
doi:10.6342/NTU201802685

國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

基於 3D殘差網路使用資料填補和骨骼誤差

應用於虛擬實境之手部姿勢估計

Hand Pose Estimation based on 3D Residual Network with

Data Padding and Skeletal Loss for Virtual Reality Applications

丁柏文

Pai-Wen Ting

指導教授：傅立成 博士

Advisor: Li-Chen Fu, Ph.D.

中華民國 107年 7月

July, 2018

doi:10.6342/NTU201802685

 I

中文摘要

 手部姿勢估計之技術在現今電腦視覺的領域中是一門熱門的研究項目，其目

的在於從一張具有手部的影像中去計算出手的節點在空間中的位置並藉此建立手

部姿勢。在近年，由於虛擬實境、擴增實境和混合實境等科技的發展逐漸成熟，如

何使人在虛擬世界中的感覺能夠更加真實的相關技術也如火如荼地展開，然而對

於手部姿勢估計來說仍然有許多困難的地方有待突破。舉例來說，手指與手掌之間

互相遮蔽、手勢多樣性的變化等問題，都會造成計算上的困難。

 本論文之目的即開發出一套能夠從深度影像中擷取資訊，並且精確的於 3D座

標中計算出手部節點的座標以及手勢之系統，以提供使用者能夠與虛擬實境中的

世界自然互動的介面。在本文中，我們提出一個利用大量數據資料來訓練一個深度

網路的手部姿勢估計模型。我們首先把手部的深度平面影像轉換成以立方空間表

示，並使用資料填充的方式來擴增資料量。接著把處理好的資料拿來訓練卷積神經

網路，並加入骨架穩固層來控制手部的物理限制。經由前處理和穩固層的運作，可

以有效提升卷積神經網路訓練手部姿勢模型的效能。另外，本系統亦可以在配備有

單個圖形處理器之電腦上即時運作。

 實驗中，我們將比較在不同的條件下所訓練出來的手部姿勢估計模型之效能，

以證明本論文所提出之改進方法能確實在訓練卷積神經網路時提供更好的效果。

另外，我們也會在真實世界中實測提出之系統，以證明在極其困難之環境下，仍然

可以維持優秀的效果。我們期望所提出之系統可以在虛擬實境或是擴增實境中提

供使用者一個更加自然的體驗。

關鍵字: 手部姿勢估計、虛擬實境、卷積神經網路

doi:10.6342/NTU201802685

 II

ABSTRACT

Nowadays, technology of the hand pose estimation is a popular research topic in the

area of computer vision. The goal is to estimate the coordinates of the hand joints in the

3D space from an image which contains hand. In recent years, because of the development

of virtual reality (VR), augmented reality (AR) and mixed reality (MR), the technology

of how to make people feel real in the virtual world has been developed for many years.

However, there are still many difficulties in hand pose estimation. For example, the

problems of self-occlusion and hand pose variations will cause the difficulties of

estimation.

The purpose of this thesis is to develop a system which can extract information from

depth image and estimate hand joint coordinates and pose in 3D space accurately, and can

provide a natural interface between user and virtual world. In this thesis, we propose a

deep network to train a hand pose estimation model by huge data. We first transform the

depth image of hand to voxelized grid and use data padding to fill the data. Then, we train

the convolutional neural network with preprocessed data and add a skeletal loss layer to

control the shape of hand. With the preprocessing and skeletal loss layer, the performance

of model can be improved significantly. Moreover, the system can run in real time with a

single GPU.

In the experiments, we will compare the performance of models which are trained

under different conditions to prove that our proposed method can improve the

performance. In addition, we will test the system in real world to show that the system

can work well even under the environment which is complex. We expect that the proposed

system can provide a more natural way for users to interact with the virtual world.

Keywords: hand pose estimation, virtual reality, convolutional neural network

doi:10.6342/NTU201802685

 III

TABLE OF CONTENTS

口試委員會審定書 ... #

中文摘要 ... I

ABSTRACT ... II

TABLE OF CONTENTS ... III

LIST OF FIGURES .. V

LIST OF TABLES .. IX

Chapter 1 1

1.1 Motivation... 2

1.2 Related Work .. 5

1.2.1 Hand Pose Estimation ... 6

1.2.2 3D Convolutional Neural Network ... 8

1.3 Contribution .. 9

1.4 Thesis Organization .. 10

Chapter 2 Preliminaries .. 12

2.1 Convolutional Neural Network... 12

2.1.1 Basic Concept .. 12

2.1.2 3D Convolutional Neural Network ... 18

2.2 3D Representation .. 18

Chapter 3 Hand Pose Estimation with Data Padding... 21

3.1 Problem Formulation .. 21

3.2 System Overview .. 22

3.3 Hand Detection ... 23

doi:10.6342/NTU201802685

 IV

3.3.1 Center-Of-Mass ... 24

3.3.2 Reference Point Refining .. 24

3.4 Hand Pose Estimation with 3D Convolutional Neural Network 25

3.4.1 2D Depth Image to 3D Voxelized Grid Transformation 25

3.4.2 3D Data Padding ... 26

3.4.3 Architecture of the Convolutional Neural Network 28

3.4.4 Loss Function .. 30

3.4.5 Data Augmentation .. 34

3.4.6 Implementation Parameter and Detail ... 35

Chapter 4 Experimental Results ... 36

4.1 Settings of Environment ... 36

4.2 Datasets ... 37

4.2.1 ICVL Hand Posture Dataset .. 37

4.2.2 NYU Hand Pose Dataset ... 38

4.2.3 Big Hand 2017 Dataset ... 39

4.3 Experimental Results .. 40

4.3.1 ICVL Hand Posture Dataset .. 42

4.3.2 NYU Hand Pose Dataset ... 44

4.3.3 Real World Testing .. 49

Chapter 5 Conclusion .. 55

REFERENCE .. 57

doi:10.6342/NTU201802685

 V

LIST OF FIGURES

Figure 1-1 The device we have used in our experiment, which is a HMD (HTC VIVE)

attached with a depth sensor (Intel RealSense F200). We take the depth image

by the depth sensor and reconstruct the hand model in the VR world. 3

Figure 2-1. This figure is a typical CNN structure, which is composed by 3 convolutional

layer and 2 fully connected layer. Convolutional layer will extract the features,

and the first layer of fully connected layer will interact the features and the

last layer of fully connected will output the predicted result........................ 13

Figure 2-2. This figure shows the basic concept of the convolutional layer. The orange

rectangle is a kernel (filter), and the green boxes are the corresponding

features extracted by the kernels. The number of the green boxes is decided

by the number of kernel. Assume there are 4 orange rectangle (kernel), then

each of them will be convolved with entire input data along its height and

width, and finally the 4 green boxes (feature) will be extracted and be stacked

together. .. 15

Figure 2-3. This figure shows the basic concept of max pooling. This max pooling

operates a max pooling filter with kernel size 2 and stride 2, which can

downsample the input to half of the size. ... 16

Figure 2-4. This figure shows the function of ReLU in a visual way. 17

Figure 2-5. This figure shows the basic concept of the 3D convolution. The idea of the

3D convolution is similar with 2D convolution. You can image that all the

operations in the 2D convolution be extended to 3D simply. This figure

operates a 3D convolution by a filter with size 2 and stride 1. 18

Figure 2-6. This figure in [27] illustrates different kinds of implementation for TSDF

doi:10.6342/NTU201802685

 VI

function. (a) The 3D model of an object or a scene. (b) The value of the

projective TSDF is computed with respect to the position and the view of the

camera. (c) The value of the accurate TSDF has less view dependency but

needed to spend lots of time to calculate. (d) The value of the flipped TSDF

is contrary to the accurate TSDF. .. 20

Figure 3-1. The definition of the 16 joints in this thesis. Each finger has 3 joints on it and

1 joint for the palm. .. 22

Figure 3-2. The system overview of our proposed work. The 2D depth image will first go

through the method of center-of-mass which crops the bounding box of hand

roughly. Then we will take the image of the hand as the input and estimate an

accurate bounding box by a simple CNN. Next, we transform the 2D image

to the 3D data and apply data padding. Finally, we use a 3D CNN which takes

3D data as input and estimate the 3D coordinates of the joints as the final

result. .. 23

Figure 3-3. The process of center-of-mass method. We will first eliminate the object

which is too near or too far from the camera by applying thresholding. In the

next step, we will calculate the center of the mass remained in the image as

the reference point and crop the bounding box depend on it. 24

Figure 3-4. The simple and shallow CNN which is used to refine the position of the

reference point. This CNN takes the cropped depth image of hand as input

and output the offset from the original reference point to the refined reference

point. ... 25

Figure 3-5. Illustration of the data padding. (a) shows the 3D data before padding. (b)

shows the 3D data after padding. .. 28

Figure 3-6. Architecture of the proposed 3D convolutional neural network. The network

doi:10.6342/NTU201802685

 VII

is composed of eight residual blocks and finally be concatenated with a global

pooling and a fully connected layer. ... 29

Figure 3-7. Two kinds of residual function for CNN. Left: a normal residual building

block. Right: a “bottleneck” residual building block.................................... 30

Figure 3-8. The illustration of the finger-length-ratio loss function. This figure shows how

we calculate the length of each finger. For example, the length of the thumb

is estimated as the length of the red line. .. 32

Figure 3-9. The illustration of the bone-length-ratio loss function. This figure shows how

we separate each finger into three parts, which are the three lines in the figure.

