
國立臺灣大學電機資訊學院資訊工程研究所

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

適合自動駕駛車輛之結合邊緣資訊

即時影像語意分割系統

Real-Time Semantic Segmentation with Edge Information

for Autonomous Vehicles

韓翔宇

SHIANG-YU HAN

指導教授：傅立成 博士 共同指導：蕭培墉 博士

Advisor: Li-Chen Fu, Ph.D., Pei-Yung Hsiao, Ph.D.

中華民國 107年 7月

July, 2018

doi:10.6342/NTU201803607

 i

口試委員會審定書

doi:10.6342/NTU201803607

 ii

中文摘要

先進駕駛輔助系統 (ADAS) 包含兩項基本功能需求。首先是物件偵測功能，

用於車輛行駛中避免碰撞障礙物或是路上行人。另外一項需求則是藉由影像切割

功能找到車輛可以行駛的區域。有別於傳統影像切割方法，採用語意分割的深度

學習網路架構，可以更正確辨識不規則的道路區域，指引自駕車行駛在更複雜的

道路環境中。

近年來隨著卷積神經網路(CNNs) 的普及化，其功能已超越傳統以人工找出特

徵的影像分割方法。 但是，卷積神經網路(CNNs)架構複雜，需要更多的處理時間

與硬體效能需求，對於實作於車載處理系統的即時運用，尚有困難需要克服。 目

前有一些方法被提出，例如 Enet，藉由刪除一些卷積層，達到更快執行速度，但

卻犧牲影像切割的正確性。

本研究中，首先分析最先進的即時影像語意分割系統的輸出。 由這些輸出結

果顯示，大多數被錯誤分類的像素，都是位於兩個相鄰物件的邊界上。基於此觀

察，本研究提出一種新穎的即時影像語意分割網路系統，它包含一個類感知邊緣

損失函數模塊與一個通道關注機制，旨在提高系統準確性而不損害運行速度。本

研究以 Cityscapes數據集評估所提出的方法，該資料集是目前公認最具挑戰性和權

威性的道路語意分割數據集。評估結果顯示，在即時運作條件下，本研究的平均

準確度超過 70%。

關鍵字: 深度學習, 卷積神經網路, 即時影像語意分割, 邊緣資訊

doi:10.6342/NTU201803607

 iii

ABSTRACT

Advanced Driver Assistance Systems (ADAS) consists of two basic functions. One

is the Object detection for preventing vehicles from hitting pedestrians or other

obstacles. The other is image segmentation for recognizing drivable areas and guiding

the vehicle forward. For the latter, unlike those traditional image segmentation methods,

image semantic segmentation based on deep learning architecture can handle the road

areas better, guiding a vehicle to drive in a more complex environment.

With the popularity of Convolution Neural Networks (CNNs) in recent year, the

traditional hand-crafted features methods have shown to be outperformed. However,

deep CNN models are difficult to implement on vehicle application because the severe

cost of time for complex processing. Although some proposed methods, such as

Efficient neural network (Enet), achieved higher speed by removing some layers, it also

led to the decrease of segmentation accuracy.

In this research work, we first analyze the output of state-of-the-art real-time

semantic segmentation networks. The result shows that most of the misclassified pixels

are located on the edge between two classes. Based on this observation, we propose a

novel semantic segmentation network which contains a class-aware edge loss module

and a channel-wise attention mechanism, aiming to improve the accuracy with no harm

to inference speed. We evaluate the proposed method on cityscapes dataset, which is the

most challenging and authoritative on-road semantic segmentation dataset. The results

show that our proposed method can achieve over 70% mean IOU on Cityscapes test set

under real-time requirements.

 Keywords: Deep Learning, Convolution Neural Networks, Real-time Semantic

segmentation, Edge Information.

doi:10.6342/NTU201803607

 iv

CONTENTS

口試委員會審定書 ..i

中文摘要 .. ii

ABSTRACT .. iii

CONTENTS ...iv

LIST OF FIGURES .. vii

LIST OF TABLES ..ix

Chapter 1 Introduction .. 1

1.1 Motivation... 1

1.2 Related work ... 4

1.2.1 Convolutional Neural Networks for semantic segmentation. 4

1.3 Contribution .. 6

1.4 Thesis organization ... 6

Chapter 2 Preliminaries .. 8

2.1 Convolutional Neural Network... 8

2.1.1 Convolutional Layers .. 9

2.1.2 Pooling Layers .. 12

2.1.3 Rectified Linear Unit (ReLU) ... 13

2.1.4 Up-Sampling Layers ... 14

2.1.5 Adam Optimizer .. 16

2.1.6 Alex-Net .. 17

2.1.7 Residual-Net .. 17

2.1.8 Squeeze-and-Excitation(SE) Net .. 18

2.1.9 Fine-tuning .. 20

doi:10.6342/NTU201803607

 v

2.2 Semantic segmentation Network .. 21

2.2.1 Fully Convolutional Network ... 21

2.2.2 Segnet .. 22

Chapter 3 Edge Net .. 23

3.1 Observation ... 23

3.2 Edgenet Overview .. 25

3.3 Edgenet Design ... 26

3.3.1 Encoder subnetwork .. 26

3.3.2 Decoder subnetwork .. 29

3.3.3 Class-aware edge loss module .. 29

3.3.4 Residual SE-block ... 33

Chapter 4 Experiments .. 36

4.1 The Datasets.. 36

4.1.1 Cityscapes Dataset .. 36

4.1.2 KITTI On-road Dataset ... 39

4.2 Experiment platform ... 40

4.3 Experimental Results .. 40

4.3.1 Inference time .. 40

4.3.2 The Experimental on Cityscapes Dataset .. 41

 Evaluation methods ... 41

 Experimental Result of accuracy .. 42

4.3.3 The Experimental on KITTI Road Detection 48

 Evaluation methods ... 48

 Experimental result on accuracy ... 50

doi:10.6342/NTU201803607

 vi

4.4 Autonomous Driving Application .. 53

4.4.1 Car Steering Angle Prediction System .. 53

4.4.2 Udacity Self-Driving Car Challenge 2 Dataset 54

4.4.3 Evaluation Metrics .. 55

4.4.4 Overall performance .. 56

Chapter 5 Conclusions ... 57

REFERENCE .. 59

doi:10.6342/NTU201803607

 vii

LIST OF FIGURES

Fig. 1-1 Three main modules for an autonomous driving system 2

Fig. 2-1 Convolution operation. .. 10

Fig. 2-2 The receptive field of convolutional kernels. .. 11

Fig. 2-3 Calculation of Max-pooling. .. 13

Fig. 2-4 Calculation of average-pooling. ... 13

Fig. 2-5 Unpooling Layers... 15

Fig. 2-6 Fractionally Strided Convolution layer .. 16

Fig. 2-7 Alex-Net [13] ... 17

Fig. 2-8 Residual block. ... 18

Fig. 2-9 Squeeze-and-Excitation module .. 19

Fig. 2-10 Paradigm of transfer learning .. 20

Fig. 2-11 Architecture of FCN[15] .. 21

Fig. 2-12 Architecture of Segnet[23] ... 22

Fig. 3-1 Visualization of ERFnet result ... 24

Fig. 3-2 Histogram of misclassified pixels .. 25

Fig. 3-3 Overview of our proposed Edgenet. .. 26

Fig. 3-4 Kernel of dilated convolution .. 27

Fig. 3-5 Downsampler ... 28

Fig. 3-6 Preprocessing edge ground truth .. 31

Fig. 3-7 Edge Loss module .. 32

Fig. 3-8 Residual SE-block .. 34

Fig. 4-1 Example images and annotations from the Cityscapes dataset. 38

Fig. 4-2 Sample Images of KITTI dataset. .. 39

doi:10.6342/NTU201803607

 viii

Fig. 4-3 Color table of each class .. 46

Fig. 4-4 Semantic segmentation results of Cityscapes dataset. 47

Fig. 4-5 Histogram of improved pixels. .. 48

Fig. 4-6 Detection result in different space ... 49

Fig. 4-7 Road detection results of Edgenet on KITTI testing set 52

Fig. 4-8 System Overview ... 53

Fig. 4-9 Architecture of the Control Network. .. 54

Fig. 4-10 Example images of Udacity Self-Driving Car Dataset. 55

doi:10.6342/NTU201803607

 ix

LIST OF TABLES

Table 2-1 Calculation amount of convolutional layers .. 12

Table 4-1 Class of Cityscape dataset. (Bold words indicate Categories of the column.

Red words indicate those classes be ignored in evaluation stage.)............... 37

Table 4-2 Our PC specification. .. 40

Table 4-3 Comparison of speed with other state-of-the-art near real-time method. 41

Table 4-4 Definition of true positive, true negative, false positive and false negative. .. 41

Table 4-5 Evaluation result on Cityscpaes dataset .. 43

Table 4-6(a) IOU of each class on Cityscapes testing set .. 44

Table 4-7 iIOU of each class on Cityscapes testing set ... 45

Table 4-8 IOU of each category on Cityscapes testing set .. 45

Table 4-9 The result on KITTI car detection. .. 51

Table 4-10 Result on the test set of Udacity dataset. ... 56

doi:10.6342/NTU201803607

 1

Chapter 1 Introduction

1.1 Motivation

Although the field of computer vision has existed for more than 50 years, it did not

begin to thrive until the 1990s, the time in which the digital cameras were popularized.

