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摘要 

偵測一個圖中是否含有某種特殊結構作為導出子圖是一個重要且被廣泛研究的問

題，目前已經有許多結構已經被證明出其偵測屬於 NP-complete類別。而有一些結

構存在多項式時間演算法，我們研究其中關於樹苗的特例，並給出一個 (  )時間

的演算法，改進了先前最佳的 (  )時間演算法。 
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Abstract 

The problem of determining whether a graph contains certain structure as induced 

subgraph has been extensively studied. Many of them have been shown belong to the 

complexity NP-complete. We study a special case regarding saplings and show an 

algorithm that solves the problem in  (  ) time, which is an improvement over the 

current best  (  ) time algorithm. 
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1 Introduction

Let |S| denote the cardinality of set S. To detect a family of graphs inG is to determine whether
G contains an induced subgraph that is isomorphic to a graph in the family. Let G be an
undirected n-node graph. Let NG(v) consist of the neighbors of node v in G. The degree of
node v in G is degG(v) = |NG(v)|. A leaf of G is a node with degree one in G. A sapling of G
is an induced tree of G containing all leaves of G. The NP-complete [26] k-in-a-tree problem
is to detect saplings in a k-leaf graph.1 Chudnovsky and Seymour [16] gave an O(n4)-time
algorithm for THREE-IN-A-TREE (i.e., the case with k = 3), which is at the kernel of several
state-of-the-art graph detection algorithms. As stated in the following theorem, we reduce the
time complexity of THREE-IN-A-TREE to O(n3).

Theorem 1.1. It takes O(mn) time to detect saplings in an n-node m-edge 3-leaf graph.

Below are implications of our result:

• Chudnovsky and Seymour [15, 16] gave the previously only known polynomial-time algo-
rithm, running in O(n11) time, of detecting thetas (i.e., induced subdivisions of K2,3 [4]) via
solving THREE-IN-A-TREE on O(n7) graphs of O(n) nodes. Theorem 1.1 reduces the time
of detecting thetas to O(n10).

• A hole is an induced simple cycle with at least four nodes. A hole is odd (respectively, even) if
it consists of an odd (respectively, even) number of nodes. A graph is Berge if both the graph
and its complement are odd-hole-free. The celebrated Strong Perfect Graph Theorem, con-
jectured by Berge [5] and proved by Chudnovsky, Robertson, Seymour, and Thomas [14],
states that a graph is Berge if and only if it is pefect. Although the complexity of detect-
ing odd holes remains open for a long time, Chudnovsky, Cornuéjols, Liu, Seymour, and
Vušković [10] showed that Berge graphs can be recognized in polynomial time. One of the
two O(n9)-time bottlenecks in their algorithm is an involved subroutine of detecting pyra-
mids [10, §2]. Chunodvsky and Seymour [16] showed an O(n10)-time algorithm for detect-
ing pyramids via solving THREE-IN-A-TREE on O(m3) graphs of m edges. Theorem 1.1
implies that the time of detecting pyramids is O(m4n).

• Even-hole-free graphs have been extensively studied in the literature (see, e.g., [2, 19, 20,
21, 24, 25, 40, 46]). Vušković [49] gave an extensive survey. Conforti, Cornuéjols, Kapoor,
and Vušković [18, 22] gave the first polynomial-time algorithm for detecting even holes,
running in O(n40) time [12]. Chudnovsky, Kawarabayashi, and Seymour [12] reduced
the running time to O(n31). Chudnovsky et al. [12] also observed that the running time
can be further reduced toO(n15) as long as prisms can be detected efficiently, but Maffray
and Trotignon [44] showed that detecting prisms is NP-hard. da Silva and Vušković [25]
significantly improved the complexity of recognizing even-hole-free graphs to O(n19).
The best previously known algorithm, due to Chang and Lu [9], runs in O(n11) time.
Theorem 1.1 reduces the time of one of the two bottleneck subroutines [9, Lemma 2.3] to
O(n10).

Related work The complexity of k-in-a-tree problem for any fixed k ≥ 4 is open [36]. The
analogous k-in-a-cycle (respectively, k-in-a-path) problem is NP-complete for k = 2 (respec-
tively, k = 3) [6, 32]. Derhy, Picouleau, and Trotignon [27] studied the four-in-a-tree problem

1The original version of the k-in-a-tree problem seeks an induced tree containing arbitrary k given nodes, but
one can verify that the version requiring that the given k nodes are the leaves of the input graph is equivalent.
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problem on graphs having no triangle. Liu and Trotignon [43] studied the k-in-a-tree problem
on graphs with girth at least k. dos Santos, da Silva, and Szwarcfiter [31] studied the k-in-
a-tree problem on chordal graphs. Golovach, Paulusma, and van Leeuwen [36] studied the
k-in-a-tree, k-in-a-cycle, and k-in-a-path problems on AT-free graphs [41]. Bruhn and Saito [8],
Fiala, Kaminski, Lidický, and Paulusma [33], and Golovach, Paulusma, and van Leeuwen [37]
studied the k-in-a-tree problem and k-in-a-path problems on claw-free graphs. Lévêque, Lin,
Maffray, and Trotignon [42], van ’t Hof, Kaminski, and Paulusma [48], and Chudnovsky, Sey-
mour, and Trotignon [17] showed more applications of THREE-IN-A-TREE.
Gitler, Reyes, and Vega [35] XXXX. (They did not use the TREE-IN-A-TREE algorithm or
prism/pyramid detection directly.)
Bang-Jensen, Havet, and Maia [3] XXXX.
Survey of Combinatorics 2013, the world of hereditary graph classes
Detecing wheels [30] is NP-complete. The above paper also gave a survey for the complexity
of various subgraph detection problems.
Trotignon and Vušković [47] even emphasized that their result is the first example that does
not fall under the scope of THREE-IN-A-TREE.
Chudnovsky and Kapadia [11] gave anO(n35)-time algorithm to determine whether an n-node
theta-free graph has a prism, although Maffray and Trotignon [44] showed that the problem of
detecting prisms is NP-complete.
Fomin, Todinca, and Villanger [34] studied induced subgraphs with properties expressible in
counting monadic second order logic formula.
Aboulker, Radovanovic, Trotignon, and Vušković [1] studied propeller-free graphs.
Chudnovsky and Lo [13] studied (diamond, odd-hole)-free graph.
Conforti, Cornuéjols, Liu, Vušković, and Zambelli [23] gave the only known polynomial-time
algorithm to recognize odd holes in graphs with bounded clique size.

Technical overview Hopcroft and Tarjan [39] gave the first linear-time algorithm for comput-
ing the triconnected components of a graph. (Gutwenger and Mutzel [38] showed a minor ad-
justment of the algorithm.) The tree structure of the triconnected components of a biconnected
graph can be represented by the linear-time obtainable data structure SPQR-tree of Di Battista
and Tamassia [28] supporting efficient updates [29].
The rest of the paper is organized as follows: Section 2 gives the topmost level of our proofs
for via reducing Theorem 1.1 via Theorem 2.1 to Lemmas 2.2 and 2.3. Sections 3 and 4 prove
Lemma 2.2. Section 5 proves Lemma 2.3.
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2 Proving Theorem 1.1

This section reduces Theorem 1.1 via Theorem 2.1 to Lemmas 2.2 and 2.3.

2.1 Preliminaries

Let R \ S for sets R and S consist of the elements of R not in S. Let V (G) (respectively, E(G))
consist of the nodes (respectively, edges) of graphG. If e is an edge and u and v are nodes, then
let e = uv denote that u and v are the end-nodes of e. For subgraph H of graph G, let G[H] be
the subgraph of G induced by V (H). For any node subset U of G, let G − U = G[V (G) \ U ].
Disjoint subgraphsH1 andH2 are adjacent in graphG if there is an edge uv ofGwith u ∈ V (H1)
and v ∈ V (H2). Let U and V be node subsets ofG. A UV -path is either a node in U∩V or a path
having one end-node in U and the other end-node in V . A UV -rung [16] is a minimal induced
UV -path. If U = {u}, then a UV -path is also called a uV -path and a V u-path. If U = {u} and
V = {v}, then a UV -path is also called a uv-path. Let Uv-rung, uV -rung, and uv-rung be defined
similarly.
The rest of the paper lets G be the input n-node m-edge graph, which is assumed without loss
of generality to be connected with exactly three leaf nodes. The subscripts in notation NG and
degG are omitted.

2.2 The characterization of Chudnovsky and Seymour

Let X ⊆ V (G). An X-net for G is a connected multiple graph H , each of whose vertices (i.e.,
members of V (H)) and arcs (i.e., members of E(H)) is a nonempty subset of X , that satisfies
the following Conditions N:

N1: The graph obtained by adding an arc between every two leaf vertices ofH is biconnected.
N2: The arcs ofH form a nonempty disjoint partition of the nodes in X .
N3: Each leaf vertex ofH consists of a distinct leaf node of G.
N4: For any arc E = V1V2 ofH , each node of X in E is contained by a V1V2-rung of G[E].
N5: For any arc E and vertex V ofH , E ∩ V 6= ∅ if and only if V is an end-vertex of E inH .
N6: For any nodes x1 and x2 in X contained by distinct arcs E1 and E2 of H , x1x2 is an edge

of G if and only if arcs E1 and E2 share a common end-vertex V inH with {x1, x2} ⊆ V .

A triad ofH is ∆(V1, V2, V3) = (V1 ∩ V2) ∪ (V2 ∩ V3) ∪ (V3 ∩ V1) for three vertices V1, V2, and V3
that are pairwise adjacent in H . A nonempty S ⊆ X is H -local if S is contained by a vertex,
arc, or triad ofH . For any subsets Y and Z of V (G), let

N(Y ) =
⋃
y∈Y

N(y) \ Y and N(Y,Z) = N(Y ) ∩ Z.

A nonempty Y ⊆ V (G) \X isH -local if N(Y,X) isH -local.

Theorem 2.1 (Chudnovsky and Seymour [16, Theorem 3.2]). G is sapling-free if and only if there
is an X-netH for G such that any nonempty Y ⊆ V (G) \X with connected G[Y ] isH -local.

Our proof of Theorem 1.1 directly uses the if-direction of Theorem 2.1, for which we give a
much shorter proof below to make our paper more self-contained. Chudnovsky and Seymour
remarkably proved the only-if-direction of Theorem 2.1 in thirty-some pages, among which we
directly adopt without proof one lemma [16, (4.1) in pages 395–402] as our Lemma 4.1. Two

3
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of their lemmas [16, (5.3) and (5.4)] are extended to be our Lemma 2.2, for which we give a
complete proof in §3 and §4.

Proof of the if-direction of Theorem 2.1. Assume a sapling T of G for contradiction. We start with
the first claim that if G[Y ] is a connected component of T − X , then N(Y,X) is contained by
an arc of H : Since Y is H -local, any nodes u ∈ N(Y,E) and v ∈ N(Y, F ) for distinct arcs E
and F of H are contained by a common vertex or triad of H . By Condition N6, u and v are
adjacent in G, implying a cycle of T in G[Y ∪ {u, v}], contradiction. The first claim is proved.
Condition N6 implies the second claim that if uv is an edge of T with u ∈ E and v ∈ F for
distinct arcs E and F of H , then {u, v} is contained by a common end-vertex of E and F in
graphH . By both claims and Conditions N2 and N3, the vertices and arcs ofH intersecting T
form a subtreeT ofH with three leaf vertices. Thus, T intersects a vertex ofT and three of its
incident arcs in T. Condition N6 implies a triangle in T , contradiction.

2.3 Sprouts, abodes, and steady nets

For any nonempty node subsets S, U , and V of graph H , an (S,U, V )-sprout of H is an induced
subgraph of H that is in one of the following four types S:

S1: A tree intersecting each of sets S, U , and V at exactly one node.
S2: An SU -rung plus a node-disjoint SV -rung.
S3: A UV -rung plus a node-disjoint SU -rung not intersecting V .
S4: A UV -rung plus a node-disjoint SV -rung not intersecting U .

