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Sapling Detection

Student: Kai-Yuan Lali Advisor: Prof. Hsueh-1 Lu

Institute of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science
National Taiwan University
Abstract

The problem of determining whether a graph contains certain structure as induced
subgraph has been extensively studied. Many of them have been shown belong to the
complexity NP-complete. We study a special case regarding saplings and show an
algorithm that solves the problem in O(n3) time, which is an improvement over the

current best O(n%) time algorithm.
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1 Introduction

Let | S| denote the cardinality of set S. To detect a family of graphs in G is to determine whether
G contains an induced subgraph that is isomorphic to a graph in the family. Let G be an
undirected n-node graph. Let Ng(v) consist of the neighbors of node v in G. The degree of
node v in G is deg(v) = |Ng(v)|. A leaf of G is a node with degree one in G. A sapling of G
is an induced tree of G containing all leaves of G. The NP-complete [26] k-in-a-tree problem
is to detect saplings in a k-leaf graph.! Chudnovsky and Seymour [16] gave an O(n*)-time
algorithm for THREE-IN-A-TREE (i.e., the case with k£ = 3), which is at the kernel of several
state-of-the-art graph detection algorithms. As stated in the following theorem, we reduce the
time complexity of THREE-IN-A-TREE to O(n?).

Theorem 1.1. It takes O(mn) time to detect saplings in an n-node m-edge 3-leaf graph.
Below are implications of our result:

e Chudnovsky and Seymour [15, 16] gave the previously only known polynomial-time algo-
rithm, running in O(n!!) time, of detecting thetas (i.e., induced subdivisions of K3 3 [4]) via
solving THREE-IN-A-TREE on O(n") graphs of O(n) nodes. Theorem 1.1 reduces the time
of detecting thetas to O(n!Y).

o A hole is an induced simple cycle with at least four nodes. A hole is odd (respectively, even) if
it consists of an odd (respectively, even) number of nodes. A graph is Berge if both the graph
and its complement are odd-hole-free. The celebrated Strong Perfect Graph Theorem, con-
jectured by Berge [5] and proved by Chudnovsky, Robertson, Seymour, and Thomas [14],
states that a graph is Berge if and only if it is pefect. Although the complexity of detect-
ing odd holes remains open for a long time, Chudnovsky, Cornuéjols, Liu, Seymour, and
Vuskovi¢ [10] showed that Berge graphs can be recognized in polynomial time. One of the
two O(n?)-time bottlenecks in their algorithm is an involved subroutine of detecting pyra-
mids [10, §2]. Chunodvsky and Seymour [16] showed an O(n'Y)-time algorithm for detect-
ing pyramids via solving THREE-IN-A-TREE on O(m?) graphs of m edges. Theorem 1.1
implies that the time of detecting pyramids is O(m*n).

e Even-hole-free graphs have been extensively studied in the literature (see, e.g., [2, 19, 20,
21, 24, 25, 40, 46]). Vuskovic [49] gave an extensive survey. Conforti, Cornuéjols, Kapoor,
and Vuskovi¢ [18, 22] gave the first polynomial-time algorithm for detecting even holes,
running in O(n?Y) time [12]. Chudnovsky, Kawarabayashi, and Seymour [12] reduced
the running time to O(n3!). Chudnovsky et al. [12] also observed that the running time
can be further reduced to O(n'®) as long as prisms can be detected efficiently, but Maffray
and Trotignon [44] showed that detecting prisms is NP-hard. da Silva and Vuskovi¢ [25]
significantly improved the complexity of recognizing even-hole-free graphs to O(n'?).
The best previously known algorithm, due to Chang and Lu [9], runs in O(n!!) time.
Theorem 1.1 reduces the time of one of the two bottleneck subroutines [9, Lemma 2.3] to
O(n'Y).

Related work The complexity of k-in-a-tree problem for any fixed k£ > 4 is open [36]. The
analogous k-in-a-cycle (respectively, k-in-a-path) problem is NP-complete for & = 2 (respec-
tively, k = 3) [6, 32]. Derhy, Picouleau, and Trotignon [27] studied the four-in-a-tree problem

!The original version of the k-in-a-tree problem seeks an induced tree containing arbitrary k given nodes, but
one can verify that the version requiring that the given k nodes are the leaves of the input graph is equivalent.
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problem on graphs having no triangle. Liu and Trotignon [43] studied the k-in-a-tree problem
on graphs with girth at least k. dos Santos, da Silva, and Szwarcfiter [31] studied the k-in-
a-tree problem on chordal graphs. Golovach, Paulusma, and van Leeuwen [36] studied the
k-in-a-tree, k-in-a-cycle, and k-in-a-path problems on AT-free graphs [41]. Bruhn and Saito [8],
Fiala, Kaminski, Lidicky, and Paulusma [33], and Golovach, Paulusma, and van Leeuwen [37]
studied the k-in-a-tree problem and k-in-a-path problems on claw-free graphs. Lévéque, Lin,
Maffray, and Trotignon [42], van "t Hof, Kaminski, and Paulusma [48], and Chudnovsky, Sey-
mour, and Trotignon [17] showed more applications of THREE-IN-A-TREE.

Gitler, Reyes, and Vega [35] XXXX. (They did not use the TREE-IN-A-TREE algorithm or
prism/pyramid detection directly.)

Bang-Jensen, Havet, and Maia [3] XXXX.

Survey of Combinatorics 2013, the world of hereditary graph classes

Detecing wheels [30] is NP-complete. The above paper also gave a survey for the complexity
of various subgraph detection problems.

Trotignon and Vuskovi¢ [47] even emphasized that their result is the first example that does
not fall under the scope of THREE-IN-A-TREE.

Chudnovsky and Kapadia [11] gave an O(n?°)-time algorithm to determine whether an n-node
theta-free graph has a prism, although Maffray and Trotignon [44] showed that the problem of
detecting prisms is NP-complete.

Fomin, Todinca, and Villanger [34] studied induced subgraphs with properties expressible in
counting monadic second order logic formula.

Aboulker, Radovanovic, Trotignon, and Vuskovi¢ [1] studied propeller-free graphs.
Chudnovsky and Lo [13] studied (diamond, odd-hole)-free graph.

Conforti, Cornuéjols, Liu, Vuskovi¢, and Zambelli [23] gave the only known polynomial-time
algorithm to recognize odd holes in graphs with bounded clique size.

Technical overview Hopcroft and Tarjan [39] gave the first linear-time algorithm for comput-
ing the triconnected components of a graph. (Gutwenger and Mutzel [38] showed a minor ad-
justment of the algorithm.) The tree structure of the triconnected components of a biconnected
graph can be represented by the linear-time obtainable data structure SPQR-tree of Di Battista
and Tamassia [28] supporting efficient updates [29].

The rest of the paper is organized as follows: Section 2 gives the topmost level of our proofs
for via reducing Theorem 1.1 via Theorem 2.1 to Lemmas 2.2 and 2.3. Sections 3 and 4 prove
Lemma 2.2. Section 5 proves Lemma 2.3.
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2 Proving Theorem 1.1

This section reduces Theorem 1.1 via Theorem 2.1 to Lemmas 2.2 and 2.3.

2.1 Preliminaries

Let R\ S for sets R and S consist of the elements of R notin S. Let V(G) (respectively, E(G))
consist of the nodes (respectively, edges) of graph G. If e is an edge and « and v are nodes, then
let e = uv denote that u and v are the end-nodes of e. For subgraph H of graph G, let G[H| be
the subgraph of G induced by V(H). For any node subset U of G, let G — U = G[V(G) \ U].
Disjoint subgraphs H; and Hj are adjacent in graph G if there is an edge uv of G withw € V (H)
and v € V(H3). Let U and V be node subsets of G. A UV -path is either anode in UNV or a path
having one end-node in U and the other end-node in V. A UV -rung [16] is a minimal induced
UV-path. If U = {u}, then a UV-path is also called a vV -path and a Vu-path. If U = {u} and
V = {v}, thena UV -path s also called a uv-path. Let Uv-rung, uV-rung, and uv-rung be defined
similarly.

The rest of the paper lets G be the input n-node m-edge graph, which is assumed without loss
of generality to be connected with exactly three leaf nodes. The subscripts in notation Ng and
degs are omitted.

2.2 The characterization of Chudnovsky and Seymour

Let X C V(G). An X-net for G is a connected multiple graph H, each of whose vertices (i.e.,
members of V(IH)) and arcs (i.e., members of E(IH)) is a nonempty subset of X, that satisfies
the following Conditions N:

N1: The graph obtained by adding an arc between every two leaf vertices of H is biconnected.

N2: The arcs of H form a nonempty disjoint partition of the nodes in X.

N3: Each leaf vertex of H consists of a distinct leaf node of G.

N4: For any arc E = V1 V3 of H, each node of X in E is contained by a V; Va-rung of G[E].

Nb: For any arc E and vertex V of H, ENV # @ if and only if V is an end-vertex of F in H.

Né6: For any nodes z; and z in X contained by distinct arcs £y and Es of H, z1x2 is an edge
of G if and only if arcs E; and E», share a common end-vertex V in H with {z1,z2} C V.

A triad of H is A(V1, Vo, V3) = (Vi N Vo) U (Vo N V3) U (V3N V) for three vertices Vi, Vo, and Vs
that are pairwise adjacent in H. A nonempty S C X is H-local if S is contained by a vertex,
arc, or triad of H. For any subsets Y and Z of V(G), let

NY)=|JNy\Y and N(Y,Z)=N(Y)nZ
yey

A nonempty Y C V(G) \ X is H-local if N (Y, X) is H-local.

Theorem 2.1 (Chudnovsky and Seymour [16, Theorem 3.2]). G is sapling-free if and only if there
is an X-net H for G such that any nonempty Y C V(G) \ X with connected G[Y] is H-local.

Our proof of Theorem 1.1 directly uses the if-direction of Theorem 2.1, for which we give a
much shorter proof below to make our paper more self-contained. Chudnovsky and Seymour
remarkably proved the only-if-direction of Theorem 2.1 in thirty-some pages, among which we
directly adopt without proof one lemma [16, (4.1) in pages 395-402] as our Lemma 4.1. Two

3
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of their lemmas [16, (5.3) and (5.4)] are extended to be our Lemma 2.2, for which we give a
complete proof in §3 and §4.

Proof of the if-direction of Theorem 2.1. Assume a sapling 1" of G for contradiction. We start with
the first claim that if G[Y] is a connected component of 7' — X, then N(Y, X) is contained by
an arc of H: Since Y is H-local, any nodes u € N(Y, E) and v € N(Y, F) for distinct arcs £
and F' of H are contained by a common vertex or triad of H. By Condition N6, v and v are
adjacent in G, implying a cycle of T in G[Y U {u, v}], contradiction. The first claim is proved.
Condition N6 implies the second claim that if uv is an edge of 7" with u € F and v € F for
distinct arcs E and F of H, then {u,v} is contained by a common end-vertex of £ and F in
graph H. By both claims and Conditions N2 and N3, the vertices and arcs of H intersecting 7'
form a subtree T of H with three leaf vertices. Thus, T intersects a vertex of T and three of its
incident arcs in T'. Condition N6 implies a triangle in 7', contradiction. O

2.3 Sprouts, abodes, and steady nets

For any nonempty node subsets S, U, and V of graph H, an (S, U, V')-sprout of H is an induced
subgraph of H that is in one of the following four types S:

S1: A tree intersecting each of sets S, U, and V at exactly one node.
§2: An SU-rung plus a node-disjoint SV -rung.

