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中文摘要 

自 1995 年首度發現大腦網路的自發性同步現象以來，靜息態功能性磁振造

影（Resting-state fMRI, rs-fMRI）技術日益受到神經科學以及臨床神經醫學研究的

重視。因其非侵入性且無需外在刺激的實驗設計與簡單指令，該技術已被廣泛運

用於兒童發育、老化歷程、神經退化以及精神疾病等群組研究。然而 rs-fMRI技術

並不僅侷限於群組研究，隨著轉譯醫學與個人化醫療技術的快速進展，rs-fMRI亦

逐步受到關注，現正興起一波以 fMRI進行精準術前大腦功能定位之浪潮。然而，

在真正實現以 rs-fMRI進行個人化評估之前，仍需面對下列三項困境：（一）評估

指標：該技術迄今尚未發展出有效的檢驗指標，難以評估其資料品質；（二）種

子點選擇：就分析方法而言，經常使用的種子點相關性分析（seed-based correlation 

analysis）需要主觀設定一種子點，以分析大腦在休息狀態下的網路連結，並定位

個人化之功能網路。 隨探究的大腦網路愈趨向高階特化功能（如語言網路），受

試者間的功能網路位置變異就越大，造成種子點選定的困難性；（三）分析平台：

儘管 rs-fMRI技術已蔚為潮流，目前仍欠缺以臨床應用導向設計的分析平台。 

本論文的主旨在針對 rs-fMRI資料、種子分析技術做進一步的品質檢驗指標設

計與方法改良，並建構以臨床醫事人員為導向之 fMRI技術分析平台，期望提供簡

易操作的使用者介面與可靠的技術以進行臨床相關研究與應用。本論文共具三項

主要目標，分列如下: 

 (一) 本論文第一目標為發展一 rs-fMRI影像品質指標（PICSO），估測 rs-fMRI

資料中蘊含的神經生理訊息承載量。結果顯示功能性連結的強弱與 PICSO指標呈

現正相關，反之常用快篩型指標－時序信雜比(tSNR)－和大腦功能性連結之間並無

明顯關聯。 

(二) 準確設定種子點為定位高階功能網路之首要目標，然而實作上存在諸多

困難。本論文將以語言功能為例，提出一新式自動化選擇法－結合靜息態區域同

質性（regional homogeneity, RH）與統合分析技術（Meta-analysis, MA）－利用

RH+MA方法導航種子點的設定，增進術前語言功能定位之精準度。 
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 (三) 倘若病灶已影響腦血管的健康狀態，則直接影響以健康血管為前提假設

的 fMRI訊號。為評估腦血管對 fMRI的影響程度，近期研究建議在以 fMRI進行

大腦功能區域定位時，同時比對反應腦血管健康狀態的順應力圖譜（CVR mapping），

避免誤判大腦重要功能區的範圍。故本論文的第三目標為發展一平台，整併與模

組化任務型 fMRI（task-fMRI）, rs-fMRI與 CVR mapping，並將結果轉換至與臨床

閱片系統與手術導航系統相容之 DICOM格式，便於醫師進行完整的術前評估與術

中導航之用。 

本論文的研究目標為轉譯功能性磁振造影分析技術於臨床應用。於技術上，

設計實用型的影像品質檢驗指標、發展設定種子點之導航方法；於臨床上，整合

多項技術於單一平台，得同時提供影像分析介面、視覺化呈現與直接整併至手術

導航系統。在未來發展中，本論文將引入深度學習演算法，自動化解構靜息態功

能性網路。這些初步成果顯示功能性造影技術在臨床應用上具有高度潛力。總結

而言，本論文在神經科學領域提供了功能性磁振造影的技術改進與整合，預期將

能貢獻於國內的醫學エ程產業、個人化醫療以及提昇臨床診斷之精確度。 

 

關鍵字：功能性磁振造影、靜息態功能性磁振造影、影像品質指標、術前大腦功

能定位、大腦血管順應力圖譜、互動式分析平台、視覺化呈現 

 
  



doi:10.6342/NTU201802205

 iv 

Abstract	

Since its debut in 1995, the resting-state functional magnetic resonance imaging 

(rs-fMRI) has received sustained attention from fundamental and clinical neuroscience. 

Because of its non-invasive mapping of brain network integrity and high clinical 

feasibility without task engagements, this technique has proliferated amongst the 

fundamental investigations of development, geriatrics, and psychiatric and neurological 

disorders. Regarding its clinical practice in personalized medicine, presurgical 

functional mapping is of increasing importance in clinical management to aid the 

surgical planning to patients with neurosurgical intervention. Targeting on presurgical 

mapping, rs-fMRI is occasionally used in clinical practices. The rationale is that this 

technique still faces several methodological challenges: (1) a practical measure of 

rs-fMRI data quality to obtain reliable functional networks that has yet to be determined; 

(2) the inter-subject variability in functional localization and lesion-related functional 

reorganization makes the seed selection difficult for mapping functional networks on 

the basis of anatomical landmark alone, and thus affect its clinical use; (3) Despite its 

importance and usefulness, a specialized clinical software that integrates 

complementary fMRI techniques for presurgical fMRI workflow is still lacking.  

Inherited from the rs-fMRI technique, this dissertation targets at three specific aims: 

(1) quality assurance from physiological contributions, (2) seed guidance for presurgical 

language mapping with seed-based rs-fMRI, and (3) technique integration in the 

specialized software for clinical practices. The ultimate goal of this PhD dissertation is 

to translate and integrate state-of-the-art fMRI techniques for presurgical mapping and 

clinical studies. 
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In specific aim 1, we proposed a quality-assurance index for rs-fMRI to estimate 

the physiological contributions in spontaneous oscillations (PICSO). With the 

calibration through the phantom data, we verified that the PICSO showed a significantly 

positive correlation with the strength of functional connectivity while the tSNR was not, 

providing a practical quality-assurance indicator for all existing rs-fMRI data sets. 

In specific aim 2, we proposed a novel method to guide the seed selection for 

mapping the rs-fMRI language network by incorporating data-driven regional 

homogeneity and meta-analysis. The results demonstrated that localization performance 

on language network was significantly improved comparing to the seed selection based 

on MNI coordinate and was equivalent to the seed localization guided by task-fMRI 

activation. These results suggest that the proposed method may be an effective and 

beneficial approach for rs-fMRI mapping in the clinical practice, especially when 

patients have difficulties in compliances of task engagements. 

In specific aim 3, we developed the Integrated fMRI for Clinical Research 

(IClinfMRI) software package to incorporate advanced fMRI methods of task-fMRI, 

rs-fMRI, and cerebrovascular reactivity (CVR) mapping.  Incorporating CVR 

technique is to indicate the potential false-negative areas in fMRI results, and to 

implement data conversion modules for facilitating clinical fMRI researches with the 

applicability to pre-surgical planning in the treatment of intracranial lesions. 

In summary, the dissertation was designed for translating fMRI techniques into 

clinical practice, initiating from the quality examination, seed guidance of rs-fMRI 

mapping, to platform development. Verifying the positive relation of the PICSO index 

with the strength of functional connectivity, proposing an effective approach for quality 

assurance of rs-fMRI mapping, and developing the IClinfMRI software in the clinical 

workflow. In the future direction, we will develop a purely data-driven approach 
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independent of the needs that enable the identification of functional network through the 

deep learning algorithm.  

In conclusion, the proposed techniques and software in this thesis not only 

facilitate the application of fMRI techniques on daily clinical practices, but also 

improve the brain-mapping precision in personalized medicine.  

 

Key words: Functional magnetic resonance imaging (fMRI), Resting-state fMRI, 

PICSO, Pre-surgical mapping, Preoperative mapping, Cerebrovascular reactivity, 

Interactive software, Visualization 
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Chapter	1

	
Introduction	

 
 
 

1.1 Task-based functional Magnetic Resonance Imaging (fMRI) and its 

Role in Clinical Practices  

1.1.1 Non-invasive Brain Mapping using Task-based fMRI 

Human beings are able to sense the world through the intermittent neuronal firings 

in our central nervous system. Since renaissance, physician and philosophers have put 

great endeavor to unveil the mystery of our brain based on experiment-free speculations. 

The early evidence-based studies of understanding the brain function in cognitive 

processes measured the behavior changes from the brain-damage cases or population 

from invasive brain stimulations. Due to invasive nature of these measurements, 

scientists was inaccessible to investigate the function of human brain systematically. In 

early 1990’s, the non-invasive imaging technique—functional magnetic resonance 

imaging (fMRI)—was firstly introduced (Kwong et al., 1992; Ogawa et al., 1990). 

Utilizing the blood oxygenation level dependent (BOLD) mechanism as a surrogate of 

neuronal activity, fMRI has become the dominate technique in the field of cognitive 

neuroscience (Bandettini, 2007) and clinical practice (Matthews et al., 2006) for its 

capability of whole brain functional mapping and accessibility of many medical centers. 
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Conventional task-evoked fMRI (task-fMRI) detects the BOLD signal changes in 

intermittent periods of a particular task from the baseline (resting) condition. 

Specifically, when a population of neurons is evoked by a task and has synchronized 

firing, the local cerebral blood circulation slowly supplies a huge amount of oxygenated 

hemoglobin from capillary vasodilation. Relying on the tight coupling of neuronal 

activity to regional increases in cerebral blood flow, this hemodynamic response is 

regarded as inevitable consequences of synaptic activity (Logothetis et al., 2001), 

resulting in an increased ratio of oxyhemoglobin to deoxyhemoglobin and an 

enhancement of a detectable magnetic homogeneity around the brain regions with 

neural activities. As a result, the local neural activity leads to a regional raise of the MRI 

signal intensity. 

1.1.2 Advantages of Task-based fMRI Technique  

Given the neurophysiological foundation based on BOLD theorem, the task-fMRI 

technique has multiple advantages for scientific researches and clinical applications 

(Huettel et al., 2009): (1) fMRI is performed on the standard MRI scanners, 

radiation-free, and no needs for injecting exogenous contrast agents; instead, it 

measures the endogenous contrast agent—the BOLD signal—in the brain; (2) since the 

BOLD contrast is the hemodynamic consequence of neural activity, it provides high 

flexibility and repeatability to experiment design in term of task paradigm and 

longitudinal follow-up studies; (3) the feasibility of task-fMRI with a spatial resolution 

ranging from 2 to 4 millimeter can be overlaid on a brain anatomical image with 

resolution of 1 millimeter. To date, fMRI is the methodology providing the highest 

spatial resolution with whole brain coverage to disclose the hidden neural correlates of 

cognitive behaviors. 
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1.1.3 Task-based fMRI Applicability in Clinical Research 

Although fMRI has not completely become a routine clinical tool, it has already 

impacted on clinical imaging research for the management of neurological diseases 

(Matthews and Hampshire, 2016; Matthews et al., 2006). Based on the BOLD 

mechanisms, fMRI provides a means to detect brain functional deficits with clinical 

relevance when performing task engagements. Thus, it has been used to explore 

functional characterization of neurological/psychiatric diseases for assessing neural 

correlates of clinical syndromes and predicting the long-term prognosis after treatments. 

For example, studies of prevalent psychiatric conditions—schizophrenia—illustrate the 

use of fMRI on developing imaging markers for classifying the type of psychiatric 

disorders (Barch et al., 2003; Macdonald et al., 2005). 

Schizophrenia involves a range of clinical features, such as the delusions, 

hallucinations, and disorganized thinking. Its functional deficit has been consistently 

found in different cognitive tasks and the most of these tasks, including executive 

functions, attention, and memory, involves in the fronto-temporal pathway (Barch et al., 

2003; Becker et al., 2008; Minzenberg et al., 2009; Mwansisya et al., 2017). By 

identifying the specific imaging marker of functional abnormality in schizophrenia, 

fMRI response in prefrontal cortex has been demonstrated to differentiate the untreated 

patients with schizophrenia from other patients with non-schizophrenia psychosis 

(Macdonald et al., 2005) and depression (Barch et al., 2003). In addition to its potential 

for clinical managements, fMRI may have a broader range of applications in clinical 

neuroscience research to elucidate the neural mechanisms of functional recovery in 

psychiatric disorders (Rasetti et al., 2010; Scoriels et al., 2013) and stroke (Dong et al., 

2007; Jaillard et al., 2005).   
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1.1.4 Clinical Practice of Task-based fMRI in Presurgical Mapping 

At the current moment, it is clear that fMRI could demonstrate neurophysiological 

differences in case–control comparisons, but it is not always so clear what those 

differences add values to personalized medicine. One of the promising application of 

clinical fMRI is to aid neurosurgical planning in order to maximize the lesion resection 

while reducing the risk of postsurgical functional deficits. The benefits of a large 

resection must be weighed against the cost of resultant neurological deficits incurred in 

areas of eloquent cortex, particularly in motor/language areas. Despite the strong 

similarities among individual brains that enable group studies to be conducted, the 

specificity of individual subject for presurgical planning is neglected in group averages 

analysis. Compared to healthy normal, due to the grossly altered anatomy and brain 

plasticity, the degree of inter-subject variability is typically higher in patients, 

particularly in the higher-order cortical areas, such as language areas. Additionally, as 

each patient's brain anatomy is unique, and the substantial individual variability of 

language localization has been reported by stimulation mapping in a large cohort of 117 

patients (Ojemann et al., 1989). Therefore, the presurgical functional localization is not 

generalizable, not reliably detected based on anatomic landmark alone, and must be 

evaluated individually (Bates et al., 2003; Silva et al., 2018).  

To the high demands of individualized functional localization, the task-fMRI with 

high spatial resolutions has been served for clinical purpose on determining the 

dominant hemisphere, localizing brain functions, and predicting postsurgical outcomes 

(Benjamin et al., 2017) and have been shown to correlate with the clinical gold-standard 

of Wada testing (Janecek et al., 2013), intra-operative direct cortical stimulation (DCS) 

(Bizzi et al., 2008; Weng et al., 2017), and prediction of postsurgical outcomes 
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(Sabsevitz et al., 2003). These validations make task-fMRI a valuable technique 

applicable for preoperative counseling and planning and intraoperative guidance for 

lesion resection in the eloquent cortex (Bizzi et al., 2008; Weng et al., 2017). 

Additionally, it has been proven effective in guiding the surgery of epilepsy, brain 

tumor, and arteriovenous malformations (Bookheimer, 2007; Genetti et al., 2013; Pillai, 

2010), and continues to dominate clinical practice (Matthews et al., 2006). 

However, the challenge of applying task-fMRI to presurgical mapping is the 

patient compliance. The effectiveness of task-fMRI is highly dependent on patient 

performances in terms of effective participation, adequate cooperation, and task 

completion due to neurological deficits or altered behavior capabilities (Bookheimer, 

2007; Pujol et al., 1998), which is often compromised at baseline prior to surgery and 

limits the interpretability of maps derived solely from these paradigms (Bookheimer, 

2007). Furthermore, in some cases that patients might not be feasible to stay awake 

during the imaging procedure, often limiting the use of task-fMRI in population for 

whom conscious sedation is frequently necessary, such as pediatric or aged populations. 

Despite its utility, these challenges would restrict the task-fMRI on clinical applications 

to only a small percentage of total fMRI variance. 

 

1.2 Resting-state fMRI and its Role in Clinical Practices 

1.2.1 Spontaneous Synchronizations 

As an adjunct to task-fMRI, Bharat Biswal and his colleagues found that human 

brain shows temporal synchronizations of spontaneous activities between regions while 

participants are at rest (not performing any task) over the duration of the scanning 

session (Biswal et al., 1995). By measuring the temporal synchronization of these 
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spontaneous low-frequency BOLD signal oscillations (< 0.1 Hz), the resting-state 

functional connectivity (rsFC) networks across spatially distinct brain regions can be 

extracted from resting-state fMRI (rs-fMRI) signal (Bandettini, 2012; Biswal et al., 

1995). These rs-fMRI signals were viewed as the background “noise” in task-response 

studies due to its non-stimulus locked feature in an experimental paradigm. Even though 

scientists have yet fully understood its neurophysiological basis of rsFC, a growing 

body of neuroimaging evidence from rodents, monkeys to humans has informed the 

interpretation of resting-state fMRI (rs-fMRI) (Chen et al., 2017; Pan et al., 2011; 

Wilson et al., 2016; Wu et al., 2017). Rather than rsFC per se, cumulative studies 

indicate that global fluctuation of spontaneous BOLD oscillations is linked to 

broadband EEG activity (Wong et al., 2013), correlates with global fluctuation of 

cerebral blood flow (Zhao et al., 2017) and regional glucose metabolism (Tomasi et al., 

2013). These all suggest that the spontaneous activity play a functional role for 

large-scale communication and synchronization in the brain.  

The rs-fMRI networks are often detected with use of seed-based correlation 

analysis (SCA) (Biswal et al., 1995; Shimony et al., 2009) or data-driven approaches 

such as independent component analysis (ICA) (Smith et al., 2009; Zhang et al., 2009). 

The SCA approach is straightforward to correlate the extracted reference time courses 

against every voxel in the brain, but it imposes prior knowledge to select the reference 

time courses by averaging over a seed. For extracting rsFC network, data-driven method 

is more popular to be adopted because it is free from a priori bias in seed selection. 

Although the ICA approach does not have the issues associated with seed placement, 

determining the proper number of components and selecting components of interest in 

this approach remain challenging (Branco et al., 2016).  
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1.2.2 Resting-state Functional Connectivity (rsFC) in Clinical Research 

 Rs-fMRI has rapidly growing applications in clinical fMRI research for both 

theoretical and practical reasons. Theoretically, the brain is organized and composed of 

functional networks, in which spatially distinct brain regions concomitantly share 

information with each other. A large body of literature indicates that brain organization 

derived from rsFC networks are altered in patients with psychiatric and neurological 

disorders (Lee et al., 2013; Matthews and Hampshire, 2016), showing an alternative 

connectivity perspective in understanding the relevance of brain disorder to large-scale 

network properties. Practically, by asking patients to lie quietly in the scanner for about 

6 minutes, rs-fMRI paradigm does not require patients to perform cognitive tasks, 

making it with high feasibility in clinical routine. This circumvents the problem of 

interpreting activation differences that is regrading to task performance differences. 

Additionally, it can be performed when patients are during early sleep stages (Fukunaga 

et al., 2006; Heine et al., 2012) and light sedation (Greicius et al., 2008; Heine et al., 

2012; Liang et al., 2015), expanding its applicability to patient populations for who are 

difficult to comply with the task paradigm. Another advantage of rs-fMRI is its ability 

to identify many functional networks in single acquisition, thus saving scan time if 

multiple networks are to be assessed.  

1.2.3 Benefits of rsFC in Presurgical Mapping 

Regarding its clinical practice in personalized medicine, presurgical functional 

mapping is of increasing importance in clinical management to aid the surgical planning 

to patients with neurosurgical intervention. Using either with seed-based (Zhang et al., 

2009) or data driven analysis (Mitchell et al., 2013), rs-fMRI have shown its feasibility 

of identifying motor and language networks in patients with brain tumors (Branco et al., 
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2016; Cochereau et al., 2016; Mitchell et al., 2013; Sair et al., 2016; Tie et al., 2014). 

