國立臺灣大學理學院化學系

博士論文

Department of Chemistry College of Science National Taiwan University Doctoral Dissertation

新穎對稱與非對稱配基之 同核鎳金屬串與異核金屬串(Mo_x/M_y和 Co₂Re₂/M) 錯合物之合成與性質研究

Syntheses and Studies of Homonuclear Nickel String Complexes and Heteronuclear (Mo_x/M_y and Co₂Re₂/M) Metal String Complexes with Symmetrical and Non-symmetrical Ligands

邱成章

Cheng-Chang Chiu

指導教授:彭旭明 博士

Advisor : Shie-Ming Peng, Ph.D.

中華民國 108 年 6 月

June 2019

國立臺灣大學博士學位論文

口試委員會審定書

(論文中文題目)新穎對稱與非對稱配基之同核鎳金屬串與異核金屬串(Mox/My和

Co2Re2/M)錯合物之合成與性質研究

(論文英文題目) Syntheses and Studies of Homo-nuclear Nickel String Complexes and Hetero-nuclear (Mo_x/M_y and Co₂Re₂/M) Metal String Complexes with Symmetrical and Non-symmetrical Ligands

本論文係<u>邱成章</u>君(學號<u>D01223108</u>)在國立臺灣大學化學 系完成之博士學位論文,於民國<u>108</u>年<u>6</u>月<u>4</u>日承下列考試委 員審查通過及口試及格,特此證明。

口試委員:	3/6000	(
	(指導教授)	
	产于 天江星	主义之
	使缓剧	法保
	på &	36
	系主任、所長	(簽章)

套句唐宋古文八大家之首<u>韓愈</u>先生於《師說》所言:「學海無涯,唯勤是 岸」,希望能用這句話勉勵自己能無時無刻都抱持著努力學習的態度去面對新的 事物,並強化自己的專業知識與技能。

回顧自己的研究生涯,在大三時進入實驗室作專題研究,轉眼間博士班生涯 也即將要落幕了。在博士班生涯中,感謝我的指導教授<u>彭旭明</u>院士,研究期間提 供我良好和自在的研究環境,並且在研究領域上對於專業知識給予的指導和對於 實驗上給予十分的信任與大力的支持,感謝老師在我的研究生涯中扮演著推手的 角色;感謝<u>林天送</u>教授教導我有關電子順磁共振的專業知識以及在學術期刊發表 時給予的幫忙及適當的提醒與建議,讓學術期刊得以更趨近完整;感謝口試委員 <u>陳俊顯</u>教授、金<u>必耀</u>教授及<u>工志傑</u>教授對於本論文提供許多寶貴的建議和修正; 感謝我的碩士班指導教授<u>呂世伊</u>教授和<u>王志傑</u>教授於東吳大學期間在專業知識 上給予的培養以及在研究上的建議,使我能夠建立好研究基礎並勇敢向前邁進。

感謝<u>李錦祥</u>大哥和<u>劉怡宏</u>大哥在單晶結構解析給予的幫忙,尤其是一直幫忙 上機並傳授解晶技巧的李大哥,在您的幫忙下我才得以將結構數據處理完整;感 謝於博士班期間給予我建議的<u>紹安</u>學長和<u>銘全</u>學長,你們給的建議真的能夠為實 驗室成員的研究打了一注強心劑;感謝已畢業的<u>承孝</u>學長、<u>景鈞</u>學長、<u>柏賢</u>學長、 <u>長霖</u>學長、<u>耿民</u>學長和<u>柏蓉</u>學姊在過去給予實驗上的幫忙和建議;感謝我實驗桌 旁曾經的戰友的<u>持衡</u>,有機會的話再去棒球場丟個棒球吧;感謝已畢業的<u>崇翰</u>、 <u>蕙甄、奕安、昫峰、士宏、伊庭、冠廷、依潔、昱誠、思絜、健鴻</u>,你(妳)們讓 這間實驗室永遠保持歡笑,讓我們才有動力做好每個實驗;感謝老戰友<u>偉捷</u>和<u>惟</u> 程,感謝<u>惟程</u>在實驗室後期陪著我一起度過無數個做實驗的下午及夜晚,無話不 聊的日子我一輩子都不會忘,感謝<u>偉捷</u>陪我度過一起拼資格考的日子;感謝<u>丞偉</u> 在我研究的最後一年還有你可以四處亂聊,你具有的俐落且果斷的執行力真的令 我十分欣賞;感謝<u>吴諠</u>不辭辛勞大老遠從臺大跑回中研院幫我送測樣品,讓我的 期刊可以準時發表;感謝<u>張慕傑</u>助理教授實驗室的<u>聖翔、子泓、琳潔和凱彥</u>,謝 謝你們在我研究時間最後一年的陪伴,尤其是具有清晰思路和始終抱著每天都要 看文獻的<u>聖翔</u>,你的精神真的令我感到十分佩服,以及你那能將所具有的知識以 清楚明確的表達給對方了解更是我該跟你學習的地方。感謝我的老朋友:<u>建宏</u>、 <u>富傑、文君</u>以及<u>佳楷</u>,謝謝你(妳)們在我的研究生涯階段給予的祝福及幫助,希 望有時間能夠再聚一聚。

感謝我最親愛的家人,感謝<u>爸爸和媽媽</u>在我求學過程中始終給予鼓勵,讓我 感覺猶如背後有兩座大山給予堅定的信念與支持,感謝我的<u>老弟</u>在工作閒暇時來 陪我吃晚餐聊聊天,真的很高興你的工作剛好在新北市,感謝<u>阿嬤</u>給予鼓勵與支 持,妳的孫子終於要從臺大畢業了,感謝<u>大姑姑和三姑姑</u>特地從台南搭高鐵來參 加我的畢業典禮。

最後,謝謝大家。

成章

2019年6月於臺大

中文摘要

本論文主要探討鎳金屬串錯合物的配基效應以及合成以雙核鉬金屬或鍊金屬為主的新型異核金屬串錯合物並探討其鍵結資訊及所具有的特性。

於本研究中主要分為兩個部分,第一部分為合成螺旋型五核鎳金屬串錯合物 並採用下列四條不對稱型的有機配基 : (1)甲基苯磺醯基吡啶萘啶二胺 (N-(p-tolyl-sulfonyl)pyridylnaphthyridyl diamine, H₂Tspnda, L1)和(2)甲基苯磺醯基苯 環吡啶萘啶二胺(N-(p-tolyl-sulfonyl)phenylpyridylnaphthyridyl diamine, H₂Tsphpnda, L2)以及經過在吡啶環上 meta 位置進行苯環修飾的(3)甲基磺醯基吡啶萘啶二胺 (N-(methyl-sulfonyl)pyridylnaphthyridyl diamine, H₂Mspnda, L3)和(4)甲基苯磺醯基 苯 環 吡 啶 萘 啶 二 胺 (N-(methyl-sulfonyl)phenylpyridylnaphthyridyl diamine, H₂Msphpnda, L4)。為了探討所合成的金屬串錯合物的特性,本論文採用固態 X-ray 單晶結構解析、磁化率、電子順磁共振、循環伏安法、電子吸收光譜、紅外光譜、 核磁共振以及元素分析等技術進行分析鑑定與討論。第二部分則為合成異核金屬 串錯合物,主要採用實驗室傳統對稱型的三吡啶二胺(tripyridyldiamine, H₂tpda, L5) 配基,也使用不對稱配基 L1 和 L2 進行異核金屬串的合成並探討其特性和潛在應 用性。

在第一部分,藉由高溫熔融茶作為溶劑進行反應可得到一系列五個鎳金屬帶 正九價[Nis]⁹⁺的鎳金屬串錯合物,分別為[Ni5(Tspnda)4](PF6)**1**、[Ni5(Tsphpnda)4](PF6) **3**、[Ni5(Mspnda)4](PF6)**6**和[Ni5(Msphpnda)4](PF6)**9**,對於這四個金屬串錯合物,其 顯示出具有較短的 Ni-Ni 鍵長:錯合物 **1**為 2.2646(6)Å;錯合物 **3**為 2.2943(7)Å; 錯合物 **6**為 2.2436(11)Å;錯合物 **9**為 2.2322(8)Å,並且由 Ni-N 的鍵長皆發現大 於 2.0Å,這顯示這四個錯合物中具有金屬-金屬作用力於混價單元(mixed-valence unit [Ni2]³⁺, S = 3/2)上。此外,最特別的結果在於當甲基苯磺醯基置換為甲基磺醯 基進行配基微調時,混價單元由原本座落在 Ni(1)-Ni(2)遷移到 Ni(2)-Ni(3)的位置。 為了探尋這個結果,本研究採用磁化率和電子順磁共振分析進而探討這四個還原

i

一個電子的五核鎳金屬串錯合物的磁性和鍵結特性,由電子順磁共振的結果可以 發現混價單元 Ni(1)-Ni(2)遷移到 Ni(2)-Ni(3)會使得金屬串整體電子結構更趨於對 稱,導致其在零場分裂參數上會有所不同,而這也藉由 EPR 的光譜擬合得到證實。 藉由循環伏安法,可以發現具有四對可逆的氧化還原對並可藉由[FeCp2](PF6)氧化 一個電子進而得到五個鎳金屬帶正十價[Nis]10+的金屬串錯合物,分別為 $[Ni_5(Tspnda)_4(H_2O)_2](PF_6)_2 2 \cdot [Ni_5(Tsphpnda)_4](PF_6)_2 4 \cdot [Ni_5(Mspnda)_4](CF_3SO_3)_2 8$ 和[Nis(Msphpnda)4](PF6)211。今人驚訝的是,氧化一個電子後的五核鎳金屬串具有 不同的電子結構,錯合物2主要具有來自於兩終端S=1的自旋中心而呈現反鐵磁 的特性, 錯合物 4、8 和 11 則因為所具有的鎳金屬皆為正二價(S=0)並呈現逆磁特 性。因此,對於本論文討論的五核鎳金屬串錯合物,具有三項重要的發現:(1)對 於還原一個電子[Nis]⁹⁺的金屬串錯合物,其呈現一個少見的以對稱型結構、不對稱 型的電子密度分佈構型,並且推測可能的原因來自於晶體堆疊所導致的影響;(2) 對於氧化一個電子[Ni5]¹⁰⁺的錯合物,化合物 4、8 和 11 呈現文獻中第一個五核錄 金屬串具有鎳金屬以全低自旋組態(S=0)構成的錯合物;(3)由於本實驗室在過去認 為對於配基的微調並不會對金屬串的電子結構有顯著的變化,然而,隨著甲基苯 磺醯基置換為甲基磺醯基,其混價單元由原本的 Ni(1)--Ni(2)遷移到 Ni(2)--Ni(3), 並且藉由電子順磁共振的光譜擬合所得到的零場分裂參數(D和E值)來獲得證實, 這也突破了過去實驗室對於配基進行取代基微調不會對金屬串有明顯電子結構變 化的觀念,而這些發現也顯示出對於配基的微調有助於探討配基效應和其鍵結特 性。

在第二部分則報導異核金屬串錯合物,主要藉由以雙核鉬金屬或雙核錄金屬為主並與其他金屬(如:鎳、鈷或釘金屬)進行合成,對於鉬系列的金屬錯合物,所 得到的皆為非直線構型存在的金屬串錯合物,如: [NiMo2Ni(Tspnda)4] 14、 [CoMo2Co(Tspnda)4] 15和[Mo4(Tsphpnda)3(HTsphpnda)(OAc)] 18,由於當反應處於 高溫時會使得鉬金屬具有空氣敏感的現象,容易造成鉬金屬氧化並導致低產率和 得到非直線構型的錯合物。然而,透過質譜以及紅外線光譜的分析可以證實具有

ii

形成五核的鉬/鎳金屬串錯合物 [Mo4Ni(Tspnda)4](PF6)2 16 以及 [Mo4Ni(Tsphpnda)4](PF6)2 17,但並無法得到品質較好的晶體去執行單晶繞射解析。 對於錄系列錯合物[Co2Re2(tpda)4Cl](PF6) 19和[Co2Re2(tpda)4(NCS)](PF6) 20,主要 呈現直線型的金屬串錯合物,但是於終端位置仍有四片未配位的吡啶環懸掛於金 屬串外圍,因此,可以藉由加入釘金屬鹽類來合成[Co2Re2Ru(tpda)4Cl2](PF6)2 21, 但由於晶體太小且品質較差,導致無法藉由單晶結構解析來探討其鍵結資訊與相 關特性,僅能由質譜證實其有成功合成出來。

因此,由於金屬串本身所具有卓越的物理及化學特性,使得這些直線型的金 屬串錯合物可扮演著電線的角色並期望在未來可以製程為分子電線或分子開關等 電子設備。

Abstract

The scope of this thesis consists of two parts : (1) investigation of ligand effects on pentanickel string complexes, and (2) synthesis and characterization of novel heteronuclear metal string complexes containing dimolybdenum or dirhenium unit as the metal precursors.

The first part is about the helically pentanuclear nickel string complexes. We employ the following ligands synthesis of four (1)to N-(p-tolyl-sulfonyl)pyridylnaphthyridyl diamine (H₂Tspnda, L1), (2)N-(p-tolyl-sulfonyl)phenylpyridylnaphthyridyl diamine (H2Tsphpnda, L2) and the phenyl-substituted ligands of (3) N-(methyl-sulfonyl)pyridylnaphthyridyl diamine $(H_2M_{spnda}, L3)$ and (4) N-(methyl-sulfonyl)phenylpyridylnaphthyridyl diamine (H₂Msphpnda, L4). We apply the following techniques to characterize the properties of these complexes : solid state X-ray single crystal diffraction (XRD), magnetic susceptibility (SQUID), electron paramagnetic resonance (EPR), cyclic voltammograms (CV), electron absorption spectra (UV-Vis and Near-IR), infrared spectroscopy, nuclear magnetic resonance (NMR) and element analysis (EA).

The X-ray structure of one-electron-reduced $[Ni_5]^{9+}$ complexes $[Ni_5(Tspnda)_4](PF_6)$ **1**, $[Ni_5(Tsphpnda)_4](PF_6)$ **3**, $[Ni_5(Mspnda)_4](PF_6)$ **6** and $[Ni_5(Msphpnda)_4](PF_6)$ **9** show remarkably shorter Ni–Ni bond distance (2.2646(6) for **1**, 2.2943(7) for **3**, 2.2436(11) for **6** and 2.2322(8) Å for **9**), indicative of a partial metal-metal bond interaction in the mixed-valence $[Ni_2]^{3+}$ (S = 3/2) unit. The most striking result is that the $[Ni_2]^{3+}$ site migrates from Ni(1)–Ni(2) to Ni(2)–Ni(3) when we replace p-tolyl-sulfonyl group with methyl-sulfonyl group. To investigate this result, we apply the magnetic susceptibility and EPR measurement to examine the magnetic properties of these four $[Ni_5]^{9+}$ -core pentanickel strings and study the bonding nature of the mixed-valence $[Ni_2]^{3+}$ unit. The results of EPR measurements reflect the migration of mixed-valence site and the change of symmetry, which is confirmed by the spectral parameters of zero-field splitting (Dand E values) in EPR simulation.

Furthermore, cyclic voltammetry measurements show four reversible redox waves and display the lower potentials of the $[Ni_5]^{9+}$ complexes. The unusual lower potentials facilitate one-electron oxidation of these four complexes to $[Ni_5]^{10+}$ -core forms : $[Ni_5(Tspnda)_4(H_2O)_2](PF_6)_2$ **2**, $[Ni_5(Tsphpnda)_4](PF_6)_2$ **4**, $[Ni_5(Mspnda)_4](CF_3SO_3)_2$ **8** and $[Ni_5(Msphpnda)_4](PF_6)_2$ **11**. Thus, we perform the oxidation reaction of these $[Ni_5]^{9+}$ -core complexes to treat with $[FeCp_2](PF_6)$. Surprisingly, the oxidized $[Ni_5]^{10+}$ counterparts behave differently : complex **2** exhibits an antiferromagnetic interaction with J = -13.59 cm⁻¹ between the two terminal Ni ions, while the others (complexes **4**, **8** and **11**) display the diamagnetic property as all of the Ni²⁺ ions are in low-spin (S = 0) states.

We present the following important findings in first part of the thesis : (1) For $[Ni_5]^{9+}$ -core complexes, they present a rare example of the effect of crystal packing on the symmetric molecular structure yielding unsymmetric electronic distribution. (2) The magnetic susceptibility, EPR and Near-IR measurement confirm the spin state is S = 3/2 (a mixed-valence state) for these complexes. (3) For $[Ni_5]^{10+}$ -core complexes, complexes **4**, **8** and **11** are the *first* examples of all Ni²⁺ ions in null spin configuration for pentanickel chains. (3) Migration of mixed-valence sites from Ni(1)–Ni(2) to Ni(2)–Ni(3) when we replace p-tolyl-sulfonyl group with methyl-sulfonyl group. This finding shows roles of ligand played in bonding nature for the novel metal string complexes.

The second part of the thesis is the synthesis and the characterization of the novel heteronuclear metals (molybdenum or rhenium) with other conventional metal ions (nickel, cobalt or ruthenium). We employ symmetrical tripyridyldiamine (H₂tpda, **L5**)

ligand and asymmetric ligands (L1 and L2) to explore their properties and potential application. For molybdenum complexes, we obtain the non-linear metal string 14, [CoMo₂Co(Tspnda)₄] 15 complexes [NiMo₂Ni(Tspnda)₄] and [Mo₄(Tsphpnda)₃(HTsphpnda)(OAc)] 18. Since the molybdenum complexes are air-sensitive especially at high temperature, we obtain low yield and non-linear metal complexes. However, we can synthesize the linear molybdenum-based metal string complexes [Mo₄Ni(Tspnda)₄](PF₆)₂ **16** and [Mo₄Ni(Tsphpnda)₄](PF₆)₂ **17**. Even though the identities are supported by Mass and IR spectroscopy, but we are not able to obtain a good quality crystal form for X-ray diffraction measurement. On the other hand, the rhenium series complexes [Co₂Re₂(tpda)₄Cl](PF₆) **19** and [Co₂Re₂(tpda)₄(NCS)](PF₆) 20 present a linear metal chain with four pyridine rings hanging out from the metal string complexes. We treat with the ruthenium salt [Ru(COD)Cl₂]_n to synthesize $[Co_2Re_2Ru(tpda)_4Cl_2](PF_6)_2$ 21, but we could not obtain good quality of crystal for crystal structure determination to explore the bonding nature and their properties.

Overall, these extended metal-atom chain (EMAC) impersonate electric wires and we expect them to serve as molecular wires and switches in the manufacture of electronic devices because of their exotic physical and chemical properties.

vi

日録	
中文摘要i	
Abstractiv	
目錄vii	
圖目錄xiii	
表目錄xix	
第一章 緒論1	
1-1 前言1	
1-2 分子導線	
1-2-1 無架橋配基之金屬串錯合物5	
1-2-2 經架橋配基之金屬串錯合物7	
1-3 多氮配基及其錯合物11	
1-3-1 多吡啶胺系統14	
1-3-2 多萘啶胺系統15	
1-3-3 多萘啶吡啶胺系統16	
1-3-4 吡啶噻唑胺配基18	
1-4 金屬-金屬鍵結理論	
1-4-1 雙核金屬錯合物之金屬-金屬鍵結	
1-4-2 直線型三核過渡金屬錯合物之金屬-金屬鍵結	
1-4-3 直線型五核過渡金屬錯合物之金屬-金屬鍵結	
1-5 直線型同核金屬串錯合物	
1-5-1 直線型異核金屬串錯合物	
1-5-2 不對稱配基之異構物	

1-6 研究動機
第二章 實驗部分41
2-1 試藥與儀器
2-1-1 實驗藥品
2-1-2 實驗儀器
2-1-3 化合物缩窝及编號名稱45
2-2 配基合成
2-2-1 配基合成流程圖
2-2-2 前驅物製備
Mo ₂ (OAc)4 雙核鉬金屬起始物之合成
Re2(OAc)4Cl2 雙核錸金屬起始物之合成 49
(A) 2-Amino-7-hydroxy-1,8-naphthyridine
(B) 2,7-Dihydroxy-1,8-naphthyridine
(C) 2,7-Dichloro-1,8-naphthyridine
(D) 2-Amino-7-chloro-1,8-naphthyridine
(E) 2-Amino-5-phenylpyridine
(F) 2-Chloro-7-(pyridylamino)-1,8-naphthyridine (P1)
(G) 2-Chloro-7-(5-phenylpyridylamino)-1,8-naphthyridine (P2)
2-2-3 配基合成
(H) N-(p-tolyl-sulfonyl)pyridylnaphthyridyl diamine (H ₂ Tspnda, L1) 57
(I) N-(p-tolyl-sulfonyl)phenylpyridylnaphthyridyl diamine (H ₂ Tsphpnda, L2) 58
(J) N-(methyl-sulfonyl)pyridylnaphthyridyl diamine (H2Mspnda, L3) 59
(K) N-(methyl-sulfonyl)phenylpyridylnaphthyridyl diamine (H ₂ Msphpnda, L4) 60
(L) Tripyridyldiamine (H ₂ tpda, L5)
2-3 金屬錯合物之合成62
2-3-1 同核金屬串錯合物之合成62

(1) $[Ni_5(Tspnda)_4](PF_6)$	
(2) $[Ni_5(Tspnda)_4(H_2O)_2](PF_6)_2$	
(3) [Ni ₅ (Tsphpnda) ₄](PF ₆)	
(4) $[Ni_5(Tsphpnda)_4](PF_6)_2$	
(5) [Ni ₅ (Tspnda) ₄](BF ₄)	
(6) [Ni ₅ (Mspnda) ₄](PF ₆)	
(7) [Ni ₄ (Mspnda) ₄ (H ₂ O) ₂]	
(8) [Ni5(Mspnda)4](CF3SO3)2	
(9) [Ni ₅ (Msphpnda) ₄](PF ₆)	
(10) [Ni ₄ (Msphpnda) ₄ F ₂](Ni ₂ Cl ₆ O)	
(11) [Ni ₅ (Msphpnda) ₄](PF ₆) ₂	
(12) [Co ₅ (Tspnda) ₄](PF ₆) ₂	
(13) [Cr4(Tspnda)4]	
2-3-2 異核金屬串錯合物之合成	
(14) [NiMo ₂ Ni(Tspnda) ₄]	
(15) [CoMo ₂ Co(Tspnda) ₄]	
(16) [Mo ₄ Ni(Tspnda) ₄](PF ₆) ₂	
(17) [Mo ₄ Ni(Tsphpnda) ₄](PF ₆) ₂	
(18) [Mo ₄ (Tsphpnda) ₃ (HTsphpnda)(OAc)]	
(19) [Co ₂ Re ₂ (tpda) ₄ Cl](PF ₆)	
(20) $[Co_2Re_2(tpda)_4(NCS)](PF_6)$	
(21) $[Co_2Re_2Ru(tpda)_4Cl_2](PF_6)_2$	
2-4 單晶數據之收集與整理	
2-4-1 [Ni ₅ (Tspnda) ₄](PF ₆) (complex 1)	
2-4-2 [Ni ₅ (Tspnda) ₄ (H ₂ O) ₂](PF ₆) ₂ (complex 2)	
2-4-3 [Ni ₅ (Tsphpnda) ₄](PF ₆) (complex 3)	
2-4-4 [Ni ₅ (Tsphpnda) ₄](PF ₆) ₂ (complex 4)	

	112	5
	2-4-5 [Ni ₅ (Tspnda) ₄](BF ₄) (complex 5)	85
	2-4-6 [Ni ₅ (Mspnda) ₄](PF ₆) (complex 6)	86
	2-4-7 [Ni ₄ (Mspnda) ₄ (H ₂ O) ₂] (complex 7)	86
	2-4-8 [Ni ₅ (Mspnda) ₄](CF ₃ SO ₃) ₂ (complex 8)	87
	2-4-9 [Ni ₅ (Msphpnda) ₄](PF ₆) (complex 9)	87
	2-4-10 [Ni ₄ (Msphpnda) ₄ F ₂](Ni ₂ Cl ₆ O) (complex 10)	88
	2-4-11 [Ni ₅ (Msphpnda) ₄](PF ₆) ₂ (complex 11)	88
	2-4-12 [NiMo ₂ Ni(Tspnda) ₄] (complex 14)	89
	2-4-13 [CoMo ₂ Co(Tspnda) ₄] (complex 15)	89
	2-4-14 [Mo ₄ (Tsphpnda) ₃ (HTsphpnda)(OAc)] (complex 18)	90
	2-4-15 [Co ₂ Re ₂ (tpda) ₄ Cl](PF ₆) (complex 19)	90
	2-4-16 [Co ₂ Re ₂ (tpda) ₄ (NCS)](PF ₆) (complex 20)	91
第	三章 結果與討論	€2
	3-1 同核-異核金屬串之晶體結構解析	92
	3-1-1 [Ni5(Tspnda)4](PF6) (1)晶體結構解析	92
	3-1-2 [Ni5(Tspnda)4(H2O)2](PF6)2 (2)晶體結構解析	94
	3-1-3 [Ni5(Tsphpnda)4](PF6) (3)晶體結構解析	96
	3-1-4 [Ni5(Tsphpnda)4](PF6)2 (4)晶體結構解析	98
	3-1-5 [Ni5(Tspnda)4](BF4) (5)晶體結構解析10	01
	3-1-6 [Ni5(Mspnda)4](PF6) (6)晶體結構解析10	03
	3-1-7 [Ni4(Mspnda)4(H2O)2] (7)晶體結構解析10	05
	3-1-8 [Ni5(Mspnda)4](CF3SO3)2 (8)晶體結構解析10	07
	3-1-9 [Ni5(Msphpnda)4](PF6) (9)晶體結構解析10	09
	3-1-10 [Ni4(Msphpnda)4F2](Ni2Cl6O) (10) 晶體結構解析1	11
	3-1-11 [Ni5(Msphpnda)4](PF6)2 (11)晶體結構解析1	14
	3-1-12 [NiMo2Ni(Tspnda)4] (14) 晶體結構解析1	16

3-1-13 [CoMo ₂ Co(Tspnda) ₄] (15) 晶體結構解析117
3-1-14 [Mo4(Tsphpnda)3(HTsphpnda)(OAc)] (18) 晶體結構解析 119
3-1-15 [Co ₂ Re ₂ (tpda) ₄ Cl](PF ₆) (19) 晶體結構解析
3-1-16 [Co ₂ Re ₂ (tpda) ₄ (NCS)](PF ₆) (20) 晶體結構解析 123
3-2 銛金屬(Co)與鉻金屬(Cr)及異核金屬串之合成與探討126
3-2-1 [Co ₅ (Tspnda) ₄](PF ₆) ₂ (12)之合成
3-2-2 [Cr4(Tspnda)4] (13)之合成127
3-2-3 [Mo4Ni(Tspnda)4](PF6)2 (16)之合成
3-3 具混價單元鎳金屬串之結構綜合討論與比較130
3-4 磁化率(Magnetic Susceptibility)分析135
3-4-1 [Ni5(Tspnda)4](PF6) (1)之磁性分析140
3-4-2 [Ni5(Tspnda)4(H2O)2](PF6)2 (2)之磁性分析141
3-4-3 [Ni5(Tsphpnda)4](PF6) (3)之磁性分析143
3-4-4 [Ni5(Tspnda)4](BF4) (5)之磁性分析144
3-4-5 [Ni5(Mspnda)4](PF6) (6)之磁性分析145
3-4-6 [Ni4(Mspnda)4(H2O)2] (7) 之磁性分析146
3-4-7 [Ni5(Msphpnda)4](PF6) (9)之磁性分析148
3-4-8 [NiMo2Ni(Tspnda)4] (14)之磁性分析149
3-4-9 [CoMo ₂ Co(Tspnda) ₄] (15)之磁性分析150
3-5 電子順磁共振(Electron Paramagnetic Resonance, EPR)分析
3-5-1 [Ni ₅ (Tspnda) ₄](PF ₆) (1) \ [Ni ₅ (Tsphpnda) ₄](PF ₆) (3) \ [Ni ₅ (Mspnda) ₄](PF ₆) (6)
和[Ni ₅ (Msphpnda) ₄](PF ₆) (9)之電子自旋共振分析154
3-5-2 [Ni5(Tspnda)4(H2O)2](PF6)2 (2)之電子自旋共振分析157
3-6 具混價單元鎳金屬串之結構、磁化率與 EPR 之綜合討論與比較158
3-7 電化學分析 161
3-7-1 [Ni5(Tspnda)4](PF6) (1)和[Ni5(Tspnda)4(H2O)2](PF6)2 (2)之電化學分析與討
論162

3-7-2 [Ni5(Tsphpnda)4](PF6) (3)和[Ni5(Tsphpnda)4](PF6)2 (4)之電化學分析與討
論
3-7-3 [Ni5(Mspnda)4](PF6) (6)和[Ni5(Msphpnda)4](PF6) (9)之電化學分析與討論
3-7-4 [NiMo2Ni(Tspnda)4] (14)和[CoMo2Co(Tspnda)4] (15)之電化學分析與討論
3-7-5 [Mo4(Tsphpnda)3(HTsphpnda)(OAc)] (18)之電化學分析與討論169
3-7-6 [Co ₂ Re ₂ (tpda) ₄ Cl](PF ₆) (19)和[Co ₂ Re ₂ (tpda) ₄ (NCS)](PF ₆) (20)之電化學分 析與討論
3-8 電子吸收光譜分析171
3-8-1 [Ni5(Tspnda)4](PF6) (1)、[Ni5(Tspnda)4(H2O)2](PF6)2 (2)和 H2Tspnda 配基之 電子吸收光譜分析
3-8-2 [Niz(Tenhanda)](PEc) (3)、[Niz(Tenhanda)](PEc)) (4)秋 HaTenhanda 配其
之電子吸收光譜分析
3-8-3 [Ni5(Mspnda)4](PF6) (6)和 H2Mspnda 配基之電子吸收光譜分析 176
3-8-4 [Ni4(Mspnda)4(H2O)2] (7)和 H2Mspnda 配基之電子吸收光譜分析 178
3-8-5 [Ni ₅ (Msphpnda) ₄](PF ₆) (9)、[Ni ₅ (Msphpnda) ₄](PF ₆) ₂ (11)和 H ₂ Msphpnda 配 基之電子吸收光譜分析
3-8-6 [NiMo2Ni(Tspnda)] (14)、[CoMo2Co(Tspnda)] (15)和 H2Tspnda 配基之電
子吸收光譜分析
3-8-7 [Co2Re2(tpda)4Cl](PF6) (19)、[Co2Re2(tpda)4(NCS)](PF6) (20)和 H2tpda 配基
之電子吸收光譜分析
3-8-8 具混價單元金屬串化合物之近紅外光電子吸收光譜分析
第四章 結論與未來工作187
參考文獻190
附錄 光譜和晶體數據

圖目錄

	圖目錄
圖	1-1 分子導線奈米化示意圖 ^[6a]
圖	1-2 含 Pt 金屬之 n[Pt(CN)4] ²⁻ 錯合物經過部分氧化而成為[Pt(CN)4]n ^{1.7-[12]} 5
圖	1-3 [Pt4(NH3)8(C5H6NO)4](NO3)5之單晶結構及其相關數據 ^[13] 6
圖	1-4 (a) 一維無限延伸銠金屬錯合物[Rh(MeCN)4(BF4)1.5]x之單晶結構; (b) 由 c
	軸方向之結構堆積圖 ^[14] 6
圖	1-5 一維鈀金屬串之單晶結構: (a) [Pd4(µ4-DPOT)2(pyridine)] ²⁺ ; (b)
	$[Pd_4(\mu_4-perylene)_2(MeCN)]^{2+[15]}$
圖	1-6 [Pd ₁₀ (β-carotene) ₂][B(Ar ^F) ₄]之晶體結構圖 ^[16] 8
圖	1-7 雙核鉬搭配搭配銠金屬和銥金屬之單晶結構:(a)
	[Mo ₂ Rh ₂ (PNO) ₄ (MeCN) ₄];(b) [Mo ₂ Ir ₂ (PNO) ₄ (MeCN) ₄] ^[17]
圖	1-8 [Pd ₈ (µ-dpmppm) ₄ L ₂](BF ₄) ₄ (L = 2,6-xylyl isocyanide)之單晶結構圖 ^[18] 9
圖	1-9 HSNO之配基結構和[Mo2Li(SNO)4(py)(Cl)]之單晶結構 ^[19] 9
圖	1-10 多吡啶胺系統之分子導線示意圖 ^[6a] 10
圖	1-11 二吡啶胺與銅金屬和鈀金屬配位之全反向式配位結構 ^[25] 11
圖	1-12 (a) T. J. Hurley 預測之鎳三核金屬鉗合物; (b) B. Hathaway 由單晶結構所
	得到的[Ni ₃ (µ ₃ -dpa) ₄ Cl ₂]之分子結構圖 ^[26-27] 12
圖	1-13 二吡啶胺配基經由萘燒法組裝形成四螺旋之直線型金屬串錯合物13
圖	1-14 多吡啶胺配基之構型13
圖	1-15 二吡啶胺(Hdpa)之氮原子位向模式13
圖	1-16 多吡啶胺系統之中已得到單晶結構之最長金屬串錯合物14
圖	1-17 五吡啶四胺因配基扭轉與金屬離子配位之結構圖 ^[20e] 15
圖	1-18 (a) [Ni2(ny)4Br2](BPh4)之單晶結構圖;(b) 雙核鎳金屬之分子軌域圖 ^[31] 15
圖	1-19 多萘啶胺系統之十一核錄金屬串錯合物 ^[32] 16
圖	1-20 多萘啶吡啶胺系統中最基礎的配基, (a) H ₂ bpyany 配基 ^[33] ; (b) H ₂ bnapy

xiii

		12 2	
		配基 ^[34] ; (c) Hpyany 配基 ^[35] 17	5
圖	1-21	吡啶環與噻唑環於金屬串錯合物中失序的現象[36]	3
圖	1-22	(a) (2,2)- <i>cis</i> form [Ni ₃ (mpta) ₄ (NCS) ₂] ^{<i>‡</i>} (b) (2,2)- <i>cis</i> form [Ni ₃ (mpta) ₄ (CN) ₂]	A ISIN
		的單晶繞射結構圖 ^[37] 19)
圖	1-23	[Re ₂ Cl ₈] ²⁻ 錯合物之單晶結構解析圖 ^[39])
圖	1-24	金屬離子之間透過五種 d 軌域所生成的鍵結軌域(bonding orbital)21	l
圖	1-25	雙核金屬錯合物之金屬-金屬四重鍵作用力 ^[39] 23	3
圖	1-26	雙核金屬錯合物之電子數與鍵級關係圖 ^[38] 24	1
圖	1-27	在 L ₄ M-ML ₄ 系統中內部平均扭轉角度 χ _{av} 的定義圖示 ^[38]	5
圖	1-28	內部平均扭轉角度和 δ 鍵的關係 $^{[38]}$ 25	5
圖	1-29	直線型三核金屬錯合物之鍵結、反鍵結和非鍵結軌域圖 ^[42]	7
圖	1-30	直線型三核金屬串定性分子軌域能階圖 ^[42] 28	3
圖	1-31	直線型三核金屬串錯合物鍵序趨勢圖 ^[42])
圖	1-32	[M ₃ (dpa) ₄ Cl ₂]之定性分子軌域模型 ^[42])
圖	1-33	直線型五核金屬串錯合物之 d 軌域混成鍵結模型 ^[38])
圖	1-34	直線型五核金屬串錯合物之定性分子能階 ^[38])
圖	1-35	叱啶胺配基系列之金屬串錯合物示意圖(X = Cl, NCS)	l
圖	1-36	(a) [Ru ₃ (µ ₃ -dpa) ₄ Cl ₂]之單晶結構 ^[44] ; (b) [Rh ₃ (µ ₃ -dpa) ₄ Cl ₂]之單晶結構 ^[44] 32	2
圖	1-37	異三核金屬串系統中金屬的排列類型示意圖	2
圖	1-38	(a) [CuPdCu(dpa)4Cl2]和(b) [CuPtCu(dpa)4Cl2]異三核金屬串錯合物之結構	
		[47]	3
圖	1-39	[MoWCr(dpa)4Cl2]之合成與單晶結構示意圖 ^[48]	1
圖	1-40	(a) [MnNiMn(dpa)4Cl2]和(b) [FePdFe(dpa)4Cl2]之單晶結構圖 ^[49]	1
圖	1-41	[Ru2Cu(dpa)4Cl2]金屬串錯合物之結構示意圖 ^[50]	5
圖	1-42	[NiCoRh(dpa)4Cl2] 錯合物之單晶結構圖 ^[51]	5
圖	1-43	meso 構型之五核異金屬串錯合物之單晶結構解析 ^[55]	5

