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中文摘要 

 

先進駕駛輔助系統 (ADAS) 包含兩項基本功能需求。首先是物件偵測功能，

用於車輛行駛中避免碰撞障礙物或是路上行人。另外一項需求則是藉由影像切割

功能找到車輛可以行駛的區域。有別於傳統影像切割方法，採用語意分割的深度

學習網路架構，可以更正確辨識不規則的道路區域，指引自駕車行駛在更複雜的

道路環境中。 

近年來隨著卷積神經網路(CNNs) 的普及化，其功能已超越傳統以人工找出特

徵的影像分割方法。 但是，卷積神經網路(CNNs)架構複雜，需要更多的處理時間

與硬體效能需求，對於實作於車載處理系統的即時運用，尚有困難需要克服。 目

前有一些方法被提出，例如 Enet，藉由刪除一些卷積層，達到更快執行速度，但

卻犧牲影像切割的正確性。 

本研究中，首先分析最先進的即時影像語意分割系統的輸出。 由這些輸出結

果顯示，大多數被錯誤分類的像素，都是位於兩個相鄰物件的邊界上。基於此觀

察，本研究提出一種新穎的即時影像語意分割網路系統，它包含一個類感知邊緣

損失函數模塊與一個通道關注機制，旨在提高系統準確性而不損害運行速度。本

研究以 Cityscapes數據集評估所提出的方法，該資料集是目前公認最具挑戰性和權

威性的道路語意分割數據集。評估結果顯示，在即時運作條件下，本研究的平均

準確度超過 70%。 

關鍵字: 深度學習, 卷積神經網路, 即時影像語意分割, 邊緣資訊 
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ABSTRACT 

Advanced Driver Assistance Systems (ADAS) consists of two basic functions. One 

is the Object detection for preventing vehicles from hitting pedestrians or other 

obstacles. The other is image segmentation for recognizing drivable areas and guiding 

the vehicle forward. For the latter, unlike those traditional image segmentation methods, 

image semantic segmentation based on deep learning architecture can handle the road 

areas better, guiding a vehicle to drive in a more complex environment. 

With the popularity of Convolution Neural Networks (CNNs) in recent year, the 

traditional hand-crafted features methods have shown to be outperformed. However, 

deep CNN models are difficult to implement on vehicle application because the severe 

cost of time for complex processing. Although some proposed methods, such as 

Efficient neural network (Enet), achieved higher speed by removing some layers, it also 

led to the decrease of segmentation accuracy. 

In this research work, we first analyze the output of state-of-the-art real-time 

semantic segmentation networks. The result shows that most of the misclassified pixels 

are located on the edge between two classes. Based on this observation, we propose a 

novel semantic segmentation network which contains a class-aware edge loss module 

and a channel-wise attention mechanism, aiming to improve the accuracy with no harm 

to inference speed. We evaluate the proposed method on cityscapes dataset, which is the 

most challenging and authoritative on-road semantic segmentation dataset. The results 

show that our proposed method can achieve over 70% mean IOU on Cityscapes test set 

under real-time requirements. 

 Keywords: Deep Learning, Convolution Neural Networks, Real-time Semantic 

segmentation, Edge Information. 

doi:10.6342/NTU201803607



 

                                               iv

CONTENTS 

口試委員會審定書 ............................................................................................................i 

中文摘要 .......................................................................................................................... ii 

ABSTRACT .................................................................................................................... iii 

CONTENTS .....................................................................................................................iv 

LIST OF FIGURES ........................................................................................................ vii 

LIST OF TABLES ............................................................................................................ix 

Chapter 1 Introduction .............................................................................................. 1 

1.1 Motivation....................................................................................................... 1 

1.2 Related work ................................................................................................... 4 

1.2.1 Convolutional Neural Networks for semantic segmentation. ............... 4 

1.3 Contribution .................................................................................................... 6 

1.4 Thesis organization ......................................................................................... 6 

Chapter 2 Preliminaries ............................................................................................ 8 

2.1 Convolutional Neural Network....................................................................... 8 

2.1.1 Convolutional Layers ............................................................................ 9 

2.1.2 Pooling Layers .................................................................................... 12 

2.1.3 Rectified Linear Unit (ReLU) ............................................................. 13 

2.1.4 Up-Sampling Layers ........................................................................... 14 

2.1.5 Adam Optimizer .................................................................................. 16 

2.1.6 Alex-Net .............................................................................................. 17 

2.1.7 Residual-Net ........................................................................................ 17 

2.1.8 Squeeze-and-Excitation(SE) Net ........................................................ 18 

2.1.9 Fine-tuning .......................................................................................... 20 

doi:10.6342/NTU201803607



  v

2.2 Semantic segmentation Network .................................................................. 21 

2.2.1 Fully Convolutional Network ............................................................. 21 

2.2.2 Segnet .................................................................................................. 22 

Chapter 3 Edge Net .................................................................................................. 23 

3.1 Observation ................................................................................................... 23 

3.2 Edgenet Overview ........................................................................................ 25 

3.3 Edgenet Design ............................................................................................. 26 

3.3.1 Encoder subnetwork ............................................................................ 26 

3.3.2 Decoder subnetwork ............................................................................ 29 

3.3.3 Class-aware edge loss module ............................................................ 29 

3.3.4 Residual SE-block ............................................................................... 33 

Chapter 4 Experiments ............................................................................................ 36 

4.1 The Datasets.................................................................................................. 36 

4.1.1 Cityscapes Dataset .............................................................................. 36 

4.1.2 KITTI On-road Dataset ....................................................................... 39 

4.2 Experiment platform ..................................................................................... 40 

4.3 Experimental Results .................................................................................... 40 

4.3.1 Inference time ...................................................................................... 40 

4.3.2 The Experimental on Cityscapes Dataset ............................................ 41 

 Evaluation methods ............................................................................. 41 

 Experimental Result of accuracy ........................................................ 42 

4.3.3 The Experimental on KITTI Road Detection ...................................... 48 

 Evaluation methods ............................................................................. 48 

 Experimental result on accuracy ......................................................... 50 

doi:10.6342/NTU201803607



 

                                               vi

4.4 Autonomous Driving Application ................................................................ 53 

4.4.1 Car Steering Angle Prediction System ................................................ 53 

4.4.2 Udacity Self-Driving Car Challenge 2 Dataset ................................... 54 

4.4.3 Evaluation Metrics .............................................................................. 55 

4.4.4 Overall performance ............................................................................ 56 

Chapter 5 Conclusions ............................................................................................. 57 

REFERENCE .................................................................................................................. 59 

 

doi:10.6342/NTU201803607



 

                                               vii

LIST OF FIGURES 

Fig. 1-1 Three main modules for an autonomous driving system ..................................... 2 

Fig. 2-1 Convolution operation. ...................................................................................... 10 

Fig. 2-2 The receptive field of convolutional kernels. .................................................... 11 

Fig. 2-3 Calculation of Max-pooling. .............................................................................. 13 

Fig. 2-4 Calculation of average-pooling. ......................................................................... 13 

Fig. 2-5 Unpooling Layers............................................................................................... 15 

Fig. 2-6 Fractionally Strided Convolution layer .............................................................. 16 

Fig. 2-7 Alex-Net [13] ..................................................................................................... 17 

Fig. 2-8 Residual block. ................................................................................................... 18 

Fig. 2-9 Squeeze-and-Excitation module ........................................................................ 19 

Fig. 2-10 Paradigm of transfer learning .......................................................................... 20 

Fig. 2-11 Architecture of FCN[15] .................................................................................. 21 

Fig. 2-12 Architecture of Segnet[23] ............................................................................... 22 

Fig. 3-1 Visualization of ERFnet result ........................................................................... 24 

Fig. 3-2 Histogram of misclassified pixels ...................................................................... 25 

Fig. 3-3 Overview of our proposed Edgenet. .................................................................. 26 

Fig. 3-4 Kernel of dilated convolution ............................................................................ 27 

Fig. 3-5 Downsampler ..................................................................................................... 28 

Fig. 3-6 Preprocessing edge ground truth ........................................................................ 31 

Fig. 3-7 Edge Loss module .............................................................................................. 32 

Fig. 3-8 Residual SE-block .............................................................................................. 34 

Fig. 4-1 Example images and annotations from the Cityscapes dataset. ......................... 38 

Fig. 4-2 Sample Images of KITTI dataset. ...................................................................... 39 

doi:10.6342/NTU201803607



 

                                               viii

Fig. 4-3 Color table of each class .................................................................................... 46 

Fig. 4-4 Semantic segmentation results of Cityscapes dataset. ....................................... 47 

Fig. 4-5 Histogram of improved pixels. .......................................................................... 48 

Fig. 4-6 Detection result in different space ..................................................................... 49 

Fig. 4-7 Road detection results of Edgenet on KITTI testing set .................................... 52 

Fig. 4-8 System Overview ............................................................................................... 53 

Fig. 4-9 Architecture of the Control Network. ................................................................ 54 

Fig. 4-10 Example images of Udacity Self-Driving Car Dataset. ................................... 55 

doi:10.6342/NTU201803607



 

                                               ix

LIST OF TABLES 

Table 2-1 Calculation amount of convolutional layers .................................................... 12 

Table 4-1 Class of Cityscape dataset. (Bold words indicate Categories of the column. 