Since then, many researchers have devoted themselves to giving computers a visual

understanding of the world. For feature description, researchers have proposed many

different algorithms including the Scale-invariant feature transform (SIFT)[1] and the

Histogram of oriented gradient (Hog)[2]. However, these methods highly rely on

hand-crafted feature sets which are designed by researchers based on their own domain

knowledge. With this limitation, methods based on hand-crafted feature are not only

time-consuming but also tend to achieve unsatisfactory performance due to the content

complexity of real environment. In recent years, thanks to the rapid development of

graphics processing unit (GPU) technology, convolution neural networks (CNNs) have

been applied to the field of computer vision. With many datasets which contain large

amount of image materials published online, such as ImageNet[3], PASCAL VOC[4],

and Cityscapes[5], CNNs can be trained to learn the representative feature from those

images. Led by their independent learning ability, CNNs are able to surpass all of the

hand-crafted feature based methods in performance.

doi:10.6342/NTU201803607

 2

Despite that computer vision has been applied to vast kinds of fields, it plays an

indispensable role in Advance Driver Assistance system (ADAS). The ultimate goal of

ADAS is development of autonomous driving systems, which usually consist of several

sub-modules to handle different tasks. In general, an autonomous driving system can be

divided into three parts: the perception module, the decision module, and the control

module[6].

Fig. 1-1 Three main modules for an autonomous driving system

With the continuous improvement of the performance of autonomous driving

system, the decision module requires more environmental information provided by the

perception module to assist in decision making. However, ADAS equipped only with

object detection system fail to provide accurate information. While detecting the

drivable area, objet detection system output bounding boxes to frame those areas.

However, because the drivable area is often in irregular shapes and cannot be perfectly

fit into those rectangular bounding boxes, there can also be some obstacle existing in the

boxes. The only way to overcome this problem is to precisely classify each pixel by

incorporating semantic segmentation network into the perception module. That is why

we can see that most of the large self-driving company in the market today have

integrated the Semantic segmentation network in their products.

Unlike other fields of application, ADAS systems especially required high

processing speed. If the system cannot process road information immediately in

emergency situation and pass it to the decision-making module for judgment, it will be

considered useless even if the accuracy of output is high. With this requirement in mind,

doi:10.6342/NTU201803607

 3

we design our system to achieve Real-time speeds (30FPS[7]) with the GTX TitanX

(Maxwell) GPU. There are two main reasons why we choose TitanX as a platform to

evaluate the inference speed. The first reason is that because this GPU is widely used in

other semantic segmentation as a platform for speed evaluation. The second reason is

that the architecture of TitanX is the same as the widely used autopilot platform “Driver

PX”.

Besides speed, accuracy is also very important for autonomous driving applications.

To the best of our knowledge, the most authoritative on-road semantic segmentation

record based on the data-set, Cityscapes, shows that the state-of-the-art result can

achieve no higher than 70% mean Intersection-Over-Union (mIOU) under real-time

speed. However, we believe that such performance can be improved by redesigning the

network architecture.

Running under real-time environment means that the maximum computational

resource which can be assigned to each input image is fixed. Under such limitation, how

to design a network that can effectively allocate computational resources becomes an

important factor to overcome the barrier of 70% mean IOU or to outperform the

state-of-the-art.

Because the Deep CNN has a large amount of parameters which need to be trained,

and the amount of high quality semantic segmentation labels are relevantly small. To

deal with this problem, we usually pre-train our model on a big classification dataset

(e.g. ImageNet[8]) to learn adaptive low level features, and then fine-tune the model on

the target data. However, feature representations learned from classification data usually

focus on main objects of image, so we may need to assist the network focus on other

areas in fine-tuning stage to improve overall accuracy.

In this thesis, we propose a novel real-time semantic segmentation network which

doi:10.6342/NTU201803607

 4

combines class-aware edge loss module and residual channel-wise attention mechanism,

achieving both correct rate and real-time requirements. To validate our work, we

evaluate it on Cityscapes[5] and KITTI on-road datasets[9] which contain urban road

scenes. The experimental results show that our proposed class-aware edge loss and

attention mechanism can improve the overall performance without harming inference

time.

1.2 Related work

In this thesis, we propose a novel semantic segmentation network architecture

which combine class-aware edge loss module and channel-wise attention mechanism, to

improve the detection performance. In the following section, we will describe the

evolution of CNNs and some state-of-the-art CNN based semantic segmentation network.

1.2.1 Convolutional Neural Networks for semantic

segmentation.

In recent years, deep convolutional neural networks have become popular solution

tools in almost all areas of computer vision[10-12]. All this started with Alexnet

proposed by Krizhevsky et al. [13]. Alexnet won the first place of the ILSVRC

competition in 2012. They added many new ideas in Alexnet, such as using Rectified

Linear Units (ReLU) instead of sigmoid as an activation function. This new activation

function would increase training speed and allow the network to converge faster. Since

the traditional image datasets are too small, the data simply cannot reflect the real world.

Deep learning method contains large number of trainable parameters, and the trained

network will tend to be overfitted if the training set is too small. Fortunately, Li et al.

doi:10.6342/NTU201803607

 5

published their large annotated images dataset, called ImageNet[3], openly, and the

dataset contains more than 15 million manually-labeled high-resolution pictures. The

total number of categories exceeds 20,000. With the rapid development of GPU

technology at that time, CNNs based method quickly defeated traditional classifier, and

become the best image classification method.

Because of the success of Alexnet in image classification task, people began to

focus on CNN. Soon, researcher discovered that CNNs are robust feature extractor

which can be widely applied to various tasks. By connecting different subnets, CNN can

accomplish multiple image processing tasks. For example, in RCNN [14] an object

detection network proposed by Girshick et al. use support vector machine (SVM) to

classify the region features extracted by Alexnet to achieve object detection. Not only

object detection, CNNs can also be used in semantic segmentation task. Fully

Convolutional Network (FCN) [15] proposed by Long et al. is the first network which

achieves semantic segmentation based on CNN. By replacing the fully connected layers

with convolutional layers, FCN can provide spatial maps instead of 1D classification

array. Those maps are upsampled using fractionally strided convolutions to produce

dense pixel-wise prediction. Because FCN didn’t contain any fully connected layers, the

input image can be arbitrary sized. Some other methods try to refine the segmentation

result by post-processing, such as DeepLab network[16] using fully connected factor

graph to model the relation between each pair of pixels.

However, the aforementioned networks are running too slow. They cannot be used

for tasks that have constraints on computational time. Enet[8] was proposed to address

this problem. By reducing the size of feature maps at the beginning of the network, the

total amount of computation is reduced. Enet can achieve 46.8 FPS at 1280x720

resolution. This greatly increases the range of application of semantic segmentation and

doi:10.6342/NTU201803607

 6

leads a number of semantic segmentation networks design to achieve even higher

inference speed.

1.3 Contribution

In this thesis, we focus on the output of the state-of-the-art semantic segmentation

method and analyze the distribution of misclassified pixel. We also propose the Edgenet,

which effectively reduces the number of misclassified pixels.

The major contributions of this thesis are listed as follows:

(a) The main contribution is to design a CNN based Semantic segmentation network.

Combined with class-aware edge loss in training stage, our net is able to learn the

edge information of instance without affect inference speed.

(b) The second contribution is that we propose a novel channel-wise attention

mechanism, called residual squeeze-and-excitation(SE) module, to learn the

importance of different channels without influencing network convergence.

(c) Combined with class-aware edge loss and residual SE module, our proposed

Edgenet achieves over 70% mean IOU on Cityscapes semantic segmentation

dataset under real-time speed.

1.4 Thesis organization

In Chapter 1, we have introduced the motivation of our work which aims to propose

a novel real-time semantic segmentation architecture and achieve better result on

Cityscapes dataset. We also discuss the problem to be improved we found. Finally, the

contributions of this thesis are introduced. To summarize our research, the rest of thesis

are organized as follows:

doi:10.6342/NTU201803607

 7

In Chapter 2, we will present some background knowledge of deep CNNs. We will

first introduce some basic modules of CNNs. Then, some CNNs architectures which are

widely used as the encoder network for semantic segmentation will be explained.

Finally, we will illustrate some state-of-the-art semantic segmentation network and

training strategy which can reduce the amount of high quality segmentation data for

training.

In Chapter 3, we will explain our methods in detail. We will first analyze the

distribution of those misclassified pixels. Then, the overview of the novel semantic

segmentation network proposed in this thesis, called Edgenet, will be introduced. After

that, we will go deeper to the details of how to implement our proposed method.

In Chapter 4, we will introduce the public datasets first, which includes KITTI road

detection dataset and Cityscapes semantic segmentation dataset. Then, we will present

the experimental results of our proposed method. The visualization of the detection

results of each dataset will also been shown.