§3: A UV-rung plus a node-disjoint SU-rung not intersecting V.
S4: A UV-rung plus a node-disjoint SV-rung not intersecting U.

Let H be an X-net of G. For any node y and node subset Z of G, let N(y, Z) = N({y}, Z). Let
S be a non-empty node set. S is secure in H if S is contained by an arc £ = UV of H such that
G|[E] contains no (S, U, V)-sprout. S is H-secure if S is a vertex of H or S is secure in H. A set
Y inducing a y1y2-path of G — X is H-expandable if one of the following conditions holds with
Sz‘ =N (yi, X )2

e Y| =1and N(Y, X) is the union of two distinct H-secure sets.
e |Y|>2and

X1: both S; and Sy are H-secure,

X2: if both S} and S, are vertices of H, then vertices S| and S are not adjacent in H, and

X3: if S; with i € {1,2} is secure in H, then S3_; is not an end-vertex of the arc of H con-
taining S;.

We comment that Conditions X2 and X3 are not needed in the proof of Lemma 2.4 but needed
in our proof of Lemma 2.2 in §3, which generalizes that of Chudnovsky and Seymour [16,
(5.4)]. See the paragraphs containing Equations (6) and (7).

For vertices U and V' of H, we call (U, V') a split pair for H if UV is an arc of H or {U,V} is a
vertex cut-set of graph H. For any split pair (U, V') for H,

e if U and V are adjacent in H, then a split component of (U, V') consists of an arc UV;
e otherwise, a split component of (U, V') consists of the arcs of H[{U, V' } UB] for some connected
component B of H — {U, V'} not containing any leaf vertex of H.

For any split pair (U, V') for H,

e asplit arc set of (U, V') is the union of one or more split components of (U, V') and

4
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e a UV-block of H is a subset of X that is the union C of the arcs in a split arc set C of (U, V).

We call C the split arc set of H corresponding to C' and call C' the block of H corresponding to C. An
abode in H of a set Y inducing a path in G — X is a UV-block C of H satisfying the following
Conditions A:

Al: N(Y,X)CCUUUV.
A2: N(Y,U) C CorU C CUN(y) holds for an end-node y of path G[Y].
A3: N(Y,V)C CorV C CUN(y) holds for an end-node y of path G[Y].

A set Y is H-bad if G[Y] is a minimally non-H-local path of G — X. An X-net H is steady if
there is no parallel arc in H and any split component of any split pair for H consists of an arc
of H. Thus, if {U, V'} is a cut-set of a steady H, then each connected component of H — {U,V'}
contains a leaf vertex of H. The degree of each vertex in a steady IH cannot be two.

Lemma 2.2. If Y is an H-bad non-H-expandable set admitting no abode in a steady X-net H for G,
then G[X U Y| has a sapling.

2.4 Webs

An arc E = UV of an X-net H is

o trivial if |[E| =1,
e slimif |E| > 2 and G[E]is a UV-rung, and
o risky if G[E] contains an (S, U, V)-sprout for each nonempty subset S C E.

An X-net H is an X-web if the following Conditions W hold:

W1: Each arc of H is trivial, slim, or risky.
W2: H has no parallel risky arc nor degree-2 vertex whose incident arcs are both slim or trivial.

Note that Condition W2 does not rule out, e.g., a degree-3 vertex incident to 3 slim arcs. We
comment that Condition W2 is needed in the proofs of Lemmas 2.3 and 6.2 but not in that of
Lemma 2.4.

A node set S is H-safe for an X-net H if S is a vertex of H or S consists of two adjacent nodes
of G contained by a slim arc of H. A set Y inducing a y;y»2-path in G — X is H-extendable if

e Y| =1and N(Y, X) is the union of two distinct H-safe sets or
e |Y| > 2and each N(y;, X) with i € {1,2} is H-safe.

An X-net H' aids an X-web H if H’ is steady, each vertex of H’ is a vertex of H, and each arc
UV of H isa UV -block of H.

Lemma 2.3. It takes O(mn) time to ensure the existence of one of the following three items:
1. A sapling of G.

2. An X-net H' for G such that all nonempty Y C V(G) \ X with connected G[Y| are H'-local.
3. An X-net H' aiding an X-web H for G and an H'-bad non-H-extendable Y having no abode in H.
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2.5 The safe lemma

This subsection proves Lemma 2.4, which is needed to prove Theorem 1.1.

Lemma 2.4. Let H be an X-net of G satisfying Condition W1. If S is a nonempty subset of X contained
by a V1 Va-block C of H such that G[C] does not contain any (S, V1, Va)-sprout, then S is H-safe.

Lemma 2.5 (Menger [45]). Let G be a k-connected graph. If R and S are subsets of V(G) with
|R| = |S| = k, then there are k vertex-disjoint RS-paths in G.

Proof of Lemma 2.4. A block C of H is a UV-block of H for some split pair (U, V') of H. We call
(U, V) the split pair of H for block C' if C is a UV-block. All sprouts throughout the proof are
(S, V1, Va)-sprouts unless clearly specified otherwise.

Assume for contradiction that C is a minimal block containing a non-H-safe set S such that
G[C] does not contain any sprout. Let C be the split arc set of H corresponding to C. Let C be
the split arc set of H corresponding to C. If |C| = 1, then C'is an arc V; V5 of H. C' is not trivial
or else G[C], consisting of the single node in S, would be a sprout of Type S1. Since G[C] does
not contain any sprout, C' is not risky. By Condition W1, G[C] is a V;Vz-rung with |C| > 2.
We have |S| > 2 or else G[C] would be a sprout of Type S1. Let each P; with i € {1,2} be the
SVi-rung of G[C]. G[P; U P] = G[C] or else G[P; U P;] would be a sprout of Type S2. Thus, S,
consisting of two adjacent nodes contained by the slim arc C, is H-safe, contradiction.

The rest of the proof argues that |C| > 2 also implies that S is H-safe via showing that S is a
vertex. We start with proving two claims.

Claim 1: If C is a split component of a split pair (U, V'), then C U {UV'} is biconnected.
Assume a cut-vertex W of C U {UV'} for contradiction. There is a connected component B of
(Cu{UV}) — {W} not intersecting {U, V'}, implying that B does not contain any leaf vertex

of H. Thus, W is a cut-vertex of the graph obtained from H by adding an arc between each
pair of leaf vertices, contradicting Condition N1. The claim is proved.

Claim 2: Any node of a UV -block B for H is contained by a UV -rung of G[B].

Let z be an arbitrary node in B. Let 2 = W; W, be the arc containing = by Condition N2. Let B
be the split component of (U, V') containing E. Lemma 2.5 and Claim 1 imply vertex-disjoint
paths Py and P of BU{UV } between {U, V' } and {W;, W} such that U; and W; with € {1, 2}
are the end-vertices of IP;. Since IP; and P, are vertex-disjoint, Iy U P, does not intersect arc
UV. Leteach P; with i € {1,2} be a U;W;-rung of G[B] induced by vertex I¥; and the arcs of P;
by Condition N3. Let () be a W; Ws-rung of G[E] containing = by Condition N3. G[P; UQ U P,]
is a UV-rung containing x. The claim is proved.

To show that |C| > 2 implies that S is a vertex, observe that each arc E of C is a block with
E C C. Thus, there is a maximal block B C C intersecting S. Let B be the split arc set of H
corresponding to B. Let (Uz, W2) be the split pair for B. Let R = {V;, 2} and Ry = {Usa, Wa}.
By Claim 1, there are vertex-disjoint RRp-rungs IP; with ¢ € {1,2} such that R; € Ry and V; are
the end-vertices of IP;. Since (Uz, W) is a split pair, P} U Py does not intersect B. We first show
S ¢ B. Assume S C B for contradiction. For each i € {1,2}, if R; = V;, then let P, be empty;
otherwise, let P; be an R;V;-rung of G[C] induced by the arcs of P;. By S C B, P, U P, does not
intersect S. G[B] does not contain any (.S, Uz, Wa)-sprout T or else G[P; U P, UT| would be a
sprout. Thus, B contradicts the minimality of C. We have S ¢ B.

Let a be an arbitrary node in C'\ B. Let b be an arbitrary node in B. Let A = U; W be the arc
of C'\ B containing a. Let Ry = {U;, W1}. Claim 1 implies vertex-disjoint RR;-rungs @; of
C with i € {1,2}. By Claim 2, Condition N4, and AN B = &, thereis an i € {1,2} admitting
node-disjoint
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e aVj-rung )1 (a) in the subgraph of G[C] induced by A and the arcs of @; and
o bV3_;-rung (Q2(b) in the subgraph of G[C] induced by B and the arcs of @2

such that Q;(a) —a and Q2(b) — b are not adjacent in G[C]. Any nodes s; € S\ Band s € SNB
are adjacent in G[C] or else G[Q1(s1) U Q2(s2)] would be a sprout of Type S2. By § \ B # &,
S N B # @, and Condition N6, S is contained by a vertex U € R; N R». If there were a node
u € U\ S, then (1) v € B would imply that G[Q1(s1) U Q2(u)] for any s; € S\ B contains a
sprout of Type S1 or S2 and (2) u ¢ B would imply that G[Q1(u) U Q2(s2)] forany s, € SN B
contains a sprout of Type S1 or S2. Thus, S = U. ]

2.6 Proving Theorem 1.1

We are ready to reduce Theorem 1.1 via Theorem 2.1 and Lemma 2.4 to Lemmas 2.2 and 2.3.

Proof of Theorem 1.1. We apply Lemma 2.3. If Item 2 exists, then G is sapling-free by the if-
direction of Theorem 2.1. It remains to show that Item 3 implies a sapling in G[X UY]. Assume
for contradiction that G[X U Y] is sapling-free. Since H' aids H, each arc UV of H'isa UV -
block of H. Since H’ is steady and Y is H'-bad, Lemma 2.2 implies that Y either admits an
abode in H’ or is H'-expandable.

If Y admits an abode C' in H’, then C is a UV-block of H' satisfying Condition A. Since H’ is
steady, each split component of split pair (U, V) for H' is an arc UV of H’, implying that the
split arc set of H’ corresponding to C' consists of one or more arcs UV of H’. Since each arc
UV of H' is a UV-block of H, C'is also a UV-block of H, implying that C' is an abode of Y in
H, contradiction.

It remains the case that Y is H’-expandable. We first show that each H’-secure set S is H-safe.
If S is a vertex of H’, then S is a vertex of H and, thus, H-safe. If S is secure in H’, then S is
contained by an arc E' = UV of H’, which has to be a UV -block of H, such that G[E'] does not
contain any (5, U, V')-sprout. By Condition W1 of H and Lemma 2.4, S is H-safe.

If |Y] = 1, then N(Y, X) = S; USs holds for two distinct H'-secure sets S; and S,. Since S
and S, are both H-safe, Y is H-extendable, contradiction. If |Y| > 2, then let y; and y2 be the
end-nodes of path G[Y]. By Condition X1 of Y, both N(y;, X) and N (y2, X) are H'-secure and,
thus, H-safe, implying that Y is [H-extendable, contradiction. O

The rest of the paper proves Lemmas 2.2 and 2.3. Section 3 proves Lemma 2.2 for the case with
|Y| > 2. Section 4 proves Lemma 2.2 for the case with |Y| = 1. Section 5 proves Lemma 2.3.