Zhang and colleagues described the initial experiences in using rs-fMRI for presurgical 

planning in four patients with tumors infiltrating the sensory and motor cortices, 

comparing rs-fMRI with task-fMRI and DCS (Zhang et al., 2009). Similar evaluations 

were then conducted on 6 and 8 patients with lesions close to the motor cortex 

(Kokkonen et al., 2009; Liu et al., 2009). Mitchell et al., showed an average 80% 

sensitivity for sensorimotor identification, but moderated consistency (only less than 65%)  

for linguistic mapping as compared to DCS with a limit number of epileptic and tumor 

patients (Mitchell et al., 2013), resulted from high intra-subject variability. More recently, 

an encouraging study with a larger number of tumor and epilepsy patients showed 

moderate consistency of language network identification between task-fMRI 

and rs-fMRI (Branco et al., 2016).  With the same approach, Sair et al. demonstrated that 

the reasons limiting their concordance were mainly high intra-subject variability. 

Together, evidence from these studies suggests the potential usefulness of rs-fMRI in 

presurgical planning.  

 

1.3 Current Challenges of Clinical Practices using rs-fMRI Techniques 

1.3.1 Quality Control of rs-fMRI 

The task-fMRI techniques are to assess the signal increments over the baseline 

intensities, so the variations in the temporal dynamics are used as the quality 

assessments for task-fMRI (Krüger et al., 2001). However, the RS-fMRI is the baseline 

signal itself, which means that the quality assessment approach in task-fMRI no longer 

stands valid in rs-fMRI. However, with popularity of rs-fMRI in cognitive and clinical 

research and its potential for surgical planning, the necessity of rs-fMRI quality 
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assurance is increasing. Conventionally, the temporal signal-to-noise ratio (tSNR)—the 

ratio of the mean signal over its temporal standard deviation—is adopted for a quick 

quality examination (Bodurka et al., 2007; Krüger et al., 2001; Murphy et al., 2007; 

Triantafyllou et al., 2005). Yet previous study revealed that tSNR changes may not 

truthfully reflect connectivity alterations (Molloy et al., 2014). By definition, the tSNR 

emphasizes the baseline average of rs-fMRI time courses, whereas this baseline 

information does not contribute to rsFC. Instead, intrinsic rsFC is supposed to reflect the 

spontaneous synchronization of neuronal basis, thus the temporal fluctuations take the 

major contribution to rsFC outcomes. Despite importance of rs-fMRI in clinical 

applications, a practical measure to access data quality for existing rs-fMRI data sets is 

still warranted.  

1.3.2 From Group Results towards Individualized Mapping  

 By using SCA approach, the inter-subject variability in functional localization 

and lesion-related functional reorganization makes the seed selection difficult for 

mapping functional networks on the basis of anatomical landmark alone, and thus affect 

its clinical use (Mueller et al., 2013; Rosazza et al., 2014; Sohn et al., 2015). The 

inter-subject variability has been further demonstrated to be heterogeneous distributed 

across brain networks in not only health subjects (Mueller et al., 2013) but also in 

patients (Mitchell et al., 2013). Furthermore, Sohn et al. showed that the standardized 

seeds across healthy subjects lead to inaccurate calculations of rsFC, and and Yan et al. 

demonstrated diverse rsFC results when placing distinct seed locations (Sohn et al., 

2015; Yan et al., 2013). These studies commonly addressed the impact of seed selection 

on rsFC. In addition, Cochereau et al. recently indicated that the use of seed-based 

analysis achieved 80% accuracy in detecting individual language network (Cochereau et 
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al., 2016) when selecting seeds from intraoperatively stimulated positive sites. Even 

though their approach is not applicable for presurgical mapping, it demonstrated that 

seeding precisely would greatly improve the detection accuracy for individualized 

mapping of language network from rs-fMRI.  

1.3.3 Presumption of fMRI Techniques: Neurovascular Coupling 

Based on the BOLD principle, the fMRI’s capability to reflect regional neural 

activity mainly relies on the intact coupling of cerebrovascular response following 

neural firings (Harrison et al., 2002; Roy and Sherrington, 1890). This presumption, 

termed as neurovascular coupling, refers to the complex neurophysiological mechanism 

that links transient neural activities to the local functional hyperemia subsequent to 

cognitive events, which is the key principle of in vivo neuroimaging techniques through 

BOLD hemodynamics (Devonshire et al., 2012; Harris et al., 2011; Huber et al., 2014; 

Mukamel et al., 2005). 

However, in clinical cases, the abnormal cerebral vasculature or regional 

hemodynamic disruption caused by intracranial pathology can impair the 

cerebrovascular reactivity (CVR) and violate the presumption of neurovascular coupling. 

The altered neurovascular coupling had been observed on abnormal physiological states 

such as cerebrovascular diseases, brain tumors and neurodegenerative diseases (Iadecola, 

2004; Mikulis, 2013; Ulmer et al., 2003), thereby contributing to false negative findings 

in fMRI (lack of BOLD signal despite neural activity). For the use of fMRI mapping as 

tool of surgical planning, these false negatives in fMRI mapping may potentially lead to 

an undesirable resection of eloquent cortex (Pak et al., 2017; Pillai and Mikulis, 2015; 

Ulmer et al., 2003). Without further confirmation by intraoperative direct cortical 
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stimulation, the fMRI false negatives could result in permanent postoperative 

neurological deficits.  

To evaluate the risk of lesion-induced neurovascular uncoupling (NVU), mapping 

CVR by dynamic BOLD imaging during a vasodilatation challenge would be a useful 

technique for assisting the interpretation of clinical fMRI (Pak et al., 2017; Pillai and 

Mikulis, 2015). CVR mapping has been used to identify the impaired neurovascular 

coupling in brain-tumor patients with task-fMRI (Hou et al., 2006; Zacà et al., 2014), 

and, most recently, in those with rs-fMRI (on motor network rsFC) (Agarwal et al., 

2016). Practically, CVR experiments can be conducted using ordinary fMRI acquisition 

methods during a breath-holding (BH) task (Kastrup et al., 2001; Liu et al., 2002). 

Despite its importance in clinical applications, CVR mapping has yet reached the status 

of an established clinical diagnostic procedure because data analysis for CVR mapping 

requires modifications to the existing fMRI software, which is a time-consuming and 

arduous procedure without expert’s assistance. 

 

1.4 Specific Aims  

This dissertation raises three specific aims targeting at the above-mentioned fMRI 

challenges in clinical research correspondingly: (1) addressing a new quality assurance 

method for rs-fMRI (Hsu et al., 2016), (2) launching a semi-auto seed guidance 

approach for individualized mapping of language network by rs-fMRI (Hsu et al., 2018), 

and (3) integrating multiple fMRI techniques in one specialized software for clinical 

practices (). 

Because three projects were included in this dissertation, I divided it into 

background knowledge in chapter 1, elaborated three project-oriented sections from 
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chapter 2 to chapter 4, and discussed further considerations of addressed approaches in 

chapter 5. 

1.4.1 Quality Assurance for rs-fMRI 

Recently, data quality in rs-fMRI has received substantial attention because 

multiple MRI centers often adopt diverse ways of rs-fMRI protocols. In principle, tSNR 

could be used as a quick measure of rs-fMRI data quality, but it does not guarantee 

reliable rsFC outcomes. Therefore, we proposed a quality-assurance index for rs-fMRI 

to estimate the physiological contributions in spontaneous oscillations (PICSO). With 

the calibration through the phantom data, we verified that the PICSO showed a 

significantly positive correlation with FC while the tSNR was not, providing a practical 

quality-assurance indicator for all existing rs-fMRI data sets.  

1.4.2 Individualized Functional Mapping 

Targeting on presurgical mapping, rs-fMRI has shown its potential to localize 

intrinsic functional networks for the patients who cannot comply with task demands. 

One of the common approaches of network detection is the seed-correlation analysis 

that imposes the prior knowledge of seed selection. However, high inter-subject 

variability in language localization and lesion-related functional reorganization make 

the seed selection difficult for mapping brain networks on the basis of anatomical 

landmark alone, and thus limit its clinical use. Here we proposed a novel method to 

guide the seed selection for mapping the language network by incorporating data-driven 

regional homogeneity and meta-analysis in rs-fMRI. The results demonstrated that 

localization performance on language network was significantly improved comparing to 

the seed selection based on MNI coordinate and was equivalent to the seed localization 

guided by task-fMRI activation. These results suggest that the proposed method may be 
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an effective and beneficial approach for rs-fMRI mapping in the clinical practice, 

especially when patients have difficulties in compliances of task engagements. 

1.4.3 Toolbox Development for Clinical Routine 

Task-fMRI, rs-fMRI and CVR mapping have been applied to clinical management 

of neurological diseases, exemplified by pre-surgical functional mapping. Although the 

analyses for different fMRI modalities are theoretically feasible with existing research 

software, a specialized clinical software that can integrate the three complementary 

fMRI techniques and export the mapping results in DICOM format for PACS and 

surgical navigation system remains unavailable for clinical practices. Thus, we 

developed the Integrated fMRI for Clinical Research (IClinfMRI) software package by 

incorporating advanced fMRI methods with streamlined processing and shortened the 

processing time to facilitate clinical fMRI researches with the applicability to 

pre-surgical planning in the treatment of intracranial lesions. With results illustrated in 

two clinical patients, we verified that IClinfMRI was validated against a 

well-established software package—AFNI. 
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Chapter	2	
	

Physiological	Contribution	in	Spontaneous	

Oscillations	(PICSO):	An	Approximate	

Quality-Assurance	Index	for	Resting-State	fMRI	

Signals	
 

 

 

2.1 Introduction 

The brain at rest is composed of multiple functional networks that have been 

extensively explored using connectivity approaches. Resting-state functional 

connectivity (rsFC) measures the synchronization of low-frequency blood-oxygen-level 

dependent (BOLD) oscillations (Biswal et al., 1995), which are presumed to be the 

surrogate of spontaneous neuronal cross-talks (Leopold et al., 2003; Logothetis, 2007; 

Logothetis et al., 2001). Although scientists do not fully understand the intrinsic essence 

of resting-state fMRI (rs-fMRI) signals, numerous studies have demonstrated that rsFC 

can be altered by several neurological, psychiatric, and neurodegenerative diseases (e.g., 

Alzheimer's disease, Parkinson’s disease, depression, dementia, and schizophrenia) and 

can be dynamic among physiological conditions (e.g., anesthesia or sleep) (Boveroux et 

al., 2010; Horovitz et al., 2009; Zhang and Raichle, 2010). A current trend in the 

proliferation of rs-fMRI investigations is to perform data mining from multi-center data 
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sets for large samples (e.g., The Alzheimer’s Disease Neuroimaging Initiative, 1000 

Functional Connectomes Project, and Human Connectome Project) (Smith et al., 2013). 

However, because of the various types of data acquisition and experimental conditions, 

a promising quality-evaluation strategy is warranted for producing reliable rsFC 

outcomes. 

Currently, a common measure of rs-fMRI data quality is the temporal 

signal-to-noise ratio (tSNR), which is the ratio of the mean signal over its temporal 

standard deviation (SD) (Bodurka et al., 2007; Krüger et al., 2001; Murphy et al., 2007; 

Triantafyllou et al., 2005). Triantafyllou et al. tested the dependence of the tSNR on 

scanning parameters, such as magnetic field strength, flip angle (FA), image resolution, 

and echo time (TE) (Triantafyllou et al., 2005), and suggested the optimal conditions for 

enhancing the tSNR (Triantafyllou et al., 2006). Although the tSNR provides an initial 

indication of rs-fMRI data quality, tSNR changes are not directly reflected in rsFC 

alterations (Molloy et al., 2014; Triantafyllou et al., 2005; 2006). In other words, a high 

tSNR does not guarantee reliable connectivity strength (CS). An extreme example of 

this is that the fMRI data from the phantom possess a high tSNR, but these data do not 

result in long-distance connectivity. This is because, by definition, the tSNR emphasizes 

the baseline average of rs-fMRI time courses. However, this baseline information does 

not contribute to rsFC; instead, the temporal fluctuations take the major contribution to 

rsFC outcomes. More specifically, the temporal fluctuations in rs-fMRI signals can be 

regarded as a combination of spontaneous neural activities, non-neuronal fluctuations 

(i.e., respiration and cardiac pulsation), and thermal noise from scanner electronics. 

Conceptually, rsFC results from the synchronization of spontaneous neural activities, 

whereas non-neuronal fluctuations and thermal noise are irrelevant to neuronal 

synchronization but are inevitably involved in rs-fMRI signals. Therefore, the 
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physiological contributions in spontaneous oscillations, once quantified, should be a 

meaningful candidate for measuring the sensitivity of functional connectivity. 

However, quantifying the physiological contributions in spontaneous activities is 

not a trivial task. Apart from hardware imperfections (Weisskoff, 1996), the 

physiological contributions in rs-fMRI signals were first addressed by the Krüger 

physiological noise model (Krüger et al., 2001; Triantafyllou et al., 2005). This model 

assumes that the noise variance in the imaging voxels is composed of thermal noise, 

non-neuronal fluctuations, and spontaneous fluctuations of a potentially neuronal origin. 

Therefore, if the thermal noise could be estimated according to rs-fMRI signals, then the 

physiological contributions over thermal noise could be defined as a quality measure for 

rs-fMRI. This concept has previously been addressed, demonstrating the dependence of 

physiological contributions on the acquisition parameters. Triantafyllou et al. 

investigated the improvement of physiological contributions at a high field strength, 

large FA, and low spatial resolution (Triantafyllou et al., 2005). Bodurka et al. 

suggested the optimal fMRI voxel size when the thermal noise matches the 

physiological fluctuations (Bodurka et al., 2007). Additionally, Gonzalez-Castillo 

presented that the physiological contributions were more sensitive to the FA than the 

tSNR was (Gonzalez-Castillo et al., 2011). Although these studies have emphasized the 

importance of physiological contributions for fMRI signals, their quantification 

strategies are time-consuming and unrealistic for application to existing rs-fMRI data 

sets and clinical routines. 

Conceptually, a practical measure for quantifying physiological contributions 

should be voxel-wise, free from region of interest (ROI) selection, and without 

changing parameters in imaging acquisition. In Krüger’s model, the total fluctuation 
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level is directly measured according to the SD of reconstructed fMRI images over time 

(Krüger et al., 2001); however, consensus on estimating thermal noise is difficult to 

achieve because this metric depends on how and where the thermal noise is defined. 

Two methods that are generally used for estimating thermal noise are measuring the 

spatial noise from a noise-only region or measuring the temporal noise without 

radio-frequency (RF) excitation. The first approach is more widely used than the second, 

but its applicability to rs-fMRI data is limited for three reasons: (a) manual selection of 

the noise region outside of the image object is required for calculating the background 

noise level; (b) regardless of imaging artifacts, hundreds of pixels are required in order 

to obtain a reasonable estimate of background noise because the precision of the noise 

estimation is proportional to the square root of the number of pixels in the ROI; (c) the 

suitability of manual ROI selection is questionable in parallel imaging because each 

channel contributes differently across the entire field of view. Compared with the first 

approach, the second approach without RF excitation is a more straightforward 

estimation method for assessing pure thermal noise over time. However, it requires 

hardware, pulse sequence editing, longer acquisition time, and a special reconstruction 

algorithm (Kellman and McVeigh, 2005; Triantafyllou et al., 2011). Although the 

second approach is robust and precise, it is still generally unfeasible as a practical 

estimation surrogate for existing rs-fMRI data sets. 

To address these concerns, we propose a new voxel-wise method for estimating the 

PhysIological Contributions in Spontaneous Oscillations (PICSO) of the acquired 

rs-fMRI data sets. With this method, the thermal noise over time of the rs-fMRI signals 

is estimated in approximation by subtracting the imaging signals between each pair of 

adjacent time points; this is an extended version of the difference method (Kellman and 

McVeigh, 2005; Reeder et al., 2005). This subtractive strategy enables high-frequency 
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signals to be emphasized and low-frequency signals to be attenuated. In such an 

estimation, the physiological contributions are assumed to be negligible after the 

voxel-wise subtraction, and the resultant residues can be regarded as the source of 

thermal noise because the spontaneous rs-fMRI signals generally fluctuate at very low 

frequencies (<0.1 Hz), close to a time-invariant characteristic for every pair of adjacent 

time points. To validate the applicability of the proposed method in thermal noise 

estimation, we first verified that fMRI signals acquired from the phantom possessed a 

zero PICSO value after we performed the calibration procedure. Subsequently, we 

observed a positive relationship between the CS and PICSO at various image 

resolutions because the image resolution has been reported as the major factor affecting 

the CS (Molloy et al., 2014; Triantafyllou et al., 2005; 2006). Moreover, we conducted 

various degrees of spatial smoothing on the rs-fMRI data to confirm that the alteration 

in the CS can be directly reflected by the PICSO. This new approach produces several 

advantages for quantifying the physiological contributions in fMRI signals such as the 

applicability to parallel MRI (Reeder et al., 2005) and to all rs-fMRI data sets for 

quality assurance. 

  

2.2 Material and Method 

2.2.1 Theory 

All rs-fMRI signals can be regarded as a superposition of the intrinsic baseline 

signal and signal fluctuations. The quality of rs-fMRI data is typically measured using 

the tSNR, which is defined as the ratio of the baseline average 𝒔  to its SD over time 

(𝝈): 
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𝒕𝑺𝑵𝑹 = 𝒔
𝝈
 (1) 

Assuming that the rs-fMRI signals are free from non-neuronal fluctuations (i.e., 

respiration and cardiac pulsation), the signal variance can be separated into thermal 

noise and the desired physiological fluctuations of neural origin (Bianciardi et al., 2009; 

Birn et al., 2008; Chang et al., 2009a; Glover et al., 2000). According to Krüger’s model, 

the total signal fluctuations in the fMRI signal (𝝈) are the square-law sum of the 

Gaussian thermal noise (𝝈𝟎) and physiological fluctuations (𝝈𝒑), expressed in equation 

form as 𝝈 = 𝝈𝟎𝟐 + 𝝈𝒑𝟐 (Krüger et al., 2001), where 𝝈𝟎 is independent of the fMRI 

signal intensity and 𝝈𝒑 is scaled relative to the image intensity. Estimating the variance 

of both total fluctuation level and thermal noise facilitates calculating the ratio of 

physiological fluctuations to thermal noise, which is determined using Eq. (2): 

𝝈𝒑
𝝈𝟎
= 𝝈

𝝈𝟎

𝟐
− 𝟏 (2) 

where the 𝝈𝒑
𝝈𝟎

 ratio represents the fMRI PICSO and can be regarded as the 

sensitivity surrogate in the rs-fMRI signals. Additionally, for any non-ideal 

circumstance that causes the ratio of total fluctuation level over thermal noise to be less 

than unity, the PICSO value would be set to zero.  

2.2.2 Image Acquisition 

A total of 12 right-handed healthy volunteers (age: 26.4 ± 2.1 y, females/males: 6/6) 

were enrolled in this study. All participants declared that they fully understood the 

experimental procedure and provided written informed consent. The entire procedure 

was approved by the Institutional Review Board of National Yang-Ming University. 