 .. 33

Figure 4-1. Some examples in the ICVL Hand Posture Dataset. This dataset provides

many challenging cases. ... 38

Figure 4-2. Some examples in the NYU Hand Pose Dataset. This dataset contains many

depth images which are broken and distorted... 39

Figure 4-3. Some examples in the Big Hand 2017 dataset. This dataset contains lots of

depth images with different subjects. ... 40

Figure 4-4. The successful estimation fraction of a full hand under the threshold compared

with other works on ICVL Hand Posture Dataset. 43

Figure 4-5. The average Euclidean Error of each joint compared with other works on

ICVL Hand Posture dataset. ... 43

Figure 4-6. Some examples of the input, ground truth and prediction of our system on the

ICVL Hand Posture Dataset ... 44

Figure 4-7. The successful estimation fraction of a full hand under the threshold compared

with other works on NYU Hand Pose Dataset ... 47

Figure 4-8. The average Euclidean Error of each joint compared with other works on

doi:10.6342/NTU201802685

 VIII

NYU Hand Pose dataset. .. 47

Figure 4-9. Some examples of the input, ground truth and prediction of our system on the

NYU Hand Pose Dataset .. 49

Figure 4-10. Some examples of the real-world testing. (a) shows the user and the hand

pose. (b) shows the image after depth threshold. (c) shows the bounding box

of the hand and the estimated hand pose. ... 51

Figure 4-11. Head-Mounted Device. This figure shows the Head-Mounted Device used

in the testing, which is HTC VIVE. .. 52

Figure 4-12. Depth sensor. This figure shows the depth sensor used in the testing, which

is Intel Realsense. ... 52

Figure 4-13. The user and the scene in the virtual world. The top figure shows the user

with the HMD and depth sensor. The bottom figure shows the virtual world

and the hand projected in it. .. 53

Figure 4-14. Hand model. This figure shows the illustration after attaching a hand model

to the joints. .. 54

doi:10.6342/NTU201802685

 IX

LIST OF TABLES

Table 4-1. The equipment specification of our computer for experiments...................... 37

Table 4-2. The quantitative result of proposed method and other state-of-the-art works on

ICVL Hand Posture Dataset. .. 44

Table 4-3. The quantitative result of proposed method and other state-of-the-art works on

NYU Hand Pose Dataset. ... 48

Table 4-4. The quantitative result of proposed method with different weights on Hand-

Skeleton loss on NYU Hand Pose Dataset. .. 48

Table 4-5. The quantitative result of proposed method and other state-of-the-art works on

NYU Hand Pose Dataset. ... 48

doi:10.6342/NTU201802685

 1

Chapter 1

Introduction

Hand pose estimation is a very challenging topic in the area of the computer vision,

which aims to find a way to calculate the hand pose and coordinates of the joints in the

3D space. The reason why this technique getting more and more important is that it can

provide a natural way for human to interact with the computer or machine without

additional devices such like handles or controllers. The developing of the techniques like

virtual reality (VR), augmented reality (AR) and mixed reality (MR) is becoming mature

now, and the users’ experiences of those applications are heavily dependent on how

naturally the users can interact with the computer. Thus a system which can provide such

support is necessary, and the technique of hand pose estimation undoubtedly plays an

important role in it.

 In this thesis, we will propose a novel system for hand pose estimation which can

crop a hand from a depth image and estimate the coordinates of the joints in the 3D space

accurately. Our goal is to integrate the system with the virtual reality devices like Head-

Mounted display (HMD), and provide a bridge between users and the virtual world. Thus,

we will also reconstruct the hand with our estimated joint coordinates and a hand model.

In this chapter, we will introduce the background of this area, formulate the problems we

would like to approach and briefly explain the challenges and difficulties we will face in

the problems. In addition, we will also show a brief survey of the related work and the

organization of the main thesis.

doi:10.6342/NTU201802685

 2

1.1 Motivation

Nowadays, hand pose estimation has become one of the most popular research area in the

field of the computer vision and it has also been applied to many applications of the

contemporary technology such as virtual reality (VR), augmented reality (AR) and mixed

reality (MR). With the invention of the novel technology listed above, Human-Computer

Interaction (HCI) has become an attractive topic all over the world gradually. In addition,

with the development of virtual and augmented reality, several kind of powerful devices

such as HTC VIVE, Samsung Gear VR and PlayStation VR are becoming hot selling in

the VR/AR/MR market. However, for the devices mentioned above, the way to interact

with the virtual world heavily depends on the handles, which restricts many kinds of

operation due to the limitation of number of buttons on the handles. In order to interact

with the virtual world with the VR/AR/MR devices, the most natural way is to

communicate or control by user’s hand. For example, we can attach magnet sensors on

user’s hand or integrate a depth camera on the front of the Head-Mounting Devices so

that we can reconstruct the hand in the virtual world by mapping the estimated joint

coordinates on the virtual hand model. However, for the Head-Mounting Devices

mentioned above, they do not have equip such accurate hand pose estimation system,

which means that the interaction between users and computers provided by the devices

can not satisfy the users’ demands for better experiences. Consequently, as an efficient

interactive way between the users and the computers, the connection between hand pose

estimation and virtual reality technology can realize the most natural way to build a bridge

for human and computer. Figure 1-1 shows the environment of our system.

doi:10.6342/NTU201802685

 3

Figure 1-1 The device we have used in our experiment, which is a HMD (HTC VIVE)

attached with a depth sensor (Intel RealSense F200). We take the depth image by the

depth sensor and reconstruct the hand model in the VR world.

 As the requirement of the natural way of interaction and the development of the

hardware for human-computer interaction, lots of researchers have engaged in the

research of hand pose estimation in recent years. Among the methods to approach hand

pose estimation including estimation with magnet sensor or other physical way which

needs to attach the sensor on our body, the method related to computer vision can be

regarded as the most popular and challenging one due to the reason that we do not have

to attach anything on our hands. For the past years, in the time when only the RGB

doi:10.6342/NTU201802685

 4

cameras are available, the researchers can only obtain the images containing color

information. For the problems of hand pose estimation which needs to reconstruct the

model in the 3D space, RGB images do not have any spatial or depth information, causing

the difficulties to solve. Fortunately, the invention of the depth camera, such like Xtion

PRO, Kinect and Realsense, gave a big chance for the researchers to figure out other

methods. The depth images taken from the depth camera contain the information of

distance between the object and the camera. The values of pixels of depth images

represent the distance from the depth camera to the object, which will be small when close

and large when far, normally. With the spatial information given by the depth image,

researcher can improve the performance of the method such like hand pose estimation,

human pose estimation, or action recognition that related to 3D space. Since then, hand

joints estimation in the 3D space has progressed significantly and can perform more

accurate results.

 However, even there are many researchers have engaged in this topic and paid lots

of efforts with the developed high-tech hardware, there are still many difficulties and

problems for the task of hand pose estimation. Before we go through the challenging

problems of the hand pose estimation, we will first introduce some essences of a hand.

Naturally, a human hand normally has five fingers with different lengths, which have their

own two or three joints, respectively. For different fingers, the angles which they can bend

and the rotations range of each joints are also different, too. Here comes the first

challenging problem. A human hand can perform a variety of poses with different shapes,

which means that a human hand is far from being a rigid body, and this makes the

reconstruction of a hand model extremely difficult. Moreover, we can change our hand

pose very quickly in a very short time period, that is, we can transform the pose from

opening the hand to clenching the hand very rapidly. Thus, the fact of the high variation

doi:10.6342/NTU201802685

 5

makes the traditional methods of hand tracking which need the result of previous frame

or time information difficult to perform well.

 On the other hand, occlusion is also a very common issue in the area of computer

vision, which causes the problem that we have to estimate the result with the input that

has loss information. For the condition that a certain part of an object is occluded by

another certain part, we call it self-conclusion. For the task of hand pose estimation, self-

occlusion is also a common issue. Due to the high variation of the hand pose, each finger

of a hand is easily to block each other from the view of the camera when capturing the

image. Because our final goal is to apply the hand pose estimation on the applications of

virtual reality (VR) and augmented reality (AR), we tend to attach the depth camera at

the position which is near to the user’s eye; that means, the camera’s view is egocentric

(i.e., first person’s view). Under the condition mentioned above, it is easy to find that the

fingers are occluded by the palm frequently since the palm is often the closest part of a

hand from the camera.

 Although there are many challenging problems of hand pose estimation to be

overcome, the research result can improve the experiences of the applications to the

virtual reality. So, we aim to propose a hand pose estimation system which can perform

well and contribute to the task of hand pose estimation.

1.2 Related Work

Because of the new developments of the hardware such as depth camera and many

kinds of sensors, the technology of the human-computer interaction and virtual reality

have been popular in recent years. So, many researchers engage in the research of

computer vision and related issues such like hand pose estimation, action recognition and

object tracking, aim to improve the performance of their applications. In this section, we

doi:10.6342/NTU201802685

 6

will introduce the researches that are relevant to this thesis. The introduction contains

hand pose estimation and 3D convolutional neural network.

1.2.1 Hand Pose Estimation

Hand pose estimation is an issue which has been researched for many years in the

area of computer vision. Until now, there are many researchers have figured out lots of

methods and try to solve this problem. However, it seems that there has been no method

which can solve it perfectly, so the research of hand pose estimation is still improving for

the performance every year.

There have been many methods and algorithms proposed so far. Those methods can

be categorized into different aspects. Regard to the input data, there are RGB image and

depth image. Regard to the estimation approach, there are generative methods,

discriminative methods, and hybrid methods. In this section, we will only introduce the

methods which take the depth image as input.

Generative methods will pre-define a hand model and fit it into a depth image of

hand by minimizing a hand-crafted cost function. Optimization algorithms such as

Particle Swarm Optimization (PSO) [1], Iterative Closest Point (ICP) [2] and their

combination are commonly used to optimize the estimation result. These methods’

accuracy and performance heavily rely on the hand model and cost function, that is, they

have to define user-specific models or other physical constraints under some special

considerations. In addition, since these methods usually take temporal information to

adjust the results and to better the performance, the error will be accumulated if

initialization or previous estimation are inaccurate.

Discriminative methods learn to map the input depth image to direct hand pose joints’

coordinates in 3D space or heat maps of each joint which can infer the coordinates from

doi:10.6342/NTU201802685

 7

the large quantity of training data. The methods which apply random forest [3, 4] can

provide fast and good performance for the case of hand pose estimation. However,

because the hand-crafted features limited the prediction, so the result of this kind of

methods had been outperformed easily by the convolutional neural network (CNN) latter.