3 Proving Lemma 2.2: Part 1

Let |Y| > 2 throughout this section.

Lemma 3.1. Let H be a steady X-net. Let IL consist of the leaf vertices of H. Let U and Us be distinct
vertices of H with U ¢ L. If there are node sets N and E with @ # N CU, U\ E ¢ N,and N ¢ E,
then there are vertex-disjoint U; L-rungs with i € {1,2,3} in the graph H — U such that UU, is an arc
of H intersecting N and UUy is an arc of H intersecting U \ N.

Proof. Since vertex U has at least three neighbors in H, U \ E ¢ N and N ¢ E imply that
the vertex set consisting of the neighbors of U other than U3 in H admits a non-empty disjoint
partition R; and R» such that each arc incident to U and a vertex in RR; intersects N and
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each arc incident to U and a vertex in Ry intersects U \ N. Let R3 = {Us}. Let H* be the
triconnected graph obtained from the steady H by (1) replacing vertex U and its incident arcs
with a triangle on vertices V1, V3, and V3 and (2) adding an arc between V; and each vertex in
R; foralli € {1,2,3}. Lemma 2.5 implies vertex-disjoint V; L-rungs P; of H* withi € {1, 2, 3}.
The paths P; — V; with i € {1, 2, 3} prove the lemma. O

Proof of Lemma 2.2 for |Y'| > 2. Assume for contradiction that G[X U Y] has no sapling. Let L
consist of the leaf vertices of H. Since H is steady, H has no parallel arcs and degree-2 vertices.
By Conditions N3 and N5 of H, any vertex of H intersecting N (Y') has degree at least 3. Let
N = N(Y, X). Let y; and y be the end-nodes of path G[Y]. Since Y is H-bad, each

Ni =N \{ys-i}, X)
with ¢ € {1,2} is H-local. We have N = N; U Na. Let Z = Y \ {y1, y2}. We have
N(Z,X) C Ny N No. (1)
Since Y is H-bad, both of V| and NV, are H-local. At least one of the following four cases holds.

Case 1: N is contained by the union of two vertices.

Case 2: N is contained by the union of a vertex and an arc.

Case 3: N is contained by the union of two arcs and Cases 1 and 2 do not hold.
Case 4: Ny or N» is contained by a triad and Case 1 does not hold.

Case 1: N C Vi UV holds for vertices V7 and V,. Let subset E C X be empty (respectively,
consist of the nodes contained by the arc V;V53) if vertices V; and V5 are not (respectively, are)
adjacent in H. We first show an index i € {1, 2} with

V,(\EZN; and N;¢E. )

For each i € {1,2}, Equation (1) and N; # @ together imply N(V; \ E) NY = {y;}. Thus, at
lease one i € {1,2} satisfies V; \ E ¢ N; or else the condition £ = & would imply that Y is
H-expandable and the condition £ # @ would imply that E is an abode of Y in H. Also, at
least one index i € {1,2} satisfies N; ¢ E or else N; U N» would be H-local. If V; \ E C N;
and N3_; C E hold for an i € {1,2}, then N(V; \ E) NY = {y;} would imply that £ # @ is an
abode of Y. Thus, Equation (2) holds for an i € {1, 2}.

We then claim that Equation (2) implies a vertex V3 ¢ {V7, V5 } of H with

N3 ; CV3UV;
such that V3V (respectively, V3V43) is an arc of H intersecting IV (respectively, N2). Since arc

V3V3_; intersects N3_;, we have
Ns_; ¢ E.

Since V3_; has at least three neighbors in H, N3_; C V3 U V; implies
Va_i\ E ¢ N3_;.
Hence, Equation (2) holds for both i € {1, 2}. The claim implies a vertex Vy ¢ {V1, V2} with

N; CV4UV3,; 3)
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such that V,V; (respectively, V,V53) is an arc of H intersecting IV (respectively, N3). Since arc
V3V contains a node x € N; C V;, Equation (3) and V5 ¢ {V, V2} together imply

:BENZ\EQV4

Thus, arc V;Vy contains z, implying V3 = Vj by Condition N2 of H. By N; C V3 U V5 and
Ny C V3 U Vi, N is contained by A(Vy, Va, V3) of H, contradicting that IV is non-H-local.

The rest of the proof ensures the claim. Since vertex V; has at least three neighbors in H,
Equation (2) and Lemma 3.1 imply vertex-disjoint R;L-rungs IP; of the graph H — {V;} with
J € {1,2,3} such that if U; € R; and L; € L are the end-vertices of P;, then arc V;U; of H
intersects NV;, arc V;Us of H intersects V; \ N;, and Us = V3_;.

We prove the claim by showing that U; is a vertex V3 required by the claim. By U; € Ry, we
have U; ¢ {Vi,Va} and that E; = U,V is an arc of H intersecting INV;. One can verify that it
remains to prove

N3 ; CU UV 4)

Since N is non-H-local, we have N3_; N Uy # @ by Equation (4), which implies an arc U; V3_;
intersecting N3_; by Condition N5 of H. To prove Equation (4), assume a node v3_; € N3_; \
(Uy UV;) for contradiction. Let P; be a v3_;L3-rung in the subgraph of G induced by vertex
Vs_; and the arcs of P3. Since the arc E; = U, V; of H intersects IN;, Condition N3 of H implies
a U1Vj-rung Q1 of G[E;] that intersects N;. Since the arc F; = U,V; of H intersects V; \ NV;,
Condition N3 of H implies a UsV;-rung Q)2 of G[F;] that intersects V; \ N;. For each j € {1,2},
let P; be a U;L;-rung in the subgraph of GG induced by vertex L; and the arcs of P;. Since [Py
and P, are vertex-disjoint,
P = G[P1UQ1UQ2UPQ]

is an L1 Lo-rung that intersects N at exactly one node v;. Since U;V; is the arc of H containing
v; and Uy # V3_;, we have v; ¢ Vs_;. We have N(v3_;) NV (P) # @ orelse GIPUY U P3] would
contain a sapling of G[X UY]. Since P, Py, and PPz are vertex-disjoint and v3_; ¢ Uy UV,
Condition N5 of H implies that v3_; is contained by exactly one vertex of IP; U P, other than
Up. With M = N(vz—;) N V(P), let each R; with j € {1,2} be the M Lj-rung of P. Either
GIPLUQLUR,UY UPs]or G[Ry UQ2U P, UY U P3 U {v;}] contains a sapling of G[X UY],
contradiction.

Case 2: Anindex i € {1,2} satisfies
Ni - V and Ng_i - E (5)

for a vertex V and an arc £ = V; V5. We first show V \ E ¢_ N;. If V\ E C N; were true,
Equation (1) would imply
V C EUN(y;). (6)

We have V ¢ {V;,V5} or else E would be an abode of Y in H by Equation (6). By V ¢ {V;, V5}
and Condition N5 of H, wehave VN E =@. By V\ EC N;and N; CV,wehave N; =V,
implying that N; is H-secure. Let R = {V, V1, V»}. Let L consist of the leaf vertices of H. Since
H is steady, there are vertex-disjoint RL-rungs P; of H with j € {1,2,3}. Foreach j € {1,2,3},
let R; € Rand L; € L be the end-vertices of P; and let P; be an R;L;-rung in the subgraph of
G induced by vertex L; and the arcs of P;. G[E] does not contain any (N3_;, V1, Va)-sprout T’
orelse G[P; U P, UP;UY UT] would contain a sapling of G[.X UY|. Hence, N3_; is H-secure.
Condition X1 holds for Y. By N3_; C E, N3_; is not a vertex of H, implying Condition X2
for Y. By V' ¢ {Vi, Va}, Condition X3 holds for Y, contradicting that Y is non-H-expandable.
Thus, V\ E ¢ Ni.
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Let j be an index in {1,2} with V # V;. Since N is not H-local, wehave N; £ E.By VA E ¢ N;
and N; ¢ E, Lemma 3.1 implies vertex-disjoint RyL-rungs Py, of graph H — {V} with k €
{1,2,3} such that if Uy € Ry and Ly € L are the end-vertices of Py, then the arc VU; of H
intersects N;, the arc VU, of H intersects V' \ N;, and Us = V.

Foreach k € {1, 2,3}, let P, be a Uy Ly-rung in the subgraph of G induced by vertex L; and the
arcs of Py. Since the arc £ = VU, intersects IV;, Condition N3 of H implies a V' U;-rung 1 of
G[E] that intersects ;. Since the arc E; = VU, intersects V' \ N;, Condition N3 of H implies
a VUy-rung Q2 of G|E»] that intersects V \ N;. Since N is not H-local, we have N3_; ¢ V.
Condition N3 of H implies an N3_;Vj-rung @3 in G[E] that does not intersect V. Since Py, I,
and Ps are vertex-disjoint,

PZG[P1UQ1UQ2UP2]

is an Ly Lo-rung that intersects N at exactly one node v; and

Q = G[Q3 U P3]

is an N3_;L3-rung that is not adjacent to P in G. Therefore, G[P U (Q U Y] contains a sapling of
G[X UY], contradiction.

Case 3: Both indices i € {1, 2} satisfy

for distinct arcs Fy = Up1V; and Ey = UsVs of H with Vi # Vi, Let Ry = {Uy, Vi, Va} and
Ry = {U2,V1,Va2}. For each i € {1,2}, the fact that H is steady implies vertex-disjoint R;L-
rungs P; ; in H with j € {1,2,3}. For any indices i € {1,2} and j € {1,2,3},if U € R; and
V € L are the end-vertices of path P; ; in H, then let P; ; be a UV -rung in the subgraph of G
induced by vertex V' and the arcs of P; ;. For each i € {1,2}, Equation (7) implies an F;-rung
P; that intersects N; \ U;. Let each Q; with i € {1,2} be the N;V;-rung of P;. There cannot be
any (N;,U;, V;)-sprout T; in G[E;] with i € {1,2} or else G[P;; U P2 UP;3UY U Q3—; U T}
would contain a sapling of G[X U Y]. Hence, N; and N, are both H-secure. By Equation (1),
we have N1 = N(y;,X) and Ny = N(y2, X), implying Condition X1. By Equation (7), N; and
Ny are not vertices of H. Thus, Conditions X2 and X3 holds, contradicting that Y with |Y| > 2
is non-H-expandable.

Case 4: Anindex i € {1,2} and a triangle of H on a vertex set R = {Uy, Uz, U3} satisfy
NZ‘QA(U1,U2,U3) and NiﬂUjﬂUk#Q (8)

for any distinct indices j and k with {j, k} C {1,2,3}. Let L consist of the leaf nodes of G. We
show that G[Q1 U Q2 U Y] contains a sapling of G[X U Y] by identifying an LL-rung @; and
an N L-rung ()2 such that (i) ; and @) are adjacent in G and (ii) )1 intersects N at exactly
one node. Since H is steady, Lemma 2.5 implies vertex-disjoint RL-rungs IP; with j € {1,2,3}
such that U; € R and L; € L are the end-vertices of P;. Let each P; with j € {1,2,3} be a
UjL;-rung in the subgraph of G induced by the arcs of IP;. By Condition N5 of H, the three
paths P; with j € {1,2, 3} are pairwise nonadjacent in G. Let arcs E = UyU3, E» = UsU,, and
E3 = UUs. Let each v, with t € {1, 2,3} be anode in V; N U; N Uy, for the indices j and k with
{t,j,k} = {1,2,3} as ensured by Equation (8).