			A STORE
圖	1-44	不對稱配基所產生出的四種結構異構物 ^[56]	
圖	1-45	四螺旋金屬串錯合物之結構異構物分布機率[56]	
圖	3-1 [N	Ni5(Tspnda)4](PF6) (1)之單晶繞射結構	
圖	3-2 [N	Ni5(Tspnda)4](PF6)以(2,2)-trans 形式配位之示意圖	
圖	3-3 [N	Ni5(Tspnda)4](PF6) (1)之相關鍵長圖示	
圖	3-4 [N	Ni5(Tspnda)4(H2O)2](PF6)2(2)之晶體結構圖	
圖	3-5 [N	Ni5(Tspnda)4(H2O)2](PF6)2以(2,2)-trans 形式配位之示意圖	
圖	3-6 [N	Ni5(Tspnda)4(H2O)2](PF6)2 (2)之相關鍵長圖示	
圖	3-7 [N	Ni5(Tsphpnda)4](PF6) (3)之晶體結構圖	
圖	3-8 [N	Ni5(Tsphpnda)4](PF6)以(2,2)-trans 形式配位之示意圖	
圖	3-9 [N	Ni5(Tsphpnda)4](PF6) (3)之相關鍵長圖示	
圖	3-10 [[Ni5(Tsphpnda)4](PF6)2(4)之晶體結構圖	
圖	3-11 [[Ni5(Tsphpnda)4](PF6)2以(2,2)-trans 形式配位之示意圖	
圖	3-12 [[Ni5(Tsphpnda)4](PF6)2(4)之相關鍵長圖示	100
圖	3-13 [[Ni5(Tspnda)4](BF4)(5)之晶體結構圖	101
圖	3-14 [[Ni ₅ (Tspnda) ₄](BF ₄)以(2,2)- <i>trans</i> 形式配位之示意圖	102
圖	3-15 [[Ni5(Tspnda)4](BF4) (5)之相關鍵長圖示	102
圖	3-16 [[Ni5(Mspnda)4](PF6) (6)之單晶繞射結構	103
圖	3-17 [[Ni5(Mspnda)4](PF6)以(2,2)-trans 形式配位之示意圖	104
圖	3-18 [[Ni5(Mspnda)4](PF6) (6)之相關鍵長圖示	105
圖	3-19 [[Ni4(Mspnda)4(H2O)2] (7)之晶體結構圖	105
圖	3-20 [[Ni4(Mspnda)4(H2O)2]以(2,2)-cis 形式配位之示意圖	106
圖	3-21 [[Ni4(Mspnda)4(H2O)2] (7)之相關鍵長圖示	107
圖	3-22 [[Ni5(Mspnda)4](CF3SO3)2 (8)之單晶繞射結構	107
圖	3-23 [[Ni5(Mspnda)4](CF3SO3)2以(2,2)-trans 形式配位之示意圖	108

圖	3-24	[Ni5(Mspnda)4](CF3SO3)2 (8)之相關鍵長圖示1	09
圖	3-25	[Ni5(Msphpnda)4](PF6)(9)之單晶繞射結構1	09
圖	3-26	[Ni ₅ (Msphpnda) ₄](PF ₆)以(2,2)-trans 形式配位之示意圖1	10
圖	3-27	[Ni5(Msphpnda)4](PF6) (9)之相關鍵長圖示1	11
圖	3-28	[Ni4(Msphpnda)4F2](Ni2Cl6O) (10)之單晶繞射結構1	11
圖	3-29	[Ni ₄ (Msphpnda) ₄ F ₂] ²⁺ 以(2,2)- <i>cis</i> 形式配位之示意圖1	12
圖	3-30	[Ni4(Msphpnda)4F2](Ni2Cl6O)(10)之相關鍵長圖示1	14
圖	3-31	[Ni ₅ (Msphpnda) ₄](PF ₆) ₂ (11)之單晶繞射結構1	14
圖	3-32	[Ni ₅ (Msphpnda) ₄](PF ₆) ₂ 以(2,2)-trans 形式配位之示意圖1	15
圖	3-33	[Ni ₅ (Msphpnda) ₄](PF ₆) ₂ (11)之相關鍵長圖示1	15
圖	3-34	[NiMo2Ni(Tspnda)4] (14)之單晶繞射結構1	16
圖	3-35	[CoMo ₂ Co(Tspnda) ₄] (15)之單晶繞射結構1	17
圖	3-36	[Mo4(Tsphpnda)3(HTsphpnda)(OAc)] (18)之單晶繞射結構1	19
圖	3-37	[Co ₂ Re ₂ (tpda) ₄ Cl](PF ₆)(19)之單晶繞射結構1	21
圖	3-38	[Co ₂ Re ₂ (tpda) ₄ Cl](PF ₆)以同順向式(syn-syn)形式配位之示意圖1	22
圖	3-39	[Co ₂ Re ₂ (tpda) ₄ Cl](PF ₆)(19)之相關鍵長圖示1	23
圖	3-40	[Co ₂ Re ₂ (tpda) ₄ (NCS)](PF ₆) (20)之單晶繞射結構1	23
圖	3-41	[Co ₂ Re ₂ (tpda) ₄ (NCS)](PF ₆)以同順向式(syn-syn)形式配位之示意圖1	24
圖	3-42	[Co ₂ Re ₂ (tpda) ₄ (NCS)](PF ₆) (20)之相關鍵長圖示1	25
圖	3-43	[Co5(Tspnda)4](PF6)2 (12)之 MALDI-MS 圖譜與擬合圖 1	26
圖	3-44	[Cr4(Tspnda)4] (13)之 MALDI-MS 圖譜與擬合圖1	27
圖	3-45	[Mo4Ni(Tspnda)4](PF6)2 (16)之 MALDI-MS 圖譜與擬合圖 1	28
圖	3-46	[Mo ₂ Ni ₃ (Tspnda) ₄](PF ₆) ₂ 之 MALDI-MS 圖譜與擬合圖1	29
圖	3-47	化合物1、3、6和9之結構示意圖1	30
圖	3-48	化合物1、3、6和9之鍵長示意圖1	31
圖	3-49	化合物1和6之軸向位示意圖1	33

			~
圖	3-50	[Ni5(npTs)4]之結構與鍵長示意圖 ^[61] 13	34
圖	3-51	(a)順磁性;(b)鐵磁性;(c)反鐵磁性;(d)亞鐵磁性13	35
圖	3-52	(a)莫爾磁化率對溫度 (χ _M vs. T); (b)有效磁矩對溫度 (μ _{eff} vs. T)	36
圖	3-53	[Ni5(Tspnda)4](PF6) (1)之莫爾磁化率及有效磁矩對溫度之關係圖 14	10
圖	3-54	[Ni5(Tspnda)4(H2O)2](PF6)2(2)之莫爾磁化率及有效磁矩對溫度之關係圖14	1
圖	3-55	[Ni ₅ (Tspnda) ₄ (H ₂ O) ₂](PF ₆) ₂ (2)之 $\chi_{M}T$ vs. T 作圖14	12
圖	3-56	[Ni5(Tsphpnda)4](PF6) (3)之莫爾磁化率及有效磁矩對溫度之關係圖 14	13
圖	3-57	[Ni5(Tspnda)4](BF4)(5)之莫爾磁化率及有效磁矩對溫度之關係圖14	14
圖	3-58	[Ni5(Mspnda)4](PF6)(6)之莫爾磁化率及有效磁矩對溫度之關係圖14	15
圖	3-59	[Ni4(Mspnda)4(H2O)2] (7)之莫爾磁化率及有效磁矩對溫度之關係圖 14	16
圖	3-60	[Ni ₄ (Mspnda) ₄ (H ₂ O) ₂] (7)之 $\chi_{M}T$ vs. T 作圖14	16
圖	3-61	[Ni5(Msphpnda)4](PF6) (9)之莫爾磁化率及有效磁矩對溫度之關係圖 14	18
圖	3-62	[NiMo2Ni(Tspnda)4] (14)之莫爾磁化率及有效磁矩對溫度之關係圖 14	19
圖	3-63	[CoMo ₂ Co(Tspnda) ₄] (15)之莫爾磁化率及有效磁矩對溫度之關係圖 15	50
圖	3-64	於磁場中能階分裂之示意圖 15	52
圖	3-65	EPR 於 4 K 時之實驗圖: (a)圖為化合物 1; (b)圖為化合物 3; (c)圖為化合	

圖	3-74	化合物 6 在 CH2Cl2 之中的電化學反應機制
圖	3-75	化合物9在CH2Cl2之中的電化學反應機制167
圖	3-76	[NiMo2Ni(Tspnda)4] (14)和[CoMo2Co(Tspnda)4] (15)之循環伏安圖 168
圖	3-77	[Mo4(Tsphpnda)3(HTsphpnda)(OAc)] (18)之循環伏安圖
圖	3-78	化合物 18 在 CH ₂ Cl ₂ 之中的電化學反應機制 169
圖	3-79	[Co ₂ Re ₂ (tpda) ₄ Cl](PF ₆) (19)和[Co ₂ Re ₂ (tpda) ₄ (NCS)](PF ₆) (20)之循環伏安
		圖
圖	3-80	[Ni5(Tspnda)4](PF6) (1)、[Ni5(Tspnda)4(H2O)2](PF6)2 (2)和 H2Tspnda 配基在
		CH ₂ Cl ₂ 中的紫外光-可見光吸收光譜圖172
圖	3-81	[Ni5(Tsphpnda)4](PF6) (3)、[Ni5(Tsphpnda)4](PF6)2 (4)和 H2Tsphpnda 配基在
		CH ₂ Cl ₂ 之中的紫外光-可見光吸收光譜圖174
圖	3-82	[Ni5(Mspnda)4](PF6) (6)和 H2Mspnda 配基在 CH2Cl2 之中的紫外光-可見光
圖	3-83	[Ni4(Mspnda)4(H2O)2] (7)和 H2Mspnda 配基在 CH2Cl2之中的紫外光-可見
		光吸收光譜圖
圖	3-84	[Ni ₅ (Msphpnda) ₄](PF ₆) (9)、[Ni ₅ (Msphpnda) ₄](PF ₆) ₂ (11) 和 H ₂ Msphpnda 配
		基在 CH ₂ Cl ₂ 之中的紫外光-可見光吸收光譜圖
圖	3-85	[NiMo2Ni(Tspnda)4] (14)、[CoMo2Co(Tspnda)4] (15)和 H2Tspnda 配基在
		CH2Cl2之中的紫外光-可見光吸收光譜圖182
圖	3-86	[Co2Re2(tpda)4Cl](PF6) (19)、[Co2Re2(tpda)4(NCS)](PF6) (20)和 H2tpda 配基
		在 CH ₂ Cl ₂ 之中的紫外光-可見光吸收光譜圖
圖	3-87	化合物 1, 3, 6 和 9 在 DMF 之中的近紅外光光譜

表目錄

藩臺

	表目錄	HA E
表 3-	1 化合物 14 之鍵長、鍵角及雙面角	.117
表 3-	2 化合物 15 之鍵長、鍵角及雙面角	.118
表 3-	3 化合物 18 之鍵長及雙面角	120
表 3-	4 化合物 1、3、6 和 9 的鍵長比較	132
表 3-	5 帕斯卡常數(Pascal's constants)	136
表 3-	6 磁性數據相關公式	137
表 3-	7 各類磁性之相關大小與特性	138
表 3-	8 化合物 1,3,6和 9 之擬合參數與數值	156
表 3-	9 化合物 1、2 與 H ₂ Tspnda 配基之最大吸收波長和消光係數	173
表 3-	10 化合物 3、4 與 H ₂ Tsphpnda 配基之最大吸收波長和消光係數	175
表 3-	11 化合物 6 與 H ₂ Mspnda 配基之最大吸收波長和消光係數	177
表 3-	12 化合物7與H ₂ Mspnda 配基之最大吸收波長和消光係數	179
表 3-	13 化合物 9、11 和 H ₂ Msphpnda 配基之最大吸收波長和消光係數	181
表 3-	14 化合物 14、15 和 H ₂ Tspnda 配基之最大吸收波長和消光係數	183
表 3-	15 化合物 19、20 和 H ₂ tpda 配基之最大吸收波長和消光係數	185
表 3-	16 化合物1、3、6和9之近紅外光吸收參數	186

第一章 緒論

1-1 前言

然而第一次、第二次科技革命則因為當時科學的不普及和研究所需的費用所 限制,導致只發生在極少數幾個發達且具有龐大資金為背景的國家中展開,而第 一次科技革命最早起源於十八世紀時<u>瓦特(James Watt)所</u>改良的蒸汽機,其引進的 雙向氣缸、節氣閥門以及離心節速器,大幅的改善了蒸汽機的缺點,開啟了工業 革命的序幕;第二次工業革命則藉由組裝生產線及具有電力供應的普及,帶來了 足以大量生產的優勢;第三次工業革命(稱之為產業革命抑或是數位化革命),電子 產品(如:電子計算機和電腦等)開始進入到人們的生活圈中,以數位化、人工智 慧裝置及材料製程自動化為主流趨勢。直到 2013 年,德國聯邦政府投入了二億歐 元,用以提升製造業的電腦化、數位化和智慧化,轉動了第四次工業革命的轉輪(稱 之為工業 4.0 或是生產力 4.0),並且由於時代的變遷和產業結構的轉型,「奈米世 代」的來臨逐漸成為科技領域中最具有潛力的技術之一^[2]。

「奈米」(nanometer)為二十一世紀最熱門的名詞,並且在現代人的生活中四處

可見,其主要是一門全新的領域,探討著一維尺寸為1到100 奈米範圍內的材料、 結構和性質的科學,科學家們將大於100 奈米的領域稱為巨觀世界,1到100 奈米 的領域稱為介觀世界,小於1 奈米的領域則稱之微觀世界。而奈米科技隨著各類 電子顯微鏡(如:掃描式穿隧電子顯微鏡,STM;穿透式電子顯微鏡,TEM;原子力 顯微鏡,AFM等)之技術日趨成熟且發展迅速,使得所有電子元件之製作趨向微小 化,因此,「原子級」或「分子級」的材料開始蓬勃發展,也在往後有了「分子導 線」的概念被提出。然而,以奈米層級進行應用的概念是由1965 年諾貝爾物理學 獎得主<u>理察.費曼</u>(Richard Feynman)所提出,其表示當科學研究越趨成熟時,人們 終有一天可以隨心所欲使用小尺寸(奈米等級)的材料,並將其加以運用,為人類未 來的科技與生活提供更便利的世界。

也因此,隨著奈米世代的來臨,促使了許多國內外研究團隊開始全力投入並 熱衷研發奈米材料,並隨著物質尺寸的微小化,使得物質的結構組成或應用特性 更加多元化,進而以分子尺寸為主的電子元件被發展出來。而最早「分子元件」 的觀點被提出是在 1974 年由 A. Aviram 和 M. A. Ratner 教授所發表的^[3],他們表示 隨著物質的尺度微小化,其所具有的分子仍然擁有像整流器一樣的單向電流傳導 行為,當這個「分子整流器」(molecular rectidiers)的理論一被提出,往後的幾十年 有關分子元件的研究不計其數的被發表,使得以原子或分子為尺度單位的材料科 學不斷有更加驚人的突破,進而開發出分子機械、分子開關和分子導線等^[4,5]。

奈米材料的製程可依尺度變化分作其二:(一)由上到下 (top-down);藉由施 加外力將塊材(bulk)逐步分解,使塊材大小達到奈米尺度的範圍;(二)由下到上 (bottom-up);透過化學反應或物理作用力,將原子或分子組裝至奈米尺度。本實驗 室自 1994 年開始,主要以多氮配基與不同金屬離子進行鍵結,開發出長達數奈米 至數十奈米的直線型多核金屬串且具有金屬一金屬鍵的化合物分子並分析其導電 度,期望能夠製成分子導線(molecular wires)或分子開闢(molecular switches)並加以 運用在奈米級的電子元件。

1-2 分子導線

分子導線(molecular wires),亦稱之為金屬串(metal string)或分子電線,其所具 有的結構如同市售的電線一般,皆具有作為導體的導電層及具有絕緣的絕緣層, 分子導線就猶如微小化至分子層級的電線,其中,導電層為多個金屬離子所構成, 具有電子傳遞的功能,而絕緣層則猶如裹覆電線的橡膠,進而達到保護導電層不 受外力所破壞或影響,分子導線可被廣泛運用在各式電子器具上,用以當作連結 各個電子元件的橋樑,並加以構成一完整的電子系統。因此,隨著電子元件尺度 奈米化後,分子導線就有其存在的必要性,藉由分子導線可以在各個元件之間傳 遞能量或電荷,也因此,隨著電子元件的縮小,分子導線的出現是為必然出現的 結果。一般而言,分子導線是由單一或是數個分子所建構而成的,如同市售的電 線一般,是由數種材料所組裝形成的。

探尋過往的分子導線歷史中,主要以一維直線型分子導線最具有發展性與運用的潛力,藉由錯合物形成所產生的金屬之間的鍵結,使得金屬離子之間具有直接的交互作用,這造成了更多科學家想更深入探討不同金屬之間的相互作用力, 而非單一侷限於同一種金屬化合物的研究,也使得分子導線的探究更加新穎與複雜,截至目前,已經有雙核化合物演化至三核乃至多核金屬化合物的研究被發表 [6]。

回顧本實驗室在過往投入開發直線型金屬鏈(Extended Metal Atom Chains, EMACs)與具有金屬一金屬鍵錯合物的研究^[7-10],主要可以發現是藉由金屬離子彼 此以直線排列為主,並由外圍四個脫氫後的多氮配基以螺旋式纏繞於此金屬直鏈 上,形成直線型分子導線,而此金屬直鏈為導體,藉以傳遞電子,外圍的四片有 機配基則扮演著絕緣體的角色。藉由理論計算所得結果可以發現,這類分子在施 加電壓時,電子大多行走的路徑皆是穿過中間的金屬離子,外圍的有機配基則無 法有效幫助電子傳遞,在整個導電過程中配基只扮演著支撐及穩定中間金屬鏈的 角色,如圖 1-1 所示^[6a]。

然而,在直線型分子導線的探究中,依照其配基所具有的結構,仍可細分為 兩大類型:(一)無架橋配基之金屬串錯合物及(二)經架橋配基之金屬串錯合物,此 兩大分類將於後續章節加以區別討論。

圖 1-1 分子導線奈米化示意圖^[6a]

1-2-1 無架橋配基之金屬串錯合物

無架橋配基金屬錯合物,顧名思義就是不需要配基當作支撐整個金屬串骨架, 單純只以金屬與金屬之間所產生的鍵結來穩定整個錯合物。回顧這類化合物在過 去最著名的例子,為 1908 年由 K. A. Hofmann 和 G. Bugge 發表於 Ber. Dtsch. Chem. Ges.(為後來的 Eur. J. Inorg. Chem.)的鉑(Pt)金屬化合物^[11],其主要藉由兩組鉑金屬 化合物之間的金屬作用力鍵結在一起,由於這類化合物呈現藍色,因此,當時的 標題即為"Platinblau",也就是所謂的 Platinum Blue。另一則有名的例子則為 1969 年由 K. Krogmann 發表於 Angew. Chem.上的鉑金屬化合物,稱之為 Krogmann's salt^[12],其主要藉由金屬離子的部分氧化來達到將平面分子連結成一維延伸的分子 導線,如圖 1-2 所示。此化合物主要因為金屬鉑之配位環境為四配位,形成平面四 方(square planar),並且與四個氰離子(CN)產生配位,鉑金屬之間主要藉由著 d_z^2 軌域來產生鍵結,進而進行混成達到部分 σ 鍵的功用,由於此結構具有著良好的 導電能力,因而在發表後受到了奈米材料的極度重視。

圖 1-2 含 Pt 金屬之 n[Pt(CN)4]²⁻錯合物經過部分氧化而成為[Pt(CN)4]n^{1.7-[12]}

經過九年後,於1978年由S.J.Lippard 實驗室所發表於J.Am. Chem. Soc.上的 α-Pyridone Blue 混價的四核鉑金屬錯合物[Pt4(NH3)8(C5H6NO)4](NO3)5 最具代表性 ^[13],如圖1-3所示。其利用單晶X-ray 繞射得到結構解析,並加以利用X-ray 光電 子能譜儀(XPS)進而達到確認此化合物之電子組態。

圖 1-3 [Pt4(NH3)8(C5H6NO)4](NO3)5 之單晶結構及其相關數據^[13]

由於不具有架橋配基穩定金屬鏈的原因,導致在探究更長的金屬串分子更增 加其難度。直到 1999 年,由 K. R. Dunbar 團隊發表於 J. Am. Chem. Soc. 上的銠(Rh) 金屬串化合物為探尋長鏈的研究帶來一片曙光^[14],其原本只想合成雙核銠金屬化 合物,並藉由氧化還原的方式來探討其氧化態,然而卻在氧化的過程中意外得到 少見的三價單核銠金屬錯合物,以及在還原的過程中得到過去沒見過的以一維無 限延伸的銠金屬錯合物,更難得的是其以混價的氧化態所存在,如圖 1-4,這也為 往後研究長鏈型金屬串的研究奠定了基礎。

圖 1-4 (a) 一維無限延伸銠金屬錯合物 [Rh(MeCN)4(BF4)1.5]x 之單晶結構; (b)由 c 軸方 向之結構堆積圖^[14]

1-2-2 經架橋配基之金屬串錯合物

經架橋配基金屬錯合物,主要是藉由配基的組裝來穩定整個金屬鏈,然而整 個金屬鏈的長度會因為配基的長度而受限,導致若想合成越長的分子導線,則需 要搭配越長的配基才有辦法組裝而成。由於這類化合物並非像無架橋配基化合物 一般,其無法藉由金屬與金屬之間的直接作用力來穩固整個結構,而是利用其他 的方式(如:原子銜接或架橋配基銜接)來連接兩金屬離子,進而形成整個穩定的架 構。

於1999 年及2002 年,由 T. Murahashi 和 H. Kurosawa 共同發表於 J. Am. Chem. Soc.上的鈀(Pd)金屬錯合物為這類化合物奠定了基礎^[15],其主要利用未飽和碳氫化 合物(具有 π-共軛系統之多烯類)作為架橋配基,進而合成出一系列直線型的鈀金屬 錯合物,由於整個錯合物的結構是藉由兩片多烯配基利用 sp² 混成的碳原子夾住中 心鈀(Pd⁰)金屬鏈,因而將此化合物稱之為"sandwich chains",如圖 1-5 所示。

圖 1-5 一維鈀金屬 串之單晶結構: (a) [Pd₄(µ₄-DPOT)₂(pyridine)]²⁺;(b) [Pd₄(µ₄-perylene)₂(MeCN)]^{2+[15]}

隨後,於2016年,T. Murahashi 團隊於 Nature Commun.上發表了藉由β-胡蘿 蔔素當作架橋配基可以有效穩固更長的鈀金屬鏈^[16],因而形成了十核直線型的鈀 金屬錯合物,這也是現今文獻中所具有的最長鈀金屬串錯合物,如圖1-6所示。

圖 1-6 [Pd₁₀(β-carotene)₂][B(Ar^F)₄]之晶體結構圖^[16]

於 1993 年, K. Mashima 發表於 J. Am. Chem. Soc.上的以三種不同元素組成的 6-diphenylphosphino-2-pyridonate (PNO)配基為設計架橋配基提供了新穎的想法^[17], 其主要利用雙核鉬(Mo)金屬搭配不同的第二種金屬(如:銠(Rh)或銥(Ir)),進而合成 四核異金屬串錯合物,如圖 1-7所示。其不僅探討鉬與鉬金屬之間所具有的四重鍵, 更探究了金屬串錯合物經氧化過程後鉬金屬與其他金屬之間的鍵結及相關性。

圖 1-7 雙核鉬搭配搭配銠金屬和銥金屬之單晶結構: (a) [Mo₂Rh₂(PNO)₄(MeCN)₄];(b) [Mo₂Ir₂(PNO)₄(MeCN)₄]^[17]

有了以不同元素當作配基銜接金屬的前例後,於2015年,T. Tanase 團隊發表 於 Angew. Chem. Int. Ed.上利用了含有磷化氫(phosphine)的配基作為穩固鈀(Pd)金 屬和鉑(Pt)金屬一維直鏈型的錯合物^[18],並加以探討其化學特性,如圖 1-8 所示。

圖 1-8 [Pd₈(µ-dpmppm)₄L₂](BF₄)₄ (L = 2,6-xylyl isocyanide)之單晶結構圖^[18]

於2013年,J.F.Berry團隊發表於Inorg.Chem.上的概念主要是將原子的軟硬 (hard-soft)和酸鹼(acid-base)的理論導入並設計出6-thioxo-2-piperidinone (HSNO)配 基^[19],其主要以三種元素(分別為硫(S)、氮(N)和氧(O))之軟硬(hard/soft)及酸鹼 (acid/base)特性進而合成金屬錯合物,藉由以雙核鉬金屬作為起始物,並搭配鋰(Li) 金屬離子來合成金屬串,如圖1-9所示。

圖 1-9 HSNO 之配基結構和[Mo₂Li(SNO)₄(py)(Cl)]之單晶結構^[19]

本實驗室多年來與F.A. Cotton 團隊致力於使用多吡啶胺(oligo-α-pyridylamine) 系統作為合成分子導線所需之配基,透過配基上脫氫的氮原子與不同金屬離子鍵 結,形成金屬串化合物,隨著配基所使用的長度增長、氮原子數量的增加,即可 擁有合成更長鏈錯合物的潛力。此類多吡啶胺系統所合成之錯合物的特色在於中 心金屬離子依序排列成直鏈型,並藉由外圍的四片螺旋纏繞著金屬鏈的配基所構成,由於配基上相鄰的吡啶環具有氫原子,導致在結構上具有立體障礙效應(steric hindrance effect)而造成結構扭轉,使得外圍配基能有效保護中心金屬鏈。

探究這類金屬串錯合物大致可分為三類:(一)配基的選用與調控;(二)同核金屬 離子的選用和(三)異核金屬離子的選用。配基的調控主要是選擇含有不同元素的配 基或設計出更加新穎長鏈的配基進而形成金屬串錯合物;選擇同核金屬離子進行合 成,會依照金屬的數量或是種類而有所不同,導致在鍵結過程中,配基與金屬離 子的配位模式或電子結構也會有所不同,進而可探討金屬與金屬之間是否具有鍵 結的存在;選用異核金屬離子則會使合成金屬串的研究更加多樣性,藉由搭配不同 金屬的選用,金屬之間的交互作用也會有所不同,更導致其有不同的特性或應用。

在本實驗室努力開發下,具有一系列新穎的金屬串錯合物已被成功合成,包 括三核、五核、七核、九核及十一核金屬串錯合物^[20-23],並藉此加以探討其特性, 使得分子導線的探究能更加豐富。對於多吡啶胺系統而言,二吡啶胺為最基礎之 配基,其為同核金屬、異核金屬更甚至異三核金屬串的探討開啟豐富的一頁。由 此可知,配基的選用與調控與金屬串合成之間具有很大的關聯,接下來將對配基 的搭配進行探討。對於本實驗室而言,所開發與金屬離子搭配之配基可分為三類: (一)多吡啶胺系統;(二)多萘啶胺系統以及(三)多萘啶吡啶胺系統,下個篇章將針對 這幾個系統分別進行討論。

圖 1-10 多吡啶胺系統之分子導線示意圖[6a]

1-3 多氮配基及其錯合物

當配基與不同金屬鹽類進行配位,進而形成金屬錯合物時,最常見的化合物 結構大多為單核金屬錯合物,然而這些錯合物的結構卻為往後的雙核和多核金屬 錯合物奠定了基礎,使得配位化學的研究更具有發展的前景。隨著研究方向開始 由單核金屬錯合物衍伸至含金屬-金屬多重鍵的雙核金屬錯合物,抑或是拓展為多 核金屬長鏈型錯合物時,對於無機化學與生物化學皆扮演著相當重要的角色。

隨著配基不斷的創造與改良,直鏈型分子導線也開始受到了廣泛的重視,於 1923年,J.P. Wibaut 團隊於 Recl. Trav. Chim. Pays-Bas 發表了二吡啶胺 a,a'-dipyridylamine (Hdpa)的合成^[24],這促使了許多科學家開始投入研究。原本科 學家們認為 Hdpa 配基可以藉由以全順向式的方式與金屬進行配位,然而當配基以 全順向式呈現時,由於兩個吡啶環之間的三號位置的氫原子會因空間擠壓造成立 體阻障效應,為了減緩立體效應的作用,配基本身開始產生扭轉,使得兩個吡啶 環以非共平面存在,然而這也容易使得配基較傾向以全反向式與金屬進行配位, 進而得到單核金屬錯合物,而這類錯合物主要以吡啶環上的氦銜接金屬,胺基上 的氦則懸掛於空間中未參與配位。於1965年,H.C. Freeman 團隊於Acta Crystallogr. 上發表以脫除胺基上氫,進而希望得到全順向式的錯合物,然而所得結果仍是以 全反向式配位之單核銅(Cu)金屬與鈀(Pd)金屬錯合物,如圖 1-11 所示^[25],這個結 果造成化學家一度認為二吡啶胺只能以鉗合的方式與金屬離子進行配位。

圖 1-11 二吡啶胺與銅金屬和鈀金屬配位之全反向式配位結構[25]

於1968年, T. J. Hurley 團隊首度採用多吡啶胺配基合成三核鎳(Ni)金屬串^[26], 然而當時單晶繞射儀並未普及,因而未能夠拿到單晶結構,直到 1991年,由 S. Aduldecha 和 B. Hathaway 重複 T. J. Hurley 的實驗並共同發表於 J. Chem. Soc. Dalton. Trans.上的單晶結構才終於證實此化合物為直線型三核金屬串錯合物 [Ni₃(µ₃-dpa)₄Cl₂],這也說明了 Hdpa 配基並非只能以鉗合的方式與金屬配位,如圖 1-12 所示^[27]。此錯合物結構主要以全順向式與鎳金屬配位,並藉由四片二吡啶胺 以螺旋纏繞方式圍繞中間金屬鏈,形成一直鏈型之結構。

圖 1-12 (a) T. J. Hurley 預測之鎳三核金屬鉗合物; (b) B. Hathaway 由單晶結構所得 到的[Ni₃(μ₃-dpa)₄Cl₂]之分子結構圖^[26-27]

而本實驗室從 1994 年開始對多吡啶胺系統進行探討,如圖 1-13 所示,主要藉 由高溫熔融萘作為反應溶劑,進而合成金屬串錯合物,並藉以探討金屬與金屬之 間的鍵結與錯合物本身所具有之特性。此外,實驗室也導入了萘啶(naphthyridine) 胺系統增加探討金屬串的多樣性,根據實驗結果所知,吡啶胺系統對於合成長鏈 型的金屬串有其困難性,因而導入萘啶胺系統藉以穩定整個金屬長鏈的形成,並 由結果發現其與多吡啶胺系統在化學特性上有明顯的差異。然而,隨後的研究發 現單純以多萘啶胺系統合成金屬串也具有其困難度,由於純萘啶胺配基上帶的負 電荷較少,導致整個金屬串易形成高價態陽離子,此時需要更多的陰離子進而平 衡整個金屬串的電荷,因此,修正了兩者的缺點,演變出多萘啶吡啶胺系統,希 望藉由改良後的配基,進而發展出更新穎的金屬串錯合物。

圖 1-13 二吡啶胺配基經由萘烧法組裝形成四螺旋之直線型金屬串錯合物

本實驗室利用有機合成的方法,進而成功得到一系列之多吡啶胺配基,如圖 1-14 所示,配基之組成主要是吡啶與胺基之間採取間隔式所建構而成,由於脫氫 後的氮原子本身帶有負電荷,其與金屬之間具有良好的配位能力。然而根據配基 與金屬配位的模式仍有所不同,其主要可以依配基之位向進行分類,一般而言, 配基本身的配位模式具有三大構型:(一)全順向式(all-syn);(二)全反向式(all-anti)以 及(三)順向-反向式(syn-anti),如圖 1-15 所示。本實驗室藉由此概念開發至多核金 屬串並有許多豐碩成果,隨著配基和金屬離子選用的不同,進而探討所合成之金 屬串之不同特性。

圖 1-14 多吡啶胺配基之構型

圖 1-15 二吡啶胺(Hdpa)之氮原子位向模式
1-3-1 多吡啶胺系統

本實驗室在探尋金屬串合成的初期,主要以二吡啶胺配基進行探討,然而所 得到的研究結果有限,因此,為了更深入探究金屬串,延長配基的長度則為方法 之一。隨著傳統的二吡啶胺衍伸至三吡啶二胺(tripyridyldiamine, H2tpda)時,所遭 遇的問題也接踵而來,由合成結果發現,配基的長度的增長會造成合成上的不易, 因而導致反應失敗或低產率的問題。直到 1996年,由 S. L. Buchwald 發表於 J. Org. Chem.上的鈀金屬催化反應為合成較長配基帶來新的希望^[28],也使得我們得以改善 配基合成上的困境,在長鏈金屬串的研究中,我們最終合成出最長的九核鎳(Ni) 金屬串^[29]以及九核鉻(Cr)金屬串^[30],如圖 1-16 所示,而傳統的二吡啶胺配基則由 同核金屬串的研究拓展至異核金屬串和異三核金屬串的研究,並且藉由置換錯合 物的金屬來歸納排序出各個金屬離子於配基當中的穩定性。