In Chapter 5, we will conclude the contributions of this thesis and give a discussion

on the experiments result. Finally, we will discuss the future work about how to further

improve semantic segmentation accuracy.

doi:10.6342/NTU201803607

 8

Chapter 2

Preliminaries

This study proposes a novel Edgenet architecture which combines edge

information and channel-wise attention mechanism. Our proposed architecture is

inspired by the Efficient Residual Factorized net (ERFnet)[17] which is based on

factorized convolutional layers. In this chapter, we will first describe the convolutional

neural network and other semantic segmentation network briefly.

2.1 Convolutional Neural Network

In recent years, CNN has been making a big splash in the field of image processing.

Whether it is image classification[13, 18, 19], object detection[14, 20-22] or image

segmentation[15, 23-25], CNN can be used to achieve the accuracy that cannot be

achieved by traditional hand engraving methods. Unlike the traditional hand carving

method, e.g. HOG [2], which requires researchers to design feature extractor based on

their domain knowledge, CNNs can extract enough representative features from a large

amount of training materials with its strong learning ability. Based on different purpose,

each neural network will be designed with different loss function as a criterion for

doi:10.6342/NTU201803607

 9

judging the performance of the network. The predict result and ground truth will be

input to the loss function and the loss will be calculated. To continually minimize be the

ultimate goal of training. When designing a neural network, the operation of each layer

must conform the requirement of differentiable. This is because training the neural

network requires the gradient[26] of each parameters,

All of these structures require considerable amount of computing resources.

Thanks to the rapid development of GPUs in recent years. Computations in a

convolution neural network can be practice on the GPU for parallelization. To further

optimize the computing process and reduce the running time, series of methods are

proposed, such as Kernel decomposition[18]. We would like to explain some of the

layers and acceleration methods that are commonly used in convolutional neural

network.

2.1.1 Convolutional Layers

Convolution as a feature extraction method has long been widely used in

traditional image processing method. By performing a dot product with an input patch

on the convolutional kernel, the intensity of the feature can be obtained. In CNN

architecture, convolutional layers consist of a set of convolutional kernels, whose width

and height are relatively small, but extend through the full depth of the input volume.

Each layer may consist different number of kernels to generate different output

dimension. During the forward pass, a two-dimensional feature map will be produced.

We sometimes add zero-padding around the border of the image to make sure that the

input will be consistent with the output in length and width dimension. By stacking the

output map of all kernels, a three-dimensional feature maps (height, width, channel) will

be produced. Each convolutional layer takes the extracts from the upper layer as the

doi:10.6342/NTU201803607

 10

input to further obtain more abstract information. In general, the bottom convolutional

layer will extract low-level features, such as color block or edge, while the top

convolutional layer will extract high-level features, such as human face or vehicle.

Fig. 2-1 Convolution operation.

doi:10.6342/NTU201803607

 11

Although the learning ability of the convolution layer is powerful, its most criticized

point is that it requires a lot of computing resources. This will be a fatal problem to

applications that the time-limited requirement is very important to them. In order to

solve the problem of high computational complexity, [18] proposes replacing the large

kernel with a continuous small kernel volume base layer. From Fig. 2-2, it can be seen

that after two layers of 3x3 convolutional layers are stacked, their receptive field will be

able to reach the same size of a single 5x5 convolution layer. Table 2-1 shows the

number of operations required for both when input size = 224x224x3, padding = 1, and

output channel = 96. Obviously, the 5x5 convolution layer requires more computing

resources than two consecutive 3x3 convolution layer.

(a) Single 5x5 convolutional layers.

(b) A stack of two 3×3 convolutional layers.

Fig. 2-2 The receptive field of convolutional kernels.

doi:10.6342/NTU201803607

 12

2.1.2 Pooling Layers

In the architecture of the neural network, since the deeper convolution layer is

responsible for extracting more abstract and diverse features, the deep convolutional

layers needs more kernels. In general, the number of kernels will grow exponentially

with depth. The number of kernels directly affects the number of channels of output

feature maps, so the amount of memory and computation required will also grow

exponentially. This limits the depth of the network we can design, thus limiting the

learning ability of networks. With the pooling layer, we can aggregate the information in

a certain area to achieve the reduction of feature maps size. Max-pooling is the most

commonly used pooling operation in a convolutional neural network. It keeps the

maximum value in the region. Fig. 2-3 shows the result of Max-pooling acting on one

slice of the channels. In addition to Max-pooling, Average-pooling is another commonly

used pooling operator. Average pooling uses the average value in the region as the

output. As shown in Fig. 2-4. the advantage of Average-pooling is that it can deliver

messages more completely, but it also lost Max-pooling's ability to extract strong

features.

Table 2-1 Calculation amount of convolutional layers

5x5conv 3x3conv

5 × 5 × 3 × (224 − 3 + 2 + 1) × 96 × 2

= 7.1M

3 × 3 × 3 × (224 − 3 + 2 + 1) × 96 × 2

= 2.6M

doi:10.6342/NTU201803607

 13

Fig. 2-3 Calculation of Max-pooling.

Fig. 2-4 Calculation of average-pooling.

2.1.3 Rectified Linear Unit (ReLU)

In the biological nervous system, the signal will be output after neurons have

received stimuli that exceed the threshold value. In the artificial neural network, we use

the activation function to achieve non-linear effects. Traditional networks usually use

sigmoid (2-1) as activation function.

doi:10.6342/NTU201803607

 14

 σ(𝑥) = 1/(1 + 𝑒) (2-1)

To accelerate the training process with gradient descent base optimizer, Rectified

Linear Units (ReLUs)[13] are applied to the deep convolutional neural networks, which

is define as (2-2). When the input increase, the derivative of sigmoid function become

small. This lead to gradually decrease of the gradient during back-propagating process,

making the entire network slower to converge. On the contrary, ReLUs can run more

efficiently. Because the differential value of ReLUs always maintains as one when input

value greater than one, the network will converge quickly during training. By replacing

sigmoid with ReLUs, a faster and more effective training of deep neural architectures

can be achieved.

 𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥) (2-2)

2.1.4 Up-Sampling Layers

Unlike other images processing task, semantic segmentation needs to produce a

high resolution output. Neural networks use the pooling to reduce the size of the feature

maps when extracting feature. To output the same size as the input image, the semantic

segmentation networks have to enlarge the low-resolution feature maps. Up-sampling

layers are responsible for this work. We will introduce two commonly used up-sampling

layers below.

doi:10.6342/NTU201803607

 15

 Indices Unpooling Layer

Indices Unpooling[27] is a reverse operation of pooling which enlarges the

information back to a patch area. By recording the locations of the maxima within each

pooling region, unpooling layers will back-fills the value to this position, other position

will be filled with zero. All unpooling layers has a corresponding pooling layer to

provide pooling indices.

 Fractionally Strided Convolutional layer

Unlike unpooling layers, Fractionally Strided Convolutional layers contain

trainable parameter, which means that it has stronger learning ability. In general, before

regular convolution, it will insert zeros between the feature maps to magnify its size.

Fig. 2-6 shows the process of feature maps enlarge by fractionally strided convolution

layer.

Fig. 2-5 Unpooling Layers

doi:10.6342/NTU201803607

 16

(a)Regular convolution (b) Fractionally Strided Convolution

Fig. 2-6 Fractionally Strided Convolution layer

2.1.5 Adam Optimizer

Adam optimizer[28] is usually used to optimize the CNN. Adam renew momentum

𝑚 and velocity 𝑣 with gradient 𝑔 . Then optimize network parameter 𝜃 by m

and 𝑣 . The update values 𝑣 , 𝑚 , and the updated parameter θ are computed by

following formulas,

 𝑚 = 𝛽 𝑚 + (1 − 𝛽)𝑔 (2-3)

 𝑣 = 𝛽 𝑣 + (1 − 𝛽)𝑔 (2-4)

 𝜃 = 𝜃 −
𝜂

𝑣 + 𝜀
𝑚 (2-5)

Where η is the learning rate and 𝛽 , 𝛽 are decay rate of previous momentum and

velocity. For training a CNN network, we follow the polynomial learning rate decay

policy, which set an initial learning rate and decrease it as a polynomial curve define by

ourselves.

doi:10.6342/NTU201803607

 17

2.1.6 Alex-Net

Alex-Net[13] proposed by Krizhevsky et al. is the first CNN architecture which

achieved an outstanding performance in ILSVRC-2012. Alex-Net contains five

convolutional layers and three fully connected layers. Since the GPU had only 3G of

memory in that time, the authors had to train the network on two GPUs separately. The

structure of Alex-Net is shown in Fig. 2-7.

Fig. 2-7 Alex-Net [13]

2.1.7 Residual-Net

In recent years, the CNNs have gone deeper with developing direction. However,

as the depth increases, the performance of the CNNs decrease gradually. At first, people

thought that it was overfitting caused by having too much learning parameter. But that

soon realized that the CNNs could not even converge on the training set, which shown

to be a new problem. To deal with it, He et al. [19] introduced a new CNN architecture,

called Residual network (Res-net), which make the deeper network to be trainable. They

doi:10.6342/NTU201803607

 18

applied residual block to simplify the optimization process. The residual block is

defined as:

 𝐲 = ℱ(𝐱, {𝑊 }) + 𝐱 (2-6)

where 𝐱 and 𝐲 is the input and output of the layers. ℱ(𝐱, {𝑊 }) is the residual

mapping to be learned. The residual learning is done by bypassing input feature maps

and merge it with the output of convolution, which is formulated as ℱ + 𝐱 operation. If

an identity mapping were optimal, it would be easier to push the residual to zero than to

fit an identity mapping by a stack of nonlinear layers. The residual block is shown as

Fig. 2-8. As the result, they proposed several networks with different number of layers

(e.g., Resnet-18, Resnet-34, Resnet-50 and Resnet-152) and showed that the

performance of network can be improved by simply increasing the depth of the network.