Case 4(a): N3_; intersects an arc £ = V; 15 such that {V}, V2} intersects at most one of paths
Py, Py, and Ps. Let @ be a shortest path of H between {Vi, 2} and the vertices P; U Py U Ps.
Let V; with j € {1,2} and V € V(IP;) with k£ € {1,2,3} be the end-vertices of Q). Let @
be the V3_;Lj-rung in H[P, U Q U {V5_;}]. Let Q1 = G[Ps U {v;} U P] for indices s and ¢
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with {k,s,t} = {1,2,3}. Since N is not H-local, Equation (8) implies an N3_;Lj-rung @2 in
the subgraph of G induced by the arcs of @ that does not intersect V;. Since H[P; U [P;] and
H[P, U QU{V3_;}] are vertex-disjoint, Q1 and @) are not adjacent in G. Since H[P,; U IP;] and
Qs are vertex-disjoint and N3_; is H-local, Q) intersects NV only at vy

Case 4(b): Case 4(a) does not hold. Since N is non-H-local, N3_; is contained by an arc £ =
V;V}, for distinct indices j and k with {j, k} C {1, 2,3} such that V} is a vertex of IP; and V}, is a
vertex of P. Let ¢ be the index in {1,2,3} \ {j, k}.

We first handle the case with {V}, V.} C {U1,Us,Us}. By Ns_; € V; NV, we assume N3_; Z V;
without loss of generality. Condition N4 of H implies an N3_;V,-rung Q of G[E] that does not
intersect V;. Let Q1 = G[P;U{v;} UF;] and Q2 = G[Q U F;]. By Condition N5 of H, ) does not
intersect Vj;, implying that ()1 and @ are non-adjacent in G. By Equation (8) and N3_; C F, Q1
intersects NV only at vy,.

It remains to handle the case with {V;, V;.} & {U1,Us, Us}. Assume V; ¢ {Uy, Uz, Us} without
loss of generality. N3_; does not intersect P; U P, U P3 at any node v or else Case (a) would
hold for the arc containing v. Let P be the V; L;-rung of P;. Let P, be the Vj. Ly-rung of P.

o If N3_; C Vj, then Condition N4 of H implies a V;Vj-rung @ that intersects N3_; only at
the end-node of @ in Vj. Let Q1 = G[P; U QU P and Q2 = G[P; U {vy}]. Since P; U Py,
and P; U Ej, are vertex-disjoint, ()1 and @2 are not adjacent in G. By N; C A(Uy,Us, Us),
E ¢ {E1, Es, E3}, and N3_; C V;, we know that ()1 intersects IV only at the end-node of @ in
Ns_;.

o If N3_; ¢ Vj, then Condition N4 of H implies an N3_;Vi-rung @ of G[E] that does not
intersect V;. Let Q1 = G[P;U{v;} UP,] and Q2 = G[QU P/]. Since P, and IP; U IP; are vertex-
disjoint and @ does not intersect V}, Q1 and @) are not adjacent in G. By N; C A(Uy, Uy, Us)
and E ¢ {E, Eq, Es}, we know that @ intersects N only at vy.

O

4 Proving Lemma 2.2: Part 2

Let |Y| = 1 throughout this section. Let H be an X-net. An E-rung for an arc £ = UV of H
is an UV-rung. An H-twig is a set B C X such that G[B N E] is an E-rung for each arc F of
H. By Condition N5 of H, if a vertex V' of H is (respectively, is not) incident to an arc £ of
H, then |[B N ENV]is 1 (respectively, 0). Consider the following Conditions T of a nonempty
Y CV(G)\ X for an H-twig B:

T1: Anarc F is incident to a vertex U with N(Y,B)\ E = (UNB) \ E.

T2: An arc F is incident to vertices U and V with N(Y,B)\ E = (UUV)N B) \ E.

T3: N(Y,B) = Ay U Ay, where each A; with ¢ € {1,2} either (1) equals B N U; for a vertex U;
or (2) consists of two adjacent nodes of G in B N E; for an arc E;.

Lemma 4.1 (Chudnovsky and Seymour [16, §4]). Let H be a steady X-net. If G[X U Y] with
|Y'| = 1 has no sapling, then one of Conditions T holds for any H-twig B with non-H-local N (Y, B).

Lemma 4.2. Let H be a steady X-net. If Condition T3 of a set Y holds for an H-twig B, then the
following statements hold:

1. IfIN(Y,B)NV| > 3 holds for a vertex V, then A; = BNV holds foran i € {1,2}.
2. If IN(Y, B) N V| = 2 holds for a vertex V, then each A; with i € {1,2} either equals B N Uj; for a
vertex U; adjacent to V' or consists of two adjacent nodes in B N E; for an incident arc E; of V.
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3. IfIN(Y,B) N E| > 2 holds for an arc E = V1V, then (1) A; = B N U, holds for both i € {1,2}
with {Uy,Us} = {Vi,Va}or (2) A; C BN E holds foran i € {1,2}.

Proof. Since H is steady, H has no parallel arcs and degree-2 vertices.

Statement 1: N(Y, B) intersects at least three incident arcs of V' in H by Condition N5 of H,
implying an A; = B N U; with ¢ € {1, 2} intersecting at least two incident arcs of V. Since H
has no parallel arcs, U; = V.

Statement 2: N (Y, B) intersects exactly two incident arcs of V' in H by Condition N5 of H. For
the case A; = BN U; withi € {1,2}, we have U; # V or else A; would intersect at least three
incident arcs of V in H. If V is (respectively, is not) adjacent to U; in H, then A; intersects one
(respectively, zero) incident arc of V in H. For the case A; C BN E; withi € {1,2}, if V is
(respectively, is not) an end-vertex of arc E; in H, then A; intersects one (respectively, zero)
incident arc of V in H. The statement follows.

Statement 3: For the case A, = BN U; with i € {1,2}, if U; is (respectively, is not) an end-
vertex of E, then |A; N E| is 1 (respectively, 0). For the case A; C B N E; with i € {1,2}, if
E; is (respectively, is not) E, then |4; N E| is 2 (respectively, 0). Suppose A; ¢ B N E for both
i€ {1,2}.By [AiNE|+|A2NE| > [(AiUA)NE|=|N(Y,B)NE| >2,A; = BNU; holds for
both i € {1,2} with {Ul,UQ}:{Vl,VQ}. O

Lemma 4.3. Let Y be an H-bad subset of V(G) \ X for a steady X-net H. If N(Y, E) for an arc
E =UV of Hwith N(Y,X) ¢ EUU UV is not secure in H, then G|X U Y| has a sapling.

Proof of Lemma 4.3. Since S = N (Y, E) is not secure in H, G[E] contains an (S, U, V)-sprout T’
in Type S1 or S2 by Conditions N2 and N6 of H. By N(Y, X) ¢ EUU UV, there is an arc F
of H intersecting N(Y, X )\ (EUU U V). Let W be an end-vertex of F with W ¢ {U,V'}. Let
Q@ be a ZW-rung of G[F| with Z = N(Y, X) \ (UU V). Let R = {U,V,W}. Let L consist of the
leaf vertices L1, L2, L3 of H. Since H is steady, there are vertex-disjoint RL-paths P; of H with
i € {1,2,3}. Let each P; be an R;L;-path. If R; = L;, then let P; be empty. Otherwise, let P; be
an R;L;-rung of G induced by vertex L; and the arcs of IP;. Since P;, 5, IP3 are vertex-disjoint,
Py, P, P; are pairwise non-adjacent. G[P; U P, U P3UQ UT UY]is asapling. O

Lemma 4.4. Let H be a steady X-net. Let Y be an H-bad non-H-expandable set with |Y| = 1. If
G[X UY] has no sapling, then N(Y, X) C E UV, U V; holds for an arc E = V1V, of H.

Proof of Lemma 4.4. Assume for contradiction two nodes v; and vy of N (Y, X') with
{Ul,UQ}gEU‘/lUVQ (1)

for any arc £ = V1V, of H. For any H-twig B and any node v € X, the rest of the proof
lets B(v) denote an H-twig (B \ E,) U P,, where E,, is the arc of H containing v and P, is an
arbitrary F,-rung containing v as ensured by Condition N4 of H. By Condition N4 of H, there
is an H-twig B D {v1,v2}. By Equation (1), Conditions T1 and T2 of ¥ do not hold for B. Since
{v1,v2} is non-H-local, so is N (Y, B). By Lemma 4.1, Condition T3 of Y holds for B. That is,

N(Y,B) = Ay U Ay, )

where each A; with i € {1, 2} either (1) equals B N'V; for a vertex V; of H or (2) consists of two
adjacent nodes of G in B N E; for an arc E; of H.

12

doi:10.6342/N'TU201803034



Case 1: Ay = BNV; and Ay = BN V,. Distinct vertices Vi and V5 are non-adjacent in H by
Equation (1), so Vi NV, = @. We have N(Y, X) # V; U V; or else Y would be H-expandable.
Let B, = B(v) for anode

ve (UuV) \ N, X)) U (N, X)\ (V1 UVa)). 3)
Since both V; and V; intersect N(Y'), Equation (2) implies | N (Y, B) N V;| > 3. By Equation (3),

3 (4)
2 )

IN(Y, By) N Vj

>
IN(Y, B,) N Va5 >

hold for an index j € {1,2} with v ¢ V. Since vertices V; and V5 are not adjacent in H,
Equations (4) and (5) imply that N (Y, B,) is not H-local and Conditions T1 and T2 of Y do not
hold for B,. By Lemma 4.1, Condition T3 of Y holds for B,. We have |[N(Y, B,) N V3_;| # 2
or else Equation (4) and Lemmas 4.2(1) and 4.2(2) would imply that vertices V; and V3 are
adjacent in H. By Equation (5), |[N(Y, B,) N Vaz_;| > 3. Combining with Equation (4) and
Lemma 4.2(1), we have {A;, A2} = {B,NV1, B,NVa}, implyingv € N(Y, B,) = B,N(V1UV,),
contradicting v € N(Y, X) \ (V1 U V2) by Equation (3).

Case 2: Each G[A;] with i € {1,2} is an edge of G[B N E;] for an arc E; of H. We first show

N(Y, X) = N(Y, E1) UN(Y, Ey). (6)

Assume a node
UEN(Y,X)\(ElLJEQ) (7)

for contradiction. Let B, = B(v). Let E, be the arc of H containing v. By N(Y, B) C E; U E»,
N(Y,B,) C E,UE, U Ej. 8)

By {vi,v2} € Eq U E; and Equation (7), we have {v1,v2} C N(Y, B,), implying that N (Y, B,)
is not H-local and Conditions T1 and T2 of ¥ do not hold for B,.. By Lemma 4.1, Condition T3
of Y holds for B, with N(Y, B,) = A} U A),. By Lemma 4.2(3) on E; and Ej», either

e A\ = B,NV;and A, = B, N V3_; hold for an arc F' = V;V5 and an index i € {1,2} or
e A C B,NE;and A, C B, N E3_; hold for an index i € {1, 2}.

