
v

B
N

R
eL

u

In
pu

tv
id
eo

St
ac
ke
d
im

ag
es

A
ct
io
n

C
la
ss
ifi
ca
tio

n

Figure 2.4: 3D ConvNet. 3D ConvNets architecture.

formation together. Despite the fact that 3D ConvNet is capable of extracting context

features in both spatial domain and temporal domain simultaneously, 3D ConvNet has its

limit of using too much memory and requires high computability. Also, an action can be

separated into three key-poses generally, e.g., starting pose, transition pose, and ending

pose. Now that, it requires sufficient three dimensional kernels to encode and learn the

features of action while the used memory often exceeds the limit of hardware upper bound.

Furthermore, a video clip is often too noisy due to some irrelevant frames between action

and action. Consequently, modeling a suitable architecture with proper kernel design is

extremely vital for 3D ConvNet due to the constraints.

As shown in Fig. 2.4, the input video is separated into several continuous frames. The

strength of 3D convolution is to extract spatiotemporal features which is vital for action

recognition. Similar to normal 2D convolution, 3D convolution consider extra dimension,

time axis, into account. 3D ConvNet has 3D convolution kernel to extract both spatial and

temporal features together which can be viewed as spatiotemporal features. Similar to 2D

convolution, 3D convolution conduct convolution on height, width as well as time axis,

so 3D convolution consider additional features on time axis. The input of 3D ConvNet

are stacked RGB images which is similar to temporal stream of two stream architecture

except that 3D ConvNet use RGB images.

Firstly, [10] provide a novel idea that applying 3D convolution on stacking continuous

RGB images is benefit to extract spatiotemporal feature encoded both spatial and tempo-

14

doi:10.6342/NTU201802828

C
on
v

B
N

R
eL

u

C
on
v

B
N

R
eL

u

C
on
v

B
N

R
eL

u

C
on
v

B
N

R
eL

u

C
on
v

B
N

R
eL

u

C
on
v

B
N

R
eL

u

Spatial Convolution Stream

Temporal Convolution Stream

R
G
B

O
pt
ic
al

Fl
ow

In
pu

tv
id
eo

Fu
lly

C
on
ne
ct
ed

O
bj
ec
t

A
ct
io
n

Figure 2.5: Joint Learning of Object Detection and Action Recognition. Joint learning
of object detection and action recognition is described in the figure.

ral features at the same time. They find out the best suitable temporal kernel length for

analyzing action dataset. 3D ConvNet has been widely-used as a feature extractor. After-

ward, by utilizing the concept of [10] and [26], [11] is able to predict action as well as the

action bounding box. Since [26] is the state-of-the-art in the field of object detection, [11]

replace the 2D convolution layer in [26] with 3D convolution layer in order to extract

spatiotemporal features.

Most 3D ConvNet methods use single 3D convolutiona kernel to extract spatiotempo-

ral features, [12] make good use of residual unit as inserting into 3D ConvNet to get fine

results. Since [27] and [28] have shown robustness in extracting features, [12] replace

traditional convolution layer into residual unit to grantee the extracted features are suffi-

ciently vital. To sum up, 3D ConvNet are used to extract spatiotemporal features directly

though it often has hardware limitations.

15

doi:10.6342/NTU201802828

2.3 Joint Learning

In this section, we are going to describe joint learning methods for action recognition.

Joint learningmeans learning two related things at the same time due to using same domain

features in the latent space. That is to say, simultaneously learning two subjects by using

the same features. In section 2.3.1, we introduce joint learning on object and action. In

section 2.3.2, joint learning optical flow and action is illustrated in 2.3.2.

2.3.1 Object and Action

According to [29], object detection in single image and action recognition are related

due to some human actions are interacted with static objects. In this perspective, it is in-

spiring that finding the interaction among the objects and trying to encode the relationships

between them should be vital to distinguish which action occurs. For instance, a man has a

cigarette in his right hand. it is obviously that an action has occurred which is ”smoking”.

Consequently, the object detection problem is feasible to solve with action recognition

problem. Surprisingly, learning object detection and action recognition at the same time

has shown promising results, while learning only object detection or action recognition

individually shows inferior performance. Furthermore, based on joint learning, zero-shot

learning can be marginally fulfill due to shared information of both object detection and

action detection.

The full designed architecture can be simplified as shown in Figure. 2.5 which jointly

learns object detection and action recognition. By utilizing two stream architecture, spa-

tial stream extracts relationship in a RGB image and temporal stream extracts temporal

features among stacked optical flow. That is to say, spatial stream and temporal stream

are used to extract spatial features from a single RGB image and temporal features from

stacked optical flows, respectively. Then, fusing the features encoded from each stream

into spatiotemporal features, sharing information is fed into fully connected layer which

outputs the integrated sharing information for two classifier so as to jointly learn action

recognition and object detection simultaneously, which means the fully connected fused

the features from both spatial stream and temporal stream into integrated spatiotemporal

16

doi:10.6342/NTU201802828

RGB Optical flow

Action

Figure 2.6: Joint Learning of Optical Flow and Action. Joint learning of optical flow
estimation and action recognition.

features. Also, from the sharing features integrated by the fully connected layers, object

detection classifier and action recognition classifier learned jointly due to this design. In

the light of this, joint learning of action recognition and object detection boosts perfor-

mance and is benefit to extract vital features which is composed of object information

and the interaction among these objects. As a result, this kind of design is capable of

multi-tasking by sharing the same features.

2.3.2 Optical Flow and Action

Action recognition relies on spatiotemporal features in order to distinguish accurate

action class. Since joint learning has shown promising results in several fields, it is feasible

to state the action recognition problem by jointly learning both action recognition and

optical flow simultaneously due to the fact that optical flow is the crucial information in

the field of action recognition. [13] utilize an autoencoder similar to [18] which is able to

generate optical flow, and add extra fully connected layer after the encoder so as to jointly

learn action recognition and optical flow.

As shown in 2.6, action recognition and optical flow estimation are jointly learned with

this novel design. Action recognition is heavily relies on encoded spatiotemporal features.

Since optical flow is the crucial information in the field of action recognition, the encoded

spatiotemporal features should be composed of spatial features of each RGB image and the

pixel relationship, temporal features, among two RGB images; otherwise, the optical flow

17

doi:10.6342/NTU201802828

cannot be estimated via this architecture. Since joint learning has shown promising results,

learning action recognition and optical flow is feasible. With an autoencoder extracting

spatiotemporal features for action recognition, the optical flow can be decoded via the

same network due to the design of [18]. Using pairs of RGB images as input, this network

is able to jointly generate corresponding optical flows as well as action class. The encoded

features from encoder are shared by both optical flow estimation and action recognition.

18

doi:10.6342/NTU201802828

Chapter 3

Optical Flow Estimation

In this chapter, we first illustrate our design concept briefly with some prior knowl-

edges in Section 3.1. In Section 3.2, we introduce our autoencoder network and minor

details of each unit. Afterwards, we introduce our self-designed refinement network in

Section 3.3. Finally, we elaborate some knowledges and concerns of our design in details

in Section 3.4.