圖 1-16 多吡啶胺系統之中已得到單晶結構之最長金屬串錯合物

對於多吡啶胺系統而言,目前已知最長的配基可以合成至十一吡啶十胺,然 而在金屬串的合成上目前仍停留在九核金屬串,其主要在於配基本身具有其彈性 (flexible),隨著配基長度的增加,配基中的吡啶與胺基上的碳氮單鍵會因為立體阻 障關係而造成旋轉,造成配基整體產生扭轉現象,進而以近似鉗子狀的方式與金 屬離子配位,使得容易形成金屬核數較低之錯合物,如圖 1-17 所示^[20e]。因此,為 了探討更多核數的金屬串化合物,萘啶胺系統隨即被引用至金屬串的研究中,由 於萘啶本身所具有的剛性(rigid)特性,會使得配基主體扭轉現象降低,而能夠以全 順向式的方式與金屬離子進行配位,進而形成更高核數的金屬串錯合物。

圖 1-17 五吡啶四胺因配基扭轉與金屬離子配位之結構圖^[20e]

1-3-2 多萘啶胺系統

回顧萘啶(1,8-naphthyridine, ny)的起源,最早於 1970 年開始,萘啶及其衍生物 受到了注意與研究,其中於 1973 年由 L. Sacconi 發表於 Inorg. Chem.上以萘啶作為 配基並與 NiBr₂ 進行反應為指標,其成功以四片萘啶配基與雙鎳金屬離子進行配位, 進而形成鎳雙核金屬錯合物[Ni₂(ny)₄Br₂]⁺[BPh₄]^{-[31]},如圖 1-18 所示。由單晶結構 中可得知 Ni-Ni 距離為 2.415(4) Å,從鎳金屬電荷分佈可知,於雙核鎳金屬單元上 發生還原反應,雙核鎳單元之間僅帶有正三價,為金屬一、二價混價(mixed-valence) 狀態,由此可推估萘啶配基在還原金屬離子時,同時具備有穩定低價態金屬離子 的能力,此雙核為一全未定域化(fully delocalized)之混價錯合物,其中鎳金屬所具 有的未成對電子會透過σ*軌域於兩個鎳金屬離子單元之間進行快速傳遞。

圖 1-18 (a) [Ni₂(ny)₄Br₂](BPh₄)之單晶結構圖; (b) 雙核鎳金屬之分子軌域圖^[31]

由於傳統多吡啶胺系統進行合成高核數的金屬串錯合物有其困難度,因此本 實驗室著手發展以多萘啶胺系統進行探討,在配基合成過程中,主要藉由鈀(Pd) 金屬作為催化劑,進而合成最長十四氮的純萘啶胺配基,然而,在金屬串的合成 上仍僅能達到十一核鎳金屬串^[32],如圖 1-19 所示。由此十一核鎳金屬串中仍可發 現,藉由四片萘啶胺配基與鎳金屬離子進行配位,其萘啶上的鎳金屬單元中仍具 有還原一個電子的現象,即代表鎳雙核單元之間帶有正三價,並且發現鎳雙核單 元之間的距離短於 L. Sacconi 研究團隊所發表的 2.415(4) Å,推測主要原因來自於 金屬-金屬鍵所導致。由於萘啶本身結構較為剛性,使得金屬串的長度能有效從九 核拓展至十一核,並且發展出更為豐富的電化學特性,然而由於配基本身脫氫後 所帶有負電荷相對較少,因此,在合成金屬串的研究上具有一定的困難度,為了 突破這一困難,本實驗室合併多吡啶胺系統和多萘啶胺系統,企圖創造出更為新 穎且具有特別電化學特性的金屬串錯合物。

圖 1-19 多萘啶胺系統之十一核鎳金屬串錯合物[32]

1-3-3 多萘啶吡啶胺系統

相較於多萘啶吡啶胺系統,傳統的多吡啶胺配基容易以螯合的方式與金屬離子進行配位,且在配基脫氫後具有較多的負電荷,與金屬離子配位後較易產生價數上的平衡;在多萘啶胺配基中則可看到結構的剛性,並具有豐富有趣的電化學特性,然而,配基本身所具有的負電荷相對較少,其容易造成錯合物本身為了達電中性,需要相對較多的陰離子幫助平衡電荷。因此,本實驗室嘗試綜合兩者的優點,並寄望所建構出的多萘啶吡啶胺系統能改善上述兩者的缺點,並創造出更為新穎的金屬串錯合物。

藉由茶啶與吡啶經不同數量的排列組合,可以產生多種新型配基,其主要又 可以分類成(一)對稱型與(二)不對稱型配基,對稱型配基又可細分為茶啶單元於配 基中央或是吡啶單元於配基中央,當茶啶單元位於配基中央時,其最基礎的配基 即為 2,7-bis(*a*-pyridylamine)-1,8-naphthyridine (H₂bpyany)配基(圖 1-20(a))^[33],此配 基所形成之六核鎳金屬串可藉由還原反應得到還原一個電子的[Ni₆(bpyany)4Cl₂]⁺ 錯合物,其位在茶啶單元上鎳鎳距離為 2.201(3) Å,相較於未還原前的 2.281(2) Å 有 縮 短 的 趨 勢 。當 吡 啶 單 元 位 在 中 央 時 , 最 基 礎 的 配 基 為 2,6-bis(1,8-naphthyridylamido)pyridine (H₂bnapy)配基,其所合成的鎳金屬串錯合物 於茶啶單元上同樣具有能夠穩定低價態金屬離子的能力(圖 1-20(b));針對非對稱型 配基而言,其最基礎的配基為 2-(*a*-pyridylamine)-1,8-naphthyridine (Hpyany)^[34],以 配基合成出的錯合物中同樣可以觀察到於茶啶單元上的雙核鎳金屬單元同樣具有 混價的現象(圖 1-20(c))。

圖 1-20 多萘啶吡啶胺系統中最基礎的配基, (a) H₂bpyany 配基^[33]; (b) H₂bnapy 配 基^[34]; (c) Hpyany 配基^[35]

1-3-4 吡啶噻唑胺配基

除了以吡啶或萘啶所形成的配基外,為了探討不同雜環對於金屬串的影響, 本實驗室的<u>邱梅君</u>學姐以含有氮和硫的五圓雜環-噻唑環進行配基的合成,形成吡 啶噻唑胺(pyridyl-thiazolylamine, Hpta)配基^[36],並加以合成金屬串錯合物。雖然對 於 Hpta 配基的合成在文獻中有許多方法,然而我們仍可以透過實驗室常用的反應 條件進行合成,其主要以 2-bromothiazole 和 2-aminopyridine 作為起始物,以甲苯 當作反應溶劑,再藉由純化方式即可得到 Hpta 配基。

在金屬串合成方面,成功得到兩個純鎳金屬串錯合物[Ni₃(pta)₄X₂] (X = NCS, CN),然而卻在結晶學上產生吡啶環與噻唑環結構失序的現象,如圖 1-21 所示, 導致無法得知金屬串錯合物的正確結構。

圖 1-21 吡啶環與噻唑環於金屬串錯合物中失序的現象[36]

為了解決結構上失序的問題,<u>楊景鈞</u>學長藉由在吡啶的對位上修飾甲基,以 增加吡啶環和噻唑環之間的差異,進而合成出 4-甲基吡啶噻唑胺(Hmpta)配基^[37], 並藉由與鎳金屬鹽類進行反應後,得到(2,2)-cis form [Ni₃(mpta)₄(NCS)₂]錯合物,隨 後加入 NaCN 進行軸向配基的置換後,可得到(2,2)-cis form [Ni₃(mpta)₄(CN)₂]錯合 物,並且透過單晶結構解析後發現,兩個錯合物皆沒有發現結構失序的現象,如 圖 1-22 所示。

圖 1-22 (a) (2,2)-cis form [Ni₃(mpta)₄(NCS)₂]和(b) (2,2)-cis form [Ni₃(mpta)₄(CN)₂]的 單晶繞射結構圖^[37]

因此,我們可以得知,藉由改變茶啶與吡啶的相對位置以及置換不同芳香烴 (Polycyclic Aromatic Hydrocarbons, PAHs)環,皆會使得配基本體的電子結構產生 改變,進而影響金屬串錯合物本身的電化學性質,同時,藉由微調(fine-tuning)的 方式,也可以改善錯合物本身在結晶單元上所產生的失序現象。然而,過去本實 驗室對於配基進行微調時(如:於環上進行拉推電子基或苯環的修飾等),基本上 並無重大的電子結構改變,因此,本研究工作除了探討改變萘啶與吡啶的相對位 置並對所採用的官能基進行微調,以期望可藉由微調配基進而探討配基效應對金 屬串電子結構的影響以外,並同時達到探討取代基對於金屬串錯合物於電化學上 影響的目的。

1-4 金屬-金屬鍵結理論

隨著配位化合物被科學家大量的探討與研究,化合物本身所具有的金屬鍵結 也逐漸被重視,然而,其相關理論最早可推至十九世紀晚期,最早被證實具有金 屬-金屬鍵結的化合物為亞汞化合物(Cl-Hg⁽¹⁾-Hg⁽¹⁾-Cl)^[38],直到1893年,由A. Werner 改進了部分的理論基礎,才使得配位化學的理論逐漸趨於完整,而後也被科學家 們廣泛的接受。金屬鍵主要是藉由金屬陽離子與電子之間藉由庫倫靜電作用力所 構成的鍵結,即稱之為金屬鍵。隨著化合物本身的金屬鍵被大量討論後,科學家 們開始探討不同配位形式的錯合物所形成的金屬-金屬鍵結,因此這類化合物被大 量的合成出來並加以探討其性質所具有的變化。

然而,金屬-金屬多重鍵的概念最早是於 1965 年由 F. A. Cotton 所發表的 [Re₂Cl₈]²的錯合物最具代表性,如圖 1-23 所示。在此錯合物中,錸(Re)金屬之間 的距離為 2.24 Å,且兩個金屬錸皆為+3 價,即表示為 d⁴ 電子組態,因此,可判斷 為金屬錸之間具有四重鍵(quadruple bond),亦即為鍵序(bond order)等於 4^[39]。藉由 此化合物所具有的單晶結構解析所得到的鍵長,可以判斷兩個錸金屬之間存在著 四重鍵,這使得金屬-金屬多重鍵的理論慢慢受到重視,也引發科學家們極高的興 趣,進而造成多核金屬錯合物的研究被廣泛地探討^[40,41]。

圖 1-23 [Re₂Cl₈]²⁻錯合物之單晶結構解析圖^[39]

1-4-1 雙核金屬錯合物之金屬-金屬鍵結

隨著金屬-金屬鍵的形成,以軌域的觀點來看,ns 軌域和 np 軌域皆為全填滿, 使得鍵結的形成必須依靠金屬的(n-1)d 軌域來幫助軌域的混成,因為金屬的 ns 和 np 軌域位處於能量較低點的位置,其大多利用 ns 及 np 軌域進而與配基的軌域形 成混成軌域,倘若不與配基進行混成,則會被電子所填滿,而與金屬不產生任何 的鍵結。隨著金屬利用 d 軌域生成金屬鍵時,兩個金屬之間的 d 軌域彼此能量需 要相近、對稱性需相同,並且能達到一定程度的軌域重疊(overlap),當此三個主要 因素皆符合時,兩個軌域才能夠相互混成,進而生成鍵結軌域(bonding orbital)。過 渡金屬離子本身具有五個 d 軌域,可以鍵結形成一個 $\sigma 鍵$ 、二個 $\pi 鍵$ 、二個 $\delta 鍵$ 結,以及產生相對應的反鍵結軌域(anti-bonding orbital): σ^* 、 π^* 、 δ^* ,如圖 1-24 所示。

圖 1-24 金屬離子之間透過五種 d 軌域所生成的鍵結軌域(bonding orbital)

由分子軌域理論(Molecular Orbital Theory, MOT)可得知, 化學鍵的鍵結強度與 軌域之間相互重疊的對稱性呈正相關, 而軌域之間的重疊性為 $\sigma > \pi >> \delta$ 。鍵結能 階的穩定度與軌域鍵結時所產生的節點(node)數成反比, σ 的節點數為 0, 為能量 最穩定, 而 π 的節點數為 1, δ 的節點數為 2, 故可得知 δ 的能量較高, 依照定性 上的能量大小排列可知:

$\sigma < \pi << \delta < \delta^* << \pi^* < \sigma^*$

假設錯合物本身的金屬-金屬鍵通過座標軸 z 軸時,錯合物的金屬離子於 x 和 y 方向的軌域會與配基的軌域作用,亦即金屬離子的 $d_x^2 - y^2$ 軌域會與配基配位形成 $\sigma 鍵$,因此,金屬的 $d_x^2 - y^2$ 軌域並不會參與金屬-金屬鍵結,而參與金屬-金屬鍵結軌 域的為其他四個 d 軌域(d_{xy}, d_{yz}, d_{xz} 及 d_z^2 軌域)。

當錯合物的金屬離子以平面四方形(square planar)與配基進行鍵結時,主要是 利用 $d_x^2 \cdot y^2$ 軌域與配基生成配位鍵,而其他四個 d 軌域則會隨著兩金屬離子的 d 軌 域能量相當時,彼此相互混成而形成混成軌域,分別是一個 σ 軌域、兩個 π 軌域、 及一個 δ 軌域,並同時產生其各自的反鍵結軌域。由 F. A. Cotton 所發表的[Re₂Cl₈]²⁻ 錯合物之中可知,錸金屬離子皆為正三價,並且各自皆為四個 d 電子,共計八個 d 電子,將其依照鍵結軌域的形式將電子填入後,可得到電子組態為 $\sigma^2 \pi^4 \delta^2$ 的形式, 如圖 1-25 所示,因此可以表明錸金屬錯合物本身具有金屬-金屬四重鍵(quadruple bond)的表徵^[39]。

圖 1-25 雙核金屬錯合物之金屬-金屬四重鍵作用力^[39]

鍵長(bond length)和鍵序(bond order)兩者於定性上為相反的關係。根據目前已 受廣泛分析的鍵長與鍵序的原子分別為碳、氮和氧等原子。但是鍵長可以根據單 晶結構解析得到,鍵序卻無法絕對的量測。鍵序僅僅用於定性表示金屬-金屬間存 在有多少電子對。一般金屬-金屬之間的鍵結只是定性上的分析鍵長與鍵序的相互 關係。在特定侷限於一種金屬之間的任何鍵序,其鍵距都是一個範圍,而非是固 定一個數值。

根據分子軌域理論的定義,鍵序的定義為:

Bond Order (B.O.) = $n_b - n_a/2$

nb: 鍵結軌域電子數

na:反鍵結軌域電子數

由於不同金屬所含的電子數也不同,因此於混成軌域中由較低的分子能階逐步向上填入電子,即可得知各種金屬離子的電子數和鍵序間的曲線關係,如圖 1-26 所示,當過渡金屬的電子組態從 d⁰到 d⁴時,鍵序數量由一增加到四,這也表示金 屬間的鍵結由單鍵逐漸增加到四重鍵。當電子組態由 d⁵ 開始增加到 d⁸時,由於電

圖 1-26 雙核金屬錯合物之電子數與鍵級關係圖^[38]

金屬-金屬鍵的距離會受到許多因素影響,如:長鏈配基結構扭轉所造成的扭力、 軸向配基電負度強弱的影響、金屬離子的種類以及金屬間是否具有金屬鍵存在等 影響。其中以含有金屬間的鍵結,可明顯看出金屬-金屬和金屬-軸向配基距離的關 係,不同的軸向配基亦會對金屬-金屬和金屬-軸向配基鍵距造成影響。

內部扭轉角(internal torsion angles, χ):於金屬串錯合物中的各種鍵結結構中, 假使具有形成對金屬鍵軸的扭力作用,將會造成金屬軸的內部扭轉,其扭轉角度 會影響兩個金屬離子之間的 d 軌域重疊比例與重疊角度,使得鍵結強度產生變化。 一般而言,定義金屬離子的 d_z^2 軌域為金屬鍵的主軸(z 軸),軌域之間的相互鍵結形 成 σ 鍵,因為 d_z^2 軌域鍵結與金屬軸位向一致,扭轉角度不會影響軌域之間的重疊 體積,因此對鍵結強度並不會產生影響。在金屬-金屬多重鍵中, π 鍵結 π_{xz} 、 π_{yz} 屬 雙重簡併,對主軸形成筒狀對稱(如:乙炔中碳-碳三重鍵之 π 鍵結),扭轉角度對 $\pi鍵之鍵結強度產生影響很小。因此當鍵序為三以下時,內部扭轉角並不會影響金$ $屬-金屬間的鍵結強度。當鍵序超過三且具有<math>\delta$ 鍵形成時,兩個 d_{xy} 軌域就會受到內 部扭轉角度的影響,其鍵結強度就會因為軌道重疊性下降而變弱。根據圖 1-27 所

示,可定義內部扭轉角度^{[38]。}

圖 1-27 在 L4M-ML4 系統中內部平均扭轉角度 χav 的定義圖示^[38]

由於δ鍵對於扭轉角度(torsion angle)非常敏感,當扭轉角度變大時,δ鍵結會 減弱。其內部平均扭轉角度對δ鍵的影響,如圖1-28所示。其中,χdegree:兩個 相疊軌域間相對的交錯角度;S:兩軌域之間相對重疊度;Smax:相對軌域的最大 重疊度。

圖 1-28 內部平均扭轉角度和δ鍵的關係^[38]

當扭轉角度為0時, δ 鍵的重疊性的百分比為最大,當扭轉角度為22.5時, δ

鍵重疊性下降至 70%,當扭轉角度為 30°時, δ 鍵重疊性為 50%,當扭轉角度為 45時, δ 鍵完全交錯重疊性為零,由 45度開始至 90度重疊又逐漸的增加到 100%。

軸向配基(axial ligands)的影響,對於不同的軸向配基,會因為強場配基及弱場 配基的不同,亦會對金屬-金屬鍵距及金屬-軸向配基鍵距造成相當程度的影響,而 不同種類的軸向配基的拉推電子效應同樣也會造成影響,然而在結構中的金屬鍵 長變化的情形,軸向配基影響的情形較不如鍵長和鍵序及內部扭轉角度所造成的 影響來的明顯。

1-4-2 直線型三核過渡金屬錯合物之金屬-金屬鍵結

根據雙核過渡金屬錯合物的鍵結理論,可進而推演至直線型三核過渡金屬錯 合物。而直線型三核金屬串錯合物的鍵結軌域架構,可以想像為雙核金屬錯合物 的延伸,沿著金屬所在的 z 軸再額外加上另一組五個 d 軌域,即可變成直線型三 核金屬錯合物的分子軌域圖,如圖 1-29 所示。將三個直線排列的金屬離子所形成 的直線設為 z 軸,三個金屬的 d 軌域假使全部參與軌域混成,共可得到十五個混 成軌域;而三個金屬的 d_z^2 軌域可相互混成為三個混成軌域,一個 σ 鍵結軌域 (bonding orbital)、一個 $n(\sigma)$ 未鍵結軌域(non-bonding orbital)及一個 σ *反鍵結軌域 (anti-bonding orbital), 共三個分子軌域;以同樣的混成方式,金屬的 d_{xz} 、 d_{yz} 軌域 可混成形成兩個 π 鍵結軌域、兩個 $n(\pi)$ 未鍵結軌域與兩個 π *反鍵結軌域;另外, 金屬的 d_{xy} 軌域則可形成一個 δ 鍵結軌域、一個 $n(\delta)$ 未鍵結軌域與 δ *反鍵結軌域; 金屬離子的 d_{x}^2,y^2 軌域會因為位向正對 x 軸及 y 軸,與配基具有最大的鍵結性,因 此, d_{x}^2,y^2 軌域不參與金屬-金屬間的鍵結^[42]。

圖 1-29 直線型三核金屬錯合物之鍵結、反鍵結和非鍵結軌域圖^[42]

根據直線型三核過渡金屬錯合物的 X-ray 單晶結構解析可知:由於配基本身 具有扭轉角度的關係,會使得 d_{xy} 軌域所形成的軌域重疊積分極小,軌域能階與非 鍵結軌域相當接近,故將δ鍵結軌域、非鍵結軌域(nσ、nπ、nδ)及δ*反鍵結軌域視 為能量相近,預期三核金屬串錯合物的分子能階的排列,如圖 1-30 所示^{[42]。}

圖 1-30 直線型三核金屬串定性分子軌域能階圖[42]

將電子由低能量依序填入,經計算後所得到的金屬-金屬鍵序,可解釋三核過 渡金屬錯合物的金屬-金屬間的鍵結模式,過渡金屬直線型三核過渡金屬錯合物所 形成的軌域型態,如圖 1-30 所示。而兩金屬-金屬間形成的鍵序趨勢,可利用先前 所提的鍵序公式:bond order = (nb-na)/2 進行計算,而直線型金屬串錯合物是由 n 個金屬離子連接而成,鍵結之間存在(n-1)個金屬鍵,故整個錯合物所得到的金屬-金屬間的鍵序被平均分配到多個金屬離子上,以直線三核金屬錯合物為例,其具 有三個金屬中心,因此含有兩個金屬-金屬鍵結,鍵序因為配基脫氫後而產生共振, 使得鍵序可平均分佈在兩個金屬-金屬鍵結,因此,原始的公式應再進一步的除以 金屬鍵數,修正如下:

Bond Order (B.O.) = $(n_b - n_a/2)$ /金屬鍵數

nb: 鍵結軌域電子數

na: 反鍵結軌域電子數

經計算所得的金屬-金屬鍵序,此結果可直接解釋直線型三核金屬串錯合物的金屬-金屬鍵結模式,當d電子數為3時,即可達到最大值1.5鍵,如圖1-31所示。

圖 1-31 直線型三核金屬串錯合物鍵序趨勢圖[42]

藉由理論計算的方式,採用密度泛函數理論(Density Functional Theory, DFT) 進行計算,可以推定三核金屬串錯合物的分子軌域模型,如圖 1-32 所示。

圖 1-32 [M₃(dpa)₄Cl₂]之定性分子軌域模型^[42]

1-4-3 直線型五核過渡金屬錯合物之金屬-金屬鍵結

依照雙核及三核過渡金屬錯合物的鍵結理論,其同樣先將五核金屬的 d 軌域 進行混成,並具有下列可能的軌域鍵結形式,如圖 1-33 所示。

圖 1-33 直線型五核金屬串錯合物之 d 軌域混成鍵結模型^[38]

經 X-ray 單晶結構解析可知,由於配基本身會具有扭轉角的因素,因此將 d 軌域視為非鍵結軌域,且與 ns 和 np 之非鍵結軌域的能量相近。因此,僅考慮金屬 d 軌域經混成後所形成的定性分子能階,如圖 1-34 所示。

圖 1-34 直線型五核金屬串錯合物之定性分子能階^[38]

1-5 直線型同核金屬串錯合物

本實驗室與F.A. Cotton 團隊皆長年致力於多核金屬串錯合物的研究,並且已 經有許多重要的成果,更發表於國際期刊,如圖 1-35 所示。其中,這些成果以純 錄串的研究最為豐富,因為鎳金屬與四片配基皆具有良好的配位能力,可使金屬 串錯合物穩定的存在。除了鎳金屬串以外,其他尚有鈷金屬、絡金屬、銅金屬和 釘金屬等純金屬串。由於這類的錯合物一般而言對於水氣其空氣敏感,因此在合 成和養晶過程中皆較為困難。本實驗室於 1994 年於 Chem Commun.期刊上發表利 用二吡啶胺配基成功合成出鈷金屬串錯合物[Co₃(dpa)₄Cl₂]^[43],對於磁性的研究中 發現了 spin-crossover 的現象。隨後,本實驗室也發表了 [Rh₃(dpa)₄Cl₂]及 [Ru₃(dpa)₄Cl₂]^[44]的結構,如圖 1-36 所示;於 2000 年,F.A. Cotton 團隊則發表 [Cr₃(dpa)₄Cl₂]^[44]的結構,如圖 1-36 所示;於 2000 年,F.A. Cotton 團隊則發表 [Cr₃(dpa)₄Cl₂]^{2[44]}的結構,如圖 1-36 所示;於 2000 年,F.A. Cotton 團隊則發表 [Cr₃(dpa)₄Cl₂]金屬串^[45]。隨著配基的長度增長,金屬串錯合物的合成也趨於困難, 也因此,大多數成功合成出的皆為鎳金屬串錯合物。有別於 F.A. Cotton 團隊使用 的低溫溶劑法,其所使用的為 THF 溶劑;本實驗室採用的為高溫萘燒反應,其主 要利用萘(naphthalene)作為溶劑,於高溫 220 °C 下進行反應,可以克服長鏈配基溶 解度差的問題,有助於合成更長鏈的金屬串錯合物。

圖 1-35 吡啶胺配基系列之金屬串錯合物示意圖(X = Cl, NCS)

圖 1-36 (a) [Ru₃(µ₃-dpa)₄Cl₂]之單晶結構^[44]; (b) [Rh₃(µ₃-dpa)₄Cl₂]之單晶結構^[44]

1-5-1 直線型異核金屬串錯合物

隨著多核金屬串的合成,中心金屬鏈之過渡金屬為兩種以上即可稱之為多核 異金屬串錯合物,因為所採用的金屬種類不同,使得錯合物本身的物理或化學特 性比單一種類的金屬串錯合物更為豐富且複雜。然而,合成這類金屬串最具挑戰 的地方在於產率較低的問題,造成無法量產化,也因此有許多困難需要去克服。 近幾年來,本實驗室團隊主要利用二吡啶胺配基(Hdpa, dipyridylamide)作為研究異 金屬串的配基,並且已經有眾多豐碩的研究成果。

1. 異三核金屬串錯合物:

於異三核金屬串系統中,金屬的排列依照排列組合可具有三種排列類型: (a) M_AM_AM_B; (b) M_AM_BM_A; (c) M_AM_BM_C, 如圖 1-37 所示。

圖 1-37 異三核金屬串系統中金屬的排列類型示意圖

單純以理論上的排列計算組合模式,利用三種不同的金屬離子合成三核異金 屬串時,共可得到十八種組合,而面對眾多異構物的產生,在純化上也是合成這 類金屬串所需面對的難題。於文獻中出現的第一個異三核金屬串錯合物為本實驗 室於 2007 年發表在 Angew. Chem. Int. Ed 期刊上的[CoPdCo(dpa)4Cl2]^[46],從磁性量 測上發現不具有 spin-crossover 的特性,而是具有強反鐵磁的表徵,這與過去三核 鈷金屬串[Co₃(dpa)4Cl2]所得結果(具有 spin-crossover 特性)完全不同,由此可知,我 們可以藉由所使用的金屬種類不同來達到改變金屬串的磁性行為,此後,也成功 合成出[CuPdCu(dpa)4Cl2]及[CuPtCu(dpa)4Cl2]兩種異金屬串錯合物^[47],此兩個錯合 物本身皆具有兩個磁性中心,但皆被中間為逆磁特性的 Pd 和 Pt 金屬所隔開,造成 在磁性量測上呈現弱反鐵磁的特性。藉由詳加研究這系列的對稱型異核金屬串錯 合物,我們所得結果發現 Pd 和 Pt 金屬的配位模式皆為平面四方形,並且因為配基 中央的 amido 所具有的負電荷較多,較傾向配位於 amido 上的氮原子,如圖 1-38 所示。

圖 1-38 (a) [CuPdCu(dpa)₄Cl₂]和(b) [CuPtCu(dpa)₄Cl₂]異三核金屬串錯合物之結構^[47]

於 2009 年, J. F. Berry 團隊以 Hdpa 配基成功合成出[MoW(dpa)4]之雙核金屬 錯合物作為前驅物,再加入第三種金屬離子 CrCl2 金屬鹽類,經過金屬間與配基間 的重排,即可形成[MoWCr(dpa)4Cl2]的異三核金屬串,其合成步驟與晶體單晶結構

圖 1-39 [MoWCr(dpa)4Cl2]之合成與單晶結構示意圖^[48]

於 2006 年,本實驗室的<u>余立中</u>學長發表於 Eur. J. Inorg. Chem.期刊上則主要是 利用控制金屬離子當量數的方式來達到錳、鐵與鈀或鉑之異三核金屬串的合成, 並且得到一系列的[MM'M(dpa)₄Cl₂](M = Mn, Fe. M' = Ni, Pd, Pt)金屬串,如圖 1-40 所示^[49]。

圖 1-40 (a) [MnNiMn(dpa)₄Cl₂]和(b) [FePdFe(dpa)₄Cl₂]之單晶結構圖^[49]

異核金屬串合成研究中的另一種金屬前驅物則是以雙核釘金屬作為出發點, 主要是合成不對稱異核金屬串[Ru2M(dpa)4Cl2]ⁿ⁺ (M = Cu, Ni; n = 0, 1)^[50],此錯合物 當中的兩個釘金屬離子被視為是二、三價混價單元。因此,Cu²⁺、Ni²⁺金屬起始物 在合成金屬串時會被還原成正一價的金屬離子,氧化態的[Ru2Ni(dpa)4Cl2](PF6)錯

圖 1-41 [Ru₂Cu(dpa)₄Cl₂]金屬串錯合物之結構示意圖^[50]

於 2015 年,本實驗室於 Chem. Commun.期刊中發表了以三種不同金屬合成的 異金屬串錯合物,其主要利用金屬配位能力不同的特性,以趨勢來表示為: $Pd^{2+} > Ni^{2+} > Co^{2+} > Fe^{2+} > Mn^{2+} > Cd^{2+} > Cu^{2+}, 利用[CoCoRh(dpa)_4Cl_2]作為前驅物,以配$ $位能力較好的錄金屬來取代鈷金屬,合成出[NiCoRh(dpa)_4Cl_2]錯合物^[51],如圖 1-42$ 所示。

圖 1-42 [NiCoRh(dpa)₄Cl₂] 錯合物之單晶結構圖^[51]

2. 異五核金屬串錯合物:

近年來,本實驗室開始致力於開發五核異金屬串錯合物,期室開發出更多新 穎的化合物並探討其特性,但由於合成五核異金屬串錯合物所產生的異構物會比 異三核金屬串錯合物多,因此在純化及產率上會增加其困難度。於2014年,由<u>華 紹安</u>學長在 Chemistry - A European Journal 所發表之利用三吡啶二胺配基與雙核釘 金屬鹽類(Ru₂(OAc)₄Cl)反應,再加入鎳金屬或鈷金屬鹽類進行合成,成功得到五 核異金屬串[NiRu₂Ni₂(tpda)₄(NCS)₂]和[Ru₂Co₃(tpda)₄(NCS)₂]^[52-53]。隨後,<u>何柏賢</u>學 長則採用雙核銠金屬鹽類與鎳金屬或鈷金屬成功合成出[Rh₂Ni₃(tpda)₄(NCS)₂]、 [Rh₃Ni₂(tpda)₄(NCS)₂]和[Rh₂Co₃(tpda)₄(NCS)₂]^[54]。而在 2016年,由<u>洪偉捷</u>同學發 表於 Chem. Commun.上的五核異金屬串錯合物,其結構有別於以往過去實驗室所 形成的 helical 構型,而是形成 meso 結構的異核金屬串錯合物^[55],如圖 1-43 所示。

圖 1-43 meso 構型之五核異金屬串錯合物之單晶結構解析^[55]

-			
	Ni	Со	
Ru	[NiRu ₂ Ni ₂ (tpda) ₄ (NCS) ₂]		
	[NiRu ₄ (tpda) ₄ (NCS) ₂](PF ₆)	$[Ru_2Co_3(tpda)_4(NCS)_2]$	
	$[NiRu_2Ni_2(bna)_4Cl_2](ClO_4)_3$		
Rh	[Rh ₂ Ni ₃ (tpda) ₄ (NCS) ₂]	$[Dh C_{2} (h, h) (MCS)]$	
	[Rh ₃ Ni ₂ (tpda) ₄ (NCS) ₂]	$[Rh_2Co_3(tpda)_4(NCS)_2]$	
	[Mo ₂ NiMo ₂ (tpda) ₄ (X) ₂]		
Мо	$[NiMo_2Ni_2(bna)_4(X)_2](PF_6)_3$	$[Mo_2Co_3(tpda)_4(X)_2] X = CI, NCS$	
	X = Cl, NCS	$[Mo_2CoMo_2(tpda)_4(X)_2] X = CI, NCS$	
Re	[Re ₂ Ni ₂ (tpda) ₄ (NCS)](PF ₆)		

表 1-1 五氮配基合成異金屬串之列表

**Note* : tpda : tripyridyldiamine; bna : binaphthridylamine.

1-5-2 不對稱配基之異構物

本實驗室於研究金屬串錯合物的初期,所使用的多吡啶胺系統的配基均為對 稱型結構,因此,在形成金屬串錯合物後,並不會產生具有不同構型的異構物 (isomer)。然而隨著往後的研究,開始嘗試對配基本身進行修飾,所形成的配基開 始具有不對稱的特性,進而在形成金屬串錯合物時,產生不同的構型。根據不對 稱配基排列的方向一般可以細分為四種構型:(4,0) form、(3,1) form、(2,2)-cis form 和(2,2)-trans form,如圖 1-44 所示。這些構型所形成的金屬串模型可以根據幾種原 因來解釋:(一)立體阻障;(二)電荷分布及對位效應;(三)排列機率^[56]。

圖 1-44 不對稱配基所產生出的四種結構異構物^[56]

假使不考慮立體阻障和電荷分布兩個因素而僅考慮排列機率來進行組合,可 以明顯發現以(3,1) form 構型具有最大的出現機率,其次為(2,2)-cis form 構型。也 因此可以明確得知,金屬串錯合物本身在形成構型時,主要可以藉由調控三大結 構因子,進而促使金屬串錯合物的單一種構型具有較高的出現機率及產率。 (3,1)-form

圖 1-45 四螺旋金屬串錯合物之結構異構物分布機率[56]

1-6 研究動機

於前言部分,已經介紹了各種金屬串錯合物,由於本實驗室在吡啶胺系統及 萘啶胺系統已有豐碩的研究成果,且針對對稱型配基的開發與探討也行之有年, 因此,為了探討更新穎的金屬串分子與其所具有獨特的電化學特性,本論文的研 究工作則往兩大方向進行:(1)針對不對稱型的配基進行開發,並且同時搭配吡啶 與萘啶以及磺醯胺系統進而合成出新穎的金屬串分子;(2)合成並開發異核金屬串 分子,同時針對這兩個研究主體探討其磁性與電化學特性。

如 Scheme 1-6-1 所示,本篇論文第一主題主要以吡啶與萘啶搭配磺醯胺的混 合系統為概念,合成五氮配基 H₂Tspnda (Ligand 1)與一系列微調(fine-tune)吡啶取 代基或磺醯胺取代基的部分所構成的配基進行直線型鎳金屬串的合成與性質解 析。