Let H be an X-net of G. For any node y and node subset Z of G, let N(y, Z) = N({y}, Z). Let
S be a non-empty node set. S is secure inH if S is contained by an arc E = UV ofH such that
G[E] contains no (S,U, V )-sprout. S is H -secure if S is a vertex of H or S is secure in H . A set
Y inducing a y1y2-path of G−X isH -expandable if one of the following conditions holds with
Si = N(yi, X):

• |Y | = 1 and N(Y,X) is the union of two distinctH -secure sets.
• |Y | ≥ 2 and

X1: both S1 and S2 areH -secure,
X2: if both S1 and S2 are vertices ofH , then vertices S1 and S2 are not adjacent inH , and
X3: if Si with i ∈ {1, 2} is secure in H , then S3−i is not an end-vertex of the arc of H con-

taining Si.

We comment that Conditions X2 and X3 are not needed in the proof of Lemma 2.4 but needed
in our proof of Lemma 2.2 in §3, which generalizes that of Chudnovsky and Seymour [16,
(5.4)]. See the paragraphs containing Equations (6) and (7).
For vertices U and V of H , we call (U, V ) a split pair for H if UV is an arc of H or {U, V } is a
vertex cut-set of graphH . For any split pair (U, V ) forH ,

• if U and V are adjacent inH , then a split component of (U, V ) consists of an arc UV ;
• otherwise, a split component of (U, V ) consists of the arcs ofH [{U, V }∪B] for some connected

component B ofH − {U, V } not containing any leaf vertex ofH .

For any split pair (U, V ) forH ,

• a split arc set of (U, V ) is the union of one or more split components of (U, V ) and

4
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• a UV -block ofH is a subset of X that is the union C of the arcs in a split arc set C of (U, V ).

We callC the split arc set ofH corresponding to C and call C the block ofH corresponding toC . An
abode in H of a set Y inducing a path in G −X is a UV -block C of H satisfying the following
Conditions A:

A1: N(Y,X) ⊆ C ∪ U ∪ V .
A2: N(Y, U) ⊆ C or U ⊆ C ∪N(y) holds for an end-node y of path G[Y ].
A3: N(Y, V ) ⊆ C or V ⊆ C ∪N(y) holds for an end-node y of path G[Y ].

A set Y is H -bad if G[Y ] is a minimally non-H -local path of G − X . An X-net H is steady if
there is no parallel arc in H and any split component of any split pair for H consists of an arc
ofH . Thus, if {U, V } is a cut-set of a steadyH , then each connected component ofH − {U, V }
contains a leaf vertex ofH . The degree of each vertex in a steadyH cannot be two.

Lemma 2.2. If Y is an H -bad non-H -expandable set admitting no abode in a steady X-net H for G,
then G[X ∪ Y ] has a sapling.

2.4 Webs

An arc E = UV of an X-netH is

• trivial if |E| = 1,
• slim if |E| ≥ 2 and G[E] is a UV -rung, and
• risky if G[E] contains an (S,U, V )-sprout for each nonempty subset S ⊆ E.

An X-netH is an X-web if the following Conditions W hold:

W1: Each arc ofH is trivial, slim, or risky.
W2: H has no parallel risky arc nor degree-2 vertex whose incident arcs are both slim or trivial.

Note that Condition W2 does not rule out, e.g., a degree-3 vertex incident to 3 slim arcs. We
comment that Condition W2 is needed in the proofs of Lemmas 2.3 and 6.2 but not in that of
Lemma 2.4.
A node set S is H -safe for an X-net H if S is a vertex of H or S consists of two adjacent nodes
of G contained by a slim arc ofH . A set Y inducing a y1y2-path in G−X isH -extendable if

• |Y | = 1 and N(Y,X) is the union of two distinctH -safe sets or
• |Y | ≥ 2 and each N(yi, X) with i ∈ {1, 2} isH -safe.

An X-net H ′ aids an X-web H if H ′ is steady, each vertex of H ′ is a vertex of H , and each arc
UV ofH ′ is a UV -block ofH .

Lemma 2.3. It takes O(mn) time to ensure the existence of one of the following three items:

1. A sapling of G.
2. An X-netH ′ for G such that all nonempty Y ⊆ V (G) \X with connected G[Y ] areH ′-local.
3. An X-netH ′ aiding an X-webH for G and anH ′-bad non-H -extendable Y having no abode inH .

5
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2.5 The safe lemma

This subsection proves Lemma 2.4, which is needed to prove Theorem 1.1.

Lemma 2.4. LetH be anX-net ofG satisfying Condition W1. If S is a nonempty subset ofX contained
by a V1V2-block C ofH such that G[C] does not contain any (S, V1, V2)-sprout, then S isH -safe.

Lemma 2.5 (Menger [45]). Let G be a k-connected graph. If R and S are subsets of V (G) with
|R| = |S| = k, then there are k vertex-disjoint RS-paths in G.

Proof of Lemma 2.4. A block C of H is a UV -block of H for some split pair (U, V ) of H . We call
(U, V ) the split pair of H for block C if C is a UV -block. All sprouts throughout the proof are
(S, V1, V2)-sprouts unless clearly specified otherwise.
Assume for contradiction that C is a minimal block containing a non-H -safe set S such that
G[C] does not contain any sprout. LetC be the split arc set ofH corresponding to C. LetC be
the split arc set ofH corresponding to C. If |C | = 1, then C is an arc V1V2 ofH . C is not trivial
or else G[C], consisting of the single node in S, would be a sprout of Type S1. Since G[C] does
not contain any sprout, C is not risky. By Condition W1, G[C] is a V1V2-rung with |C| ≥ 2.
We have |S| ≥ 2 or else G[C] would be a sprout of Type S1. Let each Pi with i ∈ {1, 2} be the
SVi-rung of G[C]. G[P1 ∪ P2] = G[C] or else G[P1 ∪ P2] would be a sprout of Type S2. Thus, S,
consisting of two adjacent nodes contained by the slim arc C, isH -safe, contradiction.
The rest of the proof argues that |C | ≥ 2 also implies that S is H -safe via showing that S is a
vertex. We start with proving two claims.
Claim 1: If C is a split component of a split pair (U, V ), then C ∪ {UV } is biconnected.
Assume a cut-vertex W of C ∪ {UV } for contradiction. There is a connected component B of
(C ∪ {UV }) − {W} not intersecting {U, V }, implying that B does not contain any leaf vertex
of H . Thus, W is a cut-vertex of the graph obtained from H by adding an arc between each
pair of leaf vertices, contradicting Condition N1. The claim is proved.
Claim 2: Any node of a UV -block B forH is contained by a UV -rung of G[B].
Let x be an arbitrary node in B. Let E = W1W2 be the arc containing x by Condition N2. LetB
be the split component of (U, V ) containing E. Lemma 2.5 and Claim 1 imply vertex-disjoint
pathsP1 andP2 ofB ∪{UV } between {U, V } and {W1,W2} such that Ui and Wi with ∈ {1, 2}
are the end-vertices of Pi. Since P1 and P2 are vertex-disjoint, P1 ∪ P2 does not intersect arc
UV . Let each Pi with i ∈ {1, 2} be a UiWi-rung ofG[B] induced by vertexWi and the arcs ofPi

by Condition N3. Let Q be a W1W2-rung of G[E] containing x by Condition N3. G[P1∪Q∪P2]
is a UV -rung containing x. The claim is proved.
To show that |C | ≥ 2 implies that S is a vertex, observe that each arc E of C is a block with
E ( C. Thus, there is a maximal block B ( C intersecting S. Let B be the split arc set of H
corresponding to B. Let (U2,W2) be the split pair for B. Let R = {V1, V2} and R2 = {U2,W2}.
By Claim 1, there are vertex-disjointRR2-rungsPi with i ∈ {1, 2} such thatRi ∈ R2 and Vi are
the end-vertices ofPi. Since (U2,W2) is a split pair,P1∪P2 does not intersectB. We first show
S * B. Assume S ⊆ B for contradiction. For each i ∈ {1, 2}, if Ri = Vi, then let Pi be empty;
otherwise, let Pi be an RiVi-rung of G[C] induced by the arcs ofPi. By S ⊆ B, P1∪P2 does not
intersect S. G[B] does not contain any (S,U2,W2)-sprout T or else G[P1 ∪ P2 ∪ T ] would be a
sprout. Thus, B contradicts the minimality of C. We have S * B.
Let a be an arbitrary node in C \ B. Let b be an arbitrary node in B. Let A = U1W1 be the arc
of C \ B containing a. Let R1 = {U1,W1}. Claim 1 implies vertex-disjoint RRi-rungs Qi of
C with i ∈ {1, 2}. By Claim 2, Condition N4, and A ∩ B = ∅, there is an i ∈ {1, 2} admitting
node-disjoint

6
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• aVi-rung Q1(a) in the subgraph of G[C] induced by A and the arcs ofQ1 and
• bV3−i-rung Q2(b) in the subgraph of G[C] induced by B and the arcs ofQ2

such thatQ1(a)−a andQ2(b)−b are not adjacent inG[C]. Any nodes s1 ∈ S \B and s2 ∈ S∩B
are adjacent in G[C] or else G[Q1(s1) ∪ Q2(s2)] would be a sprout of Type S2. By S \ B 6= ∅,
S ∩ B 6= ∅, and Condition N6, S is contained by a vertex U ∈ R1 ∩R2. If there were a node
u ∈ U \ S, then (1) u ∈ B would imply that G[Q1(s1) ∪ Q2(u)] for any s1 ∈ S \ B contains a
sprout of Type S1 or S2 and (2) u /∈ B would imply that G[Q1(u) ∪Q2(s2)] for any s2 ∈ S ∩ B
contains a sprout of Type S1 or S2. Thus, S = U .

2.6 Proving Theorem 1.1

We are ready to reduce Theorem 1.1 via Theorem 2.1 and Lemma 2.4 to Lemmas 2.2 and 2.3.

Proof of Theorem 1.1. We apply Lemma 2.3. If Item 2 exists, then G is sapling-free by the if-
direction of Theorem 2.1. It remains to show that Item 3 implies a sapling inG[X∪Y ]. Assume
for contradiction that G[X ∪ Y ] is sapling-free. Since H ′ aids H , each arc UV of H ′ is a UV -
block of H . Since H ′ is steady and Y is H ′-bad, Lemma 2.2 implies that Y either admits an
abode inH ′ or isH ′-expandable.
If Y admits an abode C in H ′, then C is a UV -block of H ′ satisfying Condition A. Since H ′ is
steady, each split component of split pair (U, V ) for H ′ is an arc UV of H ′, implying that the
split arc set of H ′ corresponding to C consists of one or more arcs UV of H ′. Since each arc
UV of H ′ is a UV -block of H , C is also a UV -block of H , implying that C is an abode of Y in
H , contradiction.
It remains the case that Y isH ′-expandable. We first show that eachH ′-secure set S isH -safe.
If S is a vertex of H ′, then S is a vertex of H and, thus, H -safe. If S is secure in H ′, then S is
contained by an arc E′ = UV ofH ′, which has to be a UV -block ofH , such that G[E′] does not
contain any (S,U, V )-sprout. By Condition W1 ofH and Lemma 2.4, S isH -safe.
If |Y | = 1, then N(Y,X) = S1 ∪ S2 holds for two distinct H ′-secure sets S1 and S2. Since S1
and S2 are both H -safe, Y is H -extendable, contradiction. If |Y | ≥ 2, then let y1 and y2 be the
end-nodes of pathG[Y ]. By Condition X1 of Y , bothN(y1, X) andN(y2, X) areH ′-secure and,
thus,H -safe, implying that Y isH -extendable, contradiction.

The rest of the paper proves Lemmas 2.2 and 2.3. Section 3 proves Lemma 2.2 for the case with
|Y | ≥ 2. Section 4 proves Lemma 2.2 for the case with |Y | = 1. Section 5 proves Lemma 2.3.

3 Proving Lemma 2.2: Part 1

Let |Y | ≥ 2 throughout this section.

Lemma 3.1. LetH be a steady X-net. Let L consist of the leaf vertices ofH . Let U and U3 be distinct
vertices ofH with U /∈ L. If there are node sets N and E with ∅ 6= N ⊆ U , U \ E * N , and N * E,
then there are vertex-disjoint UiL-rungs with i ∈ {1, 2, 3} in the graphH −U such that UU1 is an arc
ofH intersecting N and UU2 is an arc ofH intersecting U \N .