3.1 Design Concept

Inspired by [13] and [18], we design a novel autoencoder architecture which is similar

to FlownetS in [18] with multiple pairs of RGB images as input and the corresponding op-

tical flows as output, but we replace each convolution layer with residual unit, introduced

in [27] and [28]. As a matter of fact, Residual Network ResNet, [27], [28], has shown

strong capability of addressing relationship between pixels and pixels. Not only in image

super-resolution but also in image denoising, ResNet is applicable and suitable for action

recognition problems, so it is reasonable to leverage the characteristics of ResNet for op-

tical flow estimation. However, most of the existing networks designed for optical flow

estimation do not insert batch normalization layers, [30]. Inserting batch normalization

layer after convolution layer is a risky thing which leads to rescaling the distribution of

the input values while at the same time, however, it helps the training procedure converge

faster and includes regularization term automatically due to the scaling.

19

doi:10.6342/NTU201802828

Figure 3.1: Autoencoder Architecture Architecture of our designed autoencoder.

As a result, we argue that adding residual unit into the autoencoder will increase the

capability of finding strong connection between pixels but constraints to avoid the side-

effect that brings from batch normalization are required. Optical flow estimation generated

from each stage should not add batch normalization layer after convolution layer to avoid

rescaling the values because optical flow is the real vector value that describes the dis-

placement of one pixel at one image to the other image in X− and Y − axis. Moreover,

in the decoder part, we add an extra relatively strong connection between each resolution

of predicted optical flow.

The whole autoencoder architecture can be seen in Figure 3.1. Using five residual

unit as encoder to extract spatiotemporal features and four residual unit as decoder, we

then feed the encoded spaiotemporal features to decoder as well as refinement network.

Noticeably, we down-sample or upsample when going through each residual unit in en-

coder or decoder. The refinement network is used to ensure the quality of the predicted

optical flow at each stage. Also, taking features from encoder, decoder network is able

to capture fine-grained details from encoder and decode better features. In Section 3.2,

architecture of the autoencoder will be illustrated and more optical flow estimation details

will be elaborated in Section 3.3.

20

doi:10.6342/NTU201802828

Conv 3 × 3

BN Conv 1 × 1

ReLu BN

Conv 3 × 3

BN

Leaky ReLu

(a)

BN

Leaky ReLu

Conv 3 × 3

BN Conv 1 × 1

ReLu

Conv 3 × 3

(b)

Figure 3.2: Encoder (a) Architecture of encoder.

3.2 Architecture

In this section, encoder of the autoencoder is introduced in Section 3.2.1. Decoder of

the autoencoder is illustrated in Section 3.2.2. In each section, minor details will be well

explained.

3.2.1 Encoder

We utilize two kinds of residual unit, described in [27] and [28], and the way which

we implement is as shown in Figure. 3.2. We use the same channels for each residual

unit corresponding to the same layers in FlownetS, [18]. Leveraging residual unit, the

spaiotemporal features are extracted more and more explicitly via layer by layer with two

stacked RGB images as input. Due to the fact that optical flow represents the moving dis-

placement of the same pixel in two images, the encoded features should be able to describe

the spatial relationship in a single image of two pixel among two images. Consequently,

spaiotemporal features should be completely extracted via the network. Furthermore, we

use the same design of residual unit as described in [27] and [28], but we replace the

original activation, ReLu, with Leaky ReLu. Due to the fact that Leaky ReLu takes neg-

21

doi:10.6342/NTU201802828

Deconv 3 × 3

BN Deconv 1 × 1

ReLu BN

Deconv 3 × 3

BN

Leaky ReLu

(a)

BN

Leaky ReLu

Deconv 3 × 3

BN Deconv 1 × 1

ReLu

Deconv 3 × 3

(b)

Figure 3.3: Decoder (a) Architecture of Decoder.

ative terms into account while ReLu eliminates negative terms. In the light of this, we

use Leaky ReLu as integrated activation function in order to extract much better features.

Noticeably, we use five residual unit for encoder because adding more extra residual unit

may run out of memory.

3.2.2 Decoder

Unlike FlownetS using only one deconvolution layer to decode higher feature do-

main, we additionally implement two kinds of residual unit which is similar to the en-

coder part as shown in Figure. 3.3. Despite the fact that adding residual unit into the

autoencoder increases the performance, it is not enough to generate fine-grained optical

flow. For FlownetS [18], for instance, the predicted optical flow at each resolution only

has indirect connection which only pass the upsampled optical flow as a feature map to

the concatenation layer. However, the upsampled optical flow has not been fully utilized.

In order to build the direct connection between each stage, it is reasonable to resize the

smaller predicted optical flow to the bigger resolution as an basis of predicted optical flow

at that stage. As shown in Figure. 3.1, decoding spatiotemporal feature needs to extract

22

doi:10.6342/NTU201802828

+

U
ps
am

pl
e

Previous
Flow

Final
Flow

Current
Flow

Concat

Conv

H × W

2H × 2W

2H × 2W

Figure 3.4: Optical Flow Refinement Process flow of optical flow refinement.

spatiotemporal features and some fine-grained details from both higher feature space and

encoder feature space in order to predict accurate optical flow. Therefore, using varia-

tional resolution of optical flow is able to guarantee spatiotemporal features which is the

vital part for predicting optical flow. Furthermore, the spatiotemporal features are simul-

taneously crucial for action recognition.

3.3 Refinement Network

Now that we are able to produce high-quality spatiotemporal feature, decoding is an-

other vital issue. Since we utilize variational resolution refinement of optical flow in order

to ensure getting sufficient spatiotemporal information at each stage, it is reasonable to use

previous predicted optical flow as an basis of current predicted optical flow at next reso-

lution stage using the concept described in [21]. That is to say, we let a predicted optical

flow go through a up-sample layer, deconvolution layer, with stride 2 which increase the

feature map size by a factor of 2, and we leverage this up-sampled optical flow as a basis

of the predicted optical flow at this bigger resolution. As shown in Figure 3.4, the archi-

tecture of final optical flow at each stage is generated via the procedure. The up-sample

23

doi:10.6342/NTU201802828

layer is used to resize the smaller optical flow to fit current size and the final optical flow

is generated by both up-sampled optical flow and current predicted optical flow from con-

catenation layer. That is to say, we obtain another predicted optical flow produced from

the concatenating feature map, so we use a weighted sum mechanism so as to generate the

final optical flow of this resolution.

In order to train an autoencoder for optical flow estimation, we use end-point-end

error, EPE, as an error index or loss function to train our netowrk and evaluate the per-

formance.Note that EPE is defined as

EPE(U, V, U ′, V ′) =
∑

i,j

2
√

(ui,j − u′
i,j)2 + (vi,j − v′

i,j)2 (3.1)

where U , V are the displacement on X− and Y − direction of the predicted optical flow

estimation, respectively, and U ′, V ′ are that of ground-truth optical flow estimation. The

error can be viewed as moving distance error between correct and predicted moving dis-

tance which is equivalent to the magnitude of the subtraction of two vector value.

Nevertheless, training the optical flow with this design has an implicit question which

is that the up-sampled optical flow after deconvolution should be as close to the ground

truth as possible. As a result, we use a weighted loss function to address this issue, so the

total loss at each stage k is described as

SubLossk(Uk, Vk, U ′
k,V ′

k , Uup
k−1, V up

k−1) =

EPE(Uk, Vk, U ′
k, V ′

k) + γk × EPE(Uup
k−1, V up

k−1, U ′
k, V ′

k)
(3.2)

where Uup
k−1 and V up

k−1 represent the displacements on X− and Y − direction of the upsam-

pled optical flow estimation at stage k, respectively. γk is the coefficient to control the

tendency to upsampled optical flow or new generated optical flow. The overall error for

training this network can be categorized as

FlowLoss =λ1 × EPE(U1, V1, U ′
1, V ′

1)+
k=5∑

k=2
λk × SubLossk(Uk, Vk, U ′

k, V ′
k , Uup

k−1, V up
k−1)

(3.3)

24

doi:10.6342/NTU201802828

where λk is the coefficient at each stage k which is 0.32, 0.08, 0.02, 0.01, 0.005, respec-

tively.