Scheme 1-6-1

N-(p-tolyl-sulfonyl)pyridylnaphthyridyl diamine

N-(methyl-sulfonyl)pyridylnaphthyridyl diamine H₂Mspnda 3

N-(p-tolyl-sulfonyl)phenylpyridylnaphthyridyl diamine

H₂Tsphpnda 2

N-(methyl-sulfonyl)phenylpyridylnaphthyridyl diamine H₂Msphpnda 4

五氮配基 H₂Tspnda (Ligand 1)主要是一個不對稱型的配基,最初開發這條配基 的主要用意在於與過去實驗室開發的 H₂npTs 配基進行比較,由於 H₂npTs 配基所 合成出鎳金屬串錯合物具有兩個雙核鎳金屬混價(mixed-valence)單元,並且整個金 屬串分子呈現電中性的現象^[57],並不需要外圍的陰離子來幫助平衡電荷,也因此, 為了探究這類具混價單元的金屬串錯合物,本論文置換了 H2npTs 配基的吡啶與萘 啶位置,進而形成 H2Tspnda 配基,此外也微調磺醯基的部分,由甲基苯磺醯基置 換為甲基磺醯基,形成 H2Mspnda 配基,並成功合成出五核鎳金屬串並取得其單晶 結構解析,更針對其進行電化學分析與磁性的量測。

針對微調(fine-tune)配基的部分,主要在於配基或金屬串本身具有溶解度上的 問題,由於化合物在形成晶體時,於空間堆積中堆疊較為緊密,容易造成晶體難 以被溶劑溶解進而無法有效量測其性質,此外,之所以選定芳香環族作為取代基, 主要在於研究環內的電子經過共振後是否會對金屬串的物理或化學特性造成改變, 因此,H₂Tsphpnda 配基(Ligand 2)與H₂Msphpnda 配基(Ligand 4)主要用以與未修飾 前的配基(Ligand 1 和 3)進行相互比較,同時也可以增加配基本身的溶解度,進而 達到提高反應活性與增加產率的目的。

第二主題則是以探討異核金屬串分子為出發點,我們已知金屬串的物理或化 學特性會隨著使用的金屬離子的不同而有所變化,因此,為了探討更多新穎的異 核金屬串,第二主題所採用的探討配基為 H₂Tspnda (Ligand 1)及 H₂Tsphpnda (Ligand 2)配基,並以雙核鉬金屬為金屬起始物,並搭配鎳金屬鹽類,期望合成出 以鉬/鎳金屬為主的異五核金屬串錯合物。此外,本論文也延續了實驗室<u>華紹安</u>學 長過去的研究,由於過去的實驗主要以雙核鍊金屬搭配鎳金屬形成異四核和異五 核的鍊/鎳金屬串錯合物^[53],因此,本論文研究重點則是希望合成出以雙核鍊金屬 搭配鈷金屬所形成異四核金屬串,同時透過將異四核金屬串加入第三種金屬(釘金 屬,Ruthenium),並以實驗室傳統的三吡啶二胺配基(H₂tpda, Ligand 5)為出發點 (Scheme 1-6-2),合成出具有三種不同金屬的異五核金屬串錯合物。

Scheme 1-6-2

H₂tpda 5

第二章 實驗部分

2-1-1 實驗藥品

表 2-1 反應試藥

藥品名稱	化學式	分子量	藥品廠商
2,6-Diaminopyridine	C5H7N3	109.13	ACROS
2-Aminopyridine	$C_5H_6N_2$	94.12	ACROS
2-Chloropyridine	C ₅ H ₄ NCl	113.54	ACROS
Sodium nitrite	NaNO ₂	69.00	Aldrich
Phosphorus oxychloride	POCl ₃	153.33	Merck
Phosphorus pentachloride	PCl ₅	208.22	Merck
Ammonium hydroxide	NH4OH	35.04	ACROS
2-Amino-5-bromopyridine	$C_5H_5N_2Br$	173.01	ACROS
Phenylboronic acid	C ₆ H ₇ BO ₂	121.93	ACROS
D,L-Malic acid	$C_4H_6O_5$	134.09	ACROS
p-Toluene sulfonamide	C7H9NO2S	171.21	ACROS
Methanesulfonamide	CH ₅ NO ₂ S	95.12	ACROS
1,3-Bis(diphenylphos-	C ₂₇ H ₂₆ P ₂	412.44	Strem
phino)propane (dppp)			
Hydrazine monohydrate	NH ₂ NH ₂ ·H ₂ O	50.06	ACROS
(64% aq.)			
Potassium tert-butoxide	C ₄ H ₉ KO	112.21	ACROS
Sodium carbonate	Na ₂ CO ₃	105.99	ACROS
Tetrabutylammonium	(CH ₃ CH ₂ CH ₂ CH ₂) ₄ N	341.91	Merck
perchlorate	(ClO ₄)		
Naphthalene	C ₁₀ H ₈	128.17	ACROS

表 2-2 實驗溶劑

藥品名稱	化學式	分子量	藥品廠商
Sulfuric acid	H_2SO_4	98.08	Aldrich
Acetone	C ₃ H ₆ O	58.08	TEDIA
Toluene	C ₆ H ₅ CH ₃	92.14	Fisher

Dichloromethane	CH ₂ Cl ₂	84.93	TEDIA
1,2-Dichloroethane	C ₂ H ₄ Cl ₂	147.01	TEDIA
Chloroform	CHCl ₃	119.38	Merck
Diethyl ether	(CH ₃ CH ₂) ₂ O	74.12	TEDIA
<i>n</i> -Hexane	C ₆ H ₁₄	86.18	Merck
Methanol	CH ₃ OH	32.04	TEDIA
<i>n</i> -Butanol	C ₄ H ₁₀ O	74.12	ACROS
tert-Butanol	$C_4H_{10}O$	74.12	ACROS
Ammonium hydroxide	NH ₄ OH	35.05	TEDIA
Dimethyl sulfoxide- <i>d</i> ₆	C ₂ H ₆ OS	84.17	Merck
Dimethylformamide	C ₃ H ₇ NO	73.09	TEDIA
$CDCl_3-d_1$	CDCl ₃	120.38	Aldrich
Acetic acid	CH ₃ COOH	60.05	Aldrich
Ethyl acetate	C4H8O2	88.11	TEDIA

表 2-3 金屬鹽類

藥品名稱	化學式	分子量	藥品廠商
Tetrakis(triphenylphos-	$C_{72}H_{60}P_4Pd$	1155.56	Merck
phine)palladium(0)			
Tris(dibenzylideneacetone)	$C_{51}H_{42}O_3Pd_2$	915.72	Strem
dipalladium(0)			
Sodium	CF ₃ SO ₃ Na	172.06	Aldrich
Trifluoromethanesulfonate			
Potassium	KPF ₆	184.06	Aldrich
hexafluorophosphate			
Sodium tetrafluoroborate	NaBF ₄	109.79	Aldrich
Nickel(II) acetate	Ni(OAc) ₂ ·4H ₂ O	248.84	ACROS
tetrahydrate			
Potassium perrhenate	KReO ₄	289.30	Strem
Molybdenum	Mo(CO) ₆	264.00	Merck
hexacarbonyl			
Cobalt(II) chloride	CoCl ₂	129.83	Aldrich
anhydrous			
Chromium(II) chloride	CrCl ₂	122.90	Aldrich
anhydrous			

2-1-2 實驗儀器

 X-ray 單晶繞射儀: Bruker D8 VENTURE 和 NONIUS Kappa CCD Diffractometer, 委託科技部臺大貴重儀器中心<u>李錦祥</u>博士代測。

單晶結構分析

晶體經 X-ray 繞射所收集之資料,以 MoK α ($\lambda = 0.71073$ Å)或 CuK α ($\lambda = 1.54178$ Å) 為光源,進行 X-ray 單晶結構解析。所有晶體皆以相同的方法解出整體結構的所 有非氫原子的位置,利用 SHELXTL program (SHELXTL-2014/7 或 SHELXTL-2018/3)以直接法(Direct methods)或派特森法(Patterson methods)解出, 所有氫原子位置則經計算而得,吸收校正(Absorption correction)使用 SADABS。

- 超導量子干涉磁量儀(Superconducting Quantum Interference Device Magnetometer, SQUID): Quantum Design MPMS7 (Magneticproperty Measurement System)量測 系統, Model 1802 Temperature Controller, Model 1822 MPMS Controller,每件樣 品均以固態測量,自行將樣品封入保鮮膜中。溫度範圍 4~300 K,委託中研院<u>江</u> 明錫教授實驗室劉玉嬌學姊代測。
- 核磁共振光譜儀:¹HNMR 光譜使用 Varian 400 MHz NMR 測量,委託台大化學系<u>蘇仁寬</u>先生代測。化學位移則相對於 CH₂Cl₂ (5.32 ppm)和 DMSO (2.50 ppm) 為內參考(internal standard)。
- 4. 基質輔助雷射游離質譜儀(MALDI-MS)及電噴灑游離質譜儀(ESI-MS):委託中研院化學所質譜中心及台大化學系梁芸瑄小姐代測。
- 5. 紅外線光譜儀:儀器為 Nicolet MAGNA-IR 550型,樣品均以 KBr 打片,自行操作。
- 6. 循環伏安法(Cyclic Voltammetry, CV):使用三電極電位測定儀(CH Instruments, Model 750A)進行電位掃描實驗。三電極:工作電極(working electrode)為 BAS 面積 0.02 cm²的白金電極,輔助電極(auxiliary electrode)為直徑 0.25 mm 的白金 絲,參考電極(reference electrode)則為自製 Ag/AgCl (sat'd KCl)電極(保存於含有

3.0 M 的氯化鉀水溶液)。參考電極則以飽合甘汞電極(saturated calomel electrode, SCE)校正,誤差在±3mV內,電解質溶液為 0.1 M TBAP,自行操作。

- 7. 電子吸收光譜儀(Ultraviolet-VisibleSpectrometer): 儀器為 Hitichi (U-3310) Spectrophotometer, 配製濃度 1.55×10⁻⁵ M 的 CH₂Cl₂ 溶液自行操作測量。
- 電子順磁共振光譜儀(Electron Paramagnetic Resonance Spectrometer, EPR): (1)儀器為德國 Bruker、Elexsys 系列 E-580,量測溫度為4、10和25K,樣品準備約10 mg,委託國立清華大學化學所陳若琪小姐代測; (2)儀器為德國 Bruker,型號為 EPR-plus,量測溫度為4、10和25K,樣品準備約10 mg,委託國立臺灣師範大學化學所那凱捷小姐代測。
- 9. 元素分析(Elemental Analysis, EA):儀器為 Perkin-Ekner CGB-2400型,委託科技 部臺大貴儀中心陸靖蔚小姐代測。
- 近紅外光吸收光譜(Near-IR Absorption Spectroscopy):儀器為 Cary 5000 (1.12 Version) Spectrophotometer,配製濃度 1.5 × 10⁻⁵ M 的 DMF 溶液,掃描範圍為 800-1600 nm,掃描速率為 600 nm/min,委託中研院<u>江明錫</u>教授實驗室<u>黃任平</u>同 學代測。

2-1-3 化合物缩窝及编號名稱

(1) 前驅物(Precursors)與配基(Ligands)

N4Cl, P1 : 2-Chloro-7-pyridylamino-1,8-naphthyridine

PhN4Cl, P2: 2-Chloro-7-(5-phenylpyridylamino)-1,8-naphthyridine

H2Tspnda, L1 : N-(p-tolyl-sulfonyl)pyridylnaphthyridyl diamine

H₂Tsphpnda, L₂ : N-(p-tolyl-sulfonyl)phenylpyridylnaphthyridyl diamine

H2Mspnda, L3 : N-(methyl-sulfonyl)pyridylnaphthyridyl diamine

H2Msphpnda, L4 : N-(methyl-sulfonyl)phenylpyridylnaphthyridyl diamine

H2tpda, L5 : Tripyridyldiamine

(2) 同核金屬串錯合物(Homonuclear Metal String Complexes)

Complex 1 (ic18251) : [Ni₅(Tspnda)₄](PF₆)

Complex 2 (ic18205) : [Ni₅(Tspnda)₄(H₂O)₂](PF₆)₂

Complex 3 (ic18269) : [Ni₅(Tsphpnda)₄](PF₆)

Complex 4 (ic18283) : [Ni₅(Tsphpnda)₄](PF₆)₂

Complex 5 (ic18049) : [Ni₅(Tspnda)₄](BF₄)

Complex 6 (ic18592) : [Ni₅(Mspnda)₄](PF₆)

- **Complex 7 (ic17678)** : [Ni₄(Mspnda)₄(H₂O)₂]
- Complex 8 (ic18492) : [Ni₅(Mspnda)₄](CF₃SO₃)₂
- Complex 9 (ic18032) : [Ni₅(Msphpnda)₄](PF₆)
- Complex 10 (ic18319) : [Ni₄(Msphpnda)₄F₂](Ni₂Cl₆O)
- Complex 11 (ic18554) : [Ni₅(Msphpnda)₄](PF₆)₂
- **Complex 12 (mass spectra only)** : [Co₅(Tspnda)₄(PF₆)₂]
- **Complex 13 (mass spectra only)** : [Cr₄(Tspnda)₄]

(3) 異核金屬串錯合物(Heteronuclear Metal String Complexes)

Complex 14 (ic17558) : [NiMo₂Ni(Tspnda)₄]

Complex 15 (ic18022) : [CoMo₂Co(Tspnda)₄]

Complex 16 (mass spectra only) : [Mo₄Ni(Tspnda)₄](PF₆)₂

Complex 17 (mass spectra only) : [Mo₄Ni(Tsphpnda)₄](PF₆)₂

Complex 18 (ic18914) : [Mo₄(Tsphpnda)₃(HTsphpnda)(OAc)]

Complex 19 (ic17398) : [Co₂Re₂(tpda)₄Cl](PF₆)

Complex 20 (ic18729) : [Co₂Re₂(tpda)₄(NCS)](PF₆)

Complex 21 (mass spectra only) : [Co₂Re₂Ru(tpda)₄Cl₂](PF₆)₂

2-2 配基合成

2-2-1 配基合成流程圖

- a. D, L-Malic acid, 110 $^\circ\!\mathrm{C}$ in H_2SO4, 12 hr, neutralized with NH4OH.
- b. NaNO₂, dissolved in H₂SO₄, 6 hr, neutralized with NH₄OH.
- c. PCl₅, POCl₃, refluxed (about 90 $^{\circ}$ C) for 6 hr, neutralized with NH₄OH.
- d. Phenylboronic acid, Pd(PPh₃)₄, Na₂CO_{3(aq)}, toluene, MeOH, refluxed for 12 hr.
- e. t-BuOK, Pd₂(dba)₃, dppp, refluxed in toluene, 4 days.
- f. t-BuOK, Pd₂(dba)₃, dppp, refluxed in toluene, 3 days.

Mo₂(OAc)4 雙核鉬金屬起始物之合成

释取 20 g molybdenum carbonyl 於雙頸瓶中,加入 140 mL acetic acid、15 mL acetic anhydride、100 mL o-dichlorobenzene 和 8 mL *n*-hexane,架設迴流裝置並加熱 150 ℃攪拌反應三天,可看到反應瓶內有金色晶體產生,即可降溫冷卻。將溶液 進行抽氣過濾,用些許 methanol 及 diethyl ether 清洗並烘乾,可得到金黃色晶體粉 末,重量約 11 g,產率為 30%。

註:此雙核鉬金黃色晶體需以 parafilm 封口膜封存,並置於乾燥櫃中,避免其快速 氧化。

Re2(OAc)4Cl2 雙核錸金屬起始物之合成

步驟一: 合成 Tetra-n-butylammonium octachlorodirhenate(III)

释取 potassium perrhenate 2.0 g 與 sodium chloride 2.0 g 置於雙頸瓶中,並加入 40 mL 50% 的 hypophosphorous acid 水溶液,於90 ℃下加熱迴流反應10 小時, 等反應 A 溶液變深色時,取 4.0 g tetra-*n*-butylammonium bromide 與75 mL 的 6 *N* HCI 配製成 B 溶液,將 B 溶液用針筒打入 A 溶液中,並持續加熱反應12 小時, 待反應完成後,將此熱溶液過濾,取得初產物藍色固體,並利用 6 *N* HCl 10 mL 及 分三次各取 20 mL ethanol 沖洗藍色固體。真空乾燥 4 小時候,即可得 $[(n-C_4H_9)_4N]_2[Re_2Cl_8],產率為 40%^{[58]}。$

註: 藍色固體可溶於 200 mL methanol,過濾後,加入 50 mL 12 N HCl 進行純化再結晶。

步驟二:合成 Re₂(OAc)₄Cl₂

秤取 tetra-*n*-butylammonium octachlorodirhenate(III) 1.0 g、acetic acid 40 mL 和 acetic anhydride 10 mL 於氮氣下進行迴流反應(溶液需進行 purge 動作,藉由導入氮 氯以幫助清除 HCl 的產生),反應 1 小時後,溶液上層會呈現無色,底部會沉積 Re₂(OAc)₄Cl₂ 晶體,將溶液過濾並分別取 20 mL ethanol 分三次進行清洗,再以 20 mL diethyl ether 進行沖洗,待真空乾燥後,以 parafilm 進行封存,產率為 95%^[58]。

释取 2,6-diaminopyridine (13.21 g, 120 mmol)與 D,L-malic acid (18.03 g, 132 mmol)磨碎混合後,放入 1000 mL 的燒杯中,於冰浴中緩慢加入 60 mL H₂SO₄ (注意:有放熱反應),待反應物溶解後,加熱至 110 ℃,反應 12 小時。反應完成後,待其冷卻,倒入裝有冰塊的 5 L 燒杯中,在冰浴下緩慢加入 NH₄OH,中和至 pH~8, 過程中會產生土黃色沉澱。將水溶液過濾取沉澱物,以 H₂O、acetone 和 diethyl ether 進行沖洗,烘乾後可得到黃棕色固體 18.20 g,產率約 94%。

鑑定結果

MALDI(*m*/*z*) : 162.1 [M+H]⁺

¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) : δ = 11.84 (1H, broad, OH), 7.62 (2H, m), 6.97 (2H, s, NH), 6.32 (2H, d, *J* = 8.0 Hz), 6.09 (2H, d, *J* = 12 Hz) ppm

 $IR(KBr, cm^{-1}): 3403 (s) \times 3167 (vs) \times 1628 (s) \times 1546 (w) \times 1507 (m) \times 1399 (vs) \times 1371 (w) \times 1114 (vs) \times 935 (m) \times 892 (m) \times 840 (m) \times 784 (m) \times 661 (w) \times 618 (m)$

2-Amino-7-hydroxy-1,8-naphthyridine Sodium nitrite 2,7-Dihydroxy-1,8-naphthyridine

释取 2-amino-7-hydroxy-1,8-naphthyridine (12.20 g, 76.0 mmol)置於含有磁石的 1000 mL 燒杯中,於冰浴下緩慢倒入 80 mL H₂SO₄,攪拌至固體溶解,再緩慢加入 NaNO₂ (6.28 g, 88.0 mmol),在室溫下攪拌 8 小時(注意:有放熱反應)。反應完成後,將此溶液倒入倒入裝有 200 g 冰塊的 2 L 燒杯中(需在冰浴下進行),緩慢加入約 80 mL 的 NH₄OH,調控溶液呈鹼性(pH~8),會有大量黃棕色固體產生,進行抽氣過濾,並以 H₂O、acetone 和 diethyl ether 進行沖洗,烘乾後可得棕色固體 8.55 g,產 率為 70%。

鑑定結果

 $MALDI(m/z) : 163.1 [M+H]^{-}$

¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) : *δ* = 11.54 (2 H, s), 7.64 (2H, d, *J* = 8.0 Hz), 6.10 (2H, d, *J* = 8.0 Hz) ppm

 $IR(KBr, cm⁻¹): 3413 (s) \cdot 3124 (vs) \cdot 1918 (m) \cdot 1637 (s) \cdot 1487 (w) \cdot 1402 (m) \cdot 1358 (w) \cdot 1292 (w) \cdot 1228 (w) \cdot 1111 (w) \cdot 836 (s) \cdot 777 (m) \cdot 661 (w) \cdot 618 (m) \cdot 551 (w)$

2,7-Dihydroxy-1,8-naphthyridine Phosphorus pentachloride/ 2,7-Dichloro-1,8-naphthyridine Phosphorus oxychloride

释取 2,7-dihydroxy-1,8-naphthyridine (5.02 g, 31.0 mmol)置於冰浴下的雙頸瓶 中(先架設好氣體中和系統),加入 PCl₅ (12.7 g, 61.0 mmol)固體,隨後滴入 POCl₃ (14 mL, 140 mmol),於 90 ℃下反應迴流 6 小時(注意:會產生大量 HCl 氣體)。反應結 束後,將溶液緩慢倒入含有大量冰塊的 2 L 燒杯中,慢慢加入 NH4OH 進行中和(注 意:會大量放熱,需緩慢倒入攪拌,避免突沸現象發生),控制 pH~8,會產生大 量深棕色沉澱,抽氣過濾後,以 H₂O 和 acetone 沖洗,烘乾後可得深棕色固體,粗 產物 5.55 g,產率 90%。進一步以索式萃取法進行純化,可得黃色固體 4.67 g,產 率為 85%。

鑑定結果

MALDI(*m*/*z*) : 199.0 [M+H]⁺

¹H NMR (400 MHz, DMSO- d_6 , 25 °C) : δ = 8.61 (2H, d, J = 8.0 Hz), 7.79 (2 H, d, J = 8.0 Hz) ppm

IR(KBr, cm⁻¹): 3447 (s) $\cdot 3045$ (vs) $\cdot 2985$ (w) $\cdot 1592$ (s) $\cdot 1539$ (s) $\cdot 1473$ (s) $\cdot 1423$ (m) $\cdot 1308$ (s) $\cdot 1142$ (s) $\cdot 1124$ (s) $\cdot 998$ (m) $\cdot 851$ (s) $\cdot 795$ (m) $\cdot 782$ (m) $\cdot 658$ (w)

释取 2-amino-7-hydroxy-1,8-naphthyridine (5.02 g, 31.0 mmol)置於雙頸瓶中(先 架設好氣體中和系統),於冰浴下緩慢滴入 POCl₃ (14 mL, 155 mmol),加熱至 90 ℃ 下反應迴流 12 小時(注意: 會大量產生 HCl 氣體)。反應結束後,將溶液緩慢倒入 含有大量冰塊的 2 L 燒杯中,慢慢加入 NH4OH 進行中和,控制 pH~8,會產生大 量黃色沉澱,抽氣過濾後,以 H₂O、少量 acetone 及 diethyl ether 沖洗,烘乾後可 得黃棕色固體,產物 5.01 g,產率 90%。進一步以熱 acetone 萃取進行純化,可得 黃色固體 2.32 g,產率為 41%。

鑑定結果

MALDI(*m*/*z*) : 180.0 [M+H]⁺

¹H NMR (400 MHz, DMSO- d_6 , 25 °C) : δ = 8.25 (1 H, d, J = 8.0 Hz), 8.15 (1 H, d, J = 8.0 Hz), 7.93 (2 H, s), 7.40 (1 H, d, J = 8.0 Hz), 6.96 (1 H, d, J = 8.0 Hz) ppm

 $IR(KBr, cm^{-1}): 3344 (s) \cdot 3186 (vs) \cdot 1669 (w) \cdot 1613 (w) \cdot 1589 (w) \cdot 1544 (m) \cdot 1485 (w) \cdot 1388 (s) \cdot 1300 (w) \cdot 1228 (w) \cdot 1142 (m) \cdot 1118 (m) \cdot 945 (w) \cdot 845 (m) \cdot 790 (w) \cdot 778 (m) \cdot 624 (w)$

秤取 2-amino-5-bromopyridine (11.88 g, 69.0 mmol)、phenylboronic acid (12.50 g, 103 mmol)、50% Na₂CO_{3(aq)} (3.84 g, 35.0 mmol)共同加入含有 120 mL H₂O 和 0.5% Pd(PPh₃)₄ (0.4143 g, 0.36 mmol)的 500 mL 雙頸圓底瓶中,並加入 150 mL toluene 和 30 mL MeOH,於 120 ℃下反應迴流 12 小時。反應完成後,用 ethyl acetate 反覆萃 取 3 次(保留有機層),並利用管柱層析法純化產物(dichloromethane : acetone = 9 : 1), 可得亮白色鱗粉狀固體 7.27 g,產率為 62%。

鑑定結果

MALDI(*m*/*z*) : 171.1 [M+H]⁺

¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) : δ =8.21 (1 H, d, *J* = 4.0 Hz), 7.67 (1 H, dd, *J* = 10.4, 0.8 Hz), 7.53 (2 H, d, *J* = 7.6 Hz), 7.37 (2 H, m), 7.24 (1 H, m), 6.50 (1 H, dd, *J* = 9.6, 0.8 Hz), 6.03 (2 H, s, NH) ppm

 $IR(KBr, cm^{-1}): 3458 \text{ (m)} \cdot 3418 \text{ (vs)} \cdot 3345 \text{ (w)} \cdot 3163 \text{ (s)} \cdot 1647 \text{ (s)} \cdot 1607 \text{ (m)} \cdot 1577 \text{ (w)} \cdot 1515 \text{ (s)} \cdot 1483 \text{ (s)} \cdot 1448 \text{ (m)} \cdot 1390 \text{ (s)} \cdot 1322 \text{ (m)} \cdot 1260 \text{ (s)} \cdot 1184 \text{ (w)} \cdot 1148 \text{ (m)} \cdot 1075 \text{ (w)} \cdot 1005 \text{ (w)} \cdot 835 \text{ (s)} \cdot 772 \text{ (s)} \cdot 698 \text{ (m)} \cdot 583 \text{ (m)} \cdot 555 \text{ (m)} \cdot 509 \text{ (w)}$

2,7-Dichloro-1,8-naphthyridine

释取 2-aminopyridine (2.37 g, 25.2 mmol)、2,7-dichloro-1,8-naphthyridine (5.02 g, 25.2 mmol)、*t*-BuOK (3.38 g, 30.1 mmol)、Pd₂(dba)₃ (0.23 g, 0.25 mmol)和 dppp (0.21 g, 0.5 mmol)置於含有攪拌子之 500 mL 雙頸瓶中,架設迴流裝置。加入蒸餾除水過的 toluene,於氫氣下加熱 120 ℃反應迴流 96 小時。反應完成後進行冷卻,並以減壓濃縮抽掉 toluene,加入 dichloromethane 溶解固體並進行管柱層析純化 (dichloromethane : acetone = 7:3),可得黃色固體 3.57 g,產率 55%。

鑑定結果

MALDI(*m*/*z*) : 257.1 [M+H]⁺

¹H NMR (400 MHz, DMSO-*d*₆, 25 °C): δ =10.42 (1 H, s), 8.55 (1 H, d, *J* = 8 Hz), 8.30 (1 H, d, *J* = 8.0 Hz), 8.26 (1 H, d, *J* = 8.0 Hz), 8.22 (1 H, d, *J* = 8.0 Hz), 7.82 (1 H, t), 7.40 (1 H, d, *J* = 8.0 Hz), 7.03 (1 H, d, *J* = 8.0 Hz) ppm

IR(KBr, cm⁻¹) : 3462 (w), 3253 (w), 3055 (m), 1628 (w), 1589 (w), 1558 (w), 1426 (s), 1346 (s), 1130 (s), 983 (m), 843 (m), 771 (s), 610 (m)

2,7-Dichloro-1,8-naphthyridine

秤取 2-amino-5-phenylpyridine (4.30 g, 25.3 mmol) 、 2,7-dichloro-1,8naphthyridine (5.02 g, 25.2 mmol) \cdot t-BuOK (3.38 g, 30.1 mmol) \cdot Pd₂(dba)₃ (0.23 g, 0.25 mmol)和 dppp (0.21 g, 0.5 mmol)置於含攪拌子之 500 mL 雙頸瓶, 架設迴流裝 置。加入蒸餾除水的 toluene,於氫氣下加熱 120 ℃反應迴流 96 小時。反應完成 後進行冷卻,以減壓濃縮抽掉 toluene,加入 dichloromethane 溶解固體並進行管柱 層析純化(dichloromethane: acetone = 9:1),可得黃色固體 4.30g,產率 51%。

鑑定結果

MALDI(m/z) : 333.1 [M+H]⁺

¹H NMR (400 MHz, DMSO-*d*₆, 25 °C): δ =10.58 (1 H, s), 8.68 (2 H, q), 8.26 (2 H, q), 8.17 (1 H, dd, J = 2.4, 2.4 Hz), 7.71 (2 H, d, J = 7.6 Hz), 7.60 (1 H, d, J = 8.8 Hz), 7.48 (2 H, t), 7.42 (1 H, d, *J* = 7.6 Hz), 7.37 (1 H, t) ppm

IR(KBr, cm⁻¹) : 3452 (w), 1613 (m), 1596 (w), 1346 (s), 1133 (s), 1003 (w), 768 (s), 690 (m), 632 (w), 604 (w)

2-2-3 配基合成

(H) N-(p-tolyl-sulfonyl)pyridylnaphthyridyl diamine (H₂Tspnda, L1)

2-Chloro-7-(pyridylamino)-1,8-naphthyridine 2% Pd₂(dba)₃, 4% dppp, *t*-BuOK

Toluene, reflux 48 h

H₂Tspnda

p-Toluene sulfonamide

释取 2-chloro-7-pyridylamino-1,8-naphthyridine (5.01 g, 19.5 mmol)、p-toluene sulfonamide (4.00 g, 23.4 mmol)、t-BuOK (2.62 g, 23.3 mmol)、Pd₂(dba)₃ (0.36 g, 0.39 mmol)和 dppp (0.32 g, 0.78 mmol)置於含攪拌子之 500 mL 雙頸瓶,架設迴流裝置。 加入蒸餾除水的 toluene,於氫氣下加熱 120 ℃反應迴流 48 小時。反應完成後進 行冷卻,以減壓濃縮抽掉 toluene,加入 dichloromethane 溶解固體並進行管柱層析 純化(dichloromethane : acetone = 9:1),可得亮黃色固體 4.37 g,產率 57%。

鑑定結果

MALDI(*m*/*z*) : 392.1 [M+H]⁺

¹H NMR (400 MHz, DMSO- d_6 , 25 °C): δ = 13.32 (1 H, s), 10.39 (1 H, s), 8.65 (1 H, d, J = 8.4 Hz), 8.28 (1 H, s), 8.00 (2 H, q), 7.73 (3 H, s), 7.27 (4 H, m), 7.01 (1 H, t), 2.32 (3 H, s) ppm

IR(KBr, cm⁻¹) : 3463 (w), 3221 (w), 1622 (m), 1542 (s), 1442 (s), 1357 (m), 1306 (m), 1134 (m), 1086 (s), 962 (m), 927 (m), 859 (m), 775 (w), 659 (m)

57

N-(p-tolyl-sulfonyl)phenylpyridylnaphthyridyl

(H₂Tsphpnda, L2)

2% Pd₂(dba)₃, 4% dppp, *t*-BuOK Toluene, reflux 48 h

H₂Tsphpnda

释取 2-chloro-7-(5-phenylpyridylamino)-1,8-naphthyridine (5.03 g, 15.1 mmol)、 p-toluene sulfonamide (3.09 g, 18.0 mmol)、*t*-BuOK (2.02 g, 18.0 mmol)、Pd₂(dba)₃ (0.27 g, 0.29 mmol)和 dppp (0.25 g, 0.61 mmol)置於含攪拌子之 500 mL 雙頸瓶,架 設迴流裝置。加入除水的 toluene,於氫氣下加熱 120 ℃反應迴流 48 小時。反應 完成後進行冷卻,以減壓濃縮抽掉 toluene,加入 dichloromethane 溶解固體並進行 管柱層析純化(DCM: acetone = 9: 1),可得亮黃色固體 4.21 g,產率 60%。

鑑定結果

MALDI(*m*/*z*) : 468.1 [M+H]⁺

¹H NMR (400 MHz, DMSO- d_6 , 25 °C): δ =13.39 (1 H, s), 10.55 (1 H, s), 8.75 (1 H, d, J = 8.4 Hz), 8.01 (3 H, q), 7.72 (4 H, m), 7.47 (3 H, m), 7.30 (5 H, m), 2.32 (3 H, s) ppm

IR(KBr, cm⁻¹) : 3462 (w), 3232 (w), 1620 (w), 1546 (s), 1394 (m), 1354 (s), 1309 (s), 1138 (s), 1085 (s), 928 (m), 767 (m), 688 (s), 552 (m)

(J) N-(methyl-sulfonyl)pyridylnaphthyridyl diamine (H2Mspnda, L3)

Methanesulfonamide

2% Pd₂(dba)₃, 4% dppp, *t*-BuOK ➤ H₂Mspnda Toluene, reflux 48 h

秤取 2-chloro-7-pyridylamino-1,8-naphthyridine (3.03 g, 11.8 mmol)、
methanesulfonamide (1.35 g, 14.2 mmol)、t-BuOK (1.59 g, 14.2 mmol)、Pd₂(dba)₃ (0.22
g, 0.24 mmol)和 dppp (0.19 g, 0.46 mmol)置於含攪拌子之 250 mL 雙頸瓶,架設迴流
裝置。加入蒸餾除水的 toluene,於氫氣下加熱 120 ℃反應迴流 48 小時。反應完
成後進行冷卻,以減壓濃縮抽掉 toluene,加入 dichloromethane 溶解固體並進行管
柱層析純化(dichloromethane: acetone = 9:1),可得亮黃色固體 3.04 g,產率 82%。

鑑定結果

MALDI(*m*/*z*) : 316.1 [M+H]⁺

¹H NMR (400 MHz, DMSO-*d*₆, 25 °C) : *δ* = 13.03 (1 H, s), 10.36 (1 H, s), 8.59 (1 H, s), 8.29 (1 H, d, *J* = 3.4 Hz), 8.04 (2 H, t), 7.74 (1 H, t), 7.27 (2 H, m), 7.03 (1 H, m), 2.95 (3 H, d, *J* = 44.4 Hz) ppm

IR(KBr, cm⁻¹) : 3462 (broad), 3234 (w), 1640 (m), 1619 (m), 1548 (s), 1446 (s), 1394 (s), 1361 (s), 1311 (s), 1257 (m), 1112 (s), 975 (s), 930 (m), 860 (m), 806 (m), 780 (s), 594 (s), 516 (s)

(K) N-(methyl-sulfonyl)phenylpyridylnaphthyridyl

(H₂Msphpnda, L4)

释取 2-chloro-7-(5-phenylpyridylamino)-1,8-naphthyridine (5.01 g, 15.1 mmol)、 methanesulfonamide (1.72 g, 18.1 mmol)、t-BuOK (2.03 g, 18.1 mmol)、Pd₂(dba)₃ (0.28 g, 0.31 mmol)和 dppp (0.25 g, 0.61 mmol)置於含攪拌子之 500 mL 雙頸瓶,架設迴流 裝置。加入蒸餾除水的 toluene,於氫氣下加熱 120 ℃反應迴流 48 小時。反應完 成後進行冷卻,以減壓濃縮抽掉 toluene,加入 dichloromethane 溶解固體並進行管 桂層析純化(DCM: acetone = 9: 1),可得亮黃色固體 4.72 g,產率 80%。