2.1.8 Squeeze-and-Excitation(SE) Net

SE-net[29] proposed by Jie Hu, Li Shen and Gang Sun is the winner of ILSVRC [8]

2017 competition. They apply channel-wise attention mechanism in their network. With

the attention mechanism, CNNs can effectively direct the computing resources to most

Fig. 2-8 Residual block.

doi:10.6342/NTU201803607

 19

informative regions. In convolution process, the importance of features filtered out by

each kernel are different. To use this characteristic, they proposed

Squeeze-and-Excitation module weighting each channel with their importance. The

SE-module is shown as Fig. 2-9. After regular convolution, they use global average

pooling to form a vector containing global information, each channel will be average

into a value. After global average pooling, a HxWxC feature maps will become a 1x1xC

vector. Then they apply two fully connected layers around the nonlinear activation

function to fully capture channel-wise dependencies, they set reduction ratio r as 16 to

achieve an effective trade-off between model complexity and performance. Before

channel-wise multiply back to feature maps, they apply a sigmoid activation function to

increase nonlinearity.

Fig. 2-9 Squeeze-and-Excitation module

doi:10.6342/NTU201803607

 20

2.1.9 Fine-tuning

Training deep CNN from scratch requires a large amount of data, it is hard for

researchers to collect enough labeled images for each specific tasks. Especially for jobs

that require large pixel-wise labels such as semantic segmentation, it is even more

difficult to collect a large number of labels. Fortunately, according to [30], no matter

what the task is, the features captured by shallow convolutional layers are shareable.

Combined with the concept of transfer learning Fig. 2-10. We can first pre-train on the

image classification dataset, e.g. ImageNet, and replace the fully connected layer for

classification with the decoding network of semantic segmentation. Fine-tune

segmentation network requires only a relatively small amount of data.

Fig. 2-10 Paradigm of transfer learning

doi:10.6342/NTU201803607

 21

2.2 Semantic segmentation Network

Before we introduce our proposed novel semantic segmentation network, we will

present other semantic segmentation architectures first. Fcn[15] is the first approach

trying to solve semantic segmentation problem with fully convolutional network, and

then Segnet [23] is a Symmetrical Encoder-decoder CNN can run at near real-time

speed (about 16 FPS).

2.2.1 Fully Convolutional Network

 In order to achieve pixel-wise classification, CNNs have to keep the spatial

information of specific features. However, fully connected layers are usually added at

the end of the network in traditional classification CNNs. This will remove spatial

information and restrict the size of the input image. Long et.al. resolve this problem by

replacing fully connected layers with convolutional layers containing the same number

of channels. Fig. 2-11 shows the architecture of FCN.

Fig. 2-11 Architecture of FCN[15]

To enlarge feature maps to the size of input image, they apply fractionally strided

convolutional layer, also known as deconvolution layer, to the end of their network. In

this study, they found that segmentation detail will be improved by fusing information

doi:10.6342/NTU201803607

 22

from lower layers. It’s because feature maps from lower layer will keep more

fine-grained information. By replacing fully connected layer with convolutional layers,

their architecture can be applied to almost every classification CNNs.

2.2.2 Segnet

Segnet[23], as a network for semantic segmentation, uses a symmetric encoder decoder

architecture. The first half of the network are similar to the front 13 layers of VGG-16

net. As a encoder, They are responsible to collect enough representative information.

The decoder network architecture in the latter half is exactly the same as the encoder

network. Only the pooling layers which used for downsampling are replaced with the

unpooling layers. The pooling indices needed during unpooling are provided by the

corresponding pooling layer in the encoder. Compared with Fully Convolutional Net,

Segnet does not have lots of channel within the convolutional layers, it can achieve

16FPS on GTX TitanX GPU with Maxwell architecture.

The speed which can be considered almost real-time allows Segnet to be widely applied

to many real world application. However, still, its inference speed does not meet the

requirement of autonomous driving application. Fig. 2-12 shows the architecture of

Segnet.

Fig. 2-12 Architecture of Segnet[23]

doi:10.6342/NTU201803607

 23

Chapter 3

Edge Net

In this chapter, we propose a novel real-time semantic segmentation network,

which combines class-aware edge loss module and residual channel-wise attention

mechanism, achieving both high accuracy and real-time requirements. First, we analyze

the distribution of pixels which are misclassified by state-of-the-art real-time semantic

segmentation network to identify potential weakness. Next, we introduce our proposed

CNN-based Semantic Separation Network, called Edgenet, which aims to improve

accuracy using Residual Squeeze-and-Excitation (SE) block and class-aware edge loss

modules by allocating computing resources to areas that contain rich information.

3.1 Observation

In order to achieve higher mean IOU without jeopardizing the inference speed, the

strategy is to force our network concentrating on those difficult areas. From the former

argument, we here choose ERFnet proposed by Romera et al. [17] as means for analysis

because it is the best semantic segmentation algorithm which can run under real-time

speed to the best of our knowledge. First, we evaluate ERFnet with Cityscapes dataset[5]

doi:10.6342/NTU201803607

 24

which contains numerous high resolution semantically segmented urban scenes.

Following their training policy, we first pre-train the encoder with ImageNet dataset,

and then fine-tune the whole net on Cityscapes dataset. Finally, the mean IOU we

achieve is as high as 72% on Cityscape validation set which is close to their 71.5%. The

visualization result of ERFnet are shown in Fig. 3-1. By observing Fig. 3-1 (c), we can

see that most of the misclassified pixels fall on the boundaries between adjacent

categories, which is what we call the edges. Based on this observation, we decide to

analyze in detail the distribution between misclassified pixels and the edge.

(a) Input image (b) Ground truth

(c) Pixels been misclassified by ERFnet

Fig. 3-1 Visualization of ERFnet result

The statistical results we presented in Fig. 3-2 show that nearly 60% of

misclassified pixels are located within 10 pixels from the edge. We believe that there are

doi:10.6342/NTU201803607

 25

two reasons for this phenomenon. The first is that there may be some slight errors

during the image marking process conducted by human manually. The second reason is

that the edges usually occupy too few pixels in the image. While in a typical semantic

segmentation, the loss function doesn't discriminate pixels on edge between different

classes. This makes the network focus on a large area of classification but ignores the

correctness of the pixel near the edge.

Fig. 3-2 Histogram of misclassified pixels

3.2 Edgenet Overview

Edgenet is a network that can be trained end-to-end. We add our proposed residual

SE-block after each Convolutional layer to reweight each channel with their importance.

At the end of the network, we combine the class-aware edge loss module to improve the

segmentation result near to edge. The proposed Edgenet is shown in Fig. 3-3.

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%

0~
10

11
~2

0

21
~3

0

31
~4

0

41
~5

0

51
~6

0

61
~7

0

71
~8

0

81
~9

0

91
~1

00

10
1~

11
0

11
1~

12
0

12
1~

13
0

ra
ti

o
to

 #
 o

f
m

is
cl

as
si

fi
ed

pi

xe
ls

distance to edge(pixel)

doi:10.6342/NTU201803607

 26

Fig. 3-3 Overview of our proposed Edgenet.

3.3 Edgenet Design

In this section, we will go into details about the design of our proposed Edgenet

architecture. Edgenet contains a set of asymmetric subnetworks with encoder and

decoder. We will first explain the structure of encoder and decoder subnetworks, and

then the class-aware edge loss module we proposed will be introduced to decrease the

segmentation error on the edge area. Finally, we will explain the residual SE-block

applied after every convolution layer.

3.3.1 Encoder subnetwork

Fig. 3-3 Overview of our proposed Edgenet.Fig. 3-3 shows the overview of

Edgenet. Our net includes three sets of downsamplers. The first downsampler performs

max pooling and convolution with stride 2. The image size is reduced from 1024 x 512

to 512 x 256. The second set of downsampler also executes max pooling and strided

doi:10.6342/NTU201803607

 27

convolution, continuously reducing the size of the feature maps from 512 x 256 to 256 x

128. The feature maps are quickly downsampled twice in the initial stage of the encoder

network, results in only a quarter of height and width length compared to the original

image. With this process, the computational complexity of subsequent five residual

convolutional building blocks will be reduced. The last group of downsamplers also

performs max pooling and convolution, reducing the feature maps size from 256 x 128

to 128 x 64, followed by 8 consecutive convolutions which have different dilated ratio.

The dilated convoluted [16] kernel is shown in Fig. 3-4. The use of dilated convolution

can bring the benefits of increasing the reception field.