Tompson et al. [5] first propose to apply CNN to predict the 2D heat-maps of each joints

of hand which represent the probability of the hand joint’s coordinates from a depth image

in real time. Inspired by [5], Ge et al. [6] transform the depth image to multi-view

representation from the view of x, y and z axis and train these three depth maps with three

CNNs respectively to extract more useful information and finally fuse them to predict the

heat maps of each joints. Ge et al. [7] extend their previous work and transform the 2D

depth image to a 3D representation form by using Directional Projective Truncated

Signed Distance Function (D-TSDF) which can balance the performance and the speed

compared with TSDF and Projective TSDF, and utilize 3D convolutional network to

estimate the 3D coordinates of hand joints directly. Guo et al. [8] propose a region

ensemble network to extract the features from hand’s different regions of a depth image

and fuse them in the final part to estimate an accurate hand pose by a variety of

information. Chen et al. [9] transform the 3D hand joint coordinates to a spherical part

model which uses angles to represent the position of the joint as a loss function to add the

physical constraint into the training stage of CNN. Wu et al. [10] propose a skeleton-

difference layer which allows CNN to learn the shape and the physical constraints of the

hand. Oberwegar et al. [11] train a feedback loop CNN to adjust and improve the

estimated result by iteratively correct the error of the hand pose. Oberwegar et al. [12]

design a bottleneck in the fully connected layer of the CNN to enforcing a prior of the 3D

hand pose and refine their predicted result by training CNNs which take a small region of

each predicted joint to adjust their positions. Oberwegar et al. [13] improve their previous

doi:10.6342/NTU201802685

 8

work [12] by applying a new network which replaces the original one, doing training data

augmentation and training a shallow CNN to refine the position of the reference point

which is the center of the hand.

Hybrid approaches combine the discriminative approach and generative approach to

estimate the hand pose. The algorithms for hand tracking is more likely to utilize hybrid

approaches because they often have the requirement for maintaining the smooth result,

which needs the previous estimated result and temporal information to support. Wan et

al. [14] use two generative networks: a generative adversarial network (GAN) and a

varitional auto encoder (VAE) for hand modeling and train a discriminator to estimate the

posterior of the shared latent space.

1.2.2 3D Convolutional Neural Network

Compared with the typical 2D convolutional neural network, 3D CNN takes the data

with 3 channels as input, which often contains the information of depth or time. Because

of the additional information attached by the data, 3D CNN has been successfully utilized

in the issues of hand tracking, action recognition or dynamitic recognition tasks, which

need the additional information as the third dimension. Qi et al. [15] perform high

accuracy on the task of object classification with low resolution input data by 3D CNN.

Song and Xiao [16] take RGB-D images as input to do 3D object detection by 3D CNN.

Wu et al. [17] model the 3D shapes by extracting the 3D features with convolutional deep

belief network. Inspired by all these works listed above, we think that 3D CNN can also

be applied to estimate the 3D hand pose with the 2D image which contains depth

information.

doi:10.6342/NTU201802685

 9

1.3 Contribution

This thesis propose a system for hand pose estimation from cropping the hand in a

depth image to estimate the hand pose via convolutional neural network. The major

contributions are listed below:

I. We propose a novel strategy to improve the input data which will ease the

learning and estimation of convolutional neural network:

We use depth image as the input of the system, which is better to specify the

subject; however, depth image is easily to be broken. For convolutional neural

network, the quality of the training data significantly reflects the accuracy. Thus,

we design a method which transforms the 2D depth image to 3D voxel and pad

the broken part in the 3D space to improve the performance.

II. We design a new constraint which will steady the estimation result and thus

improve the accuracy:

The main architecture of our system is convolutional neural network, and we

design a training process for hand pose estimation to improve the performance

with additional physical constraints. For the data-driven data, it is able to take

physical constraints, which are skeleton and joint angle for hand pose

estimation into consideration. Thus, we restrict the ratio of length of fingers and

the range of the joint angle for the purpose of steadying the skeleton of the hand.

III. We design a hand pose estimation system which can be applied to virtual reality:

For the virtual reality (VR) and augmented reality (AR) applications, hand is

the most natural way for users to interact with the virtual world, and thus a

robust and efficient hand pose estimation system is needed. We design a hand

pose estimation system which can run in real-time with one GPU and high

doi:10.6342/NTU201802685

 10

accuracy, and can provide a better experience to the user.

1.4 Thesis Organization

In this chapter, we state the background of hand pose estimation, the challenges of

this research and the problems we would like to approach. In addition, we also go through

the history of this area and introduce the related work of this research. The remaining

chapters of this thesis are listed below:

 Chapter 2 – Preliminaries. In this chapter, we will introduce the tools and the state-

of-the-art methods we apply in our work. We use convolutional neural network (CNN) to

build our architecture for hand pose estimation, and we will also explain the basic

concepts of it. In addition, we will mention how we preprocess our data including virtual

device, which is Head-Mounted display (HMD).

 Chapter 3 – Hand pose estimation with data padding. In this chapter, we will divide

our system into three parts and explain them respectively. In the first part, we will explain

how we extract the bounding box of the hand from a depth image by thresholding and a

simple convolutional neural network. For the second part, we will describe the

preprocessing method that how to transform the input data from the 2D depth image to

3D voxelized grid, and how to fill the voxel to pad the data. Finally, we will mention the

details of our training process including network architecture, parameters of the training

and loss function. Moreover, we will also explain how we add the physical constraints in

the loss function, which maintain the performance of the hand skeleton.

 Chapter 4 – Experimental Results. In this chapter, we will first introduce the two

challenging public datasets, the ICVL dataset [18] and NYU dataset [19], which are used

to evaluate the performance of our proposed method. Next, we will introduce the Big

Hand 2017 dataset [20], which is used to improve our system for VR application. Then,

doi:10.6342/NTU201802685

 11

we will compare the results of our method with state-of-the-art methods on ICVL and

NYU datasets.

 Chapter 5 – Conclusion and Future Work. In this chapter, we will make the

conclusion of our contributions and experimental results of the proposed system.

Moreover, we will provide some further issues of the proposed system and the future

work of this research.

doi:10.6342/NTU201802685

 12

Chapter 2 Preliminaries

In this chapter, we will briefly introduce the preliminary knowledge which we have

applied or used to set up, implement and work on our system of this thesis. In addition,

we will also explain the basic concept of the tools and the theory we employ. For the very

first part, we will have a brief introduction of a deep learning framework called

convolutional neural network (CNN), including 2D and 3D one, which is employed for

hand pose estimation part of our system. Second, we will introduce the history and related

knowledge of 3D representation of data, which is used to transform the 2D depth image

into 3D voxelized grid as the input of CNN.

2.1 Convolutional Neural Network

In this thesis, our system is widely based on convolutional neural network since our

main function, which is hand pose estimation, is built on the structure of it. In this section,

we will first introduce the basic concept of convolutional neural network fundamental in

different research area. For the next part, we will briefly introduce the basic idea of 3D

convolutional neural network and the history of usage of it.

2.1.1 Basic Concept

Convolutional neural network (CNN) is a method of machine learning which is

composed of a series of neural networks doing the convolution operation as shown in

Figure 2-1, so it is also called deep learning method commonly. The perspective of CNN

is inspired by the way how the creatures learn things with a virtual conception, and extract

the useful features or obtain the knowledge of the patterns. That is, given an image, even

RGB or depth, leaning the relation between each pixel’s value and find out the

connectivity patterns.

doi:10.6342/NTU201802685

 13

Figure 2-1. This figure is a typical CNN structure, which is composed by 3

convolutional layer and 2 fully connected layer. Convolutional layer will extract the

features, and the first layer of fully connected layer will interact the features and the

last layer of fully connected will output the predicted result

Thus, with the great ability to extract the features and learn the pattern from an image,

CNN has successfully performed many good results for lots of issues in the area of the

computer vision, including image classification, image recognition, object tracking, video

analysis and action recognition.

Typically, a CNN structure will consists of several layers which operate different

calculation to process the parameter from input to output. Except the first layer which

receive the input and the last layer output the result, most of the layers in the CNN will

receive a feature map from the previous layer, process the feature map by the defined

function of the layer with the parameter and finally generate a new feature map which

will be passed to the next layer. All these layers will be concatenated in many ways, even

in parallel, sequentially or cycle to build the frameworks. Although the CNN structure

will be built differently due to different problems, the function implemented in it will still

be somewhat similar. For example, most of the CNNs will contain convolutional layer,

doi:10.6342/NTU201802685

 14

pooling layer, activation function layer, fully connected layer, and so on. For the different

purpose or usage, depends on the problem or the balance between accuracy and speed,

lots of kinds of CNN are introduced by the researchers. For example, Alex Net [21], VGG

[22], Google Net [23], ResNet [24] are widely known structure in this area. In the next

part, we will introduce some commonly used function of CNN layer:

Convolutional Layer: It is obvious that the convolutional layer must be an

important role in this architecture since it has the name “convolutional” neural network.

The operation of convolutional layer is to convolute the input feature maps and out them

to the next layer. In the process of the convolution, the users will first define the size,

weight, total number of kernel and other parameters of kernels which can extract different

features depends on the requirement of the users. After the convolution, the value

obtained by the operation will be viewed as a neuron. Depends on the parameter to the

kernel, a convolutional layer can extract the low-level features such as the edges or the

contours of an object, and can even find high-level features such as semantic context of a

full image with the processed features. Figure 2-2 shows the basic concept of

convolutional layer.

doi:10.6342/NTU201802685

 15

Figure 2-2. This figure shows the basic concept of the convolutional layer. The orange

rectangle is a kernel (filter), and the green boxes are the corresponding features

extracted by the kernels. The number of the green boxes is decided by the number of

kernel. Assume there are 4 orange rectangle (kernel), then each of them will be

convolved with entire input data along its height and width, and finally the 4 green

boxes (feature) will be extracted and be stacked together.

Pooling Layer: Pooling layer can be viewed as a kind of convolutional layer with

specific function which is designed to down-sample the feature maps in most of the CNN

architecture design. In this part, we will briefly introduce two kinds of commonly used

pool layer, which are Max-pooling layer and Average-pooling layer. For these two kinds

of pooling payer, they are similar to the convolutional filtering but with a special rule to

assign the value with the kernel. Max-pooling layer will output the largest value in the

region (i.e. kernel) by setting the grid which match the largest value to be 1 and others to

be 0. In addition, to down-sample the feature maps, the stride is set to be larger than 1 and

is set to be the size of the kernel normally. Average-pooling layer will average the value

in the region by setting each grid of the kernel to be 1 / (kernel size * kernel size). By

applying the pooling layer, the users can reduce the size of a feature map which speeds

up the process while pick out the most important information in a region at the same time,

doi:10.6342/NTU201802685

 16

that is, removing the noise in the feature map. Figure 2-3 shows the basic concept of max

pooling.