3.4 Remarks

Adding extra connection between optical flows at the previous and the current stage

has an extraordinary effect on convergence of loss training and performance enhancement.

Originally, FlownetS [18] provides a good solution to accurate optical flow estimation via

an autoencoder. We implement the same autoencoder network by adding residual unit

with additional batch normalization layer after each convolution layer except generating

optical flow ones. As a matter of fact, the value of the optical flow should be a true pixel

displacement value not supported to be rescaled by batch normalization layer. Also, we

implement the revised version of FlownetS by adding batch normalization layer after each

convolution layer except optical flow generating layer which also shows similar results to

the version without batch normalization. However, adding batch normalization indeed

accelerate the converging speed. Since we ensure the feasibility of adding batch normal-

ization after convolution layer, we adopt residual unit by replacing the simple convolution

layer. Also, we compare the architecture which adds residual unit into both encoder and

decoder with that which only inserts residual unit into encoder. Moreover, we look into

whether adding upsample error increase the performance.

From our perspective, adding residual unit in both encoder and decoder is able to

generate better quality optical flow. With the constraints of upsampled error, defined in

Equation. (3.2), the predicted optical flow are double guaranteed. The total loss is defined

as Equation. (3.3). More details and experimental results will be elaborated in Chapter 5.

25

doi:10.6342/NTU201802828

Chapter 4

Action Recognition

In this chapter, we first illustrate how to bridge the gap between optical flow estimation

and action recognition in Section 4.1. Secondly, we introduce our proposed ResFlow in

Section 4.2 with minor details. In Section 4.3, we elaborated our self-designed mechanism

to aggregate local spatiotemporal features into global sptiotemporal features for action

recognition.

4.1 Optical Flow to Action Recognition

In Section 3, we introduce an autoencoder for estimating optical flow. In short, optical

flow is composed of two channels which record the displacement along X− and Y − axis.

Furthermore, our auotencoder predicts optical flow at each stage in order to ensure that

sufficient features are extracted. Since optical flow represents the temporal displacement

from the first image to the second image, the temporal displacement should be encoded via

the autoencoder. Furthermore, not only the temporal features but also the spatial features

are encoded via the autoencoder due to the fact that the object position inside the two

images should be corresponding to each other. Consequently, spatiotemporal features are

automatically encoded due to the characteristic of optical flow and autoencoder.

Now that we are able to access spatiotemporal features from each frame via an au-

toencoder, each spatiotemporal feature represents an instant motion variation. How to

predict action using these extracted spatiotemporal feature is an open question. In the

26

doi:10.6342/NTU201802828

Figure 4.1: Overall Architecture. The overall Architecture which contains both optical
flow estimation task and action recognition task.

viewpoint of frame-level, each spatiotemporal feature is a cue which leads to a unique

action and they are independent of each other. Contrarily, viewing them as a sequence

of cues in video-level is totally different. All spatiotemporal features related to the same

video has only one label, which means only one prediction is produced. Naive methods,

e.g., average-pooling, max-pooling, etc, are widely-used but they are too biased because

of the following reasons: Firstly, max-pooling works fine if a particular motion feature is

sufficient for recognizing an action, however, actions are normally composed of several

consecutive segments in a video. Due to the same reason, mean-pooling may encounter

the condition that only a few features are important, but the rest are noisy features. In light

of this, we must find a suitable way to aggregate all of these spatiotemporal features. Not

only integrate all these spatiotemporal features, but also consider the temporal ordering

because the order matters, e.g., a man sitting down and standing up may be viewed as the

same action which is not correct literally.

4.2 ResFlow

We propose a novel design, ResFlow, which predicts optical flow estimation and pro-

ceeds action recognition simultaneously. The overall architecture is shown in Figure 4.1.

As a matter of fact, using autoencoder to extract spatiotemporal feature is not only suitable

for estimating optical flow but also extracting spatiotemporal features for action recogni-

27

doi:10.6342/NTU201802828

Encoder Encoder Encoder

F 1 F t F T

Sequentially Pooling
Mechanism

Action Recognition

share weights share weights

time = 1 time = t time = T.

... ...

.

Figure 4.2: Aggregation of Spatiotemporal Features. Process of aggregating spatiotem-
poral features for action recognition.

tion. Furthermore, multitasking has been proved to be helpful for both parts due to the

fact that common sharing features are enhanced by both tasks. Since optical flow is of

the key factor of action recognition and it represents the temporal features of the video,

estimating optical flow and action recognition at the same time is reasonable and real-

istic. We fully utilize the characteristic of the autoencoder architcture for optical flow

estimation to extract spatiotemporal features for action recognition. In order to aggregate

local spatiotemporal features at each time step, we leverage our self-designed Sequentially

Pooling Mechanism as a feature selector to generate the best global spatiotemporal fea-

ture. Finally, we get action recognition result via feeding the global sptiotemporal feature

into the fully connected layer.

Sharing the same encoder which extract spatiotemporal features, we branches the out-

put to two objectives which are optical flow estimation and action recognition. The branch

of optical flow estimation is concatenated with decoder, described in previous chapter, af-

ter the encoder, while the other branch is concatenated with a aggregation mechanism. In

28

doi:10.6342/NTU201802828

light of this, there are several spatiotemporal features from each frame, so we design a

novel mechanism, Sequentially Pooling Mechanism, to deal with aggregation issue. We

aim at aggregating all the spatiotemporal features from each time step into global spa-

tiotemporal feature to predict final action. That is to say, we separate a video clip into

several image pairs as input of ResFlow and outputs both corresponding optical flows and

an action label.

Asmentioned previously, two stream architectures include spatial stream and temporal

stream, so we figure a wise way to fuse two streams into one via the multitasking mech-

anism. Also, 3D ConvNet uses 3D convolution layer to extract spatiotemporal features,

while we use autoencoder to extract spatiotemporal features. The 3D ConvNet considers

a relatively larger period of time due to the fact that the receptive field becomes bigger as

the network goes deeper. In order to consider the temporal ordering, we make good use of

SPM so that we are able to produce global spatiotemporal feature through this aggregation

mechanism to integrate all local spatiotemporal features from each time step.

As shown in Figure. 4.2, we train the network via a batch of pairing images of a video

clip as input and an action label as output. In the light of this, the network inferences one

local spatiotemporal features at each time step. We adopt Sequentially Pooling Mecha-

nism to aggregate these local spatiotemporal features into global spatiotemporal features

as shown in the figure. We recursively get a score for each local spatiotemporal feature as

an indicator to make sure whether this feature is vital or not.

4.3 Sequentially Pooling Mechanism

Due to the fact that the local temporal spatiotemporal feature contains temporal infor-

mation in a time interval and each spatiotemporal feature at each time interval should be

treated discriminatingly because not all the local features contribute to action recognition.

That is, each confidence score for corresponding local spatiotemporal feature should be

trained and learned via a fair and precise mechanism. As a matter of fact, there are some

noisy frames in a video clip, e.g., a batting action is composed of two segments which

are throwing ball and batting. Therefore, two key action segments are throwing ball and

29

doi:10.6342/NTU201802828

...
...