鑑定結果

MALDI(*m*/*z*) : 392.1 [M+H]⁺

¹H NMR (400 MHz, DMSO- d_6 , 25 °C) : δ = 13.08 (1 H, s), 10.51 (1 H, s), 8.64 (1 H, d, J = 2.4 Hz), 8.05 (3 H, dd, J = 8.0, 8.0 Hz), 7.73 (2 H, d, J = 7.5 Hz), 7.48 (2 H, t), 7.37 (2 H, t), 7.21 (1 H, s), 2.96 (3 H, d, J = 48.0 Hz) ppm

IR(KBr, cm⁻¹) : 3462 (broad), 3241 (w), 1640 (m), 1621 (m), 1547 (s), 1394 (m), 1356 (s), 1310 (s), 1263 (m), 1113 (s), 973 (s), 765 (w), 700 (w), 595 (s)

60

释取 2,6-diaminopyridine (5.11 g, 46.8 mmol)、t-BuOK (12.62 g, 113 mmol)、 Pd₂(dba)₃ (0.86 g, 0.94 mmol)和 dppp (0.77 g, 1.87 mmol)置於含磁石之 500 mL 雙頸 瓶中,架設迴流裝置,抽真空約 30 分鐘後,以雙針導入除水的 toluene 300 mL, 並通入氫氣於系統內,在油浴鍋中加熱。取 2-chloropyridine (11 mL, 117 mmol)以 針筒方式打入反應瓶中,加熱反應迴流三天後,降溫冷卻並抽乾 toluene,加入水 洗去鹽類後進行過濾,可得深棕色固體,再加入少量 MeOH (50 mL)清洗粗產物後, 以超音波震盪 30 分鐘後抽氣過濾曬乾固體,可得黃褐色固體,再以管柱層析分離 純化,以 dichloromethane: acetone = 10:1,可得黃白色固體 6.51 g,產率為 53%。

鑑定結果

MALDI(*m*/*z*) : 264.1 [M+H]⁺

¹H NMR (400 MHz, DMSO- d_6 , 25 °C) : δ = 9.36 (2 H, s), 8.19 (2 H, d, J = 4.0 Hz), 7.81 (2 H, d, J = 8.0 Hz), 7.63 (2 H, t), 7.48 (1 H, t), 7.11 (2 H, d, J = 8.0 Hz), 6.83 (2 H, t) ppm

IR(KBr, cm⁻¹) : 3262 (N-H), 3182 (N-H), 1611 (m), 1589 (w), 1529 (s), 1451 (w), 1433(w), 1357 (s), 1331 (m), 1308 (s), 1241 (m), 1157 (s), 985 (s) , 860 (w), 771 (s) , 727 (w)

61

2-3 金屬錯合物之合成 2-3-1 同核金屬串錯合物之合成 (1) $[Ni_5(Tspnda)_4](PF_6)$

於 250 mL 之磨砂口錐形瓶中裝入 H₂Tspnda (203 mg, 0.519 mmol)、naphthalene (約 50 g)、Ni(OAc)₂·4H₂O (194 mg, 0.780 mmol)和磁石,加熱至 220 ℃,起始溶液 顏色由黃色逐漸轉變為暗棕綠色,持續反應 18 小時,反應完成後停止加熱,趁熱 將溶液倒入約 250 mL 之 n-hexane 中並進行抽氣過濾,可得棕色固體,再以 n-hexane 洗去殘餘的茶,以 dichloromethane 萃取固體,可得暗棕綠色溶液,並將此溶液加 入 KPF6 攪拌約 6 小時,完成後過濾並減壓濃縮,並以管柱層析進行純化,以 DCM: acetone = 9:1 進行分離後,以 DCM 為主並加入 2-3 滴 DMF(協助晶體內溶劑揮發 慢,利於生成晶體)並利用 n-hexane 進行 bi-layer 養晶,可得深棕色晶體約 91 mg, 產率為 38%。

鑑定結果

MALDI(*m*/*z*) : 1850.1 [M]⁺

IR(KBr, cm⁻¹) : 3447 (broad), 1600 (s), 1507 (s), 1470 (m), 1429 (m), 1395 (m), 1356 (m), 1147 (s), 1084 (s), 951 (m), 840 (s, PF₆), 661 (s), 617 (s), 553 (m)

EA: 理論值:C%:48.14 H%:3.03 N%:14.03 實驗值:C%:47.69 H%:3.17 N%:13.74

释取[Ni₅(Tspnda)₄](PF₆)晶體(20.3 mg, 0.0110 mmol)置於含磁石之圓底瓶中,以 dichloromethane 進行溶解,再加入氧化劑[FeCp₂](PF₆)(4.3 mg, 0.0130 mmol)持續攪 拌 1.5 小時(顏色由淺棕色轉變為紅棕色),完成後,以 ether 進行處理(除去 FeCp₂) 並利用 dichloromethane 萃取固體,可發現溶液顏色為紅棕色,加入 2-3 滴 methanol(幫助生成晶體)並與*n*-hexane 以 bi-layer 養晶,可得到紅棕色晶體 13.4 mg, 產率 66%。

鑑定結果

MALDI(*m*/*z*) : 1850.1 [M]⁺

IR(KBr, cm⁻¹) : 3448 (broad), 1601 (s), 1507 (s), 1471 (m), 1430 (m), 1396 (m), 1356 (w), 1283 (s), 1148 (s), 1085 (s), 951 (w), 839(s, PF₆), 661 (m), 617 (s), 553 (s)

EA: 理論值:C%:44.13 H%:2.96 N%:12.87 實驗值:C%:44.48 H%:3.53 N%:12.55

於 250 mL 之磨砂口錐形瓶中裝入 H₂Tsphpnda (150 mg, 0.321 mmol)、 naphthalene (約 50 g)、Ni(OAc)₂·4H₂O (120 mg, 0.482 mmol)和磁石,加熱至 220 ℃, 起始溶液顏色由黃色逐漸轉變為暗棕綠色,持續反應 18 小時,反應完成後停止加 熱,趁熱將溶液倒入約 250 mL 之 *n*-hexane 中並進行抽氣過濾,可得棕色固體,再 以 *n*-hexane 洗去殘餘的茶,以 dichloromethane 萃取固體,可得暗棕綠色溶液,並 將此溶液加入 KPF₆攪拌約 6 小時,完成後過濾並減壓濃縮,並以管柱層析進行純 化,以 DCM: acetone = 9:1 進行分離後,以 DCM 為主並加入 2-3 滴 DMF(協助晶 體內溶劑揮發慢,利於生成晶體)並利用 *n*-hexane 進行 bi-layer 養晶,可得深棕色 晶體約 57 mg,產率為 33%。

鑑定結果

MALDI(*m*/*z*) : 2154.1 [M]⁺

IR(KBr, cm⁻¹) : 3447 (broad), 1599 (s), 1506 (s), 1470 (s), 1397 (m), 1367 (w), 1141 (s), 1086 (s), 952 (m), 844 (s, PF₆),767 (w),700 (w), 662 (w), 617 (s), 552 (s)

EA: 理論值:C%:54.30 H%:3.33 N%:12.18 實驗值:C%:53.83 H%:3.39 N%:11.71

(4) $[Ni_5(Tsphpnda)_4](PF_6)_2$

秤取[Ni5(Tsphpnda)4](PF6)晶體 (20.1 mg, 0.00932 mmol)置於含磁石之圓底瓶 中,以 dichloromethane 進行溶解,再加入氧化劑[FeCp2](PF6) (3.7 mg, 0.0111 mmol) 持續攪拌 1.5 小時(顏色由淺棕色轉變為紅棕色),完成後,以 ether 進行處理(除去 FeCp2) 並利用 dichloromethane 萃取固體,可發現溶液顏色為紅棕色,加入 2-3 滴 DMF(幫助生成晶體)並與 n-hexane 以 bi-layer 養晶,可得到紅棕色晶體 12.9 mg, 產率 64%。

鑑定結果

MALDI(*m*/*z*) : 2154.1 [M]⁺

IR(KBr, cm⁻¹): 3448 (broad), 1599 (s), 1506 (s), 1470 (s), 1397 (m), 1367 (w), 1141 (s), 1086 (s), 952 (m), 844 (s, PF₆), 767 (w),701 (w), 662 (w), 617 (s), 553 (s)

EA:

理論值:C%:51.08 H%:3.13 N%:11.46 實驗值: C%: 49.93 H%: 3.41 N%: 11.08 (推測誤差來自於晶體內殘於一個 CH2Cl2 溶劑分子所導致)

於 250 mL 之磨砂口錐形瓶中裝入 H₂Tspnda (105 mg, 0.268 mmol)、naphthalene (約 50 g)、Ni(OAc)₂·4H₂O (101 mg, 0.406 mmol)和磁石,加熱至 220 °C,起始溶液 顏色由黃色逐漸轉變為暗棕綠色,持續反應 18 小時,反應完成後停止加熱,趁熱 將溶液倒入約 250 mL 之 *n*-hexane 中並進行抽氣過濾,可得棕色固體,再以 *n*-hexane 洗去殘餘的萘,以 dichloromethane 萃取固體,可得暗棕綠色溶液,並將此溶液加 入 NaBF4 攪拌約 6 小時,完成後過濾並減壓濃縮,並以管柱層析進行純化,以 DCM: acetone = 9:1 進行分離後,以 DCM 和 *n*-hexane 進行 bi-layer 養晶,可得深棕色晶 體約 53 mg,產率為 43%。

鑑定結果

MALDI(*m*/*z*) : 1850.1 [M]⁺

IR(KBr, cm⁻¹) : 3431 (broad), 1598 (s), 1556 (w), 1507 (s), 1471 (s), 1429 (s), 1367 (w), 1287 (m), 1134 (m), 1085 (s), 952 (s), 842 (s, PF₆), 765 (w), 738 (w), 708 (w), 683 (w), 661 (m), 618 (s), 571 (w), 553 (s)

於250 mL之磨砂口錐形瓶中裝入H2Mspnda (105 mg, 0.333 mmol)、naphthalene (約50 g)、Ni(OAc)2·4H2O (160 mg, 0.643 mmol)和磁石,加熱至220 ℃,起始溶液 顏色由黃色逐漸轉變為暗棕綠色,持續反應6小時(反應時間過長或過短會產生大 量四核鎳金屬副產物),反應完成後停止加熱,趁熱將溶液倒入約250 mL 之 *n*-hexane 中並進行抽氣過濾,可得棕色固體,再以*n*-hexane 洗去殘餘的茶,以 dichloromethane 萃取固體,可得棕色固體,並將此溶液加入KPF6攪拌約6小時, 完成後過濾並減壓濃縮,並以管柱層析進行純化,以DCM: acetone = 7:1進行分 離後,以 DCM 為主並加入2-3 滴 DMF(協助晶體內溶劑揮發慢,利於生成晶體) 並利用 *n*-hexane 進行 bi-layer 養晶,可得深棕色晶體約42 mg,產率為33%。

鑑定結果

MALDI(*m*/*z*) : 1545.9 [M]⁺

IR(KBr, cm⁻¹) : 3451 (broad), 1602 (s), 1510 (s), 1472 (m), 1428 (m), 1361 (w), 1284 (s), 1120 (m), 959 (m), 841 (s, PF₆), 780 (m),607(m), 521 (w)

EA: 理論值:C%:36.94 H%:2.58 N%:14.36 實驗值:C%:36.40 H%:3.04 N%:14.49

方法一:

於合成[Ni₅(Mspnda)₄](PF₆) (6)化合物時,經管柱層析後以 methanol 沖提,收 取最後一個點的化合物,此為化合物7,以 DCM 和 *n*-hexane 進行 bi-layer 養晶, 可得紅色晶體約 10 mg,產率為 8.1%。

方法二:

於250 mL之磨砂口錐形瓶中裝入H₂Mspnda (105 mg, 0.333 mmol)、naphthalene (約50 g)、Ni(OAc)₂·4H₂O (160 mg, 0.643 mmol)和磁石,加熱至220 °C,起始溶液 顏色由黃色逐漸轉變為暗棕綠色,持續反應18 小時,反應完成後停止加熱,趁熱 將溶液倒入約250 mL 之 *n*-hexane 中並進行抽氣過濾,可得棕色固體,再以*n*-hexane 洗去殘餘的茶,以 dichloromethane 萃取固體,可得棕色溶液,以管柱層析進行純 化,以 DCM: acetone = 7:1進行分離後(收取最後一個點),以 DCM 為主並利用 *n*-hexane 進行 bi-layer 養晶,可得深棕色晶體約21 mg,產率為17%。

鑑定結果

MALDI(*m*/*z*) : 1487.0 [M]⁺

IR(KBr, cm⁻¹) : 1597 (s), 1499 (s), 1471 (s), 1336 (m), 1144 (s), 1091 (s), 666 (m), 617(m), 555 (m)

(8) [Ni₅(Mspnda)₄](CF₃SO₃)₂

 $[Ni_{5}(Mspnda)_{4}](PF_{6}) \xrightarrow{2. NaCF_{3}SO_{3}} [Ni_{5}(Mspnda)_{4}](CF_{3}SO_{3})_{2}$

释取[Ni₅(Mspnda)₄](PF₆)晶體 (30.2 mg, 0.0195 mmol)置於含磁石之圓底瓶中, 以 dichloromethane 進行溶解,再加入氧化劑[FeCp₂](PF₆) (7.2 mg, 0.0218 mmol)和 NaCF₃SO₃ (5.05 mg, 0.0294 mmol)作為陰離子的交換,持續攪拌 1.5 小時(顏色由淺 棕色轉變為紅棕色),完成後,以 ether 進行處理(除去 FeCp₂)並利用 dichloromethane 萃取固體,可發現溶液顏色為紅棕色,加入 2-3 滴 DMF(幫助生成晶體)並與 *n*-hexane 以 bi-layer 養晶,可得到紅棕色晶體,產率 trace,若直接以 *n*-hexane 形成沉澱物, 則粗產率(crude yield)為 10%。

鑑定結果

MALDI(*m*/*z*) : 1545.9 [M]⁺

EA: 理論值:C%: 37.76 H%: 2.40 N%: 15.18 實驗值:C%: 37.96 H%: 3.17 N%: 15.11

於 250 mL 之磨砂口錐形瓶中裝入 H₂Msphpnda (103 mg, 0.263 mmol)、 naphthalene (約 50 g)、Ni(OAc)₂·4H₂O (125 mg, 0.502 mmol)和磁石,加熱至 220 °C, 起始溶液顏色由黃色逐漸轉變為暗棕綠色,持續反應 6 小時(反應時間過長或過短 會產生大量四核鎳金屬副產物),反應完成後停止加熱,趁熱將溶液倒入約 250 mL 之 *n*-hexane 中並進行抽氣過濾,可得棕色固體,再以 *n*-hexane 洗去殘餘的茶,以 dichloromethane 萃取固體,可得棕色溶液,並將此溶液加入 KPF₆攪拌約 6 小時, 完成後過濾並減壓濃縮,並以管柱層析進行純化,以 DCM: acetone = 7:1 進行分 離後,以 DCM 為主並加入 3-5 滴 dichloroethane(協助晶體內溶劑揮發慢,利於生 成晶體)並利用 *n*-hexane 進行 bi-layer 養晶,可得深棕色晶體約 39 mg,產率為 32%。

鑑定結果

MALDI(*m*/*z*) : 1545.9 [M]⁺

IR(KBr, cm⁻¹) : 3448 (broad), 1618 (w), 1508 (s), 1471 (s), 1397 (w), 1120 (w), 957 (m), 846 (m)

EA:

理論值:C%:48.14 H%:3.03 N%:14.03 實驗值:C%:47.21 H%:3.28 N%:13.59 (推測誤差來自於晶體內殘於一個 C₂H₄Cl₂溶劑分子所導致)

方法一:

於合成[Ni₅(Msphpnda)₄](PF₆)(**9**)化合物時,經管柱層析後以 methanol 沖提, 收取最後一個點的化合物,此為化合物 **10**,以 DCM 和 *n*-hexane 進行 bi-layer 養晶, 可得紅色晶體約 5 mg,產率為 4.2%。

方法二:

於 250 mL 之磨砂口錐形瓶中裝入 H₂Msphpnda (113 mg, 0.289 mmol)、 naphthalene (約 50 g)、Ni(OAc)₂·4H₂O (138 mg, 0.555 mmol)和磁石,加熱至 220 ℃, 起始溶液顏色由黃色逐漸轉變為暗棕綠色,持續反應 18 小時,反應完成後停止加 熱,趁熱將溶液倒入約 250 mL 之 *n*-hexane 中並進行抽氣過濾,可得棕色固體,再 以 *n*-hexane 洗去殘餘的萘,以 dichloromethane 萃取固體,可得棕色溶液,加入 KPF₆ 攪拌約 6 小時,以管柱層析進行純化,以 DCM: acetone = 7:1 進行分離後(收取最 後一個點),經過 *n*-hexane 處理弄成沉澱物後,可得粗產物約 21 mg,產率為 16%。

鑑定結果

MALDI(*m*/*z*) : 1793.1 [M-2F]⁺

(11) [Ni₅(Msphpnda)₄](PF₆)₂ [Ni₅(Msphpnda)₄](PF₆) $\xrightarrow{[FeCp_2](PF_6)}_{CH_2Cl_2}$ [Ni₅(Msphpnda)₄](PF₆)₂

释取[Ni₅(Msphpnda)₄](PF₆)晶體 (21.2 mg, 0.0115 mmol)置於含磁石之圓底瓶 中,以 dichloromethane 進行溶解,再加入氧化劑[FeCp₂](PF₆) (4.2 mg, 0.0127 mmol), 持續攪拌 1.5 小時(顏色由淺黃色轉變為紅棕色),完成後,以 ether 進行處理(除去 FeCp₂)並利用 dichloromethane 萃取固體,可發現溶液顏色為紅棕色,加入 2-3 滴 DMF(幫助長晶)並與 *n*-hexane 以 bi-layer 養晶,可得到紅棕色晶體約 7.3 mg,產率 為 34%。

鑑定結果

MALDI(*m*/*z*) : 1850.0 [M]⁺

IR(KBr, cm⁻¹) : 1601 (s), 1471 (s), 1368 (w), 1291 (w), 1115 (w), 960 (s), 841 (s, PF₆), 767 (w), 612 (m)

EA:

理論值:C%:44.88 H%:2.82 N%:13.08 實驗值:C%:44.95 H%:3.17 N%:13.05

於 250 mL 之磨砂口錐形瓶中裝入 H₂Tspnda (102 mg, 0.261 mmol)、naphthalene (約 50 g)、CoCl₂ (65 mg, 0.501 mmol)和磁石,架設卜型管裝置,抽真空 20 分鐘後, 將氫氟球裝上,使反應於氫氟系統下進行,將裝置放置於預熱 150 °C 的加熱板上, 反應顏色呈現淺藍色,持續反應約 18 小時,將溫度升至 220 °C,秤取 t-BuOK (75 mg, 0.668 mmol)溶於 t-BuOH 並以針筒方式打入反應瓶中,顏色由淺藍色逐漸變黑 色(帶有黃色氣泡)、反應 1 小時後停止加熱,趁熱將溶液倒入約 250 mL 之 n-hexane 中並進行抽氣過濾,可得棕色固體,再以 n-hexane 洗去殘餘的茶,以 dichloromethane 萃取固體,可得暗棕色溶液,並將此溶液加入 KPF6 攪拌約 3 小時,完成後過濾並 減壓濃縮,以 DCM 為主並加入 2-3 滴 DMF(協助晶體內溶劑揮發慢)並利用 n-hexane 進行 bi-layer 養晶,可得深棕色晶體(由於晶體 quality 太差,進行單晶鐃射實驗於 高角度並沒有較多的鐃射點,導致只能得到較為粗略的三軸長及其角度),產率 < 1%。

鑑定結果

MALDI(*m*/*z*) : 1851.0 [M]⁺

相關繞射數據 Crystal system : monoclinic P a = 18.13; $\alpha = 90.0$ b = 17.57; $\beta = 98.42$ c = 30.85; $\gamma = 90.0$ V = 9720

於 250 mL 之磨砂口錐形瓶中裝入 H₂Tspnda (100 mg, 0.255 mmol)、naphthalene (約 50 g)、CrCl₂ (60 mg, 0.488 mmol)和磁石,架設卜型管裝置,抽真空 20 分鐘後, 將氫氣球裝上,使反應於氫氣系統下進行,將裝置放置於預熱 150 ℃ 的加熱板上, 持續反應約 18 小時,將溫度升至 220 ℃,秤取 t-BuOK (73 mg, 0.651 mmol)溶於 t-BuOH 並以針筒方式打入反應瓶中,溶液顏色逐漸變黑色(帶有黃色氣泡),反應 1 小時後停止加熱,趁熱將溶液倒入約 250 mL 之 n-hexane 中並進行抽氣過濾,可得 棕色固體,再以 n-hexane 洗去殘餘的茶,以 dichloromethane 萃取固體,可得暗棕 色溶液,並將此溶液加入 KPF₆攪拌約 3 小時,完成後過濾並減壓濃縮,送測質譜 分析。

鑑定結果

MALDI(*m*/*z*) : 1766.2 [M+H]⁺

於 250 mL 之磨砂口錐形瓶中裝入 H₂Tspnda (100 mg, 0.255 mmol)、naphthalene (約 50 g)、Mo₂(OAc)₄ (66 mg, 0.154 mmol)和磁石,架設卜型管裝置,抽真空 20 分 鐘後,將氫氣球裝上,使反應於氫氣系統下進行,將裝置放置於 220 ℃ 的加熱板 上,持續反應約 4 小時,降溫待茶冷卻變固體,加入 Ni(OAc)₂·4H₂O (19 mg, 0.076 mmol),將溫度升至 220 ℃,再反應 1 小時,反應結束,趁熱將溶液倒入約 250 mL 之 *n*-hexane 中並進行抽氣過濾,可得紅棕色固體,再以 *n*-hexane 洗去殘餘的茶, 以 dichloromethane 萃取固體,可得暗紅棕色溶液,以 dichloromethane 和 *n*-hexane 以 bi-layer 養晶,可得到紅棕色晶體約 2.9 mg,產率為 2.4%。

鑑定結果

MALDI(*m*/*z*) : 1868.1[M]⁺

IR(KBr, cm⁻¹) : 3448 (broad), 1596 (s), 1504 (s), 1474 (s), 1433 (m), 1389 (w), 1335 (s), 1289 (w), 1142 (s), 1088 (s), 942 (w), 861(w), 834 (w), 706 (m), 659 (w), 616 (s), 553 (s)

於 250 mL 之磨砂口錐形瓶中裝入 H₂Tspnda (106 mg, 0.271 mmol)、naphthalene (約 50 g)、Mo₂(OAc)₄ (70 mg, 0.164 mmol)和磁石,架設卜型管裝置,抽真空 20 分 鐘後,將氫氣球裝上,使反應於氫氣系統下進行,將裝置放置於 220 ℃ 的加熱板 上,持續反應約 4 小時,降溫待萘冷卻變固體,加入 CoCl₂ (10 mg, 0.077 mmol), 將溫度升至 220 ℃,再反應 1 小時,反應結束,趁熱將溶液倒入約 250 mL 之 *n*-hexane 中並進行抽氣過濾,可得紅棕色固體,再以 *n*-hexane 洗去殘餘的萘,以 dichloromethane 萃取固體,可得暗紅棕色溶液,以 dichloromethane 和 *n*-hexane 以 bi-layer 養晶,可得到紅棕色晶體約 1.8 mg,產率為 1.4%。

鑑定結果

MALDI(*m*/*z*) : 1869.1 [M+H]⁺

IR(KBr, cm⁻¹) : 3448 (broad), 1596 (s), 1558 (w), 1505 (s), 1475 (m), 1463 (w), 1438 (w), 1420 (m), 1389 (m), 1363 (m), 1334 (m), 1290(m), 1255 (m), 1146 (s), 1095 (s), 1066 (w), 1010 (w), 980 (w), 945 (w), 863 (w), 832(w), 807 (w), 785 (w), 764 (w), 750 (w), 728 (w), 708(w), 670 (w), 658 (w), 614 (s), 555(s)

於250 mL之磨砂口錐形瓶中裝入H₂Tspnda (103 mg, 0.263 mmol)、naphthalene (約50 g)、Mo₂(OAc)₄ (68 mg, 0.159 mmol)和磁石,架設卜型管裝置,抽真空20分 鐘後,將氫氣球裝上,使反應於氫氣系統下進行,將裝置放置於220 °C 的加熱板 上,持續反應約4小時,降溫待萘冷卻變固體,加入Ni(OAc)₂·4H₂O (18 mg, 0.072 mmol),將溫度升至220 °C,再反應1小時,反應結束,趁熱將溶液倒入約250 mL 之 *n*-hexane 中並進行抽氣過濾,可得紅棕色固體,再以*n*-hexane 洗去殘餘的萘, 以 dichloromethane 萃取固體,可得暗紅棕色溶液,將此溶液加入 KPF₆ 攪拌約3小 時,完成後過濾並減壓濃縮,送測質譜分析。

鑑定結果

MALDI(*m*/*z*) : 2002.0 [M+H]⁺

於 250 mL 之磨砂口錐形瓶中裝入 H₂Tsphpnda (203 mg, 0.434 mmol)、 naphthalene (約 50 g)、Mo₂(OAc)4 (135 mg, 0.315 mmol)和磁石,架設卜型管裝置, 抽真空 20 分鐘後,將氫氣球裝上,使反應於氫氣系統下進行,將裝置放置於 220 ℃ 的加熱板上,等待萘融解後,取 t-BuOK (125 mg, 1.114 mmol)溶於 t-BuOH 中並以 針筒方式打入,溶液顏色由暗桃紅色轉變為暗棕綠色,持續反應約 18 小時,降溫 待茶冷卻變固體,加入 Ni(OAc)₂·4H₂O (28 mg, 0.113 mmol),將溫度升至 220 ℃, 再秤取 t-BuOK (60 mg, 0.535 mmol)溶於 t-BuOH 中以針筒打入,反應 1 小時,反 應結束,趁熱將溶液倒入約 250 mL 之 n-hexane 中並進行抽氣過濾,可得棕綠色固 體,再以 n-hexane 洗去殘餘的萘,以 dichloromethane 萃取固體,可得深綠色溶液, 將此溶液加入 KPF6 攪拌約 3 小時,進行管柱層析,以 DCM: acetone = 15:1 進行 分離後(收取第二個點),以 dichloromethane 和 n-hexane 以 bi-layer 養晶,可得到綠 色晶體,產率為 trace,送測質譜分析。

鑑定結果

MALDI(*m*/*z*) : 2305.6 [M+H]⁺

此化合物合成方式與 17 相同,為化合物 17 的副產物,可得到綠色晶體,產 率為 4%。

鑑定結果

MALDI(*m*/*z*) : 2305.6 [M+H]⁺

IR(KBr, cm⁻¹) : 3428 (broad),1617 (w), 1593 (m), 1507 (s), 1356 (s), 1111 (w), 956 (s), 841 (s), 780 (m)

於 250 mL 之磨砂口錐形瓶中裝入 H₂tpda (301 mg, 1.143 mmol)、naphthalene (約 50 g)、Re₂(OAc)₄Cl₂ (195 mg, 0.287 mmol)、Co(OAc)₂·4H₂O (113 mg, 0.638 mmol) 和磁石,置放於 220 ℃ 的加熱板上,持續反應約 2 小時後,加入 LiCl 約 2~3 是, 再反應 1 小時,反應結束,趁熱將溶液倒入約 250 mL 之 *n*-hexane 中並進行抽氣過 濾,可得棕色固體,再以 *n*-hexane 洗去殘餘的萘,以 dichloromethane 萃取固體, 可得深棕色溶液,將此溶液加入 KPF₆ 攪拌約 3 小時,進行管柱層析,以 DCM : acetone = 10 : 1 進行分離後,以 DCM-DCE 和 ether 以擴散養晶,可得到棕色晶體 約 93 mg,產率為 21%。

鑑定結果

MALDI(*m*/*z*) : 1571.2 [M]⁺

 $IR(KBr, cm^{-1})$: 1601 (w), 1585 (s), 1536 (m), 1430 (s), 1238 (m), 1148 (m), 841 (s, PF₆), 764 (m), 731 (w)

此化合物合成方式與19相同,只是在軸向位所使用的鹽類由LiCl改為NaNCS,為棕色晶體約141mg,產率為31%。

鑑定結果

MALDI(*m*/*z*) : 1594.5 [M+H]⁺

IR(KBr, cm⁻¹) : 2074 (s, NCS), 1638 (w), 1602 (w), 1581 (w), 1430 (w), 1328 (w), 1156 (m), 837 (s, PF₆), 731 (w)

秤取[Co₂Re₂(tpda)₄Cl](PF₆) (51 mg, 0.030 mmol)、[Ru(COD)Cl₂]_n (45 mg, 0.161
mmol)和 naphthalene (50 mg)置於萘燒瓶中,於 220 ℃ 的加熱板上反應 30 分鐘,
反應完成,將萘溶液倒入 *n*-hexane 中,以抽氣過濾進行過濾,可得到棕色固體,
以 dichloromethane 進行萃取,可得到棕色溶液,進行質譜送樣。

鑑定結果

MALDI(*m*/*z*) : 1708.4 [M+H]⁺

2-4 單晶數據之收集與整理

單晶結構主要藉由 X-ray 繞射儀進行資料收集,利用 Bruker D8 VENTURE 繞 射儀或是 Nonius Kappa CCD 繞射儀進行單晶結構解析,以 MoK α ($\lambda = 0.71073$ Å) 或 CuK α ($\lambda = 1.54178$ Å)為光源,進行 X-ray 單晶結構數據收集。所有的晶體皆由 類似的方法解出,整個結構的所有非氫原子位置,利用 SHELXTL program 以直接 法(Direct methods)或重原子法(Patterson methods)解出,所有氫原子位置則經由 SHELXTL 軟體計算而得其位置,吸收校正(Absorption correction)當儀器為 Nonius Kappa CCD 繞射儀時使用 SADABS;當儀器為 Bruker D8 VENTURE 繞射儀時使 用。所有繞射數據的最小平方差計算是依據 Full-matrix least-squares on F² (SHELXTL-2014/7 或 SHELXTL-2018/3)。

2-4-1 [Ni₅(Tspnda)₄](PF₆) (complex 1)

將所得之棕色塊狀晶體(0.272×0.187×0.180 mm³),在 150(2)K 的溫度下,以 MoKα (0.71073 Å)為光源,利用 Bruker D8 VENTURE 繞射儀進行 X 光單晶繞射數 據收集。所求得化合物的結晶系統為單斜晶系(monoclinic),空間群為 $P2_{1/c}$,晶胞 參數 a = 18.1215(7) Å、b = 17.4460(6) Å、c = 31.4395(11) Å, $a = 90^{\circ}$, $\beta = 98.5260(10)^{\circ}$ 、 $\gamma = 90^{\circ}$, V = 9829.7(6) Å³, Z = 4。繞射點收集範圍(limiting indices): $-23 \le h \le 23$, $-22 \le k \le 22$, $-36 \le l \le 40$; θ 角收集範圍為 $2.420 \sim 27.496^{\circ}$, 共收集了 72290 個繞射 點。經數據統計平均後有 22549 個獨立繞射點(independent reflections), $R_{int} = 0.0275$; 穿透係數(transmission coefficient) $T_{min} = 0.6931$ 、 $T_{max} = 0.7456$ 。其收斂值為: $R_1 = 0.0580$, $wR_2 = 0.1575$ [I $\ge 2\sigma$ (I)], $R_1 = 0.0742$, $wR_2 = 0.1766$ (all data)。詳細晶體數 據參數如附表。

2-4-2 [Ni₅(Tspnda)₄(H₂O)₂](PF₆)₂ (complex 2)

將所得之紅棕色片狀晶體(0.442×0.249×0.037 mm³),在 150(2)K 的溫度下, 以 MoKa (0.71073 Å)為光源,利用 NONIUS Kappa CCD 繞射儀進行 X 光單晶繞射 數據收集。所求得化合物的結晶系統為四方晶系(tetragonal),空間群為 *I41/acd*,晶 胞參數 a = 27.2637(6) Å、b = 27.2637(6) Å、c = 50.6630(10) Å, $a = 90^{\circ}$ 、 $\beta = 90^{\circ}$ 、 $\gamma = 90^{\circ}$, V = 37658.3(18) Å³, $Z = 16^{\circ}$ 繞射點收集範圍(limiting indices): $-35 \le h \le 31$, $-35 \le k \le 30$, $-62 \le l \le 65$; θ 角收集範圍為 2.495~27.498°,共收集了 100982 個繞射 點。經數據統計平均後有 10814 個獨立繞射點(independent reflections), $R_{int} = 0.0736$; 穿透係數(transmission coefficient) $T_{min} = 0.5642 \times T_{max} = 0.7456 \circ$ 其收斂值為: $R_1 = 0.0551$, $wR_2 = 0.1487$ [I $\ge 2\sigma$ (I)], $R_1 = 0.0787$, $wR_2 = 0.1640$ (all data)。詳細晶體數 據參數如附表。

2-4-3 [Ni₅(Tsphpnda)₄](PF₆) (complex 3)

將所得之棕色片狀晶體(0.251×0.222×0.029 mm³),在 150(2)K 的溫度下,以 MoKa (0.71073 Å)為光源,利用 Bruker D8 VENTURE 繞射儀進行 X 光單晶繞射數 據收集。所求得化合物的結晶系統為三斜晶系(triclinic),空間群為 *P-1*,晶胞參數 a = 16.4220(7) Å、b = 16.8719(8) Å、c = 22.4552(10) Å, $a = 73.6370(14)^{\circ}$ 、 $\beta = 76.3465(16)^{\circ}$ 、 $\gamma = 76.0990(18)^{\circ}$, V = 5699.4(4) Å³, $Z = 2^{\circ}$ 繞射點收集範圍(limiting indices): $-21 \le h \le 21$, $-21 \le k \le 21$, $-29 \le l \le 29$; θ 角收集範圍為 2.080~27.499°, 共收集了 47815 個繞射點。經數據統計平均後有 26098 個獨立繞射點(independent reflections), $R_{int} = 0.0282$; 穿透係數(transmission coefficient) $T_{min} = 0.6746$ 、 $T_{max} = 0.7456°$,其收斂值為: $R_1 = 0.0696$, $wR_2 = 0.1867$ [I $\ge 2\sigma$ (I)], $R_1 = 0.0927$, $wR_2 = 0.2046$ (all data)。詳細晶體數據參數如附表。

2-4-4 [Ni₅(Tsphpnda)₄](PF₆)₂ (complex 4)