Batch Normalization Layer: The batch normalization layer will reduce the internal

covariate shift in the neural network which means doing batch normalization actually. By

doing so, the users can set higher learning rate while training the network, and the total

time which is need to train the network will also be reduced at the same time.

Figure 2-3. This figure shows the basic concept of max pooling. This max pooling

operates a max pooling filter with kernel size 2 and stride 2, which can downsample

the input to half of the size.

Activation Function Layer: The goal of adding the activation function in the neural

network is to add the factor of non-linear. There are many kinds of activation function

which have been applied, and one of the most commonly used activation functions is

Rectified Linear Unit (ReLU). The function of the ReLU can be derived as bellow:

 𝑓(𝑥) = max(𝑥, 0) (2-1)

ReLU function will set the negative values as 0 and only activate the non-negative values

on a feature map, which achieve the goal to add the factor of non-linear. Figure 2-4 shows

the ReLU function.

doi:10.6342/NTU201802685

 17

Figure 2-4. This figure shows the function of ReLU in a visual way.

Fully Connected Layer: The fully connected layer of the convolutional neural

network will connect every neuron of an input feature map to every neuron of the output

feature map, just like a normal neural network do. Thus, the relation between each neuron

will be taken into consideration. Because of the property of the fully connected layer

mentioned above, CNN will lose the spatial information when applying it, so the users

often place the fully connected layer at the last part of the CNN.

Loss function Layer: The loss function will define the different between the ground

truth and the predicted result, which is used to evaluate the penalty to train the CNN

model. While in the training stage of the CNN, the users will evaluate the loss and update

the parameters according to the loss value by back propagation. The definition of the loss

function can be modulated depend on the problem or the effect that the users would like

to implement. Nowadays, the commonly used loss function are Euclidean loss, soft max

and cross entropy.

doi:10.6342/NTU201802685

 18

2.1.2 3D Convolutional Neural Network

The basic idea of the 3D convolutional neural network is similar with the 2D

convolutional neural network. The different point is that, the input data, kernel and output

is increased to 3 dimension, while the fully connected layer still remains the same. 3D

CNN has been successfully applied to many kinds of issues in the area of computer vision

such like 3D object recognition or 2D image with time information. Moreover, because

the input data of the 3D CNN must be the type of 3 dimension, so the users must apply

an appropriate method to transform the data to 3D one if the original data is 2D. Figure2-

5 shows the basic concept of 3D convolution.

Figure 2-5. This figure shows the basic concept of the 3D convolution. The idea of the

3D convolution is similar with 2D convolution. You can image that all the operations

in the 2D convolution be extended to 3D simply. This figure operates a 3D convolution

by a filter with size 2 and stride 1.

2.2 3D Representation

With the development of the modern sensor such like depth camera and infrared ray

doi:10.6342/NTU201802685

 19

sensor, the data which contains 3D information can be obtained much easier than before.

So even with the 2D image, if the pixel value contains the 3D information like depth or

distance, it also can be transformed to 3D data, too. Here we are going to briefly introduce

some 3D data representations and some methods which can transform the 2D image into

3D one. First, we will introduce Truncated Signed Distance Function (TSDF) which is

applied in KinectFusion [25]. Now we assume that there is a 3D object in a 3D space

which is stored in voxel representation, and the coordinates of the occupied voxels by the

object are known. First, for the values of the occupied voxels will be set as 0, and for the

other voxels which are not occupied by the objects, we will set their values as the

minimum distance to the object, that is, for those voxels which are nearer to the object,

their value will be smaller. In addition, depends on the position of the camera, the values

of the voxels are positive if they are in front of the object, which means that the voxels

can be seen from the view of the camera, and for those voxels which can’t be seen from

the camera view (i.e. occluded by the object)will be set negative. Finally, the values will

be set a threshold and normalized, so the final values will be in the range [-1, 1], and for

those voxels whose distance to the object is longer than 1 will be set as 1 or -1, depends

on the position. Here, for the name of Truncated Signed Distance Function, Truncated

means the threshold for the maximum value for the voxels, Signed means the voxels are

in front of the object or not, Distance means the distances between the voxels and the

object. Then, we will next introduce projective TSDF. The idea of projective TSDF is

similar with the TSDF. The only different part between this two function is that the

distance from the voxel to the object is only found on the line or sight from the camera

view. Finally, because the computing of the accurate TSDF is very time consuming while

projective TSDF will loss too much information, so a compromise method which called

projective Directional TSDF (D-TSDF) is proposed in [16] which use a 3D vector

doi:10.6342/NTU201802685

 20

representing three directions’ distances which replace Euclidean distance. Figure 2-6

which is refer in [26] illustrates different kinds of implementation for TSDF function.

Figure 2-6. This figure in [27] illustrates different kinds of implementation for TSDF

function. (a) The 3D model of an object or a scene. (b) The value of the projective

TSDF is computed with respect to the position and the view of the camera. (c) The

value of the accurate TSDF has less view dependency but needed to spend lots of time

to calculate. (d) The value of the flipped TSDF is contrary to the accurate TSDF.

doi:10.6342/NTU201802685

 21

Chapter 3 Hand Pose Estimation with

Data Padding

In this thesis, we will propose an accurate hand pose estimation system for the

applications of virtual reality (VR), augmented reality (AR), mixed reality (MR) and

human-computer interaction (HCI). Our final goal is to combine the proposed system and

the head-mounted display (HMD) to provide a natural and accurate interaction under a

real world condition.

In this chapter, we will describe the details of our proposed hand pose estimation

system. This chapter contains three sections. In the first section, we will go through the

proposed system briefly and simply describe the input and output of each part. For the

second section, we will describe in detail how we extract the hand from a depth image.

For the third section, we will detail the system of hand pose estimation, including input

data preprocessing, network architecture and training process details.

3.1 Problem Formulation

The main problem we would like to solve in this thesis is given a 2D depth image

which only contains hand, we want to estimate the 3D coordinates of each joint and palm

of the hand. For 2D depth image, the input size will be 96 * 96 pixels with one channel,

and the values of the pixels will range from 0 to 255. As a result, the output should be a

vector with size 3 * total-joint-number, representing x, y and z coordinate of joints of the

hand. In this thesis, we define our joint number as 16 as shown in Figure 3-1. There are

several difficult challenges to achieve the goal. First of all is the high variations of the

poses. This is because for a human hand, each finger has two or three joints on it, and

doi:10.6342/NTU201802685

 22

each joint can do the rotation, respectively. The second challenge is severe self-occlusions.

Because the fingers may occlude each other under many conditions, and this will lead to

the difficulty of estimating the 3D positions of joints since the information is blinded. The

final one is broken image. Although we can obtain high quality depth image with the

development of the depth sensor, there are still broken parts occurring in the image, and

this also make the estimation be hard.

Figure 3-1. The definition of the 16 joints in this thesis. Each finger has 3 joints on it

and 1 joint for the palm.

3.2 System Overview

Figure 3-2 shows our system overview. At the first step of the system, we will obtain

the depth image and then crop the hand by estimating the bounding box with center-of-

mass method. To bound the hand more tightly and accurately, we apply a simple and

shallow CNN introduced in [13] to refine the center of the hand. After cropping the hand

from the depth image with tight bounding box, we will do data preprocessing including

doi:10.6342/NTU201802685

 23

transformation from 2D depth image to 3D voxelized grid, data padding and data

augmentation, which will be detailed in later section. Finally, we take 3D voxelized grid

as the input of the 3D convolutional neural network and output the 3D coordinates of the

joints of the hand.

Figure 3-2. The system overview of our proposed work. The 2D depth image will first

go through the method of center-of-mass which crops the bounding box of hand

roughly. Then we will take the image of the hand as the input and estimate an accurate

bounding box by a simple CNN. Next, we transform the 2D image to the 3D data and

apply data padding. Finally, we use a 3D CNN which takes 3D data as input and

estimate the 3D coordinates of the joints as the final result.

3.3 Hand Detection

To get the 3D voxelized grid of the hand, which is the input of the CNN, cropping

the bounding box of the hand tightly from the depth image captured by the depth camera

first is necessary. The quality of the cropping image will significantly affect the difficulty

of learning and performance of CNN, so me will describe the details about how we obtain

a better bounding box as follows.

doi:10.6342/NTU201802685

 24

3.3.1 Center-Of-Mass

The premise of our proposed system is to provide a way to interact with the computer

as an application of virtual reality, so we assume that the user’s hand is the only and

closest object from the depth camera. Thus, we apply a simple depth threshold to the

depth image to exclude other object like human body which are too far or too close to the

camera. After thresholding, we choose the reference point which is the center of the hand

by center-of-mass method, that is, we average the x and y coordinates of the remaining

pixels which are not excluded to be the center as shown in Figure 3-3.

Figure 3-3. The process of center-of-mass method. We will first eliminate the object

which is too near or too far from the camera by applying thresholding. In the next step,

we will calculate the center of the mass remained in the image as the reference point

and crop the bounding box depend on it.

3.3.2 Reference Point Refining

Although we have estimated the reference point by the center-of-mass method, there

remains some errors due to the noise. The pixel values of depth image taken by the depth

camera will represent the distance from camera to the object in most of the time. However,

even with the modern technology, the quality of the depth camera can’t perform perfectly,

which may cause random pixels on the depth image reflecting error values or even broken

areas and will influence the accuracy of the reference point. Hence, we apply the method

doi:10.6342/NTU201802685

 25

as [27] to design a simple CNN to refine the coordinate of the reference point calculation.

The CNN takes the depth image cropped by the method as mentioned above as input and

output an offset from the original reference point to the ground truth point which is a pair

of x and y values. The structure is illustrated in Figure 3-4. Finally, we can obtain the

accurate reference point by adding the offset to the original reference point and re-crop

the bounding box of the hand.