Data were acquired using a Siemens 3T Trio system with a 12-channel head coil. To 
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verify the accuracy of the thermal noise estimation in the PICSO, a spherical water 

phantom consisting of 1.25 g of NiSO4 ∙ 6H8O per 1000 g of distilled water was 

scanned using identical imaging protocols. T1-weighted structural images were obtained 

using the MP-RAGE sequence (TE = 2.27 ms, repetition time [TR] = 1.9 s, inversion 

time [TI] = 900 ms, FA = 9°, 176 slices with 1 × 1 × 1 mm3 voxels without an interslice 

gap). Given the fact that the weightings of thermal noise deviate with voxel sizes 

(Molloy et al., 2014), we acquired the rs-fMRI signals at various image resolutions as 

the dominant factor to manipulate the PICSO values for each single subject. Thereafter, 

the single-shot gradient-echo echo planar imaging (GE-EPI) sequence was adopted to 

acquire rs-fMRI data at four voxel sizes (1.3 × 1.3 × 2, 2 × 2 × 2, 3 × 3 × 3, and 5 × 5 × 

5 mm3) by using the parameters shown in Table 2-1. Each session contained 150 time 

points and three dummy scans with a total acquisition time of 7 min 38 s. The scanning 

order of the four EPI sessions was counterbalanced in a Latin-square manner to reduce 

the systematic bias resulting from the scanning order of the EPI sessions. Because of the 

limited brain coverage for sessions at the highest spatial resolution (1.3 × 1.3 × 2 and 2 

× 2 × 2 mm3), we assigned a slice orientation along the anterior and posterior 

commissure lines with the midline of the slab reaching the bottom edge of the corpus 

callosum to cover the thalamus (THAL) and posterior cingulate cortex (PCC). For the 

other sessions, we maintained the same slice orientation and ensured the coverage of the 

entire brain. The participants’ heads were immobilized using cushions to minimize 

motion during image acquisition. During the rs-fMRI sessions, the participants were 

instructed to open their eyes, relax, and not think of anything specific. To minimize the 

contributions of non-neuronal sources embedded in the rs-fMRI signals, simultaneous 

cardiac and respiratory recordings were acquired using a built-in pulse oximeter and 

pneumatic belt, respectively (sampling rate = 50 Hz). A B0 field map was acquired 
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using a dual-echo gradient echo sequence (TE1 = 10 ms, TE2 = 12.46 ms, TR = 600 ms, 

FA = 70°, 33 slices with 1.5 × 1.5 × 4 mm3 voxels) to correct image distortions caused 

by the inhomogeneity of B0. The total acquisition time was 38 min 38 s. 

Table 2-1 Acquisition parameters for the EPI with four spatial resolutions  

 

2.2.3 fMRI Processing 

All scanning images were preprocessed using AFNI (Cox, 1996) and FSL 

(Jenkinson et al., 2012). During preprocessing, spatial smoothing is a crucial factor that 

affects the tSNR (Triantafyllou et al., 2006) and CS (Wu et al., 2011); thus, to prevent 

the additional smoothing induced by spatial normalization, all functional images were 

analyzed in the native space, including both preprocessing and the seed-correlation 

analysis, and finally transformed into the MNI space for group analysis. Figure 2-1 

demonstrates the workflow of phantom–human preprocessing. The phantom data set 

first underwent standard preprocessing (Figure 2-1) including motion correction, field 

map correction, and despiking. Subsequently, different detrending orders were 

performed to verify the signal drift induced by system instability.  

Acquired Voxel Size (mm3) FOV (mm) Matrix Size 

1.3 × 1.3 × 2.0 162 × 162 128 × 128 × 27 

2.0 × 2.0 × 2.0 256 × 256 128 × 128 × 27 

3.0 × 3.0 × 3.0 192 × 192 64 × 64 × 35 

5.0 × 5.0 × 5.0 320 × 320 64 × 64 × 24 

TR = 3000 ms, TE = 35 ms, flip angle = 87°,  

Partial Fourier = 6/8, bandwidth = 1260 Hz/px, Echo spacing = 0.86 ms. 
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Figure 2-1 Flowchart of the rs-fMRI preprocessing procedure and PICSO 

estimation approach 

 

The detrending order was then determined when the thermal noise was equal to the 

total fluctuation level because the phantom possessed the stationary baseline signal and 

lacked physiological fluctuations. For the human data, the effects of cyclic cardiac 

pulsation and respiration were first removed using RETROICOR with second-order 

Fourier series expansion (3dretroicor in AFNI) (Glover et al., 2000). Motion correction 
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was then performed using FSL (mcflirt) to minimize possible head movement for each 

rs-fMRI time series. Retrospective field-map correction was then conducted using FSL 

(fugue) to eliminate the image distortions caused by the field inhomogeneity. The spike 

(3dDespike in AFNI) and estimated polynomial trends were removed from the time 

series. Moreover, because head motion at both the individual and group levels can 

contribute to spurious correlations (Power et al., 2012; 2015), we examined the motion 

by using mean framewise displacement (FD) for the entire rs-fMRI data set. All 

rs-fMRI data fulfilled the motion criteria (i.e., mean FD < 0.3 mm). To further examine 

the effects of head motion on the PICSO, we performed a correlation analysis between 

the PICSO and mean FD for comparison. 

2.2.4 Estimating the Thermal Noise and PICSO 

After the preprocessing, for a given voxel, the tSNR was determined using Eq. (1) 

according to the ratio of the mean signal intensity 𝒔 to the SD	𝝈 of a series of 150 

functional images. Because the rs-fMRI signals were modeled as the sum of true BOLD 

intensity and the superimposed temporal noise, which following a Gaussian distribution 

(Wink and Roerdink, 2006), the slow fluctuations in rs-fMRI in adjacent acquisitions 

were assumed to be canceled out by subtraction, resulting in Gaussian-noise residue. 

Therefore, the voxel-wise thermal noise 𝝈𝟎 was determined by calculating the SD of a 

series of subtractive images between adjacent scans and divided by 𝟐 because the SD 

of the subtracted Gaussian noise is theoretically increased by 𝟐 (Reeder et al., 2005). 

After the maps of thermal noise 𝝈𝟎 and total noise 𝝈 were calculated, the PICSO map 

was determined as the ratio of the variance of the total fluctuation level to the thermal 

noise, as shown in Eq. (2). Subsequently, the tSNR and PICSO values were averaged 

within the predefined ROIs for a given data set at various spatial resolutions. For the 
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phantom results, we expected the thermal noise to be identical to the total fluctuation 

level, and the PICSO index to be zero. 

2.2.5 Seed-Based Correlation Analysis for Functional Connectivity 

We conducted a seed-based correlation analysis by using the THAL to represent 

the subcortical structures and the PCC to signify the cortex representative. According to 

the data sets of four resolutions, the seed regions were identified in the native space 

through the following three steps: (1) The seed points of the left THAL and PCC were 

first defined using the MNI coordinates (−7, −16, 6) and (2, −51, 27), respectively 

(Greicius et al., 2003; Guldenmund et al., 2013). (2) These seed points were inversely 

transformed from the MNI space back to the reference data set (3 × 3 × 3 mm3) in the 

native space, and the native seed regions were then prescribed a sphere with a 5-mm 

radius on the reference data set. (3) The native seed regions of the other resolutions (i.e., 

1.3 × 1.3 × 2, 2 × 2 × 2, and 5 × 5 × 5 mm3) were transformed from the native seed 

region on the reference data set to match the image resolutions by using FSL (flirt). 

Following these steps ensured that the native seed regions were identical among the 

various imaging sessions to prevent the bias of seed size and the resulting CS.  

Prior to FC calculation, we conducted nuisance regression by using the following 

10 covariables: six affine motion parameters, two temporal variations of the respiration 

volume and heart rate (Chang et al., 2009a), and the mean time series of white matter 

(WM) and cerebrospinal fluid (CSF). The WM and CSF masks were generated from the 

segmented T1 anatomical image by using FSL fast with a threshold 50% probability, 

and transformed to match the image resolutions. Subsequently, the FC maps were 

obtained through a seed-regression analysis in the native space by extracting the average 

residual time series from the resolution-matched seed regions and using it as the 
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regressor against every voxel in the brain by AFNI (3dDeconvolve). The correlation 

maps from the regression model were then converted to Fisher’s z maps. For each seed, 

the same procedures for seed prescription and seed correlation were applied to the four 

image resolutions and four smoothing levels, resulting in 16 FC maps for each 

participant. Setting the smoothing levels lower than the acquired image resolution did 

not affect the data sets; therefore, we report only 10 FC maps corresponding to the 

effective changes in spatial resolution. For the group analysis, the resulting z maps were 

normalized to the MNI space for a one-sample t test (3dttest++); the significance level 

was set to FDR-corrected p < 0.01 (3dFDR) with an explicit common mask among the 

participants. The normalization process is detailed in the following subsection. 

2.2.6 Normalization after Functional Connectivity 

To avoid imposing extra smoothing effects on PICSO estimations, we only applied 

spatial normalization for visualizing group-level index maps. The first volume of the 

functional data sets in the four acquired voxel sizes was used as the reference scan to 

estimate the transformation matrix. Spatial normalization was applied to transform the 

FC maps in the native space to the MNI space by using the predefined transformation 

matrix. The predefined transformation matrix that was used to transform the FC maps 

from the native space to the MNI space was produced using a two-stage (the reference 

scan with 3 × 3 × 3 mm3 spatial resolution) or three-stage process (the scans with other 

spatial resolutions). For the reference data set with an acquired voxel size of 3 × 3 × 3 

mm3, the reference scan was aligned with the T1 image (boundary-based registration). 

This aligned image was then nonlinearly warped to the MNI space by using the warping 

matrix, which was determined by warping the native T1 image to the MNI T1 image 

(fnirt). Next, the transformation matrices from the previous two stages were combined 
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into a two-stage reference scan matrix to minimize the interpolation effect during spatial 

normalization. The other functional scans with the acquired voxel size beyond 3 × 3 × 3 

mm3 were registered to the reference scan (flirt) prior to the two-stage process to 

produce a three-stage transformation matrix. Finally, all the FC maps were warped to 

the MNI space with a spatial resolution of 2 × 2 × 2 mm3 by using the two- or 

three-stage transformation matrices.  

2.2.7 Resolution and Spatial Smoothing  

To investigate whether the CS alterations could be directly reflected by the quality 

measurements (tSNR and PICSO), we manipulated multiple noise levels by processing 

the data sets with various degrees of smoothness. The smoothness of each preprocessed 

fMRI data set was controlled by applying a smoothing kernel until the predefined 

uniform full-width-at-half-maximum (FWHM) (measured in millimeters) was reached, 

matching the spatial resolutions of the acquired images (i.e., 2 × 2 × 2, 3 × 3 × 3, and 5 

× 5 × 5 mm3). Notably, the FWHM is the inverse of the shortest distance that 

discriminates two points, and is determined according to the acquired voxel size and 

applied smoothing level. We did not apply the conventional smoothing method with a 

fixed Gaussian kernel because of the uncontrolled FWHMs; instead, we expanded the 

point spread function to specific levels to compensate for the intrinsic point spread 

functions of image acquisition, which might have differed among the participants.  

2.2.8 ROI Analysis  

To investigate whether the effect of the spatial resolution on the CS was consistent 

with that on both quality measurements (tSNR, and PICSO), Pearson’s correlation 

analysis was conducted among the CS, tSNR, and PICSO in both the cortical and 

subcortical areas. The left THAL (L THAL) and PCC were chosen for studying the 
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local rsFC within the thalamic network and default mode network (DMN), and the right 

THAL and medial prefrontal cortex (MPFC) were set as proxies for examining the 

strength of distant rsFC within these networks. The selected ROIs of the thalamic 

network were obtained from the MNI template embedded in FSL and those of the DMN 

were obtained from a previous study (Smith et al., 2009). All ROIs defined in the MNI 

space were warped to the native space corresponding to each acquired voxel size 

through inverse spatial normalization. The ROI analysis was performed to quantify the 

mean PICSO index, tSNR values, and CS in the native space. In addition, at the same 

FWHM, repeated-measures analysis of variance (ANOVA) was employed to compare 

the averaged PICSO values among the data sets in various voxel sizes, and Pearson’s 

correlation analysis was used to examine the relationship between the quality 

measurements (tSNR and PICSO) and CS. Additionally, to further examine whether 

RETROICOR and imaging resolution affected the noise estimation, the average of both 

𝝈𝟎 and 𝝈 within the predefined ROIs was examined using two-way repeated-measures 

ANOVA (a 2 × 4 design, Factor 1: with and without applying RETROICOR, Factor 2: 

the four acquired imaging resolutions).  

 

2.3 Result 

2.3.1 PICSO Calibration and Estimation  

Phantom data were used in the first step of calibration; Figure 2-2a depicts the 

total fluctuation level as a function of thermal noise under different voxel sizes of 

acquisition (1.3 × 1.3 × 2, 2 × 2 × 2, 3 × 3 × 3, and 5 × 5 × 5 mm3) and various 

detrending orders in preprocessing. The total fluctuation level decreased as the 

detrending order was set from linear, quadratic to cubic polynomial, whereas the 
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thermal noise was free from the effect of detrending, indicating that signal trends 

contributed dominantly to the estimation of total fluctuation level. The influence of 

detrending on the fMRI time series is shown in Figure 2-2b for different acquired voxel 

sizes. With the detrending order as cubic polynomial, the scatter points in Figure 2-2a 

are located on the identity line (PICSO = 0) among different acquired resolutions, 

verifying the reliability of thermal noise estimation on the basis of the subtracting 

procedure (Dietrich et al., 2007; Reeder et al., 2005; Triantafyllou et al., 2011). 

Using the human data set as the second step of calibration, we attempted to 

validate that 𝝈 is sensitive to physiological noise, but 𝝈𝟎 is not. We conducted a 

repeated-measure two-way ANOVA to test the RETROICOR effect on both thermal 

noise and total fluctuation level within the predefined seed-side ROI. For the L THAL, 

the 𝝈 estimation of data processed with RETROICOR differed significantly from that 

processed without RETROICOR (F(1, 10) = 30.12, p < 0.05), whereas the 

RETROICOR process did not significantly affect the estimation of 𝝈𝟎 (F(1, 10) = 0.87, 

p = 0.37). In the PCC, the 𝝈 estimation of data processed with RETROICOR differed 

significantly from that processed without RETROICOR (F(1, 10) = 32.34, p < 0.05), 

whereas the data processed with RETROICOR did not significantly affect the 

estimation of 𝝈𝟎 (F(1, 10) = 0.02, p = 0.88). For testing this concept throughout the 

brain, we adopted the same test for multiple ROIs in the MNI template embedded in 

FSL (Harvard–Oxford Subcortical Structural Atlas). Because of the limited spatial 

coverage of the acquired images, the ROIs could be used for testing only the bilateral 

cerebral cortex, THAL, caudate, putamen, and pallidum. The results are included in this 

manuscript as supplementary information (Table 2-2). The observations indicated that 

the 𝝈𝟎  estimation is appropriate for estimating the noise, which is irrelevant to 
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physiology. Considering the influence of head motion on the PICSO estimation, we 

performed a correlation analysis to test the association between the PICSO values in the 

predefined ROIs and mean FD. No significant correlations were detected between the 

mean FD and PICSO for any ROIs, including the bilateral THAL, PCC, and MPFC (p > 

0.35).  

 

Figure 2-2 PICSO calibration using phantom data 

(a) Total fluctuation level and the estimated thermal noise depend on the acquired spatial 

resolution and the preprocessing steps. The solid line represents the identity line (i.e., 

PICSO = 0). The solid black rectangle represents the results processed by motion 

correction (M) and field-map correction (F). Results with different levels of detrending 

(D) orders are denoted as D1, D2, and D3. The thermal noise and total fluctuation level 

showed identical changes when the detrending order was set as a cubic polynomial. (b) 

Corresponding time series without detrending and with different detrending orders 

among the four acquired voxel sizes. Time series processed without detrending and 

processed with the first, second, and third detrending orders are represented by the black, 

red, blue, and green lines, respectively. The numbers that appear on the left side of the 

time series represent the average signal intensity. Each line space indicates an intensity 

increment of 10. 
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Figure 2-3 shows the PICSO map from a single subject as a function of the 

acquired voxel sizes (1.3 × 1.3 × 2, 2 × 2 × 2, 3 × 3 × 3, and 5 × 5 × 5 mm3, without 

smoothing). The PICSO value increased with the acquired voxel size and presented the 

spatial specificity. The PICSO value in the neocortex was higher than that in the 

subcortical region. For all cortical regions, the PICSO value in the posterior brain was 

higher than that in the anterior brain, suggesting relatively high physiological 

contributions in the posterior brain. 

Table 2-2 The RETROICOR effect on both 𝝈𝟎 and 𝝈 within ten ROIs 

 𝝈𝟎 𝝈  𝝈𝟎 𝝈 

ROI F p F p   ROI F p F p 

L Cerebral 

Cortex 
0.15 0.71 15.72 0.00* 

R Cerebral 

Cortex 
0.01 0.94 10.34 0.01* 

L Thalamus 0.85 0.38 30.26 0.00* R Thalamus 0.19 0.67 20.51 0.00* 

L Caudate 1.21 0.30 9.38 0.01* R Caudate 1.68 0.22 17.01 0.00* 

L Putamen 0.21 0.65 14.36 0.00* R Putamen 0.00 0.99 11.59 0.01* 

L Pallidum 1.63 0.23 20.33 0.00* R Pallidum 1.51 0.25 21.43 0.00* 

A p-value of less than 0.05 was considered statistically significant and was designated 

with one (*) asterisk.  

Grey color indicates no significant noise differences in repeated-measure two-way 

ANOVA tests.  

 

2.3.2 PICSO Modulated by the Acquired Voxel Size  

The diagonal pictures of the upper panels in Figure 2-4 and Figure 2-5 depict the 

FC as a function of the acquired voxel sizes in the thalamic network and DMN, 

respectively. In both networks, the mean CS increased monotonically with the voxel 

size (p < 0.05). As the voxel size increased, the mean CS (±SD) in the L THAL 

increased from 0.06 (±0.03) to 0.16 (±0.09), 0.28(±0.10), and 0.40 (±0.09), and the 

corresponding PICSO increased from 0.00 (±0.00) to 0.21 (±0.14), 0.41 (±0.21), and 
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0.79 (±0.24). In the PCC, as the voxel size increased, the mean CS increased from 0.09 

(±0.01) to 0.19 (±0.01), 0.27 (±0.02), and 0.32 (±0.03), and the corresponding PICSO 

increased from 0.22 (±011) to 0.49 (±0.15), 0.70 (±0.20), and 0.95 (±0.22). 

 

Figure 2-3 Voxel-wise PICSO map from a single subject 

The PICSO value increases as a function of the acquired voxel sizes (1.3 × 1.3 × 2, 2 × 2 

× 2, 3 × 3 × 3, and 5 × 5 × 5 mm3, without smoothing). Additionally, the PICSO value 

also possesses spatial specificity; the PICSO value of the posterior brain is generally 

larger than that of the anterior brain. 