By the first statement, V; and V3 are non-leaf vertices of H, implying that N (Y, B,) intersects
at least five arcs of H, contradicting Equation (8). By the second statement, v € N (Y, B,) C
Ey U E,, contradicting Equation (7). Thus, Equation (6) holds. Since Y with [Y| = 1 is not
H-expandable, Equation (6) implies an N (Y, E;) with i € {1, 2} not secure in [H. By Lemma 4.3
and Equation (1), G[X U Y] has a sapling, contradiction.

Case 3: G[A;] withi € {1,2} isanedge of G BN E] foranarc E = UV of Hand A3_;, = BNW
holds for a vertex W. By Equation (1), W ¢ {U, V'}. We first show

N(Y,X)=N(Y,E)UW. )

Assume a node
ve (N, X)\(EUW))u (W\N(, X)) (10)

for contradiction. Let B, = B(v). We have

IN(Y,B,) " W] > 2. (1)
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By W ¢ {U,V}, we have v ¢ E, implying
IN(Y, B,) N E| = 2 (12)

By Equation (11), N(Y, B,) intersects at least two incident arcs of W in H. Combining with
Equation (12), N(Y, B,) is not H-local. By Lemma 4.1 and W ¢ {U, V'}, Condition T3 of YV
holds for B, with N(Y, B,) = A} U A5. If IN(Y, B,) N W| > 3, then Lemma 4.2(1) implies an
index j € {1,2} with B,N W = A} C N(Y, B,), contradicting v € B, with Equation (10). The
equality of Equation (11) holds. By Equation (12) and Lemma 4.2(3), either

Statement Z1: A’ = B, NU and A3_; = B, NV hold for an index j € {1,2} or
Statement Z2: A’ C B, N E holds for an index j € {1, 2}.

By W ¢ {U,V}, each A} with j € {1,2} does not consist of two adjacent nodes in B, N Ej for
any incident arc E; of W. By Lemma 4.2(2), A} = B, N W; holds with a vertex W; adjacent
to W in H for each index j € {1,2}. Since each set W with j € {1, 2} intersects N(Y"), vertex
W; has at least three incident arcs in H, violating Statement Z2. By Statement Z1, {U,V} =
{W1, Ws}, implying N(Y, B,) = B, N (U U V). Since sets U and V intersect N(Y'), there are
nodes u; € NY,B,NU)\ (EUW) and up € N(Y,B,NV)\ (E UW). By Equation (2),
BN {ui,u2} = @. By B, = B(v) and Condition N6 of H, the arc of H containing v is the arc
E = UV containing {u;,us}, contradicting v ¢ E. Hence, Equation (9) holds. Since Y with
|Y| = 1 is not H-expandable, N (Y, F') is not secure in H by Equation (9). By Lemma 4.3 and
Equation (1), G[.X U Y] has a sapling, contradiction. O

Proof of Lemma 2.2 for |Y'| = 1. Assume no sapling in G[X U Y] for contradiction. Since H is
steady, H has no parallel arc and degree-2 vertex. By Conditions N3 and N5 of H, any vertex
of H intersecting N (Y') has degree at least 3. Lemma 4.4 implies an arc £ = V,V, of H with

N(Y,X)CEUV;, UVa. (13)
We first show the following condition for any i € {1, 2} and non-H-local H-twig B:
(BNV)\NE)NN(Y)=2 or (BNV;))\ECN(). (14)
By Lemma 4.1, one of Conditions T of Y holds for B.

(a) Condition T1 states N(Y,B) \ F = (BNU) \ F for a vertex U and an incident arc F' of U.
Since N (Y, B) is non-H-local, there are nodes u € N(Y,BNU)\ Fandv € N(Y,BNF)\U.
If E# F,thenv € N(Y,BNF)\ (UU E). By Equation (13), v € V; holds for an i € {1,2},
implying F' = UV, by Condition N6 of H. By Equation (13), u € V3_;, implying U = V3_;,
contradicting that H has no parallel arcs. Equation (14) follows from E = F.

(b) Condition T2 states N(Y,B) \ F' = (BN (U UUz)) \ F for an arc F' with end-vertices U;
and Us. Since N(Y, B) is non-H-local, there are nodes u; € N(Y, BN (F UU;)) \ Us—; for both
ie{l,2}. f B # F,thenu; € N(Y,BN(FUU;))\ (Us—; UE) holds for an ¢ € {1,2}. By
Equation (13), u; € V; holds for a j € {1,2}. By Condition N6 of H, we have U; = V;. By
Equation (13), us—; € V3_;, implying Us_; = V3_;, contradicting that H has no parallel arcs.
Equation (14) follows from E = F.

(c) Condition T3 states N (Y, B) = A; U Az such that (i) A; = B N U; for a vertex U; or (ii) A;
consists of two adjacent nodes of G in B N E; for an arc E;. For Case (i), since N(Y') intersects
each node set U;, the degree of each vertex U; is at least three in H. By Equation (13), U; €
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{V1,Va}. For Case (ii), if E; # E, then Equation (13) would imply |N(Y, B) N E;| < 1. Thus,
E; = E. Since A; U Az equals BN (ViU V), BN (V1 UE), or BN (V2 U E), Equation (14) holds.

Since Equation (13) implies Condition Al with C' = FE, there is an index i € {1, 2} with nodes

u € NY,V;))\E (15)
v € V;\(N(Y)UE) (16)

or else £ would be an abode of Y in H. Since Y is H-bad, N (Y, X) is non-H-local, implying a
non-H-local H-twig B. Let B, = B(u). Since B is non-H-local, so is B,,. By u € V(P,) C B,
and Equation (15), we have u € ((B, N'V;) \ £) N N(Y). By Equation (14),

(BuNVi)\ E S N(Y). (17)

Let B, = B, (v). By Equation (15), the degree of V; in H is at least three. By Equation (17),

((B.V)\ E)NN(Y) # 2. (1)

Thus, B, is not H-local. By Equations (14) and (18), (B, N V;) \ E C N(Y), contradicting

Equation (16). O
15
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5 Proving Lemma 2.3

Lemma 5.1. Given an X-net H, it takes O(m) time to compute an X -net aiding H.

Lemma 5.2. Let Y be an H'-bad set for an X-net H' aiding an X -web H. It takes O(m) time to either
(1) obtain a minimal abode of Y in H or (2) ensure that Y admits no abode in H.

Lemma 5.3. Let Y be an H'-bad set for an X-net H' aiding an X-web H.

o [t takes O(m) time to determine whether Y is H-expandable.
o IfY is H-expandable or a minimal abode in H of Y is given, then it takes O(m) time to update H
into an X U'Y -web.

Proving Lemma 2.3. We first show that it takes O(m) time to either ensure a sapling of G or
obtain an X-web H. Let s1, s, and s3 be the leaves of G. It takes O(m) time to obtain a node
set S such that G[S] is a shortest sys3-path of G and a node set R such that G[R] is a shortest
s1S-path of G. Let 21 be the node in R\ S that is closest to S in path G[R]. Let x5 (respectively,
x3) be the node in N (z1) N S that is closest to sy (respectively, s3) in path G[S]. Since s; and s3
are leaves of G, x2 and z3 are internal nodes of path G[S]. If 3 = 23, then G[R U S] is a sapling
of G. If z5 and z3 are distinct and non-adjacent, then G[R U S] — I is a sapling of G, where
I consists of the internal nodes of the zoz3-path in G[S]. If 22 and x3 are adjacent in G, then
there is an O(m)-time obtainable X-web H with X = RU S: Let vertex V) = {z1,x2, 23} and
vertex V; = {s;} and each arc E; = VpV; with i € {1, 2, 3} consists of the nodes of the s;z;-rung
of G[X]. Conditions N and W hold for H.

The lemma follows from repeating the following steps in O(n) iterations:

1. Apply Lemma 5.1 to obtain an X-net H’ aiding H in O(m) time.

2. Spend O(m) time to either ensure that H' completes Task 2 or obtain an H’-bad set Y.

3. Apply Lemmas 5.2 and 5.3 to either complete Task 3 or update IH into an X U Y-web in
O(m) time.

O]
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5.1 Proving Lemma 5.1

An SPQR-tree for a biconnected multiple graph B having no self-loops is a linear-time obtain-
able [38] unique tree T' on graphs that are homeomorphic to subgraphs of B (see, e.g., [28,
Lemma 3]) to represent the triconnected components of B. Specifically, there is a supergraph
C of B with V(C) = V(B) satisfying the following statements, where the edges in B (respec-
tively, C'\ B) are called actual (respectively, virtual) edges:

e Each vertex of T is a subgraph of C' in one of the following types:

— S-vertex: a simple cycle on three or more nodes. S stands for series.

— P-vertex: three or more parallel edges. P stands for parallel.

- Q-vertex: two parallel edges. Q-vertex simplifies the definitions of other vertices.
— R-vertex: a triconnected simple graph that is not a cycle. R stands for rigid.

No two S-vertices are adjacent in T" and no two P-vertices are adjacent in T
The vertices of T induce a disjoint partition of the actual edges.

The end-nodes of each virtual edge form a two-node cutset of B.

Each virtual edge is contained by exactly two vertices that are adjacent in T .

Lemma 5.4 (Di Battista and Tamassia [28]). Let B be an n-node biconnected multiple graph.

1. If two distinct nodes admitting three internally disjoint paths between them in B, then the two nodes
are contained by either a P-vertex or an R-vertex of the SPQR-tree of B.
2. It takes O(m) time to compute an SPQR-tree of B.

Throughout the section, each X-web H for G is equipped with the SPQR-tree T for the bicon-
nected graph H* obtained from H by adding three arcs on the three leaf vertices of H to form
a triangle as ensured by Condition N1 of H. Since H is connected, there are three internally
disjoint paths in H* between each pair of leaf vertices of H. Lemma 5.4(1) implies a unique
R-vertex of T that contains the leaf vertices of H. Let T be rooted at this R-vertex. When we
obtain an X-web H or update an X-web H to an X U Y-web, we always obtain or update the
corresponding T" of H unless explicitly specified otherwise.

Let H be an X-web. For each vertex t of T, let (t) be the graph that ¢ represents. Let ¢(¢) be
the actual arcs contained by a Q-vertex in the subtree of T' rooted at ¢. Let C(¢) be the union
of actual arcs contained by u(t'), for each vertex t' in the subtree rooted at ¢ (note that pu(t')
contains an actual arc if and only if ¢’ is a Q-vertex).

The SPQR-tree characterizes the structure of split-components in the following ways:

Lemma 5.5. Let B be a bi-connected graph. Let T be a rooted SPQR-tree of B. For each non-root
vertex t of T', if the virtual arc between t and the parent of t is between w and v, then B[{u,v}U ®(t)] is
the union of one or more split-components of B of the split-pair (u,v), where ®(t) consists of the actual
arcs contained by a Q-vertex in the subtree of T rooted at t.