Figure 3-4. The simple and shallow CNN which is used to refine the position of the

reference point. This CNN takes the cropped depth image of hand as input and output

the offset from the original reference point to the refined reference point.

3.4 Hand Pose Estimation with 3D

Convolutional Neural Network

In this section, we will describe the details of input data preprocessing including

transformation of 2D depth image to 3D voxelized grid and data padding, 3D

convolutional neural network architecture, loss function design, training parameters and

implementation details.

3.4.1 2D Depth Image to 3D Voxelized Grid Transformation

To fit the input size of our proposed system, we should first convert the 2D depth

doi:10.6342/NTU201802685

 26

image into 3D voxelized grid representation. First of all, we resize our 2D depth image

to the size of 96 * 96 pixels and normalize the values of pixels which are the distances

from the depth camera to every point on the hand from 0 to 95 so that we can project the

hand surface to 3D voxelized grid. After depth normalization, we create a cubic with size

of 96 * 96 * 96 and project the 2D depth image into it. For example, here we denote the

2D depth image as 𝐷2 and 3D voxelized grid as 𝐷3. Then, the values of voxels of 𝐷3

will be listed as follows:

 𝐷3[𝑥][𝑦][𝑧] = {
1, 𝑖𝑓 𝐷2[𝑥][𝑦] = 𝑧
0, 𝑒𝑙𝑠𝑒

 (3-1)

That is, voxel value will be set as 1 if the voxel is occupied by a depth point and be set as

0 if is not.

3.4.2 3D Data Padding

Nowadays, as mentioned above, because of the rise of the high quality, commercial

depth camera, we can capture the depth image with accurate depth values. However, there

are still many broken parts that occur in the depth image, especially on the margin of the

object. This problem will cause a very large place of missing values when converting the

2D depth image into 3D voxelized grid, which leads to the difficulty for CNN to learn

parameter and to do estimation. Hence, to overcome this problem, we propose a method

to pad the voxels which are around the occupied values with a cube. We denote the

original voxelized grid as 𝐷3 and the padded voxelized grid as 𝐷3
𝑠. And the padding

function is showed as follows:

 𝐷3
𝑠[𝑥][𝑦][𝑧] = {

1, 𝑖𝑓 𝑒𝑥𝑖𝑠𝑡 𝐷3[𝑥 + 𝑖][𝑦 + 𝑖][𝑧 + 𝑖] = 1
0, 𝑒𝑙𝑠𝑒

 (3-2)

where i ranges from -2 to 2, which is used to pad the shape of cube. By padding the data,

we can improve the performance of the results, and the advantages of doing so are listed

below:

doi:10.6342/NTU201802685

 27

I. When there is a broken part or missing value which occur in the 2D depth image,

it is very difficult to be recovered because of the variation of the hand shape,

that is, the method such as interpolation can’t recover the missing part perfectly.

However, if we convert the 2D depth image into 3D voxelized grid, the depth

points are represented in a spatial way, and thus if we pad the voxels

surrounding the occupied voxels, it doesn’t distort the shape of the hand

excessively while padding the missing part at the same time.

II. For the 3D voxelized grid which is projected from the 2D depth image, the

maximum number of the occupied voxels is limited by the total pixel number

of 2D depth image, which is 96 * 96 pixels in our proposed system. Less

information contained in the 3D voxelized grid may lead to difficulty for CNN

to learn and influence the final result. But with the padded data, CNN can learn

easily, converge faster and perform better with more information.

III. As mentioned above, the occupied voxels in the 3D data are very rare and only

represent the surface of the hand. By padding the surrounding pixels with a

shape of cube, the augmented 3D data may look more like a hand instead of a

piece of paper as shown in Figure 3-5.

doi:10.6342/NTU201802685

 28

Figure 3-5. Illustration of the data padding. (a) shows the 3D data before padding. (b)

shows the 3D data after padding.

3.4.3 Architecture of the Convolutional Neural Network

The proposed 3D convolutional neural network takes 3D voxelized grid with size 96

* 96 *96 as input and output a vector with size 3 * J elements, which stand for the x, y

and z coordinates of the entire J joints of a hand. Our method architecture which is called

HSSNet is proposed as shown in Figure 3-6 which is based on the previous work [24].

The 3D voxelized grid will first be input into a convolutional layer, whose kernel size is

3 * 3 * 3 with stride 2, and then the input data will be downsampled to half of the original

size. Then, we concatenate the convolutional layer with an activation function (i.e., ReLU)

and a max pooling layer with kernel size 2. After the first convolutional block, the

extracted feature map will be input into 4 residual blocks as shown in Figure 3-7. The

kernel size of residual block is 3 * 3 * 3 with stride 1. Finally, we concatenate the extracted

feature map from the 3D residual convolutional layer with a global pooling, and finally

we take the last fully connected layer as the size of our output, which is 3 * J.

doi:10.6342/NTU201802685

 29

Figure 3-6. Architecture of the proposed 3D convolutional neural network. The

network is composed of eight residual blocks and finally be concatenated with a global

pooling and a fully connected layer.

doi:10.6342/NTU201802685

 30

Figure 3-7. Two kinds of residual function for CNN. Left: a normal residual building

block. Right: a “bottleneck” residual building block.

3.4.4 Loss Function

In this section, we will detail the design of our loss function to train our

convolutional neural network. At the end of the proposed CNN, which is the last layer,

the output will be generated as a 3 * J vector, which represents a vector of 3D coordinate,

i.e., x, y and z of the entire J joints of the hand. Once we have the predicted joint

coordinates, we can evaluate the difference between the predicted one and the ground

truth. Here, we use the Euclidean distance as the first loss function which is defined as

below:

 𝐿𝑒(𝐻𝑗) = ∑‖𝐻𝑗(𝑗𝑥, 𝑗𝑦, 𝑗𝑧) − 𝐻𝑗
∗(𝑗𝑥, 𝑗𝑦, 𝑗𝑧)‖

2

𝐽

𝑗=1

 (3-3)

where 𝐻𝑗 and 𝐻𝑗
∗ are the predicted result and the ground truth of the jth joint of the

hand, where 𝑗𝑥, 𝑗𝑦 and 𝑗𝑧, is the x, y and z coordinate of jth joint. And, J is the total

doi:10.6342/NTU201802685

 31

number of joints of the hand. The Euclidean loss will directly regress the joint position

coordinates, and it is also a basic loss function for training of CNN model. So, we apply

this Euclidean loss as our main loss function to let CNN learn the spatial information

between input depth image and output estimated result. However, for the case of hand

pose estimation, Euclidean loss only takes the depth image information which is the depth

values from the camera to the hand into consideration and doesn’t consider any physical

constraints of the hand. Therefore, in order to add the physical constraints in the training

stage, we design some novel loss functions to control the skeleton of the hand.

Generally, for most of the public datasets, material models or applications which is

about hand and hand pose, the reference points are often at the joints of the hand.

Therefore, the link connecting a joint and another joint can be viewed as a bone, and all

the joints and the bones together will form the structure of the hand. So, this structure will

be like a tree with the palm as the root, and all the edges in such tree refer to bones. In

our proposed Hand-Skeleton loss function, we will evaluate the loss, concerning the ratio

of each finger out of all fingers in the structure. The Hand-Skeleton loss function

combines two different terms, which are finger-length-ratio loss and bone-length-ratio

loss, and we will explain them, respectively.

For the finger-length-ratio loss, the goal of this function is to steady the ratio of the

length between each finger. By applying this loss function, we hope that the length of

each finger of the predicted result can be in a reasonable range, that is, none of the fingers

will be too long or too short compared with other fingers. So the loss function is defined

as follows:

 𝐿𝑓 = ∑‖𝑃𝑖 − 𝑃𝑖
∗‖

5

𝑖=1

 (3-4)

where

doi:10.6342/NTU201802685

 32

 𝑃𝑖 =
𝑃𝐿𝑖

𝑃𝐿𝑡𝑜𝑡𝑎𝑙
 (3-5)

 𝑃𝐿𝑡𝑜𝑡𝑎𝑙 = ∑𝑃𝐿𝑖

5

𝑖=1

 (3-6)

Here, i points to the ith finger of total five fingers in our function, and 𝑃𝑖 and 𝑃𝑖
∗ are the

predicted ratio and the ground truth ratio of each finger to the total length of five fingers,

where 𝑃𝐿𝑖 means the length of one finger, which is calculated by the output 3D

coordinates. Figure 3-8 illustrates the ideas behind these.

Figure 3-8. The illustration of the finger-length-ratio loss function. This figure shows

how we calculate the length of each finger. For example, the length of the thumb is

estimated as the length of the red line.

For bone-length-ratio loss, the goal of this function is to steady the length of each

bone of a single finger. What we actually want to do is to control the ratio over three

virtual bone of each finger defined by the joints. By doing so, the lengths of bones of each

doi:10.6342/NTU201802685

 33

finger will also be predicted in a reasonable range so that the predicted hand looks more

real in the 3D space. The loss function is designed as follows:

 𝐿𝑏 = ∑∑‖𝐵𝑖,𝑘 − 𝐵𝑖,𝑘
∗ ‖

3

𝑘=1

5

𝑖=1

 (3-7)

where

 𝐵𝑖,𝑘 = (
‖𝐵𝐿𝑖,𝑘‖

‖𝐵𝐿𝑖,1‖ + ‖𝐵𝐿𝑖,2‖ + ‖𝐵𝐿𝑖,3‖
) (3-8)

Here, i points to the ith finger and the total number of fingers is set 5 in our function, and

k is total number of the bones of a single finger which is set 3. Note that 𝐵𝑖,𝑘 and 𝐵𝑖,𝑘
∗

are the predicted and the ground truth ratio of the length of one bone to the total length of

three bones of the ith finger. 𝐵𝐿𝑖,𝑘 is the length of one bone of one finger. Figure 3-9

illustrates the ideas behind these.

Figure 3-9. The illustration of the bone-length-ratio loss function. This figure shows

how we separate each finger into three parts, which are the three lines in the figure.