 
2.3.3 PICSO Modulated by the Smoothness  

The off-diagonal pictures in the upper panels of Figure 2-4 and Figure 2-5 show 

the smoothing effects of the FC maps on the acquired voxel sizes in the thalamic 

network and DMN, respectively. For any fixed voxel size in acquisition, spatial 

smoothing substantially enhanced the CS and spatial extent within the network. 

However, when the FWHM was controlled after smoothing, the impact of the acquired 

voxel size on the CS was more substantial than the impact of smoothing. For example, 
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the CS of the data acquired at 2 × 2 × 2 mm3 was significantly stronger than that of the 

data acquired at 1.3 × 1.3 × 2 mm3 and smoothed to the uniform FWHM of 2 × 2 × 2 

mm3 (FDR-corrected p < 0.01). The lower panels of Figure 2-4 and Figure 2-5 show 

the relationships between the PICSO values and the fixed FWHMs after smoothing; the 

bars represent the multiple voxel sizes in acquisition. 

 

Figure 2-4 Group-level thalamic connectivity as a function of spatial resolution 

(Upper) The thalamic connectivity varies with smoothness (FWHMs = 1.3, 2, 3, and 5 

mm) under the four acquired voxel sizes. Although the spatial extent of FC is preserved 

among the various voxel sizes, the CS increases with the smoothness. (Lower) Bar chart 

illustrating the corresponding PICSO value for each smoothness level of the acquired 
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voxel sizes. Both the red and blue lines indicate significant differences in the paired 

comparisons (LSD-corrected p < 0.01). 

 

 

Figure 2-5 Group-level DMN connectivity as a function of spatial resolution 

(Upper) DMN connectivity varies with smoothness (FWHMs = 1.3, 2, 3, and 5 mm) 

under the four acquired voxel sizes. (Lower) Bar chart illustrating the corresponding 

PICSO values for each smoothness level of the acquired voxel sizes. Both the red and 

blue lines indicate significant differences in the paired comparisons (LSD-corrected p < 

0.01). 
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For example, for the final FWHM of 3 mm in the lower panel of Figure 2-4, the data 

with acquired voxel sizes of 2 × 2 × 2 and 3 × 3 × 3 mm3 had higher PICSO values than 

those with an acquired voxel size of 1.3 × 1.3 × 2 mm did, and no significant difference 

in the PICSO values was observed between the data with acquired voxel sizes of 2 × 2 × 

2 and 3 × 3 × 3 mm. 

 

2.3.4 Relationship between the PICSO and CS  

To verify the efficacy of using the PICSO or tSNR as quality measures for rs-fMRI, we 

conducted a correlation analysis to quantify the association between the CS and the two 

quality measurements after we controlled the smoothness. According to the data of three 

voxel sizes (1.3 × 1.3 × 2, 2 × 2 × 2, and 3 × 3 × 3 mm3, which are conventionally 

adopted in human studies, all of which were smoothed to a fixed FWHM of 3 mm), 

Figure 2-6 shows the relationship between the CS and both quality measurements 

(PICSO and tSNR) within the predefined seed ROIs. Each point in Figure 2-6 indicates 

an individual subject, and the trend lines denote the coupling between the quality 

measurements and the CS among the three data sets. The PICSO and CS demonstrated a 

large significantly positive correlation within the L THAL (r = 0.82, p < 0.05) and a 

medium significantly positive correlation with the PCC (r = 0.33, p < 0.05). However, 

the tSNR, which is commonly adopted to test fMRI quality, showed a nonsignificant 

correlation with the CS. These phenomena indicated the high sensitivity of the PICSO 

index to the FC in the rs-fMRI signals.  
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Figure 2-6 Relationship between both quality measurements (PICSO and tSNR) 

and the CS in the rs-fMRI data sets within the L THAL and PCC 

At a fixed FWHM of 3 mm, each point in the scatter plot indicates an individual subject, 

and the linear trend line denotes the coupling among the three data sets of the acquired 

voxel sizes of 1.3 × 1.3 × 2, 2 × 2 × 2, and 3 × 3 × 3 mm3. Only the trend lines between 

the PICSO and CS correlate significantly within the L THAL (r = 0.82) and PCC (r = 

0.33). 

 

2.4 Discussion 

Recently, data quality in rs-fMRI has received substantial attention because 

different imaging centers often adopt different rs-fMRI protocols. In principle, tSNR 
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could be used as a quick measure of rs-fMRI data quality, but it does not guarantee 

reliable rsFC outcomes. Previous studies have emphasized the temporal fluctuations in 

fMRI signals and the potential of physiological contributions to serve as a sensitivity 

indicator of rs-fMRI quality (Triantafyllou et al., 2005). Nevertheless, current 

quality-evaluation strategies that involve manual ROI selection for determining 

physiological contributions are time-consuming and unrealistic when processing 

rs-fMRI data sets derived from a large sample (Molloy et al., 2014; Triantafyllou et al., 

2005; 2006). Because of practical concerns, we first proposed a novel approach for 

estimating the physiological contributions in rs-fMRI signals under the assumption that 

the ultra-slow trends and low-frequency neuronal fluctuations can be minimized using 

temporal subtraction. We titled this estimation index as the PICSO for rs-fMRI, similar 

to the notion of the contrast-to-noise ratio in the stimuli-evoked fMRI signals. Crucially, 

the reliability of the proposed approach was verified through the phantom data with four 

frequently adopted voxel sizes (Figure 2-2), and the PICSO index was shown to be 

more sensitive to the resulting rsFC than the tSNR was. Second, our analysis of the 

various spatial resolution revealed that reducing the acquired image resolution or 

adopting a large smooth kernel increased the rsFC and physiological contributions, 

which is consistent with previous reports (Molloy et al., 2014; Triantafyllou et al., 2005; 

2006). In brief, we achieved the following three aims of this study: (1) calibrating the 

PICSO estimation procedures by using a phantom, (2) verifying the high sensitivity of 

PICSO for detecting the CS (Figure 2-6), and (3) determining that the acquired voxel 

size had a larger effect on the PICSO than the smoothness did (lower panels in Figure 

2-4 and Figure 2-5). Moreover, the PICSO index has the advantages of avoiding 

additional acquisition, facilitating a practical quality evaluation for existing fMRI 

databases derived from a large sample, and enhancing the rs-fMRI reliability of future 
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clinical investigations. Notably, however, the PICSO represent the weighting of 

physiological fluctuations over the thermal noise of a single voxel, whereas the CS is 

the temporal correlation between two voxels or regions. They differ conceptually, and 

their relationship is described as follows. High CS outcomes in regions must result from 

the sufficient PICSO (high physiological contribution) values in these regions; however, 

regions with high PICSO values do not directly indicate their FC. Accordingly, the 

linear correlation between the CS and PICSO (Figure 2-6) was medium to large when 

different noise levels were modulated (by imaging resolution or spatial smoothing), but 

in actuality (with a fixed noise level), the PICSO can only be regarded as the prior 

reliability measure for the rsFC. 

According to the physiological noise model in BOLD-fMRI (Krüger et al., 2001; 

Triantafyllou et al., 2005), the PICSO index was proposed to approximately estimate the 

contribution of intrinsic spontaneous activities by estimating the ratio of 𝝈𝒑 over 𝝈𝟎 

in a voxel-wise manner without additional sequence editing. Between these two 

parameters, estimating 𝝈𝟎  is more uncertain and difficult due to the existence of 

multiple approaches for doing so. The approach of estimating 𝝈𝟎  without RF 

excitation has recently been well adopted because it is a straightforward concept, but its 

requirements of extra sequence editing and image reconstruction greatly lengthen the 

time required for experiments and analysis, rendering it almost impossible to apply to 

existing RS-fMRI data sets (Kellman and McVeigh, 2005; Triantafyllou et al., 2011). 

For image processing, a general method for estimating 𝝈𝟎 is to calculate the spatial 

variance within a selected ROI outside of the brain region, and a subtractive imaging 

method was employed to subtract images from the selected two adjacent images and 

estimate the thermal noise in an ROI manner (Reeder et al., 2005). However, these 
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ROI-based methods are not designed for generating a voxel-wise map and lack temporal 

information for rsFC. By contrast, we used a series of subtractive images from every 

two adjacent time points to enable accurate measurement of local 𝝈𝟎, regardless of the 

image spatial noise, and to enable the practical application of the proposed method to 

existing rs-fMRI data sets. This subtractive strategy was based on two assumptions: (1) 

the temporal thermal noise follows a Gaussian distribution (Wink and Roerdink, 2006), 

and (2) the resting-state spontaneous activity does not change quickly for each pair of 

adjacent time point. If either assumption is violated by the rapid signal changes because 

of a subject’s head motion, then the robustness and accuracy of the PICSO estimation 

might decrease. Thus, for preprocessing, the rs-fMRI data were processed using motion 

correction and despiking to minimize the motion impact prior to the PICSO calculation. 

Although no existing motion correction methods could guarantee that the data were 

completely free from motion, the residual motion effect in our approach would be 

considered as the thermal noise because of the high-frequency enhancement by the 

subtractive strategy, thus reducing the PICSO value. Under the general inclusion criteria 

with the mean FD of less than 0.3 in our data set, the PICSO value showed no 

correlation with the mean FD, suggesting that head motion does not affect the PICSO. 

 Moreover, any slight signal drift during image acquisition also affects the PICSO 

estimation; hence, this drift should be corrected using the detrending procedure, the 

order of which might differ among scanners. In our preprocessing, the detrending order 

was set to the third order on the basis of the phantom verification because, in the 

phantom data, when the total fluctuation level is equal to the thermal noise; this 

indicates no physiological fluctuation contributions. Our phantom results (Figure 2-2a, 

with various acquired voxel sizes) verified the assumptions in the plot of 𝝈 versus 𝝈𝟎 
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that followed the identity line after detrending, and the thermal noise determined by the 

proposed approach showed high stability under various acquired resolutions, 

demonstrating the reliability of the subtractive procedure (Dietrich et al., 2007; Reeder 

et al., 2005; Triantafyllou et al., 2011). Moreover, Figure 2-6 illustrates that the PICSO 

and CS were positively correlated, but the tSNR and CS did not show a significant 

correlation. Therefore, according to the two assumptions, PICSO estimation can be a 

convenient quality-assurance measure in the preprocessing procedure for rs-fMRI data 

sets. Notably, a higher PICSO value was displayed in the visual cortex compared with 

that in the THAL (Figure 2-3), which is consistent with the findings of Bianciardi et al. 

(2009). They also reported that the visual cortex showed higher sensitivity to the 

spontaneous activity than the entire gray matter did (Bianciardi et al., 2009). Because 

the rs-fMRI signals are based on the BOLD mechanism, the PICSO inhomogeneity 

among the brain regions implied a regional disparity in the cerebrovascular structure. 

The off-diagonal upper panels in Figure 2-4 and Figure 2-5 reveal the substantial 

influence of the spatial resolution on the rsFC, showing that the PICSO (lower panels in 

Figure 2-4 and Figure 2-5) is an effective index for reflecting the FC changes. The 

results indicate that the brain areas with low PICSO values were confounded by thermal 

noise, causing a low CS and reducing the spatial extent. This may explain why studies 

have seldom reported high-resolution rsFC results without spatial smoothing. Although 

the relationship between the PICSO and CS was explicit, the PICSO values were lower 

than anticipated (approximately 0.00–0.95). To ascertain the confidence level, as a 

reference in the PICSO estimation, we examined the data sets of Bianciardi, who 

estimated the contributions of various noise sources in rs-fMRI data by using regression 

approaches (Bianciardi et al., 2009). After the signal drift and nonneuronal fluctuations 

were removed, the fMRI variance of Bianciardi’s 7T data sets resulted in a PICSO value 
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of 0.6 in the whole brain gray matter and 1.7 in the visual cortex, indicating the spatial 

specificity of the PICSO value among brain regions. Similarly, according to their image 

resolution (1.25 × 1.25 × 2 mm3), the PICSO in the visual cortex was approximately 0.8 

in the visual cortex of our high-resolution 3T data set (1.27 × 1.27 × 2 mm3). We 

concluded that this PICSO value was reasonable because the PICSO index is linearly 

proportional to the field strength, which is consistent with Huettle’s statement that 

“while thermal noise increases linearly with increasing field strength, physiological 

noise increases quadratically with the field strength” (Chu et al., 2012). In current 

hardware settings, although the PICSO value in subcortical regions is low compared 

with the thermal noise level, this difficulty can be alleviated through spatial smoothing 

(Figure 2-4) or elevating the field strength. 

Traditional spatial smoothing in fMRI preprocessing involves applying a smooth 

kernel with a fixed kernel size rather than smoothing until a uniform 

point-spread-function is reached, a procedure that was performed in this study. However, 

uniform smoothing was necessary in the current study to control the effective spatial 

resolution (i.e., the FWHM level) and to compare the PICSO and CS with the same 

criteria. Moreover, the artificial connectivity induced by head motion has attracted 

global attention in the rs-fMRI field (Power et al., 2014); applying uniform smoothness 

facilitates minimizing the motion-induced variability among participants (Scheinost et 

al., 2014). The intrinsic blurring factors related to motion were minimized because the 

uniform smoothing performed using 3dBlurToFWHM entailed employing an iterative 

estimation scheme until an approximation of the desired smoothness was reached. 

The PICSO value was inversely related to the effective spatial resolution and was 

affected by the acquired voxel size and the applied spatial smoothing. We defined the 
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spatial resolution of the acquired voxel size (SRv) according to the intrinsic FWHM 

before smoothing, whereas the spatial resolution of smoothing (SRs) was associated 

with the final elevated FWHM (after the smoothing was executed) to a predefined level, 

regardless of high-resolution acquisition. Comparing the two factors at the same 

effective spatial resolution revealed that the SRv reduced 𝝈𝟎 substantially more than 

the SRs did. In addition, increasing the voxel size increased the 𝝈/𝝈𝟎 ratio, thus 

enhancing the PICSO value. At the same FWHM, spatial smoothing did not enhance the 

PICSO as significantly as the voxel size effect did. These results accord with those of a 

previous study, in which the significance of the acquired spatial resolution to the 𝝈/𝝈𝟎 

ratio exceeded that of the smoothing (Triantafyllou et al., 2006).  

Consistent with a previous study (Triantafyllou et al., 2006), spatial smoothing 

greatly enhanced the tSNR, particularly for the data acquired at a high spatial resolution. 

For example, before spatial smoothing, the average tSNR (±SD) in the PCC increased 

from 32.8 (±1.9) to 60.5 (±7.4) and to 79.9(±11.2) as the voxel size was increased from 

1.3 × 1.3 × 2 to 2 × 2 × 2 mm and to 3 × 3 × 3 mm3, respectively. After data sets were 

spatially smoothed to a fixed FWHM of 5 mm, the average tSNR was 110.3 (±17.0), 

115.4 (±22.6), and 105.0 (±19.3) under the aforementioned three acquired voxel sizes, 

respectively. However, after the data sets were smoothed to a fixed FWHM of 3 mm 

(Figure 2-4 and Figure 2-5), the group-level rsFC with an acquired resolution of 2 × 2 

× 2 mm3 was significantly higher than that with an acquired resolution of 1.3 × 1.3 × 2 

mm3 in the voxel-wise paired t test (uncorrected p < 0.01), suggesting that the rsFC was 

more enhanced by increasing the acquired voxel size than by increasing the smoothness. 

Visual inspection revealed that, when the effective spatial resolution was set at 3 × 3 × 3 

mm3, as shown in Figure 2-4, the group-level rsFC with an acquired voxel size of 2 × 2 
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× 2 mm3 was slightly higher than that with an acquired voxel size of 3 × 3 × 3 mm3. 

This could be due to the strategy of smoothing to a predefined FWHM compensating 

for the confounding factors caused by head motion, which reduced variability among 

participants and thus enhanced the statistical results (Scheinost et al., 2014). Although 

the group-level connectivity maps from both acquired voxel sizes appeared to differ, no 

significant difference was observed in the voxel-wise paired t test (uncorrected p < 

0.01). Overall, we suggest acquiring data at the desired resolution, rather than 

smoothing the high-resolution fMRI data to produce reliable rsFC. 

We present the PICSO index as an approximate index for estimating the 

contributions of physiological fluctuations in spontaneous rs-fMRI oscillations without 

requiring additional sequence editing or time-consuming ROI selection. In this study, 

we carefully calibrated the PICSO index by using the phantom data sets at the first step. 

Second, the resulting PICSO and CS exhibited a high correlation in the thalamic 

network and DMN. Finally, at a fixed effective spatial resolution, the PICSO values 

were more enhanced by increasing the acquired voxel size than by increasing the 

smoothness. These results suggest that, for producing robust rs-fMRI outcomes, directly 

acquiring functional data at a low spatial resolution is more effective than performing 

smoothing after acquiring high-resolution data sets. Caution should be exercised when 

conducting high-resolution acquisition of rs-fMRI signals. In summary, we propose that 

the PICSO index is an effective sensitivity indicator for rs-fMRI signals, which can be 

integrated with existing preprocessing procedures to enable quality assurance for future 

rs-fMRI studies. 
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Chapter	3	
 
Combining	Regional	Homogeneity	and	

Meta-Analysis	to	Improve	Preoperative	Language	

Mapping	with	Resting-state	fMRI	
 

 

 

3.1 Introduction 

The most common application of current clinical fMRI is for localization of 

eloquent cortex in the brain to support neurosurgical intervention to reduce the risk of 

postsurgical functional deficits (Matthews et al., 2006). With the use of intermittent 

periods of task and baseline, fMRI has been widely used as pre-operative mapping 

approach to non-invasively localize functional anatomy to be avoided during surgery 

(Dimou et al., 2013; Giussani et al., 2010), such as the task of silent word generation to 

localize frontal gyrus for expressive language activation (Black et al., 2017). Despite its 

clinical utility, the effectiveness of presurgical task-fMRI mapping is frequently 

compromised by patient’s inadequate compliance due to neurological deficits or altered 

behavior capabilities (Bookheimer, 2007; Pujol et al., 1998). Sedation cannot be used 

because the patient must stay awake to perform tasks during the imaging procedure. 

Thus, these challenges often limit the application of task-fMRI for preoperative 

functional localization. 



doi:10.6342/NTU201802205

 44 

As an adjunct to task-fMRI, resting-state functional MRI (rs-fMRI) has been 

considered as a means of presurgical mapping tool to localizing critical areas without 

task engagements. By measuring the temporal synchronization of these spontaneous 

low-frequency fMRI oscillations (< 0.1 Hz), the resting-state functional networks across 

spatially distinct brain regions can be identified from rs-fMRI signal (Bandettini, 2012; 

Biswal et al., 1995). Additionally, it can be performed when patients are during early 

sleep stages (Fukunaga et al., 2006) and light sedation (Greicius et al., 2008), expanding 

its applicability to patient populations incapable to comply with the task paradigm. 

Recent studies have shown its feasibility of localizing motor and language networks in 

patients with brain tumors (Branco et al., 2016; Cochereau et al., 2016; Mitchell et al., 

2013; Sair et al., 2016; Tie et al., 2014).  