將所得之紅色塊狀晶體(0.178×0.124×0.088 mm³),在 150(2)K 的溫度下,以 MoKa (0.71073 Å)為光源,利用 Bruker D8 VENTURE 繞射儀進行 X 光單晶繞射數 據收集。所求得化合物的結晶系統為三斜晶系(triclinic),空間群為 *P-1*,晶胞參數 a = 14.6531(5) Å、b = 18.6083(6) Å、c = 23.8981(6) Å, $a = 86.3807(10)^{\circ}$ 、 $\beta = 88.3058(10)^{\circ}$ 、 $\gamma = 71.2244(11)^{\circ}$, V = 6156.9(3) Å³, Z = 2。繞射點收集範圍(limiting indices): $-19 \le h \le 19$, $-24 \le k \le 24$, $-31 \le l \le 29$; θ 角收集範圍為 2.263~27.496°, 共收集了 53806 個繞射點。經數據統計平均後有 28199 個獨立繞射點(independent reflections), $R_{int} = 0.0190$; 穿透係數(transmission coefficient) $T_{min} = 0.7049$ 、 $T_{max} = 0.7456$ 。其收斂值為: $R_1 = 0.0535$, $wR_2 = 0.1314[I \ge 2\sigma(I)]$, $R_1 = 0.0682$, $wR_2 = 0.1440$ (all data)。詳細晶體數據參數如附表。

2-4-5 [Ni₅(Tspnda)₄](BF₄) (complex 5)

將所得之棕色塊狀晶體(0.282×0.170×0.152 mm³),在 150(2)K 的溫度下,以 MoKα (0.71073 Å)為光源,利用 Bruker D8 VENTURE 繞射儀進行 X 光單晶繞射數 據收集。所求得化合物的結晶系統為單斜晶系(monoclinic),空間群為 $P_{2I/c}$,晶胞 參數 a = 18.1443(8) Å、b = 17.7080(7) Å、c = 30.2649(11) Å, $a = 90^{\circ}$ 、 $\beta = 98.0442(11)^{\circ}$ 、 $\gamma = 90^{\circ}$, V = 9628.4(7) Å³, Z = 4。繞射點收集範圍(limiting indices): $-13 \le h \le 23$, $-19 \le k \le 23$, $-39 \le l \le 36$; θ 角收集範圍為 2.211~27.500°,共收集了 49428 個繞射 點。經數據統計平均後有 21946 個獨立繞射點(independent reflections), $R_{int} = 0.0350$; 穿透係數(transmission coefficient) $T_{min} = 0.6660$ 、 $T_{max} = 0.7456$ 。其收斂值為: $R_1 = 0.0735$, $wR_2 = 0.1971$ [I $\ge 2\sigma$ (I)], $R_1 = 0.1091$, $wR_2 = 0.2229$ (all data)。詳細晶體數 據參數如附表。
2-4-6 [Ni₅(Mspnda)₄](PF₆) (complex 6)

將所得之棕色塊狀晶體(0.200×0.120×0.100 mm³),在 150(2)K 的溫度下,以 CuKa(1.54178Å)為光源,利用 Bruker D8 VENTURE 繞射儀進行 X 光單晶繞射數 據收集。所求得化合物的結晶系統為三斜晶系(triclinic),空間群為 *P-1*,晶胞參數 a = 14.1494(4)Å、b = 17.0242(6)Å、c = 17.9497(6)Å, $a = 76.2023(16)^{\circ}$ 、 $\beta = 72.4156(14)^{\circ}$ 、 $\gamma = 78.5677(14)^{\circ}$,V = 3965.4(2)Å³,Z = 2。繞射點收集範圍(limiting indices): $-17 \le h \le 17$, $-20 \le k \le 20$, $-21 \le l \le 21$; θ 角收集範圍為 2.631~69.997°, 共收集了 24981 個繞射點。經數據統計平均後有 15015 個獨立繞射點(independent reflections), $R_{int} = 0.0293$; 穿透係數(transmission coefficient) $T_{min} = 0.5837$ 、 $T_{max} = 0.7533$ 。其收斂值為: $R_1 = 0.0854$, $wR_2 = 0.2581$ [I $\ge 2\sigma(I$]], $R_1 = 0.0986$, $wR_2 = 0.2791$ (all data)。詳細晶體數據參數如附表。

2-4-7 [Ni₄(Mspnda)₄(H₂O)₂] (complex 7)

將所得之紅色塊狀晶體(0.110×0.100×0.090 mm³),在 150(2)K 的溫度下,以 MoKa (0.71073 Å)為光源,利用 Bruker D8 VENTURE 繞射儀進行 X 光單晶繞射數 據收集。所求得化合物的結晶系統為三斜晶系(triclinic),空間群為 *P-1*,晶胞參數 a = 12.0858(5) Å、b = 13.1134(6) Å、c = 23.6935(11) Å, $a = 78.5539(14)^{\circ}$ 、 $\beta = 81.3112(13)^{\circ}$ 、 $\gamma = 81.0551(14)^{\circ}$, V = 3607.5(3) Å³, $Z = 2^{\circ}$ 繞射點收集範圍(limiting indices): $-14 \le h \le 13$, $-15 \le k \le 15$, $-28 \le l \le 28$; θ 角收集範圍為 2.167~25.000°, 共收集了 22532 個繞射點。經數據統計平均後有 12716 個獨立繞射點(independent reflections), $R_{int} = 0.0228$; 穿透係數(transmission coefficient) $T_{min} = 0.7038$ 、 $T_{max} = 0.7452$ 。其收斂值為: $R_1 = 0.0523$, $wR_2 = 0.1201$ [I $\ge 2\sigma$ (I)], $R_1 = 0.0727$, $wR_2 = 0.1303$ (all data)。詳細晶體數據參數如附表。

2-4-8 [Ni₅(Mspnda)₄](CF₃SO₃)₂ (complex 8)

將所得之棕色針狀晶體(0.200×0.120×0.100 mm³),在 150(2)K 的溫度下,以 CuKa(1.54178Å)為光源,利用 Bruker D8 VENTURE 繞射儀進行 X 先單晶繞射數 據收集。所求得化合物的結晶系統為單斜晶系(monoclinic),空間群為 *C2/c*,晶胞 參數 a = 25.0742(9)Å、b = 14.4767(6)Å、c = 18.9389(7)Å, $a = 90^{\circ}$ 、 $\beta = 90.625(2)^{\circ}$ 、 $\gamma = 90^{\circ}$, V = 6874.3(5)Å³, Z = 4。繞射點收集範圍(limiting indices): $-30 \le h \le 30$, $-17 \le k \le 17$, $-23 \le l \le 22$; θ 角收集範圍為 $3.525 \sim 69.975^{\circ}$, 共收集了 19278 個繞射 點。經數據統計平均後有 6438 個獨立繞射點(independent reflections), $R_{int} = 0.0518$; 穿透係數(transmission coefficient) $T_{min} = 0.6451 \cdot T_{max} = 0.7533$ 。其收斂值為: $R_1 = 0.1035$, $wR_2 = 0.2910$ [I $\ge 2\sigma$ (I)], $R_1 = 0.1421$, $wR_2 = 0.3294$ (all data)。詳細晶體數 據參數如附表。

2-4-9 [Ni₅(Msphpnda)₄](PF₆) (complex 9)

將所得之棕色片狀晶體(0.330×0.221×0.028 mm³),在 150(2) K 的溫度下,以 MoKa (0.71073 Å)為光源,利用 Bruker D8 VENTURE 繞射儀進行 X 光單晶繞射數 據收集。所求得化合物的結晶系統為單斜晶系(monoclinic),空間群為 $P2_{I}/n$,晶胞 參數 a = 16.2704(5) Å、b = 37.9133(11) Å、c = 16.4754(5) Å, $a = 90^{\circ}$ 、 $\beta = 104.9136(8)^{\circ}$ 、 $\gamma = 90^{\circ}$, V = 9820.7(5) Å³, Z = 4。繞射點收集範圍(limiting indices): $-21 \le h \le 21$, $-49 \le k \le 49$, $-21 \le l \le 20$; θ 角收集範圍為 $2.307 \sim 27.500^{\circ}$, 共收集了 79975 個繞射 點。經數據統計平均後有 22548 個獨立繞射點(independent reflections), $R_{int} = 0.0721$; 穿透係數(transmission coefficient) $T_{min} = 0.6141$ 、 $T_{max} = 0.7456$ 。其收斂值為: $R_1 = 0.0713$, $wR_2 = 0.1545$ [I $\ge 2\sigma$ (I)], $R_1 = 0.1095$, $wR_2 = 0.1717$ (all data)。詳細晶體數 據參數如附表。

2-4-10 [Ni₄(Msphpnda)₄F₂](Ni₂Cl₆O) (complex 10)

將所得之紅棕色針狀晶體(0.416×0.035×0.021 mm³),在 150(2) K 的溫度下, 以 CuKa (1.54178 Å)為光源,利用 Bruker D8 VENTURE 繞射儀進行 X 光單晶繞射 數據收集。所求得化合物的結晶系統為單斜晶系(monoclinic),空間群為 $P_{1/n}$,晶 胞參數 a = 17.1823(3) Å、b = 28.7193(6) Å、c = 21.4807(4) Å, $a = 90^{\circ}$ 、 $\beta = 106.5003(10)^{\circ}$ 、 $\gamma = 90^{\circ}$, V = 10163.4(3) Å³, $Z = 4^{\circ}$ 繞射點收集範圍(limiting indices): $-20 \le h \le 20$, $-32 \le k \le 35$, $-21 \le l \le 26$; θ 角收集範圍為 2.640~69.999°, 共收集了 41441 個繞射點。經數據統計平均後有 18576 個獨立繞射點(independent reflections), $R_{int} = 0.0349$; 穿透係數(transmission coefficient) $T_{min} = 0.5433$ 、 $T_{max} = 0.7533$ 。其收 斂值為: $R_1 = 0.0917$, $wR_2 = 0.2551$ [I $\ge 2\sigma$ (I)], $R_1 = 0.1075$, $wR_2 = 0.2670$ (all data)。 詳細晶體數據參數如附表。

2-4-11 [Ni₅(Msphpnda)₄](PF₆)₂ (complex 11)

將所得之棕色塊狀晶體(0.262×0.123×0.086 mm³),在 150(2) K 的溫度下,以 MoKa (0.71073 Å)為光源,利用 Bruker D8 VENTURE 繞射儀進行 X 光單晶繞射數 據收集。所求得化合物的結晶系統為單斜晶系(monoclinic),空間群為 C2/c,晶胞 參數 a = 32.1417(7) Å、b = 13.4697(3) Å、c = 23.6404(5) Å, $a = 90^{\circ}$ 、 $\beta = 96.7840(6)^{\circ}$ 、 $\gamma = 90^{\circ}$, V = 10163.2(4) Å³, Z = 4。繞射點收集範圍(limiting indices): -41 $\leq h \leq 41$, -17 $\leq k \leq 17$, -30 $\leq l \leq 25$; θ 角收集範圍為 2.272~27.493°,共收集了 38627 個繞射 點。經數據統計平均後有 11660 個獨立繞射點(independent reflections), $R_{int} = 0.0325$; 穿透係數(transmission coefficient) $T_{min} = 0.7013$ 、 $T_{max} = 0.7456$ 。其收斂值為: $R_1 = 0.0683$, $wR_2 = 0.1895$ [I $\geq 2\sigma$ (I)], $R_1 = 0.0921$, $wR_2 = 0.2186$ (all data)。詳細晶體數 據參數如附表。

2-4-12 [NiMo₂Ni(Tspnda)₄] (complex 14)

將所得之棕色塊狀晶體(0.200×0.100×0.050 mm³),在 150(2) K 的溫度下,以 MoKa (0.71073 Å)為光源,利用 Bruker D8 VENTURE 繞射儀進行 X 光單晶繞射數 據收集。所求得化合物的結晶系統為三斜晶系(triclinic),空間群為 *P-1*,晶胞參數 a = 13.9276(4) Å、b = 17.9755(6) Å、c = 17.9912(6) Å, $a = 83.0621(13)^{\circ}$ 、 $\beta = 88.8078(12)^{\circ}$ 、 $\gamma = 75.9409(12)^{\circ}$, V = 4337.1(2) Å³, Z = 2。繞射點收集範圍(limiting indices) : $-18 \le h \le 17$, $-23 \le k \le 23$, $-23 \le l \le 23$; θ 角收集範圍為 2.281~27.499°, 共收集了 36559 個繞射點。經數據統計平均後有 19902 個獨立繞射點(independent reflections), $R_{int} = 0.0269$; 穿透係數(transmission coefficient) $T_{min} = 0.6706$ 、 $T_{max} = 0.7456°$,其收斂值為: $R_1 = 0.0409$, $wR_2 = 0.0976$ [I $\ge 2\sigma$ (I)], $R_1 = 0.0587$, $wR_2 = 0.1068$ (all data)。詳細晶體數據參數如附表。

2-4-13 [CoMo₂Co(Tspnda)₄] (complex 15)

將所得之暗紅色桂狀晶體(0.272×0.139×0.107 mm³),在 150(2) K 的溫度下, 以 MoKa (0.71073 Å)為光源,利用 Bruker D8 VENTURE 繞射儀進行 X 光單晶繞 射數據收集。所求得化合物的結晶系統為三斜晶系(triclinic),空間群為 *P-1*,晶胞 參數 a = 13.9513(5) Å、b = 17.9210(7) Å、c = 17.9919(7) Å, $a = 83.0732(14)^{\circ}$ 、 $\beta = 88.7028(13)^{\circ}$ 、 $y = 76.0950(13)^{\circ}$, V = 4334.6(3) Å³, Z = 2。繞射點收集範圍(limiting indices): $-16 \le h \le 18$, $-23 \le k \le 23$, $-23 \le l \le 23$; θ 角收集範圍為 2.440~27.500°, 共收集了 35146 個繞射點。經數據統計平均後有 19891 個獨立繞射點(independent reflections), $R_{int} = 0.0204$; 穿透係數(transmission coefficient) $T_{min} = 0.6542$ 、 $T_{max} = 0.7456$ 。其收斂值為: $R_1 = 0.0423$, $wR_2 = 0.0999$ [I $\ge 2\sigma$ (I)], $R_1 = 0.0560$, $wR_2 = 0.1079$ (all data)。詳細晶體數據參數如附表。

2-4-14 [Mo₄(Tsphpnda)₃(HTsphpnda)(OAc)] (complex 18)

將所得之綠色片狀晶體(0.290×0.200×0.024 mm³),在 150(2) K 的温度下,以 MoKa (0.71073 Å)為光源,利用 Bruker D8 VENTURE 繞射儀進行 X 光單晶繞射數 據收集。所求得化合物的結晶系統為三斜晶系(triclinic),空間群為 *P-1*,晶胞參數 a = 14.3804(6) Å、b = 15.5124(7) Å、c = 25.5611(11) Å, $a = 84.1490(13)^{\circ}$ 、 $\beta = 75.0446(12)^{\circ}$ 、 $\gamma = 89.8729(12)^{\circ}$, V = 5478.5(4) Å³, Z = 2。繞射點收集範圍(limiting indices) : $-18 \le h \le 18$, $-20 \le k \le 20$, $-33 \le l \le 33$; θ 角收集範圍為 1.997~27.499°, 共收集了 50104 個繞射點。經數據統計平均後有 25148 個獨立繞射點(independent reflections), $R_{int} = 0.0235$;穿透係數(transmission coefficient) $T_{min} = 0.6856$ 、 $T_{max} = 0.7456°$ 、其收斂值為: $R_1 = 0.0701$, $wR_2 = 0.1860$ [I $\ge 2\sigma$ (I)], $R_1 = 0.0867$, $wR_2 = 0.1997$ (all data)。詳細晶體數據參數如附表。

2-4-15 [Co₂Re₂(tpda)₄Cl](PF₆) (complex 19)

將所得之暗棕色塊狀晶體(0.25×0.14×0.12 mm³),在 150(2) K 的溫度下,以 MoKa (0.71073Å)為光源,利用 Bruker D8 VENTURE 繞射儀進行 X 光單晶繞射數 據收集。所求得化合物的結晶系統為三斜晶系(triclinic),空間群為 *P-1*,晶胞參數 a = 14.8333(2)Å、b = 15.2556(2)Å、c = 17.2969(2)Å, $a = 86.8840(6)^{\circ}$ 、 $\beta = 71.6517(6)^{\circ}$ 、 $\gamma = 64.1580(6)^{\circ}$,V = 3327.86(7)Å³,Z = 2。繞射點收集範圍(limiting indices): $-19 \le h \le 19$, $-19 \le k \le 19$, $-22 \le l \le 22$; θ 角收集範圍為 $1.25 \sim 27.50^{\circ}$, 共 收集了 47131 個繞射點。經數據統計平均後有 15233 個獨立繞射點(independent reflections), $R_{int} = 0.0256$; 穿透係數(transmission coefficient) $T_{min} = 0.4048$ 、 $T_{max} = 0.6193$ 。其收斂值為: $R_1 = 0.0327$, $wR_2 = 0.0908$ [I $\ge 2\sigma$ (I)], $R_1 = 0.0540$, $wR_2 = 0.1102$ (all data)。詳細晶體數據參數如附表。

2-4-16 [Co₂Re₂(tpda)₄(NCS)](PF₆) (complex 20)

將所得之棕色塊狀晶體(0.234 × 0.116 × 0.033 mm³),在 150(2) K 的溫度下,以 MoKa (0.71073 Å)為光源,利用 Bruker D8 VENTURE 繞射儀進行 X 光單晶繞射數 據收集。所求得化合物的結晶系統為單斜晶系(monoclinic),空間群為 *P21/n*,晶胞 參數 *a* = 15.5868(6) Å 、*b* = 16.3901(6) Å、*c* = 27.2161(10) Å, *a* = 90°、*β* = 90.5361(8)°、 $\gamma = 90^\circ$, *V* = 6952.6(4) Å³, *Z* = 4。繞射點收集範圍(limiting indices): -20≦*h*≦20, -21≦*k*≦21, -35≦*l*≦35; θ 角收集範圍為 2.351~27.499°,共收集了 56392 個繞射 點。經數據統計平均後有 15961 個獨立繞射點(independent reflections), R_{int} = 0.0417; 穿透係數(transmission coefficient) T_{min} = 0.5836、T_{max} = 0.7456。其收斂值為: *R*₁ = 0.0354, *wR*₂ = 0.0744 [I≧2 σ (I)], *R*₁ = 0.0459, *wR*₂ = 0.0784 (all data)。詳細晶體數 據參數如附表。

第三章 結果與討論

3-1 同核-異核金屬串之晶體結構解析

3-1-1 [Ni5(Tspnda)4](PF6) (1) 晶體結構解析

圖 3-1 [Ni5(Tspnda)4](PF6) (1)之單晶繞射結構

晶體為一個棕色塊狀晶體,藉由 X-ray 單晶繞射解析鑑定,晶系為單斜晶系 (monoclinic),空間群為 P21/c,此分子座落在 general position 上,結構解析解完整 一個分子,外圍解出 0.77 個陰離子 PF6⁻和 0.23 個 Cl⁻(彼此間有失序現象),溶劑分 子則解出 2 個 DCM 和 1 個 DMF,晶體結構如圖 3-1。

由單晶繞射解析圖可發現,化合物1的四片配基以(2,2)-trans 形式(亦即各有兩 片配基朝向不同方位)環繞於中心五個鎳金屬進行配位,中心鎳金屬之間則呈現直 線型的排列,由主體結構可以發現,因為配基本身含有萘啶(naphthyridine)結構, 造成配基本體中心較為剛性,而主要產生旋轉的部分則為吡啶與磺醯胺基的部分, 整個化合物並沒有失序(disorder)的問題,此化合物中心五個鎳金屬所帶的價數為 +9,所環繞的四片配基經過脫氫後的價數為-8,因此,需要外圍一個帶-1 價的 PF6 幫助平衡電荷,也因此,可以得知鎳金屬單元之間具有混價(mixed-valence)的現象, 由圖 3-2 所示,Ni(1)和 Ni(2)之間具有鍵結的存在,因此,Ni(1)和 Ni(2)的配位環 境主要與四片配基與鎳金屬之間形成五配位,為扭曲四方角錐(distorted square pyramidal)的配位模式,而 Ni(3)、Ni(4)和 Ni(5)之間則沒有鍵結,因此各與四片配 基配位,形成扭曲平面四方(distorted square planar)的配位模式。

圖 3-2 [Ni₅(Tspnda)₄](PF₆)以(2,2)-trans 形式配位之示意圖

由鍵長數據來看,如圖 3-3 所示,從 Ni-Ni 鍵長可以發現,於混價的 Ni(1)和 Ni(2)單元上,其 Ni(1)-Ni(2)鍵長為 2.2646(6) Å,明顯短於 Ni(2)-Ni(3)的 2.2991(6) Å、 Ni(3)-Ni(4)的 2.2953(6) Å 和 Ni(4)-Ni(5)的 2.3277(6) Å,在 Ni-N 之間的比較上,混 價單元上的 Ni-N 鍵長範圍為 2.00-2.08 Å,其明顯長於其他三個鎳金屬到氮之間的 距離(為 1.88-1.94 Å),也因此可以證實 Ni(1)-Ni(2)單元為一個高自旋混價(high-spin mixed-valence)的單元。

圖 3-3 [Ni5(Tspnda)4](PF6) (1)之相關鍵長圖示

根據鍵角來看, ∠Ni(1)-Ni(2)-Ni(3) = 179°、∠Ni(2)-Ni(3)-Ni(4) = 179°和∠ Ni(3)-Ni(4)-Ni(5) = 179°, 可以發現整條金屬串中心呈現直線型的構型,然而這顆 晶體在結構化學中具有有趣的現象,可以看到整個晶體構型處於(2,2)-trans 形式, 也因此在結構上是處於完全對稱的現象,但是其在內部的電荷分布竟然呈現一個 不對稱的形式,依照過去實驗室的經驗與文獻報導,這類具有對稱型化合物的結 構,其所具有的電荷分布應該也同樣具有對稱的電荷特性,然而這顆晶體呈現了 一個十分少見的現象,也因此在後面的章節將會做詳盡的分析與探討。

3-1-2 [Ni5(Tspnda)4(H2O)2](PF6)2 (2) 晶體結構解析

圖 3-4 [Ni5(Tspnda)4(H2O)2](PF6)2 (2)之晶體結構圖

晶體為一個紅棕色片狀晶體,經由 X-ray 鑑定解析,此晶系為四方晶系 (tetragonal),空間群為 *I4₁/acd*,其分子位在 special position,解 1/2 個金屬串分子、 外圍具有 2 個 PF6 陰離子和 3 個 MeOH 溶劑分子,晶體結構如圖 3-4 所示。

由單晶繞射解析圖可發現,化合物2的四片配基同樣以(2,2)-trans 形式環繞於 中心五個鎳金屬進行配位,如圖3-5所示,於兩終端的鎳金屬各接上一個配位水, 中心鎳金屬之間則呈現直線型的排列,此化合物同樣沒有失序(disorder)的問題, 由於化合物 2 為化合物 1 經過氧化反應所得到,因此化合物中心五個鎳金屬所帶 的價數為+10,所環繞的四片配基經過脫氫後的價數為-8,因此,需要外圍兩個帶 -1 價的 PF6 幫助平衡電荷,此外,由於兩終端銜接配位水的關係,導致終端的鎳 金屬的配位環境為五配位扭曲四方角錐構型,為高自旋的組態(S=1),而內部的鎳 金屬皆呈現四配位的環境,為扭曲平面四方構型。

圖 3-5 [Ni5(Tspnda)4(H2O)2](PF6)2以(2,2)-trans 形式配位之示意圖

由鍵長數據來看,由圖 3-6 所示,從 Ni-Ni 鍵長可以發現,Ni(1)-Ni(2)為 2.3911(6) Å、Ni(2)-Ni(3)為 2.2988(5)Å,鍵長由外往內遞減也與過去實驗室長鏈金屬串鍵長 有內縮的趨勢一致,而在 Ni-N 之間的比較上,終端的 Ni-N 平均距離為 2.109Å, 內部的 Ni-N 距離為 1.88-1.93Å,可證實內部的鎳金屬為低自旋組態,而終端的鎳 金屬則為高自旋組態。於終端鎳金屬則各接上一個配位水,Ni-O 的距離為 2.008(3) Å,比較過去實驗室同樣為鎳金屬串含有配位水的[Ni4(pyany)2(tsdpda)2Cl(H2O)]^{+[59]}, 其距離為 2.019(3)Å,可以發現兩數值基本吻合,也證實化合物 2 所配位的為水分 子 而 非 其 他 的 軸 位 配 基 。根 據 鍵 角 來 看 , \angle Ni(1)-Ni(2)-Ni(3) = 179°、 \angle Ni(2)-Ni(3)-Ni(4) = 179°和 \angle Ni(3)-Ni(4)-Ni(5)= 178°,可發現金屬串中心同樣呈現 直線型的構型。

圖 3-6 [Ni5(Tspnda)4(H2O)2](PF6)2 (2)之相關鍵長圖示

3-1-3 [Ni5(Tsphpnda)4](PF6) (3) 晶體結構解析

圖 3-7 [Ni5(Tsphpnda)4](PF6) (3)之晶體結構圖

晶體為一個棕色片狀晶體,經由X-ray鑑定解析,此晶系為三斜晶系(triclinic), 空間群為 P-1,其分子位在 general position,解完整1個金屬串分子、外圍具有2 個 PF6-陰離子和5個 DCM 溶劑分子,由 ORTEP 圖中可以看到,其中一個陰離子 PF6-與 DCM 產生 disorder 的現象,晶體結構如圖 3-7 所示。 由單晶繞射解析圖可發現,化合物3的四片配基同樣以(2,2)-trans形式環繞於 中心五個鎳金屬進行配位,如圖3-8所示,此化合物3與化合物1的差異性在於配 基上吡啶環的三號位置上修飾了一個苯環,也因此,中心鎳金屬之間同樣呈現直 線型的排列,此化合物沒有失序(disorder)的問題,化合物中心五個鎳金屬所帶的 價數為+9,所環繞的四片配基經過脫氫後的價數為-8,故需要外圍一個帶-1 價的 PF6-幫助平衡電荷,因此,可以得知鎳金屬單元之間具有混價(mixed-valence)的現 象,Ni(1)和 Ni(2)之間具有鍵結的存在,Ni(1)和 Ni(2)的配位環境主要與四片配基 與鎳金屬之間形成五配位,為扭曲四方角錐構型的配位模式,而 Ni(3)、Ni(4)和 Ni(5)之間則沒有鍵結,各別與四片配基配位,形成扭曲平面四方構型的配位模式。

圖 3-8 [Ni₅(Tsphpnda)₄](PF₆)以(2,2)-trans 形式配位之示意圖

由鍵長數據來看,如圖 3-9 所示,從 Ni-Ni 鍵長可以發現,於混價的 Ni(1)和 Ni(2)單元上,Ni(1)-Ni(2)鍵長為 2.2943(7)Å,明顯短於 Ni(2)-Ni(3)的 2.3043(6)Å、 Ni(3)-Ni(4)的 2.3105(7)Å 和 Ni(4)-Ni(5)的 2.3467(7)Å,在 Ni-N 之間的比較上,混 價單元上的 Ni-N 鍵長範圍為 2.00-2.05Å,其明顯長於其他三個鎳金屬到氮之間的 距離(為 1.89-1.96Å),也因此可以證實 Ni(1)-Ni(2)單元為一個高自旋混價(high-spin mixed-valence)的單元。

圖 3-9 [Ni5(Tsphpnda)4](PF6) (3)之相關鍵長圖示

根據鍵角來看, ∠Ni(1)-Ni(2)-Ni(3) = 179°、∠Ni(2)-Ni(3)-Ni(4) = 179°和∠ Ni(3)-Ni(4)-Ni(5) = 179°,可以發現整條金屬串中心基本上是呈現直線型的構型, 這顆晶體和化合物 1 在結構化學中同樣具有對稱性的結構、不對稱的電子分布特 性,也因此在後續章節討論中會進行詳細比較。

3-1-4 [Ni5(Tsphpnda)4](PF6)2 (4) 晶體結構解析

圖 3-10 [Ni5(Tsphpnda)4](PF6)2 (4)之晶體結構圖

晶體為一個紅色塊狀晶體,經由X-ray鑑定解析,此晶系為三斜晶系(triclinic), 空間群為 P-1,其分子位在 general position,解完整1個金屬串分子、外圍具有2 個 PF6-陰離子和8個 DCM 溶劑分子,晶體結構如圖 3-10 所示。

由單晶繞射解析圖可發現,化合物4的四片配基同樣以(2,2)-trans形式環繞於 中心五個鎳金屬進行配位,如圖3-11所示,與化合物2不同的是,於兩終端的鎳 金屬並沒有配位水的存在,中心鎳金屬之間則呈現直線型的排列,此化合物同樣 沒有失序(disorder)的問題,由於化合物4為化合物3經過氧化反應所得到,化合 物中心五個鎳金屬所帶的價數為+10,所環繞的四片配基經過脫氫後的價數為-8, 因此,需要外圍兩個帶-1價的PF6-幫助平衡電荷,此外,化合物4的五個鎳金屬 皆為四配位的環境,為扭曲平面四方構型。

圖 3-11 [Ni₅(Tsphpnda)₄](PF₆)₂以(2,2)-trans 形式配位之示意圖

由鍵長數據來看,由圖 3-12 所示,從 Ni-Ni 鍵長可以發現,Ni(1)-Ni(2)為 2.3578(5) Å、Ni(2)-Ni(3)為 2.3111(5) Å、Ni(3)-Ni(4)為 2.3059(5) Å 和 Ni(4)-Ni(5)為 2.3359(5) Å,鍵長由外往內遞減也與過去實驗室長鏈金屬串鍵長內縮的趨勢一致, 而在 Ni-N 之間的比較上,可發現鍵長範圍為 1.89-1.94 Å,也顯示了五個鎳金屬皆 處於低自旋的電子組態。根據鍵角來看, \angle Ni(1)-Ni(2)-Ni(3) = 179°、 \angle Ni(2)-Ni(3)-Ni(4) = 179°和 \angle Ni(3)-Ni(4)-Ni(5) = 179°,可發現金屬串中心同樣呈現 直線型的構型。

圖 3-12 [Ni5(Tsphpnda)4](PF6)2 (4)之相關鍵長圖示

化合物 4 為文獻中第一個以五核鎳金屬採全低自旋組態的金屬串化合物,然 而在化合物 2 並沒有觀察到相同的情形,由於所採用的實驗手法皆相同,但在化 合物 2 中可以發現具有配位水進行配位,也因此,為了探討同樣的實驗手法與條 件,卻產生不同的結果發生,嘗試了下面的步驟:(1)於化合物 4 進行氧化反應時, 加入水共同反應;(2)於養晶時,加入少量的水混合溶劑(co-solvent)實行養晶;(3) 於化合物 2 進行氧化反應前執行除水動作。

首先,針對第一個方法,將水加入氧化反應時,可以發現水經過快速攪拌後, 基本上與有機溶劑 DCM 互相混合,經過反應2小時後實行養晶動作,待晶體生成 後,進行單晶繞射實驗,然而所得到的晶體結果與參數的三軸皆與化合物4一致, 也就是採用第一個方法並無法讓水分子與化合物4進行配位;第二種方法,於氧 化反應後,滴入少量水混合溶劑養晶,然而與第一種方式所得結果相同;第三種 方法,於化合物2進行氧化反應前,將所有會用到的有機溶劑進行除水,然而經 過除水過後實行養晶後,化合物2所得到的單晶繞射同樣有配位水的存在,因此, 比較化合物2與化合物4的配位水實驗,經過三個步驟仍無法確切得知其確切原 因,初步推測化合物2的配位水可能來自於前驅物、溶劑分子、亦或是玻璃上殘 存的水所造成,而具有不同的電荷結果則推測為化合物2本身可能具有較強的親 電特性(electrophilic effect)與配位水配位或是因為立體阻障(steric hindrance)及疏水 特性(hydrophobicity)導致化合物4並無軸向配位水的存在。

圖 3-13 [Ni₅(Tspnda)₄](BF₄)(5)之晶體結構圖

晶體為一個棕色塊狀晶體,藉由 X-ray 繞射解析鑑定,晶系為單斜晶系 (monoclinic),空間群為 P21/c,此分子座落在 general position 上,結構解析解完整 一個分子,外圍解出1個陰離子 BF4-和4個 DCM 溶劑分子,晶體結構如圖 3-13。

由單晶繞射解析圖可發現,化合物5的四片配基以(2,2)-trans形式環繞於中心 五個鎳金屬進行配位,中心鎳金屬之間則呈現直線型的排列,整個化合物並沒有 失序(disorder)的問題,此化合物中心五個鎳金屬所帶的價數為+9,所環繞的四片 配基經過脫氫後的價數為-8,故需要外圍一個帶-1 價的 BF4 幫助平衡電荷,也因 此,可以得知鎳金屬單元之間具有混價(mixed-valence)的現象,由圖 3-14 所示, Ni(1)和 Ni(2)之間具有鍵結的存在,因此,Ni(1)和 Ni(2)的配位環境主要與四片配 基與鎳金屬之間形成五配位扭曲四方角錐構型的配位模式,而 Ni(3)、Ni(4)和 Ni(5) 之間則沒有鍵結,各與四片配基配位,形成扭曲平面四方構型的配位模式。

圖 3-14 [Ni5(Tspnda)4](BF4)以(2,2)-trans 形式配位之示意圖

由鍵長數據來看,如下圖 3-15 所示,從 Ni-Ni 鍵長可以發現,於混價的 Ni(1) 和 Ni(2)單元上,其 Ni(1)-Ni(2)鍵長為 2.2676(9) Å,明顯短於 Ni(2)-Ni(3)的 2.3032(9) Å、Ni(3)-Ni(4)的 2.2972(9) Å 和 Ni(4)-Ni(5)的 2.3289(10) Å,在 Ni-N 之間的比較上, 混價單元上的 Ni-N 鍵長範圍為 2.00-2.10 Å,其明顯長於其他三個鎳金屬到氮之間 的距離(為 1.88-1.94 Å),也因此可以證實 Ni(1)-Ni(2)單元為一個高自旋混價 (high-spin mixed-valence)的單元。

圖 3-15 [Ni5(Tspnda)4](BF4) (5)之相關鍵長圖示

根據鍵角來看, ∠Ni(1)-Ni(2)-Ni(3) = 179°、∠Ni(2)-Ni(3)-Ni(4) = 179°和∠ Ni(3)-Ni(4)-Ni(5) = 179°,可以發現整條金屬串中心是呈現直線型的構型,由於這 顆晶體為早期用以測試反應合成和管柱層析的實驗樣本,之所以後期並沒有取這 顆晶體當作標準往下繼續研究,主要在於在解晶體結構的過程中,發現到陰離子 BF4 與所採用的溶劑分子 DCM 結構過於相似,假使產生溶劑分子與陰離子產生失 序現象時,則不好進行區分,並且在執行氧化反應後,所得到的氧化結構其陰離 子與 DCM 的確有失序的現象,導致無法完整找到兩個陰離子,因此在後期研究才 會採用陰離子鹽類 KPF6 而非 NaBF4。