Finally, the total loss for the training procedure of the convolutional neural network

doi:10.6342/NTU201802685

 34

will be evaluated as follows:

 𝐿𝑡 = 𝐿𝑒 + 𝜔𝑓𝑏(𝐿𝑓 + 𝐿𝑏) (3-9)

where 𝐿𝑒, 𝐿𝑓 and 𝐿𝑏 are Euclidean loss, finger-length-ratio loss, and bone-length-ratio

loss, respectively. Moreover, 𝜔𝑒, 𝜔𝑓𝑏 are the weights of the three loss functions. Here,

we will adjust the weight, which is 𝜔𝑓𝑏, to fit the value to get the best performance.

3.4.5 Data Augmentation

For the training part of the convolutional neural network, the total quantity of the

data is very important and significantly impact the final estimation result, especially for

the case of hand pose estimation, which has large variations in hand shapes, sizes, poses

and orientations. In order to prevent the condition of overfitting and improve the

performance of the proposed 3D CNN model with different kinds of hand, we decide to

adopt 3D data augmentation, including translation, stretching and rotation on the training

data. For the 3D data in the 3D space, we can do additional operation such as rotation

with respect to the x- or y-axis which can’t be performed in 2D depth image. We will first

translate the occupied voxels along x-, y- and z-axis of the camera coordinate system by

three translation factors 𝑡𝑥, 𝑡𝑦, and 𝑡𝑧. Then, we will stretch the occupied voxels along

the x-, y- and z-axis by stretching factors 𝑠𝑥 , 𝑠𝑦 and 𝑠𝑧 . Finally, we will rotate the

occupied voxels around x, y and z axis with rotation factors 𝑟𝑥, 𝑟𝑦 and 𝑟𝑧. For example,

for an occupied voxel p, after the translation, stretching and rotation, the result will be 𝑝𝑡

as follows:

 𝑝𝑡 = R ∙ S ∙ (p + T) (3-10)

where T is a 3 × 1 matrix which contains three value 𝑡𝑥 , 𝑡𝑦 and 𝑡𝑧 , S is a 3 × 3

diagonal matrix whose values from left-top to right-bottom are 𝑠𝑥 , 𝑠𝑦 and 𝑠𝑧 , R are

three 3 × 3 rotation matrices which related to x-, y- and z-axis. In our proposed system,

doi:10.6342/NTU201802685

 35

the translation, stretching, and rotation of the data augmentation is randomly generated

and perform on the input data. In addition, although the goal of performing data

augmentation is increasing the quantity of the data, we don’t hope to distort the shape of

the hand extremely which will affect the training part to learn the correct shape of the

hand, so we don’t distort the data in a very large range. The translation of x-, y- and z-

axis is in the range of [-5, 5] pixels. The stretching factors of x, y and z axis is in the range

of [0.8, 1.2]. The rotation of the x, y and z is in the range of [−15°, 15°]. For the training

time, we train our 3D convolutional neural network with both original training data and

distorted training data at the same time.

3.4.6 Implementation Parameter and Detail

The input size of our proposed network is 96 * 96 * 96 and output size is 3 * J which

is x, y and z coordinates of J joints of hand where J is set 16 in our thesis. We train our

proposed 3D neural network end-to-end with the dropout ratio 0.5 and learning rate 1 *

10−4 and batch size 5. Finally, we implement our system with python and tensorflow

and train on a single GPU which is NVIDIA GTX 1080ti.

doi:10.6342/NTU201802685

 36

Chapter 4 Experimental Results

In this chapter, we will conduct several experiments of our proposed hand pose

estimation system on public datasets under different conditions. We first detail the settings

of the environment we use, and then introduce the two datasets, of which are used to

evaluate our system and another dataset which is used to train the CNN to improve the

performance in the real world. Next, we show the experimental results on two datasets

and compare the performance with that of other state-of-the-art works. We will also

evaluate the performance of the hand pose estimation with and without our proposed

methods to validate the improvement of them. Finally, we will give some discussions and

show some results in real-world testing.

4.1 Settings of Environment

We use a personal computer which is equipped with an Intel i5-8400 central

processing unit (CPU) and 16 GB random access memory (RAM) to conduct various

experiments of our proposed hand pose estimation system. The graphic processing unit

(GPU) we attach onto our computer is NVIDIA GeForce GTX 1080ti. The total system

is built on Ubuntu 16.04, 64-bit operating system. Table 4-1 shows the details of the

equipment specification of this computer.

We apply Google tensorflow [27] as our deep-learning tool box to implement our

convolutional neural network (CNN) architecture with Python as programming language.

Google tensorflow [27] provides an interface to build CNN and supports parameter-

updating mechanisms. In addition, it also provides many implemented layers which we

have introduced in Sec. 2, including the 3D convolutional layer, and thus we can use these

directly to build our work easily.

doi:10.6342/NTU201802685

 37

Table 4-1. The equipment specification of our computer for experiments

Equipment Specification

Central Processing Unit (CPU) Intel Core i5-8400 @ 2.80GHz * 6

Random Access Memory (RAM) 16.0 BG

Graphic Processing Unit (GPU) NVIDIA GeForce GTX 1080ti

Operating System (OS) Ubuntu 16.04

System Bit Type 64 bit

4.2 Datasets

 In this section, we will detail two public datasets which are used to evaluate our

system in our experiments and another dataset which is used to improve the performance

for real-world testing. The three public datasets that have be used here are ICVL Hand

Posture Dataset [18], NYU Hand Pose Dataset [19] and Big Hand 2017 dataset [20]. The

first two challenging datasets are widely used to evaluate the performance of the hand

pose estimation. So, we choose these two datasets to evaluate our proposed hand pose

estimation system and compare our results with those of the other state-of-the-art works.

4.2.1 ICVL Hand Posture Dataset

ICVL Hand Posture Dataset is a public and challenging dataset for hand pose

estimation which is released by Imperial Computer Vision & Learning Lab (ICVL) and

is used in our experiments. The depth images of hands are captured by Intel’s Creative

Interactive Gesture Camera [28] from the third person’s view. The total number of the

depth images are about 24,000 and are divided into one group with about 22,000 depth

images for the training set and another with the remaining 2000 depth images, which are

two respective consecutive sequences, for the testing set. In addition, because the depth

images of the training set are augmented by rotation, which rotate the images from -180

doi:10.6342/NTU201802685

 38

degrees to 180 degrees with the interval of 22.5 degrees, so there are about 330,000 depth

images in total actually. For the annotation in the dataset, there are totally 16 joints

annotated on the hand, which are 3 joints for each finger and 1 joint for the palm. Each

joint is annotated with the 3D coordinates in the image space, which are u, v and d. For

the depth images capture by the present depth camera, broken or missing are often occur.

However, in this dataset, most of the depth images are high quality and include many

difficult hand pose with serious occlusion. With the high quality and the challenging cases

in the dataset, ICVL dataset is used in most of the paper related to hand pose estimation

and thus we also use it to evaluate our system. Figure 4-1 shows some examples of the

dataset.

Figure 4-1. Some examples in the ICVL Hand Posture Dataset. This dataset provides

many challenging cases.

4.2.2 NYU Hand Pose Dataset

NYU Hand Pose Dataset is a public and challenging dataset for hand pose estimation

which is released by New York University. They use Microsoft Kinect [29] to capture the

depth images of hands from the three different viewpoints of third person’s view with

both RGB images and depth images simultaneously. The total number of the depth images

is about 80,000, which are 72757 training data and 8252 testing data respectively. In the

training data, there is only one subject while in the testing data, there are two in total. For

doi:10.6342/NTU201802685

 39

the annotation in the dataset, there are total 36 joints with the 3D coordinates for each

joint. Although NYU hand pose dataset provides a large quantity images for hand pose

estimation, which is a significant contribution for the training for deep learning model,

compared with ICVL hand posture dataset, the quality of the depth images are not very

high. For most of the depth images in the dataset, there are many broken or missing part

occur especially at the margin of the hand, and the contour of the hand shape is not sharp

enough. In addition, there also are some noises surrounding the hand. However, even the

quality of the depth images is not good enough, it becomes the challenge condition for

the research which would like to solve the problem with the broken and noise of the depth

image. NYU hand pose dataset is also used in many related work, so we also choose this

dataset to evaluate the performance and compare with other works. Figure 4-2 shows

some examples of the dataset.

Figure 4-2. Some examples in the NYU Hand Pose Dataset. This dataset contains many

depth images which are broken and distorted.

4.2.3 Big Hand 2017 Dataset

Big Hand 2017 dataset is a large-scale and challenging hand pose estimate which is

collected by a novel capture method. The total number of the depth image is about 957K

for training and 295K for testing which include third person’s view and first person’s

view. For the annotation in the dataset, there are total 21 joints with the 3D coordinates

doi:10.6342/NTU201802685

 40

for each joint. Because this dataset is collected by the tracking system with the 6D

magnetic sensors, which can inverse kinematics and automatically obtain the position of

the joints, so the annotation of position of each joint in the 3D space is much more

accurate than other datasets. In addition, because the annotation doesn’t need to be labeled

by human frame by frame, so the collection process can be very fast and thus produce lots

of data in a short time. Although we don’t evaluate our system performance on this dataset,

we have trained our system with this dataset to improve the performance of the

application of virtual reality.

Figure 4-3. Some examples in the Big Hand 2017 dataset. This dataset contains lots of

depth images with different subjects.

4.3 Experimental Results

In this section, we will show the experimental results of our proposed hand pose

estimation system on two public datasets, which are ICVL Hand Posture Dataset and

NYU Hand Pose Dataset. In addition, we will also compare the results with the other

related state-of-the-art works [3, 10, 13, 30, 31] and make some discussions of different

aspect. In the last part, we will compare the performance of the baseline and the improved

system under different conditions and make some discussions of them.