One common approach for detecting rs-fMRI networks is the seed-correlation 

analysis, which is straightforward to correlate the extracted reference time courses 

against every voxel in the brain, but it imposes prior knowledge to select the reference 

time courses by averaging over a seed (Biswal et al., 1995; Shimony et al., 2009). As 

each patient's functional anatomy is unique, language-network localization has been 

reported to possess the substantial individual variability by stimulation mapping in a 

large cohort of 117 patients (Ojemann et al., 1989), and to be heterogeneous distributed 

across brain networks in patients with epilepsy and brain tumor (Mitchell et al., 2013). 

With regard to the impact of seed selection on rsFC, Sohn et al. showed that the 

standardized seeds across healthy subjects lead to inaccurate rsFC calculations, and Yan 

et al. demonstrated diverse rsFC results when placing distinct seed locations (Sohn et al., 

2015; Yan et al., 2013). Therefore, the seed determination of presurgical rs-fMRI 
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mapping is not generalizable, not reliably detected based on anatomic landmark alone, 

and must be evaluated individually.  

By definition, the rs-FC networks are obtained from the temporal correlation of 

every voxel in the brain against the average reference time courses over the specified 

seed region. This averaging within seed region is based on the assumption that the time 

curves in those neighboring voxels are well synchronized, resembling the presumption 

of regional homogeneity (RH). RH measures the local connectivity among neighboring 

voxels of rs-fMRI data, sensitive to the neurophysiological metabolism and neurological 

diseases (Jiang and Zuo, 2016). Leveraging from RH, previous study on healthy 

subjects demonstrated that the uncertainty of seed selection was reduced and the 

sensitivity of rs-FC  detection was improved (Yan et al., 2013). In this study, we 

propose a novel method that further confines the data-driven RH map within the 

functional anatomy based on meta-analysis (MA) to guide the seed selection for 

seed-based rs-fMRI language mapping in patients with brain tumors. The effectiveness 

of the proposed approach was verified by comparing three methods in mapping the 

individual language network: RH+MA (new method), MNI-based seeding approach 

(general method for normal population) and the task-fMRI activation (taken as gold 

standard for individualized mapping). Therefore, two hypotheses were made: (1) the 

performance of mapping language network guided by RH+MA approach is improved 

compared to that guided by the general seeding approach using MNI coordinate, and (2) 

the mapping results by the new approach is equivalent to the seed localization guided by 

task-fMRI activation.  
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3.2 Material and Method 

3.2.1 Participants 

Patients undergoing surgical resection of brain lesion participated in this study, 

approved by the Institutional Review Board at MD Anderson Cancer Center. Before 

inclusion, written informed consent was obtained from each patient in accordance with 

the guidelines. Twenty-five patients with lesion close to language areas, out of the 

seventy-five patient pool, were included in the following analysis. 

3.2.2 Data Acquisition  

Presurgical mapping of the language network for each patient was requested by the 

neurosurgeon because the tumor located near the cortical and subcortical language areas. 

The imaging datasets inclusive of language task-fMRI, rs-fMRI, and 3D T1-weighted 

(T1w) imaging were acquired on a 3T clinical scanner (GE Healthcare, Milwaukee, WI, 

USA). For fMRI acquisition, a T2
*-weighted gradient-echo EPI (GE-EPI) sequence was 

used with the following parameters: repetition time (TR)/echo time (TE) = 2000/25 ms, 

flip angle = 90°, 32 slices with 4-mm thickness and no gap, in-plane resolution = 3.75 

mm × 3.75 mm, parallel imaging with acceleration factor of 2. The 3D T1w image was 

acquired using a gradient-echo sequence (TR/TE/inversion time = 7.4/2.1/400 ms; flip 

angle = 20°; 124 slices with .94 × .94 × 1.2 mm3 voxels). Language task-fMRI included 

a letter fluency (LETT), a category fluency (CAT), and a sentence completion (SENT) 

paradigm. A total of 130 image volumes were obtained from each of the first two 

paradigms, which started with a 20-s rest period, followed by six cycles of 20-s task 

block and 20-s rest interval. For the sentence completion paradigm, a total of 120 image 

volumes were obtained without the last 20-s rest interval. For rs-fMRI, patients were 

asked to keep their eyes closed, not move their head, not fall asleep, and not think of 

anything in particular. The acquisition period was 6 min (a total of 180 volumes).  
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3.2.3 Task-fMRI Analysis  

All analyses were analyzed in the native space using IClinfMRI (), a software for 

integrating fMRI techniques in presurgical mapping and clinical studies, to prevent the 

additional spatial smoothing induced by normalization. The task-fMRI datasets were 

processed using the Task fMRI module with the default procedures, including motion 

correction, aligning to a T1w image with a 2-mm isotropic grid based on 

coordinate-based registration, de-spiking, spatial smoothing with a 4-mm FWHM 3D 

Gaussian kernel, and GLM analysis. Task-fMRI activation map was determined by 

setting a t threshold and a cluster-size threshold, corresponding to AlphaSim corrected p 

< 0.05. For measuring the spatial concordance across three task-fMRI results at 

individual level, the corrected activation maps were transformed as binary masks, and 

the binary masks of three task-fMRI were summed and then divided by three to form an 

individual concordance map (Fig.3-6). The individual concordance map was used to 

generate the task-guided seed for rs-FC analysis on each individual. Furthermore, to 

verify the spatial consistency of functional localization across three seeding approaches, 

a union mask (the united regions of three task-fMRI masks) was prescribed for two 

purposes: (a) using the union mask as the gold-standard of language-mapping for each 

patient (native space), and (b) normalizing the union mask to the MNI space (standard 

space) to generate one normalized probabilistic map of language network from 

task-fMRI across patients.  

3.2.4 Rs-fMRI Analysis by Incorporating Data-driven Regional Homogeneity  

The rs-fMRI data were preprocessed in the Resting-state fMRI module with the 

default procedures: slice timing, motion correction, realignment, de-spiking, detrending, 

regressing out covariates (included six motion parameters and fluctuations averaged 

over two masks of white matter and cerebrospinal fluid), band-pass filtering of 0.01–
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0.08 Hz, and a 4-mm FWHM spatial smoothing. Because head motion leads to spurious 

correlations in rsFC (Power et al., 2012), we examined the head motion of the rs-fMRI 

data set using mean framewise displacement (FD) by FSL (fsl_motion_outliers). All 

rs-fMRI data fulfilled the motion criteria (i.e., mean FD < 0.3 mm). In the following 

RH+MA method, we applied the meta-analysis (MA) to constraining the seed 

candidates within language network and refined the seed-selection process by regional 

homogeneity (RH). The MA map was downloaded from Neurosynth using the term 

“language”, resulting in 885 studies, (Yarkoni et al., 2011) and constrained the results 

within the language regions-of-interest (ROI). This ROI encompasses bilateral middle 

frontal gyrus, bilateral inferior frontal gyrus, bilateral angular gyrus, bilateral 

supramarginal gyrus, and bilateral superior temporal gyrus, implemented by using the 

LONI Probabilistic Brain Atlas (Shattuck et al., 2008). The RH map was calculated 

before spatial smoothing and confined within a mask obtained from inversely 

normalized MA map from MNI space to the native space using SPM12, as demonstated 

in Figure 3-1. Next, seed placements of the rs-fMRI data were positioned at local 

maxima of the RH map in the meta-analysis mask of the anterior/posterior portion of 

the language network (traditional Broca’s/Wernicke’s area). Local maxima of RH+MA 

map were conducted in a voxel-wise manner using AFNI (3dExtrema with the option of 

“-volume”, “-interior”, “-strict”, and “-data_thr”), where a local maximum was 

determined if the value of given voxel is higher than its 26 neighbors. To reduce the 

number of seed candidates within RH+MA map, a threshold was defined by 70 

percentage of a maximum (Figure 3-2), which is inspired by an automatic threshold 

determination method (Voyvodic, 2006). 
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Figure 3-1 The demonstration of RH+MA approach on a representative case 
 

The rsFC maps were calculated with a 6-mm spherical seed centering on local maxima 

of RH+MA map. Generally, for those cases with lesion sites in left 

temporal-occipital/temporal-parietal lobe, the seeds were placed on anterior part of the 

language network. In contrast, for those cases with lesion sites in left frontal lobe, the 

seeds were placed posterior part of the language network. 

 
Figure 3-2 Illustration of searching seed candidates and identifying one of local 
maxima on a representative case 
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3.2.5 Rs-fMRI Analysis by Alternative Approaches  

For comparing RH+MA approach against alternative seed-selection approaches, 

we conducted a seed-based correlation analysis guided by task activation (the 

personalized perspective) and that guided by MNI coordinate (the research perspective). 

In rsFC guided by task-fMRI, the areas of the maximum value within an individual 

concordance map were overlapped to each of the task activation maps, forming seeds 

for following rsFC analysis. Figure 3-3 shows that the seed was positioned at a local 

maximum of single task activation maps within language ROI distant from the lesion. In 

rsFC guided by MNI coordinates, the 6-mm spherical seeds (Rosazza et al., 2014; Yan 

et al., 2013; Zhang et al., 2009) of traditional Broca’s area and Wernicke's area were 

centering on (−51, 27, 18) and (−51, −51, 30), respectively. The adopted coordinates 

were in line with previous studies (Tomasi and Volkow, 2012; Zhu et al., 2014) and 

their spatial location in both render and planar view were shown in Figure 3-4. 

 

 
Figure 3-3 Illustration of seeding on a peak value of a task t-statistic map for a 
representative case 
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Figure 3-4 Location of seed ROIs adopted in the present study 

 

3.2.6 Identification of Language Network form Rs-fMRI Maps  

To identify language network but exclude default mode network from each 

patient’s rs-fMRI maps, we performed a semi-automated template-matching procedure. 

First, we calculated the overlay of each rs-fMRI map against the predefined templates of 

default mode network and predefined language ROIs (Fedorenko et al., 2010; 

Mahowald and Fedorenko, 2016; Yarkoni et al., 2011). These language ROIs were 

derived from single-subject analysis and validated to represent functional characteristic 

of language regions in a large group of 220 healthy subjects (Fedorenko et al., 2010; 

Mahowald and Fedorenko, 2016) and then combined into a single binary mask as a 

language network template (LNT), including the left medial frontal gyrus (MFG), the 

left inferior frontal gyrus (IFG), the left inferior frontal gyrus pars orbitalis (IFGorb), 

the left angular gyrus (AngG), the left posterior temporal (PostTemp), as well as the left 

anterior temporal (AntTemp) regions (Figure 3-5). The default mode network template 

(DMT) was downloaded from Neurosynth with the option of reverse inference using the 

term “default mode” derived from 516 studies (Yarkoni et al., 2011). 
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Figure 3-5 Location of Language ROIs provided by Fedorenko et al. 

 

In template-matching procedure, the Dice coefficient between a template 

(DMT/LNT) and rsFC map was calculated to quantify the spatial similarity between 

two binary masks (Rombouts et al., 1997; Tie et al., 2014). The Dice coefficient, 

between 0 and 1, provides an objective measure of overlap between the voxel numbers 

within the two masks (template and rsFC map in this study). Higher Dice coefficient 

represents higher similarity between masks, as noted by the following equation.  

𝐷𝑖𝑐𝑒	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 	
2 ∙ 𝑉𝑜𝑥𝑒𝑙#HIJKLMNI	∩	PQRS

𝑉𝑜𝑥𝑒𝑙#HIJKLMNI + 𝑉𝑜𝑥𝑒𝑙#PQRS
 

Since the Dice coefficient quantifies the proportion of supra-threshold voxels 

between measurements, it varies according to the threshold used. For this reason, we 

calculated Dice coefficients between a template and a rsFC map at a fixed z threshold of 

0.5. Because of multiple resulting rsFC maps, the rsFC map with a higher Dice 

coefficient in LNT than that in DMT was selected for the language-network mapping. 
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3.2.7 Comparison among Seed-correlation Rs-fMRI approaches 

For quantitative comparison among three rs-fMRI seeding approaches, Dice coefficient 

between the union mask (of three binary task-fMRI masks) and each rs-FC map was 

calculated. Thresholds of rsFC maps were optimized by maximizing the Dice 

coefficient, starting at a z value of 0.5 with a 0.05 increment. The Dice coefficients 

across rs-fMRI seed-guiding approaches were compared by using a one-sided Wilcoxon 

signed-rank test due to non-normally distributed nature of the Dice coefficient.  

 

3.3 Result 

Among the 25 patients, 15 had lesions near Wernicke’s area and 10 near Broca’s area. 

Figure 3-6a demonstrates that significant activations (p < 0.05, corrected) were detected 

in left middle frontal areas for three task paradigms, left inferior frontal areas and left 

inferior parietal for task paradigms of LETT and SENT. 

 
Figure 3-6 The significant activations of letter fluency (LETT), category fluency 
(CAT), and sentence completion (SENT), and the concordance map of three tasks 

 
Figure 3-7 illustrates the language rs-FC mappings at a fixed threshold guided via the 

three methods: MNI coordinate, task activation, and RH+MA approaches for a 

representative patient. The rsFC maps guided by both task activation and RH+MA 
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approaches showed scattered hot spots in left inferior frontal/parietal regions, 

supramarginal gyrus, and superior temporal gyrus (Figure 3-7 b-c), whereas that guided 

by MNI coordinate showed no connectivity results in left frontal regions (Figure 3-7a). 

 
Figure 3-7 The seed-based rs-fMRI mapping guided by MNI coordinate, task 
activation, and RH+MA approaches. Language maps from a representative subject 

 

Table 3-1 presents the mean FD (motion parameter) and Dice coefficient for each 

patient determined from the whole brain and the language ROI. In the whole brain, Dice 

coefficient was on average 0.171 ± 0.109, 0.220 ± 0.086, and 0.216 ± 0.103 for rs-fMRI 

guided by MNI coordinate, by task-fMRI, and that by RH+MA map, respectively. In the 

language ROI, the Dice coefficient was 0.357± 0.176 with rs-fMRI guided by MNI 

coordinate, 0.441 ± 0.155 with rs-fMRI guided by task activation map, and 0.438 ± 0.159 

with rs-fMRI guided by RH+MA map. As presented in Figure 3-8, in both whole brain 

and language ROI, the performances of mapping language network guided by RH+MA 

approach were significantly improved compared to that guided by the general seeding 

approach using MNI coordinate [Z = 2.05, p < 0.05 for whole brain, Z = 2.36, p < 0.05 

for language ROI]. Moreover, the rs-fMRI mapping results by the RH+MA approach 

showed no significant differences to the seed localization guided by task-fMRI 
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activation coordinate [Z = -0.23, p = 0.59 for whole brain, Z = -0.46, p = 0.68 for 

language ROI]. 

Table 3-1 Dice coefficients between resting-state maps (guided by MNI coordinate , 
guided by task activation and guided by RH+MA) and the union of two task results 
for the whole brain and within language ROI 

 
 

 

Figure 3-8 Bar plot representation of Dice coefficients in rs-fMRI language 
mapping guided by three seeding approaches for the whole brain and within 
language ROI (*p < 0.05)  
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3.4 Discussion 

The goal of this study was to propose a novel RH+MA approach to guide the seed 

selection of mapping the rs-fMRI language network and to verify its performance in 

detecting language areas as do task-guide approach, in patients with brain pathology. One 

of the advantages of the proposed seeding approach was that it is data-driven and 

automatically selects the potential seed candidates by incorporating the measure of local 

connectivity among neighboring voxels of rs-fMRI data within the target language 

network. We assessed quantitatively the degree of correspondence among three 

seed-based rs-fMRI analyses (guided by MNI coordinate, task, and RH+MA approaches) 

and a union of activation maps obtained by performing three language task-fMRI for 

pre-surgical planning, with reference to Dice coefficient of rs-fMRI with respect to 

task-fMRI. Our results demonstrated that performance on localizing language network 

guided by RH+MA approach was significantly improved comparing to that by the 

general seeding approach—MNI coordinate. Moreover, we found that rs-fMRI guided by 

RH+MA approach was as sensitive as that guided by task activation approach, providing 

advantageous potential in the clinical practice, especially in those patients who have 

difficulties in task compliances. 

Our results showed that rs-fMRI maps guided by either task activation or RH+MA 

approach had a fair overlap with the maps obtained from traditional task-fMRI using 

GLM methods. We observed a Dice coefficient of 0.216 for whole-brain analysis when 

using an optimized threshold for maximizing the Dice coefficient. As the analysis 

confined in language ROI, the Dice coefficient increased to 0.438 in average. This 

increases in Dice coefficient suggested that the spatial overlap between task-fMRI and 

rs-fMRI depended on the adopted ROI in the analysis. These findings were in line with 

previous results from Branco at al., who reported that overlay between rs-fMRI using 
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data-driven analysis and task-fMRI using GLM method in 15 patients was on average 

0.248 and 0.458 for whole brain and language ROI, respectively. We extend these 

findings by demonstrating that the seed-based rs-fMRI with use of RH+MA seeding 

approaches was helpful in optimizing the seed placement in detecting language network 

in patients with brain lesion. 

Independent component analysis (ICA) is an alternative to seed-based analysis of 

rs-fMRI in presurgical mapping. However, we did not evaluate ICA in the current study 

for various reasons. While ICA approach provides promises in outlining language 

networks in both healthy controls (Tie et al., 2014) and patients with brain lesions 

(Branco et al., 2016; Sair et al., 2016), the choice of proper number of components is 

much more challenging for determining language networks due to the complex noise 

level, spatial, and temporal dependence of fMRI data (Li et al., 2007). Overestimated the 

number of independent components (ICs) results in a decrease in repeated-measure 

stability, whereas underestimated number of ICs lead to a merge of different brain 

networks as a single component. Although a previous study showed no significant effect 

of number of ICs from 20 to 50 on the concordance of rs-fMRI and task-fMRI (Sair et al., 

2016), another contradictory observation of the noticeable changes in specificity with a 

fixed number of ICs lower than 50 has been reported (Branco et al., 2016). Additionally, 

Hui et al. compared various methods to estimate the optimal number of ICs using 

information theory criteria and concluded that none of perfect criteria has can be 

determined for fMRI data (Hui et al., 2011). Alternatively, Cochereau et al. indicated 

that the use of seed-based analysis achieved 80% accuracy in detecting individual 

language network (Cochereau et al., 2016) when selecting seeds from intraoperatively 

stimulated positive sites. Even though their approach is not applicable for presurgical 
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mapping, it demonstrated that precise seeds determination improved the detecting 

accuracy for language mapping derived from rs-fMRI, in contrast to ICA approach.  

In conclusion, this study proposed one novel RH+MA approach to guide the seed 

selection in rs-fMRI mapping, which could be assistive to localize brain networks in 

presurgical mapping. Despite of the moderate overall concordance between task-fMRI 

and rs-fMRI language networks, this new method showed no significant difference in 

Dice coefficients comparing to the seed selection based on task-fMRI activations. Our 

results suggest that the proposed method can be an effective and beneficial approach to 

supplement the application of fMRI in the clinical practice. 