Encoder Features

F t

F t
sub

N
eu
ra
lN

et
w
or
k

C
on
fid

en
ce

Sc
or
e

U
pd

at
e

F t−1
c

...
...

F t
c

time = t

Figure 4.3: Sequentially Pooling Mechanism. Process flow of Sequentially Pooling
Mechanism at time t.

batting, but if we use naive method, such as average-pooling or max-pooling, it may be

hard for the network to learn correct features because, while the ball is flying, the frames

are negligible. Also, these noisy frames may harm the performance.

Consequently, inspired by [2], we design Sequentially Pooling Mechanism, SPM,

which generates the confidence score, St, of each residual input, F t
sub, via three fully

connected layers at time t, and each residual input is calculated by subtracting F t−1
c with

F t. The SPM architecture can be seen in Figure 4.3. As shown in Figure 4.3, at time t,

we input an image pair to the encoder and produce a feature vector, denoted as F t. Then,

we subtract the input feature with the condensed feature, denoted as F t−1
c . Via a neural

network, we are able to get a confidence score, denoted as St, which represents the im-

portance of this subtraction input. Then, we use a weighted sum mechanism to update the

new global spatiotemporal feature, denoted as F t
c , which is also the condensed feature for

next time step. Above all, the equation is written as

F t
sub = F t − F t−1

c (4.1)

30

doi:10.6342/NTU201802828

St = σ(F t
sub), St ∈ [0, 1] (4.2)

F t
c = F t−1

c + St × F t
sub

= St × F t + (1 − St) × F t−1
c

(4.3)

where St and F t are denoted as the confidence score and the feature map generated after

the last convolution layer in encoder, Res block f5, at time step t, t ∈ 2, ..., T , respec-

tively. Initially, the condensed global spatiotemporal feature, F 1
c , is equal to the first

spatiotemporal feature, F 1, at time t = 1. The neural network used in SPM consists of

three fully-connected layers. We use tanh as the activation function of the first two fully-

connected layer, and the last one uses sigmoid as activation function. Due to the fact that

we aim at predicting the importance score of the input feature in a range of [0, 1]. Un-

der this circumstance, SPM has capability of judging whether the current residual input

is relevant or not so as to give a confidence score based on both accumulated condensed

spatiotemporal feature and residual input. To sum up, Fc is computed by aggregating local

spatiotemporal features, F t, at each time step, t, and the equation of which is shown as

Fc = ST × F T + (1 − ST) × F T −1
c

= ST × F T + (1 − ST) × [(S(T −1) × F (T −1) + (1 − S(T −1)) × F T −2
c)]

= ST × F T + S(T −1)(1 − ST) × F (T −1) + (1 − ST)(1 − S(T −1)) × F T −2
c

(4.4)

by induction, which is equivalent to

Fc =
t=T∑

t=1
(wt × F t) and

t=T∑

t=1
wt = 1 (4.5)

where w represents the proportion of each local spatiotemporal features to the global spa-

tiotemporal feature. Also, the summation of confidence score corresponding to each local

spatiotemporal feature is equal to 1. As a result, SPM leverages share-weighted fully con-

nected layers to fairly calculate confidence score. The equation 4.5 demonstrates that the

global spatiotemporal feature is composed of local spatiotemporal features from each time

31

doi:10.6342/NTU201802828

step. From equation 4.4, we show the global spatiotemporal feature is composed of input

feature F T and previous condensed feature F T −1
c . Also, F T −1

c is composed of F T −1 and

F T −2
c . Therefore, by induction, we can get a sequence of feature vectors from time step

1 to T . The coefficient of feature vector at time step is wt which can be interpreted as a

series of Sk, where k ∈ [2, t].

Remark. Looking into SPM, we find out that SPM can not only judge the importance of

spatiotemporal feature from each time step, but also aggregate them using weighted-sum

mechanism. Furthermore, SPM fully utilizes the characteristic of sequential order that it

aggregates them sequentially along time axis. In other words, SPM considers the tempo-

ral order of an action sequence and collect the needed important spatiotemporal feature

from each time step. As shown in Figure 4.4, we recurrently output the confidence score

and the condensed spatiotemporal feature, which contributes to the global spatiotemporal

feature. As a consequence, this solve the issue that naive methods cannot handle with.

Furthermore, SPM boosts the performance of the action recognition accuracy.

Compared to using LSTM to aggregate features from each time step, our Sequentially

Pooling Mechanism is much simpler and easier to implement. Furthermore, we can see

that the forgetting rate of each unit is steady which depends on manual setting. Also,

the concept of our design is that we hope to produce global features based on previous

knowledge, but treat each input feature at each time step independently. That is to say,

the forgetting rate of LSTM will somehow fix the flexibility of aggregating features from

each time step.

4.4 Implementation Details.

We select Tensorflow [31] as our training platform because of the large manipulability.

We select Adam [32] optimizer to optimize our training loss. We define our training loss by

a weighted sum of optical flow eatimation loss described in Section 3.3 and cross entropy

for action recognition task.

We choose the same training schedule, called longschedule, described in [20] to train

the optical flow autoencoder so as to get a pre-trained model for extracting spatiotemporal

32

doi:10.6342/NTU201802828

;

Figure 4.4: Details of SPM. This is a simplified visualization of SPM.

features. The learning rate is set to 10−4 with a degradation of a factor of 2 after first 300K

iteration and 100K iteration afterward. We also use l2 normalization to prevent overfitting

with a factor 10 − 4. Furthermore, we figure out that data augmentation is crucial to train

an autoencoder. Data augmentation includes random brightness, saturation, hue, contrast,

Gaussian noise by Gaussian distribution with a delta of 0.3. Also, we conduct horizontal

and vertical flipping, translation by a factor between [−0.2, 0.2] with the image height

and image width respectively, scaling in a range of [0.9, 2.0], and rotation in a range of

[−17, 17] degrees. We end up training procedure after 1000K iterations.

For training action classification problem, we use separated trainingwhich is described

in [2] that use 10−3 as the learning rate for training SPM and 10−6 as the learning rate for

training convolution layers, respectively. We find it hard to train SPM since it converges

too quickly and easily overfits to the training data. Therefore, we also use image horizontal

flipping to augment data. Also, we confine the maximum gradient value to 10 in each

update iteration. This training technique has been adopted by several works before, e.g.,

[2], [4]. We stop training after 50 iterations.

33

doi:10.6342/NTU201802828

Chapter 5

Experiment

In this chapter, we introduce two popular optical flow datasets, FlyingChairs dataset

and SintelF inal dataset, and their characteristics in Section 5.1. UCF101 dataset and

HMDB51 dataset, two action recognition benchmark, are elaborated in details in Section

5.2. We evaluate our model for optical flow estimation on bothFlyingChairs dataset and

SintelF inal dataset in Section 5.3. In Section 5.4, we evaluate our proposed architecture

on both UCF101 dataset and HMDB51 dataset. Also, we show the strength of our

proposed Sequentially Pooling Mechanism, SPM.

5.1 Optical Flow Dataset

Training optical flow in deep learning architecture requires a sufficient large dataset

with precise ground-truth which is hard to obtain data from real-world scene. Conse-

quently, optical flow datasets are all made artificially, however, the quality and precision

of the generated optical flows are absolutely correct due to the fact that it is precisely cal-

culated by pre-built software. Thanks to the synthetic data, we are able to train a network

for optical flow estimation. In Section 5.1.1, we describe the features of FlayingChairs

dataset.