Red words indicate those classes be ignored in evaluation stage.)............... 37 

Table 4-2 Our PC specification. ...................................................................................... 40 

Table 4-3 Comparison of speed with other state-of-the-art near real-time method. ........ 41 

Table 4-4 Definition of true positive, true negative, false positive and false negative. .. 41 

Table 4-5 Evaluation result on Cityscpaes dataset .......................................................... 43 

Table 4-6(a) IOU of each class on Cityscapes testing set ................................................ 44 

Table 4-7 iIOU of each class on Cityscapes testing set ................................................... 45 

Table 4-8 IOU of each category on Cityscapes testing set .............................................. 45 

Table 4-9 The result on KITTI car detection. .................................................................. 51 

Table 4-10 Result on the test set of Udacity dataset. ....................................................... 56

 

doi:10.6342/NTU201803607



 

                                               1

Chapter 1 Introduction 

1.1 Motivation 

Although the field of computer vision has existed for more than 50 years, it did not 

begin to thrive until the 1990s, the time in which the digital cameras were popularized. 

Since then, many researchers have devoted themselves to giving computers a visual 

understanding of the world. For feature description, researchers have proposed many 

different algorithms including the Scale-invariant feature transform (SIFT)[1] and the 

Histogram of oriented gradient (Hog)[2]. However, these methods highly rely on 

hand-crafted feature sets which are designed by researchers based on their own domain 

knowledge. With this limitation, methods based on hand-crafted feature are not only 

time-consuming but also tend to achieve unsatisfactory performance due to the content 

complexity of real environment. In recent years, thanks to the rapid development of 

graphics processing unit (GPU) technology, convolution neural networks (CNNs) have 

been applied to the field of computer vision. With many datasets which contain large 

amount of image materials published online, such as ImageNet[3], PASCAL VOC[4], 

and Cityscapes[5], CNNs can be trained to learn the representative feature from those 

images. Led by their independent learning ability, CNNs are able to surpass all of the 

hand-crafted feature based methods in performance. 
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Despite that computer vision has been applied to vast kinds of fields, it plays an 

indispensable role in Advance Driver Assistance system (ADAS). The ultimate goal of 

ADAS is development of autonomous driving systems, which usually consist of several 

sub-modules to handle different tasks. In general, an autonomous driving system can be 

divided into three parts: the perception module, the decision module, and the control 

module[6]. 

 

Fig. 1-1 Three main modules for an autonomous driving system 

With the continuous improvement of the performance of autonomous driving 

system, the decision module requires more environmental information provided by the 

perception module to assist in decision making. However, ADAS equipped only with 

object detection system fail to provide accurate information. While detecting the 

drivable area, objet detection system output bounding boxes to frame those areas. 

However, because the drivable area is often in irregular shapes and cannot be perfectly 

fit into those rectangular bounding boxes, there can also be some obstacle existing in the 

boxes. The only way to overcome this problem is to precisely classify each pixel by 

incorporating semantic segmentation network into the perception module. That is why 

we can see that most of the large self-driving company in the market today have 

integrated the Semantic segmentation network in their products.  

Unlike other fields of application, ADAS systems especially required high 

processing speed. If the system cannot process road information immediately in 

emergency situation and pass it to the decision-making module for judgment, it will be 

considered useless even if the accuracy of output is high. With this requirement in mind, 
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we design our system to achieve Real-time speeds (30FPS[7]) with the GTX TitanX 

(Maxwell) GPU. There are two main reasons why we choose TitanX as a platform to 

evaluate the inference speed. The first reason is that because this GPU is widely used in 

other semantic segmentation as a platform for speed evaluation. The second reason is 

that the architecture of TitanX is the same as the widely used autopilot platform “Driver 

PX”. 

Besides speed, accuracy is also very important for autonomous driving applications. 

To the best of our knowledge, the most authoritative on-road semantic segmentation 

record based on the data-set, Cityscapes, shows that the state-of-the-art result can 

achieve no higher than 70% mean Intersection-Over-Union (mIOU) under real-time 

speed. However, we believe that such performance can be improved by redesigning the 

network architecture.  

Running under real-time environment means that the maximum computational 

resource which can be assigned to each input image is fixed. Under such limitation, how 

to design a network that can effectively allocate computational resources becomes an 

important factor to overcome the barrier of 70% mean IOU or to outperform the 

state-of-the-art. 

Because the Deep CNN has a large amount of parameters which need to be trained, 

and the amount of high quality semantic segmentation labels are relevantly small. To 

deal with this problem, we usually pre-train our model on a big classification dataset 

(e.g. ImageNet[8]) to learn adaptive low level features, and then fine-tune the model on 

the target data. However, feature representations learned from classification data usually 

focus on main objects of image, so we may need to assist the network focus on other 

areas in fine-tuning stage to improve overall accuracy. 

In this thesis, we propose a novel real-time semantic segmentation network which 
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combines class-aware edge loss module and residual channel-wise attention mechanism, 

achieving both correct rate and real-time requirements. To validate our work, we 

evaluate it on Cityscapes[5] and KITTI on-road datasets[9] which contain urban road 

scenes. The experimental results show that our proposed class-aware edge loss and 

attention mechanism can improve the overall performance without harming inference 

time. 

1.2 Related work 

In this thesis, we propose a novel semantic segmentation network architecture 

which combine class-aware edge loss module and channel-wise attention mechanism, to 

improve the detection performance. In the following section, we will describe the 

evolution of CNNs and some state-of-the-art CNN based semantic segmentation network.  

1.2.1 Convolutional Neural Networks for semantic 

segmentation. 

In recent years, deep convolutional neural networks have become popular solution 

tools in almost all areas of computer vision[10-12]. All this started with Alexnet 

proposed by Krizhevsky et al. [13]. Alexnet won the first place of the ILSVRC 

competition in 2012. They added many new ideas in Alexnet, such as using Rectified 

Linear Units (ReLU) instead of sigmoid as an activation function. This new activation 

function would increase training speed and allow the network to converge faster. Since 

the traditional image datasets are too small, the data simply cannot reflect the real world. 

Deep learning method contains large number of trainable parameters, and the trained 

network will tend to be overfitted if the training set is too small. Fortunately, Li et al. 
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published their large annotated images dataset, called ImageNet[3], openly, and the 

dataset contains more than 15 million manually-labeled high-resolution pictures. The 

total number of categories exceeds 20,000. With the rapid development of GPU 

technology at that time, CNNs based method quickly defeated traditional classifier, and 

become the best image classification method. 

Because of the success of Alexnet in image classification task, people began to 

focus on CNN. Soon, researcher discovered that CNNs are robust feature extractor 

which can be widely applied to various tasks. By connecting different subnets, CNN can 

accomplish multiple image processing tasks. For example, in RCNN [14] an object 

detection network proposed by Girshick et al. use support vector machine (SVM) to 

classify the region features extracted by Alexnet to achieve object detection. Not only 

object detection, CNNs can also be used in semantic segmentation task. Fully 

Convolutional Network (FCN) [15] proposed by Long et al. is the first network which 

achieves semantic segmentation based on CNN. By replacing the fully connected layers 

with convolutional layers, FCN can provide spatial maps instead of 1D classification 

array. Those maps are upsampled using fractionally strided convolutions to produce 

dense pixel-wise prediction. Because FCN didn’t contain any fully connected layers, the 

input image can be arbitrary sized. Some other methods try to refine the segmentation 

result by post-processing, such as DeepLab network[16] using fully connected factor 

graph to model the relation between each pair of pixels. 