Proof. Since vertex U has at least three neighbors in H , U \ E * N and N * E imply that
the vertex set consisting of the neighbors of U other than U3 inH admits a non-empty disjoint
partition R1 and R2 such that each arc incident to U and a vertex in R1 intersects N and
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each arc incident to U and a vertex in R2 intersects U \ N . Let R3 = {U3}. Let H∗ be the
triconnected graph obtained from the steady H by (1) replacing vertex U and its incident arcs
with a triangle on vertices V1, V2, and V3 and (2) adding an arc between Vi and each vertex in
Ri for all i ∈ {1, 2, 3}. Lemma 2.5 implies vertex-disjoint ViL-rungs Pi ofH∗ with i ∈ {1, 2, 3}.
The paths Pi − Vi with i ∈ {1, 2, 3} prove the lemma.

Proof of Lemma 2.2 for |Y | ≥ 2. Assume for contradiction that G[X ∪ Y ] has no sapling. Let L
consist of the leaf vertices ofH . SinceH is steady,H has no parallel arcs and degree-2 vertices.
By Conditions N3 and N5 of H , any vertex of H intersecting N(Y ) has degree at least 3. Let
N = N(Y,X). Let y1 and y2 be the end-nodes of path G[Y ]. Since Y isH -bad, each

Ni = N(Y \ {y3−i}, X)

with i ∈ {1, 2} isH -local. We have N = N1 ∪N2. Let Z = Y \ {y1, y2}. We have

N(Z,X) ⊆ N1 ∩N2. (1)

Since Y isH -bad, both ofN1 andN2 areH -local. At least one of the following four cases holds.

Case 1: N is contained by the union of two vertices.
Case 2: N is contained by the union of a vertex and an arc.
Case 3: N is contained by the union of two arcs and Cases 1 and 2 do not hold.
Case 4: N1 or N2 is contained by a triad and Case 1 does not hold.

Case 1: N ⊆ V1 ∪ V2 holds for vertices V1 and V2. Let subset E ⊆ X be empty (respectively,
consist of the nodes contained by the arc V1V2) if vertices V1 and V2 are not (respectively, are)
adjacent inH . We first show an index i ∈ {1, 2}with

Vi \ E * Ni and Ni * E. (2)

For each i ∈ {1, 2}, Equation (1) and Ni 6= ∅ together imply N(Vi \ E) ∩ Y = {yi}. Thus, at
lease one i ∈ {1, 2} satisfies Vi \ E * Ni or else the condition E = ∅ would imply that Y is
H -expandable and the condition E 6= ∅ would imply that E is an abode of Y in H . Also, at
least one index i ∈ {1, 2} satisfies Ni * E or else N1 ∪ N2 would be H -local. If Vi \ E ⊆ Ni

and N3−i ⊆ E hold for an i ∈ {1, 2}, then N(Vi \ E) ∩ Y = {yi} would imply that E 6= ∅ is an
abode of Y . Thus, Equation (2) holds for an i ∈ {1, 2}.
We then claim that Equation (2) implies a vertex V3 /∈ {V1, V2} ofH with

N3−i ⊆ V3 ∪ Vi

such that V3V1 (respectively, V3V2) is an arc of H intersecting N1 (respectively, N2). Since arc
V3V3−i intersects N3−i, we have

N3−i * E.

Since V3−i has at least three neighbors inH , N3−i ⊆ V3 ∪ Vi implies

V3−i \ E * N3−i.

Hence, Equation (2) holds for both i ∈ {1, 2}. The claim implies a vertex V4 /∈ {V1, V2}with

Nj ⊆ V4 ∪ V3−i (3)

8



doi:10.6342/NTU201803034

such that V4V1 (respectively, V4V2) is an arc of H intersecting N1 (respectively, N2). Since arc
V3Vi contains a node x ∈ Ni ⊆ Vi, Equation (3) and V3 /∈ {V1, V2} together imply

x ∈ Ni \ E ⊆ V4.

Thus, arc ViV4 contains x, implying V3 = V4 by Condition N2 of H . By N1 ⊆ V3 ∪ V2 and
N2 ⊆ V3 ∪ V1, N is contained by ∆(V1, V2, V3) ofH , contradicting that N is non-H -local.
The rest of the proof ensures the claim. Since vertex Vi has at least three neighbors in H ,
Equation (2) and Lemma 3.1 imply vertex-disjoint RjL-rungs Pj of the graph H − {Vi} with
j ∈ {1, 2, 3} such that if Uj ∈ Rj and Lj ∈ L are the end-vertices of Pj , then arc ViU1 of H
intersects Ni, arc ViU2 ofH intersects Vi \Ni, and U3 = V3−i.
We prove the claim by showing that U1 is a vertex V3 required by the claim. By U1 ∈ R1, we
have U1 /∈ {V1, V2} and that Ei = U1Vi is an arc of H intersecting Ni. One can verify that it
remains to prove

N3−i ⊆ U1 ∪ Vi : (4)

Since N is non-H -local, we have N3−i ∩ U1 6= ∅ by Equation (4), which implies an arc U1V3−i
intersecting N3−i by Condition N5 of H . To prove Equation (4), assume a node v3−i ∈ N3−i \
(U1 ∪ Vi) for contradiction. Let P3 be a v3−iL3-rung in the subgraph of G induced by vertex
V3−i and the arcs of P3. Since the arc Ei = U1Vi ofH intersects Ni, Condition N3 ofH implies
a U1Vi-rung Q1 of G[Ei] that intersects Ni. Since the arc Fi = U2Vi of H intersects Vi \ Ni,
Condition N3 of H implies a U2Vi-rung Q2 of G[Fi] that intersects Vi \Ni. For each j ∈ {1, 2},
let Pj be a UjLj-rung in the subgraph of G induced by vertex Lj and the arcs of Pj . Since P1

and P2 are vertex-disjoint,
P = G[P1 ∪Q1 ∪Q2 ∪ P2]

is an L1L2-rung that intersects N at exactly one node vi. Since U1Vi is the arc of H containing
vi and U1 6= V3−i, we have vi /∈ V3−i. We have N(v3−i)∩V (P ) 6= ∅ or else G[P ∪Y ∪P3] would
contain a sapling of G[X ∪ Y ]. Since P1, P2, and P3 are vertex-disjoint and v3−i /∈ U1 ∪ Vi,
Condition N5 of H implies that v3−i is contained by exactly one vertex of P1 ∪ P2 other than
U1. With M = N(v3−i) ∩ V (P ), let each Rj with j ∈ {1, 2} be the MLj-rung of P . Either
G[P1 ∪ Q1 ∪ R2 ∪ Y ∪ P3] or G[R1 ∪ Q2 ∪ P2 ∪ Y ∪ P3 ∪ {vi}] contains a sapling of G[X ∪ Y ],
contradiction.
Case 2: An index i ∈ {1, 2} satisfies

Ni ⊆ V and N3−i ⊆ E (5)

for a vertex V and an arc E = V1V2. We first show V \ E * Ni. If V \ E ⊆ Ni were true,
Equation (1) would imply

V ⊆ E ∪N(yi). (6)

We have V /∈ {V1, V2} or else E would be an abode of Y inH by Equation (6). By V /∈ {V1, V2}
and Condition N5 of H , we have V ∩ E = ∅. By V \ E ⊆ Ni and Ni ⊆ V , we have Ni = V ,
implying that Ni isH -secure. Let R = {V, V1, V2}. Let L consist of the leaf vertices ofH . Since
H is steady, there are vertex-disjointRL-rungsPj ofH with j ∈ {1, 2, 3}. For each j ∈ {1, 2, 3},
let Rj ∈ R and Lj ∈ L be the end-vertices of Pj and let Pj be an RjLj-rung in the subgraph of
G induced by vertex Lj and the arcs of Pj . G[E] does not contain any (N3−i, V1, V2)-sprout T
or else G[P1 ∪ P2 ∪ P3 ∪ Y ∪ T ] would contain a sapling of G[X ∪ Y ]. Hence, N3−i isH -secure.
Condition X1 holds for Y . By N3−i ⊆ E, N3−i is not a vertex of H , implying Condition X2
for Y . By V /∈ {V1, V2}, Condition X3 holds for Y , contradicting that Y is non-H -expandable.
Thus, V \ E * Ni.
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Let j be an index in {1, 2}with V 6= Vj . Since N is notH -local, we have Ni * E. By V \E * Ni

and Ni * E, Lemma 3.1 implies vertex-disjoint RkL-rungs Pk of graph H − {V } with k ∈
{1, 2, 3} such that if Uk ∈ Rk and Lk ∈ L are the end-vertices of Pk, then the arc V U1 of H
intersects Ni, the arc V U2 ofH intersects V \Ni, and U3 = Vj .
For each k ∈ {1, 2, 3}, let Pk be a UkLk-rung in the subgraph of G induced by vertex Lk and the
arcs of Pk. Since the arc E1 = V U1 intersects Ni, Condition N3 ofH implies a V U1-rung Q1 of
G[E1] that intersects Ni. Since the arc E2 = V U2 intersects V \Ni, Condition N3 of H implies
a V U2-rung Q2 of G[E2] that intersects V \ Ni. Since N is not H -local, we have N3−i * V .
Condition N3 ofH implies an N3−iVj-rung Q3 in G[E] that does not intersect V . Since P1, P2,
and P3 are vertex-disjoint,

P = G[P1 ∪Q1 ∪Q2 ∪ P2]

is an L1L2-rung that intersects N at exactly one node vi and

Q = G[Q3 ∪ P3]

is an N3−iL3-rung that is not adjacent to P in G. Therefore, G[P ∪Q ∪ Y ] contains a sapling of
G[X ∪ Y ], contradiction.
Case 3: Both indices i ∈ {1, 2} satisfy

Ni ⊆ Ei and Ni * Ui (7)

for distinct arcs E1 = U1V1 and E2 = U2V2 of H with V1 6= V2. Let R1 = {U1, V1, V2} and
R2 = {U2, V1, V2}. For each i ∈ {1, 2}, the fact that H is steady implies vertex-disjoint RiL-
rungs Pi,j in H with j ∈ {1, 2, 3}. For any indices i ∈ {1, 2} and j ∈ {1, 2, 3}, if U ∈ Ri and
V ∈ L are the end-vertices of path Pi,j in H , then let Pi,j be a UV -rung in the subgraph of G
induced by vertex V and the arcs of Pi,j . For each i ∈ {1, 2}, Equation (7) implies an Ei-rung
Pi that intersects Ni \ Ui. Let each Qi with i ∈ {1, 2} be the NiVi-rung of Pi. There cannot be
any (Ni, Ui, Vi)-sprout Ti in G[Ei] with i ∈ {1, 2} or else G[Pi,1 ∪ Pi,2 ∪ Pi,3 ∪ Y ∪ Q3−i ∪ Ti]
would contain a sapling of G[X ∪ Y ]. Hence, N1 and N2 are both H -secure. By Equation (1),
we have N1 = N(y1, X) and N2 = N(y2, X), implying Condition X1. By Equation (7), N1 and
N2 are not vertices ofH . Thus, Conditions X2 and X3 holds, contradicting that Y with |Y | ≥ 2
is non-H -expandable.
Case 4: An index i ∈ {1, 2} and a triangle ofH on a vertex setR = {U1, U2, U3} satisfy