34

doi:10.6342/NTU201802828

Optical Flow Estimation Visualization
Image1 Image2 Ground-Truth

Figure 5.1: Optical Flow. Optical flow is calculated from evaluating the motion of first
image and second image. Based on the first image, optical flow represents the moving
displacement of the pixel along X− and Y axis.

5.1.1 FlyingChairs Dataset

Before going into the details of optical flow dataset, we first introduce the visualization

of optical flow. Due to the fact that optical flow is a two channel value which cannot be

visualized in the form of RGB image. Therefore, some researchers leverage the Munsell

Color System to visualize optical flow estimation. Due to the fact that the Munsell Color

System is able to describe a vector in the form of Value, Hue, and Chroma, optical flow can

be visualized using Munsell Color System. As a matter of fact, each pixel of an optical

flow contains X− and Y − displacement. Therefore, the vector direction of each pixel

can be corresponded to a hue color and the magnitude of the displacement in X− and Y −

direction is corresponding to a chroma in the form of Munsell Color System. As a result,

we are able to use Munsell Color System to describe an optical flow.

FlyingChairs dataset, [18], is an optical flow dataset which is composed of synthetic

data. Literally, there are several chairs inside images and the background of the images

are usually complex. As a matter of fact, optical flow is aimed for estimating the moving

displacement in X and Y axis of a pixel from first image to second image, so the designed

network in training should learn and focus on the moving displacement of the pixels in

images no matter how complex of the background is and what shape of the objects are.

As shown in Figure 5.1, the background are various and complicated and so are the

moving objects. The moving objects contains several motions, e.g., rotation, translation,

etc. Also, the background of each image pair also rotates and translates in a certain range.

35

doi:10.6342/NTU201802828

Figure 5.2: FlyingChairs Dataset Visualization. We visualize the FlyingChairs dataset
which is an optical flow dataset. From left to right, there are the first image, second image,
and corresponding optical flow ground-truth in each row.

36

doi:10.6342/NTU201802828

Figure 5.3: Sintel dataset. We visualize Sintel dataset which is a optical flow dataset.
Each row represents a sequence of first image, second image, and corresponding optical
flow from left to right.

Furthermore, the color and texture are almost roughly the same to the background and the

shape of some chairs has really thin legs which is hard to detect and estimate the moving

displacement. More samples can be seen in Figure 5.2.

In the light of this, FlyingChairs optical flow dataset is sufficient big and complex

enough to prevent from overfitting. However, adding data augmentation is also crucial

to improve the performance. Training this optical flow dataset is a challenging problem

because of complex background and the color and texture of the chairs are similar to the

background. Also, the training architecture are hard to design. More training details are

elaborated in Chapter 5.

5.1.2 Sintel Dataset

Sintel dataset, [33], is an optical flow dataset. Sintel dataset utilizes the movie scenes

of a movie named ”Sintel” made by Blender, which are made by animation. As a conse-

quence, the optical flow of two consecutive images is easily accessible because animation

is made by computer which can be precisely positioned.

37

doi:10.6342/NTU201802828

As shown in Figure 5.1.2, the moving displacement of arbitrary two consecutive im-

ages is relatively large. The characteristic of this dataset is that the background is complex

and the moving objects are large. Since it is an animation movie, the dataset contains sev-

eral relevant image pairs. Therefore, in the training procedure, the network is easily to

overfit on the training data, so how to balance it is another question.

Looking into the images in this dataset. The image colors are saturated and the bright-

ness is sufficiently light. Also, the images do not include the situation of changing camera

perspective, so the optical flow estimation task of this dataset do not need to handle this

kind of problem while in real world this is a big problem.

5.2 Action Recognition Dataset

Action recognition is a challenging problem not only in the field of computer vision

but also in the daily life. Identifying the action is helpful for observers to get the infor-

mation of the status under surveillance system. There are two benchmark action dataset

for action recognition which are UCF101 dataset and HMDB51 dataset. UCF101 dataset

mostly focus on the outdoor activity, e.g., running, shooting, fielding, playing basketball,

baseball, etc. Consequently, motions between each frame has small displacement which

is not suitable to use FlyingChairs dataset in the pre-training stage.

5.2.1 UCF101 Dataset

UCF101 is one of the competitive benchmark in the field of action recognition. Most

actions in this dataset are outdoor activity. The actions included in this dataset can be

categorized into five parts, which are

1. Human-Object Interaction

2. Body-Motion Only

3. Human-Human Interaction

4. Playing Musical Instruments

38

doi:10.6342/NTU201802828

Figure 5.4: UCF101. UCF101 dataset is an action dataset which contains 101 action
categories with 13320 total action video clips.

5. Sports

There are total three training testing splits for this dataset with total 13320 video clips

with 101 action categories. These action categories are divided into 25 groups and there

are 4 to 7 video clips of an action in each group. As shown in Figure 5.4, there are 101

action classes which sports action classes take the major proportion. Most action classes in

this dataset include the motion of the whole human body, e.g., skiing, baby crawling, push

ups, etc. Consequently, extracting meaningful and useful features from a human body in

a video clip is crucial for action recognition.

39

doi:10.6342/NTU201802828

Figure 5.5: HMDB51. HMDB51 dataset is an action dataset which contains 51 action
categories with 6766 total action video clips.

40

doi:10.6342/NTU201802828

5.2.2 HMDB51 Dataset

HMDB51 is one of the competitive benchmark in the field of action recognition. The

actions included in this dataset are collected mostly from movies, and the rests are from

public databases. There are 6849 video clips in total which can be categorized into 51

action classes, and each action contains at least 101 video clips. Furthermore, HMDB51

can be categorized into five parts, which are

1. General facial actions

2. Facial actions with object manipulation

3. General body movements

4. Body movements with object interaction

5. Body movements for human interaction

As shown in Figure 5.5, most action classes in this dataset contains some fine-grained

actions which are hard to recognize and some action classes

5.2.3 Discussion

UCF101 dataset and HMDB51 dataset are one of the most existing largest dataset for

action recognition. Nevertheless, the training video clips in UCF101 dataset are highly

related to background which leads to the consequence that the model only learns the rela-

tionship between action category and background rather than the action motion and action

category. HMDB51 dataset has fewer video clips with less action categories, but the reso-

lution quality is unstable which is hard for CNN to extract sufficient information for action

recognition.

5.3 Optical Flow Estimation

We evaluate the performance of our proposed method, ResFlow, on estimating optical

flow by using EPE which is described in 3.1. Using this error as an indicator is fairly

41

doi:10.6342/NTU201802828

enough to speculate the quality of predicted optical flow. Particularly, we show the average

EPE to do the comparison because each resolution at different stage is different. The

average EPE can be written as follow,

EPE(U, V, U ′, V ′) = 1
h × w

∑

i,j

2
√

(ui,j − u′
i,j)2 + (vi,j − v′

i,j)2 (5.1)

, where h and w represents the image height and image width respectively. Also, we de-

note the average EPE as EPE for further usage. As a matter of fact, the smaller the EPE

is, the better quality it is because the difference of the similarity is smaller. We choose

FlyingChairs as our benchmark which is a crucial dataset made of synthetic data. Further-

more, FlyingChairs dataset has absolute ground-truth because it is a synthetic dataset. We

compare our proposed ResFlow with state-of-the-art and show the experimental results in

the following sections.

5.3.1 Comparison

We first compare our proposed ResFlow v1 and ResFlow v2 on FlyingChairs dataset.