Proof. Classic SPQR-tree property. O
Let Merge(C') for a V; Va-block C' of an X-web H be the operation that

o first replaces all arcs of H intersecting C' by an arc C = V1V and
o then deletes the vertices whose incident arcs are all deleted.
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One can verify that the resulting H' remains an X-net: Since the arc C' = V; V5 of H " replaces
one or more split components for the split pair (V;, V2) of H, any cut-set of H’ is also a cut-set
of H. Thus, Condition N1 holds for H’. Condition N2 holds for H' trivially. Since the leaf
vertices remain the same in [H and H’, Condition N3 holds for H’. For each arc E of H that
intersects C, Lemma ?? implies a Vi Va-rung P of H such that E is an arc of P and each arc of
P intersects C. Thus, if z is a node of E, then Condition N4 of H implies that x is contained
by a Vi Va-rung P in the subgraph of G induced by the arcs of P. By Condition N6 of H, P
is a V1 Va-rung of G[C]. Condition N4 holds for H’'. Conditions N5 and N6 of H' follow from
Conditions N5 and N6 of H.

Proof of Lemma 5.1. Let H' be the X-net obtained by applying Merge(C'(t)) to H for each child ¢
of the root of T". By Lemma 5.5, each C(t) is a block and H’ is well-defined. By the observation,
eacharc UV of H' isa UV -block of H. Since the root of T is an R-vertex, H' is steady. Therefore
H' aids H. The running time is O(m) since T' can be computed in O(m) time and the Merge
operations take overall O(n) time. O
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5.2 Proving Lemma 5.2

For each non-root vertex ¢ of T with parent ¢, let V; and V, be the poles of ¢ if V3 and V5
are the end-vertices of the unique virtual arc contained by both y(t) and w(t'). Let C(¢t) =
H[{Vi,Va} U é(t)]. By Lemma 5.5, each C(t) is a split arc set of H:

Let H* be the biconnected graph obtained from H by adding three arcs on the
three leaf vertices of H to form a triangle. With B = H* and T' = T, C(t) =
H*[{V1, Va} U ¢(t)]. By the choice of the root of T', C(t) does not contain any arc in
H*\ H.

T characterize the local minimality (maximality) of C(t) very well:

Lemma 5.6. Let H be an X-web. Let t be a non-root vertex of I' with poles Vi, Vo and children
t1,...,tg. The following holds:

1. Iftis a P-vertex, then each C(t;) with 1 < i < k is a split-component for (V1, Va).

2. Ift is an R-vertex, then C is a maximal proper split arc set of C(t) in H if and only if C = C(t;)
foranl <i<k.

3. Let t be an S-vertex such that ju(t) is a cycle U1U; . .. Ug4q with

o Uy =V, Upy1 = Vo, and
o the virtual arc U;U;q is contained by u(t;) foreach 1 < i < k.

Let C; = C(t1) U...U C(t;). Foreach 1 < i < k, C; is a split-component of (Uy, U;1). Further,
if C is a minimal split arc set satisfying C; C C C C(t), then C = Cjy1.

Proof. Suppose that ¢ is a P-vertex. Since x(t) consists of only parallel virtual arcs between V;
and V5, the poles of ¢; are V;, V3 for each 1 < i < k. Hence each C(¢;) is a split arc set of (V, V2).
Since no two P-vertices are adjacent in T', each C(t;) is a split-component of (V1, V2).

If t; is a Q-vertex, then C(t;) is an arc of H between V; and V».Hence t; is either an
S-vertex or R-vertex. By Lemma 5.5, C(t;) \ {V1, V2} is connected. Therefore C(t;)
cannot be the union of two or more split-components of (V;, V2).

Suppose that ¢ is an R-vertex. By Lemma 5.5, each C(t;) with 1 < ¢ < k is a proper split arc set
of C(t). Since p(t) is 3-connected, C(¢;) is maximal:

Assume for contradiction a split arc set C of (U,Us) with C(t;) € C ¢ C(¢),
implying an index j # i with C(t;) N C # @. Let E be an arc in C(t;). (Uy,Us) is
a split-pair of C(¢) that does not separate C(¢;) from E. Since () is 3-connected,
such (Uy, Usz) cannot exist.

Conversely, let C be a maximal proper split arc set of C(t). There is an index ¢ such that
C intersects C(t;). By a similar argument, C does not intersect C(¢;) for all ¢ # j. Hence
C C C(tz) and C = C(tz)

Suppose that t is an S-vertex. By Lemma 5.5, each C(t;) with 1 < ¢ < k is a split arc set of
(Ui, Uit1). Each C; with i > 1 is a split-component of (Uy, Uj11):

Assume for contradiction that C; is not a split-component, implying at least two
disjoint split-components €], €’ of (U1, U;+1) such that C{UC) C C;. By Lemma 5.5,
Uy and Uj are non-adjacent in C;. Hence {U1, Uj41} is a split-pair of C; that sep-
arates C] and CY. But by Lemma 5.5, C; \ {U1, U;+1} is connected, a contradiction.
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Let C be a minimal split arc set with C; € € C C(t). Since no two S-vertices can be adjacent
in T, C = CZ'+1:

Assume for contradiction C # C;y;. By Lemma 5.5, C;; is a split arc set with
C; ¢ Ci41 C C(t). Hence C; € C ¢ C;41. Let (U, Uy) be the split-pair of €. Since
C; is a split-component, C' \ C; C C(t;+1) is a split arc set of (U, U;). Hence U is a
cut-vertex of C(t;11). By Lemma 5.5, ¢;1 is an S-vertex, a contradiction.

By Lemma 5.6, we have

Lemma 5.7. Let H be an X-web. Let t be a non-root vertex of I' with poles Vi, Vo and children
t1,...,tg. C(t) is a V1 Va-block and the following holds:

1. Ift is a P-vertex, then each C(t;) with 1 < i < k is a minimal V} Va-subblock of C(t).

2. Iftis an R-vertex, then C'is a maximal proper subblock of C(t) in H if and only if C = C(t;) for an
1< <k,

3. Let t be an S-vertex such that j(t) is a cycle U1Us; . .. Ug4q with
° U1 = Vl, Uk+1 = Vg, and
o the virtual arc U;U, 11 is contained by u(t;) foreach 1 < i < k.
Let C; = C(t1) U...UC(t;). Foreach 1 < i < k, C;is a (Uy,Ujt1)-block. Further, if C is a
minimal block satisfying C; C C C C(t), then C' = Cjyy.

Lemma 5.8. Let Y be an H'-bad set for an X-net H' aiding an X-web H.' Y admits an abode in H if
and only if Y admits an abode in H'.

Proof. For the if-part, suppose that Y admits an abode C in H'. Since H' is steady, C' is an arc
UV of H'. Since H' aids H, C is a UV -block of H. Conditions A1, A2, and A3 for Y and C in
H' implies Conditions A1, A2, and A3 for Y and C in H. Therefore C'is an abode of Y in H.

For the only-if part, suppose that Y admits an abode C'in H. By Lemma 5.5, C' C E for an arc
Eof H'. Let E = UV. E is a UV-block of H' that satisfies Conditions A1, A2, and A3 for Y.
Hence F is an abode of Y in H'. O

Recall that an abode of Y in H is a V1 Va-block C' of H satisfying the following properties:

° N(Y,X) CCuWvuUWw.
e N(Y,V;) C CorV; C N(y) UC holds for an end-node y of path G[Y].
e N(Y,V,) C CorV, C N(y) UC holds for an end-node y of path G[Y].

We say that V; is full if N(Y,V;) € C. If V; is fulland V; C N(y) U C, then we say y occupies V;.

Lemma 5.9. Let Y be an H'-bad set for an X-net H' aiding an X-web H. Let ¢ be a vertex in T with
poles Vi, Va. If C(t) is an abode of Y in H and Vi, Vs are both full, then it takes O(m) time to find a
minimal abode of Y in H.

Proof. C(t) is a V1 Va-block. Let M C C(t) be a minimal abode of Y in H. Since both V; and V5
are full, M is a V;Vs-block. By Lemma 5.7, if ¢ is not a P-vertex, then M = C(t). Suppose that
t is a P-vertex with children ¢y, ..., t;. Let j € {1,2} be the index such that y; occupies V; and
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y3—; occupies V5. By Conditions A1, A2, A3, and Lemma 5.7, foreach 1 < i < k, C(t;) € M
unless

N(y;)NC(t;) =VinC(t:) (1)
N(y37j) N C(tz) =WVn O(tl) and
NY \{y1,y2}) NC(t;) =2

holds. Hence M is the union of each C(t;) that does not satisfy Equation (1) and it takes O(m)
to compute M. O

Proof of Lemma 5.2. 1f Y admits an abode C'in H’, then since H' is steady and Y is non-H-local,
C equals an arc E = V4V, of H', and at least one of V;, V5 is full. It is easy to find E or ensure
that no such F exists in O(m) time. By Lemma 5.8 and Lemma 5.1, Task (2) can be completed
in O(m) time. The remaining proof deal with Task (1).

Let N = N(Y,X). Let y; and y2 be the end-nodes of path G[Y]. Suppose that ¥ admits an
abode in H. Let E = V1V, be an arc of H' such that E is the abode of Y in H’. Let M be a
minimal abode of Y in H. By Lemma 5.7, E' = C(t) for a child ¢ of r. If V; and V5 are both full,
then it takes O(m) time to compute M by Lemma 5.9. Hence we can assume an index i € {1, 2}
such that V; is full and V3_; is not full. Let j € {1,2} be the index such that y; occupies V;. Let
N =N \{y;}) U(N(y;) \ Vi) U (Vi \ N(y;)). Let to be the vertex in T with

« N'CClty),
e V;is a pole of ¢y, and
e (C(tp) is minimal.

It takes O(m) time to find ¢( since |T| = O(n). If ¢y is a Q-vertex, then C(tg) = M and we are
done. Suppose that ty is not a Q-vertex, implying ¢, non-leaf. Let ¢1,...,t; be the children of
to.

Case 1: tj is an R-vertex.

By Lemma 5.7, either

e M C C(ty) holds foranindex 1 < a <k, or
o M =C(t)

holds. It takes O(m) time to to either compute a or ensure M = C(t) by brute force since & < n.
If M = C(t) then we are done. Hence we can assume M C C(t,). Since y; occupies V;, V; is
a pole of t,. Let V be the other pole of t,. If V is full then it takes O(m) to compute M by
Lemma 5.9. If V is not full, then ¢, is a vertex in T with

o N'CClt),
e V;isa pole of t,, and
e C(ta) C Clto)

, a contradiction to the choice of .

Case 2: tg is an S-vertex.

We can assume that () is a cycle U Us . . . Ugy1 such that U; = V; and the virtual arc U, U, is
contained by u(t,) for each 1 < a < k. Let m be the largest index with C(t,,,) "N’ # @. m > 1
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since otherwise ¢; will be a vertex of T that contradicts the choice of ¢y. By Lemma 5.7, one can
verify that if

N(ys—;) N C(tm) = Cltm) NUp and N(Y \{ys—;}) N C(tm) =2

,then M = C(t1) U ... UC(tpm—1). Otherwise M = C(t;) U...U C(t,,). Hence it takes O(m)
time to determine M.

Case 3: tg is a P-vertex.

Let I consists of the indices 1 < a < k with C(t,) N N’ # @. |I| > 1 by the choice of ty. By
Lemma 5.7, one can verify that A is the union of C(t,) for each a € I. Hence it takes O(m)
time to compute I and hence M.