3-1-6 [Ni5(Mspnda)4](PF6) (6) 晶體結構解析

圖 3-16 [Ni5(Mspnda)4](PF6) (6)之單晶繞射結構

晶體為一個棕色塊狀晶體,藉由X-ray 繞射解析鑑定,晶系為三斜晶系(triclinic), 空間群為 P-1,此分子座落在 general position 上,結構解析解完整一個分子,外圍 解出1個陰離子 PF₆,溶劑分子則解出3個 DCM 和2個 DMF,晶體結構如圖 3-17。

由單晶繞射解析圖可發現,化合物 6 的四片配基為 Mspnda²⁻,以(2,2)-trans 形 式環繞於中心五個鎳金屬進行配位,中心鎳金屬之間則呈現直線型的排列,整個 化合物並沒有失序(disorder)的問題,此化合物中心五個鎳金屬所帶的價數為+9, 所環繞的四片配基經過脫氫後的價數為-8,因此,需要外圍一個帶-1 價的 PF6 幫助

平衡電荷,也因此,可以得知鎳金屬之間具有混價(mixed-valence)的現象,由圖 3-17 所示,由圖中可以得知,Ni(2)和 Ni(3)之間具有鍵結的存在,因此 Ni(2)和 Ni(3)的 配位環境主要與四片配基與鎳金屬之間形成五配位,為扭曲四方角錐構型的配位 模式,而位在終端的 Ni(1)、Ni(5)和另一個內部的 Ni(4)之間則呈現低自旋的狀態, 各與四片配基配位,形成扭曲平面四方構型的配位模式。

圖 3-17 [Ni₅(Mspnda)₄](PF₆)以(2,2)-trans 形式配位之示意圖

由鍵長數據來看,如圖 3-18 所示,從 Ni-Ni 鍵長可以發現,於混價的 Ni(2)和 Ni(3)單元上,其 Ni(2)-Ni(3)鍵長為 2.2436(11) Å,明顯短於 Ni(1)-Ni(2)的 2.3235(11) Å、 Ni(3)-Ni(4)的 2.2963(11) Å 和 Ni(4)-Ni(5)的 2.3487(11) Å,在 Ni-N 之間的比較上,混價單元上的 Ni-N 鍵長範圍為 2.00-2.02 Å,其明顯長於其他三個鎳金屬到氮之間的距離(為 1.90-1.95 Å),也因此可以證實 Ni(2)-Ni(3)單元為一個高自旋混價的單元,並且根據鍵角來看, \angle Ni(1)-Ni(2)-Ni(3)=179°、 \angle Ni(2)-Ni(3)-Ni(4)=179° 和 \angle Ni(3)-Ni(4)-Ni(5)=179°,可以發現整條金屬串中心是呈現直線型的構型。

圖 3-18 [Ni5(Mspnda)4](PF6) (6)之相關鍵長圖示

根據鍵長的數值,相較於化合物1,我們可以發現其混價單元往金屬串內部遷移,雖然化合物6的主體結構是將化合物1的配基由甲基苯磺醯基微調為甲基磺 醯基,然而在整個分子的電荷結構很明顯有改變的現象,初步判斷為配基效應 (ligand effects)所導致,可能原因為混價單元上的一價鎳金屬於化合物6中更傾向 座落在金屬串中心Ni(3)而使得整體的電子結構更趨向對稱且穩定,然而實際的電 荷分布分析與混價單元遷移仍需要靠理論計算加以佐證。

3-1-7 [Ni4(Mspnda)4(H2O)2] (7) 晶體結構解析

圖 3-19 [Ni4(Mspnda)4(H2O)2] (7)之晶體結構圖

晶體為一個紅色塊狀晶體,藉由X-ray 繞射解析鑑定,晶系為三斜晶系(triclinic), 空間群為 P-1,此分子座落在 general position 上,結構解析解完整一個分子,外圍 溶劑分子解出3個 DCM 和一個水分子,晶體結構如圖 3-19。

由單晶繞射解析圖可發現,化合物7的四片配基以(2,2)-cis形式環繞於中心四 個鎳金屬進行配位,如圖 3-20 所示,中心鎳金屬之間則呈現接近直線型的排列方 式,整個化合物並沒有失序(disorder)的問題,此化合物7為化合物6的副產物, 整個金屬串的鎳金屬所帶價數為+8,晶體結構外圍沒有解出任何陰離子,因此得 知配基上的質子全部脫除後,所帶價數為-8,故判斷為中性化合物,此外,這個化 合物的兩終端鎳離子同樣與水配位形成金屬串並具有分子內氫鍵的存在,終端的 鎳金屬配位環境為五配位扭曲四方角錐構型,為高自旋的組態,而內部的鎳金屬 皆呈現四配位的環境,為扭曲平面四方構型。

圖 3-20 [Ni₄(Mspnda)₄(H₂O)₂]以(2,2)-cis 形式配位之示意圖

由鍵長數據來看,如圖 3-21 所示,Ni-Ni 距離分別為 2.3667(8)、2.3253(8)和 2.3718(8) Å,Ni-N 距離位於兩終端的範圍為 2.08-2.15 Å,內部的 Ni-N 距離為 1.89-1.90 Å,終端的 Ni-O 距離為 2.025(3)和 2.022(3) Å,也與過去文獻的 Ni-OH2 的鍵長吻合;由 O9-H....N = 1.848 和 1.844 Å,O10-H....N = 1.862 和 1.918 Å,此 兩數值皆小於氫和氮原子的凡德瓦半徑總合(2.75 Å),因此可判斷分子內具有氫鍵 作用力,根據鍵角來看, \angle Ni(1)-Ni(2)-Ni(3) = 176°和 \angle Ni(2)-Ni(3)-Ni(4) = 176°,

圖 3-21 [Ni4(Mspnda)4(H2O)2] (7)之相關鍵長圖示

3-1-8 [Ni5(Mspnda)4](CF3SO3)2 (8)晶體結構解析

圖 3-22 [Ni5(Mspnda)4](CF3SO3)2 (8)之單晶繞射結構

晶體為一個棕色針狀晶體,藉由 X-ray 繞射解析鑑定,晶系為單斜晶系 (monoclinic),空間群為 C2/c,此分子座落在 special position 上,結構解析解 1/2 個分子,外圍解出2個 OTf 陰離子和溶劑分子解出1個 DCM,晶體結構如圖 3-22。 由單晶繞射解析圖可發現,化合物 8 的四片配基以(2,2)-trans 形式環鏡於中心 五個鎳金屬進行配位,如圖 3-23 [Nis(Mspnda)4](CF3SO3)2 以(2,2)-trans 形式配位之 示意圖所示,中心鎳金屬之間則呈現直線型的排列,整個化合物並沒有失序 (disorder)的問題,此化合物 8 為化合物 6 經過氧化反應後的產物,因此,整個金 屬串的鎳金屬所帶價數為+10,配基去質子化後為-8,故需要 2 個陰離子 OTf 幫助 平衡電荷。在陰離子的選擇上,作為前驅物的化合物 6 所帶的陰離子為 PF6,然而 經過與[FeCp2](PF6)氧化劑反應過後,所得到的晶體品質太差,其主要在於晶體堆 積後所具有的孔道太大,導致溶劑分子容易揮發以至於晶體結構易瓦解,因此, 於氧化過程中加入少許氧化劑[FeCp2](PF6)並加入大量的 NaCF3SO3 作為陰離子的 取代,因而可得到此化合物 8,但其晶體產率仍十分的低。化合物中的五個鎳金屬 離子各別與四片配基進行配位,並且鎳金屬之間並無鍵結的存在,故五個鎳金屬

圖 3-23 [Ni5(Mspnda)4](CF3SO3)2以(2,2)-trans 形式配位之示意圖

由鍵長數據來看,如圖 3-24 所示,Ni-Ni 距離分別為 2.3521(16)、2.3036(11)Å, Ni-N 距離為 1.89-1.94Å,顯示五個鎳金屬的配位環境為二價的電子組態,根據鍵 角來看,∠Ni(1)-Ni(2)-Ni(3) = 179°和∠Ni(2)-Ni(3)-Ni(2A) = 180°,可以發現金屬 串中心同樣顯示出其呈現出直線型的構型。

圖 3-24 [Ni5(Mspnda)4](CF3SO3)2 (8)之相關鍵長圖示

3-1-9 [Ni5(Msphpnda)4](PF6) (9)晶體結構解析

圖 3-25 [Ni5(Msphpnda)4](PF6) (9)之單晶繞射結構

晶體為一個棕色片狀晶體,藉由 X-ray 繞射解析鑑定,晶系為單斜晶系 (monoclinic),空間群為 P21/n,此分子座落在 general position 上,結構解析解完整 一個分子,外圍解出1個陰離子 PF6⁻,溶劑分子則解出4個 DCE,晶體結構如圖 3-25 所示。 由單晶繞射解析圖可發現,化合物9的四片配基為Msphpnda²,以(2,2)-trans 形式環繞於中心五個鎳金屬進行配位,中心鎳金屬之間則呈現直線型的排列,整 個化合物並沒有失序(disorder)的問題,此化合物中心五個鎳金屬所帶的價數為+9, 所環繞的四片配基經過脫氫後的價數為-8,故需要外圍一個帶-1 價的 PF6 幫助平衡 電荷,因此,可以得知鎳金屬單元之間具有混價(mixed-valence)的現象,由圖 3-26 所示,Ni(2)和 Ni(3)之間具有鍵結的存在,因此 Ni(2)和 Ni(3)的配位環境主要與四 片配基與鎳金屬之間形成五配位,為扭曲四方角錐構型的配位模式,而位在兩終 端的 Ni(1)、Ni(5)和另一個內部的 Ni(4)之間則呈現低自旋的狀態,各與四片配基 配位,形成扭曲平面四方構型的配位模式。

圖 3-26 [Ni₅(Msphpnda)₄](PF₆)以(2,2)-trans 形式配位之示意圖

由鍵長數據來看,如圖 3-27 所示,從 Ni-Ni 鍵長可以發現,於混價的 Ni(2)和 Ni(3)單元上,其 Ni(2)-Ni(3)鍵長為 2.2322(8) Å,明顯短於 Ni(1)-Ni(2)的 2.3193(8) Å、 Ni(3)-Ni(4)的 2.2992(8) Å 和 Ni(4)-Ni(5)的 2.3540(8) Å, 可以發現針對化合物 9 的 Ni-Ni 鍵長,其最長與最短的鍵長相差約 0.12 Å,而在 Ni-N 之間的比較上,混價 單元上的 Ni-N 鍵長範圍為 2.00-2.03 Å,其明顯長於其他三個鎳金屬到氮之間的距 離(為 1.91-1.96 Å),由此可以證實 Ni(2)-Ni(3)單元為一個高自旋混價的單元,並且 根據鍵角來看, \angle Ni(1)-Ni(2)-Ni(3) = 180°、 \angle Ni(2)-Ni(3)-Ni(4) = 180°和 \angle Ni(3)-Ni(4)-Ni(5) = 180°,可以發現整條金屬串中心是呈現直線型的構型。

圖 3-27 [Ni5(Msphpnda)4](PF6) (9)之相關鍵長圖示

3-1-10 [Ni4(Msphpnda)4F2](Ni2Cl6O) (10) 晶體結構解析

圖 3-28 [Ni4(Msphpnda)4F2](Ni2Cl6O) (10)之單晶繞射結構

晶體為一個紅棕色針狀晶體,藉由 X-ray 繞射解析鑑定,晶系為單斜晶系 (monoclinic),空間群為 P21/n,此分子座落在 general position 上,結構解析解完整 一個分子,外圍解出1個金屬螯合物,溶劑分子則解出3個 DCM 和1個 DMF, 晶體結構如圖 3-28 所示。 由單晶繞射解析圖可發現,化合物 10 的四片配基為 Msphpnda²,以(2,2)-cis 形式環绕於中心四個鎳金屬進行配位,中心鎳金屬之間則呈現接近直線的排列方 式,整個化合物並沒有失序(disorder)的問題,此化合物 10 為化合物 9 的副產物, 整個金屬串中心的四個鎳金屬所帶的價數為+8,外圍則有一個金屬螯合物,根據 鍵長可知螯合物的鎳金屬所帶價數為+3,因此,整體螯合物其所帶價數為-2,金屬 串兩端的軸向配基的氯(F)離子為-2,四片配基各脫除一個質子,價數為-4,故整 個晶體仍呈現中性。由於金屬串本體皆為鎳二價,因此不具有混價單元的存在, 金屬串本體於終端的鎳金屬主要與四片配基和軸向配基氟離子配位,形成五配位 扭曲四方角錐構型的配位模式,內部的鎳金屬則僅與四片配基配位,形成四配位 扭曲平面四方構型的配位模式。外圍的金屬串螯合物的鎳金屬則主要與 3 個氯離 子(CI)和 1 個橋接(bridge)的氧配位,形成四配位扭曲四面體的配位模式,由於在 反應過程中所使用的前驅物具有醋酸根(OAc)和溶劑分子 DCM,故推測為氯離子 與氧離子的來源,此外,由於此化合物為合成化合物 9 時(陰離子採用 KPF₆)的副 產物,因此導致化合物 10 的軸向配位了氯離子,並且與配基尚未脫去的質子產生 的分子內氫鍵(intramolecular hydrogen bonding),其相關配位示意圖如圖 3-29。

圖 3-29 [Ni₄(Msphpnda)₄F₂]²⁺以(2,2)-cis 形式配位之示意圖

由鍵長數據來看,如圖 3-30 所示,Ni-Ni 距離分別為 2.3562(14)、2.3227(14) 和 2.3524(14)Å,Ni-N 距離位於兩終端的範圍為 2.05-2.15Å,內部的 Ni-N 距離為 1.89-1.91Å,終端的 Ni-F 距離為 1.977(4)和 1.978(4)Å,也與過去文獻的 Ni-F 的鍵

長吻合;由F1....H-N=1.746和1.916Å,F2....H-N=1.760和1.720Å,皆顯示其短於氫原子和氟原子的凡德瓦半徑總合(2.55Å),也證實化合物內具有分子內氫鍵, 根據鍵角來看, \angle Ni(1)-Ni(2)-Ni(3)=177°和 \angle Ni(2)-Ni(3)-Ni(4)=175°,可以發現 金屬串中心有稍微扭曲了些微角度,並不如五核的金屬串分子呈現接近180度的 直線構型。

對於金屬螯合物而言,可以發現 Ni(5)和 Ni(6)與橋接的氧原子距離為 1.891(16) 和 1.806(16) Å, Ni(5)-Cl 的平均距離為 2.208(4) Å, Ni(6)-Cl 的平均距離為 2.231(5) Å,找尋過去文獻相關構型的鍵長並沒有發現相似的結構,然而比較過去含有二價 錄和三價鎳與氯離子配位的鍵長可發現:鎳二價化合物 Ni₂Cl₈⁴的 Ni-Cl 的鍵長範圍 為 2.28-2.45 Å, NiCl₆⁴的 Ni-Cl 的鍵長範圍為 2.38-2.49 Å, 鎳三價化合物 NiCl₃的 鍵長範圍為 2.10-2.28 Å^[60a, 60b],在 Ni-O 的鍵長比較上,比較過去文獻,並沒有找 尋到以三價鎳金屬橋接氧原子的例子,然而相較於發表在 1979 年的 J. Am. Chem. Soc 文獻上的 Ni(Hipp)₂(H₂O)₃:2H₂O 化合物^[60c],其主要是以二價鎳金屬進行橋接, Ni(II)-O 鍵長為 2.12 Å,比較在 2010 年發表於 Dalton Trans.上的 [Ni₂(HMDIP)(μ_2 -OH)(H₂O)₃(DMF)]·8H₂O 化合物^[60d],其主要以 OH 的方式橋接兩個 錄二價金屬離子, Ni-O 的距離為 2.084 和 2.074 Å,也顯示了對於化合物 10 而言, 由於鎳金屬帶+3 價,導致與氧離子的作用力比鎳二價化合物所具有的 Ni-O 鍵長來 的短,約少 0.23 Å 左右,同時,也證實金屬螯合物本身所具有的氧所帶的價數為 -2,其兩個鎳金屬所帶價數為+6,與鎳銜接的六個氯離子為-6,因此整個螯合物的 價數為-2,藉以平衡帶+2 價的金屬串分子的電荷。

圖 3-30 [Ni4(Msphpnda)4F2](Ni2Cl6O) (10)之相關鍵長圖示

3-1-11 [Ni5(Msphpnda)4](PF6)2 (11) 晶體結構解析

圖 3-31 [Ni5(Msphpnda)4](PF6)2 (11)之單晶繞射結構

晶體為一個棕色塊狀晶體,藉由 X-ray 繞射解析鍵定,晶系為單斜晶系 (monoclinic),空間群為 C2/c,此分子座落在 special position 上,結構解析解 1/2 個分子,外圍解出2個陰離子 PF6,溶劑分子則解出5個 DCM,晶體結構如圖 3-31 所示。 由單晶繞射解析圖可發現,化合物 11 的四片配基為 Msphpnda²,以(2,2)-trans 形式環繞於中心五個鎳金屬進行配位,中心鎳金屬之間則呈現直線型排列方式, 整個化合物並沒有失序(disorder)的問題,此化合物 11 為化合物 9 經過氧化反應過 後的產物,因此,整個金屬串中心的五個鎳金屬所帶的價數為+10,配基去質子化 後為-8,故需要2 個陰離子 PF6 幫助平衡電荷。此化合物 11 的鎳金屬皆為二價, 不具有混價單元的存在,故可得知五個鎳金屬皆為低自旋的組態,並且各與四片 配基配位,形成四配位扭曲四面體的配位模式,如圖 3-32 所示。

圖 3-32 [Ni₅(Msphpnda)₄](PF₆)₂ 以(2,2)-trans 形式配位之示意圖

根據鍵長數據,如圖 3-33 所示,Ni-Ni 距離為 2.3518(7)和 2.3154(5) Å,Ni-N 距離為 1.90-1.94 Å,符合文獻中二價鎳金屬到氮之間的距離,根據鍵角來看,∠ Ni(1)-Ni(2)-Ni(3) = 180°和∠Ni(2)-Ni(3)-Ni(2A) = 180°,可發現金屬串中心同樣顯 示呈現直線型的構型。

圖 3-33 [Ni5(Msphpnda)4](PF6)2 (11)之相關鍵長圖示

圖 3-34 [NiMo₂Ni(Tspnda)₄] (14)之單晶繞射結構

晶體為一個棕色塊狀晶體,藉由X-ray 繞射解析鑑定,晶系為三斜晶系(triclinic), 空間群為 P-1,此分子座落在 general position 上,結構解析解完整一個分子,外圍 解出 3.5 個 DCM 溶劑分子,晶體結構如圖 3-34 所示。

由單晶繞射解析圖可發現, 化合物 14 的四片配基為 Tspnda²⁻, 以(2,2)-cis 形式 環繞於雙核鉬金屬單元及兩個鎳金屬配位, 中間的雙核鉬單元主要與四片配基及 鉬金屬之間具有四重鍵所形成五配位扭曲四方角錐構型的配位模式, 鎳金屬則是 與配基吡啶上的氮、去質子化的胺(amine)以及磺醯基上的氧原子進行配位, 形成 六配位扭曲八面體的配位模式。

鍵長數據來看,如表 3-1 所示,Mo-Mo 距離為 2.1074(4) Å,符合傳統鉬鉬金 屬四重鍵的範圍(2.06-2.16 Å),Mo-N 平均距離為 2.163(2)和 2.169(2) Å,Ni-N 平均 距離為 2.136(3)和 2.139(3) Å,Ni-O_{sulfonyl}的距離為 2.208(2)和 2.138(2) Å,根據鍵 角來看,∠Ni(1)-Mo(1)-Mo(2) = 165° 和∠Mo(1)-Mo(2)-Ni(2) = 165° ,可以根據

ORTEP 圖及鍵角得知金屬串中心並非以直線構型呈現。

bon	· ぞ · 学		
Mo	2.1074(4)	Ni(1)—O _{sulfonyl}	2.208(2)
$Mo(1)-N_{av}^{[a]}$	2.163(2)	Ni(2)—O _{sulfonyl}	2.138(2)
Mo(2)—N _{av} ^[a]	2.169(2)	∠Ni(1)-Mo(1)-Mo(2)	165.37
$Ni(1)-N_{av}^{[a]}$	2.136(3)	∠Mo(1)-Mo(2)-Ni(2)	165.43
Ni(2)—N _{av} ^[a]	2.139(3)	∠Ni(1)-Mo(1)-Mo(2)-Ni(2)	98.65

表 3-1 化合物 14 之鍵長、鍵角及雙面角

^[a]M-N_{av}: average value for the four wrapping ligands.

3-1-13 [CoMo₂Co(Tspnda)₄] (15) 晶體結構解析

圖 3-35 [CoMo₂Co(Tspnda)₄] (15)之單晶繞射結構

晶體為一個暗紅色柱狀晶體,藉由 X-ray 繞射解析鑑定,晶系為三斜晶系 (triclinic),空間群為 P-1,此分子座落在 general position 上,結構解析解完整一個 分子,外圍解出 3.5 個 DCM 溶劑分子,晶體結構如圖 3-35 所示。

由單晶繞射解析圖可發現,此化合物 15 同樣以四片配基 Tspnda²⁻以(2,2)-cis

形式環繞雙核鉬金屬單元及兩個鈷金屬離子,與化合物 14 互為 isostructural,中間 的雙核鉬單元與化合物 14 同樣具有四重鍵且形成五配位扭曲四方角錐構型的配位 模式,鈷金屬則是與配基吡啶上的氮、去質子化的胺(amine)以及磺醯基上的氧原 子進行配位,形成六配位扭曲八面體的配位模式。

鍵長數據來看,如表 3-2 所示,Mo-Mo 距離為 2.1077(4)Å,符合傳統鉬鉬金 屬四重鍵的範圍(2.06-2.16 Å),Mo-N 平均距離為 2.171(2)和 2.165(2)Å,Co-N 平 均距離為 2.139(3)和 2.136(3)Å,Co-O_{sulfonyl}的距離為 2.143(2)和 2.210(2)Å,根據 鍵角來看,∠Co(1)-Mo(1)-Mo(2) = 165°和∠Mo(1)-Mo(2)-Co(2) = 165°,同樣可根 據 ORTEP 圖及鍵角得知金屬串中心並非以直線構型呈現。

bond length (Å) and bond angle (°) of complex 15					
Mo	2.1077(4)	Co(1)—O _{sulfonyl}	2.143(2)		
$Mo(1)$ — $N_{av}^{[a]}$	2.171(2)	Co(2)—O _{sulfonyl}	2.210(2)		
Mo(2)—N _{av} ^[a]	2.165(2)	∠Co(1)-Mo(1)-Mo(2)	165.43		
Co(1)—N _{av} ^[a]	2.139(3)	∠Mo(1)-Mo(2)-Co(2)	165.40		
Co(2)—N _{av} ^[a]	2.136(3)	$\angle Co(1)$ -Mo(1)-Mo(2)-Co(2)	-98.52		

表 3-2 化合物 15 之鍵長、鍵角及雙面角

^[a]M-N_{av} : average value for the four wrapping ligands.

圖 3-36 [Mo4(Tsphpnda)3(HTsphpnda)(OAc)] (18)之單晶繞射結構

晶體為一個綠色片狀晶體,藉由X-ray 繞射解析鑑定,晶系為三斜晶系(triclinic), 空間群為 P-1,此分子座落在 special position 上,結構解析解完整一個分子,外圍 解出溶劑分子 DCM 共有 5 個,晶體結構如圖 3-36 所示。

由單晶繞射解析圖可發現,化合物 18 環繞於中心金屬的配基分別為三片去除 兩個質子的 Tsphpnda²和一片只脫除一個質子的 HTsphpnda⁻,以及具有一個醋酸根 (OAc⁻)與其中一個雙核鉬金屬單元進行配位,此現象也導致 HTsphpnda⁻配基具有配 基移位的現象,在電荷考量下,可知兩組雙核鉬金屬價數為+8,三片 Tsphpnda²⁻ 配基和一片 HTsphpnda⁻配基共帶-7 價,醋酸根(OAc⁻)價數為-1,因此整個晶體結構 呈現電中性,外圍並無陰離子的存在。化合物本身並沒有失序的問題,然而,此 化合物為合成化合物 17 時意外得到,其原意主要是為了在兩組鉬雙核單元中置入 一個鎳金屬離子,藉以判斷鉬鉬四重鍵的δ鍵(dx²-y²)是否會影響中心鎳金屬的自旋 狀態,然而卻意外得到此化合物,並且其在 MALDI-MS 的鍵定上,其分子量為

m/z = 2305.6,而目標的[Mo4Ni(Tsphpnda)4](PF6)2 (化合物 17)的分子量為 m/z = 2304.7,可得知在分子量上極為接近,而此結構所計算的分子量為 m/z = 2305.1, 並無法以藉由同位素進行光譜區分,主要判斷為兩光譜可能有重疊的現象,然而 化合物 17 具有陰離子 PF6 的存在,化合物 18 並無陰離子,因此,藉由 IR 光譜鑑 定可發現位在 841 cm⁻¹處具有 PF6 的訊號,如附錄 B-35,因此初步判斷化合物 17 主要在於產率低且分離難度較高,導致其與化合物 18 可能共長晶,使得單晶結構 解析僅獲得具有略高產率的化合物 18,但仍可藉由 IR 光譜得知化合物 17 有成功 合成出來。在金屬配位上,由於四重鍵的存在,使得四個鉬金屬皆是以五配位扭 曲四方角錐的配位模式所呈現。

鍵長數據來看,如表 3-3 所示,Mo-Mo 距離分別為 2.1018(6)和 2.1049(6)Å, 符合傳統鉬鉬金屬四重鍵的範圍(2.06-2.16Å),Mo-N 平均距離為 2.172(4)、2.163(4)、 2.174(5)和 2.156(5)Å,Mo-O 的距離為 2.130(4)和 2.109(4)Å,根據扭轉角來看, ∠Mo(1)-Mo(2)-Mo(3)-Mo(4) = 170°,判斷其中心金屬以接近直線型進行排列。

bond length (Å) and torsional angle (°) of complex ${\bf 18}$					
Mo(1) Mo(2)	2.1018(6)	$Mo(4)-N_{av}^{[a]}$	2.156(5)		
Mo(3) Mo(4)	2.1049(6)	Mo(3)-O(10)	2.130(4)		
Mo(1)—N _{av} ^[a]	2.172(4)	Mo(4)-O(9)	2.109(4)		
Mo(2)—N _{av} ^[a]	2.163(4)	∠Mo(1)-Mo(2)-Mo(3)-Mo(4)	-170.28		
Mo(3)—N _{av} ^[a]	2.174(5)				

表 3-3 化合物 18 之鍵長及雙面角

^[a]Mo-N_{av} : average value for the four wrapping ligands.

3-1-15 [Co2Re2(tpda)4Cl](PF6) (19) 晶體結構解析

圖 3-37 [Co₂Re₂(tpda)₄Cl](PF₆) (19) 之單晶繞射結構

晶體為一個暗棕色塊狀晶體,藉由 X-ray 繞射解析鑑定,晶系為三斜晶系 (triclinic),空間群為 P-1,此分子座落在 general position 上,結構解析解完整一個 分子,外圍解出1個陰離子 PF₆,溶劑分子則解出2個 DCE,晶體結構如圖 3-37 所示。

由單晶繞射解析圖可發現,化合物 19 的四片配基為 tpda²⁻,分別以同順向式 (syn-syn)形式環繞於中心金屬錸(rhenium)雙核單元和兩個鈷金屬進行配位,軸向配 位基為 CI⁻,整個金屬串在金屬或配基上沒有失序的問題,由 ORTEP 圖中可看到, 金屬與配基上的兩個脫去質子的胺(amine)和吡啶進行配位,並懸空一個未配位的 吡啶環。整個金屬中心價數為+10(錸金屬為+3 價),四片去質子的配基為-8,軸向 配位基 CI⁻為-1 價,故需要 1 個陰離子 PF6 幫助平衡金屬價數。而對於金屬配位環 境而言,雙核錸金屬單元為四重鍵(quadruple bond),並與四片配基進行配位,然而 針對 Re(1)與 Re(2)則具有不同的配位環境, Re(1)在與四片配基和四重鍵的配位下
以及懸掛在外圍的兩片吡啶上的氮原子會以軸向的方式與 Re(1)配位,形成七配位 distorted double pentagonal pyramidal (五角雙錐)的配位環境, Re(2)的配位環境則根 據過去實驗室的研究經驗可知,錄金屬的 $\delta det(dx^2-y^2)$ 會跨越到鈷金屬,假使與鈷金 屬的 $\delta det(dx^2-y^2)$ 具相同對稱性時,彼此間會具有相互作用,因而產生弱作用力或弱 鍵結(weak bonding),故導致 Re(2)的配位環境除了與四片配基和另一個錄金屬配位 以外,另與 Co(1)之間具有弱作用力,形成六配位扭曲八面體的配位環境,而針對 鈷金屬而言, Co(1)則與四片配基和與 Co(2)和 Re(2)配位,形成六配位扭曲八面體 配位環境; Co(2)則與四片配基和與 Co(1)和軸向 CI 離子配位,形成六配位扭曲八 面體的配位環境,如圖 3-38 所示。

圖 3-38 [Co₂Re₂(tpda)₄Cl](PF₆)以同順向式(syn-syn)形式配位之示意圖

由鍵長數據來看,如圖 3-39 所示,Re-Re 四重鍵鍵長為 2.1778(3) Å,相較於 1964 年由 F. A. Cotton 所發表的 K₂[Re₂Cl₈]·2H₂O 化合物,其 Re-Re 四重鍵的鍵長 為 2.24 Å,約短 0.07 Å;相較於 2012 年<u>華紹安</u>學長博士論文所提出的 [Re₂Ni₂(tpda)₄Cl](PF₆)化合物^[54],其鍵長 2.1695(4) Å,約長 0.008 Å,也證實此化 合物 **19** 吻合 Re-Re 四重鍵的鍵長範圍,此外,Re(1)-Namide 的距離為 2.095(4) Å, 與作為軸向的 Re-N_{pyridine} 的距離(2.477(4), 2.493(4) Å)的距離相比,約少 0.39 Å, Re(2)-Namide 的距離為 2.079(4) Å, Co(1)-Co(2) 的距離為 2.2735(9) Å,與 [Co₅(tpda)₄(NCS)₂]的鍵長範圍 2.229-2.277 Å 相比,其落在單鍵鍵長範圍內,也證

實鈷金屬之間具有鍵結的存在, Co(1)-N_{amide} 的距離為 1.920(4) Å, Co(2)-N_{pyridine} 的 距離為 1.969(4) Å, Co(2)到軸向氯離子的距離為 2.3702(14) Å, 根據鍵角來看, \angle Re(1)-Re(2)-Co(1) = 179°, \angle Re(2)-Co(1)-Co(2) = 179°, 可得知中心金屬以直線型 的排列方式呈現,而扭轉角(torsion angle)為 \angle Re(1)-Re(2)-Co(1)-Co(2) = 164°。

圖 3-39 [Co₂Re₂(tpda)₄Cl](PF₆) (19)之相關鍵長圖示

3-1-16 [Co₂Re₂(tpda)₄(NCS)](PF₆) (20) 晶體結構解析

圖 3-40 [Co₂Re₂(tpda)₄(NCS)](PF₆) (20) 之單晶繞射結構

晶體為一個棕色塊狀晶體,藉由 X-ray 繞射解析鑑定,晶系為單斜晶系 (monoclinic),空間群為 P21/n,此分子座落在 general position 上,結構解析解完整

一個分子,外圍解出1個陰離子 PF6,溶劑分子則解出2個乙醚分子,晶體結構如圖 3-40 所示。

由單晶繞射解析圖可發現,化合物 20 的四片配基為 tpda²,分別以同順向式 (syn-syn)形式環繞於中心金屬鍊(rhenium)雙核單元和兩個鈷金屬進行配位,軸向配 位基為 NCS⁻,整個金屬串在金屬或配基上沒有失序的問題,此化合物 20 與化合物 19 是互為 isostructural,最大差異主要在於軸向配基的置換。由 ORTEP 圖中可看 到,金屬與配基上的兩個脫去質子的胺(amine)和吡啶進行配位,並懸空一個未配 位的吡啶環。整個金屬中心價數為+10(鍊金屬為+3 價),四片去質子的配基為-8, 軸向配位基 NCS⁻為-1 價,故需要 1 個陰離子 PF6 幫助平衡金屬價數。而對於金屬 配位環境而言,雙核鍊金屬單元為四重鍵(quadruple bond),並與四片配基進行配位, 然而針對 Re(1)與 Re(2)則具有不同的配位環境,Re(1)在與四片配基和四重鍵的配 位下以及懸掛在外圍的兩片吡啶上的氮原子會以軸向的方式與 Re(1)配位,形成七 配位扭曲五角雙錐構型的配位環境,Re(2)的配位環境因為與 Co(2)產生弱作用力或 弱鍵結,故導致 Re(2)的配位環境為六配位扭曲八面體的配位環境,而針對鈷金屬 而言,Co(2)則與四片配基和與 Co(1)和 Re(2)配位,形成六配位扭曲八面體的配位 環境;Co(1)則與四片配基和與 Co(2)和軸向 NCS⁻離子配位,形成六配位扭曲八面 體的配位環境。

圖 3-41 [Co2Re2(tpda)4(NCS)](PF6)以同順向式(syn-syn)形式配位之示意圖

由鍵長數據來看,如圖 3-42 所示,Re-Re 四重鍵鍵長為 2.1748(2) Å,吻合 Re-Re 四重鍵的鍵長範圍,Re(1)-Namide 的距離為 2.090(4) Å,與作為軸向的 Re-N_{pyridine} 的 距離(2.511(4), 2.427(4) Å)的距離相比,約少 0.42 Å,Re(2)-Namide 的距離為 2.077(4) Å, Co(1)-Co(2)的距離為 2.2722(8) Å,與[Co₅(tpda)₄(NCS)₂]的鍵長範圍 2.229-2.277 Å 相比,證實鈷金屬之間具有單鍵鍵結的存在,Co(2)-Namide 的距離為 1.917(4) Å, Co(1)-N_{pyridine} 的距離為 1.966(4) Å,Co(1)到軸向 NCS⁻的距離為 2.007(4) Å,根據鍵 角來看, \angle Re(1)-Re(2)-Co(2) = 180°, \angle Re(2)-Co(2)-Co(1) = 179°,可得知中心金 屬以直線型的排列方式呈現,而扭轉角(torsion angle)為 \angle Re(1)-Re(2)-Co(2)-Co(1) = 47°°