Ni ⊆ ∆(U1, U2, U3) and Ni ∩ Uj ∩ Uk 6= ∅ (8)

for any distinct indices j and k with {j, k} ⊆ {1, 2, 3}. Let L consist of the leaf nodes of G. We
show that G[Q1 ∪ Q2 ∪ Y ] contains a sapling of G[X ∪ Y ] by identifying an LL-rung Q1 and
an NL-rung Q2 such that (i) Q1 and Q2 are adjacent in G and (ii) Q1 intersects N at exactly
one node. SinceH is steady, Lemma 2.5 implies vertex-disjointRL-rungs Pj with j ∈ {1, 2, 3}
such that Uj ∈ R and Lj ∈ L are the end-vertices of Pj . Let each Pj with j ∈ {1, 2, 3} be a
UjLj-rung in the subgraph of G induced by the arcs of Pj . By Condition N5 of H , the three
paths Pj with j ∈ {1, 2, 3} are pairwise nonadjacent in G. Let arcs E1 = U2U3, E2 = U3U1, and
E3 = U1U2. Let each vt with t ∈ {1, 2, 3} be a node in Ni ∩ Uj ∩ Uk for the indices j and k with
{t, j, k} = {1, 2, 3} as ensured by Equation (8).
Case 4(a): N3−i intersects an arc E = V1V2 such that {V1, V2} intersects at most one of paths
P1, P2, and P3. LetQ be a shortest path ofH between {V1, V2} and the vertices P1 ∪P2 ∪P3.
Let Vj with j ∈ {1, 2} and V ∈ V (Pk) with k ∈ {1, 2, 3} be the end-vertices of Q. Let Q2

be the V3−jLk-rung in H [Pk ∪ Q ∪ {V3−j}]. Let Q1 = G[Ps ∪ {vk} ∪ Pt] for indices s and t
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with {k, s, t} = {1, 2, 3}. Since N is not H -local, Equation (8) implies an N3−jLk-rung Q2 in
the subgraph of G induced by the arcs of Q2 that does not intersect Ni. Since H [Ps ∪ Pt] and
H [Pk ∪Q ∪ {V3−j}] are vertex-disjoint, Q1 and Q2 are not adjacent in G. SinceH [Ps ∪Pt] and
Q2 are vertex-disjoint and N3−i isH -local, Q1 intersects N only at vk.
Case 4(b): Case 4(a) does not hold. Since N is non-H -local, N3−i is contained by an arc E =
VjVk for distinct indices j and k with {j, k} ⊆ {1, 2, 3} such that Vj is a vertex of Pj and Vk is a
vertex of Pk. Let t be the index in {1, 2, 3} \ {j, k}.
We first handle the case with {Vj , Vk} ⊆ {U1, U2, U3}. By N3−i * Vj ∩Vk, we assume N3−i * Vj
without loss of generality. Condition N4 ofH implies an N3−jVk-rung Q of G[E] that does not
intersect Vj . Let Q1 = G[Pj ∪{vk}∪Pt] and Q2 = G[Q∪Pk]. By Condition N5 ofH , Q does not
intersect Vj , implying that Q1 and Q2 are non-adjacent in G. By Equation (8) and N3−i ⊆ E, Q1

intersects N only at vk.
It remains to handle the case with {Vj , Vk} * {U1, U2, U3}. Assume Vj /∈ {U1, U2, U3} without
loss of generality. N3−i does not intersect P1 ∪ P2 ∪ P3 at any node v or else Case (a) would
hold for the arc containing v. Let P ′j be the VjLj-rung of Pj . Let P ′k be the VkLk-rung of Pk.

• If N3−i ⊆ Vj , then Condition N4 of H implies a VjVk-rung Q that intersects N3−i only at
the end-node of Q in Vj . Let Q1 = G[P ′j ∪ Q ∪ P ′k] and Q2 = G[Pt ∪ {vk}]. Since Pj ∪ Pk

and Pt ∪ Ek are vertex-disjoint, Q1 and Q2 are not adjacent in G. By Ni ⊆ ∆(U1, U2, U3),
E /∈ {E1, E2, E3}, and N3−i ⊆ Vj , we know that Q1 intersects N only at the end-node of Q in
N3−i.
• If N3−i * Vj , then Condition N4 of H implies an N3−iVk-rung Q of G[E] that does not

intersect Vj . LetQ1 = G[Pj ∪{vk}∪Pt] and Q2 = G[Q∪P ′k]. SincePk andPj ∪Pt are vertex-
disjoint and Q does not intersect Vj , Q1 and Q2 are not adjacent in G. By Ni ⊆ ∆(U1, U2, U3)
and E /∈ {E1, E2, E3}, we know that Q1 intersects N only at vk.

4 Proving Lemma 2.2: Part 2

Let |Y | = 1 throughout this section. Let H be an X-net. An E-rung for an arc E = UV of H
is an UV -rung. An H -twig is a set B ⊆ X such that G[B ∩ E] is an E-rung for each arc E of
H . By Condition N5 of H , if a vertex V of H is (respectively, is not) incident to an arc E of
H , then |B ∩ E ∩ V | is 1 (respectively, 0). Consider the following Conditions T of a nonempty
Y ⊆ V (G) \X for anH -twig B:

T1: An arc E is incident to a vertex U with N(Y,B) \ E = (U ∩B) \ E.
T2: An arc E is incident to vertices U and V with N(Y,B) \ E = ((U ∪ V ) ∩B) \ E.
T3: N(Y,B) = A1 ∪ A2, where each Ai with i ∈ {1, 2} either (1) equals B ∩ Ui for a vertex Ui

or (2) consists of two adjacent nodes of G in B ∩ Ei for an arc Ei.

Lemma 4.1 (Chudnovsky and Seymour [16, §4]). Let H be a steady X-net. If G[X ∪ Y ] with
|Y | = 1 has no sapling, then one of Conditions T holds for anyH -twig B with non-H -local N(Y,B).

Lemma 4.2. Let H be a steady X-net. If Condition T3 of a set Y holds for an H -twig B, then the
following statements hold:

1. If |N(Y,B) ∩ V | ≥ 3 holds for a vertex V , then Ai = B ∩ V holds for an i ∈ {1, 2}.
2. If |N(Y,B) ∩ V | = 2 holds for a vertex V , then each Ai with i ∈ {1, 2} either equals B ∩ Ui for a

vertex Ui adjacent to V or consists of two adjacent nodes in B ∩ Ei for an incident arc Ei of V .
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3. If |N(Y,B) ∩ E| ≥ 2 holds for an arc E = V1V2, then (1) Ai = B ∩ Ui holds for both i ∈ {1, 2}
with {U1, U2} = {V1, V2} or (2) Ai ⊆ B ∩ E holds for an i ∈ {1, 2}.

Proof. SinceH is steady,H has no parallel arcs and degree-2 vertices.
Statement 1: N(Y,B) intersects at least three incident arcs of V in H by Condition N5 of H ,
implying an Ai = B ∩ Ui with i ∈ {1, 2} intersecting at least two incident arcs of V . Since H
has no parallel arcs, Ui = V .
Statement 2: N(Y,B) intersects exactly two incident arcs of V inH by Condition N5 ofH . For
the case Ai = B ∩ Ui with i ∈ {1, 2}, we have Ui 6= V or else Ai would intersect at least three
incident arcs of V in H . If V is (respectively, is not) adjacent to Ui in H , then Ai intersects one
(respectively, zero) incident arc of V in H . For the case Ai ⊆ B ∩ Ei with i ∈ {1, 2}, if V is
(respectively, is not) an end-vertex of arc Ei in H , then Ai intersects one (respectively, zero)
incident arc of V inH . The statement follows.
Statement 3: For the case Ai = B ∩ Ui with i ∈ {1, 2}, if Ui is (respectively, is not) an end-
vertex of E, then |Ai ∩ E| is 1 (respectively, 0). For the case Ai ⊆ B ∩ Ei with i ∈ {1, 2}, if
Ei is (respectively, is not) E, then |Ai ∩ E| is 2 (respectively, 0). Suppose Ai * B ∩ E for both
i ∈ {1, 2}. By |A1 ∩E|+ |A2 ∩E| ≥ |(A1 ∪A2)∩E| = |N(Y,B)∩E| ≥ 2, Ai = B ∩Ui holds for
both i ∈ {1, 2}with {U1, U2} = {V1, V2}.

Lemma 4.3. Let Y be an H -bad subset of V (G) \ X for a steady X-net H . If N(Y,E) for an arc
E = UV ofH with N(Y,X) * E ∪ U ∪ V is not secure inH , then G[X ∪ Y ] has a sapling.

Proof of Lemma 4.3. Since S = N(Y,E) is not secure in H , G[E] contains an (S,U, V )-sprout T
in Type S1 or S2 by Conditions N2 and N6 of H . By N(Y,X) * E ∪ U ∪ V , there is an arc F
of H intersecting N(Y,X) \ (E ∪ U ∪ V ). Let W be an end-vertex of F with W /∈ {U, V }. Let
Q be a ZW -rung of G[F ] with Z = N(Y,X) \ (U ∪ V ). Let R = {U, V,W}. Let L consist of the
leaf vertices L1, L2, L3 ofH . SinceH is steady, there are vertex-disjoint RL-pathsPi ofH with
i ∈ {1, 2, 3}. Let each Pi be an RiLi-path. If Ri = Li, then let Pi be empty. Otherwise, let Pi be
an RiLi-rung of G induced by vertex Li and the arcs ofPi. SinceP1,P2,P3 are vertex-disjoint,
P1, P2, P3 are pairwise non-adjacent. G[P1 ∪ P2 ∪ P3 ∪Q ∪ T ∪ Y ] is a sapling.

Lemma 4.4. Let H be a steady X-net. Let Y be an H -bad non-H -expandable set with |Y | = 1. If
G[X ∪ Y ] has no sapling, then N(Y,X) ⊆ E ∪ V1 ∪ V2 holds for an arc E = V1V2 ofH .

Proof of Lemma 4.4. Assume for contradiction two nodes v1 and v2 of N(Y,X) with

{v1, v2} * E ∪ V1 ∪ V2 (1)

for any arc E = V1V2 of H . For any H -twig B and any node v ∈ X , the rest of the proof
lets B(v) denote an H -twig (B \ Ev) ∪ Pv, where Ev is the arc of H containing v and Pv is an
arbitrary Ev-rung containing v as ensured by Condition N4 ofH . By Condition N4 ofH , there
is anH -twigB ⊇ {v1, v2}. By Equation (1), Conditions T1 and T2 of Y do not hold forB. Since
{v1, v2} is non-H -local, so is N(Y,B). By Lemma 4.1, Condition T3 of Y holds for B. That is,

N(Y,B) = A1 ∪A2, (2)

where each Ai with i ∈ {1, 2} either (1) equals B ∩ Vi for a vertex Vi ofH or (2) consists of two
adjacent nodes of G in B ∩ Ei for an arc Ei ofH .
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Case 1: A1 = B ∩ V1 and A2 = B ∩ V2. Distinct vertices V1 and V2 are non-adjacent in H by
Equation (1), so V1 ∩ V2 = ∅. We have N(Y,X) 6= V1 ∪ V2 or else Y would be H -expandable.
Let Bv = B(v) for a node

v ∈ ((V1 ∪ V2) \N(Y,X)) ∪ (N(Y,X) \ (V1 ∪ V2)). (3)

Since both V1 and V2 intersect N(Y ), Equation (2) implies |N(Y,B) ∩ Vi| ≥ 3. By Equation (3),

|N(Y,Bv) ∩ Vj | ≥ 3 (4)
|N(Y,Bv) ∩ V3−j | ≥ 2 (5)

hold for an index j ∈ {1, 2} with v /∈ Vj . Since vertices V1 and V2 are not adjacent in H ,
Equations (4) and (5) imply that N(Y,Bv) is notH -local and Conditions T1 and T2 of Y do not
hold for Bv. By Lemma 4.1, Condition T3 of Y holds for Bv. We have |N(Y,Bv) ∩ V3−j | 6= 2
or else Equation (4) and Lemmas 4.2(1) and 4.2(2) would imply that vertices V1 and V2 are
adjacent in H . By Equation (5), |N(Y,Bv) ∩ V3−j | ≥ 3. Combining with Equation (4) and
Lemma 4.2(1), we have {A1, A2} = {Bv ∩V1, Bv ∩V2}, implying v ∈ N(Y,Bv) = Bv ∩ (V1∪V2),
contradicting v ∈ N(Y,X) \ (V1 ∪ V2) by Equation (3).
Case 2: Each G[Ai] with i ∈ {1, 2} is an edge of G[B ∩ Ei] for an arc Ei ofH . We first show

N(Y,X) = N(Y,E1) ∪N(Y,E2). (6)

Assume a node
v ∈ N(Y,X) \ (E1 ∪ E2) (7)

for contradiction. Let Bv = B(v). Let Ev be the arc ofH containing v. By N(Y,B) ⊆ E1 ∪ E2,

N(Y,Bv) ⊆ Ev ∪ E1 ∪ E2. (8)

By {v1, v2} ⊆ E1 ∪ E2 and Equation (7), we have {v1, v2} ⊆ N(Y,Bv), implying that N(Y,Bv)
is notH -local and Conditions T1 and T2 of Y do not hold for Bv. By Lemma 4.1, Condition T3
of Y holds for Bv with N(Y,Bv) = A′1 ∪A′2. By Lemma 4.2(3) on E1 and E2, either

• A′1 = Bv ∩ Vi and A′2 = Bv ∩ V3−i hold for an arc F = V1V2 and an index i ∈ {1, 2} or
• A′1 ⊆ Bv ∩ Ei and A′2 ⊆ Bv ∩ E3−i hold for an index i ∈ {1, 2}.