In the past, in order to increase the reception field, pooling[31] is used to

summarize the information in the area. However, the pooling leads to the loss of spatial

information. For network like semantic segmentation whose output is pixel-wise

prediction, using too much pooling layers to enlarge receptive field will result in the

impossibility to reproduce fine-grained details. The size of feature maps will shrink too

much after pooling layers and the spatial information will be lost. By using dilated

convolution, we can keep the spatial information while enlarging the receptive field

without increasing the amount of computation complexity and the amount of

parameters.

Fig. 3-4 Kernel of dilated convolution

doi:10.6342/NTU201803607

 28

Overall, the feature maps output by the encoder is only one-eighth of size

compared to the original image. The downsampler, as shown in Fig. 3-5, uses a parallel

architecture with stride convolution and pooling, then concatenates output featuremaps

along channel dimension. This concept was first proposed in the inception v2[32]. By

applying this method, the two problems, the loss of detail information caused by

pooling before convolution, as well as the high computational cost caused by

convolution before pooling, can both be solved. Besides, the Stride Convolution in

parallel with pooling also help to increase reception field while reducing the amount of

computation in the encoder sub-network as a whole.

Fig. 3-5 Downsampler

Convolutional residual building block in our Edgenet is based on the

non-bottleneck design[19], which is composed by two 3x3 convolutions. To reduce

computational complexity, the 3x3 convolution is factorized into two continuously

one-dimensional convolutions using the method proposed by Romera et al.[33]. An

addition ReLU is placed in the middle to increase the nonlinearity.

doi:10.6342/NTU201803607

 29

3.3.2 Decoder subnetwork

The second part of our Edgenet is the decoder network. The goal is to enlarge the

low-resolution feature maps extracted by encoder network back to high-resolution

multi-dimensional pixel-wise classification results. Because the resolution of input

feature maps is one-eighth of input picture, decoder also contains three upsampler layers.

We use fractionally strided convolutional layer to implement upsampler layer. The

advantage is that compared to unpooling layer, there will be more trainable parameters

in fractionally strided convolutional layer. To give the network better learning ability,

we applied two convolution layers between two adjacent upsampler.

3.3.3 Class-aware edge loss module

In Section 3-1, we analyze the distribution of those misclassified pixels. Most of

them are located near the edge. In order to properly classify these pixels, we need to let

our encoder focus on these areas. There are two ways to achieve this. The first way is

adding additional extractor of edge information into encoder network, such as[34]. This

may bring up two problems. The first one is the increased computational complexity

caused by additional edge extractor. The second is the extra training time of an edge

extractor we may need to spend. However, the entire network cannot be trained

end-to-end. The second approach is to design an extra loss function to drive our network

converge in a direction that put more attention on edges. Since one of the main goals of

our network design is to maintain the speed of real-time operation. We prefer to choose

the latter approach. The general segmentation loss usually implemented with 2D cross

entropy as shown in equation (3-1). Where W, H are the width and height of output

feature map and 𝐺(𝑥, 𝑦), 𝑃(𝑥, 𝑦) are one-hot vector of ground-truth label at position

(x,y) and prediction of segmentation at position (𝑥, 𝑦). This loss function does not

doi:10.6342/NTU201803607

 30

discriminate pixels on edge between different classes, it treats every pixel equivalently

as dealing with classification problem, and then adds up all cross-entropy loss of every

pixel.

 𝐿𝑜𝑠𝑠 = −
1

𝑁
𝐺(𝑥, 𝑦) log(𝑃(𝑥, 𝑦)) (3-1)

In order to increase the weight of the edge in the loss, we need to first find the

location and category of the edge from the ground truth. Preprocessing steps are as

follows.

 generating binary images of each class from ground truth image. Fig. 3-6 (b, c)

show the binary image of road and building classes;

 finding edge in each binary image. Fig. 3-6 (d, e) show the edge imag of road and

building classes;

 merging all edge-relevant binary images into a class-aware edge ground truth,

where each pixel is labeled with their original class id, as shown in Fig. 3-6 (f).

doi:10.6342/NTU201803607

 31

(a) Ground truth image

(b) Binary image of road

(c) Binary image of building

(d) Edge of road

(e) Edge of building

(f) Class-aware edge ground truth

Fig. 3-6 Preprocessing edge ground truth

doi:10.6342/NTU201803607

 32

In order not to affect the overall inference speed, we place the additional layer

related to the edge after the semantic segmentation result. Fig. 3-7 illustrates our design.

A 3x3 convolutional layer is located after semantic segmentation to generate edge

detection from segmentation result. Then, the edge loss will be calculated based on edge

detection result and edge ground truth.

If the segmentation result is good, the associated 3x3 convolutional layer will be

sufficient to generate good edge prediction similar to edge ground truth. If the edge

detection result is very different from edge ground truth, which indicates that the

semantic segmentation does not contain correct edge information, the gradient of the

𝑙𝑜𝑠𝑠 will also be directly backpropagated to semantic segmentation network,

forcing it to extract more edge information to reduce 𝑙𝑜𝑠𝑠 .

𝐺 (𝑥, 𝑦) and 𝑃 (𝑥, 𝑦) are ground truth of segmentation and edge detection at

position (𝑥, 𝑦), where 𝐺 (𝑥, 𝑦), 𝑃 (𝑥, 𝑦) are prediction of segmentation and

edge detection at position (𝑥, 𝑦). Overall, we sum up the loss of original segmentation

Fig. 3-7 Edge Loss module

doi:10.6342/NTU201803607

 33

described by equation (3-3) and the edge loss by equation (3-4), and take it to be the

total loss function shown by equation (3-2) of our network, where λ is the hyper

parameter, used to balance the importance between original segmentation loss and edge

loss.

We also apply the class weighting technique proposed in [24] to deal with class

imbalance problem, where the weight of each class is formulated as in equation (3-5).

 ω =
1

𝑙𝑛(1.2 + 𝑃)

(3-5)

With 𝑃 referring to that, among all pixels, what proportion does pixels in this

class take up. Our edge loss module does not participate in the segmentation prediction

process. It only helps the network focus on the classification correctness of the pixel

near the edge. Since our edge loss module will not be involved in the testing stage, the

overall inference will not be influenced.

3.3.4 Residual SE-block

To properly allocate the computing resources is an important strategy for us to

improve accuracy without affecting inference speed. In a broad sense, attention can be

viewed as a factor to bias the allocation of available processing resources toward the

informative area of the input. We design the attention mechanism in our network for

 𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠 + 𝜆 ∗ 𝐿𝑜𝑠𝑠 (3-2)

 𝐿𝑜𝑠𝑠 = −
1

𝑁
𝐺 (𝑥, 𝑦) log 𝑃 (𝑥, 𝑦) (3-3)

 𝐿𝑜𝑠𝑠 = −
1

𝑁
𝐺 (𝑥, 𝑦) log 𝑃 (𝑥, 𝑦) (3-4)

doi:10.6342/NTU201803607

 34

better resource allocation. The feature maps of semantic segmentation are

three-dimensional. We propose an edge loss module to force our network focus on the

edge in width-wise and height-wise spatial dimensions. For the third dimension, channel,

the importance of each feature maps are different. By strengthening the important

channels and suppress less useful ones, the representational power of the network will

be enhanced. Different from the spatial dimension, there is no strong information, such

as “edge”, to indicate the importance. The Squeeze-and-excitation net[29] mentioned in

preliminary cleverly uses the extra fully connected layer to learn the importance of each

channel. After we have implemented the SE-block in our network, the performance of

the network decreased. The rise of network learning ability has resulted in the

performance decrease, where the same situation has also occurred in residual net

proposed by He et al. [19]. Inspired by [29] and [19], we have modified SE-block as a

Residual SE-block structure as show in Fig. 3-8.

Fig. 3-8 Residual SE-block

doi:10.6342/NTU201803607

 35

We perform shortcut connection from input of SE-block to the output, and apply

element-wise addition on two feature maps channel by channel. Because the

element-wise operation is simple without need to training any parameters, the network

can gain the feature representations from previous layers without extra computation

complexity. If these channels do not need to be weighted, it would be easier to push the

residual branch to zero than to fit an identity mapping by a stack of fully connected

layers. Based on the concept that residuals may contain negative values, we replace

sigmoid activation function in residual SE-block with SoftSign as shown in equation

(3-6).

 𝑓(𝑥) =
𝑥

1 + |𝑥|
 (3-6)

We apply residual SE-block after each convolution block to perform feature

recalibration.

doi:10.6342/NTU201803607

 36

Chapter 4 Experiments

Our proposed method has been introduced in chapter 3. In this chapter, we will

evaluate our method by conducting several experiments.

First, we will describe each dataset and how we evaluate the performance. Then,

we will show the experimental results on each dataset, including the comparison with

other state-of-the-art methods.

4.1 The Datasets

4.1.1 Cityscapes Dataset

Cityscapes [5] is the most challenge and authoritative dataset for on-road semantic

segmentation nowadays, which is our main experimental target. Cityscapes dataset has

30 different classes which belong to the eight major category.

In order to ensure the diversity of the dataset, the images in Cityscapes were taken

from 50 cities in Germany, in all seasons except winter. All the photos are manually

selected and marked. All of the images meet the conditions of containing a large number

of moving objects and various backgrounds.