The difference between ResFlow v1 and ResFlow v2 is that they use different kind of

residual unit as encoder and encoder. The performance of two proposed architecture can

be seen in Table 5.1. From our perspective, ResFlow v2 outperforms ResFlow v1 with

better result. We suspect that ResFlow v2 shows better results is due to the design of the

residual block. The skip connection of the residual unit is different, one is after batch

normalization layer while the other one is after convolution layer. As illustrated in [28],

adding skip connection after convolution layer enlarge the features’ variety so as to get

better result. Although batch normalization layer gives benefit to training, it confines the

output values in a certain range which cannot highlight the key features compared to other

features.

Furthermore, the performance of both ResFlow v1 and ResFlow v2 outperform the

state-of-the-art, FlownetS [18], FlownetC [18], and SpyNet [21]. Consequently, we fig-

ure out that using residual unit rather than simple convolution layer has improved optical

42

doi:10.6342/NTU201802828

Table 5.1: Optical Flow Estimation Comparison. We evaluate the performance of opti-
cal flow estimation of our proposed ResFlow v1 and ResFlow v2 on FlyingChairs dataset
and compare them with the state-of-the-art FlownetS, FlownetC, and SpyNet.

Optical Flow Estimation Comparison
Architecture FlownetS FlownetC SpyNet ResFlow v1 ResFlow v2

EPE 2.86 2.61 2.63 2.41 2.29

flow estimation but requires some extra refinements as explained in Section 3.4. As shown

in Table 5.2, the performance of ResFlow v2 outperforms that of ResFlow v1. Moreover,

ResFlow v2 dominates ResFlow v1 at all stages. Noticeably, we have tried to use residual

unit without adding extra upsample error, Equation 3.2, but found it hard to converge. We

suspect that using batch normalization will rescale the values of each feature map after

doing convolution which is contradicted to optical flow estimation due to the fact that the

value of each pixel in an optical flow is a distance value. Therefore, we do not insert

batch normalization after the convolution layer of predicting optical flow estimation in

our decoder and the upsampled convolution layer as well. In the light of the character-

istic of optical flow, we do not want to modify the value of the predicted optical flow

tremendously.

5.3.2 Refinement

Referred to Section 3.3, we introduce a novel design which refines upsampled optical

flow and builds a strong connection of optical flow estimation at each stage. As shown

in Table 5.2, the performance of ResFlow v2 outperforms that of ResFlow v1 due to the

fact that the smaller EPE is, the better it is. Also, ResFlow v2 dominates ResFlow v1 at

all stages. Consequently, we conclude our ResFlow v2 is a well-designed architecture for

optical flow estimation. As a matter of fact, the performance will catastrophically drop

without adding the proposed refinement network, more particularly, the skip connection

of optical flow. This also As shown in Figure. 5.7, it is obvious to observe that the optical

flow estimation is improving gradually and is closer to the ground-truth. Firstly, using

the smaller optical flow generated from previous layer, we up-sample this smaller opti-

43

doi:10.6342/NTU201802828

(a)

(b)

Figure 5.6: Optical Flow Refinement Visualization. The progress of optical flow re-
finement are shown as the figure.

44

doi:10.6342/NTU201802828

Table 5.2: Optical FlowRefinement Evaluation. We evaluate the performance of optical
flow estimation of our proposed ResFlow v1 and ResFlow v2 on FlyingChairs dataset at
all stages. ResFlow v2 obviously outperforms ResFlow v1 due to the EPE is smaller.

Optical Flow Refinement Evaluation
FlyingChairs

Architecture stage1 stage2 stage3 stage4 stage5
ResFlow v1 4.13 3.57 3.14 2.67 2.41
ResFlow v2 3.86 3.29 2.91 2.48 2.29

cal flow to be accordance with current predicted optical flow from concatenation layer.

Afterward, we calculate the final optical flow using the weighted-sum mechanism of the

up-sampled optical flow and predicted optical flow. Since the value of a pixel in an optical

flow represents the moving displacement of that pixel among two images, it is reasonable

to element-wisely sum these two optical flow together. Under the circumstance of elimi-

nating the skip connection, we figure out that theEPE is relatively higher than adding the

skip connection, so we finally add this skip connection into our network. Besides, skip

connection is firstly proposed by ResNet which shows good performance. We take the

advantages of the characteristic of adding skip connection into our design which builds

a bridge between estimated optical flow at each stage. We also prove the robustness of

using this design.

5.3.3 Sintel dataset

We visualize two version of optical flow estimation. One is that we pretrain our Res-

Flow on FlyingChairs dataset and directly predict optical flow estimation on Sintel dataset

without finetuning. The other one is that we pretrain our ResFlow on FlyingChairs dataset

and finetune ResFlow on Sintel dataset.

As shown in Figure 5.8, the predicted optical flow is slightly different to the ground-

truth. Also, the fine-grained details are rough as well. For instance, in the third row, the

predicted optical flow is similar to ground-truth. The weapon of the predicted optical flow

is estimated well but the edge is a little coarse. Also, the human motion is not accurate

enough compared to the ground-truth optical flow.

45

doi:10.6342/NTU201802828

Optical Flow Estimation Evaluation
Image1 Image2 Ground-Truth Estimated

Figure 5.7: FlyingChairs Visualization. We visualize the optical flow estimation of our
proposed ResFlow v2 on FlyingChairs dataset.

46

doi:10.6342/NTU201802828

Figure 5.8: Visualization of Sintel Optical Flow Estimation. The images are the optical
flow estimation on Sintel dataset without finetuning but pre-train on FlyingChairs.

Figure 5.9: Visualization of Sintel Optical Flow Estimation. The images are the optical
flow estimation on Sintel dataset and finetuning on Sintel dataset.

In light of this, finetuning on Sintel dataset is important to get accurate optical flow. As

shown in Figure 5.9, not only the human or object motion, but also the background transla-

tion are estimated pretty well. Looking into the predicted flow, some fine-grained details

still is not good enough. In the second row, the predicted flow estimated by ResFlow is

hard to estimate the hand motion. We suspect that this is because we use autoencoder

to generate optical flow. After several convolution layer, the receptive field is growing,

but only the first few convolution layers are able to capture fine-grained features. Our

proposed method utilizes the forward pass to transmit the encoder features to the decoder

part which enhances the ability of estimating optical flow. However, we only decode the

predicted optical flow to the resolution of 96 × 128 while the original resolution is equal

to 384 × 512.

47

doi:10.6342/NTU201802828

5.3.4 Remark

Although two versions of ResFlow show promising result, it still remain some draw-

backs. Due to the fact that the training image pairs in FlyingChairs dataset contain larger

displacement, predicting small displacement optical flow is comparably harder for Res-

Flow. We experiment our ResFlow on ChairsSDHom dataset [20] which is a dataset for

estimating small displacement optical flow. The predicted optical flow is shown in Table

5.7. Via visualization, we are able to see the robustness of ResFlow v2 on estimating opti-

cal flow. Comparing ground-truth and predicted flow, we can see that the predicted flow

is much similar to ground-truth, but some fine-grained details still remains improvement.

As for training small displacement optical flow, we adopt the same training procedure de-

scribed in [20] on ChairsSDHom dataset. However, we found out that replacing simple

convolution layer with residual unit does not improve the performance, but gets a worser

result. We believe that this is contributed to batch normalization layer which rescale the

values that influences the predicted optical flow. Due to the fact that the values of the

small displacement optical flow are normally in range of 0.001 to 2, the values after batch

normalization layer are normally between -1.0 to 1.0. As a consequence, it is hard to

predict the values of small displacement optical flow which overlaps the input features

significantly.