However, the aforementioned networks are running too slow. They cannot be used 

for tasks that have constraints on computational time. Enet[8] was proposed to address 

this problem. By reducing the size of feature maps at the beginning of the network, the 

total amount of computation is reduced. Enet can achieve 46.8 FPS at 1280x720 

resolution. This greatly increases the range of application of semantic segmentation and 
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leads a number of semantic segmentation networks design to achieve even higher 

inference speed. 

1.3 Contribution 

In this thesis, we focus on the output of the state-of-the-art semantic segmentation 

method and analyze the distribution of misclassified pixel. We also propose the Edgenet, 

which effectively reduces the number of misclassified pixels. 

The major contributions of this thesis are listed as follows: 

(a) The main contribution is to design a CNN based Semantic segmentation network. 

Combined with class-aware edge loss in training stage, our net is able to learn the 

edge information of instance without affect inference speed. 

(b) The second contribution is that we propose a novel channel-wise attention 

mechanism, called residual squeeze-and-excitation(SE) module, to learn the 

importance of different channels without influencing network convergence. 

(c) Combined with class-aware edge loss and residual SE module, our proposed 

Edgenet achieves over 70% mean IOU on Cityscapes semantic segmentation 

dataset under real-time speed. 

1.4 Thesis organization 

In Chapter 1, we have introduced the motivation of our work which aims to propose 

a novel real-time semantic segmentation architecture and achieve better result on 

Cityscapes dataset. We also discuss the problem to be improved we found. Finally, the 

contributions of this thesis are introduced. To summarize our research, the rest of thesis 

are organized as follows: 
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In Chapter 2, we will present some background knowledge of deep CNNs. We will 

first introduce some basic modules of CNNs. Then, some CNNs architectures which are 

widely used as the encoder network for semantic segmentation will be explained. 

Finally, we will illustrate some state-of-the-art semantic segmentation network and 

training strategy which can reduce the amount of high quality segmentation data for 

training. 

In Chapter 3, we will explain our methods in detail. We will first analyze the 

distribution of those misclassified pixels. Then, the overview of the novel semantic 

segmentation network proposed in this thesis, called Edgenet, will be introduced. After 

that, we will go deeper to the details of how to implement our proposed method. 

In Chapter 4, we will introduce the public datasets first, which includes KITTI road 

detection dataset and Cityscapes semantic segmentation dataset. Then, we will present 

the experimental results of our proposed method. The visualization of the detection 

results of each dataset will also been shown. 

In Chapter 5, we will conclude the contributions of this thesis and give a discussion 

on the experiments result. Finally, we will discuss the future work about how to further 

improve semantic segmentation accuracy. 
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Chapter 2  

Preliminaries 

This study proposes a novel Edgenet architecture which combines edge 

information and channel-wise attention mechanism. Our proposed architecture is 

inspired by the Efficient Residual Factorized net (ERFnet)[17] which is based on 

factorized convolutional layers. In this chapter, we will first describe the convolutional 

neural network and other semantic segmentation network briefly. 

2.1 Convolutional Neural Network 

In recent years, CNN has been making a big splash in the field of image processing. 

Whether it is image classification[13, 18, 19], object detection[14, 20-22] or image 

segmentation[15, 23-25], CNN can be used to achieve the accuracy that cannot be 

achieved by traditional hand engraving methods. Unlike the traditional hand carving 

method, e.g. HOG [2], which requires researchers to design feature extractor based on 

their domain knowledge, CNNs can extract enough representative features from a large 

amount of training materials with its strong learning ability. Based on different purpose, 

each neural network will be designed with different loss function as a criterion for 
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judging the performance of the network. The predict result and ground truth will be 

input to the loss function and the loss will be calculated. To continually minimize be the 

ultimate goal of training. When designing a neural network, the operation of each layer 

must conform the requirement of differentiable. This is because training the neural 

network requires the gradient[26] of each parameters, 

All of these structures require considerable amount of computing resources. 

Thanks to the rapid development of GPUs in recent years. Computations in a 

convolution neural network can be practice on the GPU for parallelization. To further 

optimize the computing process and reduce the running time, series of methods are 

proposed, such as Kernel decomposition[18]. We would like to explain some of the 

layers and acceleration methods that are commonly used in convolutional neural 

network. 

2.1.1 Convolutional Layers 

Convolution as a feature extraction method has long been widely used in 

traditional image processing method. By performing a dot product with an input patch 

on the convolutional kernel, the intensity of the feature can be obtained. In CNN 

architecture, convolutional layers consist of a set of convolutional kernels, whose width 

and height are relatively small, but extend through the full depth of the input volume. 

Each layer may consist different number of kernels to generate different output 

dimension. During the forward pass, a two-dimensional feature map will be produced. 

We sometimes add zero-padding around the border of the image to make sure that the 

input will be consistent with the output in length and width dimension. By stacking the 

output map of all kernels, a three-dimensional feature maps (height, width, channel) will 

be produced. Each convolutional layer takes the extracts from the upper layer as the 
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input to further obtain more abstract information. In general, the bottom convolutional 

layer will extract low-level features, such as color block or edge, while the top 

convolutional layer will extract high-level features, such as human face or vehicle. 

 

 

 

 

Fig. 2-1 Convolution operation. 
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Although the learning ability of the convolution layer is powerful, its most criticized 

point is that it requires a lot of computing resources. This will be a fatal problem to 

applications that the time-limited requirement is very important to them. In order to 

solve the problem of high computational complexity, [18] proposes replacing the large 

kernel with a continuous small kernel volume base layer. From Fig. 2-2, it can be seen 

that after two layers of 3x3 convolutional layers are stacked, their receptive field will be 

able to reach the same size of a single 5x5 convolution layer. Table 2-1 shows the 

number of operations required for both when input size = 224x224x3, padding = 1, and 

output channel = 96. Obviously, the 5x5 convolution layer requires more computing 

resources than two consecutive 3x3 convolution layer. 

 

(a) Single 5x5 convolutional layers. 

 

(b) A stack of two 3×3 convolutional layers. 

Fig. 2-2 The receptive field of convolutional kernels. 
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2.1.2 Pooling Layers 

In the architecture of the neural network, since the deeper convolution layer is 

responsible for extracting more abstract and diverse features, the deep convolutional 

layers needs more kernels. In general, the number of kernels will grow exponentially 

with depth. The number of kernels directly affects the number of channels of output 

feature maps, so the amount of memory and computation required will also grow 

exponentially. This limits the depth of the network we can design, thus limiting the 

learning ability of networks. With the pooling layer, we can aggregate the information in 

a certain area to achieve the reduction of feature maps size. Max-pooling is the most 

commonly used pooling operation in a convolutional neural network. It keeps the 

maximum value in the region. Fig. 2-3 shows the result of Max-pooling acting on one 

slice of the channels. In addition to Max-pooling, Average-pooling is another commonly 

used pooling operator. Average pooling uses the average value in the region as the 

output. As shown in Fig. 2-4. the advantage of Average-pooling is that it can deliver 

messages more completely, but it also lost Max-pooling's ability to extract strong 

features. 

Table 2-1 Calculation amount of convolutional layers 

5x5conv 3x3conv 

5 × 5 × 3 × (224 − 3 + 2 + 1) × 96 × 2 

= 7.1M 

3 × 3 × 3 × (224 − 3 + 2 + 1) × 96 × 2 

= 2.6M 
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Fig. 2-3 Calculation of Max-pooling. 

 

Fig. 2-4 Calculation of average-pooling. 

 

2.1.3 Rectified Linear Unit (ReLU) 

In the biological nervous system, the signal will be output after neurons have 

received stimuli that exceed the threshold value. In the artificial neural network, we use 

the activation function to achieve non-linear effects. Traditional networks usually use 

sigmoid (2-1) as activation function. 
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 σ(𝑥) = 1/(1 + 𝑒 ) (2-1) 

To accelerate the training process with gradient descent base optimizer, Rectified 

Linear Units (ReLUs)[13] are applied to the deep convolutional neural networks, which 

is define as (2-2). When the input increase, the derivative of sigmoid function become 

small. This lead to gradually decrease of the gradient during back-propagating process, 

making the entire network slower to converge. On the contrary, ReLUs can run more 

efficiently. Because the differential value of ReLUs always maintains as one when input 

value greater than one, the network will converge quickly during training. By replacing 

sigmoid with ReLUs, a faster and more effective training of deep neural architectures 

can be achieved.  

 𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥) (2-2) 

 

2.1.4 Up-Sampling Layers 

Unlike other images processing task, semantic segmentation needs to produce a 

high resolution output. Neural networks use the pooling to reduce the size of the feature 

maps when extracting feature. To output the same size as the input image, the semantic 

segmentation networks have to enlarge the low-resolution feature maps. Up-sampling 

layers are responsible for this work. We will introduce two commonly used up-sampling 

layers below. 
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 Indices Unpooling Layer 

Indices Unpooling[27] is a reverse operation of pooling which enlarges the 

information back to a patch area. By recording the locations of the maxima within each 

pooling region, unpooling layers will back-fills the value to this position, other position 

will be filled with zero. All unpooling layers has a corresponding pooling layer to 

provide pooling indices. 

 Fractionally Strided Convolutional layer 

Unlike unpooling layers, Fractionally Strided Convolutional layers contain 

trainable parameter, which means that it has stronger learning ability. In general, before 

regular convolution, it will insert zeros between the feature maps to magnify its size. 

Fig. 2-6 shows the process of feature maps enlarge by fractionally strided convolution 

layer. 

 

 

Fig. 2-5 Unpooling Layers 
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(a)Regular convolution (b) Fractionally Strided Convolution 

Fig. 2-6 Fractionally Strided Convolution layer 

2.1.5 Adam Optimizer  

Adam optimizer[28] is usually used to optimize the CNN. Adam renew momentum 

𝑚  and velocity 𝑣  with gradient 𝑔 . Then optimize network parameter 𝜃 by m  

and 𝑣 . The update values 𝑣 , 𝑚 , and the updated parameter θ  are computed by 

following formulas, 

 𝑚 =  𝛽 𝑚 + (1 − 𝛽 )𝑔  (2-3) 

 𝑣 =  𝛽 𝑣 + (1 − 𝛽 )𝑔  (2-4) 

 𝜃 =  𝜃 −
𝜂

𝑣 + 𝜀
𝑚  (2-5) 

Where η is the learning rate and 𝛽 , 𝛽  are decay rate of previous momentum and 

velocity. For training a CNN network, we follow the polynomial learning rate decay 

policy, which set an initial learning rate and decrease it as a polynomial curve define by 

ourselves. 
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2.1.6 Alex-Net 

Alex-Net[13] proposed by Krizhevsky et al. is the first CNN architecture which 

achieved an outstanding performance in ILSVRC-2012. Alex-Net contains five 

convolutional layers and three fully connected layers. Since the GPU had only 3G of 

memory in that time, the authors had to train the network on two GPUs separately. The 

structure of Alex-Net is shown in Fig. 2-7. 

 

Fig. 2-7 Alex-Net [13] 

 

2.1.7 Residual-Net 

In recent years, the CNNs have gone deeper with developing direction. However, 

as the depth increases, the performance of the CNNs decrease gradually. At first, people 

thought that it was overfitting caused by having too much learning parameter. But that 

soon realized that the CNNs could not even converge on the training set, which shown 

to be a new problem. To deal with it, He et al. [19] introduced a new CNN architecture, 

called Residual network (Res-net), which make the deeper network to be trainable. They 
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applied residual block to simplify the optimization process. The residual block is 

defined as: 

 𝐲 = ℱ(𝐱, {𝑊 }) + 𝐱 (2-6) 

where 𝐱 and 𝐲 is the input and output of the layers. ℱ(𝐱, {𝑊 }) is the residual 

mapping to be learned. The residual learning is done by bypassing input feature maps 

and merge it with the output of convolution, which is formulated as ℱ + 𝐱 operation. If 

an identity mapping were optimal, it would be easier to push the residual to zero than to 

fit an identity mapping by a stack of nonlinear layers. The residual block is shown as 

Fig. 2-8. As the result, they proposed several networks with different number of layers 

(e.g., Resnet-18, Resnet-34, Resnet-50 and Resnet-152) and showed that the 

performance of network can be improved by simply increasing the depth of the network. 

2.1.8 Squeeze-and-Excitation(SE) Net  

SE-net[29] proposed by Jie Hu, Li Shen and Gang Sun is the winner of ILSVRC [8] 

2017 competition. They apply channel-wise attention mechanism in their network. With 

the attention mechanism, CNNs can effectively direct the computing resources to most 

 

Fig. 2-8 Residual block. 
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informative regions. In convolution process, the importance of features filtered out by 

each kernel are different. To use this characteristic, they proposed 

Squeeze-and-Excitation module weighting each channel with their importance. The 

SE-module is shown as Fig. 2-9. After regular convolution, they use global average 

pooling to form a vector containing global information, each channel will be average 

into a value. After global average pooling, a HxWxC feature maps will become a 1x1xC 

vector. Then they apply two fully connected layers around the nonlinear activation 

function to fully capture channel-wise dependencies, they set reduction ratio r as 16 to 

achieve an effective trade-off between model complexity and performance. Before 

channel-wise multiply back to feature maps, they apply a sigmoid activation function to 

increase nonlinearity. 

 

Fig. 2-9 Squeeze-and-Excitation module 
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2.1.9 Fine-tuning 

Training deep CNN from scratch requires a large amount of data, it is hard for 

researchers to collect enough labeled images for each specific tasks. Especially for jobs 

that require large pixel-wise labels such as semantic segmentation, it is even more 

difficult to collect a large number of labels. Fortunately, according to [30], no matter 

what the task is, the features captured by shallow convolutional layers are shareable. 

Combined with the concept of transfer learning Fig. 2-10. We can first pre-train on the 

image classification dataset, e.g. ImageNet, and replace the fully connected layer for 

classification with the decoding network of semantic segmentation. Fine-tune 

segmentation network requires only a relatively small amount of data.  

 

Fig. 2-10 Paradigm of transfer learning 
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2.2 Semantic segmentation Network 

Before we introduce our proposed novel semantic segmentation network, we will 

present other semantic segmentation architectures first. Fcn[15] is the first approach 

trying to solve semantic segmentation problem with fully convolutional network, and 

then Segnet [23] is a Symmetrical Encoder-decoder CNN can run at near real-time 

speed (about 16 FPS). 

2.2.1 Fully Convolutional Network 

 In order to achieve pixel-wise classification, CNNs have to keep the spatial 

information of specific features. However, fully connected layers are usually added at 

the end of the network in traditional classification CNNs. This will remove spatial 

information and restrict the size of the input image. Long et.al. resolve this problem by 

replacing fully connected layers with convolutional layers containing the same number 

of channels. Fig. 2-11 shows the architecture of FCN. 

 

Fig. 2-11 Architecture of FCN[15] 

To enlarge feature maps to the size of input image, they apply fractionally strided 

convolutional layer, also known as deconvolution layer, to the end of their network. In 

this study, they found that segmentation detail will be improved by fusing information 
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from lower layers. It’s because feature maps from lower layer will keep more 

fine-grained information. By replacing fully connected layer with convolutional layers, 

their architecture can be applied to almost every classification CNNs. 

2.2.2 Segnet 

Segnet[23], as a network for semantic segmentation, uses a symmetric encoder decoder 

architecture. The first half of the network are similar to the front 13 layers of VGG-16 

net. As a encoder, They are responsible to collect enough representative information. 

The decoder network architecture in the latter half is exactly the same as the encoder 

network. Only the pooling layers which used for downsampling are replaced with the 

unpooling layers. The pooling indices needed during unpooling are provided by the 

corresponding pooling layer in the encoder. Compared with Fully Convolutional Net, 

Segnet does not have lots of channel within the convolutional layers, it can achieve 

16FPS on GTX TitanX GPU with Maxwell architecture.  

The speed which can be considered almost real-time allows Segnet to be widely applied 

to many real world application. However, still, its inference speed does not meet the 

requirement of autonomous driving application. Fig. 2-12 shows the architecture of 

Segnet. 

 

Fig. 2-12 Architecture of Segnet[23] 
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Chapter 3  

Edge Net 

In this chapter, we propose a novel real-time semantic segmentation network, 

which combines class-aware edge loss module and residual channel-wise attention 

mechanism, achieving both high accuracy and real-time requirements. First, we analyze 

the distribution of pixels which are misclassified by state-of-the-art real-time semantic 

segmentation network to identify potential weakness. Next, we introduce our proposed 

CNN-based Semantic Separation Network, called Edgenet, which aims to improve 

accuracy using Residual Squeeze-and-Excitation (SE) block and class-aware edge loss 

modules by allocating computing resources to areas that contain rich information.  