O]
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6 Proving Lemma 5.3

Define the following operations on an X-net :

o Subdivide(V,x1, z2) for a new vertex V of H and an edge x;x2 of G[E] in a slim arc F of H:
Let V = {1, z2}. Suppose that E = V; V5. Replace the arc E of H by new arcs E; = V'V, with
i € {1, 2} consisting of the nodes of the minimal V' V;-path of G[E].

e JoinAdd(Y, E) for an arc E = V;V, of H and an H-bad set Y:
For each i € {1,2} and each endpoint y of G[Y], if y has a neighbour in V; \ E then put y into
V;. PutY into E.

e JoinNew(Y, V1, V>) for distinct vertices V3, Vo of H and an H-bad set Y
Add a new arc E = V;V,. For each i € {1,2} and each endpoint y of G[Y], if y has a
neighbour in V; \ V5_;, then put y into V;. Put Y into FE.

Let H be an X-web. Recall that an induced path G[Y] = y1...y2 of G — X is H-expandable if
the following holds:

1. If |Y| = 1 then N(Y) N X is the union of two H-secure sets. Otherwise each N(y;) N X
for i € {1,2} is an H-secure set.
2. N(y,X) = o for each internal node y of G[Y]

Let H' be an X-net aiding X-web H. Let Y = y;...y2 be an H’-bad H-expandable set. If
|Y| > 1 then let each S; = N(y;) N X fori € {1,2}. Otherwise let each S; for i € {1,2} be an
H-secure set such that N(Y) N X = S; U Sy. Define H + Y according to the types of S; and S5
as follows:

Case 1: S; = V; and Sy = V5 for vertices Vi and V, of H. Apply JoinNew (Y, Vi, V,). If [Y| =1
and there is a trivial or risky arc F' between V; and V5, then apply Merge(E,Y U F).

Case 2: Sy = {x1,22} and Sy =V for a vertex V of H and adjacent nodes 1, 2 contained by a
slim arc of H. Apply Subdivide(V’, z1, x2) and JoinNew (Y, V, V') If |[Y| = 1 and there
is a trivial or risky arc F' between V and V’, then apply Merge(E,Y U F)).

Case 3: for eachi € {1,2}, S; = {x;, z,} for adjacent nodes z;, «; contained by a slim arc of H.
Apply Subdivide(Vi, z1, 2)), Subdivide(V2, x2, ), and JoinNew (Y, V1, V3).

Note that H+Y is unique up to H (since S; and S, satisfy exactly one of the above conditions).

Lemma 6.1. H + Y isan X UY-web. If the X UY -net (H +Y) aiding H +Y is not isomorphic to
the X-net H' aiding H, then' Y isan arcof (H+Y)'.

Proof. The Subdivide operation preserves Conditions N1-N6. Hence H + Y is an X U Y -net
after the Subdivide operations in Case 2 and Case 3. Since Y is H-expandable, H + Y is
an X U Y-net after the JoinNew operation. Since Subdivide preserves Condition W1 and H
satisfies Condition W, all the arcs of H + Y are either slim or risky (one of them is the new
arc Y). Condition W can be violated if and only if Y is trivial and there is a parallel trivial or
risky arc F' between the endpoints of Y. In this case F' is unique by Condition W1 of H and
the Merge(E, Y U F) operation justifies (as Lemma ?? guaranteed).

(H +Y)" and H' are unique by Lemma 5.1. Suppose that (H + Y')’ is not isomorphic to H'. If
Y admits an abode in H, then (H + Y)’ is isomorphic to H':

Let C' be an abode of Y in H. Let C be the split arc set of IH corresponding to
C. By Lemmas ?? and 5.1, there is an arc E = U U, of H' that contains C. E is a
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U,Us-block of H with C C E’. Notice that if an arc E’ of H is subdivided, then
E’' € E(C). Hence Y is contained by an arc of H + Y between two vertices of €',
where ' is the subgraph of H + Y corresponding to € with possibly one or two
arcs subdivided. This shows that Y is contained by an arc E UY of (H + Y)’ that
is a U Us-block of H + Y. Since the other part (H \ C) of H is not modified, H' is
isomorphic to (H +Y)’

Hence we can assume that Y does not admit an abode in H. Assume for contradiction that Y
is not an arc of (H +Y')’. By definition of H + Y, there is an arc E of (H + Y')’ that contains Y.
E\'Y is an abode for Y in H

Let E = U Us. By Lemma 5.1, E'\ Y is an U;Us-block of H. Let C be the split arc
set of H corresponding to £\ Y. Let Ey be the arc of H + Y that contains Y. By
definition of H + Y, both end-vertices of Ey are either a vertex of C or a vertex
from subdividing an arc of C. Hence £\ Y is an abode for Y in H.

, a contradiction. O

Suppose that Y is a non-H-expandable H’-bad set that admits an abode. Let G[Y] = y; ... ya.
Let C be an V; Va-block that is a minimal abode of Y. Let C be the split arc set of H correspond-
ing to C. By Lemma 5.2, we can assume that y; occupies V; and V; € V(H’). Define H +¢ Y
as follows:

Step 1: if Vs is a leaf vertex of € such that the incident arc E = V,VJ of V5 in C is slim and
contains N (Y) N V4, then perform the following steps:
Let 21 be the node in N(Y') N E closest to V. Let 3 be the neighbor of z; in G[E] that
is not on the 1 V-path of G[E]. Subdivide(Us, z1, z2). Replace E in C by the new edge
U, V3. Replace V5 by Us.

Step 2: if there is arisky arc E ¢ E(C') between (the new) V; and V5, then apply Merge(E’, C'U

Step 3: Apply JoinAdd(Y, E').

Lemma 6.2. H +¢ Y isan X UY-web. Further, (H +¢ Y')' is isomorphic to H'.

proving Lemma 5.3. By Lemma 5.2, it takes O(n + deg(}")) time to compute a minimal abode C
if Y is non-H-expandable. Let C be the split arc set of IH corresponding to C. We can update
H toeither H+Y or H +¢ Y in O(n + deg(Y)) time as in Lemmas 6.1 and 6.2. It takes O(n)
time to update T'(HH) correspondingly: by Lemma 5.4, each Subdivide operation and JoinNew
operation takes O(n) time. The Merge operation also takes O(n) time, since by Lemma ?? we
are replacing subtrees whose roots share a parent ¢ of T'(HH) into a Q-vertex with parent ¢t and
the fact that | T'| = O(n). O

7 Proving Lemma 6.2

During this section we fix an X-web H of G and a non-H-expandable H'-bad setY =y ... 2
with a minimal abode C' that is a V;V2-block. By Lemma ??, C is unique. Let C be the split arc
set of H corresponding to C'. We can assume that y; occupies V; and V; € V(H').

Recall that H 4+ Y is obtained from H as follows:
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Step 1: if V4 is a leaf vertex of € such that the incident arc E' = V5V of V3 in € is slim and
contains N (Y) N V3, then perform the following steps:
Let x; be the node in N(Y') N E’ closest to Vs. Let 25 be the neighbor of z; in G[E’] that
is not on the z1Vz-path of G[E’]. Subdivide(Us, z1, z2). Replace E’ in C' by the new arc
U, V3. Replace Vs by Us.

Step 2: if there is a risky arc E' ¢ E(C) between (the new) V; and V3, then apply Merge(E, C'U
E).

Step 3: Apply JoinAdd(Y, E).

Let E = U,V be the arc of H +¢ Y that contains Y. We say that U, is subdivided if Step (H1) is
executed.

Lemma7.1. H+¢ Y isan X UY-net. (H +¢ Y) is isomorphic to H'. If E is risky then H +¢ Y
is an X U Y -web. There is an E-rung in H +¢ Y that contains Y.

Proof. 1f Step (H1) is executed then Us is a new vertex of degree-two and Step (H2) will not be
executed. Hence H +¢ Y is well-defined. It is easy to verify that:

o The Subdivide operation preserves N1-N6.
e The Merge operation preserves N1-N6 by Lemma ??.
o The JoinAdd operation preserves N1, N2, N3, and Nb5.

We show that Step (H3) preserves N4 and N6, implying H +¢ Y an X U Y-net.

For N4, since H remains an X-net upon the end of Step (H2), it suffices to show that there is
an E-rung that contains Y. This also completes the last statement. If Step (H1) is executed or
y2 occupies V3, then by definition of operation JoinAdd, Y is an E-rung. Hence we can assume
N(y2) N X C E. Since Y is non-H'-local, N(y2) ¢ Vi. Since H remains an X-net upon the end
of Step (H2), by N4 there is an E-rung P with P N'Y = & that contains a node in N(y2) \ V1.
Let P’ a UsN(y2)-rung in P. P’ UY is an E-rung that contains Y.

For N6, let z; be a node contained by a distinct arc E; in H +¢ Y for each ¢ € {1,2}. If
{z1,22} C X then N6 holds since H remains an X-net upon the end of Step (H2). We can
assume without loss of generality z; € Y and E; = E. Suppose z; € in(Y"). By definition of
operation JoinAdd, z1 ¢ UsUV}. Since Y is H'-bad, N(z1)NX C E. Hence N6 holds. Suppose
x1 = y1. By definition of operation JoinAdd, z; € V;. Since y; occupies Vi, Vi \ E C N(y1). If
y1 # y2 then N(y;) N X C V; and N6 holds. Hence we can assume x; = y; = y2. If y2 occupies
Uz then N(y1) N X C (V1 UUz U E) and N6 holds. Otherwise N(y2) N X C E and N6 also
holds. Suppose x; = y2. We can assume y2 # y; by the above cases. If y» occupies Us then
N(y2) N X C Uy U E and N6 holds. Otherwise N(y2) N X C E and N6 also holds.

By Lemma ?? and the fact that the Merge and Subdivide operations preserves T'(H), T(H +¢
Y) = T(H). Hence (H +¢ Y)' is isomorphic to H'.

It remains to show that H +¢ Y satisfies W1 and W2 when E is risky. E is non-trivial since
1 < |CUY]| < |E|. Suppose that E is risky. W1 holds since each arc of H +¢ Y, except E and
possibly Uz V2 when Step 1 is executed, is an arc of H. For W2, let V' be a degree-two vertex
of H +¢ Y with incident arcs E; and E». By the definition of H +¢ Y/, either E; = E holds
for an ¢ € {1,2} or both E; and E, are arcs of H. By W1 of H and that F is risky, £} and
E, are not both slim or trivial. Now suppose that £} and E» are parallel arcs of H +¢ Y. If
E ¢ {E, Ey}, then by W2 of H, E; and E> are not both risky. Hence we can assume without
loss of generality £y = E. If Step (H1) is executed then E has no parallel arc, a contradiction.
Hence Step (H1) is not executed and U; = V2. By W2 of H, there is at most one risky arc, say
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F of H between U, and V;. By Step (H2), F C E in H +¢ Y, implying E» non-risky. Hence
H +¢ Y contains no parallel risky arcs. This completes W2. O

Proving Lemma 6.2. By Lemma 7.1, it suffices to show that E is risky. Let non-empty S C E be
an arbitrary set. We show that G[E] contains an (S, Uz, V1)-sprout.

(0) If yo € U, then y3 occupies U; and one of the following holds:

0.1 y1 = o,

02 Nin(Y))NE # g,

0.3 y; has a non-neighbour in £ N V7,
0.4 y2 has a non-neighbour in £ N Uy, or
0.5 y2 has a neighbour in E \ Us

If all five conditions fail, then Y is H-expandable.

(1)if S C Y, then G[E] contains a (S, Uz, V1 )-sprout.