 

  



doi:10.6342/NTU201802205

 59 

Chapter	4	
	

IClinfMRI	Software	for	Integrating	functional	MRI	

Techniques	in	Presurgical	Mapping	and	Clinical	

Studies	
 

 

 

4.1 Introduction  

Functional magnetic resonance imaging (fMRI) based on a blood oxygenation 

level–dependent (BOLD) mechanism has growing significance in clinical imaging 

studies for the management of neurological diseases (Matthews et al., 2006). One of the 

promising applications of clinical fMRI is to aid presurgical planning in order to 

maximize the lesion resection while preventing post-operative functional deficits (Sanai 

et al., 2008; Vlieger et al., 2004). With use of block-design paradigms, fMRI activations 

have been shown to correlate well with the clinical gold-standard—intra-operative 

direct cortical stimulation (DCS)—making it valuable for presurgical planning (Bizzi et 

al., 2008; Weng et al., 2017). However, functional brain mapping that exploits the 

task-fMRI technique alone presents two major challenges in patients with intracranial 

pathology. First, the impaired cerebrovascular reactivity (CVR) can decrease sensitivity 

and specificity on localizing eloquent regions near or within the lesion (Pillai and Zacà, 

2011; 2012; Ulmer et al., 2003; 2004) because BOLD-fMRI relies on intact coupling 

between neural firing and cerebrovascular response (Harrison et al., 2002; Roy and 

Sherrington, 1890). Thus, CVR mapping has been recommended as an essential 
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component when the reliability of fMRI mapping is a concern (Pak et al., 2017; Pillai 

and Mikulis, 2015). Second, since the effectiveness of task-fMRI depends highly on 

patients’ performance and participation, ensuring adequate task compliance can be 

challenging in patients with neurological deficits or altered behavior capabilities 

(Bookheimer, 2007; Pujol et al., 1998). As an alternative to task-fMRI, resting-state 

fMRI (rs-fMRI) has become a promising technique in localizing brain regions in 

functional networks, regardless of task engagement (Mitchell et al., 2013; Quigley et al., 

2001; Zhang et al., 2009). To effectively translate the aforementioned techniques for 

presurgical planning and fMRI studies in clinical populations, specialized clinical 

software is required to integrate these complementary techniques and promptly generate 

useful information in a clinical format before surgery or before a clinical decision is 

made.  

Since the BOLD signal is based on neurovascular coupling, the abnormal cerebral 

vasculature or regional hemodynamic disruption caused by intracranial pathology can 

impair the CVR and invalidate the assumption of neurovascular coupling. Such 

neurovascular uncoupling (NVU) can potentially result in false negative errors in fMRI 

mapping (lack of BOLD signal despite neural activity) which may potentially contribute 

to an undesirable resection of eloquent cortex (Pak et al., 2017; Pillai and Mikulis, 2015; 

Ulmer et al., 2003). Without further confirmation by intraoperative DCS, this fMRI 

false negative could lead to permanent postoperative neurological deficits. Impaired 

CVR has been reported in brain tumors (Hsu et al., 2004; Pillai and Zacà, 2012), 

cerebrovascular diseases (Chang et al., 2013; Mikulis et al., 2005), and 

neurodegenerative diseases (Iadecola, 2004). In these cases, mapping CVR with MRI 

during a vasodilatation challenge would be a useful technique to indicate the NVU 

potential for assisting the interpretation of clinical fMRI activation (Pak et al., 2017; 
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Pillai and Mikulis, 2015), to detect a vascular risk in Alzheimer's disease (Glodzik et al., 

2013), as well as to predict early perfusion change after vascular intervention (Chang et 

al., 2009b). Practically, CVR experiments can be conducted by using ordinary fMRI 

acquisition methods during a breath-holding (BH) task (Kastrup et al., 2001; Liu et al., 

2002). The post-processing resembles task-fMRI with several modifications such as the 

selection of impulse response functions (Birn et al., 2008; Jahanian et al., 2016; Pillai 

and Zacà, 2012) and the consideration of hemodynamic delays (Birn et al., 2008; 

Jahanian et al., 2016). Therefore, despite its importance in clinical applications, 

implementation of MRI data analysis for CVR mapping requires modifications to the 

existing fMRI software and is a time-consuming procedure that can be difficult without 

the assistance of an expert. 

The rs-fMRI is capable of mapping intrinsic functional networks in which the 

within-network spontaneous BOLD oscillations emerge in synchrony during rest 

(Biswal et al., 1995). The rs-fMRI has been shown to be of importance in neurosurgical 

applications (Lang et al., 2014) and in charactering the integrity of the brain network for 

a wide variety of diseases (Lee et al., 2013; Matthews and Hampshire, 2016). These 

networks are often detected with use of seed-correlation analysis (SCA) (Biswal et al., 

1995; Shimony et al., 2009) or data-driven approaches such as independent component 

analysis (ICA) (Smith et al., 2009; Zhang et al., 2009). The SCA approach is 

straightforward and imposes prior knowledge for seed selection; however, spatial 

distortions and functional reorganization due to brain lesions can make seed selection 

difficult on the basis of anatomical landmarks alone. In contrast, although the ICA 

approach does not have the issues associated with seed placement, determining the 

proper number of components and selecting components of interest in this approach is 

challenging (Branco et al., 2016). Software toolboxes have been developed for 
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analyzing rs-fMRI data for presurgical fMRI mapping using either SCA or ICA 

approaches (Böttger et al., 2011; Huang et al., 2016). However, to the best of our 

knowledge, no existing software provides integrated visualization, such as an interface 

that allows the use of task-fMRI results to guide the SCA in rs-fMRI processing and 

directly generates results that are ready for exporting to a radiology picture archiving 

and communication system (PACS) and to a neurosurgical navigation system. 

Although the aforementioned analyses for various fMRI modalities are feasible 

with existing research software such as AFNI (Cox, 1996), SPM (Welcome Department 

of Cognitive Neurology, Institute of Neurology, London, UK), and FSL (Smith et al., 

2004) or in-house scripts, a clinical translation of these techniques in a holistic way is 

needed. In our study, we developed Integrated fMRI for Clinical Research (IClinfMRI) 

software to facilitate clinical fMRI research with applicability in presurgical fMRI 

planning. Beyond the independent processing of task-fMRI, rs-fMRI, and CVR 

mapping, IClinfMRI supports interactive rs-fMRI mapping while visualizing task-fMRI 

results as a guidance map, provides visualization of sites with potential NVU in fMRI 

results, and exports overlays of mapping results on structural MR images in 

presentations that can be readily sent to a clinical PACS as well as to a surgical 

navigation system. 

 

4.2 Materials and Method 

4.2.1 Developing Environment  

The IClinfMRI software was developed on the MATLAB 2014a platform (The 

MathWorks, Inc., Natick, MA, USA). The software was built upon in-house scripts and 

calls functions in free for noncommercial-use software such as dcm2nii 

(https://www.nitrc.org/projects/dcm2nii/), AFNI (version 16.2.09) (Cox, 1996), and 
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SPM12 (v6685) (Welcome Department of Cognitive Neurology, Institute of Neurology, 

London, UK). The dcm2nii is used to convert images from Digital Imaging and 

Communications in Medicine (DICOM) to Neuroimaging Informatics Technology 

Initiative (NIfTI) formats. Functions in both AFNI and SPM12 are adopted for data 

analysis. 

4.2.2 Workflow and Processing Pipeline  

The IClinfMRI software has five modules: DICOM Import, Task fMRI, 

Resting-state fMRI, CVR mapping, and fMRI to PACS. Figure 4-1 shows the schematic 

workflow of IClinfMRI and the functionalities provided in each module. In DICOM 

Import, DICOM images in a file folder are recognized, sorted, and converted to NIfTI 

files, which facilitates interoperability among research image processing software, and 

is saved in organized subdirectories that are named according to the series descriptions 

stored in the DICOM header.  

 

Figure 4-1 Workflow for Integrated fMRI for Clinical Research (IClinfMRI) 
software  
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Next, task-fMRI, rs-fMRI, and BH-MRI data are analyzed by modules of Task fMRI, 

Resting-state fMRI, and CVR mapping, respectively. After the analysis, the mapping 

results in NIfTI format are properly thresholded and overlaid on clinical structural MR 

images. The color-coded and gray-scale overlays are exported as a series of DICOM 

files by using the fMRI to PACS module. Table 4-1 lists the available functions 

provided in each module. All temporal analyses and image registration call AFNI’s 

functions, and image segmentation and inverse normalization (from template to 

individual space) call functions from SPM12. Key arguments specified in the functions 

are described below. 

Table 4-1 Summary of IClinfMRI models and functions used to process the fMRI 
data 

 

 Function 

Module 
 Software 
(Function) 

DICOM  
Import 

Task 
fMRI 

Resting-state 
fMRI 

CVR  
Mapping 

fMRI  
to PACS  

Data input DICOM to NIfTI ✔     dcm2nii 

Pre- 
processing Slice timing 

 
✔ ✔ ✔ 

 
AFNI 
(3dTshift)  

 Motion correction 
 

✔ ✔ ✔ 
 

AFNI 
(3dvolreg) 

 

Aligning EPI to T1 by  
coordinate-based 
registration 

 
✔ ✔ ✔ 

 
AFNI 
(3dresample) 

 

Aligning EPI to T1 by  
boundary-based 
registration 

 
✔ ✔ ✔ 

 
AFNI(align_epi
_anat.py) 

 

Aligning EPI to T1 by  
intensity-based 
registration 

 
✔ ✔ ✔ 

 

AFNI 
(align_epi_anat.
py) 

 
De-spiking & 
Detrending  

✔ ✔ ✔ 
 

AFNI 
(3dDespike; 
3dDetrend) 

 Nuisance Regression 
  

✔ 
  

AFNI 
(3dBandpass) 

 Segmentation 
 

✔ ✔ ✔ 
 

SPM12 
(Segmentation) 

 Bandpass filtering 
  

✔ 
  

AFNI 
(3dBandpass) 

  Smoothing 
 

✔ ✔ ✔ 
 

AFNI 
(3dmerge) 
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Table 4-1 Cont. 

Functional images are motion-corrected to a reference volume with use of 

rigid-body registration and then resampled to an isotropic grid matching the orientation 

of a resampled T1w image, which is resampled to the same isotropic grid in advance. A 

reference volume is the time point from fMRI data that has the fewest outliers, which 

are defined as the time point with its value deviant from the trend above a limit and are 

calculated with use of 3dToutcount. In a typical range of 50-500 time points per session, 

this deviation limit calculated by the default setting is approximately 5.5×MAD away 

from the fitted trend, where MAD is median absolute value of time series minus trend. 

 Function 

Module 
 Software 
(Function) 

DICOM  
Import 

Task 
fMRI 

Resting-state 
fMRI 

CVR  
Mapping 

fMRI  
to PACS  

Detection HRF-based GLM  ✔    

AFNI 
(3dDeconvolve 
& 3dREMLfit) 

 
Seed selection on the 
graph   

✔ 
  

in-house script 

 
Seed preview on the 
graph   

✔ 
  

in-house script 

 
Pearson correlation 

  
✔ 

  
AFNI (3dfim+) 

 
Seed-based GLM 

  
✔ 

  

AFNI 
(3dDeconvolve 
& 3dREMLfit) 

 
RRF-based GLM  
with varying latency    

✔ 
 

AFNI 
(3dDeconvolve) 

  
HRF-based GLM 
with varying latency    

✔ 
 

AFNI 
(3dDeconvolve) 
& SPM12 
(HRF) 

Display 
Adjustable threshold,  
window, and color 
map 

  
✔ ✔ ✔ in-house script  

 

Fusion of both fMRI 
and CVR maps on 
anatomical images 

   
✔ 

  

Data output NIfTI to DICOM   	 	 ✔	 in-house script 

Abbreviations: DICOM, Digital Imaging and Communications in Medicine; GLM, general 
linear model; NIfTI, Neuroimaging Informatics Technology Initiative; CVR, 
cerebrovascular reactivity; HRF, hemodynamic response function; RRF, respiratory 
response function  
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For aligning functional images into a structural T1w image volume, three methods are 

incorporated: coordinate-based registration (CBR), intensity-based registration (IBR), 

and boundary-based registration (BBR). For the CBR method, the spatial resolution of 

fMRI dataset is resampled to match that of a T1w image using 3dresample. For the IBR 

method, the alignment matrix is estimated by a reference volume of the functional data 

to a T1w image by using the cost function of normalized mutual information 

(align_epi_anat.py with the option of “-dset2to1” and “-cost nmi”). For the BBR 

method, a high-resolution echo-planar imaging (EPI) volume with prominent tissue 

boundaries of gray matter, white matter (WM), and cerebrospinal fluid (CSF) is 

required and registered to a T1w image using the cost function of local Pearson 

correlation (align_epi_anat.py with the option “-epi2anat”) (Saad et al., 2009). In the 

study that proposed the BBR method (Saad et al., 2009), the spatial resolutions were 3 × 

3 × 3 mm3 and 1 × 1 × 1 mm3 for echo-planar and T1w images, respectively, which led 

to an improved registration as compared to CBR and IBR. When the users prefer BBR 

but their fMRI datasets are acquired at a lower resolution and the resultant echo-planar 

images do not have clear tissue boundaries, our software provides the option for them to 

use an additionally acquired single-volume high-resolution echo-planar image to 

determine the spatial transformation. The reference volume of the functional image data 

is then co-registered to the high-resolution EPI image (align_epi_anat.py with the 

option of “-dset2to1” and “-cost nmi”), and a concatenated transformation matrix is 

obtained from the two-step process. For the IBR and BBR alignment, their 

transformation matrix is combined with the one for motion correction; therefore, spatial 

transformation and image interpolation (using wsinc5, 3dAllineate) are performed only 

once for each original functional image volume. The final voxel size of aligned 

functional images is 2-mm or 3-mm isotropic, as determined by users. 
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Task-fMRI activation maps are generated with use of the general linear model 

(GLM) by calculating the fitness of the preprocessed fMRI signal to the expected 

response that was constructed by convolving a canonical hemodynamic response 

function (HRF) with the task paradigm. During the fitting procedure, six motion 

parameters generated in the preprocessing step are set as the nuisance regressors, and 

the temporal autocorrelation structure in the residual is corrected by using the 

generalized least squares technique (3dREMLfit) with an autoregressive model of order 

1 and moving average model of order 1, i.e. ARMA(1,1). 

For rs-fMRI analysis, noise components are modeled by six motion parameters and 

two averaged signal fluctuations over masks of WM and CSF. These masks are 

generated by setting a probability threshold of 99.9% on the segments of the 

three-dimensional (3D) T1w image. The 3D T1w image was segmented into GM, WM, 

and CSF tissue segments using unified segmentation approach (Ashburner and Friston, 

2005) in SPM12. On the basis of the probabilistic framework, this tool involved circular 

procedure of image registration, tissue classification, and bias field correction for 

optimizing the segmentation. Both masks are eroded by one voxel along each of the 

three axes (Jo et al., 2010) for preventing the partial volume effect on the masks and 

then resampled to match the spatial resolution of the aligned rs-fMRI data. It is optional 

to include a global signal fluctuation as an additional noise component by extracting the 

averaged signal from a whole brain mask produced by setting a sum of tissue 

probability maps of gray matter, WM, and CSF with a threshold of 30%. After 

removing the noise components and performing other preprocessing steps, such as the 

temporal filtering (Table 4-1), the rs-functional connectivity (FC) map is obtained by 

correlating the average time series from a seed region against that from every voxel in 

the brain. 
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4.2.3 Unique Features  

Instead of analyzing each fMRI modality independently, IClinfMRI provides a 

unique workflow to integrate them for clinical research applications. In the Resting-state 

fMRI module, we designed a double-panel graphical user interface (GUI) to support 

interactive rs-fMRI mapping while visualizing a guidance map of the user’s choice for 

seed placement. The guidance map can be an anatomical image, a functional map 

processed by IClinfMRI’s Task fMRI module, or a parametric map resulting from other 

research software. In this module, the seed is placed by using a simple mouse click on 

either of the two panels, and the seed-based FC map will be calculated, converted to a 

Fisher’s z map, and then interactively updated on the bottom right panel of the GUI. In 

addition, visualization of mapping results can be easily manipulated with options that 

include window, threshold, opacity, and color map. Two approaches are suggested and 

implemented to obtain a guidance map: (1) processing task-fMRI data by using the Task 

fMRI module, and (2) calculating a regional homogeneity (ReHo) map with the use of 

3dReHo (Taylor and Saad, 2013) embedded in the Resting-state fMRI module. The 

ReHo analysis summarizes the local FC by measuring the temporal similarity between a 

given voxel and its neighborhood with the use of Kendall coefficient of concordance 

(Zang et al., 2004). The ReHo map has been proposed as the alternative to guide seed 

selection and improve the sensitivity of rs-FC network detection (Yan et al., 2013). 

Besides, local activity could also contain useful information in tumor studies (Duan et 

al., 2016), but we have not yet incorporated this feature in our software. In our 

Resting-state fMRI module, the preprocessed rs-fMRI data before spatial smoothing was 

fed into the ReHo analysis for obtaining ReHo map (Zuo et al., 2013). In addition to 

offering the ReHo map alone, we further implemented a novel approach that seeds the 

connectivity analysis based on the ReHo map confined within a mask obtained from 
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meta-analysis (RH+MA). For the analysis of language network, the meta-analysis result 

was downloaded from the Neurosynth (http://neurosynth.org/) by using the term 

“language” that resulted from 885 studies (Yarkoni et al., 2011) and then inversely 

normalized the meta-analysis maps from standard space to the native space using 

SPM12. Since it was corrected for a false discovery rate (FDR) of 0.01, we did not 

apply an additional threshold but constrained the result within the brain regions 

covering the putative Broca’s and Wernicke’s areas. These brain regions included 

middle frontal gyrus and inferior frontal gyrus for the traditional Broca’s area, and 

comprised angular gyrus, supramarginal gyrus, and superior temporal gyrus for the 

traditional Wernicke’s area, implemented by using the LONI Probabilistic Brain Atlas 

(Shattuck et al., 2008). The final mask was then dilated for 4-mm to consider the altered 

functional anatomy in patients. 

In the CVR mapping module, two types of impulse response functions are 

implemented, the canonical HRF (Birn et al., 2008; Jahanian et al., 2016) and the 

respiratory response function (RRF) (Birn et al., 2008; Pillai and Zacà, 2012), to 

generate the CVR map by using the GLM with an adjustable series of multiple time 

delays. In the voxel-wise optimization, the GLM analysis is repeated for each time 

delay, and the maximum t value across multiple GLM results will be selected for each 

voxel, to account for the varying latency of the CVR responses across the brain (Birn et 

al., 2008; Jahanian et al., 2016). We provide the visualization for fusions of both fMRI 

and CVR maps on anatomical images, which integrates the results into a single 

presentation. This allows the display of areas with potential NVU, that is, potential 

activated areas with both negative fMRI and CVR, near or within the lesion. 