3.1 Observation 

In order to achieve higher mean IOU without jeopardizing the inference speed, the 

strategy is to force our network concentrating on those difficult areas. From the former 

argument, we here choose ERFnet proposed by Romera et al. [17] as means for analysis 

because it is the best semantic segmentation algorithm which can run under real-time 

speed to the best of our knowledge. First, we evaluate ERFnet with Cityscapes dataset[5] 
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which contains numerous high resolution semantically segmented urban scenes. 

Following their training policy, we first pre-train the encoder with ImageNet dataset, 

and then fine-tune the whole net on Cityscapes dataset. Finally, the mean IOU we 

achieve is as high as 72% on Cityscape validation set which is close to their 71.5%. The 

visualization result of ERFnet are shown in Fig. 3-1. By observing Fig. 3-1 (c), we can 

see that most of the misclassified pixels fall on the boundaries between adjacent 

categories, which is what we call the edges. Based on this observation, we decide to 

analyze in detail the distribution between misclassified pixels and the edge. 

  

(a) Input image (b) Ground truth  

 

(c) Pixels been misclassified by ERFnet 

Fig. 3-1 Visualization of ERFnet result 

The statistical results we presented in Fig. 3-2 show that nearly 60% of 

misclassified pixels are located within 10 pixels from the edge. We believe that there are 
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two reasons for this phenomenon. The first is that there may be some slight errors 

during the image marking process conducted by human manually. The second reason is 

that the edges usually occupy too few pixels in the image. While in a typical semantic 

segmentation, the loss function doesn't discriminate pixels on edge between different 

classes. This makes the network focus on a large area of classification but ignores the 

correctness of the pixel near the edge. 

 

Fig. 3-2 Histogram of misclassified pixels 

3.2 Edgenet Overview 

Edgenet is a network that can be trained end-to-end. We add our proposed residual 

SE-block after each Convolutional layer to reweight each channel with their importance. 

At the end of the network, we combine the class-aware edge loss module to improve the 

segmentation result near to edge. The proposed Edgenet is shown in Fig. 3-3. 
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Fig. 3-3 Overview of our proposed Edgenet. 

3.3 Edgenet Design 

In this section, we will go into details about the design of our proposed Edgenet 

architecture. Edgenet contains a set of asymmetric subnetworks with encoder and 

decoder. We will first explain the structure of encoder and decoder subnetworks, and 

then the class-aware edge loss module we proposed will be introduced to decrease the 

segmentation error on the edge area. Finally, we will explain the residual SE-block 

applied after every convolution layer. 

3.3.1 Encoder subnetwork 

Fig. 3-3 Overview of our proposed Edgenet.Fig. 3-3 shows the overview of 

Edgenet. Our net includes three sets of downsamplers. The first downsampler performs 

max pooling and convolution with stride 2. The image size is reduced from 1024 x 512 

to 512 x 256. The second set of downsampler also executes max pooling and strided 
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convolution, continuously reducing the size of the feature maps from 512 x 256 to 256 x 

128. The feature maps are quickly downsampled twice in the initial stage of the encoder 

network, results in only a quarter of height and width length compared to the original 

image. With this process, the computational complexity of subsequent five residual 

convolutional building blocks will be reduced. The last group of downsamplers also 

performs max pooling and convolution, reducing the feature maps size from 256 x 128 

to 128 x 64, followed by 8 consecutive convolutions which have different dilated ratio.  

The dilated convoluted [16] kernel is shown in Fig. 3-4. The use of dilated convolution 

can bring the benefits of increasing the reception field. 

In the past, in order to increase the reception field, pooling[31] is used to 

summarize the information in the area. However, the pooling leads to the loss of spatial 

information. For network like semantic segmentation whose output is pixel-wise 

prediction, using too much pooling layers to enlarge receptive field will result in the 

impossibility to reproduce fine-grained details. The size of feature maps will shrink too 

much after pooling layers and the spatial information will be lost. By using dilated 

convolution, we can keep the spatial information while enlarging the receptive field 

without increasing the amount of computation complexity and the amount of 

parameters.  

 

Fig. 3-4 Kernel of dilated convolution 
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Overall, the feature maps output by the encoder is only one-eighth of size 

compared to the original image. The downsampler, as shown in Fig. 3-5, uses a parallel 

architecture with stride convolution and pooling, then concatenates output featuremaps 

along channel dimension. This concept was first proposed in the inception v2[32]. By 

applying this method, the two problems, the loss of detail information caused by 

pooling before convolution, as well as the high computational cost caused by 

convolution before pooling, can both be solved. Besides, the Stride Convolution in 

parallel with pooling also help to increase reception field while reducing the amount of 

computation in the encoder sub-network as a whole. 

 

Fig. 3-5 Downsampler 

 

Convolutional residual building block in our Edgenet is based on the 

non-bottleneck design[19], which is composed by two 3x3 convolutions. To reduce 

computational complexity, the 3x3 convolution is factorized into two continuously 

one-dimensional convolutions using the method proposed by Romera et al.[33]. An 

addition ReLU is placed in the middle to increase the nonlinearity.  
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3.3.2  Decoder subnetwork  

The second part of our Edgenet is the decoder network. The goal is to enlarge the 

low-resolution feature maps extracted by encoder network back to high-resolution 

multi-dimensional pixel-wise classification results. Because the resolution of input 

feature maps is one-eighth of input picture, decoder also contains three upsampler layers. 

We use fractionally strided convolutional layer to implement upsampler layer. The 

advantage is that compared to unpooling layer, there will be more trainable parameters 

in fractionally strided convolutional layer. To give the network better learning ability, 

we applied two convolution layers between two adjacent upsampler. 

3.3.3 Class-aware edge loss module 

In Section 3-1, we analyze the distribution of those misclassified pixels. Most of 

them are located near the edge. In order to properly classify these pixels, we need to let 

our encoder focus on these areas. There are two ways to achieve this. The first way is 

adding additional extractor of edge information into encoder network, such as[34]. This 

may bring up two problems. The first one is the increased computational complexity 

caused by additional edge extractor. The second is the extra training time of an edge 

extractor we may need to spend. However, the entire network cannot be trained 

end-to-end. The second approach is to design an extra loss function to drive our network 

converge in a direction that put more attention on edges. Since one of the main goals of 

our network design is to maintain the speed of real-time operation. We prefer to choose 

the latter approach. The general segmentation loss usually implemented with 2D cross 

entropy as shown in equation (3-1). Where W, H are the width and height of output 

feature map and 𝐺(𝑥, 𝑦), 𝑃(𝑥, 𝑦) are one-hot vector of ground-truth label at position 

(x,y) and prediction of segmentation at position (𝑥, 𝑦). This loss function does not 
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discriminate pixels on edge between different classes, it treats every pixel equivalently 

as dealing with classification problem, and then adds up all cross-entropy loss of every 

pixel. 

 𝐿𝑜𝑠𝑠 =  −
1

𝑁
𝐺(𝑥, 𝑦) log(𝑃(𝑥, 𝑦)) (3-1) 

 

 

In order to increase the weight of the edge in the loss, we need to first find the 

location and category of the edge from the ground truth. Preprocessing steps are as 

follows. 

 generating binary images of each class from ground truth image. Fig. 3-6 (b, c) 

show the binary image of road and building classes; 

 finding edge in each binary image. Fig. 3-6 (d, e) show the edge imag of road and 

building classes; 

 merging all edge-relevant binary images into a class-aware edge ground truth, 

where each pixel is labeled with their original class id, as shown in Fig. 3-6 (f). 
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(a) Ground truth image 

 

(b) Binary image of road 

 

(c) Binary image of building 

 

(d) Edge of road 

 

(e) Edge of building 

 

(f) Class-aware edge ground truth  

Fig. 3-6 Preprocessing edge ground truth 
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In order not to affect the overall inference speed, we place the additional layer 

related to the edge after the semantic segmentation result. Fig. 3-7 illustrates our design. 

A 3x3 convolutional layer is located after semantic segmentation to generate edge 

detection from segmentation result. Then, the edge loss will be calculated based on edge 

detection result and edge ground truth. 

If the segmentation result is good, the associated 3x3 convolutional layer will be 

sufficient to generate good edge prediction similar to edge ground truth. If the edge 

detection result is very different from edge ground truth, which indicates that the 

semantic segmentation does not contain correct edge information, the gradient of the 

𝑙𝑜𝑠𝑠  will also be directly backpropagated to semantic segmentation network, 

forcing it to extract more edge information to reduce 𝑙𝑜𝑠𝑠 .   