5.4 Action Recognition

In this section, we conduct our ResFlow on two action recognition dataset, UCF101

and HMDB51. Firstly, we show the importance of spatiotemporal feature in Section 5.4.1

and show the effective of SPM. We compare our ResFlow with the state-of-the-art in

Section 5.4.2. We also compare ResFlowwith the state-of-the-art onmultitasking problem

in Section 5.4.3. Lastly, we remains some discussion in Section 5.4.4.

48

doi:10.6342/NTU201802828

Table 5.3: Spatiotemporal Features Impact. We directly use ResFlow which is pre-
trained on optical flow dataset to predict action recognition in condition of fixing the con-
volution layers. We evaluate the performance of ResFlow on UCF101 dataset as well as
HMDB51 dataset and compare ResFlow with the state-of-the-art which are trained from
scratch.

Sequentially Pooling Mechanism Evaluation
Architecture UCF101 HMDB51
C3D Scratch 45.3% -

ResFlow Scratch 51.1% 22.9%
Two-Stream Scratch 52.3% -

VGG-M-2048 Scratch [13] 52.9% -
Flownet 54.5% 27.6%

ResFlow v2 (w/o SPM) 60.2% 30.5%
ResFlow v2 62.3% 31.8%

5.4.1 Spatiotemporal Feature

Only pre-trained with optical flow dataset, our proposed network, ResFlow, encodes

local spatiotemporal features at each time step of a video clip. We examine our robust-

ness of proposed Sequentially Pooling Mechanism which computes the confidence score

of each spatiotemporal feature and updates the global spatiotemporal feature for action

recognition on both UCF101 dataset and HMDB51 dataset. As shown in Table 5.3, Res-

Flow v2 outperforms other state-of-the-art due to the fact that ResFlow v2 has pre-trained

knowledge of extracting spatiotemporal feature. This comparison shows that spatiotem-

poral feature extracted by autoencoder is extremely important for action recognition.

Moreover, we use average pooling on the time axis as the baseline of our network and

compare with the one adding Sequential Mechanism, denoted as ResFlow v2 (w/o SPM)

and ResFlow v2, respectively. The experimental results show that SPM is able to judge

the confidence score of each spatiotemporal feature from each time step and improves the

recognition accuracy from 60.2% to 62.3%.

49

doi:10.6342/NTU201802828

Table 5.4: Action Recognition Evaluation. We finetune our ResFlow thoroughly, which
is pretrained on optical flow dataset, on UCF101 dataset. We evaluate the performance of
ResFlow on UCF101 dataset and compare ResFlow with the state-of-the-art.

Action Recognition Comparison
Architecture UCF101

ResNet-18 Scratch [13] 51.3%
VGG-M-2048 Scratch [13] 52.9%

Flownet +ft 66.0%
Flownet + SPM +ft 68.2%
Actionflownet-2f 71.0%

Two-Stream(Spatial) [23] 73.0%

ResFlow v2 (w/o SPM) + ft 72.0%
ResFlow v2 + ft 73.6%

5.4.2 Comparison

We compare our ResFlow with state-of-the-art on UCF101 dataset. Due to the fact

that our novel design for action recognition only consider a pair of image at each time

step, we compare with a competitive baseline model, Two-Stream [23]. As shown in

Table 5.4, we outperform the state-of-the-art. Moreover, we compare ResFlow v2 with

the baseline model Flownet+ft which is finetuned on UCF101 dataset. We show that

ResFlow improves the action recognition accuracy by 7.6% which prove the fact that

adding residual unit as well as SPM model help the network to get better result. Also,

with finetuning the convolution layers on UCF101 dataset, the action recognition accuracy

improves from 62.3% to 73.6%, which grows by 11.3%.

Besides, we prove that our new design Sequentially Pooling Mechanism is able to

aggregate features from each time step into global features. As we can see in the table,

adding SPM to Flownet architecture is able to increase the accuracy by 2.2% in UCF101

dataset. As for our ResFlow, it improves by 1.6% while having SPM compared to using

mean-pooling only. As a matter of fact, Two-Stream [23] uses pre-trained model on a

large ILSVRC dataset which is an object recognition dataset. Therefore, Two-Stream

has pre-knowledge of capturing details of objects. However, our ResFlow has only pre-

trained on a relatively tiny dataset to capture details of motion. Due to the characteristic

50

doi:10.6342/NTU201802828

Table 5.5: Multitasking comparison. Multitasking comparison on optical flow estima-
tion and action recognition.

Multitasking Comparison
Architecture ResFlow (ours) Actionflownet-2f

UCF101 dataset 73.6% 71.0%
HMDB51 dataset 43.5% 42.6%

FlyingChairs dataset 2.29 (EPE) -
Sintel Final dataset 5.43 (EPE) 9.12 (EPE)

of UCF101 dataset, the action category of each video clip has strong dependency on the

background. In the light of this, using pre-trained model on ILSVRC dataset [34], Two-

Stream [23] predicts action category based on the background in each frame of a video

clip. However, this phenomenon contradicts to the concept of capturing motion segments

to predict action recognition. On the contrary, we pre-train our ResFlow on a small optical

flow dataset,FlyingChairs dataset, which captures details of motionwith spatiotemporal

features encoded in each time step. Leveraging relatively tiny dataset, our ResFlow still

outperforms Two-Stream (Spatial) [23] in UCF101 dataset.

5.4.3 Multitasking

Due to the fact that both of Actionflownet-2f and our ResFlow are able to estimate

optical flow and predict action recognition at the same time, we compare ResFlow with

Actionflownet-2f on multitasking of both tasks including optical flow estimation and ac-

tion recognition as shown in Table. 5.5. For action recognition task, the performance of

our ResFlow outperforms that of Actionflownet-2f on bothUCF101 dataset andHMDB51

dataset by 2.6% and 0.9%, respectively. For optical flow estimation task, theEPE of Res-

Flow is obviously lower than that of Actionflownet-2f on Sintel Final dataset. In the light

of this, ResFlow shows strong robustness on both optical flow estimation task and action

recognition task. The design of our refinement work which builds connection between

two neighbored stage helps ResFlow to estimate accurate optical flow. Furthermore, the

design of SPM which aggregates spatiotemporal features from each time step into global

spatiotemporal features gives benefit to predict accurate action category.

51

doi:10.6342/NTU201802828

5.4.4 Remark

We visualize our optical flow prediction of action sequence of UCF101 dataset which

shows promising results. In Figure 5.10 and Figure 5.11, Resflow is able to capture human

motion. Moreover, the quality of predicted optical flow is quite well. However, there

is still some unrecognizable predicted optical flow in Figure 5.12 which happens when

the camera motion is too strong. Looking into both Figure 5.10 and Figure 5.11, the

camera is really stable without any vibration. However, we can see that the camera moves

vibrationally in the first few image pairs which cause ResFlow to predict the scene motion

that visualize as all green in the predicted optical flow image as shown in Figure. 5.12.

52

doi:10.6342/NTU201802828

Figure 5.10: Optical Flow Refinement Visualization. We visualize the optical flow
estimation of an action, playingviolin, in the figure. The camera is stable while only the
human and the violin is moving.

53

doi:10.6342/NTU201802828

Figure 5.11: Optical Flow Refinement Visualization. We visualize the optical flow
estimation of an action, batting, in the figure. The camera is stable while only the human
is moving.