There are two kinds of performance evaluation methods which are commonly used

for the task of hand pose estimation to test the accuracy of estimated positions of hand

joints. The evaluation methods are introduced as below:

doi:10.6342/NTU201802685

 41

I. Average Euclidean distance error: The evaluation of this method is to

compute the Euclidean distance between the position of the estimated joints and

the position of the ground truth joints which are defined as the same joint type

of the hand in the 3D space. We will finally average the error of each joint from

all the frames in the testing data of each dataset to see the overall results. The

error is calculated as below:

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐸𝑟𝑟𝑜𝑟 =
∑ ‖𝐻𝑗 − 𝐻𝑗

∗‖𝐽
𝑗=1

𝐽
 (4-1)

where 𝐽 is the total number of joints. 𝐻𝑗 is the predicted joint positions and

𝐻𝑗
∗ is the ground truth joint positions.

II. The fraction of success under threshold: This evaluation is to compute the

fraction of the successfully estimated hand pose frame under different threshold.

A successfully estimated case means that the Euclidean distance error of every

joint of a hand pose is under the threshold. The fraction is calculated as below:

 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
∑ 𝛼(𝑚𝑎𝑥𝑗(‖𝐻𝑗 − 𝐻𝑗

∗‖) ≤ 𝑇)𝑁
𝑛=1

𝑁
 (4-2)

where 𝑁 is the total number of testing frames. 𝑇 is the threshold.

𝛼(condition) is an indicate function which equals to 1 if condition is true and 0

if condition is false.

For the first evaluation method, it reflects the average error of each joint and thus

can represent the performance of a hand pose estimation system in a simple and easily

understandable way. For the second evaluation method, it is a very strict criterion because

the predicted hand pose must be perfect, and all the estimated joints’ Euclidean distance

error have to be smaller than the threshold, or it will be considered as a fail case. This

evaluation will be plot through different thresholds and become a curve. So more robust

doi:10.6342/NTU201802685

 42

the hand pose estimation system is, the higher the curve is. In this thesis, we will apply

there two evaluation methods in our experiments.

4.3.1 ICVL Hand Posture Dataset

In this dataset, we will compare the result of our proposed system with other state-

of-the-art methods. We show the evaluation of average Euclidean distance error of each

joint and the mean error on the bar chart in Figure 4-5. The result shows that our proposed

method can outperform other state-of-art methods in most of the joints, which can prove

that our overall prediction is more accurate in this dataset. We also show the robust ability

of our system estimation in Figure 4-4, which shows the comparison of the successful

fraction under different threshold evaluation, and this evaluation shows that our methods

have a significant improvement compared with other works, especially when the

threshold of the error is very small (i.e., from 5 to 15). Moreover, this fact can also prove

the powerful effect of our data preprocessing and Hand-Skeleton loss layer which add the

additional physical constraints to the training of our CNN model. In the table 4-2 which

shows the result of the mean Euclidean distance error. As the results show, our method

can achieve 6.67mm mean distance error on testing set, which outperforms the

performance of other state-of-the-art works about 1.4mm. Although our performance is

slightly better than [31] with 0.12mm, [31] has to do the iterations many times to refine

the result, while our work is able to predict the hand pose precisely only going through

the 3D network for one time. This fact indicates that the robustness of our proposed

network. Finally, Figure. 4-6 shows some examples of the results of our proposed method

on the ICVL Hand Posture Dataset, including inputs, ground truths and predicted results.

We can also find that our predicted results are very similar to the ground truth, which

indicates the robustness of our hand pose estimation system.

doi:10.6342/NTU201802685

 43

Figure 4-4. The successful estimation fraction of a full hand under the threshold

compared with other works on ICVL Hand Posture Dataset.

Figure 4-5. The average Euclidean Error of each joint compared with other works on

ICVL Hand Posture dataset.

doi:10.6342/NTU201802685

 44

Table 4-2. The quantitative result of proposed method and other state-of-the-art works

on ICVL Hand Posture Dataset.

Method Average Euclidean Distance Error (mm)

Cascade 9.9

Wu et al.(SDNet) 8.45

REN-9x6x6 7.31

Pose-REN 6.79

Ours(HSSNet) 6.67

Figure 4-6. Some examples of the input, ground truth and prediction of our system on

the ICVL Hand Posture Dataset

4.3.2 NYU Hand Pose Dataset

In this dataset, we will also compare the result of our method with other state-of-the-

art methods as well as the ICVL Hand Posture Dataset. In addition, we will also compare

our result with our baseline, which is the model trained without additional data

preprocessing and additional knowledge, and prove the improvement of the performance.

Moreover, we will show the result of our hand detector, which is composed of depth

doi:10.6342/NTU201802685

 45

threshold and a simple shallow CNN which refine the position of the reference point, to

show the performance of the cropping hand from a raw depth image of our system. We

use Intersection of Union (IoU) as the evaluation of the accuracy of the bounding box.

Literally, IoU will compute the intersection part and the union part of the estimation

bounding box and the ground truth bounding box. If the IoU value is larger than 0.5, then

we consider it as a success case, and we have achieved the precision as 0.97. In addition,

because we don’t like to distort the image when we resize the cropped image from the

bounding box, so we will estimated the bounding box as a square. By doing so, when we

resize the image to the size which fits the input of CNN, the shape of the hand will not be

distorted too extremely. We also show the experimental results on NYU Hand Pose

Dataset compared with other state-of-the-art works in Figure 4-7, Figure 4-8 and Table 4-

3. As the Figures and the table show, the performance of our method can outperform other

works. Our proposed hand pose estimation achieve 11.66mm mean Euclidean distance

error, while the mean error of other state-of-the-art works is 12.24mm. That is, our

performance is better than other works about 0.58mm. For the fraction of success under

threshold, we also outperform other state-of-the-art works, especially at the threshold

from 20 to 40mm. As the results show, we can easily notice that the performance of NYU

Hand Post Dataset is worse than the performance of ICVL Hand Posture Dataset. This is

caused by the low quality of the broken depth image, even we propose the method which

can recover the missing part of the depth image, it is still very difficult to perform as well

as the ICVL Hand Posture Dataset which has better image quality. However, with the

proposed improvement, we can still perform better results compared with other works.

Figure. 4-9 shows some examples of the results of our proposed method on the NYU

Hand Post Dataset, including inputs, ground truths and predicted results. In the table 4-4,

we have compared the experimental result of the effect of the Hand-Skeleton loss function

doi:10.6342/NTU201802685

 46

in a quantitative way, and this table also demonstrates the significant effect of the loss

function with the physical constraints in the training part. As shown in table 4-4, we set

the weight of the Euclidean error loss function to be 1, and gradually adjust the weight of

the Hand-Skeleton loss function to be different value to see the results. The results have

shown that when the weight of the Hand-Skeleton loss function increases, the

performance becomes better. However, when the weight becomes larger than a threshold,

the performance will starts to become worse. This fact indicates that although the Hand-

Skeleton loss function can help to maintain the skeleton of the hand, it is only an

additional knowledge, so it can’t be used individually or dominate the training process.

But overall this function can indeed improve the performance in the training part. Because

the final goal of our proposed system is to apply the hand pose estimation to the

applications of the virtual reality, so making the skeleton of the hand as stable as possible

is very important. Sometimes, a little bit error of the position of a single joint may be

tolerable. However, if the skeleton of the hand is distorted, it will be very strange and

troublesome and effect the user experience dramatically, especially when we attach the

estimation result on a hand model. In table 4-5, we have compared the experimental result

of the effect of the data padding in a quantitative way. As the results show, when we pad

the data with the voxels from the size 3 x 3 x 3 to 5 x 5 x 5, the performance is improved.

This fact indicates that the padding exactly recover the missing part of the broken image.

However, when the size of the padding voxel comes to 7 x 7 x 7, the performance will

starts to become worse. And this fact indicates that if we pad the data with inappropriate

size, the padding voxels will blur the data and decrease the performance. Figure 4-9 shows

some examples of NYU dataset.

doi:10.6342/NTU201802685

 47

Figure 4-7. The successful estimation fraction of a full hand under the threshold

compared with other works on NYU Hand Pose Dataset

Figure 4-8. The average Euclidean Error of each joint compared with other works on

NYU Hand Pose dataset.

doi:10.6342/NTU201802685

 48

Table 4-3. The quantitative result of proposed method and other state-of-the-art works

on NYU Hand Pose Dataset.

Method Average Euclidean Distance Error (mm)

REN-9x6x6 12.69

DeepPrior++ 12.24

Pose-REN 11.81

Ours(HSSNet) 11.66

Table 4-4. The quantitative result of proposed method with different weights on Hand-

Skeleton loss on NYU Hand Pose Dataset.

Network Settings (weight) Average Euclidean Distance Error (mm)

Baseline (0.0) 13.22

HSSNet (0.3) 12.06

HSSNet (0.4) 11.95

HSSNet (0.5) 11.66

Table 4-5. The quantitative result of proposed method and other state-of-the-art works

on NYU Hand Pose Dataset.

Network Design(voxel) Average Euclidean Distance Error (mm)

Baseline (without padding) 11.87

HSSNet (3x3x3) 11.79

HSSNet (5x5x5) 11.66

HSSNet (7x7x7) 11.91

doi:10.6342/NTU201802685

 49

Figure 4-9. Some examples of the input, ground truth and prediction of our system on

the NYU Hand Pose Dataset

4.3.3 Real World Testing

In this section, we are going to test our hand pose estimation system in the real world

under the environment of both Linux and Windows, and the deep learning toolkit is

Tensorflow. The depth camera and the Head-Mounted display (HMD) which we use in

this testing is Intel RealSense F200 and HTC VIVE, respectively. RealSense is a kind of

portable camera which can take RGB and depth image simultaneously with high quality.

We attach the depth camera in front of Head-Mounted display so that we can obtain the

doi:10.6342/NTU201802685

 50

depth image of hand from the first person view. Figure 4-12 shows the picture of the Intel

Realsense. HTV VIVE is a kind of Head-Mounted display which includes a helmet, two

helmet detectors and two handles. Because the goal of our work is to provide a natural

way to interact with the computer or virtual world, so we do not use the handles in our

testing. VIVE can provide a good experience for the users by constructing a wonderful

virtual world. Figure 4-11 shows the picture of the HTC VIVE.