The image of Cityscapes dataset is divided into two parts. The first part is the fine

annotations, and the second part is the coarse annotation. Fine annotations are images

doi:10.6342/NTU201803607

 37

with careful labels. There are 5,000 fine annotations, including 2,975 training images,

500 validation images, and 1,525 test images. The training and validation sets are

provided with ground truth image while the testing set only contains the original image.

Coarse annotations are images with approximate outline of the object. Cityscapes

provide a set of 20,000 images. The class and the categories of image from Cityscape

are listed in Table 4-1.

Table 4-1 Class of Cityscape dataset. (Bold words indicate Categories of the column. Red words

indicate those classes be ignored in evaluation stage.)

Flat Construction Nature Vehicle Sky Object Human Void

Road Build Veget Car Sky Pole Person Static

Sidewalk Fence Terrain Bicycle Traffic sign Rider Ground

Parking Wall Bus Traffic light Dynamic

Rail track Bridge Truck Pole ground

 Tunnel Train

 Motorcycle

 Caravan

 Trailer

The resolution of each images in Cityscapes dataset is about 2048x1024. In

addition to the images, Cityscapes also provides other metadata such as GPS

coordinates, corresponding right stereo views, Ego-motion data from vehicle odometry,

and outside temperature from car sensor. Some sample images and ground truth images

are shown in Fig. 4-1.

doi:10.6342/NTU201803607

 38

Fig. 4-1 Example images and annotations from the Cityscapes dataset.

doi:10.6342/NTU201803607

 39

4.1.2 KITTI On-road Dataset

KITTI [9] dataset is an Vision benchmark which focus on on-road scene scenario.

There are many different tasks in this dataset, e.g., optical flow, object detection, road

detection. As we have claimed, our system can be used in the ADAS as a module to

detect the drivable area. For verification, we use KITTI road detection task in the

dataset to evaluate our system. The road detection benchmark contains 289 training

images and 290 testing images. The image contains three scenes, urban unmarked,

urban marked and urban multiple marked lane. The image resolution in KITTI dataset is

1242x375. We will describe it with more detail in the following section. Some sample

images and ground truth images are shown in Fig. 4-2.

Fig. 4-2 Sample Images of KITTI dataset.

doi:10.6342/NTU201803607

 40

4.2 Experiment platform

Our method is trained and tested on personal computer with single NVIDIA GTX

Titan X GPU (Maxwell). The specification of our experiment platform is listed in Table

4-2.

Table 4-2 Our PC specification.

Resources Specification

CPU Intel Core i7-2600 3.4GHz

Memory 32 GB

Operation System Ubuntu 16.04

Graphic Processor Units NVIDIA GTX Titan X (Maxwell)

We implement our method based on PyTorch, which is a deep learning framework

developed by Facebook. PyTorch integrates NVIDIA Cuda and cudnn toolkit, which

allows us to utilize strong GPU acceleration. We train and test our model using Cuda 9.0

and cudnn 7 with PyTorch 0.4.0.

4.3 Experimental Results

4.3.1 Inference time

We compare the inference time to other state-of-the-art semantic segmentation

network. To fairly compare the running time, the speed of each method is measured on

Cityscapes 19 classes segmentation with batch one configuration. The comparison result

is summarized in Table 4-3.

doi:10.6342/NTU201803607

 41

Table 4-3 Comparison of speed with other state-of-the-art near real-time method.

Method FPS GPU Input resolution

Segnet [23] 16.6 TitanX 512x256

Enet [24] 76.9 TitanX 1024x512

Espnet [35] 112.0 TitanX 1024x512

Erfnet[17] 34.3 TitanX 1024x512

Contextnet[36] 18.3 TitanX 2048x1024

Ours 31.4 TitanX 1024x512

Edgenet has a frame rate of 31.4fps. Our method is slightly slower than ERFnet

because we added residule SE-module. But it is faster than the Segnet and Contexnet.

4.3.2 The Experimental on Cityscapes Dataset

 Evaluation methods

To ensure that each class for training has enough number of pixel, Cityscapes

dataset only use 19 categories for evaluation. For each category, the prediction result of

pixels can be divided into 4 conditions Table 4-4.

The result of the semantic segmentation is evaluated by the

intersection-over-union(IOU). Each class will calculate its own 𝐼𝑂𝑈 , as shown in

Table 4-4 Definition of true positive, true negative, false positive and false negative.

(Pixel)
Ground truth

Positive condition Negative condition

Prediction
Positive prediction True Positive(TP) False Positive(FP)

Negative prediction False Negative(FN) True Negative(TN)

doi:10.6342/NTU201803607

 42

equation(4-1). After averaging the IOU of each class, the mIOU can be obtained as the

main evaluation standard. The calculation method is shown in equation(4-2).

Where 𝑇𝑃 , 𝐹𝑃 and 𝐹𝑁 indicate the number of true positive, false positive, false

negative pixels of class c.

Since Cityscapes also provides the label in the category level, in addition to the class

mIOU, the mIOU of the category level is also calculated as the criterion. While

calculating the IOU, the value will easily be dominated by the large object in the class.

This problem will be in street scenes with their strong scale variation, this can be

problematic. In order to balance the importance of each instance, Cityscapes also use

Instance-Level Intersection-over-union iIOU to average the contribution of each

instance. The calculation formula is as equation(4-3)

Where 𝑖𝑇𝑃 , 𝐹𝑃 , 𝑖𝐹𝑁 indicate the number of true positive, false positive, false

negative pixels of class c. However, in contrast to the standard 𝐼𝑂𝑈 measurement,

𝑖𝑇𝑃 and 𝑖𝐹𝑁 are computed by giving different pixel different weight. The weight is

based on the ratio of the class’ average instance size to the respective ground truth

instance size. Since the false positive pixels are not associated with any instance and

thus do not require normalization.

 Experimental Result of accuracy

Our model is trained using the Adam optimization [28] of stochastic gradient

descent. Training is performed with a batch size of 3, momentum of 0.9, weight decay

 𝐼𝑂𝑈 =
()

 (4-1)

 𝑚𝐼𝑂𝑈 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐼𝑂𝑈) ∀ c in Class (4-2)

 i𝐼𝑂𝑈 =
()

 (4-3)

doi:10.6342/NTU201803607

 43

of 1𝑒 , and we start with a learning rate of 5𝑒 . Learning rate of each epoch is

formulate as following equation:

 𝑙𝑟 = 𝑙𝑟 × 1 −
(𝑒𝑝𝑜𝑐ℎ − 1)

𝑒𝑝𝑜𝑐ℎ

.

 (4-4)

We train the model with 150 epochs in all. Resolution of training images is 1024x512,

which is the same size we used to evaluate inference speed.

 We evaluate our model on Cityscapes testing set, which contains 1,525 testing

images. Because Cityscapes dataset only provides the ground truth for training data and

validation data, we have to submitted our result to their evaluation server. Cityscapes

evaluation server provide several metrics for validating the performance of each method,

which are shown in previous section.

The experimental results are shown in Table 4-5. These data are uploaded by their

authors themselves. After submitting to the server, the score will be calculated and be

displayed on the Cityscapes leaderboard.

Table 4-5 Evaluation result on Cityscpaes dataset

Method
mIOU

class

miIOU

class

mIOU

category

miIOU

category

Segnet basic [23] 57.0 32.0 79.1 61.9

Segnet extended [23] 56.1 34.2 79.8 66.4

Enet [24] 58.3 34.4 80.4 64.0

Espnet [35] 60.3 31.8 82.2 63.1

Erfnet[17] 69.7 44.1 87.3 72.7

Contextnet[36] 66.1 36.8 82.8 64.3

Ours 71.0 46.6 88.5 75.0

doi:10.6342/NTU201803607

 44

Table 4-5 show that our method can achieves a better overall mIOU (class) than

Segnet[23], Enet[24] , Espnet[35], Erfnet[17]. And our method also outperforms

Contextnet[36] which use 2048x1024 input image to focuses on fine-grained

segmentation details to improve the accuracy. The experimental results show that our

proposed Edgenet can actually improve the accuracy on both class level and category

level.

We list the segmentation results for each class in Table 4-6. Our method can

perform better than other method in almost every class.