By the first statement, V1 and V2 are non-leaf vertices of H , implying that N(Y,Bv) intersects
at least five arcs of H , contradicting Equation (8). By the second statement, v ∈ N(Y,Bv) ⊆
E1 ∪ E2, contradicting Equation (7). Thus, Equation (6) holds. Since Y with |Y | = 1 is not
H -expandable, Equation (6) implies anN(Y,Ei) with i ∈ {1, 2} not secure inH . By Lemma 4.3
and Equation (1), G[X ∪ Y ] has a sapling, contradiction.
Case 3: G[Ai] with i ∈ {1, 2} is an edge of G[B ∩E] for an arc E = UV ofH and A3−i = B ∩W
holds for a vertex W . By Equation (1), W /∈ {U, V }. We first show

N(Y,X) = N(Y,E) ∪W. (9)

Assume a node
v ∈ (N(Y,X) \ (E ∪W )) ∪ (W \N(Y,X)) (10)

for contradiction. Let Bv = B(v). We have

|N(Y,Bv) ∩W | ≥ 2. (11)

13
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By W /∈ {U, V }, we have v /∈ E, implying

|N(Y,Bv) ∩ E| = 2 (12)

By Equation (11), N(Y,Bv) intersects at least two incident arcs of W in H . Combining with
Equation (12), N(Y,Bv) is not H -local. By Lemma 4.1 and W /∈ {U, V }, Condition T3 of Y
holds for Bv with N(Y,Bv) = A′1 ∪ A′2. If |N(Y,Bv) ∩W | ≥ 3, then Lemma 4.2(1) implies an
index j ∈ {1, 2} with Bv ∩W = A′j ⊆ N(Y,Bv), contradicting v ∈ Bv with Equation (10). The
equality of Equation (11) holds. By Equation (12) and Lemma 4.2(3), either

Statement Z1: A′j = Bv ∩ U and A′3−j = Bv ∩ V hold for an index j ∈ {1, 2} or
Statement Z2: A′j ⊆ Bv ∩ E holds for an index j ∈ {1, 2}.

By W /∈ {U, V }, each A′j with j ∈ {1, 2} does not consist of two adjacent nodes in Bv ∩ Ej for
any incident arc Ej of W . By Lemma 4.2(2), A′j = Bv ∩Wj holds with a vertex Wj adjacent
to W in H for each index j ∈ {1, 2}. Since each set Wj with j ∈ {1, 2} intersects N(Y ), vertex
Wj has at least three incident arcs in H , violating Statement Z2. By Statement Z1, {U, V } =
{W1,W2}, implying N(Y,Bv) = Bv ∩ (U ∪ V ). Since sets U and V intersect N(Y ), there are
nodes u1 ∈ N(Y,Bv ∩ U) \ (E ∪ W ) and u2 ∈ N(Y,Bv ∩ V ) \ (E ∪ W ). By Equation (2),
B ∩ {u1, u2} = ∅. By Bv = B(v) and Condition N6 of H , the arc of H containing v is the arc
E = UV containing {u1, u2}, contradicting v /∈ E. Hence, Equation (9) holds. Since Y with
|Y | = 1 is not H -expandable, N(Y, F ) is not secure in H by Equation (9). By Lemma 4.3 and
Equation (1), G[X ∪ Y ] has a sapling, contradiction.

Proof of Lemma 2.2 for |Y | = 1. Assume no sapling in G[X ∪ Y ] for contradiction. Since H is
steady, H has no parallel arc and degree-2 vertex. By Conditions N3 and N5 of H , any vertex
ofH intersecting N(Y ) has degree at least 3. Lemma 4.4 implies an arc E = V1V2 ofH with

N(Y,X) ⊆ E ∪ V1 ∪ V2. (13)

We first show the following condition for any i ∈ {1, 2} and non-H -localH -twig B:

((B ∩ Vi) \ E) ∩N(Y ) = ∅ or (B ∩ Vi) \ E ⊆ N(Y ). (14)

By Lemma 4.1, one of Conditions T of Y holds for B.

(a) Condition T1 states N(Y,B) \ F = (B ∩ U) \ F for a vertex U and an incident arc F of U .
Since N(Y,B) is non-H -local, there are nodes u ∈ N(Y,B ∩ U) \ F and v ∈ N(Y,B ∩ F ) \ U .
If E 6= F , then v ∈ N(Y,B ∩ F ) \ (U ∪ E). By Equation (13), v ∈ Vi holds for an i ∈ {1, 2},
implying F = UVi by Condition N6 of H . By Equation (13), u ∈ V3−i, implying U = V3−i,
contradicting thatH has no parallel arcs. Equation (14) follows from E = F .

(b) Condition T2 states N(Y,B) \ F = (B ∩ (U1 ∪ U2)) \ F for an arc F with end-vertices U1

and U2. Since N(Y,B) is non-H -local, there are nodes ui ∈ N(Y,B ∩ (F ∪ Ui)) \ U3−i for both
i ∈ {1, 2}. If E 6= F , then ui ∈ N(Y,B ∩ (F ∪ Ui)) \ (U3−i ∪ E) holds for an i ∈ {1, 2}. By
Equation (13), ui ∈ Vj holds for a j ∈ {1, 2}. By Condition N6 of H , we have Ui = Vj . By
Equation (13), u3−i ∈ V3−j , implying U3−i = V3−j , contradicting that H has no parallel arcs.
Equation (14) follows from E = F .

(c) Condition T3 states N(Y,B) = A1 ∪ A2 such that (i) Ai = B ∩ Ui for a vertex Ui or (ii) Ai

consists of two adjacent nodes of G in B ∩ Ei for an arc Ei. For Case (i), since N(Y ) intersects
each node set Ui, the degree of each vertex Ui is at least three in H . By Equation (13), Ui ∈

14
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{V1, V2}. For Case (ii), if Ei 6= E, then Equation (13) would imply |N(Y,B) ∩ Ei| ≤ 1. Thus,
Ei = E. Since A1 ∪A2 equals B ∩ (V1 ∪ V2), B ∩ (V1 ∪E), or B ∩ (V2 ∪E), Equation (14) holds.

Since Equation (13) implies Condition A1 with C = E, there is an index i ∈ {1, 2}with nodes

u ∈ N(Y, Vi) \ E (15)
v ∈ Vi \ (N(Y ) ∪ E) (16)

or else E would be an abode of Y inH . Since Y isH -bad, N(Y,X) is non-H -local, implying a
non-H -local H -twig B. Let Bu = B(u). Since B is non-H -local, so is Bu. By u ∈ V (Pu) ⊆ Bu

and Equation (15), we have u ∈ ((Bu ∩ Vi) \ E) ∩N(Y ). By Equation (14),

(Bu ∩ Vi) \ E ⊆ N(Y ). (17)

Let Bv = Bu(v). By Equation (15), the degree of Vi inH is at least three. By Equation (17),

((Bv ∩ Vi) \ E) ∩N(Y ) 6= ∅. (18)

Thus, Bv is not H -local. By Equations (14) and (18), (Bv ∩ Vi) \ E ⊆ N(Y ), contradicting
Equation (16).

15
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5 Proving Lemma 2.3

Lemma 5.1. Given an X-netH , it takes O(m) time to compute an X-net aidingH .

Lemma 5.2. Let Y be anH ′-bad set for anX-netH ′ aiding anX-webH . It takes O(m) time to either
(1) obtain a minimal abode of Y inH or (2) ensure that Y admits no abode inH .

Lemma 5.3. Let Y be anH ′-bad set for an X-netH ′ aiding an X-webH .

• It takes O(m) time to determine whether Y isH -expandable.
• If Y isH -expandable or a minimal abode inH of Y is given, then it takes O(m) time to updateH

into an X ∪ Y -web.

Proving Lemma 2.3. We first show that it takes O(m) time to either ensure a sapling of G or
obtain an X-web H . Let s1, s2, and s3 be the leaves of G. It takes O(m) time to obtain a node
set S such that G[S] is a shortest s2s3-path of G and a node set R such that G[R] is a shortest
s1S-path of G. Let x1 be the node in R \ S that is closest to S in path G[R]. Let x2 (respectively,
x3) be the node in N(x1) ∩ S that is closest to s2 (respectively, s3) in path G[S]. Since s2 and s3
are leaves of G, x2 and x3 are internal nodes of path G[S]. If x2 = x3, then G[R∪S] is a sapling
of G. If x2 and x3 are distinct and non-adjacent, then G[R ∪ S] − I is a sapling of G, where
I consists of the internal nodes of the x2x3-path in G[S]. If x2 and x3 are adjacent in G, then
there is an O(m)-time obtainable X-web H with X = R ∪ S: Let vertex V0 = {x1, x2, x3} and
vertex Vi = {si} and each arc Ei = V0Vi with i ∈ {1, 2, 3} consists of the nodes of the sixi-rung
of G[X]. Conditions N and W hold forH .
The lemma follows from repeating the following steps in O(n) iterations:

1. Apply Lemma 5.1 to obtain an X-netH ′ aidingH in O(m) time.
2. Spend O(m) time to either ensure thatH ′ completes Task 2 or obtain anH ′-bad set Y .
3. Apply Lemmas 5.2 and 5.3 to either complete Task 3 or update H into an X ∪ Y -web in
O(m) time.

16



doi:10.6342/NTU201803034

5.1 Proving Lemma 5.1

An SPQR-tree for a biconnected multiple graph B having no self-loops is a linear-time obtain-
able [38] unique tree T on graphs that are homeomorphic to subgraphs of B (see, e.g., [28,
Lemma 3]) to represent the triconnected components of B. Specifically, there is a supergraph
C of B with V (C) = V (B) satisfying the following statements, where the edges in B (respec-
tively, C \B) are called actual (respectively, virtual) edges:

• Each vertex of T is a subgraph of C in one of the following types:

– S-vertex: a simple cycle on three or more nodes. S stands for series.
– P-vertex: three or more parallel edges. P stands for parallel.
– Q-vertex: two parallel edges. Q-vertex simplifies the definitions of other vertices.
– R-vertex: a triconnected simple graph that is not a cycle. R stands for rigid.

• No two S-vertices are adjacent in T and no two P-vertices are adjacent in T.
• The vertices of T induce a disjoint partition of the actual edges.
• The end-nodes of each virtual edge form a two-node cutset of B.
• Each virtual edge is contained by exactly two vertices that are adjacent in T.

Lemma 5.4 (Di Battista and Tamassia [28]). Let B be an n-node biconnected multiple graph.

1. If two distinct nodes admitting three internally disjoint paths between them inB, then the two nodes
are contained by either a P-vertex or an R-vertex of the SPQR-tree of B.

2. It takes O(m) time to compute an SPQR-tree of B.

Throughout the section, each X-webH for G is equipped with the SPQR-treeT for the bicon-
nected graphH∗ obtained fromH by adding three arcs on the three leaf vertices ofH to form
a triangle as ensured by Condition N1 of H . Since H is connected, there are three internally
disjoint paths in H∗ between each pair of leaf vertices of H . Lemma 5.4(1) implies a unique
R-vertex of T that contains the leaf vertices of H . Let T be rooted at this R-vertex. When we
obtain an X-webH or update an X-webH to an X ∪ Y -web, we always obtain or update the
corresponding T ofH unless explicitly specified otherwise.
Let H be an X-web. For each vertex t of T, let µ(t) be the graph that t represents. Let φ(t) be
the actual arcs contained by a Q-vertex in the subtree of T rooted at t. Let C(t) be the union
of actual arcs contained by µ(t′), for each vertex t′ in the subtree rooted at t (note that µ(t′)
contains an actual arc if and only if t′ is a Q-vertex).
The SPQR-tree characterizes the structure of split-components in the following ways:

Lemma 5.5. Let B be a bi-connected graph. Let T be a rooted SPQR-tree of B. For each non-root
vertex t of T , if the virtual arc between t and the parent of t is between u and v, then B[{u, v}∪Φ(t)] is
the union of one or more split-components of B of the split-pair (u, v), where Φ(t) consists of the actual
arcs contained by a Q-vertex in the subtree of T rooted at t.

Proof. Classic SPQR-tree property.

Let Merge(C) for a V1V2-block C of an X-webH be the operation that

• first replaces all arcs ofH intersecting C by an arc C = V1V2 and
• then deletes the vertices whose incident arcs are all deleted.