Let P be an E-rung that contains Y as Lemma 7.1 guaranteed. Let s; be the node of S closest
to y; in G[Y] for each i € {1,2}. Let Y; be the s;y;-rung in G[Y]. 51 # s since otherwise P is
an (S, Uy, V1)-sprout. If s; is non-adjacent to sz, then Y1 UY> U (P \ Y) is an (S, Uz, V1)-sprout.
Hence we can assume s;1s2 € E(G), implying S = {s1, s2} and |Y| > 1.

Suppose first N(in(Y)) N E # @. Let y be a node of in(Y) with N(y) N E # @ that is closest
to S in G[Y]. Let P be an E-rung in G[E \ Y] that intersects N(y) (as N4 on H after Step 2
guaranteed). By Y is H-bad and N(y;) N X C V;, N(y) NV (P) C Vi. PUY'isa (S,Us, V1)-
sprout, where Y’ is the Sy-rung in G[Y]. Therefore,

NGin(Y))NE =2 1)

Suppose that y; has a non-neighbour v in ENVj. Let P be an E-rung in G[E'\ Y] that contains
v. By Equation (1), P U Yj is a (S, U, V1)-sprout. Hence we can assume

EﬂVlgN(yl)andN(yl)ﬂX:Vl. (2)

Suppose y2 € Us. By (0) y2 has either a non-neighbour v in E N Us, or a neighbour w in E'\ Us.
Let P be an E-rung in G[E \ Y] that contains v. Let ) be an E-rung in G[E \ Y| that contains
u. Let Q' be the uV;-rung in Q. By Equation (1), either Y, U P or YU Q' is an (S, Uz, V} )-sprout.
Hence we can assume

y2 ¢ U 3)

Let S” = N(y2) N X. By Equation (3), Step 1 is non-executed. By definition of H +¢ Y,
E\Y isa UsVi-block of H that contains S’ 4)
If G[E\Y] contains a (S', Uz, V1 )-sprout T, then G[T'UY3] is an (S, Uz, V1 )-sprout in G[E]. Hence
G|E \ Y] contains no (S', Uy, V1 )-sprout )

By Equations (4), (5) and Lemma 2.4, " is H-Safe. By Equations (1) and (2), Y is H-expandable,
a contradiction. This completes (1).

By (1) we can assume S ¢ Y. Let H; be the modified H after Step i for each ¢ € {1,2}. We

have:
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e [Hs is an X-net that satisfies W1
e £\ Y isa UsVi-block of Hs that contains S\ Y
e G[E\ Y] contains no (S’, Uz, V1 )-sprout, since otherwise G[E] has an (S, Us, V1 )-sprout

By Lemma 2.4, S\ Y is Hp-Safe. By S\ Y C E and the definition of Hy, S'\ Y is H;-Safe.
Let H(S) and G(S) be obtained as follows:

step 1 Let H(S) be the subgraph of H; that corresponds to the UsV;-block E'\ Y. Let G(S) =
GIE)].

step 2 If S” = {x1, 22} is contained by a slim arc of H(S), then apply Subdivide(V (S), z1, z2);
otherwise let V(.S) be the vertex of H(S) that equals S’.

step 3 Add two new nodes v and v’ into G(S) with Ngg)(v) = 5" and Ng(s)(v') = v.

step 4 Add a leaf V'(S) adjacent to V'(S) into H(S). Let the arc V'(S)V(S) be {v,v'}. Add v
into V(S) and ¢’ into V'(S).

step 5 Add two new nodes uy and uj into G(S) with Ng(g)(u2) = U N E and N ) (uh) = ua.

step 6 Add aleaf Uj adjacent to Us into H(S). Let the arc UyU) be {ug, ub}. Add ug into Uy and
ul into U3,

step 7 Add two new nodes v; and v} into G(S) with Ng(g)(v1) = V1 N E and Ngg)(v]) = v1.

step 8 Add a leaf V/ adjacent to V; into H(S). Let the arc V1V be {v1,v]}. Add v; into V; and
v} into V7.

step 9 If Us (respectively, V1) is a degree-two vertex that incident to two non-risky arcs Ey, Es,
then apply Merge(E’, E; U E»).

We say that V (S) is subdivided if the Subdivide operation is executed in step (h2). We say that Uy
(respectively, V1) is merged if the Merge operation is executed in step (h9) for U, (respectively,
V1). Let A = {v, v/, ug, ub, v1,v] } be the new nodes.

(2) H(S) is an X (S)-web of G(S), where X (S) = EU A\ Y. G(5) has exactly three leaves. If
G(S) has a sapling then G[E] contains a (S, Uz, V1)-sprout.

Since S\ Y is H;-Safe, H(S) and G(S) are well-defined. All non-leaf vertices (respectively,
arcs between non-leaf vertices of H(S)), besides possibly V (.S) (respectively, possibly the two
subdivided arcs incident to V'(.5)) are vertices (respectively, arcs) of H;. Hence N1-N6 holds for
these vertices and arcs. By definition N1-N6 holds for H(S)[{V, V (S), Uz, U5, V1, V5 }|.Therefore
H(S)isan X (S)-net. W1 holds since any new arc of H(.S) thatis not an arc of H; is slim. There
is no new pair of parallel arcs in H(S) and the only new possible degree-two vertices are U,
and V; since V(S) has at least three neighbours. W2 holds by the last step. Hence H(S) is
an X (S5)-web of G(S). Since E \ Y is a UsV;-block of Hj, the only possible leaves of G[E \ Y]
belong to Uz U V;. Hence G(S) has exactly three leaves v/, u}, and v|. Suppose that G(S) has
asapling . A C V(T'). Let t be the degree-three node in 7. T'\ A is an induced subgraph
of G[E] By NC;(S)(UQ) =UNE, NT(UQ) = V(T) N Us. Similarly, NT(’Ul) = V(T) N Vi and
Nr(v) =V (T)NS. Hence G[T'\ A]is an (S, U, V1)-sprout.

The remaining proof shows that a subset of Y is H'(S)-bad, non-H'(S)-expandable and admits no
abode in (H(S))" = H*. By Lemma 2.2 and (2), G[E] contains a (S, Us, V1 )-sprout as required.
Since y; occupies Vi in H,
v1 € Ng(s)(y1) (6)

By definition of H(S),

V(S) ¢ V(H) if and only if V (S) is subdivided (7)

Us ¢ V(H) if and only if Uy is subdivided
all the other non-leaf vertex of H(S) belongs to V (H)
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By {UQ,Ul} ns =g,
V(S), Us and V1 are all distinct (8)

By definition of H(S), an arc F' of H(S) is not an arc of H if and only if one of the following
holds:

F is incident to a leaf of H(SS) ©)
F is incident to Uy and Us is subdivided
F'is incident to V(S) and V' (S) is subdivided
(10)

By Step (H1), if U, is subdivided then in H;,
Uy is a leaf of C that incident to Vy and UsVy is slim (11)

(3) The following statements hold:

Fact1 If aset B C E is H*-Safe, then B is IH-Safe.
Fact 2 Y admits no abode in H*.

For Fact 1, suppose first that B is a vertex of H* and hence a vertex of H(S). By BC E, B ¢
{Vi,U0,V(5),V{,U}, V'(S)} By Equation (7), B is a vertex of H and hence H-Safe. Suppose
that B consists of two adjacent nodes contained by a slim arc F; of H*. Since F} is slim, F} is
an arc of H(S). If Fy is an arc of H, then B is H-Safe. Therefore we can assume F; ¢ E(H).
Assume first

Fis incident to V' (S) and V (S) is subdivided from a slim arc F = W, W, (12)

By B C E, Fi = V(S)W; foran i € {1,2}. If F'is an arc of H, then B C F is [H-Safe. Hence
F ¢ E(H). By Equation (9) we can assume W; € {Us, V/,Us}. If F = V{U; then V(S)V{ and
V (S)US are both slim arcs of H*. By definition of H(.S), both V; and U, are merged. Since V (S)
is subdivided, V1 U is a slim arc E; of H;. By B C EN Fy, B C E;. If U; is not subdivided,
then F is an arc of H and B is [H-Safe. Hence Us is subdivided. By definition of H +¢ Y, Us
is a leaf of C in H. Since V1Us is an arc of H;, Us is subdivided from a slim arc V1V, = E5 of
H. B C E» is H-Safe.

If W; = V] then by Equation (8) V; is merged, implying V1V (S) € E(H(S)).
There are two cases:

Case 1 Fisincident to U’ foran U’ € {U}, V/}.
By B C E, Step 9 is executed on U, where U € {Us, V; } is the neighbour of U’ in H(S).
Let = U'V.V is a vertex of H* and H(S). If V is a vertex of H, then UV is a slim arc
of H that contains B and B is H-Safe. Hence V' = V/(.S) is subdivided. By Step (H2), we
can assume that S’ is two adjacent nodes contained by a slim arc UW of H;. By B C E,
B CUW. If UW is an arc of H, then B is H-Safe. Hence we can assume W = U, and
U ¢ V(H). That s, Step (H2) is executed. But then UV% is a slim arc of H that contains
B and B is H-Safe.

Case 2 F is non-incident to Uj and V7.
Let F = UV. If F'is an arc of H, then B is H-Safe. Hence we can assume F' ¢ E(H).
By the definition of H(S) and that F' is non-incident to Us, F is incident to V'(S) and
V(S) is subdivided. Let V(S) = V be subdivided from a slim arc UV’ of H;. If UV" is
an arc of H, then A is H-Safe. Hence we can assume V' = Us and U, ¢ V(H). That is,
Step (H2) is executed. But then UV5 is a slim arc of H that contains B and B is H-Safe.
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For Fact 2, assume for contradiction that Y admits an abode Fin [H*. Since H* is steady, F' is
an arc of H'(S). Let N = Ngg)(Y). Let N; = Ng(s)(vi) for each i € {1,2}. By v; € N, F'is
incident to either V; or V/. Assume first

F=VV/ (13)

Case 1 Fisincident to V7.

Let F = VV/.If V = V; thenby Condition A1, N C FUV;UV/. Butthen N(Y)NX C V;,

a contradiction to Y is non-H-local. Hence we can assume that V' # V;. Since F' is a

VV{-block of H(S) and V{ is a leaf, F\ V1 V{ = F'\ {v1, v} } is a VV;-block of H(S). We

have V' # Uy, since otherwise (by H'(S) is steady) H'(S) contains exactly one degree-

three vertex V' = Uy = V/(59), a contradiction to Fact 1. Suppose first that V' is a vertex

of Hy. Since V' # U,, V is a vertex of H. C' = F \ {v1,v]} is a VVj-block of H that is

strictly smaller than C'. We show that F'\ {v1, v} } satisfies Condition A1-A3 for Y in H,

a contradiction to the minimality of C. By N C VU F UV and V # U, ua ¢ N and

N (yg) NX CE.

e ByNCVUFUV/InH'(S), N(Y)NX CVUC'"UV/in H and A1 holds. Note that
if V= V(S) then these two V’s may differ on one node v, but it does not matter.

e Since y; occupies V; on C in H, A2 holds for V; on C” in H.

e By A3 applied on F, either Ny C C’ or y; occupies V in H'(S). If Ny C C’ then
N(y2) N X C C". Otherwise y2 occupies V in H. Either way, A3 holds.

Hence we can assume V' ¢ V(HH;). By definition of H(S), V = V(5) is subdivided.
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