Table 4-6(a) IOU of each class on Cityscapes testing set

Method road Sidewalk building wall fence pole Traffic light Traffic sign vegetation

Segnet basic 96.4 73.2 84.0 28.5 29.0 35.7 39.8 45.2 87.0

Segnet extended 95.6 70.1 82.8 29.9 31.9 38.0 43.1 44.6 87.3

Enet 96.3 74.2 85.0 32.2 33.2 43.5 34.1 44.0 88.6

Espnet 75.7 73.3 86.6 32.8 36.4 47.1 46.9 55.4 89.8

Erfnet 97.9 82.1 90.7 45.2 50.4 59.0 62.6 68.4 91.9

Contextnet 97.6 79.2 88.8 43.8 42.9 37.9 52.0 58.9 90.0

Ours 98.1 83.1 91.6 45.4 50.6 62.6 67.2 71.4 92.4

Table 4-6(b) IOU of each class on Cityscapes testing set

Method terrain Sky person rider car truck bus train motorcycle bicycle

Segnet basic 63.8 91.8 62.8 42.8 89.3 38.1 43.1 44.1 35.8 51.9

Segnet extended 62.3 91.7 67.3 50.7 87.9 21.7 29.0 34.7 40.5 56.6

Enet 61.4 90.6 65.5 38.4 90.6 36.9 50.5 48.1 38.8 55.4

Espnet 66.0 92.5 68.5 45.8 89.9 40.0 47.7 40.7 36.4 54.9

Erfnet 69.4 94.2 78.5 59.8 93.4 52.3 60.8 53.7 49.9 64.2

Contextnet 66.9 92.0 72.2 53.9 91.7 54.0 66.5 58.4 48.9 61.1

Ours 69.7 94.9 80.4 61.1 94.3 50.0 60.9 52.5 55.3 67.7

Table 4-7 shows the iIOU result, Since the iIOU is used for balancing the

contribution of different instances in the class, iIOU will be calculated only if there is an

doi:10.6342/NTU201803607

 45

independent instance in class. Compare to Contextnet and ERFnet, the IOU of our

method is slightly lower in truck, bus, and train class. But we outperform them in iIOU

criteria, which means that our network performs better on smaller instances.

We also compared the IOU in category level with other method. From Table 4-8,

we can see that, our method outperforms the others in all categories, especially in object

categories which is very important for driving situation. Our method archives the

highest IOU and exceed the second (ERFnet) by 3.4%.

Table 4-8 IOU of each category on Cityscapes testing set

Method flat nature object sky construction human vehicle

Segnet basic 97.4 86.7 42.5 91.8 83.8 64.7 87.2

Segnet

extended
97.5 87.1 43.7 91.7 82.8 68.6 87.5

Enet 97.3 88.3 46.8 90.6 85.4 65.5 88.9

Espnet 95.5 89.5 52.9 92.5 86.7 69.8 88.4

Erfnet 98.2 91.5 65.1 94.2 90.6 78.9 92.3

Contextnet 97.8 89.6 47.7 92.0 88.9 72.6 90.8

Ours 98.4 92.1 68.5 94.9 91.5 80.9 93.1

The class corresponding to each color is displayed in Fig. 4-3. Some semantic

Table 4-7 iIOU of each class on Cityscapes testing set

Method person rider car truck bus train motorcycle bicycle

Segnet basic 44.3 22.7 78.4 16.1 24.3 20.7 15.8 33.6

Segnet extended 49.9 27.1 81.1 15.3 23.7 18.5 19.6 38.4

Enet 47.6 20.8 80.0 17.5 26.8 21.8 20.9 39.4

Espnet 45.8 19.2 81.7 15.2 24.3 16.8 16.2 35.5

Erfnet 60.1 34.7 86.1 22.6 37.6 31.2 29.0 51.4

Contextnet 47.1 24.7 82.9 19.3 30.6 28.3 21.5 39.9

Ours 62.5 38.1 88.4 25.4 38.3 33.0 34.4 52.5

doi:10.6342/NTU201803607

 46

segmentation results on Cityscapes dataset are shown in Fig. 4-4. These results show

that our method can correctly segment every object on road scene.

Fig. 4-3 Color table of each class

doi:10.6342/NTU201803607

 47

Fig. 4-4 Semantic segmentation results of Cityscapes dataset.

doi:10.6342/NTU201803607

 48

To prove that Edgenet can really improve the results of the segmentation near the

edge, we analyzed the results of Edgenet and ERFnet. Fig. 4-5 shows the difference

between the number of pixels that are misclassified by two methods. (The number of

pixel misclassified by ERFnet minus the number of pixel misclassified by Edgenet) We

can see that our proposed method, the closer to the edge, the more misclassified pixels

are improved.

Fig. 4-5 Histogram of improved pixels.

4.3.3 The Experimental on KITTI Road Detection

To verify whether our system can be used in road detection module of ADAS, we

use KITTI Road Detection dataset for verification.

 Evaluation methods

KITTI dataset focus on on-road scene. Therefore, the method for evaluation is

different from other semantic segmentation dataset. In perspective image (Fig. 4-6(a)),

the road area which is closer to us will have relatively larger scale. This may influence

the accuracy because the prediction result will be dominated by the road area near

0
200000
400000
600000
800000

1000000
1200000
1400000

N
nu

m
be

r
of

 p
ix

el
s

Distance to edge

doi:10.6342/NTU201803607

 49

camera. To solve this problem, KITTI dataset will transform the prediction result into

Bird’s Eye View(BEV), in which the road area will not be distorted, as shown in Fig.

4-6(b).

(a) Detection result on regular image

(b) Convert to BEV space

Fig. 4-6 Detection result in different space

We use 𝐹 -score to verify the accuracy of prediction on KITTI dataset. The formula of

𝐹 -score is shown in equation (4-5). The advantage of 𝐹 -score is that it takes care of

both recall and precision.

doi:10.6342/NTU201803607

 50

 𝐹 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4-5)

The formula of measuring precision and recall are defined as follows:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)

(4-6)

 Besides 𝐹 -score, KITTI dataset also uses False Positive Rate (FPR) and False

Negative Rate(FNR) to evaluate the ratio of false prediction. The formulas are shown in

the following equation:

𝐹𝑃𝑅 =
𝐹𝑃

(𝐹𝑃 + 𝑇𝑁)

𝐹𝑁𝑅 =
𝐹𝑁

(𝑇𝑃 + 𝐹𝑁)

(4-7)

 Experimental result on accuracy

As we have mentioned before, the size of images in KITTI dataset is about

1242x375 pixels. To keep the aspect ratio, we resize the input image to 1248x376 for

the purpose of training. Because the input size is slightly smaller than 1024x512, the

execution rate of Edgenet can achieve 35.50 FPS.

Our model is trained using the Adam optimization [28]. Training is performed with

a batch size of 4, momentum of 0.9, weight decay of 1𝑒 , and we start with a learning

rate of 5𝑒 .

Just like the requirement for working on Cityscapes dataset, we also need to submit

the detection results to KITTI evaluation server. In Table 4-9, our experimental results

doi:10.6342/NTU201803607

 51

on KITTI road detection benchmark are shown below.

Table 4-9 The result on KITTI car detection.

Method 𝐹 Precision Recall FPR FNR FPS

iDST-VT 97.19% 97.09% 97.29% 1.61% 2.71% 1

DFFA[37] 96.35% 96.02% 96.69% 2.21% 3.31% 2.5

SSLGAN[38] 95.53% 95.84% 95.24% 2.28% 4.76% 1.4

RBNet[39] 94.97% 94.94% 95.01% 2.79% 4.99% 5.6

StixelNet II[40] 94.88% 92.97% 96.87% 4.04% 3.13% 0.83

Ours 95.52% 95.52% 95.52% 2.47% 4.48% 35.50

 We compare our proposed Edgenet to several state-of-the-art road detection

methods, such as iDST-VT proposed by Alibaba’s artificial intelligence team, DFFA

[37], SSLGAN [38], RBNet [39], and StixelNet II [40]. In particular, RBNet also

combines the road edge detection module to aid road detection performance. However,

since their edge detection module will participate in the inference stage of road

detection, the overall method takes more time for computing. In contrast with RBNet,

our Edgenet outperforms it in both 𝐹 -score and speed. Moreover, our method can

achieve comparable accuracy to those state-of-the-art methods with 5 × ~40 × speed.

In Fig. 4-7, we show the road detection results of our network.

doi:10.6342/NTU201803607

 52

(a) Detection results on urban marked scene

(b) Detection results on urban unmarked scene

(c) Detection results on urban multiple marked lane scene

(d) Detection results on stone road

Fig. 4-7 Road detection results of Edgenet on KITTI testing set

doi:10.6342/NTU201803607

 53

4.4 Autonomous Driving Application

In this section, we combined Edgenet with the Car Steering Angle Prediction

System proposed by [41] to verify that Edgenet is suitable for use in autonomous

driving application.

4.4.1 Car Steering Angle Prediction System

Fig. 4-8 System Overview

The Car Steering Angle Prediction system is shown in Fig. 4-8. The system can be

divided into two parts. The first part is the perception network used to obtain the

semantic segmentation result of the input image, and the second part is the control

network, which is responsible for predicting the steering angle based on the result of the

semantic segmentation.

The design of the control network is shown in Fig. 4-9. The Control Network is

composed of four convolutional layer with sixteen filters followed by max-pooling layer

with stride 2. Two fully connected layers with 256 and 1 neurons, respectively, are

attached to the end of the Control Network. The output of the last neuron is the steering

angle.

doi:10.6342/NTU201803607

 54

We implement two methods for perception network. The first is our Edgenet, and

the second is ERFnet. We compare the results of these two systems to verify that

improving the segmentation accuracy is helpful for autonomous driving applications.