Presenting the mapping result in a clinical format is an essential function in 

software designed for clinical applications. In IClinfMRI, the fMRI to PACS module is 
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used for exporting the functional mapping result to not only color-coded but also 

gray-scale overlays as DICOM images that can be fed into the same patient directory in 

PACS and surgical navigation system, respectively. Multiple anatomical images, e.g., 

T1w and FLAIR images, can be selected as underlays, for the same functional overlay to 

be output in the same series. For color-coded output, three sets of DICOM files are 

produced, one in each of the three orthogonal planes. 

4.2.4 Software Installation and Use  

IClinfMRI is available as a zip file upon request, and the user can unzip it to a 

local directory. Under the MATLAB environment, the user can click “Set Path” and add 

the directory containing IClinfMRI to the path. IClinfMRI will run by simply typing 

“IClinfMRI” in Matlab. Note that IClinfMRI calls functions in dcm2nii, AFNI, and 

SPM12; thus, these software packages need to be installed and their functionalities 

verified before using IClinfMRI. 

4.2.5 Illustrative Cases  

Analyses of two patients are presented to illustrate the utility of IClinfMRI. 

Written informed consent was obtained from each patient in accordance with the 

guidelines and the study protocol approved by the Institutional Review Board at MD 

Anderson Cancer Center. 

Patient #1  

Patient #1 had a left temporal-occipital lesion with imaging characteristics 

concerning for a glioblastoma (WHO Grade IV). This dataset was used to demonstrate 

the rs-fMRI analysis workflow with the seed placement guided by task-fMRI results. 

Presurgical mapping of speech areas was requested by the neurosurgeon since the tumor 

was located near the cortical and subcortical language areas, in particular, the posterior 

part of the language network (the traditional Wernicke’s area). Language task-fMRI, 
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rs-fMRI, T2w FLAIR, and 3D T1w imaging were performed on a 3T clinical scanner 

(GE Healthcare, Milwaukee, WI, USA). For fMRI acquisition, a T2*-weighted 

gradient-echo EPI (GE-EPI) sequence was used with the following parameters: 

repetition time (TR)/echo time (TE) = 2000/25 ms, flip angle = 90°, 32 slices with 

4-mm thickness and no gap, in-plane resolution = 3.75 mm × 3.75 mm, parallel imaging 

with acceleration factor of 2. The 3D T1w image was acquired using a gradient-echo 

sequence (TR/TE/inversion time = 7.4/2.1/400 ms; flip angle = 20°; 124 slices with .94 

× .94 × 1.2 mm3 voxels). Language task-fMRI included a letter fluency paradigm, a 

category fluency paradigm, and a sentence completion paradigm. A total of 130 image 

volumes were obtained from each of the first two paradigms, which started with a 20-s 

rest period, followed by six cycles of 20-s task block and 20-s rest interval. For the 

sentence completion paradigm, a total of 120 image volumes were obtained without the 

last 20-s rest interval. For rs-fMRI, patients were asked to keep their eyes closed, not 

move their head, not fall asleep, and not think of anything in particular. The acquisition 

period was 6 min, during which a total of 180 volumes were obtained. The task-fMRI 

data were processed with use of the Task fMRI module with the following default 

procedures: motion correction, aligning to a T1w image with a 2-mm isotropic grid via 

CBR method, de-spiking, spatial smoothing with a 4-mm FWHM 3D Gaussian kernel, 

and GLM analysis. The rs-fMRI data were first preprocessed in the Resting-state fMRI 

module with the following default procedures: slice timing, motion correction, aligning 

to a T1w image with a 2-mm isotropic grid via the CBR method, de-spiking, detrending, 

nuisance regression (mask of WM and CSF), band-pass filtering (0.01–0.08 Hz), and 

spatial smoothing with a 4-mm FWHM 3D Gaussian kernel. Next, seed placement of 

the rs-fMRI data was guided by a task-fMRI map resulting from the Task fMRI module. 

For this patient, in particular, the seed was positioned at a local maximum of the 
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task-evoked activations near the anterior part of the language network (traditional 

Broca’s area) because the lesion was in left temporal-occipital lobe near the traditional 

Wernicke’s area.   

In addition to fMRI, BH-MRI was also performed on the same patient, and the 

dataset was used to demonstrate the CVR analysis and visualization. For BH-MRI 

acquisition, a GE-EPI sequence was used with the same setting of fMRI parameters as 

described above, except that the TR was set to 3000 ms. The BH paradigm was 210 s 

long and comprised an initial 30-s natural breathing period, followed by three cycles of 

alternations between 15-s BH and 45-s natural breathing. Respiration monitoring device 

was used to confirm the subjects’ compliance during the BH CVR MRI. The data were 

preprocessed by using the CVR Mapping module with the following setup: motion 

correction, aligning to a T1w image with a 2-mm isotropic grid spatial resolution via the 

CBR method, de-spiking, and spatial smoothing with a 4-mm FWHM 3D Gaussian 

kernel. The onset time and the task duration recorded during data acquisition were set as 

the task paradigm. The CVR map with a BH task was generated by using a GLM model 

with multiple respiratory delays ranging from -10 to 15 s between the task and expected 

RRF. 

Patient #2  

Patient #2 had a left temporal-parietal mass with imaging characteristics consistent 

with glioblastoma (WHO Grade IV). This dataset was used to demonstrate the rs-fMRI 

analysis workflow when no task-fMRI results were available. According to 

neuropsychological assessment, the patient showed significant receptive language 

deficits and global impairment during testing; thus, he was unable to perform a 

task-fMRI. Instead, the rs-fMRI acquisition was requested to provide presurgical 

mapping of the eloquent language areas near the lesion. The image protocol included 
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T1w imaging, T2w FLAIR imaging, and rs-fMRI. The rs-fMRI data processing was 

similar to that of Patient #1, except for that the seed was guided by the RH+MA map 

and placed at a local maximum of ReHo in the meta-analysis mask of the anterior 

portion of the language network. 

4.2.6 Validation of the rs-fMRI Workflow  

To validate our software and workflow for rs-FC mapping, the rs-fMRI data for the 

two patients were also processed with the procedure adopted in a previous study (Hart 

et al., 2016) using AFNI software, independent from the IClinfMRI. The independent 

processing procedure and parameters were identical to ours except for the band-pass 

filtering (0.01–0.1 Hz), spatial smoothing (6-mm FWHM), and the diameter of the seed 

(10 mm). 

 

4.3 Results 

Typing “IClinfMRI” in the MATLAB command window opens the main GUI window 

(Figure 4-2). Users can click on one of the five modules to start corresponding 

functions of the program. 

 

4.3.1 DICOM Import  

As the first module of IClinfMRI, DICOM Import requires users to select a main 

directory, and all subdirectories containing DICOM files will be automatically 

recognized using MATLAB function “isdicom” and then renamed according to its 

embedded DICOM information. Concerning the difference in series naming across the 

center, three options for subdirectories naming are available in “Folder Rename Option” 

panel of the GUI, including (1) series description, (2) patient’s ID and series description, 

(3) patient’s ID, series description, and series number. Next, the DICOM files in various 
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directories are converted to NIfTI format. The converted NIfTI files are used for the 

following four modules.  

 

Figure 4-2 The main graphical user interface (GUI) of IClinfMRI 

The main window comprises the five modules of the software. 

 

4.3.2 Task fMRI  

Since presurgical planning requires task-fMRI activations to be superimposed on 

an anatomical image, both task-fMRI and high-resolution T1w images are requested in 

the Task fMRI module, using the “Task-fMRI” and “High-Res T1w” button (Figure 

4-3). The “High-Res EPI” is optional. It allows users to select a high-quality 

echo-planar image volume, when available, to which the BBR algorithm can be applied 

to improve the registration with the T1w image. After users provide the onset timing 

and duration of a task in the unit of seconds, the timing of the paradigm will be updated, 

as shown in Figure 4-3. Once the required data and task paradigm are both set, the 
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“Processing” button will be enabled, and the “Preprocessing” section can be modified if 

the checkbox “Default” is unselected.  

 

Figure 4-3 The GUI of Task fMRI module 

This window consists of the imaging data input (upper), task paradigm setting (bottom 

left), and preprocessing setting (bottom right) panels. 

 

After the “Processing” button is selected, the task-fMRI data will sequentially 

undergo the selected preprocessing steps, followed by the GLM-based activation 

detection. The resulting t statistical map is saved in a folder named by the task-fMRI 

data, which can be output for presurgical planning with the last module as well as 

retrieved in the Resting-state fMRI and CVR Mapping modules when needed. 
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4.3.3 Resting-State fMRI  

Figure 4-4 demonstrates the user interface of the Resting-state fMRI module, with 

the processing for Patient #1. Both rs-fMRI data and high-resolution T1w image are 

required, whereas the following three are optional inputs in this module.  

 

Figure 4-4 GUI of the Resting-state fMRI module displayed with processing and 

visualization for Patient #1  

This window consists of the preprocessing selection (upper left), imaging data input 

panel (upper right), visualization widget (middle right), and two visualization panels 

(bottom left and right). The bottom left panel shows that the task-fMRI activation 

overlays (t > 4.04, p < 10-4, uncorrected) on a high-resolution T1w image. The bottom 

right panel shows the FC mapping result obtained with the seed determined based on 

the task-fMRI (turquoise circle). 

 

First, the “Other Anat” button was designed to visualize the resulting rs-FC map on 

another structural image such as a T2w FLAIR image. When an image is selected via 
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this button, the image will be aligned to the T1w image by using the AFNI 

“align_epi_anat.py” function with the “-dset2to1” option and “-lpa” cost function. 

Second, the user can select a binary lesion mask using the “Lesion@T1w” button to 

exclude the lesion from the WM and CSF masks that are used to generate nuisance 

regressors in the FC calculation. Third, the utility of the “High-Res EPI” button 

resembles to Task fMRI module. After completing the data selection, one can click 

“Preprocess” for preprocessing the rs-fMRI data. The ReHo map of the preprocessed 

rs-fMRI data will be provided if the “ReHo” checkbox is selected. The guidance for 

seed selection is a unique function that we designed in this module. Users can select the 

“Guidance Map” button to superimpose the fMRI result, the ReHo results, or the 

RH+MA results on the displayed structural image for guiding the seed placement. After 

completing the data preprocessing, users can then define a seed by left-clicking the 

mouse on the bottom panels of the GUI, adjust the radius of seed sphere by using the 

edit box following the “R=” description, view the seed on the GUI by using “Seed 

Preview” button, and calculate the seed-based FC map by using “FC Mapping” button. 

In the demonstrated case (Figure 4-4), a seed (the turquoise dot with circular contour) 

was positioned on a local maximum (t=8.18, uncorrected p<5×10-13) of the sentence 

completion task-fMRI activation near the traditional Broca’s area. The resulting rs-FC 

z-map is illustrated in the bottom right panel of the GUI, and the “FC Map Setting” is 

enabled for adjusting the threshold.    

 

4.3.4 CVR Mapping  

Figure 4-5 shows the CVR Mapping module, illustrated with the processing for 

Patient #1. Once the CVR data and T1w images are selected, adjustments on the 

following four parameters become available: (1) the onset time of the BH period, (2) the 
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duration of each breath-hold, (3) multiple time delays applied to the GLM analysis, and 

(4) response function used in the GLM analysis. Note that the flexibilities are given in 

the onset and duration settings of each BH session, since in practice they usually vary 

among patients/studies.  

 

Figure 4-5 The GUI of the CVR Mapping module displayed with processing and 

visualization for Patient #1 

This window consists of the imaging data input panel (upper left), breath-hold paradigm 

setting (middle left), preprocessing selection (upper right), visualization widget (middle), 

and two visualization panels (bottom left and right). The bottom left panel shows the 

task-fMRI activation overlays (t > 4.04, p < 10-4, uncorrected) on a high-resolution T1w 

image using the warm color map. The result of CVR mapping (t > 2.65, p < 0.01, 

uncorrected) displays as transparent blue with a solid blue contour. The area outside the 

CVR map, but inside potential functional anatomy near the lesion, indicates the location 

of possible NVU. The bottom right panel shows the CVR map using a warm color map. 
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As the parameters are adjusted, the diagram will be updated in the “Paradigm Setting” 

panel. Similar to the previous modules, the “Other Anat” and “High-Res EPI” are 

optional inputs. The “fMRI Map” button is used for selecting the task- or rs-fMRI result 

to be displayed in the bottom left panel (Figure 4-5). The option of the preprocessing 

step for CVR mapping is identical to that in the Task-fMRI module (Figure 4-3). After 

the processing, the bottom right panel will automatically display the CVR map 

overlaying on the structural image (Figure 4-5). Finally, the “Fusion” button is enabled 

to fuse the resulting CVR map to the preselected fMRI results. Specifically, we display 

the thresholded CVR map as transparent blue with the solid blue line, together with 

fMRI activations (or networks) on the anatomical image. In this patient, markedly 

diminished ipsilateral CVR was seen in the areas within/near the tumor, which indicated 

NVU potentials and risk of false-negative results in fMRI. 

 

4.3.5 fMRI to PACS  

To convert an fMRI overlay on anatomical images to DICOM files, an anatomical 

image and parametric map are both required inputs. An option of saving an fMRI 

overlay on both T1w and another anatomical image (e.g., T2w FLAIR) in the same 

series was made available. DICOM headers of images in the resulting series adopted 

partially those in a DICOM image selected by the user, e.g., one of the original T1w 

DICOM images. The output of this module included a series of DICOM images of 

white overlay and three series of color-coded overlays in three orthogonal orientations, 

respectively. 
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4.3.6 rs-fMRI Case Results and Validation  

In these speech-fMRI results (Figure 4-6A), significant activations (t > 4.04, p < 

10-4, uncorrected) were detected in bilateral frontal areas and right temporal/parietal 

area, but not in the left temporal/parietal area or in the traditional Wernicke’s area. 

 

Figure 4-6 Language mapping resulting from task-fMRI and rs-fMRI for Patient 

#1  

(A) The task-fMRI activation above the t statistic threshold of 4.04 (p < 10-4, 

uncorrected) was overlaid on the T1w image. (B-C) Seeding at the peak t value on the 

task-fMRI activation (blue circle), the rs-FC map above the Fisher’s z threshold of 0.8 

was overlaid on the T1w and T2w FLAIR images. (D) The thresholded rs-FC map 

overlaid on the T1w image in the gray-scale DICOM format. (E) The rs-fMRI result 

analyzed independently from the IClinfMRI by using the procedure adopted in a 

previous study (Hart et al., 2016). 
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The rs-fMRI was helpful in that a clear language network between the left frontal 

and temporal/parietal areas was detected (z ≥ 0.8), as demonstrated in Figure 4-6B-C 

(the same results but three kinds of overlay/underlay outputs from this module).  

 

Figure 4-7 Language mapping of rs-fMRI with seed guided by RH+MA map for 

Patient #2 

(A) The RH+MA map with a ReHo threshold of 0.3 is overlaid on the T1w image. (B-C) 

Seeding at a local maximum of ReHo value (blue circle), the rs-FC map above the 

Fisher’s z threshold of 0.9 is overlaid on the T1w and T2w FLAIR image. (D) The 

thresholded rs-FC map overlaid on the T1w image in the gray-scale DICOM format. (E) 

The rs-fMRI result analyzed independently from the IClinfMRI by using the procedure 

adopted in the previous study (Hart et al., 2016).  

 

Note that the gray-scale fused DICOM format (Figure 4-6D) can be directly imported 

by surgical navigation software. Moreover, the rs-fMRI result (Figure 4-6B-D) was 

consistent with that obtained by using the procedures described in the previous study 

and software independent from IClinfMRI (Figure 4-6E). Figure 4-7 demonstrates the 
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rs-fMRI language mapping results for Patient #2, who was not able to perform the 

speech fMRI tasks. The RH+MA map showed scattered hot spots in the frontal regions 

(Figure 4-7A). The seed placed in the putative Broca’s area with a peak ReHo value 

was able to detect functional connectivity in brain regions close to the tumor, which 

were suspected to be in the posterior portion of the language network (Figure 4-7B-D). 

Similar to the results of Patient #1, the rs-fMRI connectivity pattern found by 

IClinfMRI was similar to that obtained by using previously published procedures 

(Figure 4-7E). 

 
4.4 Discussion 

Specialized software, IClinfMRI, was proposed in this study to integrate 

complementary fMRI techniques in clinical studies with applicability for presurgical 

planning. Clearly distinguishable from well-established fMRI software package, 

IClinfMRI was designed with user-friendly modules that can be easily fitted into the 

clinical workflow. These modules include importing/sorting DICOM images, exporting 

results that can be recognized by clinical PACS and surgical navigation system, and 

platforms that can analyze the three major clinical fMRI techniques, namely task-fMRI, 

rs-fMRI, and CVR mapping, independently yet in an integrated fashion. Unique 

functionalities of our software include the guidance of seed placement for the interactive 

rs-fMRI mapping and the visualization of CVR results for indicating potential NVU in 

fMRI activation maps. The IClinfMRI was specifically designed for translation to 

clinical fMRI practice with careful validation and is the focus of ongoing research for 

our team. 

For the seed-based FC analysis of rs-fMRI data, previous studies predominantly 

used anatomical landmarks as guidance in placing a seed (Liu et al., 2009; Shimony et 
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al., 2009; Zhang et al., 2009). The prototype of an interactive toolbox was also 

developed to calculate and visualize the rs-FC mapping after a seed was placed on an 

anatomical image (Böttger et al., 2011). However, it is well recognized that the 

functional localization of brain networks varies in healthy subjects (Mueller et al., 2013), 

and the variability can be even greater in patients with intracranial pathology (Mitchell 

et al., 2013). Alternatively, Rosazza et al. placed the seeds on the basis of task-fMRI 

activation and found that this approach was more sensitive in detecting sensorimotor 

networks in patients with lesions adjacent to functional areas than were seeds placed on 

the basis of anatomical landmarks (Rosazza et al., 2014). Cochereau et al. demonstrated 

80% accuracy in detecting the rs-language network when seeding at functional sites 

determined by positive intraoperative DCS results (Cochereau et al., 2016). These 

studies suggested that determining seeds with guidance from independent functional 

localizations may improve the results of rs-fMRI analysis. Moreover, Yan et al. 

proposed a method to use ReHo for assisting seed localization in the rs-fMRI analysis, 

where the technical logic is described below. When defining a seed with a certain radius 

(or a volume) for rs-FC analysis, one averages time course across all voxels within this 

volume to form the reference time curve. Such averaging is based on the assumption 

that the time curves in those neighboring voxels are well synchronized. However, 

without examining the resting-state fMRI time curves, one would not know the spatial 

extent of the well-synchronized regions unless calculating the ReHo index. In other 

words, the seed selection is still primarily based on anatomical location, like most of the 

studies using seed-based analysis (Hart et al., 2016; Huang et al., 2016; Rosazza et al., 

2014; Zhang et al., 2009), and the ReHo index is only used to refine the group of 

clusters within/around the assumed anatomical location 
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Recently, a software toolkit called PreSurgMapp was developed to process both 

task-fMRI and rs-fMRI, but seed guidance and visualization were not emphasized 

(Huang et al., 2016). In this work, we designed a double-panel GUI to perform the 

interactive rs-fMRI mapping while presenting another functional map as guidance for 

seed determination. Users can directly place a seed in either of the two windows, and it 

will be synchronously presented in the guidance map and rs-FC results for comparison. 