𝐺 (𝑥, 𝑦) and 𝑃 (𝑥, 𝑦) are ground truth of segmentation and edge detection at 

position (𝑥, 𝑦), where 𝐺 (𝑥, 𝑦), 𝑃 (𝑥, 𝑦)  are prediction of segmentation and 

edge detection at position (𝑥, 𝑦). Overall, we sum up the loss of original segmentation 

 

Fig. 3-7 Edge Loss module 
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described by equation (3-3) and the edge loss by equation (3-4), and take it to be the 

total loss function shown by equation (3-2) of our network, where λ is the hyper 

parameter, used to balance the importance between original segmentation loss and edge 

loss.  

 

We also apply the class weighting technique proposed in [24] to deal with class 

imbalance problem, where the weight of each class is formulated as in equation (3-5). 

 ω =
1

𝑙𝑛(1.2 + 𝑃 )
 

(3-5) 

With 𝑃  referring to that, among all pixels, what proportion does pixels in this 

class take up. Our edge loss module does not participate in the segmentation prediction 

process. It only helps the network focus on the classification correctness of the pixel 

near the edge. Since our edge loss module will not be involved in the testing stage, the 

overall inference will not be influenced. 

3.3.4 Residual SE-block 

To properly allocate the computing resources is an important strategy for us to 

improve accuracy without affecting inference speed. In a broad sense, attention can be 

viewed as a factor to bias the allocation of available processing resources toward the 

informative area of the input. We design the attention mechanism in our network for 

 𝐿𝑜𝑠𝑠 =   𝐿𝑜𝑠𝑠 +  𝜆 ∗ 𝐿𝑜𝑠𝑠  (3-2) 

 𝐿𝑜𝑠𝑠 =  −
1

𝑁
𝐺 (𝑥, 𝑦) log 𝑃 (𝑥, 𝑦)  (3-3) 

 𝐿𝑜𝑠𝑠 =  −
1

𝑁
𝐺 (𝑥, 𝑦) log 𝑃 (𝑥, 𝑦)  (3-4) 
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better resource allocation. The feature maps of semantic segmentation are 

three-dimensional. We propose an edge loss module to force our network focus on the 

edge in width-wise and height-wise spatial dimensions. For the third dimension, channel, 

the importance of each feature maps are different. By strengthening the important 

channels and suppress less useful ones, the representational power of the network will 

be enhanced. Different from the spatial dimension, there is no strong information, such 

as “edge”, to indicate the importance. The Squeeze-and-excitation net[29] mentioned in 

preliminary cleverly uses the extra fully connected layer to learn the importance of each 

channel. After we have implemented the SE-block in our network, the performance of 

the network decreased. The rise of network learning ability has resulted in the 

performance decrease, where the same situation has also occurred in residual net 

proposed by He et al. [19]. Inspired by [29] and [19], we have modified SE-block as a 

Residual SE-block structure as show in Fig. 3-8. 

 

Fig. 3-8 Residual SE-block 

doi:10.6342/NTU201803607



 

                                               35

We perform shortcut connection from input of SE-block to the output, and apply 

element-wise addition on two feature maps channel by channel. Because the 

element-wise operation is simple without need to training any parameters, the network 

can gain the feature representations from previous layers without extra computation 

complexity. If these channels do not need to be weighted, it would be easier to push the 

residual branch to zero than to fit an identity mapping by a stack of fully connected 

layers. Based on the concept that residuals may contain negative values, we replace 

sigmoid activation function in residual SE-block with SoftSign as shown in equation 

(3-6).  

 𝑓(𝑥) =
𝑥

1 + |𝑥|
 (3-6) 

 

We apply residual SE-block after each convolution block to perform feature 

recalibration. 
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Chapter 4 Experiments 

Our proposed method has been introduced in chapter 3. In this chapter, we will 

evaluate our method by conducting several experiments.  

First, we will describe each dataset and how we evaluate the performance. Then, 

we will show the experimental results on each dataset, including the comparison with 

other state-of-the-art methods. 

4.1 The Datasets 

4.1.1 Cityscapes Dataset 

Cityscapes [5] is the most challenge and authoritative dataset for on-road semantic 

segmentation nowadays, which is our main experimental target. Cityscapes dataset has 

30 different classes which belong to the eight major category. 

In order to ensure the diversity of the dataset, the images in Cityscapes were taken 

from 50 cities in Germany, in all seasons except winter. All the photos are manually 

selected and marked. All of the images meet the conditions of containing a large number 

of moving objects and various backgrounds. 

The image of Cityscapes dataset is divided into two parts. The first part is the fine 

annotations, and the second part is the coarse annotation. Fine annotations are images 
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with careful labels. There are 5,000 fine annotations, including 2,975 training images, 

500 validation images, and 1,525 test images. The training and validation sets are 

provided with ground truth image while the testing set only contains the original image. 

Coarse annotations are images with approximate outline of the object. Cityscapes 

provide a set of 20,000 images. The class and the categories of image from Cityscape 

are listed in Table 4-1. 

Table 4-1 Class of Cityscape dataset. (Bold words indicate Categories of the column. Red words 

indicate those classes be ignored in evaluation stage.) 

Flat Construction Nature Vehicle Sky Object Human Void 

Road Build Veget Car Sky Pole Person Static 

Sidewalk Fence Terrain Bicycle  Traffic sign Rider Ground 

Parking Wall  Bus  Traffic light  Dynamic 

Rail track Bridge  Truck  Pole ground   

 Tunnel  Train     

   Motorcycle     

   Caravan     

   Trailer     

 

The resolution of each images in Cityscapes dataset is about 2048x1024. In 

addition to the images, Cityscapes also provides other metadata such as GPS 

coordinates, corresponding right stereo views, Ego-motion data from vehicle odometry, 

and outside temperature from car sensor. Some sample images and ground truth images 

are shown in Fig. 4-1. 
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Fig. 4-1 Example images and annotations from the Cityscapes dataset. 
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4.1.2 KITTI On-road Dataset 

KITTI [9] dataset is an Vision benchmark which focus on on-road scene scenario. 

There are many different tasks in this dataset, e.g., optical flow, object detection, road 

detection. As we have claimed, our system can be used in the ADAS as a module to 

detect the drivable area. For verification, we use KITTI road detection task in the 

dataset to evaluate our system. The road detection benchmark contains 289 training 

images and 290 testing images. The image contains three scenes, urban unmarked, 

urban marked and urban multiple marked lane. The image resolution in KITTI dataset is 

1242x375. We will describe it with more detail in the following section. Some sample 

images and ground truth images are shown in Fig. 4-2. 

 

 

 

 

Fig. 4-2 Sample Images of KITTI dataset. 
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4.2 Experiment platform 

Our method is trained and tested on personal computer with single NVIDIA GTX 

Titan X GPU (Maxwell). The specification of our experiment platform is listed in Table 

4-2. 

Table 4-2 Our PC specification. 

Resources Specification 

CPU Intel Core i7-2600 3.4GHz 

Memory 32 GB 

Operation System Ubuntu 16.04 

Graphic Processor Units NVIDIA GTX Titan X (Maxwell) 

We implement our method based on PyTorch, which is a deep learning framework 

developed by Facebook. PyTorch integrates NVIDIA Cuda and cudnn toolkit, which 

allows us to utilize strong GPU acceleration. We train and test our model using Cuda 9.0 

and cudnn 7 with PyTorch 0.4.0. 

4.3 Experimental Results 

4.3.1 Inference time 

We compare the inference time to other state-of-the-art semantic segmentation 

network. To fairly compare the running time, the speed of each method is measured on 

Cityscapes 19 classes segmentation with batch one configuration. The comparison result 

is summarized in Table 4-3. 
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Table 4-3 Comparison of speed with other state-of-the-art near real-time method. 

Method FPS GPU Input resolution 

Segnet [23] 16.6 TitanX 512x256 

Enet [24] 76.9 TitanX 1024x512 

Espnet [35] 112.0 TitanX 1024x512 

Erfnet[17] 34.3 TitanX 1024x512 

Contextnet[36] 18.3 TitanX 2048x1024 

Ours 31.4 TitanX 1024x512 

Edgenet has a frame rate of 31.4fps. Our method is slightly slower than ERFnet 

because we added residule SE-module. But it is faster than the Segnet and Contexnet. 

4.3.2 The Experimental on Cityscapes Dataset 

 Evaluation methods 

To ensure that each class for training has enough number of pixel, Cityscapes 

dataset only use 19 categories for evaluation. For each category, the prediction result of 

pixels can be divided into 4 conditions Table 4-4. 