17
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One can verify that the resulting H ′ remains an X-net: Since the arc C = V1V2 of H ′ replaces
one or more split components for the split pair (V1, V2) of H , any cut-set of H ′ is also a cut-set
of H . Thus, Condition N1 holds for H ′. Condition N2 holds for H ′ trivially. Since the leaf
vertices remain the same in H and H ′, Condition N3 holds for H ′. For each arc E of H that
intersects C, Lemma ?? implies a V1V2-rung P of H such that E is an arc of P and each arc of
P intersects C. Thus, if x is a node of E, then Condition N4 of H implies that x is contained
by a V1V2-rung P in the subgraph of G induced by the arcs of P. By Condition N6 of H , P
is a V1V2-rung of G[C]. Condition N4 holds for H ′. Conditions N5 and N6 of H ′ follow from
Conditions N5 and N6 ofH .

Proof of Lemma 5.1. LetH ′ be theX-net obtained by applying Merge(C(t)) toH for each child t
of the root ofT. By Lemma 5.5, eachC(t) is a block andH ′ is well-defined. By the observation,
each arcUV ofH ′ is aUV -block ofH . Since the root ofT is an R-vertex,H ′ is steady. Therefore
H ′ aids H . The running time is O(m) since T can be computed in O(m) time and the Merge
operations take overall O(n) time.

18
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5.2 Proving Lemma 5.2

For each non-root vertex t of T with parent t′, let V1 and V2 be the poles of t if V1 and V2
are the end-vertices of the unique virtual arc contained by both µ(t) and µ(t′). Let C(t) =
H [{V1, V2} ∪ φ(t)]. By Lemma 5.5, each C(t) is a split arc set ofH :

Let H∗ be the biconnected graph obtained from H by adding three arcs on the
three leaf vertices of H to form a triangle. With B = H∗ and T = T, C(t) =
H∗[{V1, V2} ∪ φ(t)]. By the choice of the root ofT, C(t) does not contain any arc in
H∗ \H .

T characterize the local minimality (maximality) of C(t) very well:

Lemma 5.6. Let H be an X-web. Let t be a non-root vertex of T with poles V1, V2 and children
t1, . . . , tk. The following holds:

1. If t is a P-vertex, then each C(ti) with 1 ≤ i ≤ k is a split-component for (V1, V2).
2. If t is an R-vertex, then C is a maximal proper split arc set of C(t) in H if and only if C = C(ti)

for an 1 ≤ i ≤ k.
3. Let t be an S-vertex such that µ(t) is a cycle U1U2 . . . Uk+1 with

• U1 = V1, Uk+1 = V2, and
• the virtual arc UiUi+1 is contained by µ(ti) for each 1 ≤ i ≤ k.

Let Ci = C(t1) ∪ . . . ∪C(ti). For each 1 < i ≤ k, Ci is a split-component of (U1, Ui+1). Further,
if C is a minimal split arc set satisfying Ci ( C ⊆ C(t), then C = Ci+1.

Proof. Suppose that t is a P-vertex. Since µ(t) consists of only parallel virtual arcs between V1
and V2, the poles of ti are V1, V2 for each 1 ≤ i ≤ k. Hence eachC(ti) is a split arc set of (V1, V2).
Since no two P-vertices are adjacent in T, each C(ti) is a split-component of (V1, V2).

If ti is a Q-vertex, then C(ti) is an arc ofH between V1 and V2.Hence ti is either an
S-vertex or R-vertex. By Lemma 5.5, C(ti) \ {V1, V2} is connected. Therefore C(ti)
cannot be the union of two or more split-components of (V1, V2).

Suppose that t is an R-vertex. By Lemma 5.5, eachC(ti) with 1 ≤ i ≤ k is a proper split arc set
of C(t). Since µ(t) is 3-connected, C(ti) is maximal:

Assume for contradiction a split arc set C of (U1, U2) with C(ti) ( C ( C(t),
implying an index j 6= i with C(tj) ∩C 6= ∅. Let E be an arc in C(tj). (U1, U2) is
a split-pair of C(t) that does not separate C(ti) from E. Since µ(t) is 3-connected,
such (U1, U2) cannot exist.

Conversely, let C be a maximal proper split arc set of C(t). There is an index i such that
C intersects C(ti). By a similar argument, C does not intersect C(tj) for all i 6= j. Hence
C ⊆ C(ti) and C = C(ti).

Suppose that t is an S-vertex. By Lemma 5.5, each C(ti) with 1 ≤ i ≤ k is a split arc set of
(Ui, Ui+1). Each Ci with i > 1 is a split-component of (U1, Ui+1):

Assume for contradiction that Ci is not a split-component, implying at least two
disjoint split-componentsC ′1,C ′2 of (U1, Ui+1) such thatC ′1∪C ′2 ⊆ Ci. By Lemma 5.5,
U1 and Ui+1 are non-adjacent in Ci. Hence {U1, Ui+1} is a split-pair of Ci that sep-
arates C ′1 and C ′2. But by Lemma 5.5, Ci \ {U1, Ui+1} is connected, a contradiction.

19



doi:10.6342/NTU201803034

Let C be a minimal split arc set with Ci * C ⊆ C(t). Since no two S-vertices can be adjacent
in T, C = Ci+1:

Assume for contradiction C 6= Ci+1. By Lemma 5.5, Ci+1 is a split arc set with
Ci * Ci+1 ⊆ C(t). Hence Ci * C * Ci+1. Let (U,U1) be the split-pair of C . Since
Ci is a split-component, C \Ci ( C(ti+1) is a split arc set of (U,Ui). Hence U is a
cut-vertex of C(ti+1). By Lemma 5.5, ti+1 is an S-vertex, a contradiction.

By Lemma 5.6, we have

Lemma 5.7. Let H be an X-web. Let t be a non-root vertex of T with poles V1, V2 and children
t1, . . . , tk. C(t) is a V1V2-block and the following holds:

1. If t is a P-vertex, then each C(ti) with 1 ≤ i ≤ k is a minimal V1V2-subblock of C(t).
2. If t is an R-vertex, then C is a maximal proper subblock of C(t) inH if and only if C = C(ti) for an

1 ≤ i ≤ k.
3. Let t be an S-vertex such that µ(t) is a cycle U1U2 . . . Uk+1 with

• U1 = V1, Uk+1 = V2, and
• the virtual arc UiUi+1 is contained by µ(ti) for each 1 ≤ i ≤ k.

Let Ci = C(t1) ∪ . . . ∪ C(ti). For each 1 < i ≤ k, Ci is a (U1, Ui+1)-block. Further, if C is a
minimal block satisfying Ci ( C ⊆ C(t), then C = Ci+1.

Lemma 5.8. Let Y be an H ′-bad set for an X-net H ′ aiding an X-web H . Y admits an abode in H if
and only if Y admits an abode inH ′.

Proof. For the if-part, suppose that Y admits an abode C in H ′. Since H ′ is steady, C is an arc
UV of H ′. Since H ′ aids H , C is a UV -block of H . Conditions A1, A2, and A3 for Y and C in
H ′ implies Conditions A1, A2, and A3 for Y and C inH . Therefore C is an abode of Y inH .
For the only-if part, suppose that Y admits an abode C in H . By Lemma 5.5, C ⊆ E for an arc
E of H ′. Let E = UV . E is a UV -block of H ′ that satisfies Conditions A1, A2, and A3 for Y .
Hence E is an abode of Y inH ′.

Recall that an abode of Y inH is a V1V2-block C ofH satisfying the following properties:

• N(Y,X) ⊆ C ∪ V1 ∪ V2.
• N(Y, V1) ⊆ C or V1 ⊆ N(y) ∪ C holds for an end-node y of path G[Y ].
• N(Y, V2) ⊆ C or V2 ⊆ N(y) ∪ C holds for an end-node y of path G[Y ].

We say that Vi is full if N(Y, Vi) * C. If Vi is full and V1 ⊆ N(y) ∪ C, then we say y occupies Vi.

Lemma 5.9. Let Y be anH ′-bad set for an X-netH ′ aiding an X-webH . Let t be a vertex in T with
poles V1, V2. If C(t) is an abode of Y in H and V1, V2 are both full, then it takes O(m) time to find a
minimal abode of Y inH .

Proof. C(t) is a V1V2-block. Let M ⊆ C(t) be a minimal abode of Y in H . Since both V1 and V2
are full, M is a V1V2-block. By Lemma 5.7, if t is not a P-vertex, then M = C(t). Suppose that
t is a P-vertex with children t1, . . . , tk. Let j ∈ {1, 2} be the index such that yj occupies V1 and
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y3−j occupies V2. By Conditions A1, A2, A3, and Lemma 5.7, for each 1 ≤ i ≤ k, C(ti) ⊆ M
unless

N(yj) ∩ C(ti) = V1 ∩ C(ti) (1)
N(y3−j) ∩ C(ti) = V2 ∩ C(ti) and

N(Y \ {y1, y2}) ∩ C(ti) = ∅

holds. Hence M is the union of each C(ti) that does not satisfy Equation (1) and it takes O(m)
to compute M .

Proof of Lemma 5.2. If Y admits an abode C inH ′, then sinceH ′ is steady and Y is non-H -local,
C equals an arc E = V1V2 of H ′, and at least one of V1, V2 is full. It is easy to find E or ensure
that no such E exists in O(m) time. By Lemma 5.8 and Lemma 5.1, Task (2) can be completed
in O(m) time. The remaining proof deal with Task (1).
Let N = N(Y,X). Let y1 and y2 be the end-nodes of path G[Y ]. Suppose that Y admits an
abode in H . Let E = V1V2 be an arc of H ′ such that E is the abode of Y in H ′. Let M be a
minimal abode of Y inH . By Lemma 5.7, E = C(t) for a child t of r. If V1 and V2 are both full,
then it takesO(m) time to computeM by Lemma 5.9. Hence we can assume an index i ∈ {1, 2}
such that Vi is full and V3−i is not full. Let j ∈ {1, 2} be the index such that yj occupies Vi. Let
N ′ = N(Y \ {yj}) ∪ (N(yj) \ Vi) ∪ (Vi \N(yj)). Let t0 be the vertex in T with

• N ′ ⊆ C(t0),
• Vi is a pole of t0, and
• C(t0) is minimal.

It takes O(m) time to find t0 since |T| = O(n). If t0 is a Q-vertex, then C(t0) = M and we are
done. Suppose that t0 is not a Q-vertex, implying t0 non-leaf. Let t1, . . . , tk be the children of
t0.

Case 1: t0 is an R-vertex.
By Lemma 5.7, either

• M ⊆ C(ta) holds for an index 1 ≤ a ≤ k, or
• M = C(t)

holds. It takesO(m) time to to either compute a or ensureM = C(t) by brute force since k ≤ n.
If M = C(t) then we are done. Hence we can assume M ⊆ C(ta). Since yj occupies Vi, Vi is
a pole of ta. Let V be the other pole of ta. If V is full then it takes O(m) to compute M by
Lemma 5.9. If V is not full, then ta is a vertex in T with

• N ′ ⊆ C(ta),
• Vi is a pole of ta, and
• C(ta) ( C(t0)

, a contradiction to the choice of t0.

Case 2: t0 is an S-vertex.
We can assume that µ(t) is a cycle U1U2 . . . Uk+1 such that U1 = Vi and the virtual arc UaUa+1 is
contained by µ(ta) for each 1 ≤ a ≤ k. Let m be the largest index with C(tm) ∩N ′ 6= ∅. m > 1
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since otherwise t1 will be a vertex ofT that contradicts the choice of t0. By Lemma 5.7, one can
verify that if

N(y3−j) ∩ C(tm) = C(tm) ∩ Um and N(Y \ {y3−j}) ∩ C(tm) = ∅

, then M = C(t1) ∪ . . . ∪ C(tm−1). Otherwise M = C(t1) ∪ . . . ∪ C(tm). Hence it takes O(m)
time to determine M .

Case 3: t0 is a P-vertex.
Let I consists of the indices 1 ≤ a ≤ k with C(ta) ∩ N ′ 6= ∅. |I| > 1 by the choice of t0. By
Lemma 5.7, one can verify that M is the union of C(ta) for each a ∈ I . Hence it takes O(m)
time to compute I and hence M .
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6 Proving Lemma 5.3

Define the following operations on an X-netH :

• Subdivide(V, x1, x2) for a new vertex V ofH and an edge x1x2 of G[E] in a slim arc E ofH :
Let V = {x1, x2}. Suppose that E = V1V2. Replace the arc E ofH by new arcs Ei = V Vi with
i ∈ {1, 2} consisting of the nodes of the minimal V Vi-path of G[E].
• JoinAdd(Y,E) for an arc E = V1V2 ofH and anH -bad set Y :

For each i ∈ {1, 2} and each endpoint y of G[Y ], if y has a neighbour in Vi \E then put y into
Vi. Put Y into E.