This interactive mapping facilitates exploration of the rs-functional network and makes 

it intuitive to users. 

A limitation of our rs-fMRI module is that it supports only seed-based analysis 

rather than data-driven approaches. Seed-based analysis is more intuitive for users who 

have clear targets in functional networks that they intent to detect, such as motor and 

language, which is usually the situation in presurgical mapping. In addition, previous 

studies indicated the FC maps derived from the seed-based approach have higher 

consistency with task-fMRI results than do FC maps derived from an independent 

component analysis (Branco et al., 2016; Cochereau et al., 2016; Quigley et al., 2001; 

Sair et al., 2016). More recently, methods have been proposed to address the issue of 

component number optimization for the data-driven analysis (Lu et al., 2017). As the 

sensitivity and specificity of data-driven approaches improve, we will incorporate these 

approaches into the IClinfMRI workflow in the future. 

A technical challenge of fMRI mapping in patients with neurological diseases is 

potential false-negative detection due to impaired neurovascular coupling in brain areas 

adjacent to or within the lesion. This challenge highlights the importance of CVR 

mapping to indicate brain regions with potential NVU, and subsequently to improve the 

confidence level of the task-fMRI. However, the existing clinical fMRI software 

packages, including those designed for presurgical mapping, do not support processing 
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procedures specific to analysis of CVR mapping, such as a varied BH period, 

respiratory response function, and multiple delays in GLM calculation. Henceforth, we 

provided a CVR Mapping module with these functionalities to fill this gap in clinical 

needs. In terms of visualization, the double-panel GUI design, as well as the fused 

display, allows users to synchronously examine both fMRI and CVR mapping results 

precisely in their relative spatial positions. Thus the lack of fMRI activation in targeted 

functional locations but without significant CVR would be a warning of false-negative 

detection due to the NVU near or within the lesion. 

Many research image processing toolboxes and fMRI processing software 

packages are able to deal with DICOM images. However, exporting the analysis results 

into clinical PACS and into a surgical navigation system requires not only outputting 

the results in DICOM format but also writing the DICOM header in a harmonized 

manner with other images of the same study. For example, original patient and study 

information should be kept, and a new series number and description should be 

generated. These aspects are well considered in all software provided by the MRI 

vendors and in other FDA-cleared software. Although previously developed research 

toolboxes for presurgical mapping provide the function to analyze fMRI data (Böttger et 

al., 2011; Huang et al., 2016), the lack of converting data in the DICOM format was the 

major obstacle for clinical practices. By giving the proper DICOM header, the fMRI to 

PACS module allows users to export a mapping result to the DICOM format by 

reattaching patients’ information. It is important to note that this module can be used to 

export any images in NIfTI format and is not specifically constrained to the results 

analyzed by IClinfMRI, which makes it a general tool for wider applications such as 

quantitative imaging. 
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Concerning the validity of rs-fMRI functional mapping workflow, we 

demonstrated that the rs-FC maps processed with the procedure set in IClinfMRI were 

in accordance with the rs-FC maps processed with the procedure adopted in a previous 

study (Hart et al., 2016) using AFNI software alone (Fig. 6 and Fig. 7). Individual 

algorithms adopted in this module were identical to those used in previous validation 

studies that compared seed-based rs-fMRI with intraoperative mapping (Cochereau et 

al., 2016; Rosazza et al., 2014; Zhang et al., 2009). Minor differences of these rs-FC 

maps were expected because their preprocessing procedure and parameters were slightly 

different (see the Methods and Implementation section). For example, a smaller spatial 

extent in Figure 7B compared with that in Figure 7E was caused by the smaller smooth 

kernel applied in our procedure because spatial extent has been demonstrated to be 

directly associated with the spatial smoothing kernel on rs-FC maps (Wu et al., 2011). 

Determining the threshold across individual mappings has been no consensus yet 

in the neuroimaging field because the various tasks result in different statistical 

sensitivity (Blatow et al., 2011; Nadkarni et al., 2015). Considering the fMRI mapping 

in clinical practice, the statistical threshold is determined by experienced clinicians who 

adjust a continuum of the threshold to obtain adequate activation extent without 

spurious clusters outside the eloquent cortex (Nadkarni et al., 2015; Rosazza et al., 

2014). In contrast to such rater-dependent procedure, Lu et al. recently addressed an 

automatic procedure of threshold determination based on the training results (Lu et al., 

2017). Nevertheless, no gold standard is reached for threshold determination at the 

current stage. Caution should be exercised when interpreting the statistical maps. In 

IClinfMRI, independent panels of threshold determination for both parametric and CVR 

maps were built for users to decide an appropriate threshold. 
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A limitation of IClinfMRI is that it calls functions in other free software including 

dcm2nii, AFNI, and SPM. Since AFNI is designed to run on Unix or Mac OS, those 

using a Windows operating system must install a virtual machine to run IClinfMRI. 

In conclusion, by integrating fMRI techniques and implementing data conversion 

modules, our toolbox is a strong research tool that has been designed for translation to 

clinical practice. Two approaches in producing guidance maps—task-fMRI activation 

and the RH+MA map—were implemented for seed-based rs-fMRI mapping. By 

assisting in interpreting the clinical fMRI study, CVR mapping is able to provide 

visualization for indicating the potential false-negative areas in fMRI results. Any 

mapping result in the NIfTI format generated by either IClinfMRI or other research 

software can be exported in a DICOM format that is ready to be incorporated into 

PACS. IClinfMRI has been developed to incorporate advanced fMRI methods with 

streamlined processing and has shortened the processing time for presurgical mapping 

and other clinical applications. The software is freely available and can be requested by 

contacting the authors of this article. 
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Chapter	5	
	

Conclusion,	Discussion,	and	Future	Works	

 

 

 

5.1 Conclusion 

Resting-state fMRI has been continuously growing in the field of neuroimaging 

and clinical practice for its ability to map brain networks noninvasively with high 

compliance from subjects. This is especially relevant in clinical settings, especially in 

presurgical counseling and planning, where a number of patients cannot comply with 

task demands. However, this rs-fMRI technique still faces several methodological 

challenges for further clinical application. In this dissertation, we first addressed the 

lack of measure on rs-fMRI data quality to obtain reliable FC outcomes, and proposed a 

practical quality-assurance indicator—PICSO—for rs-fMRI data sets. Targeting on 

presurgical mapping, we introduced a guiding strategy that assisted the clinician in seed 

selection for the language mapping using rs-fMRI. In aim 3, we developed IClinfMRI 

software to profit further clinical studies based upon advance fMRI techniques. In brief, 

we successfully translated fMRI techniques into presurgical mapping on the basis of 

rs-fMRI technique developments. The presented studies, we believe, not only facilitate 

the application of fMRI techniques on general clinical practices, but also improve the 

brain-mapping precision in future personalized medicine.  
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5.2 Discussion 

As an improvement of hardware and sequence design, the spatial resolution can be 

increased without compromising whole brain coverage. However, in fMRI, achievable 

voxel size is not the main factor to determine the spatial resolution. However, the 

hardware limitation on voxel size is not the main factor to determine the spatial 

resolution in fMRI. Following the a weighted average of synchronized neural 

population within an area of 0.5-3 mm2 (i.e. local field potential), the fMRI 

signal driven by blood flow and volume changes (Logothetis et al., 2001). In response 

to a point-like neuronal activity, the spatial specificity of the point-spread fMRI 

signal has been reported as 3.5 mm and 2.34 mm of visual cortex for 1.5T and 7T, 

respectively (Engel, 1997; Shmuel et al., 2007), demonstrating the spatial limitation of 

fMRI signal on the basis of vasculature. Considering the spatial relationships between 

neurophysiology and underlying vasculature, the differentiable spatial resolution in 

fMRI would be constrained around 3 mm at 3T, even if we push the hardware limit of 

voxel size smaller than 0.5×0.5×0.5mm3. 

In chapter 2, we proposed the PICSO index to assess the ratio of physiological 

fluctuation to thermal noise. Based on the tight coupling between fMRI signal 

and neural activity, an increase of the neural synchronisation leads to an enhancement 

of physiological fluctuation, resulting in an increase of PICSO value and 

local connectivity of the neighboring voxels. Since the PICSO is a local estimate, the 

remote connectivity measured by the temporal correlation between regions has no 

directly relationship with PICSO. Caution should be exercised when interpreting the 

relation between PICSO maps and remote connectivity. 
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In fMRI analysis, spatial smoothing is an important preprocessing step to improve 

the signal-to-noise ratio (SNR) and PICSO of the fMRI dataset as we demonstrated in 

Chaper2. In addition, it is a prerequisite for the further statistical analysis using the 

general linear model (Lindquist, 2008). The degrees of spatial smoothing on fMRI 

dataset have demonstrated a significant impact on task-fMRI mapping (Lu et al., 2012) 

and rs-fMRI mapping (Hsu et al., 2016; Wu et al., 2011). While the spatial smoothing 

improves SNR, it sacrifices the spatial resolution of the functional maps. The reduction 

in spatial resolution may be an undesirable cost for clinical evaluation, especially for 

surgical planning. Generally, smoothing kernel size for presurgical fMRI mapping vary 

between 0–8 mm FWHM (Huang et al., 2016; Kokkonen et al., 2009; Kristo et al., 2014; 

Liu et al., 2009; Lu et al., 2012). Considering the benefit and cost of spatial smoothing, 

the smoothness of 4-mm FWHM is set as the default in IClinfMRI based on our 

experiences. Furthermore, users are able to adjust their preferred smoothness level in the 

software. 

In addition to spatial smoothing, inclusion/exclusion of global signal remains a 

controversial issue for rs-fMRI preprocessing. Previous studies of presurgical fMRI 

mapping have applied global signal as a nuisance regressor to reduce the spurious 

variance from non-neural sources and to improve the spatial specificity of the resulting 

functional networks, such as motor (Rosazza et al., 2014) and language network (Lee et 

al., 2016; Mitchell et al., 2013). However, this nuisance regression has been criticized 

for introducing the artificial anti-correlations in seed-based correlation analysis (Fox et 

al., 2009; Murphy et al., 2009). In the Resting-state fMRI module of IClinfMRI, 

regressing out global signal was built in as an optional preprocessing step upon users’ 

decision. 
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It is important to note the issue that accuracy of navigational systems is 

compromised by the opened cranium. Reinges and colleagues demonstrated that a mean 

displacement of the cortical landmarks ranged from 0.8 to 14.3 mm during surgery 

(Reinges et al., 2004), degrading the reliability of the alignment between the 

preoperative imaging and the intraoperative brain position. In this case, several 

approaches have been proposed to preserve the accurate alignment between the 

preoperative and intraoperative brain position. For example, using intraoperative 

ultrasound to detect the brain shift and to update the preoperative imaging data 

(Rasmussen et al., 2007). In addition, a significantly improvement in alignment 

accuracy has been reported in 1.82 mm with the use of non-rigid registration(Archip et 

al., 2007). Although our developed software has yet incorporated the feature of updating 

mapping result on navigation system due to the brain shift during surgery, our software 

provides the function of intraoperative fMRI mapping which does not suffer from the 

issue of inaccurate alignment  

The design of the study in Chapter3 hinged around task-fMRI as a reference 

technique, with respect to which the Dice coefficient of rs-fMRI were measured. 

Although we observed a moderate overlay between rs-fMRI and task-fMRI, the 

functional localizations derived from fMRI do not directly indicate its essential role in 

language processing and represent a risk of future deficits in case of brain tissue 

removal due to the lack of gold-standard reference of activity localization. In the near 

future, we still need the intraoperative DCS data to support our findings.  

A limitation of the resting-state module implemented in Chapter 4 is that it supports 

only seed-based analysis rather than data-driven approaches. Seed-based analysis is 

more intuitive for users who have clear targets in functional networks that they intent to 
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detect, such as motor and language, which is usually the situation in presurgical 

mapping. In addition, previous studies indicated the FC maps derived from the 

seed-based approach have higher consistency with task-fMRI results than do FC maps 

derived from an independent component analysis (Branco et al., 2016; Cochereau et al., 

2016; Quigley et al., 2001; Sair et al., 2016). More recently, methods have been 

proposed to address the issue of component number optimization for the data-driven 

analysis (Lu et al., 2017). As the sensitivity and specificity of data-driven approaches 

improve, we will incorporate these approaches into the IClinfMRI workflow in the 

future. 

 

5.3 Future Work 

Rs-fMRI has been widely used to map functional connectivity throughout the brain 

using fMRI scanning while subjects lie “at rest” in the MRI machine (Huettel et al., 

2009; Lee et al., 2013). To achieve a successful connectivity mapping using the rs-fMRI 

signal, the key is to guarantee sufficient physiological fluctuations over the 

thermal/system noise, which we already stated this point of view in Chapter 2 (PICSO). 

To date, the technical developments of accelerated sampling methods, such as parallel 

imaging and multiband technique, are speculated to benefit on the enhancement of 

neurophysiological fluctuations in rs-fMRI time series by reducing the interferences of 

physiological noise such as heartbeat or respiration (Uğurbil et al., 2013). For example, 

the recently introduced multiband EPI technique effectively shortens the acquisition 

time by enabling simultaneous acquisitions of multiple slices (Feinberg and Setsompop, 

2013). To test on this hypothesis, we acquired a preliminary dataset for evaluation. 

Assuming that the noise of accelerated images 𝜎UVVILIPMNIW	XMVNYPZ[  over time is 
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independent from the non-accelerated images 𝜎UVVILIPMNIW	XMVNYP\" , the variance of 

measured noise after temporal subtraction could be regarded as the sum of noise 

variance of non-accelerated images and that of accelerated images 𝜎]IMQ^PIW8 =

𝜎UVVILIPMNIW	XMVNYP\"8 + 𝜎UVVILIPMNIW	XMVNYPZ[8 .  

Supplementing the proposed PICSO index in Chapter 2 on the new acquisition 

technique, indices of 𝜎_Y`aMVVILIPMNIW	bJMcIQ , 𝜎UVVILIPMNIW	bJMcIQ , and PICSO were 

first evaluated with increased multiband factor and parallel imaging factor (GRAPPA), 

where the PICSO of accelerated images was estimated based on the ratio of total 

fluctuation to the measured noise using temporal subtraction and correction factor (Hsu 

et al., 2016).  On the basis of standard EPI protocol, we acquired rs-fMRI data with up 

to 4-fold GRAPPA acceleration (GRAPPA factor, G = 0, 2, 4) on two healthy subjects 

and 4-fold slice acceleration (multiband factor, M = 0, 2, 4) on four healthy subjects. 

The detailed acquisition parameter was presented in Table 5-1Table 5-1.   

Table 5-1 Acquisition parameters for rs-fMRI non-accelerated and accelerated EPI 
time-series 

 

After the preprocessing steps (motion correction, normalization, despikeing and 

3rd-order detrending), the measured noise and PICSO were estimated in a voxel-wise 

manner and averaged in a region of posterior cingulate cortex (PCC), as shown in Table 

5-2. With increasing M-factor, the mean measured noise in PCC increased from 1.84 to 

2.03 and the corresponding PICSO decreased from 1.43 to 1.16. As the GRAPPA factor 

increased, the mean measured noise in PCC increased from 2.58 to 4.16, and the 
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corresponding PICSO decreased from 1.01 to 0.64. Our preliminary results showed that 

an increase of measured noise was demonstrated in both acceleration techniques, but the 

measured noise in GRAPPA acceleration increased with a higher rate than that in 

multiband acceleration. In addition, the noise ratio of accelerated images to 

non-accelerated images 𝜎]Z[ 𝜎]\"  was increased from 0.14 to 0.35 for multiband 

factor of 2 to 4, respectively. Similar to the multiband technique, the noise ratio of 

rs-fMRI images with GRAPPA to that without GRAPPA technique  𝜎dZ[ 𝜎d\"  was 

increased from 0.58 to 1.27 as the GRAPPA factor from 2 to 4.  Notably, caution should 

be exercised on these observations because the preliminary results were based on the 

presumption that the temporal fluctuations are independent of the spatial modulations 

by acceleration methods. Once the spatial modulation alters the temporal distributions 

of acquired rs-fMRI data, the 𝜎UVVILIPMNIW	bJMcIQ  should be re-evaluated in consideration 

of the spatio-temporal dependency. Although the evaluation was preliminarily presented, 

current observations suggested that M2 is a better choice to future fMRI studies for its 

highest sensitivity (PICSO) and lowest measured noise among tested acceleration 

sequences except M0. 

Table 5-2 Average values of measured noise and PICSO for both non-accelerated 
and accelerated rs-fMRI data 

 

Accurate mapping of eloquent cortex in the brain expands surgical treatment 

options for patients and reduces the risk of postsurgical deficits (Gil-Robles and Duffau, 

2010). Rs-fMRI mapping has played an important role in the presurgical assessment of 
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patients who are unable to cooperate with the task-based paradigm (Lee et al., 2016). 

Classical rs-fMRI methods assume the functional networks that are stationary and 

maintain the same structure over the data acquisition; however, variations in ongoing 

acquisition such as the dynamic changes in network connectivity have been reported 

compromised the detection of functional network in single subjects (Chang and Glover, 

2010; Power et al., 2015). Additionally, the non-neural noise occurred transiently during 

the acquisition limits mapping sensitivity and affect its clinical use (Lin et al., 2016), 

obscuring networks as well as creating false-positive connections. Methodologies have 

been proposed to enhance the task-fMRI sensitivity, such as increasing the number of 

data points, or adopting complex designs, or using delicate processing procedures, yet 

previous two are not practical for clinical cases. Instead of prolonging fMRI 

experimental time, applying analytical strategies is favorable to enhance the sensitivity 

with the use of noise reduction. The independent component analysis has been used to 

address nonstationary decomposition for mapping intrinsic network and removing fMRI 

noise (Beall and Lowe, 2007; Kochiyama et al., 2005; Perlbarg et al., 2007; Thomas et 

al., 2002); however, the typical spatial ICA faces the challenges of determining the 

proper number of components and selecting components of interest (Hui et al., 2011). 

Recently, the ensemble empirical mode decomposition (EEMD) method (Huang et al., 

1998) has been introduced as an adaptive filter on task-fMRI signals to increased 

sensitivity for mapping task activation (Lin et al., 2016). Without the constraints of 

stationarity and linearity on the fMRI signal, the EEMD adaptively decomposes the 

input signal into a set of intrinsic mode functions and then to filter task-irrelevant noise 

from raw data. However, the EEMD-based denoising approach has yet been adopted to 

denoise the rs-fMRI data in clinical application on individual patients. In the near future, 

we plan to use the EEMD-based denoising approach as a patient-specific rs-fMRI noise 
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removal routine and anticipate to augment the mapping sensitivity by using the Hilbert–

Huang-based analysis for purifying the time-invariant features of the target networks 

without imposing assumption to the stationarity and linearity of the rs-fMRI signal. We 

hypothesized that EEMD is more effective than ICA methods at noise removal in 

localizing rs-fMRI functional network. We will validate the rs-fMRI results by using the 

task-fMRI and intraoperative DCS as standards.  
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