 

The result of the semantic segmentation is evaluated by the 

intersection-over-union(IOU). Each class will calculate its own 𝐼𝑂𝑈 , as shown in 

Table 4-4 Definition of true positive, true negative, false positive and false negative. 

(Pixel) 
Ground truth 

Positive condition Negative condition 

Prediction 
Positive prediction True Positive(TP) False Positive(FP) 

Negative prediction False Negative(FN) True Negative(TN) 
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equation(4-1). After averaging the IOU of each class, the mIOU can be obtained as the 

main evaluation standard. The calculation method is shown in equation(4-2). 

Where 𝑇𝑃 , 𝐹𝑃  and 𝐹𝑁  indicate the number of true positive, false positive, false 

negative pixels of class c. 

Since Cityscapes also provides the label in the category level, in addition to the class 

mIOU, the mIOU of the category level is also calculated as the criterion. While 

calculating the IOU, the value will easily be dominated by the large object in the class. 

This problem will be in street scenes with their strong scale variation, this can be 

problematic. In order to balance the importance of each instance, Cityscapes also use 

Instance-Level Intersection-over-union iIOU to average the contribution of each 

instance. The calculation formula is as equation(4-3) 

Where 𝑖𝑇𝑃 , 𝐹𝑃 , 𝑖𝐹𝑁  indicate the number of true positive, false positive, false 

negative pixels of class c. However, in contrast to the standard 𝐼𝑂𝑈  measurement, 

𝑖𝑇𝑃  and 𝑖𝐹𝑁  are computed by giving different pixel different weight. The weight is 

based on the ratio of the class’ average instance size to the respective ground truth 

instance size. Since the false positive pixels are not associated with any instance and 

thus do not require normalization. 

 Experimental Result of accuracy 

Our model is trained using the Adam optimization [28] of stochastic gradient 

descent. Training is performed with a batch size of 3, momentum of 0.9, weight decay 

 𝐼𝑂𝑈 = 
( )

 (4-1) 

 𝑚𝐼𝑂𝑈 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐼𝑂𝑈 ) ∀ c in Class (4-2) 

 i𝐼𝑂𝑈 = 
( )

 (4-3) 
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of 1𝑒 , and we start with a learning rate of 5𝑒 . Learning rate of each epoch is 

formulate as following equation: 

 𝑙𝑟 = 𝑙𝑟 × 1 −
(𝑒𝑝𝑜𝑐ℎ − 1)

𝑒𝑝𝑜𝑐ℎ

.

 (4-4) 

 

We train the model with 150 epochs in all. Resolution of training images is 1024x512, 

which is the same size we used to evaluate inference speed. 

 We evaluate our model on Cityscapes testing set, which contains 1,525 testing 

images. Because Cityscapes dataset only provides the ground truth for training data and 

validation data, we have to submitted our result to their evaluation server. Cityscapes 

evaluation server provide several metrics for validating the performance of each method, 

which are shown in previous section. 

The experimental results are shown in Table 4-5. These data are uploaded by their 

authors themselves. After submitting to the server, the score will be calculated and be 

displayed on the Cityscapes leaderboard.  

Table 4-5 Evaluation result on Cityscpaes dataset 

Method 
mIOU 

class 

miIOU 

class 

mIOU 

category 

miIOU 

category 

Segnet basic [23] 57.0 32.0 79.1 61.9 

Segnet extended [23] 56.1 34.2 79.8 66.4 

Enet [24] 58.3 34.4 80.4 64.0 

Espnet [35] 60.3 31.8 82.2 63.1 

Erfnet[17] 69.7 44.1 87.3 72.7 

Contextnet[36] 66.1 36.8 82.8 64.3 

Ours 71.0 46.6 88.5 75.0 
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Table 4-5 show that our method can achieves a better overall mIOU (class) than 

Segnet[23], Enet[24] , Espnet[35], Erfnet[17]. And our method also outperforms 

Contextnet[36] which use 2048x1024 input image to focuses on fine-grained 

segmentation details to improve the accuracy. The experimental results show that our 

proposed Edgenet can actually improve the accuracy on both class level and category 

level. 

We list the segmentation results for each class in Table 4-6. Our method can 

perform better than other method in almost every class.  

Table 4-6(a) IOU of each class on Cityscapes testing set 

Method road Sidewalk building wall fence pole Traffic light Traffic sign vegetation 

Segnet basic 96.4 73.2 84.0 28.5 29.0 35.7 39.8 45.2 87.0 

Segnet extended 95.6 70.1 82.8 29.9 31.9 38.0 43.1 44.6 87.3 

Enet 96.3 74.2 85.0 32.2 33.2 43.5 34.1 44.0 88.6 

Espnet 75.7 73.3 86.6 32.8 36.4 47.1 46.9 55.4 89.8 

Erfnet 97.9 82.1 90.7 45.2 50.4 59.0 62.6 68.4 91.9 

Contextnet 97.6 79.2 88.8 43.8 42.9 37.9 52.0 58.9 90.0 

Ours 98.1 83.1 91.6 45.4 50.6 62.6 67.2 71.4 92.4 

 

Table 4-6(b) IOU of each class on Cityscapes testing set 

Method terrain Sky person rider car truck bus train motorcycle bicycle 

Segnet basic 63.8 91.8 62.8 42.8 89.3 38.1 43.1 44.1 35.8 51.9 

Segnet extended 62.3 91.7 67.3 50.7 87.9 21.7 29.0 34.7 40.5 56.6 

Enet 61.4 90.6 65.5 38.4 90.6 36.9 50.5 48.1 38.8 55.4 

Espnet 66.0 92.5 68.5 45.8 89.9 40.0 47.7 40.7 36.4 54.9 

Erfnet 69.4 94.2 78.5 59.8 93.4 52.3 60.8 53.7 49.9 64.2 

Contextnet 66.9 92.0 72.2 53.9 91.7 54.0 66.5 58.4 48.9 61.1 

Ours 69.7 94.9 80.4 61.1 94.3 50.0 60.9 52.5 55.3 67.7 

 

Table 4-7 shows the iIOU result, Since the iIOU is used for balancing the 

contribution of different instances in the class, iIOU will be calculated only if there is an 
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independent instance in class. Compare to Contextnet and ERFnet, the IOU of our 

method is slightly lower in truck, bus, and train class. But we outperform them in iIOU 

criteria, which means that our network performs better on smaller instances. 

We also compared the IOU in category level with other method. From Table 4-8, 

we can see that, our method outperforms the others in all categories, especially in object 

categories which is very important for driving situation. Our method archives the 

highest IOU and exceed the second (ERFnet) by 3.4%. 

Table 4-8 IOU of each category on Cityscapes testing set 

Method flat nature object sky construction human vehicle 

Segnet basic 97.4 86.7 42.5 91.8 83.8 64.7 87.2 

Segnet 

extended 
97.5 87.1 43.7 91.7 82.8 68.6 87.5 

Enet 97.3 88.3 46.8 90.6 85.4 65.5 88.9 

Espnet 95.5 89.5 52.9 92.5 86.7 69.8 88.4 

Erfnet 98.2 91.5 65.1 94.2 90.6 78.9 92.3 

Contextnet 97.8 89.6 47.7 92.0 88.9 72.6 90.8 

Ours 98.4 92.1 68.5 94.9 91.5 80.9 93.1 

The class corresponding to each color is displayed in Fig. 4-3. Some semantic 

Table 4-7 iIOU of each class on Cityscapes testing set 

Method person rider car truck bus train motorcycle bicycle 

Segnet basic 44.3 22.7 78.4 16.1 24.3 20.7 15.8 33.6 

Segnet extended 49.9 27.1 81.1 15.3 23.7 18.5 19.6 38.4 

Enet 47.6 20.8 80.0 17.5 26.8 21.8 20.9 39.4 

Espnet 45.8 19.2 81.7 15.2 24.3 16.8 16.2 35.5 

Erfnet 60.1 34.7 86.1 22.6 37.6 31.2 29.0 51.4 

Contextnet 47.1 24.7 82.9 19.3 30.6 28.3 21.5 39.9 

Ours 62.5 38.1 88.4 25.4 38.3 33.0 34.4 52.5 
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segmentation results on Cityscapes dataset are shown in Fig. 4-4. These results show 

that our method can correctly segment every object on road scene. 

 

Fig. 4-3 Color table of each class 
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Fig. 4-4 Semantic segmentation results of Cityscapes dataset. 
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To prove that Edgenet can really improve the results of the segmentation near the 

edge, we analyzed the results of Edgenet and ERFnet. Fig. 4-5 shows the difference 

between the number of pixels that are misclassified by two methods. (The number of 

pixel misclassified by ERFnet minus the number of pixel misclassified by Edgenet) We 

can see that our proposed method, the closer to the edge, the more misclassified pixels 

are improved. 