4.4.2 Udacity Self-Driving Car Challenge 2 Dataset

The two Udacity Self-Driving Car Challenge Datasets contain 33,808 training

images and 5,614 testing images, respectively. The resolution of images in this dataset is

about 640 x 480 pixels. Some example images are showed in Fig. 4-10. The dataset

contains several driving scenes in different lighting, road, and traffic conditions. All

these images are captured from a front-facing camera installed on a car. The dataset also

provides metadata such as speeds and steering angles. We use steering angles as the

ground truth label. The steering angles are in the ranges from radius -2.0 to 2.0. For

training perception network, we use semantic segmentation annotations provided by [41]

which contain 335 labeled image.

Fig. 4-9 Architecture of the Control Network.

doi:10.6342/NTU201803607

 55

Fig. 4-10 Example images of Udacity Self-Driving Car Dataset.

4.4.3 Evaluation Metrics

The evaluation metrics used in the experiments are root mean squared error

(RMSE).

RMSE is the common measurements for evaluating the accuracy of a regression model.

The definition of RMSE is defined in equation (4-8):

 RMSE =
1

𝑁
(𝑦 − 𝑦) (4-8)

doi:10.6342/NTU201803607

 56

where ŷi is the prediction of i-th sample, yi is the ground truth label of the i-th sample,

and N is the total number of samples.

4.4.4 Overall performance

The overall performances of the system with Edgenet is promising. The result

shows that the system with Edgenet has an RMSE of 8.82 × 10-2 on the test set whereas

the one with ERFnet has an RMSE of 9.0 × 10-2. This means that our proposed Edgenet

can extract more useful information and help the control network predict the angle more

accurately.

Table 4-10 Result on the test set of Udacity dataset.

Model RMSE
Training Time

(Epochs)

With

ERFnet
0.090081 51

With

Edgenet
0.088227 47

doi:10.6342/NTU201803607

 57

Chapter 5

Conclusions

In this thesis, a novel CNN based semantic Segmentation network, called Edgenet,

is proposed. The proposed method is based on encoder-decoder framework, which

allows the network to achieve real-time speed. By adding class-aware edge loss module

and residual SE-block, Edgenet can improve the classification result of those pixels near

the edges.

We used Cityscapes dataset to evaluate the semantic segmentation performance of

our network. Our method outperformed other real-time methods, and is the only

real-time method on the Cityscapes dataset which achieves over 71% mIOU. We

analyzed the distribution of misclassified pixels, and the results show that our network

does improve the classification result of those pixels near the edges. We also used

KITTI road detection dataset to evaluate the performance of Edgenet as a drivable area

detection module. The performance of our method on KITTI road dataset can reach

95% recall/precision and above. Moreover, our method can achieve comparable

accuracy to state-of-the-art methods with 5 × ~40 × speed. For self-driving

applications, we implemented Edgenet into the car steering angle prediction system.

The result shows that, RMSE of the system with Edgenet is 8.82 x 10 , which is more

doi:10.6342/NTU201803607

 58

suitable as a reception network for autonomous driving applications than ERFnet. To

conclude, the proposed method is suitable to be adopted to other semantic segmentation

network to improve their performance.

doi:10.6342/NTU201803607

 59

REFERENCE

[1] P. C. Ng and S. Henikoff, "SIFT: Predicting amino acid changes that affect

protein function," Nucleic acids research, vol. 31, pp. 3812-3814, 2003.

[2] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection,"

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 886-893, 2005.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A

large-scale hierarchical image database," in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 248-255, 2009.

[4] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, "The

pascal visual object classes (voc) challenge," International journal of computer

vision, vol. 88, pp. 303-338, 2010.

[5] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U.

Franke, S. Roth, and B. Schiele, "The cityscapes dataset for semantic urban

scene understanding," in Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 3213-3223, 2016.

[6] C. Chen, "Extracting Cognition out of Images for the Purpose of Autonomous

Driving," Princeton University, 2016.

[7] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, "Icnet for real-time semantic

segmentation on high-resolution images," arXiv preprint arXiv:1704.08545,

2017.

[8] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.

Karpathy, A. Khosla, and M. Bernstein, "Imagenet large scale visual recognition

doi:10.6342/NTU201803607

 60

challenge," International Journal of Computer Vision, vol. 115, pp. 211-252,

2015.

[9] A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for autonomous driving? the

kitti vision benchmark suite," in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 3354-3361, 2012.

[10] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object

detection with region proposal networks," in Advances in neural information

processing systems, pp. 91-99, 2015.

[11] M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional

networks," in European conference on computer vision, pp. 818-833, 2014.

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville, and Y. Bengio, "Generative adversarial nets," in Advances in neural

information processing systems, pp. 2672-2680, 2014.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with

deep convolutional neural networks," in Advances in neural information

processing systems, pp. 1097-1105, 2012.

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for

accurate object detection and semantic segmentation," in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pp. 580-587,

2014.

[15] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for

semantic segmentation," in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 3431-3440, 2015.

[16] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "Deeplab:

Semantic image segmentation with deep convolutional nets, atrous convolution,

doi:10.6342/NTU201803607

 61

and fully connected crfs," IEEE transactions on pattern analysis and machine

intelligence, vol. 40, pp. 834-848, 2018.

[17] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, "ERFNet: Efficient

Residual Factorized ConvNet for Real-Time Semantic Segmentation," IEEE

Transactions on Intelligent Transportation Systems, vol. 19, pp. 263-272, 2018.

[18] K. Simonyan and A. Zisserman, "Very deep convolutional networks for

large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.

[19] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image

recognition," in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 770-778, 2016.

[20] J. Redmon and A. Farhadi, "YOLO9000: better, faster, stronger," arXiv preprint

arXiv:1612.08242, 2017.

[21] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,

"SSD: Single shot multibox detector," in in Proceedings of the European

Conference on Computer Vision, pp. 21-37, 2016.

[22] R. Chandra and P. Bahl, "MultiNet: Connecting to multiple IEEE 802.11

networks using a single wireless card," in INFOCOM 2004. Twenty-third

AnnualJoint Conference of the IEEE Computer and Communications Societies,

pp. 882-893, 2004.

[23] V. Badrinarayanan, A. Kendall, and R. Cipolla, "Segnet: A deep convolutional

encoder-decoder architecture for image segmentation," IEEE transactions on

pattern analysis and machine intelligence, vol. 39, pp. 2481-2495, 2017.

[24] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, "Enet: A deep neural

network architecture for real-time semantic segmentation," arXiv preprint

arXiv:1606.02147, 2016.

doi:10.6342/NTU201803607

 62

[25] P. O. Pinheiro, R. Collobert, and P. Dollár, "Learning to segment object

candidates," in Advances in Neural Information Processing Systems, pp.

1990-1998, 2015.

[26] H. Robbins and S. Monro, "A stochastic approximation method," The annals of

mathematical statistics, pp. 400-407, 1951.

[27] F. J. Huang, Y.-L. Boureau, and Y. LeCun, "Unsupervised learning of invariant

feature hierarchies with applications to object recognition," in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8,

2007.

[28] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv

preprint arXiv:1412.6980, 2014.

[29] J. Hu, L. Shen, and G. Sun, "Squeeze-and-excitation networks," arXiv preprint

arXiv:1709.01507, 2017.

[30] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, "How transferable are features

in deep neural networks?," in Advances in neural information processing

systems, pp. 3320-3328, 2014.

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning

applied to document recognition," Proceedings of the IEEE, vol. 86, pp.

2278-2324, 1998.

[32] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the

inception architecture for computer vision," in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 2818-2826, 2016.

[33] J. Alvarez and L. Petersson, "Decomposeme: Simplifying convnets for

end-to-end learning," arXiv preprint arXiv:1606.05426, 2016.

[34] L.-C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and A. L. Yuille, "Semantic

doi:10.6342/NTU201803607

 63

image segmentation with task-specific edge detection using cnns and a

discriminatively trained domain transform," in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 4545-4554, 2016.

[35] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Hajishirzi, "ESPNet:

Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation,"

arXiv preprint arXiv:1803.06815, 2018.

[36] R. P. Poudel, U. Bonde, S. Liwicki, and C. Zach, "ContextNet: Exploring

Context and Detail for Semantic Segmentation in Real-time," arXiv preprint

arXiv:1805.04554, 2018.

[37] X. Liu, Z. Deng, and G. Yang, "Drivable Road Detection Based on Dilated FPN

with Feature Aggregation," in Proceedings of the IEEE Conference on Tools

with Artificial Intelligence, pp. 1128-1134, 2017.

[38] M. Karaduman, "Detection of Road Shape Based Determination of the Number

of Traffic Signs and Road Lines."

[39] Z. Chen and Z. Chen, "RBNet: A Deep Neural Network for Unified Road and

Road Boundary Detection," in Proceedings of the International Conference on

Neural Information Processing, pp. 677-687, 2017.

[40] N. Garnett, S. Silberstein, S. Oron, E. Fetaya, U. Verner, A. Ayash, V. Goldner, R.

Cohen, K. Horn, and D. Levi, "Real-time category-based and general obstacle

detection for autonomous driving," in Proc. IEEE Int. Conf. Comput. Vis.

Workshop, pp. 198-205, 2017.

[41] k.-H. Tu, "A Deep Learning Based Semantic Segmentation Approach for Car

Steering on Urban Roads," Master, department of computer science and

information engineering, National Taiwan University, 2017.

doi:10.6342/NTU201803607