• JoinNew(Y, V1, V2) for distinct vertices V1, V2 ofH and anH -bad set Y :
Add a new arc E = V1V2. For each i ∈ {1, 2} and each endpoint y of G[Y ], if y has a
neighbour in Vi \ V3−i, then put y into Vi. Put Y into E.

Let H be an X-web. Recall that an induced path G[Y ] = y1 . . . y2 of G − X is H -expandable if
the following holds:

1. If |Y | = 1 then N(Y ) ∩ X is the union of two H -secure sets. Otherwise each N(yi) ∩ X
for i ∈ {1, 2} is anH -secure set.

2. N(y,X) = ∅ for each internal node y of G[Y ]

Let H ′ be an X-net aiding X-web H . Let Y = y1 . . . y2 be an H ′-bad H -expandable set. If
|Y | > 1 then let each Si = N(yi) ∩ X for i ∈ {1, 2}. Otherwise let each Si for i ∈ {1, 2} be an
H -secure set such that N(Y ) ∩X = S1 ∪ S2. DefineH + Y according to the types of S1 and S2
as follows:

Case 1: S1 = V1 and S2 = V2 for vertices V1 and V2 of H . Apply JoinNew(Y, V1, V2). If |Y | = 1
and there is a trivial or risky arc F between V1 and V2, then apply Merge(E, Y ∪ F ).

Case 2: S1 = {x1, x2} and S2 = V for a vertex V ofH and adjacent nodes x1, x2 contained by a
slim arc of H . Apply Subdivide(V ′, x1, x2) and JoinNew(Y, V, V ′) If |Y | = 1 and there
is a trivial or risky arc F between V and V ′, then apply Merge(E, Y ∪ F ).

Case 3: for each i ∈ {1, 2}, Si = {xi, x′i} for adjacent nodes xi, x′i contained by a slim arc of H .
Apply Subdivide(V1, x1, x

′
1), Subdivide(V2, x2, x

′
2), and JoinNew(Y, V1, V2).

Note thatH+Y is unique up toH (since S1 and S2 satisfy exactly one of the above conditions).

Lemma 6.1. H + Y is an X ∪ Y -web. If the X ∪ Y -net (H + Y )′ aidingH + Y is not isomorphic to
the X-netH ′ aidingH , then Y is an arc of (H + Y )′.

Proof. The Subdivide operation preserves Conditions N1-N6. Hence H + Y is an X ∪ Y -net
after the Subdivide operations in Case 2 and Case 3. Since Y is H -expandable, H + Y is
an X ∪ Y -net after the JoinNew operation. Since Subdivide preserves Condition W1 and H
satisfies Condition W, all the arcs of H + Y are either slim or risky (one of them is the new
arc Y ). Condition W can be violated if and only if Y is trivial and there is a parallel trivial or
risky arc F between the endpoints of Y . In this case F is unique by Condition W1 of H and
the Merge(E, Y ∪ F ) operation justifies (as Lemma ?? guaranteed).
(H + Y )′ and H ′ are unique by Lemma 5.1. Suppose that (H + Y )′ is not isomorphic to H ′. If
Y admits an abode inH , then (H + Y )′ is isomorphic toH ′:

Let C be an abode of Y in H . Let C be the split arc set of H corresponding to
C. By Lemmas ?? and 5.1, there is an arc E = U1U2 of H ′ that contains C. E is a
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U1U2-block of H with C ⊆ E′. Notice that if an arc E′ of H is subdivided, then
E′ ∈ E(C). Hence Y is contained by an arc of H + Y between two vertices of C ′,
where C ′ is the subgraph of H + Y corresponding to C with possibly one or two
arcs subdivided. This shows that Y is contained by an arc E ∪ Y of (H + Y )′ that
is a U1U2-block of H + Y . Since the other part (H \C) of H is not modified, H ′ is
isomorphic to (H + Y )′

Hence we can assume that Y does not admit an abode in H . Assume for contradiction that Y
is not an arc of (H + Y )′. By definition ofH + Y , there is an arc E of (H + Y )′ that contains Y .
E \ Y is an abode for Y inH

Let E = U1U2. By Lemma 5.1, E \ Y is an U1U2-block of H . Let C be the split arc
set of H corresponding to E \ Y . Let EY be the arc of H + Y that contains Y . By
definition of H + Y , both end-vertices of EY are either a vertex of C or a vertex
from subdividing an arc of C . Hence E \ Y is an abode for Y inH .

, a contradiction.

Suppose that Y is a non-H -expandable H ′-bad set that admits an abode. Let G[Y ] = y1 . . . y2.
Let C be an V1V2-block that is a minimal abode of Y . LetC be the split arc set ofH correspond-
ing to C. By Lemma 5.2, we can assume that y1 occupies V1 and V1 ∈ V (H ′). Define H +C Y
as follows:

Step 1: if V2 is a leaf vertex of C such that the incident arc E = V2V
′
2 of V2 in C is slim and

contains N(Y ) ∩ V2, then perform the following steps:
Let x1 be the node in N(Y ) ∩ E closest to V2. Let x2 be the neighbor of x1 in G[E] that
is not on the x1V2-path of G[E]. Subdivide(U2, x1, x2). Replace E inC by the new edge
U2V

′
2 . Replace V2 by U2.

Step 2: if there is a risky arc E /∈ E(C) between (the new) V1 and V2, then apply Merge(E′, C ∪
E).

Step 3: Apply JoinAdd(Y,E′).

Lemma 6.2. H +C Y is an X ∪ Y -web. Further, (H +C Y )′ is isomorphic toH ′.

proving Lemma 5.3. By Lemma 5.2, it takes O(n+ deg(Y )) time to compute a minimal abode C
if Y is non-H -expandable. Let C be the split arc set of H corresponding to C. We can update
H to either H + Y or H +C Y in O(n + deg(Y )) time as in Lemmas 6.1 and 6.2. It takes O(n)
time to updateT(H) correspondingly: by Lemma 5.4, each Subdivide operation and JoinNew
operation takes O(n) time. The Merge operation also takes O(n) time, since by Lemma ?? we
are replacing subtrees whose roots share a parent t of T(H) into a Q-vertex with parent t and
the fact that |T| = O(n).

7 Proving Lemma 6.2

During this section we fix an X-webH of G and a non-H -expandableH ′-bad set Y = y1 . . . y2
with a minimal abode C that is a V1V2-block. By Lemma ??, C is unique. Let C be the split arc
set ofH corresponding to C. We can assume that y1 occupies V1 and V1 ∈ V (H ′).
Recall thatH +C Y is obtained fromH as follows:
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Step 1: if V2 is a leaf vertex of C such that the incident arc E′ = V2V
′
2 of V2 in C is slim and

contains N(Y ) ∩ V2, then perform the following steps:
Let x1 be the node in N(Y ) ∩E′ closest to V2. Let x2 be the neighbor of x1 in G[E′] that
is not on the x1V2-path of G[E′]. Subdivide(U2, x1, x2). Replace E′ in C by the new arc
U2V

′
2 . Replace V2 by U2.

Step 2: if there is a risky arc E′ /∈ E(C) between (the new) V1 and V2, then apply Merge(E,C ∪
E′).

Step 3: Apply JoinAdd(Y,E).

Let E = U2V1 be the arc ofH +C Y that contains Y . We say that U2 is subdivided if Step (H1) is
executed.

Lemma 7.1. H +C Y is an X ∪ Y -net. (H +C Y )′ is isomorphic to H ′. If E is risky then H +C Y
is an X ∪ Y -web. There is an E-rung inH +C Y that contains Y .

Proof. If Step (H1) is executed then U2 is a new vertex of degree-two and Step (H2) will not be
executed. HenceH +C Y is well-defined. It is easy to verify that:

• The Subdivide operation preserves N1-N6.
• The Merge operation preserves N1-N6 by Lemma ??.
• The JoinAdd operation preserves N1, N2, N3, and N5.

We show that Step (H3) preserves N4 and N6, implyingH +C Y an X ∪ Y -net.
For N4, since H remains an X-net upon the end of Step (H2), it suffices to show that there is
an E-rung that contains Y . This also completes the last statement. If Step (H1) is executed or
y2 occupies V2, then by definition of operation JoinAdd, Y is an E-rung. Hence we can assume
N(y2) ∩X ⊆ E. Since Y is non-H ′-local, N(y2) * V1. SinceH remains an X-net upon the end
of Step (H2), by N4 there is an E-rung P with P ∩ Y = ∅ that contains a node in N(y2) \ V1.
Let P ′ a U2N(y2)-rung in P . P ′ ∪ Y is an E-rung that contains Y .
For N6, let xi be a node contained by a distinct arc Ei in H +C Y for each i ∈ {1, 2}. If
{x1, x2} ⊆ X then N6 holds since H remains an X-net upon the end of Step (H2). We can
assume without loss of generality x1 ∈ Y and E1 = E. Suppose x1 ∈ in(Y ). By definition of
operation JoinAdd, x1 /∈ U2∪V1. Since Y isH ′-bad, N(x1)∩X ⊆ E. Hence N6 holds. Suppose
x1 = y1. By definition of operation JoinAdd, x1 ∈ V1. Since y1 occupies V1, V1 \ E ⊆ N(y1). If
y1 6= y2 then N(y1) ∩X ⊆ V1 and N6 holds. Hence we can assume x1 = y1 = y2. If y2 occupies
U2 then N(y1) ∩ X ⊆ (V1 ∪ U2 ∪ E) and N6 holds. Otherwise N(y2) ∩ X ⊆ E and N6 also
holds. Suppose x1 = y2. We can assume y2 6= y1 by the above cases. If y2 occupies U2 then
N(y2) ∩X ⊆ U2 ∪ E and N6 holds. Otherwise N(y2) ∩X ⊆ E and N6 also holds.

By Lemma ?? and the fact that the Merge and Subdivide operations preservesT(H),T(H +C
Y ) = T(H). Hence (H +C Y )′ is isomorphic toH ′.

It remains to show that H +C Y satisfies W1 and W2 when E is risky. E is non-trivial since
1 < |C ∪ Y | ≤ |E|. Suppose that E is risky. W1 holds since each arc of H +C Y , except E and
possibly U2V2 when Step 1 is executed, is an arc of H . For W2, let V be a degree-two vertex
of H +C Y with incident arcs E1 and E2. By the definition of H +C Y , either Ei = E holds
for an i ∈ {1, 2} or both E1 and E2 are arcs of H . By W1 of H and that E is risky, E1 and
E2 are not both slim or trivial. Now suppose that E1 and E2 are parallel arcs of H +C Y . If
E /∈ {E1, E2}, then by W2 of H , E1 and E2 are not both risky. Hence we can assume without
loss of generality E1 = E. If Step (H1) is executed then E has no parallel arc, a contradiction.
Hence Step (H1) is not executed and U2 = V2. By W2 of H , there is at most one risky arc, say
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F of H between U2 and V1. By Step (H2), F ⊆ E in H +C Y , implying E2 non-risky. Hence
H +C Y contains no parallel risky arcs. This completes W2.

Proving Lemma 6.2. By Lemma 7.1, it suffices to show that E is risky. Let non-empty S ⊆ E be
an arbitrary set. We show that G[E] contains an (S,U2, V1)-sprout.

(0) If y2 ∈ U2 then y2 occupies U2 and one of the following holds:

0.1 y1 = y2,
0.2 N(in(Y )) ∩ E 6= ∅,
0.3 y1 has a non-neighbour in E ∩ V1,
0.4 y2 has a non-neighbour in E ∩ U2, or
0.5 y2 has a neighbour in E \ U2

If all five conditions fail, then Y isH -expandable.