 

Fig. 4-5 Histogram of improved pixels. 

4.3.3 The Experimental on KITTI Road Detection 

To verify whether our system can be used in road detection module of ADAS, we 

use KITTI Road Detection dataset for verification. 

 Evaluation methods 

KITTI dataset focus on on-road scene. Therefore, the method for evaluation is 

different from other semantic segmentation dataset. In perspective image (Fig. 4-6(a)), 

the road area which is closer to us will have relatively larger scale. This may influence 

the accuracy because the prediction result will be dominated by the road area near 
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camera. To solve this problem, KITTI dataset will transform the prediction result into 

Bird’s Eye View(BEV), in which the road area will not be distorted, as shown in Fig. 

4-6(b).      

 

(a) Detection result on regular image  

 

(b) Convert to BEV space 

Fig. 4-6 Detection result in different space 

We use 𝐹 -score to verify the accuracy of prediction on KITTI dataset. The formula of 

𝐹 -score is shown in equation (4-5). The advantage of 𝐹 -score is that it takes care of 

both recall and precision. 
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 𝐹 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4-5) 

The formula of measuring precision and recall are defined as follows: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 +  𝐹𝑃)
      

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 +  𝐹𝑁)
    

(4-6) 

 Besides 𝐹 -score, KITTI dataset also uses False Positive Rate (FPR) and False 

Negative Rate(FNR) to evaluate the ratio of false prediction. The formulas are shown in 

the following equation: 

 

𝐹𝑃𝑅 =
𝐹𝑃

(𝐹𝑃 +  𝑇𝑁)
      

𝐹𝑁𝑅 =
𝐹𝑁

(𝑇𝑃 +  𝐹𝑁)
    

(4-7) 

 

 Experimental result on accuracy 

As we have mentioned before, the size of images in KITTI dataset is about 

1242x375 pixels. To keep the aspect ratio, we resize the input image to 1248x376 for 

the purpose of training. Because the input size is slightly smaller than 1024x512, the 

execution rate of Edgenet can achieve 35.50 FPS.  

Our model is trained using the Adam optimization [28]. Training is performed with 

a batch size of 4, momentum of 0.9, weight decay of 1𝑒 , and we start with a learning 

rate of 5𝑒 . 

Just like the requirement for working on Cityscapes dataset, we also need to submit 

the detection results to KITTI evaluation server. In Table 4-9, our experimental results 
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on KITTI road detection benchmark are shown below. 

Table 4-9 The result on KITTI car detection. 

Method 𝐹  Precision Recall FPR FNR FPS 

iDST-VT 97.19% 97.09% 97.29% 1.61% 2.71% 1 

DFFA[37] 96.35% 96.02% 96.69% 2.21% 3.31% 2.5 

SSLGAN[38] 95.53% 95.84% 95.24% 2.28% 4.76% 1.4 

RBNet[39] 94.97% 94.94% 95.01% 2.79% 4.99% 5.6 

StixelNet II[40] 94.88% 92.97% 96.87% 4.04% 3.13% 0.83 

Ours 95.52% 95.52% 95.52% 2.47% 4.48% 35.50 

 We compare our proposed Edgenet to several state-of-the-art road detection 

methods, such as iDST-VT proposed by Alibaba’s artificial intelligence team, DFFA 

[37], SSLGAN [38], RBNet [39], and StixelNet II [40]. In particular, RBNet also 

combines the road edge detection module to aid road detection performance. However, 

since their edge detection module will participate in the inference stage of road 

detection, the overall method takes more time for computing. In contrast with RBNet, 

our Edgenet outperforms it in both 𝐹 -score and speed. Moreover, our method can 

achieve comparable accuracy to those state-of-the-art methods with 5 × ~40 × speed. 

In Fig. 4-7, we show the road detection results of our network. 

 

 

doi:10.6342/NTU201803607



 

                                               52

 

(a) Detection results on urban marked scene 

 

(b) Detection results on urban unmarked scene 

 

(c) Detection results on urban multiple marked lane scene 

 

(d) Detection results on stone road 

Fig. 4-7 Road detection results of Edgenet on KITTI testing set 
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4.4 Autonomous Driving Application 

In this section, we combined Edgenet with the Car Steering Angle Prediction 

System proposed by [41] to verify that Edgenet is suitable for use in autonomous 

driving application. 

4.4.1  Car Steering Angle Prediction System 

 

Fig. 4-8 System Overview 

The Car Steering Angle Prediction system is shown in Fig. 4-8. The system can be 

divided into two parts. The first part is the perception network used to obtain the 

semantic segmentation result of the input image, and the second part is the control 

network, which is responsible for predicting the steering angle based on the result of the 

semantic segmentation. 

The design of the control network is shown in Fig. 4-9. The Control Network is 

composed of four convolutional layer with sixteen filters followed by max-pooling layer 

with stride 2. Two fully connected layers with 256 and 1 neurons, respectively, are 

attached to the end of the Control Network. The output of the last neuron is the steering 

angle.  
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We implement two methods for perception network. The first is our Edgenet, and 

the second is ERFnet. We compare the results of these two systems to verify that 

improving the segmentation accuracy is helpful for autonomous driving applications. 

4.4.2 Udacity Self-Driving Car Challenge 2 Dataset 

The two Udacity Self-Driving Car Challenge Datasets contain 33,808 training 

images and 5,614 testing images, respectively. The resolution of images in this dataset is 

about 640 x 480 pixels. Some example images are showed in Fig. 4-10. The dataset 

contains several driving scenes in different lighting, road, and traffic conditions. All 

these images are captured from a front-facing camera installed on a car. The dataset also 

provides metadata such as speeds and steering angles. We use steering angles as the 

ground truth label. The steering angles are in the ranges from radius -2.0 to 2.0. For 

training perception network, we use semantic segmentation annotations provided by [41] 

which contain 335 labeled image. 

 

Fig. 4-9 Architecture of the Control Network. 
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Fig. 4-10 Example images of Udacity Self-Driving Car Dataset. 

 

4.4.3 Evaluation Metrics 

The evaluation metrics used in the experiments are root mean squared error 

(RMSE).  

RMSE is the common measurements for evaluating the accuracy of a regression model. 

The definition of RMSE is defined in equation (4-8):  

 RMSE =
1

𝑁
(𝑦 − 𝑦 )  (4-8) 
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where ŷi is the prediction of i-th sample, yi is the ground truth label of the i-th sample, 

and N is the total number of samples. 

4.4.4 Overall performance 

The overall performances of the system with Edgenet is promising. The result 

shows that the system with Edgenet has an RMSE of 8.82 × 10-2 on the test set whereas 

the one with ERFnet has an RMSE of 9.0 × 10-2. This means that our proposed Edgenet 

can extract more useful information and help the control network predict the angle more 

accurately. 

Table 4-10 Result on the test set of Udacity dataset. 

Model RMSE 
Training Time 

(Epochs) 

With 

ERFnet 
0.090081 51 

With 

Edgenet 
0.088227 47 
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Chapter 5  

Conclusions 

In this thesis, a novel CNN based semantic Segmentation network, called Edgenet, 

is proposed. The proposed method is based on encoder-decoder framework, which 

allows the network to achieve real-time speed. By adding class-aware edge loss module 

and residual SE-block, Edgenet can improve the classification result of those pixels near 

the edges. 

We used Cityscapes dataset to evaluate the semantic segmentation performance of 

our network. Our method outperformed other real-time methods, and is the only 

real-time method on the Cityscapes dataset which achieves over 71% mIOU. We 

analyzed the distribution of misclassified pixels, and the results show that our network 

does improve the classification result of those pixels near the edges. We also used 

KITTI road detection dataset to evaluate the performance of Edgenet as a drivable area 

detection module. The performance of our method on KITTI road dataset can reach 

95% recall/precision and above. Moreover, our method can achieve comparable 

accuracy to state-of-the-art methods with 5 × ~40 ×  speed. For self-driving 

applications, we implemented Edgenet into the car steering angle prediction system. 

The result shows that, RMSE of the system with Edgenet is 8.82 x 10 , which is more 
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suitable as a reception network for autonomous driving applications than ERFnet. To 

conclude, the proposed method is suitable to be adopted to other semantic segmentation 

network to improve their performance. 
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