For the testing under Linux environment, because the setting and usage of Head-

mounted display is difficult, we only test our system with the depth camera. Figure 4-10

shows the predicted results of our system, which contains the real-world environment

including the user with hand pose, depth image after the processing of threshold and the

bounding box and estimated hand pose. The results show that even with some difficult

poses, our system can estimate the hand pose correctly. Moreover, we can also crop the

hand tightly with bounding box, which is the red rectangle, even with different hand pose

or different distance from the depth camera and hand. For the testing under Windows

environment, we will use the Head-Mounted device. We will then detail how we

implement the hand pose estimation in the virtual world. Figure 4-13 shows how we

combine our hand pose estimation system with the depth sensor and Head-Mounted

Device (HMD) and provide a natural way to interact with the objects in the virtual world.

As Figure 4-13 shows, we attach the depth sensor, which is Realsense, to the front of the

HMD, which is HTC VIVE. Then, we obtain the depth image containing hand by the

depth sensor and input into our hand pose estimation system and estimate the joint

positions in the 3D space and project them into the virtual world. Once we have a virtual

hand in the virtual world, we can do many kinds of pose like grabbing, pushing or pressing,

and interact with the computer in a natural way by having interaction with the object in

the virtual world. For example, we can press a bottom, pushing a box or pull a rope. We

doi:10.6342/NTU201802685

 51

can also play chess in the virtual world as shown in the bottom side of Figure 4-13.

Moreover, as shown in Figure 4-14, we can also attach a hand model to the joints to make

the hand more real. By showing the results in the real-world testing, the robustness of

performance of our proposed hand pose estimation can be proved.

Figure 4-10. Some examples of the real-world testing. (a) shows the user and the hand

pose. (b) shows the image after depth threshold. (c) shows the bounding box of the

hand and the estimated hand pose.

doi:10.6342/NTU201802685

 52

Figure 4-11. Head-Mounted Device. This figure shows the Head-Mounted Device used

in the testing, which is HTC VIVE.

Figure 4-12. Depth sensor. This figure shows the depth sensor used in the testing, which

is Intel Realsense.

doi:10.6342/NTU201802685

 53

Figure 4-13. The user and the scene in the virtual world. The top figure shows the user

with the HMD and depth sensor. The bottom figure shows the virtual world and the

hand projected in it.

doi:10.6342/NTU201802685

 54

Figure 4-14. Hand model. This figure shows the illustration after attaching a hand

model to the joints.

doi:10.6342/NTU201802685

 55

Chapter 5 Conclusion

We propose a real-time, accurate 3D hand pose estimation system including hand

detection and 3D convolutional neural network to predict human hand pose from a depth

image. In addition, even with a depth image which misses some parts, it can be well

estimated by our proposed system. The experimental results which are evaluated on

several public and challenging datasets show that our system works well under most of

the conditions.

 To overcome the problem of bad quality of depth image such like image broken or

missing and perform well and steady, we propose a deep-learning method to train a 3D

convolutional neural network (CNN) model and take some physical constraints into

consideration. First, we transform the 2D depth image to 3D voxelized grid and propose

a method to pad the data, which fills the missing part of the data and ease the learning

process of CNN. Second, we add two additional loss function into CNN to improve the

performance and steady the estimation result, which are finger-length-ratio layer and

bone-length-ratio layer. For the finger-length-ratio layer, we constrain the length of each

finger by taking the ratio of five fingers into consideration, and this can prevent the

situation that the estimation of one of the finger is too long or too short. For bone-length-

ratio layer, we constrain the length of the bone of each finger, which is defined by the

joints, and this can maintain the steady of the estimation of the skeleton. With the

additional knowledge mentioned above, our system is able to predict the hand pose more

accurately.

 Overall, our proposed system contains a hand detection part and a hand pose

estimation part. In addition, we compare our method with other state-of-the-art methods

on two public datasets and shows better performance. Therefore, we expect that our

doi:10.6342/NTU201802685

 56

proposed system can help to provide a real-time and accurate way for the interaction

between human and computer, especially on the applications of the virtual reality (VR),

augmented reality (AR) and mixed reality (MR) in our future life.

doi:10.6342/NTU201802685

 57

REFERENCE

[1] I. Oikonomidis, N. Kyriazis, and A. Argyros, "Efficient model-based 3D tracking of

hand articulations using Kinect," in British Machine Vision Conference, 2011.

[2] A. Tagliasacchi, M. Schroeder, A. Tkach, S. Bouaziz, M. Botsch, and M. Pauly,

"Robust articulated-icp for realtime hand tracking," In Computer Graphics Forum,

34(5), 2015

[3] X. Sun, Y. Wei, S. Liang, X. Tang, and J. Sun, "Cascaded hand pose regression, " In

IEEE Conference on Computer Vision and Pattern Recognition, 2015.

[4] C. Wan, A. Yao, and L. Van Gool, "Direction matters: hand pose estimation from

local surface normal," In European Conference on Computer Vision, 2016.

[5] J. Tompson, M. Stein, Y. Lecun, and K. Perlin, "Real-time continuous pose recovery

of human hands using convolutional networks," in ACM Transactions on Graphics,

33(5):169, 2014.

[6] L. Ge, H. Liang, J. Yuan, and D. Thalmann, "Robust 3D hand pose estimation in

single depth images: from single-view CNN to multi-view CNNs," In IEEE

Conference on Computer Vision and Pattern Recognition, 2016.

[7] L. Ge, H. Liang, J. Yuan, and D. Thalmann, "3d convolutional neural networks for

efficient and robust hand pose estimation from single depth image," In IEEE

Conference on Computer Vision and Pattern Recognition, 2017.

[8] H. Guo, G. Wang, X. Chen, C. Zhang, F. Qiao, and H. Yand, "Region ensemble

network: Improving convolutional network for hand pose estimation," in IEEE

International Conference on Image Processing, 2017.

[9] Chen, T.-Y., P.-W. Ting, M.-Y. Wu, and L.-C. Fu, "Learning a Deep Network with

Spherical Part Model for 3D Hand Pose Estimation," presented at the IEEE

doi:10.6342/NTU201802685

 58

International Conference on Robotics and Automation (ICRA), Singapore,

Singapore, 2017.

[10] M.-Y. Wu, Y.-H. Tang, P.-W. Ting, and L.-C. Fu, "Hand Pose Learning: Combining

Deep Learning and Hierarchical Refinement for 3D Hand pose estimation," In

British Machine Vision Conference, 2017

[11] M. Oberweger, P. Wohlhart, and V. Lepetit, "Training a feedback loop for hand pose

estimation," In IEEE International Conference on Computer Vision, pages 3316–

3324, 2015.

[12] M. Oberweger, P. Wohlhart, and V. Lepetit, "Hands deep in deep learning for hand

pose estimation," In Computer Vision Winter Workshop, pages 21–30, 2015.

[13] M. Oberweger and V. Lepetit, "Deepprior++: Improving fast and accurate 3d hand

pose estimation," In IEEE International Conference on Computer Vision, Oct 2017.

[14] C. Wan, T. Probst, L. Van Gool, and A. Yao, "Crossingnets: Combining gans and

vaes with a shared latent space for hand pose estimation," In IEEE Conference on

Computer Vision and Pattern Recognition, July 2017.

[15] C. R. Qi, H. Su, M. Niessner, A. Dai, M. Yan, and L. J. Guibas, "Volumetric and

multi-view CNNs for object classification on 3D data," In IEEE Conference on

Computer Vision and Pattern Recognition, 2016.

[16] S. Song and J. Xiao, "Deep Sliding Shapes for amodal 3D object detection in RGB-

D images," In IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[17] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, "3D shapenets: A

deep representation for volumetric shapes," In IEEE Conference on Computer Vision

and Pattern Recognition, 2015.

[18] D. Tang, H. Jin Chang, A. Tejani, and T.-K. Kim, " Latent regression forest:

Structured estimation of 3d articulated hand posture," In IEEE Conference on

doi:10.6342/NTU201802685

 59

Computer Vision and Pattern Recognition, pages 3786 – 3793, 2014.

[19] J. Tompson, M. Stein, Y. Lecun, and K. Perlin, "Realtime continuous pose recovery

of human hands using convolutional networks," In ACM Transactions on Graphics,

33(5):169, 2014.

[20] S. Yuan, Q. Ye, B. Stenger, S. Jain, and T.-K. Kim, "Bighand2.2m benchmark: Hand

pose dataset and state of the art analysis," In IEEE Conference on Computer Vision

and Pattern Recognition, July 2017.

[21] Krizhevsky, A., I. Sutskever, and G. E. Hinton, "Imagenet classification with deep

convolutional neural networks," in Advances in neural information processing

systems, 2012, pp. 1097-1105.

[22] Simonyan, K. and A. Zisserman, "Very deep convolutional networks for large-scale

image recognition," arXiv preprint arXiv:1409.1556, 2014.

[23] Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, "Going deeper with

convolutions," in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2015, pp. 1-9.

[24] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition,"

In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,

2016.

[25] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P.

Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon, "Kinectfusion: Real-time dense

surface mapping and tracking," In ISMAR, 2011.

[26] S. Song, F. Yu, A. Zeng, A. Chang, M. Savva, and T. Funkhouser, "Semantic Scene

Completion from a Single Depth Image," In IEEE Conference on Computer Vision

and Pattern Recognition, 2017.

[27] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

doi:10.6342/NTU201802685

 60

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Rafal

Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan

Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent

Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin

Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng, "TensorFlow: Large-

scale machine learning on heterogeneous systems," 2015. Software available from

tensorflow.org.

[28] S. Melax, L. Keselman, and S. Orsten, "Dynamics based 3d skeletal hand tracking,"

In Proceedings of Graphics Interface, 2013, pages 63–70. Canadian Information

Processing Society, 2013.

[29] Zhang, Z., "Microsoft kinect sensor and its effect," IEEE multimedia, vol. 19, pp. 4-

10, 2012.

[30] H. Guo, G. Wang, X. Chen, and C. Zhang, "Towards good practices for deep 3d hand

pose estimation," arXiv preprint arXiv:1707.07248, 2017.

[31] X. Chen, G. Wang, H. Guo, and C. Zhang, "Pose guided structured region ensemble

network for cascaded hand pose estimation," arXiv preprint arXiv:1708.03416, 2017.