(1) if S ⊆ Y , then G[E] contains a (S,U2, V1)-sprout.
Let P be an E-rung that contains Y as Lemma 7.1 guaranteed. Let si be the node of S closest
to yi in G[Y ] for each i ∈ {1, 2}. Let Yi be the siyi-rung in G[Y ]. s1 6= s2 since otherwise P is
an (S,U2, V1)-sprout. If s1 is non-adjacent to s2, then Y1 ∪ Y2 ∪ (P \ Y ) is an (S,U2, V1)-sprout.
Hence we can assume s1s2 ∈ E(G), implying S = {s1, s2} and |Y | > 1.
Suppose first N(in(Y )) ∩ E 6= ∅. Let y be a node of in(Y ) with N(y) ∩ E 6= ∅ that is closest
to S in G[Y ]. Let P be an E-rung in G[E \ Y ] that intersects N(y) (as N4 on H after Step 2
guaranteed). By Y is H -bad and N(y1) ∩ X ⊆ V1, N(y) ∩ V (P ) ⊆ V1. P ∪ Y ′ is a (S,U2, V1)-
sprout, where Y ′ is the Sy-rung in G[Y ]. Therefore,

N(in(Y )) ∩ E = ∅ (1)

Suppose that y1 has a non-neighbour v in E ∩ V1. Let P be an E-rung in G[E \ Y ] that contains
v. By Equation (1), P ∪ Y1 is a (S,U2, V1)-sprout. Hence we can assume

E ∩ V1 ⊆ N(y1) and N(y1) ∩X = V1. (2)

Suppose y2 ∈ U2. By (0) y2 has either a non-neighbour v in E ∩ U2, or a neighbour u in E \ U2.
Let P be an E-rung in G[E \ Y ] that contains v. Let Q be an E-rung in G[E \ Y ] that contains
u. Let Q′ be the uV1-rung in Q. By Equation (1), either Y2 ∪P or Y2 ∪Q′ is an (S,U2, V1)-sprout.
Hence we can assume

y2 /∈ U2 (3)

Let S′ = N(y2) ∩X . By Equation (3), Step 1 is non-executed. By definition ofH +C Y ,

E \ Y is a U2V1-block ofH that contains S′ (4)

IfG[E\Y ] contains a (S′, U2, V1)-sprout T , thenG[T∪Y2] is an (S,U2, V1)-sprout inG[E]. Hence

G[E \ Y ] contains no (S′, U2, V1)-sprout (5)

By Equations (4), (5) and Lemma 2.4, S′ isH -Safe. By Equations (1) and (2), Y isH -expandable,
a contradiction. This completes (1).

By (1) we can assume S * Y . Let Hi be the modified H after Step i for each i ∈ {1, 2}. We
have:
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• H2 is an X-net that satisfies W1
• E \ Y is a U2V1-block ofH2 that contains S \ Y
• G[E \ Y ] contains no (S′, U2, V1)-sprout, since otherwise G[E] has an (S,U2, V1)-sprout

By Lemma 2.4, S \ Y isH2-Safe. By S \ Y ⊆ E and the definition ofH2, S \ Y isH1-Safe.
LetH(S) and G(S) be obtained as follows:

step 1 Let H(S) be the subgraph of H1 that corresponds to the U2V1-block E \ Y . Let G(S) =
G[E].

step 2 If S′ = {x1, x2} is contained by a slim arc of H(S), then apply Subdivide(V (S), x1, x2);
otherwise let V (S) be the vertex ofH(S) that equals S′.

step 3 Add two new nodes v and v′ into G(S) with NG(S)(v) = S′ and NG(S)(v
′) = v.

step 4 Add a leaf V ′(S) adjacent to V (S) into H(S). Let the arc V ′(S)V (S) be {v, v′}. Add v
into V (S) and v′ into V ′(S).

step 5 Add two new nodes u2 and u′2 into G(S) with NG(S)(u2) = U2 ∩ E and NG(S)(u
′
2) = u2.

step 6 Add a leaf U ′2 adjacent to U2 intoH(S). Let the arc U2U
′
2 be {u2, u′2}. Add u2 into U2 and

u′2 into U ′2.
step 7 Add two new nodes v1 and v′1 into G(S) with NG(S)(v1) = V1 ∩ E and NG(S)(v

′
1) = v1.

step 8 Add a leaf V ′1 adjacent to V1 into H(S). Let the arc V1V ′1 be {v1, v′1}. Add v1 into V1 and
v′1 into V ′1 .

step 9 If U2 (respectively, V1) is a degree-two vertex that incident to two non-risky arcs E1, E2,
then apply Merge(E′, E1 ∪ E2).

We say that V (S) is subdivided if the Subdivide operation is executed in step (h2). We say thatU2

(respectively, V1) is merged if the Merge operation is executed in step (h9) for U2 (respectively,
V1). Let A = {v, v′, u2, u′2, v1, v′1} be the new nodes.

(2) H(S) is an X(S)-web of G(S), where X(S) = E ∪ A \ Y . G(S) has exactly three leaves. If
G(S) has a sapling then G[E] contains a (S,U2, V1)-sprout.
Since S \ Y is H1-Safe, H(S) and G(S) are well-defined. All non-leaf vertices (respectively,
arcs between non-leaf vertices of H(S)), besides possibly V (S) (respectively, possibly the two
subdivided arcs incident to V (S)) are vertices (respectively, arcs) ofH1. Hence N1-N6 holds for
these vertices and arcs. By definition N1-N6 holds forH(S)[{V, V (S), U2, U

′
2, V1, V

′
2}].Therefore

H(S) is anX(S)-net. W1 holds since any new arc ofH(S) that is not an arc ofH1 is slim. There
is no new pair of parallel arcs in H(S) and the only new possible degree-two vertices are U2

and V1 since V (S) has at least three neighbours. W2 holds by the last step. Hence H(S) is
an X(S)-web of G(S). Since E \ Y is a U2V1-block of H1, the only possible leaves of G[E \ Y ]
belong to U2 ∪ V1. Hence G(S) has exactly three leaves v′, u′2, and v′1. Suppose that G(S) has
a sapling T . A ⊆ V (T ). Let t be the degree-three node in T . T \ A is an induced subgraph
of G[E]. By NG(S)(u2) = U2 ∩ E, NT (u2) = V (T ) ∩ U2. Similarly, NT (v1) = V (T ) ∩ V1 and
NT (v) = V (T ) ∩ S. Hence G[T \A] is an (S,U2, V1)-sprout.

The remaining proof shows that a subset of Y is H ′(S)-bad, non-H ′(S)-expandable and admits no
abode in (H(S))′ = H∗. By Lemma 2.2 and (2), G[E] contains a (S,U2, V1)-sprout as required.
Since y1 occupies V1 inH ,

v1 ∈ NG(S)(y1) (6)

By definition ofH(S),

V (S) /∈ V (H) if and only if V (S) is subdivided (7)
U2 /∈ V (H) if and only if U2 is subdivided

all the other non-leaf vertex ofH(S) belongs to V (H)
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By {u2, v1} ∩ S = ∅,
V (S), U2 and V1 are all distinct (8)

By definition of H(S), an arc F of H(S) is not an arc of H if and only if one of the following
holds:

F is incident to a leaf ofH(S) (9)
F is incident to U2 and U2 is subdivided

F is incident to V (S) and V (S) is subdivided
(10)

By Step (H1), if U2 is subdivided then inH1,

U2 is a leaf of C that incident to V ′2 and U2V
′
2 is slim (11)

(3) The following statements hold:

Fact 1 If a set B ⊆ E isH∗-Safe, then B isH -Safe.
Fact 2 Y admits no abode inH∗.

For Fact 1, suppose first that B is a vertex of H∗ and hence a vertex of H(S). By B ⊆ E, B /∈
{V1, U2, V (S), V ′1 , U

′
2, V

′(S)} By Equation (7), B is a vertex of H and hence H -Safe. Suppose
that B consists of two adjacent nodes contained by a slim arc F1 of H∗. Since F1 is slim, F1 is
an arc of H(S). If F1 is an arc of H , then B is H -Safe. Therefore we can assume F1 /∈ E(H).
Assume first

F is incident to V (S) and V (S) is subdivided from a slim arc F = W1W2 (12)

By B ⊆ E, F1 = V (S)Wi for an i ∈ {1, 2}. If F is an arc of H , then B ⊆ F is H -Safe. Hence
F /∈ E(H). By Equation (9) we can assume Wi ∈ {U2, V

′
1 , U

′
2}. If F = V ′1U

′
2 then V (S)V ′1 and

V (S)U ′2 are both slim arcs ofH∗. By definition ofH(S), both V1 and U2 are merged. Since V (S)
is subdivided, V1U2 is a slim arc E1 of H1. By B ⊆ E ∩ F1, B ⊆ E1. If U2 is not subdivided,
then E1 is an arc of H and B is H -Safe. Hence U2 is subdivided. By definition of H +C Y , U2

is a leaf of C in H . Since V1U2 is an arc of H1, U2 is subdivided from a slim arc V1V2 = E2 of
H . B ⊆ E2 isH -Safe.
If Wi = V ′1 then by Equation (8) V1 is merged, implying V1V (S) ∈ E(H(S)).
There are two cases:

Case 1 F is incident to U ′ for an U ′ ∈ {U ′2, V ′1}.
By B ⊆ E, Step 9 is executed on U , where U ∈ {U2, V1} is the neighbour of U ′ inH(S).
Let F = U ′V . V is a vertex ofH∗ andH(S). If V is a vertex ofH , then UV is a slim arc
ofH that containsB andB isH -Safe. Hence V = V (S) is subdivided. By Step (H2), we
can assume that S′ is two adjacent nodes contained by a slim arc UW ofH1. By B ⊆ E,
B ⊆ UW . If UW is an arc of H , then B is H -Safe. Hence we can assume W = U2 and
U2 /∈ V (H). That is, Step (H2) is executed. But then UV2 is a slim arc ofH that contains
B and B isH -Safe.

Case 2 F is non-incident to U ′2 and V ′1 .
Let F = UV . If F is an arc of H , then B is H -Safe. Hence we can assume F /∈ E(H).
By the definition of H(S) and that F is non-incident to U2, F is incident to V (S) and
V (S) is subdivided. Let V (S) = V be subdivided from a slim arc UV ′ of H1. If UV ′ is
an arc of H , then A is H -Safe. Hence we can assume V ′ = U2 and U2 /∈ V (H). That is,
Step (H2) is executed. But then UV2 is a slim arc ofH that contains B and B isH -Safe.
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For Fact 2, assume for contradiction that Y admits an abode F in H∗. Since H∗ is steady, F is
an arc of H ′(S). Let N = NG(S)(Y ). Let Ni = NG(S)(yi) for each i ∈ {1, 2}. By v1 ∈ N , F is
incident to either V1 or V ′1 . Assume first

F = V V ′1 (13)

Case 1 F is incident to V ′1 .
Let F = V V ′1 . If V = V1 then by Condition A1,N ⊆ F∪V1∪V ′1 . But thenN(Y )∩X ⊆ V1,
a contradiction to Y is non-H -local. Hence we can assume that V 6= V1. Since F is a
V V ′1-block ofH(S) and V ′1 is a leaf, F \ V1V ′1 = F \ {v1, v′1} is a V V1-block ofH(S). We
have V 6= U2, since otherwise (by H ′(S) is steady) H ′(S) contains exactly one degree-
three vertex V = U2 = V (S), a contradiction to Fact 1. Suppose first that V is a vertex
of H1. Since V 6= U2, V is a vertex of H . C ′ = F \ {v1, v′1} is a V V1-block of H that is
strictly smaller than C. We show that F \{v1, v′1} satisfies Condition A1-A3 for Y inH ,
a contradiction to the minimality of C. By N ⊆ V ∪ F ∪ V ′1 and V 6= U2, u2 /∈ N and
N(y2) ∩X ⊆ E.

• By N ⊆ V ∪ F ∪ V ′1 inH ′(S), N(Y ) ∩X ⊆ V ∪C ′ ∪ V ′1 inH and A1 holds. Note that
if V = V (S) then these two V ’s may differ on one node v, but it does not matter.

• Since y1 occupies V1 on C inH , A2 holds for V1 on C ′ inH .
• By A3 applied on F , either N2 ⊆ C ′ or y2 occupies V in H ′(S). If N2 ⊆ C ′ then
N(y2) ∩X ⊆ C ′. Otherwise y2 occupies V inH . Either way, A3 holds.

Hence we can assume V /∈ V (H1). By definition ofH(S), V = V (S) is subdivided.
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[47] N. Trotignon and K. Vušković. A structure theorem for graphs with no cycle with a unique
chord and its consequences. Journal of Graph Theory, 63(1):31–67, 2010.

[48] P. van ’t Hof, M. Kaminski, and D. Paulusma. Finding induced paths of given parity in
claw-free graphs. Algorithmica, 62(1-2):537–563, 2012.
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