54

doi:10.6342/NTU201802828

Figure 5.12: Optical Flow Refinement Visualization. We visualize the optical flow
estimation of an action, throwingball, in the figure. The camera is moving which cause
camera motions while the human is moving as well.

55

doi:10.6342/NTU201802828

Chapter 6

Conclusion

We propose a novel architecture, ResFlow, for estimating optical flow and predicting

action recognition simultaneously. We add an additional refinement network to ensure

that sufficient and crucial features are extracted for estimation of optical flow by bridging

two stages especially. Due to the characteristic of autoencoder, spatiotemporal feature at

each time step is extracted automatically. We proposed Sequentially Pooling Mechanism

to aggregate the extracted spatiotemporal feature at each time step into global spatiotem-

poral feature. That is to say, ResFlow sequentially generates condensed feature based on

previous knowledge under a fair criterion to judge the importance of each spatiotemporal

feature at each time. Overall, we figure out a new viewpoint to solve action recognition

problem task via multi-tasking. Furthermore, ResFlow can be easily integrated with other

works, i.e., Two-Stream network, so as to boost the performance. Also, ResFlow is capa-

ble of generating optical flow for other applications.

56

doi:10.6342/NTU201802828

Reference

[1] Ivan Laptev and Tony Lindeberg. Space-time interest points. In Computer Vision,

2003. Proceedings. Ninth IEEE International Conference on, pages 432–439. IEEE,

2003.

[2] Amlan Kar, Nishant Rai, Karan Sikka, and Gaurav Sharma. Adascan: Adaptive

scan pooling in deep convolutional neural networks for human action recognition in

videos. CVPR, 2017.

[3] X. Yan, S. Hu, and Y. Ye. Multi-task clustering of human actions by sharing in-

formation. In 2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 4049–4057, July 2017.

[4] Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic, and Bryan Russell. Ac-

tionVLAD: Learning spatio-temporal aggregation for action classification. InCVPR,

2017.

[5] Y. Wang, M. Long, J. Wang, and P. S. Yu. Spatiotemporal pyramid network for

video action recognition. In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2097–2106, July 2017.

[6] C. Feichtenhofer, A. Pinz, and R. P. Wildes. Spatiotemporal multiplier networks for

video action recognition. In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 7445–7454, July 2017.

57

doi:10.6342/NTU201802828

[7] Z. Lan, Y. Zhu, A. G. Hauptmann, and S. Newsam. Deep local video feature for ac-

tion recognition. In 2017 IEEE Conference on Computer Vision and Pattern Recog-

nition Workshops (CVPRW), pages 1219–1225, July 2017.

[8] Christoph Feichtenhofer, Axel Pinz, and Richard Wildes. Spatiotemporal residual

networks for video action recognition. In Advances in Neural Information Process-

ing Systems (NIPS), pages 3468–3476, 2016.

[9] I. C. Duta, B. Ionescu, K. Aizawa, and N. Sebe. Spatio-temporal vector of locally

max pooled features for action recognition in videos. In 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), volume 00, pages 3205–3214,

July 2017.

[10] D. Tran, L. Bourdev, R. Fergus, L. Torresani, andM. Paluri. Learning spatiotemporal

features with 3d convolutional networks. In 2015 IEEE International Conference on

Computer Vision (ICCV), pages 4489–4497, Dec 2015.

[11] Huijuan Xu, Abir Das, and Kate Saenko. R-c3d: Region convolutional 3d network

for temporal activity detection. In The IEEE International Conference on Computer

Vision (ICCV), Oct 2017.

[12] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns

retrace the history of 2d cnns and imagenet? arXiv preprint, arXiv:1711.09577,

2017.

[13] Joe Yue-Hei Ng, Jonghyun Choi, Jan Neumann, and Larry S. Davis. Actionflownet:

Learning motion representation for action recognition. CoRR, abs/1612.03052,

2016.

[14] A. Burton and J. Radford. Thinking in Perspective: Critical Essays in the Study of

Thought Processes. Psychology in progress. Methuen, 1978.

[15] D.H. Warren and E.R. Strelow. Electronic Spatial Sensing for the Blind: Contribu-

tions from Perception, Rehabilitation, and Computer Vision. Nato Science Series E:.

Springer Netherlands, 1985.

58

doi:10.6342/NTU201802828

[16] Jean yves Bouguet. Pyramidal implementation of the lucas kanade feature tracker.

Intel Corporation, Microprocessor Research Labs, 2000.

[17] Gunnar Farnebäck. Two-frame motion estimation based on polynomial expansion.

In Proceedings of the 13th Scandinavian Conference on Image Analysis, SCIA’03,

pages 363–370, Berlin, Heidelberg, 2003. Springer-Verlag.

[18] Alexey Dosovitskiy, Philipp Fischery, Eddy Ilg, Philip Hausser, Caner Hazirbas,

Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas Brox.

Flownet: Learning optical flow with convolutional networks. In Proceedings of the

2015 IEEE International Conference on Computer Vision (ICCV), ICCV ’15, pages

2758–2766, Washington, DC, USA, 2015. IEEE Computer Society.

[19] Pierre Baldi. Autoencoders, unsupervised learning and deep architectures. In Pro-

ceedings of the 2011 International Conference on Unsupervised and Transfer Learn-

ing Workshop - Volume 27, UTLW’11, pages 37–50. JMLR.org, 2011.

[20] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. Flownet 2.0:

Evolution of optical flow estimation with deep networks. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Jul 2017.

[21] Anurag Ranjan and Michael Black. Optical flow estimation using a spatial pyra-

mid network. In Proceedings IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Piscataway, NJ, USA, July 2017. IEEE.

[22] Yi Zhu, Zhenzhong Lan, Shawn Newsam, and Alexander G. Hauptmann. Guided

Optical Flow Learning. arXiv preprint arXiv:1702.022952, 2017.

[23] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for

action recognition in videos. In Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Process-

ing Systems 27, pages 568–576. Curran Associates, Inc., 2014.

59

doi:10.6342/NTU201802828

[24] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional two-

stream network fusion for video action recognition. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2016.

[25] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into

a compact image representation. In 2010 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pages 3304–3311, June 2010.

[26] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for ac-

curate object detection and semantic segmentation. In 2014 IEEE Conference on

Computer Vision and Pattern Recognition, pages 580–587, June 2014.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In CVPR, pages 770–778. IEEE Computer Society, 2016.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in

deep residual networks. In ECCV (4), volume 9908 of Lecture Notes in Computer

Science, pages 630–645. Springer, 2016.

[29] Vicky Kalogeiton, Philippe Weinzaepfel, Vittorio Ferrari, and Cordelia Schmid.

Joint learning of object and action detectors. In IEEE International Conference on

Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 2001–2010,

2017.

[30] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. In Proceedings of the 32Nd In-

ternational Conference on International Conference on Machine Learning - Volume

37, ICML’15, pages 448–456. JMLR.org, 2015.

[31] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-

lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

60

doi:10.6342/NTU201802828

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent

Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin

Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-

scale machine learning on heterogeneous systems, 2015. Software available from

tensorflow.org.

[32] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

CoRR, abs/1412.6980, 2014.

[33] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source

movie for optical flow evaluation. In A. Fitzgibbon et al. (Eds.), editor, European

Conf. on Computer Vision (ECCV), Part IV, LNCS 7577, pages 611–625. Springer-

Verlag, October 2012.

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.

Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Inter-

national Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

61