圖 3-42 [Co₂Re₂(tpda)₄(NCS)](PF₆) (20)之相關鍵長圖示

3-2 鈷金屬(Co)與鉻金屬(Cr)及異核金屬串之合成與探討 3-2-1 [Co5(Tspnda)4](PF6)2(12)之合成

在 125 mL 的萘燒瓶中添加配基 H₂Tspnda 和鈷金屬 CoCl₂ 並以萘(naphthalene) 作為反應溶劑,採低溫約 150 °C 下進行 overnight 反應,由於鈷金屬本身與大氣中 的水會反應(易吸水),(於瓶中可看到原本的 CoCl₂是呈現淺藍色,但吸水後的 CoCl₂ 會呈現紫紅色),因此整個反應系統需處於氫氣環境下進行,隨著反應 18 小時後, 將反應溫度升高至 220 °C,再以針筒打入 *t*-BuOK 後持續反應 1 小時,可以發現溶 液顏色由藍色轉變為黑色,而溶液上的氣泡則呈現黃色,反應結束後,將溶液倒 入 250 mL 的 *n*-hexane 中藉以將萘溶解,進行抽氣過濾後可得到棕色粉末,利用 DCM 進行萃取後,可得到暗棕色的溶液,將溶液加入陰離子 KPF₆攪拌 3 小時之 後進行過濾,並以 *n*-hexane 進行分層養晶可以得到暗棕色晶體,然而因為晶型 quality 較差,導致進行 X-ray 繞射實驗在高角度時並沒有清晰的繞射點,僅能得到 初步的晶體參數,初步結果: 晶系為 monoclinic, a = 18.13, b = 17.57, c = 30.85; a = 90, $\beta = 98.42$, $\gamma = 90$, V = 9720。從 MALDI-MS 進行圖譜分析,如圖 3-43, 可以明顯看到此化合物的訊號為 1851 *m*/2,與模擬的同位素圖譜一致。

圖 3-43 [Co5(Tspnda)4](PF6)2 (12)之 MALDI-MS 圖譜與擬合圖

3-2-2 [Cr4(Tspnda)4] (13)之合成

此反應的合成方式與[Cos(Tspnda)4](PF6)2 的合成方法相同,然而銘金屬 (chromium)比鈷金屬(cobalt)對於水氧的敏感性更高,因此,整個反應系統在取藥過 程需全程在手套箱內執行,反應過程與化合物 12 一樣,在收反應時,以 DCM 萃 取的溶液為淺棕色,執行養晶後並無晶體出現,僅能藉由送測質譜加以鑑定。然 而最初目的是為了合成五核的鈷金屬串,在質譜解析的過程中,並沒有五核的金 屬串存在,卻出現四核鉻金屬串的訊號。由 MALDI-MS 圖譜分析,可以很明顯看 到此錯合物為四核的訊號,波峰位置在 m/z = 1766 的地方,並將它放大與同位素 模擬圖比對也相當符合,如圖 3-44,然而其與化合物 12 一樣無法藉由管柱層析進 行純化,因此無法得到其確切的晶體解析結構。

圖 3-44 [Cr4(Tspnda)4] (13)之 MALDI-MS 圖譜與擬合圖

3-2-3 [Mo4Ni(Tspnda)4](PF6)2 (16)之合成

在 250 mL 的萘燒瓶中加入配基 H2Tspnda 和鉬金屬 Mo2(OAC)4 並以萘 (naphthalene)作為反應溶劑,在 220 °C 的加熱板於氫氯環境下反應 4 小時後,降溫 待萘冷卻凝固,再加入 Ni(OAc)2·4H2O,同樣於 220 °C、氫氯環境下再反應 1 小時, 反應結束後將此溶液倒入 250 mL 的 *n*-hexane 將萘溶解並抽氣過濾,即可得到紅棕 色粉末,以 DCM 萃取後,即可得到暗紅棕色溶液,將此溶液以陰離子 KPF6 攪拌 約 3 小時,完成後過濾並減壓濃縮,進行管柱層析,然而所得到的反應溶液過於 複雜,而且鉬金屬化合物本身在 TLC 片下會有脫尾現象,造成分離上極為困難。 最後僅能以 MALDI-MS 進行圖譜分析,經多次實驗反應,可以看到溶液中所具有 的化合物十分複雜,如圖 3-45,於波鋒 m/z = 2001,為此化合物 16 所具有的圖譜; 於波鋒 m/z = 1867,為化合物 14 的訊號;如圖 3-46,於波鋒 m/z = 1926,可以看 到[Mo2Ni3(Tspnda)4](PF6)2 化合物的訊號,然而所採用的實驗方式與化合物當量數 都是固定的,並且以化合物 14 出現的機率最高,因此推斷化合物 16 在反應過程 中僅占有極少量的比例,導致其難以得到精確的單晶結構進行解析,並且這個情 形也同樣出現在將鎳金屬置換結離子的反應過程中。

圖 3-45 [Mo4Ni(Tspnda)4](PF6)2 (16)之 MALDI-MS 圖譜與擬合圖

圖 3-46 [Mo₂Ni₃(Tspnda)₄](PF₆)₂ 之 MALDI-MS 圖譜與擬合圖

3-3 具混價單元鎳金屬串之結構綜合討論與比較

根據實驗室過往的研究,我們已知在合成金屬串的過程中,配基僅僅只是扮 演著絕緣體的角色,它們並不會參與金屬串內部的電荷傳遞情況,也因此,以往 實驗室在配基上修飾甲基(-CH₃)、甲氧基(-OCH₃)亦或是苯環(-phenyl)等,所得到的 電荷分佈結果基本上是一致的,並沒有改變或是產生較為特別的現象。然而,本 論文在探討置換不同取代基時發現,當考量苯環、甲基磺醯基(-SO₂CH₃)和甲基苯 磺醯基(-SO₂C₇H₇)時,這些取代基竟然影響了金屬串內部的電荷效應,導致金屬串 內部的混價單元受到外圍四片配基上的取代基影響而產生混價單元座落在不同的 位置上,這個現象也打破過去實驗室認定取代基並不會影響金屬串內部電荷的觀 念,也帶來了一個新穎且有趣的發現,接下來,將對本論文所採用的四種配基以 五核鎳金屬串錯合物作為討論。

本文採用具有還原一個電子的化合物進行比較,分別為1、3、6和9四個鎳 金屬化合物,如圖 3-47 所示,以結構為出發點進行觀看可發現,化合物1和3的 差異在於將取代基為氫原子置換為苯環,而化合物1和6的差異則是在磺醯基上 的取代,由甲基苯磺醯基置換為甲基磺醯基。

圖 3-47 化合物 1、3、6 和 9 之結構示意圖

由示意圖可以看到,基本上結構中並無顯著的差異,並且取代基的置換僅在 於配基的本體上,然而我們已知,假使化合物本體電荷效應具有改變,則最顯著 的變化為分子內的鍵長,因此,可以藉由鍵長來判別化合物本體的電荷現象。

圖 3-48 化合物 1、3、6 和 9 之鍵長示意圖

根據圖 3-48 所示,由化合物 1 和 3 的鍵長比較可以看到,化合物 1 的 Ni(1)-Ni(2) 鍵長為 2.2646(6) Å,化合物 3 的 Ni(1)-Ni(2)鍵長為 2.2943(7) Å,兩者相差約 0.03 Å, 並且根據 Ni-N 鍵長可發現兩者的 Ni(1)-N 和 Ni(2)-N 鍵長皆座落在 2.00-2.08 Å 之 間,因此我們可以判斷化合物 1 和 3 具有混價單元並座落在 Ni(1)和 Ni(2)之間;由 化合物 6 和化合物 9 來看,化合物 6 的 Ni(2)-Ni(3)的鍵長為 2.2436(11) Å,化合物 9 的 Ni(2)-Ni(3)的鍵長為 2.2322(8) Å,兩者相差約 0.01 Å,根據 Ni(2)-N 和 Ni(3)-N 鍵長可發現兩者的 Ni-N 鍵長皆座落在 2.00-2.04 Å 之間,推斷其同樣也具有混價單 元的存在,此外,我們觀察到非混價單元上的 Ni-Ni 鍵長,如表 3-4,其平均值分 別為 2.3074(6)(化合物 1)、2.3205(7)(化合物 3)、2.3228(11)(化合物 6)和 2.3242(8) Å (化合物 9),這些平均數值明顯比混價單元上的 Ni-Ni 鍵來的長,也證實了混價 單元之間 Ni-Ni 鍵的存在。然而,隨著取代基由甲基苯磺醯基置換為甲基磺醯基時,

混價單元由原本位在 Ni(1)-Ni(2)的位置移動到 Ni(2)-Ni(3)的位置,這說明了金屬串 內部的電荷分佈受到了改變,也證實了配基上的取代基同時影響了金屬串內部的 電荷效應,而造成這個現象的主因推測為配基效應導致。由單晶結構解析所得到 的鍵長來看,化合物 1 和 3 的 Ni(1)-Ni(2)的鍵長(2.2646(6)和 2.2943(7) Å)明顯與其 他三個未具有混價單元的 Ni-Ni 鍵長來的短,這說明了化合物 1 和 3 的混價單元電 子主要 localize 在 Ni(1)和 Ni(2)位置上;而化合物 6 和 9 的 Ni(2)-Ni(3)的鍵長 (2.2436(11)和 2.2322(8) Å)與 Ni(3)-Ni(4)的鍵長(2.2963(11)和 2.2992(8) Å)僅相差約 0.05-0.06 Å,如表 3-4 所示,這說明了對於化合物 6 和 9 的混價單元電子,其可能 delocalize 在 Ni(2)-Ni(3)-Ni(4)這三個金屬所形成的單元上,使得整個金屬串傾向以 對稱的電子結構存在,相較於化合物 1 和 3 的混價單元僅位在 Ni(1)和 Ni(2)上,使 得化合物 1 和 3 呈現以不對稱的電子結構存在,這結果也由後續的磁性與電子順 磁共振光譜得到證實。此外,藉由軸向位看到化合物 1 具有甲基苯懸在金屬串的 外圍,而化合物 6 在軸向位看起來則接近圓球狀(傾向整體對稱),如圖 3-49。

	1	3	6	9
Ni(1)–Ni(2)	2.2646(6)	2.2943(7)	2.3235(11)	2.3193(8)
Ni(2)–Ni(3)	2.2991(6)	2.3043(7)	2.2436(11)	2.2322(8)
Ni(3)–Ni(4)	2.2953(6)	2.3105(7)	2.2963(11)	2.2992(8)
Ni(4)–Ni(5)	2.3277(6)	2.3467(7)	2.3487(11)	2.3540(8)
Ni(j)–Ni(j+1) ^[a]	2.3074(6)	2.3205(7)	2.3228(11)	2.3242(8)
$Ni(1)-N_{av}^{[b]}$	2.069(3)	2.029(4)	1.941(5)	1.931(4)
Ni(2)–N _{av} ^[b]	2.021(3)	2.026(4)	2.009(5)	2.020(4)
Ni(3)–N _{av} ^[b]	1.928(3)	1.953(3)	2.005(5)	2.021(4)
$Ni(4)-N_{av}^{[b]}$	1.899(3)	1.907(4)	1.928(5)	1.934(4)
$Ni(5)-N_{av}^{[b]}$	1.925(3)	1.919(4)	1.927(5)	1.913(4)
$\angle Ni(1)$ –Ni(2)–Ni(3)	179.50(3)	179.26(3)	179.35(5)	179.74(4)
$\angle Ni(2)$ –Ni(3)–Ni(4)	179.66(3)	179.54(3)	179.74(5)	179.89(4)
$\angle Ni(3)$ –Ni(4)–Ni(5)	179.78(3)	178.16(3)	179.77(5)	179.84(4)

表 3-4 化合物 1、3、6 和 9 的鍵長比較

[a] Average bond distances between adjacent Ni centers excluding the mixed-valence site.

[b] Ni–N_{av} : average value for the four wrapping ligands.

圖 3-49 化合物 1 和 6 之軸向位示意圖

接下來,比較過去實驗室<u>尤崇翰</u>學弟發表於 2014 年 Chem. Asian. J 的 [Nis(npTs)4]化合物^[61],如圖 3-50 所示,此化合物主要以四片 npTs²配基環繞五個 鎳金屬離子,由於其茶啶單元位在終端,導致其具有兩個混價單元,兩端的茶啶 單元各還原 1 個電子,造成中心五個鎳金屬價數為+8 價,四片去質子的配基為-8, 故外圍沒有陰離子。此化合物的 Ni(1)-Ni(2)鍵長為 2.284(2) Å,Ni-N 鍵長為 2.01-2.06 Å,符合混價單元的 Ni-N 鍵長,也因此其整體結構為對稱型的(2,2)-trans 結構且電荷分布也對稱,相較於本論文的化合物 1,其主要置換了吡啶和茶啶的位 置,雖然同樣呈現了相同的(2,2)-trans 結構,然而卻引發了一個少見的現象,化合 物 1 僅還原單一邊的一個電子,造成結構上對稱但電荷結構上不對稱的現象,判 斷造成這個現象的原因可能來自於(1)還原一個電子會使得化合物趨於能量較為穩 定的狀態,要還原第二個電子則需要外加還原劑或調動電壓才得以執行,然而藉 由 hydrazine 還原則會產生金屬串分解的現象;(2)在晶體堆疊過程中,晶體單元可 能以非對稱型式排列,導致在單晶結構可獲得混價單元僅位在單一邊的構型,然 而當還原第二個電子時,會導致需要外界的作用(如:添加強還原劑)才能使反應 進行,也造成化合物 1 以最穩定(還原一個電子)的結構存在,未來也希望能夠藉由

圖 3-50 [Ni5(npTs)4]之結構與鍵長示意圖^[61]

3-4 磁化率(Magnetic Susceptibility)分析

由於金屬串內的金屬離子彼此間會受到價數和配位環境的影響,導致在磁性 的表徵上會具有各種不同的表現,並且根據這些磁性的表徵基本上可以分成五種: (1)逆磁性(diamagnetism);(2)順磁性(paramagnetism);(3)鐵磁性(ferromagnetism); (4)反鐵磁性(antiferromagnetism)和(5)亞鐵磁性(ferrimagnetism)。對於逆磁性物質而 言,其代表著化合物本身的電子皆成對,然而對於其他磁性的物質,都表示化合 物本身具有未成對電子,因此,我們可以藉由量測化合物的磁化率來探討化合物 內部電子的自旋與化合物自身所呈現的磁性特質。藉由圖 3-51 可以清楚看到,化 合物在未施加磁場下的磁矩分布,並且可透過磁化率的量測來進行區別。

圖 3-51 (a)順磁性; (b)鐵磁性; (c)反鐵磁性; (d)亞鐵磁性

由於在量測化合物的磁矩時,其內層成對電子會產生小量的逆磁矩,因此在 量測後進行數據處理時,需扣除這些逆磁的校正係數來得到真正的磁矩,其校正 數值需透過化合物內的原子或離子數的總合來求得,相關數值列於表 3-5。

		Atoms, χ_A			Bonds, $\chi_{\rm B}$	
Atom	$\chi_{\rm A}({\rm x10^{-6}~cm^3mol^{-1}})$	Atom	χ _A (x10 ⁻⁶ cm ³ mol ⁻¹)	Bond	$X_{\rm B}({\rm x10^{-6}\ cm^{3}mol^{-1}})$	
Н	-2.93	F	-6.3	C=C	+5.5	
С	-6.00	Cl	-20.1	$C \equiv C$	+0.8	
C (aromatic)	-6.24	Br	-30.6	C=N	+8.2	
Ν	-5.57	Ι	-44.6	$C \equiv N$	+0.8	
N (aromatic)	-4.61	Mg^{2+}	-5.0	N=N	+1.8	
N (monoamide)	-1.54	Zn^{2+}	-15.0	N=O	+1.7	
N (diamide,imide)	-2.11	Pd^{2+}	-32.0	C=O	+6.3	
0	-4.61	Ca^{2+}	-10.4			
O2 (carboxylate)	-7.95	Fe^{2+}	-12.8			
S	-15.0	Cu^{2+}	-12.8			
Р	-26.3	Co ²⁺	-12.8			
		Ni ²⁺	-12.8			
		Mo^{2+}	-31			

:434 酒

對於化合物的磁化率探討過程中,可以透過處理量測後的磁化量與溫度進行 數據處理並繪製成兩種關係圖:(1)莫爾磁化率(molar magnetic susceptibility, γM)對 溫度之關係圖(χ_M vs. T);(2)有效磁矩(magnetic moments, μ_{eff})對溫度之關係圖(μ_{eff} vs. T)。由莫爾磁化率對溫度的關係圖中可以判斷化合物是否受溫度的影響 (temperature dependent or temperature independent), 並藉以判斷化合物的磁性特質, 如圖 3-52 (a)莫爾磁化率對溫度(χM vs. T); (b)有效磁矩對溫度(μeff vs. T)所示; 而 有效磁矩對溫度的關係圖中可以得到於低溫到室溫時的有效磁矩,當忽略軌域角 動量(orbital angular momentum, OAM),考量純自旋(spin-only)的有效磁矩時,即可 透過理論公式 $\mu_{eff}^2 = \Sigma n(n+2)$ 推算出化合物所含之未成對電子數,並判斷其結果 是否與晶體結構和電子組態相符合,如圖 3-52 (a)莫爾磁化率對溫度(ym vs. T); (b) 有效磁矩對溫度(μeff vs. T),相關計算之公式列於表 3-6。

圖 3-52 (a)莫爾磁化率對溫度(χ_M vs. T); (b)有效磁矩對溫度(μ_{eff} vs. T)

根據莫爾磁化率對溫度作圖,可以藉由所測得圖譜之曲線的斜率或產生轉折 點來判斷出化合物的磁性變化和差異,同樣的,可以藉由有效磁矩對溫度作圖來 判斷是化合物是屬於哪一種的磁性。當有效磁矩曲線隨溫度降低而產生向上偏折, 為鐵磁性,反之,向下偏折為反鐵磁性,而不隨著溫度變化改變磁矩的為順磁性。 於圖 3-52 的(a)圖中可看到,莫爾磁化率曲線為鐵磁性的物質,其在偏折處的溫度 稱為居禮溫度 (*Curie* temperature, T_C),而反鐵磁性物質的偏折點溫度則稱之尼爾 溫度(*Néel* temperature, T_N)。

表 3-6 磁性數據相關公式

量測儀器:超導量子干涉磁量儀(Superconducting Quantum Interference Device, SQUID)

數據處理公式: $\chi_{\rm m} = (\chi_{\rm w} \times M_{\rm w}) / (\rm H \times W_{\rm t})$ χ_m : 未校正莫耳磁化率 (cm³ mol⁻¹ (or emu mol⁻¹)) M_w: 分子量 (g/mol) γ_w : 磁化量 (gauss cm³) H: 外加磁場強度 W_t: 樣品重 (g) $\chi_{\rm M} = \chi_{\rm m} - \chi_{\rm dia}$ χ_M : 經校正莫耳磁化率 (cm³ mol⁻¹ (or emu mol⁻¹)) γm: 未校正莫耳磁化率 χdia: 逆磁校正值(帕斯卡常數總合) $\mu_{\rm eff} = 2.828 \times (\chi_{\rm M} \times {\rm T})^{1/2}$ μeff: 有效磁矩 (B.M.) T: 溫度 (K) $\mu_{\text{spin only, eff}} = (\Sigma n(n+2))^{0.5}$ µspin only, eff: 僅考慮電子自旋所產生的磁矩 (B.M.) n:未成對電子數目

當磁化率可藉由公式轉換成有效磁矩時,其相關數值的大小與關係列於表 3-7, 利用有效磁矩與溫度作圖,藉以判斷化合物自身的磁性為何,如圖 3-52,為了更 為容易區分和比較磁性所量測的結果,量測結果常以莫爾磁化率和有效磁矩共同 作圖,進而更容易了解磁性的特質。此外,藉由莫爾磁化率與溫度相乘後對溫度 作圖,進而利用相關公式 Heisenberg-Dirac-Van Vleck (HDVV) Hamiltonian 模型對 圖譜進行公式擬合,其公式需考慮化合物本身具有雙中心、三中心、抑或是多中 心進行考量,也因此在公式擬合時需考量到化合物所具有的自旋組態含自旋中心的多寡。

表 3-7 各類磁性之相關大小與特性

Туре	Sign	Magnitude (emu)	Field Dependent	Origin
Diamagnetism	-	10-6	Independent	Field induced pair electron circulations
Paramagnetism	+	0~10-4	Independent	Angular momentum of the electron
Ferromagnetism	+	$10^{-2} \sim 10^{-4}$	Dependent	Spin alignment from dipole-dipole interaction of moments on adjacent atoms↑↑
Antiferromagnetism	+	10 ⁻⁴	Dependent	Spin pairing ↑↓ from dipole-dipole interaction

接下來,在選擇公式時,首先需考量化合物自身的自旋態,如:化合物1、3、 6和9,由於其僅具有混價單元(雙金屬視為單一自旋中心),因此,針對這類僅具 有單一自旋中心的化合物,可判斷為具有順磁性的特性;而對於化合物2,由於其 具有軸向配基與終端金屬鎳進行配位,使得兩終端鎳金屬屬於高自旋組態,為S= 1,而內部的鎳為低自旋組態,為S=0,因此在選擇 Hamiltonian 模型時,則需考 量兩終端(雙中心)。

根據 X-ray 單晶繞射結果,含有混價單元的直線型五核鎳金屬串,屬於單一中 心混價的 S = 3/2 自旋組態^[62],其餘非混價單元上的鎳金屬皆為低自旋 S = 0 的自 旋組態。

針對化合物 2 類別(於兩終端皆有軸向配位基的化合物)的 HDVV Hamiltonian 模型,由於單晶結構解析所得自旋為兩終端 S=1 的自旋組態,因此,套用 HDVV

Hamiltonian 模型, 可將 Hamiltonian 函數表示為 $\hat{H} = -2J \cdot \hat{S}_1 \cdot \hat{S}_5$, 因此可以得到 理論莫爾磁化率 χ_M 方程式:

$$\chi_{\rm M} = \left(\frac{Ng^2\beta^2}{kT}\right) \times \left(\frac{2e^{2x} + 10e^{6x}}{1 + 3e^{2x} + 5e^{6x}}\right) \text{ with } x = \frac{J}{kT}$$
(1)

N: Avogadro's number

g:g-factor

 β : the Bohr magneton of the electron

k : Boltzmann constant

T : the temperature in Kelvin

此理論模型僅考慮兩終端 S = 1 的自旋組態^[63],我們可以得知藉由利用不同的 HDVV Hamiltonian 模型,對於不同的自旋系統進行擬合,以便得到更為準確且吻 合的擬合結果。

3-4-1 [Ni5(Tspnda)4](PF6) (1)之磁性分析

藉由 SQUID 量測化合物 1 的磁性,進而了解其電子組態。所使用外加磁場為 3000 Gauss,以升溫方式測量 4~300 K,將所量測的數值進行逆磁校正計算後,可 得化合物的莫爾磁化率對溫度作圖和有效磁矩對溫度作圖,如圖 3-53 所示。

圖 3-53 [Ni₅(Tspnda)₄](PF₆)(1)之莫爾磁化率及有效磁矩對溫度之關係圖

圖 3-53 顯示化合物1的有效磁矩與溫度作圖(•)和莫耳磁化率對溫度作圖(□)。 於有效磁矩對溫度作圖中可以看到,μeff值在4~300K區間,由原本在4K時的3.55 μB上升至300K時的4.10μB,此數值雖略高於純自旋理論值3.87μB(S=3/2),但 以整體趨勢來判別仍隸屬於順磁性的現象,而在低溫4K時基本上吻合S=3/2的 自旋組態,因此,根據化合物1的磁性結果,可以判斷為一順磁化合物。為了驗 證所得到的結果,於下個段落會以電子順磁共振(EPR,或稱電子自旋共振(ESR)) 進行量測解析與鑑定。

3-4-2 [Ni5(Tspnda)4(H2O)2](PF6)2 (2)之磁性分析

化合物 2 為化合物 1 經過氧化一個電子後的產物,藉由 SQUID 量測化合物 2 的磁性,將所量測的數值進行逆磁校正計算後,可得化合物的莫爾磁化率對溫度 作圖和有效磁矩對溫度作圖,如圖 3-54 所示。

圖 3-54 [Ni₅(Tspnda)₄(H₂O)₂](PF₆)₂ (2)之莫爾磁化率及有效磁矩對溫度之關係圖

圖 3-54 顯示化合物 2 的有效磁矩與溫度作圖(•)和莫耳磁化率對溫度作圖(□)。 於有效磁矩對溫度作圖中可以看到, μ_{eff} 值在 4~300K 區間,從 4 K 時的 2.34 μ_{B} 上 升至 300 K 時的 3.95 μ_{B} ,數值吻合純自旋理論值 4.00 μ_{B} ,證實兩終端鎳金屬自旋 為 $S_{1} = S_{5} = 1$,呈現反鐵磁的特性。利用 HDVV Hamiltonian 模型幫助擬合,採兩 終端皆為 S = 1 且總自旋數為 S = 2 的公式(2)進行理論模擬,可得到 $\chi_{M}T$ vs. T 的作 圖,如圖 3-55 所示。

圖 3-55 [Ni₅(Tspnda)₄(H₂O)₂](PF₆)₂ (2)之 χ_MT vs. T 作圖

由圖 3-55 可看到,紅色的擬合線與實驗值十分吻合, R^2 值為 0.9978,其數值 於 4 K 時為 0.49 emu· K· mol⁻¹,於 300 K 時為 1.70 emu· K· mol⁻¹,其耦合常數 J(coupling constant)和 g 值分別為-13.59 cm⁻¹和 2.16。然而,比對過去傳統五核鎳金屬 串[Ni₅(tpda)₄Cl₂]的耦合常數 <math>J值(為-33.5 cm⁻¹),化合物 2 的數值略低於傳統鎳 五核金屬 串數值約-19.91 cm⁻¹,雖然如此,由 $\chi_{M}T$ vs. T 作圖仍可顯示化合物 2 具有 弱反鐵磁的特性。

圖 3-56 [Ni₅(Tsphpnda)₄](PF₆) (3)之莫爾磁化率及有效磁矩對溫度之關係圖

圖 3-56 顯示化合物 3 的有效磁矩與溫度作圖(●)和莫耳磁化率對溫度作圖(□)。 於有效磁矩對溫度作圖中可以看到,μeff 值在 4~300K 區間,由原本在 4 K 時的 3.50 μB 上升至 300 K 時的 4.26 μB,此數值略高於純自旋理論值 3.87 μB (S = 3/2),但依 照磁性的表現和整體趨勢仍可判斷為順磁性,而在低溫 4 K 時基本上吻合 S = 3/2 的自旋組態,因此,化合物 3 同樣判斷為一順磁性化合物。並且於下個段落仍會 以電子順磁共振(EPR)進行量測解析與鑑定

而此化合物3經過氧化反應所得到的化合物4,則因為所有鎳金屬皆為二價低 自旋組態,屬於逆磁性物質,因此在鑑定方面上則採用 NMR 進行鑑定及確認,如: 附錄 B-9。

圖 3-57 [Ni5(Tspnda)4](BF4) (5)之莫爾磁化率及有效磁矩對溫度之關係圖

圖 3-57 顯示化合物 5 的有效磁矩與溫度作圖(•)和莫耳磁化率對溫度作圖(□)。 於有效磁矩對溫度作圖中可以看到, μ_{eff} 值在 4~300K 區間,由原本在 4 K 時的 2.71 μ_B 上升至 300 K 時的 4.53 μ_B ,此數值略高於純自旋理論值 3.87 μ_B (S = 3/2),然而 同樣在低溫 4 K 時吻合 S = 3/2 的自旋組態,因此,與化合物 1 相同,將化合物 5 同樣判斷為一順磁性化合物,其略高的數值可能來自於雜質或不純物所導致。但 由於此化合物 5 在研究過程中只扮演著早期測試的樣品,因此後續並沒有針對其 做更一步的性質測量,但仍然可以藉由著判斷整體趨勢與化合物 1 是近似的,同 樣具有 S = 3/2 的混價自旋組態。

圖 3-58 [Ni5(Mspnda)4](PF6) (6)之莫爾磁化率及有效磁矩對溫度之關係圖

圖 3-58 顯示化合物 6 的有效磁矩與溫度作圖(•)和莫耳磁化率對溫度作圖(□)。 於有效磁矩對溫度作圖中可以看到,μeff 值在 4~300K 區間,由原本在 4 K 時的 2.39 μB 上升至 300 K 時的 3.74 μB,此數值與純自旋理論值 3.87 μB (S = 3/2)十分接近, 因此判斷化合物 6 的總自旋數為 S = 3/2,符合電荷結構所具有的總自旋數 S = 3/2 的結果,在磁性判別上可看到 50-300 K 基本接近飽合狀態,呈現一個平滑曲線, 故推斷其為順磁性物質,此化合物也藉由 EPR 進行更深一步的探討,並於後續段 落會針對其做完整分析。

化合物 6 經過氧化一個電子可得到化合物 8,由相關鍵長與電荷分布可判斷其 五個鎳金屬皆為低自旋組態,自旋總數 S = 0,故判斷為一逆磁性物質,相關鑑定 於附錄 B-18 所示。

圖 3-59 [Ni4(Mspnda)4(H2O)2] (7)之莫爾磁化率及有效磁矩對溫度之關係圖

圖 3-59 顯示化合物 7 的有效磁矩與溫度作圖(•)和莫耳磁化率對溫度作圖(□)。 於有效磁矩對溫度作圖中可以看到, μ_{eff} 值在 4~300K 區間,由原本在 4 K 時的 0.73 μ_B 快速上升至 300 K 時的 4.41 μ_B ,由於此系統為兩終端鎳金屬皆屬於 S = 1 的自旋 組態,總自旋數為 S = 2,與純自旋數(S = 4.0 μ_B)相差約 0.41 μ_B ,由圖中仍可判斷 其具有強反鐵磁的作用。

圖 3-60 [Ni4(Mspnda)4(H2O)2] (7)之 χMT vs. T 作圖

由圖 3-60 可看到,紅色擬合線與實驗值十分吻合,R² 值為 0.9995,數值於 4 K 時為 0.07 emu· K· mol⁻¹,於 300 K 時為 2.43 emu· K· mol⁻¹,其耦合常數 J 值和 g 值分別為-40.72 cm⁻¹和 1.62,由初步觀測可得知其具有強的反鐵磁作用力,來自 於兩終端自旋皆為 S = 1 的鎳金屬離子,其所擬合的 g 值則略低於 2,但仍可由圖 譜中判斷此四核鎳金屬串為一強反鐵磁性物質。

圖 3-61 [Ni₅(Msphpnda)₄](PF₆) (9)之莫爾磁化率及有效磁矩對溫度之關係圖

圖 3-61 顯示化合物 9 的有效磁矩與溫度作圖(•)和莫耳磁化率對溫度作圖(□)。 於有效磁矩對溫度作圖中可以看到,μeff值在 4~300K 區間,由原本在 4 K 時的 2.34 μB 上升至 300 K 時的 3.95 μB,此數值與純自旋理論值 3.87 μB (S = 3/2)十分接近, 因此判斷化合物 9 的總自旋數為 S = 3/2,符合電荷結構所具有的總自旋數 S = 3/2 的結果,而在磁性圖譜上可看到 50-300 K 基本接近飽合狀態,呈現一個平滑曲線, 故推斷其為順磁性物質,此化合物也藉由 EPR 進行更深一步的探討,並於後續段 落會針對其作完整分析。

化合物 11 為化合物 9 氧化一個電子的產物,由相關鍵長與電荷分布可判斷其 五個鎳金屬皆為低自旋組態,自旋總數 S = 0,故判斷為一逆磁性物質,相關鑑定 於附錄 B-23 所示。

圖 3-62 [NiMo₂Ni(Tspnda)₄] (14)之莫爾磁化率及有效磁矩對溫度之關係圖

圖 3-62 為化合物 14 之有效磁矩與溫度作圖(•)和莫耳磁化率對溫度作圖(□)。 由於雙核鉬位在中心,其自旋數為 S=0 故不帶有磁矩的存在,並且根據結構可知 兩個鎳金屬相隔距離十分遙遠,故兩者之間並沒有作用力的存在,因此可以判斷 彼此之間並不具有耦合常數 J值,鎳金屬自旋數各自為 S=1,其純自旋理論數值 為μ_{s.o.}=4.0μ_B,由圖譜中可以看到,μ_{eff}值在 4~300K 時由 2.42 升至 3.16μ_B,其比 純自旋理論數值稍為略低,但仍可根據磁性趨勢及電荷結構分布判斷,化合物 14 為一順磁性物質。

圖 3-63 [CoMo₂Co(Tspnda)₄] (15)之莫爾磁化率及有效磁矩對溫度之關係圖

圖 3-63 為化合物 15 之有效磁矩與溫度作圖(●)和莫耳磁化率對溫度作圖(□)。 由於雙核鉬位在中心,其自旋數為 S=0 故不帶有磁矩的存在,並且根據結構可知 兩個鈷金屬相隔距離十分遙遠,故兩者之間並沒有作用力的存在,因此可以判斷 彼此之間並不具有耦合常數 J值,鈷金屬自旋數各自為 S = 1/2,其純自旋理論數 值為μ_{s.o.} = 2.45 μ_B,,由圖譜中可以看到,μ_{eff} 值在 4~300K 時由 2.95 升至 3.12 μ_B, 其與純自旋理論數值數值相比略高,但仍可根據磁性趨勢及電荷結構分布判斷, 化合物 15 為一順磁性物質。

3-5 電子順磁共振(Electron Paramagnetic Resonance, EPR) 分析

電子順磁共振 EPR (electron paramagnetic resonance),又可稱之為電子自旋共振 ESR (electron spin resonance),其主要是藉由振盪外加磁場進而激發化合物或是材料中的電子,使得電子可以藉由在不同能階中進行躍遷,藉以了解材料的磁性和性質。而根據其原理,主要是藉由材料或化合物中含有自旋 S = 1/2 的電子在磁場下發生磁共振(magnetic resonance)現象,由於此現象相似於自旋 1/2 原子核核磁共振的現象,且採用電子的順磁性特質,故稱之為電子順磁共振^{[64-65]。}

因此,以簡易的方式來說,即表示化合物本身具有電子,且電子主要運行在 軌道上,形成一近似封閉迴路中的電流,因而可具有一淨磁矩 μ1 的產生,而當電 子產生自旋時,其同樣能產生一固有的磁矩 μs,由理論推導公式可得電子自旋 S(亦 稱之為電子自旋角動量)與磁矩之間的相互關係為:

$$\mu_S = -g_s \frac{\mu_B}{\hbar} S \tag{2}$$

其中 $\mu_B = \frac{e\hbar}{2m}$ 為波爾磁子(Bohr's magneton),數值為 9.273 × 10⁻²⁴ A·m², g_s 為電子 自旋迴轉磁率(gyromagnetic ratio),其為磁矩(以波爾磁子 μ_B 為單位)與電子自旋 S (以ħ為單位)之比值,故可知電子自旋迴轉磁率為:

$$g_S = \frac{\mu_{S/\mu_B}}{S_{/\hbar}} \tag{3}$$

根據量子力學可以求得電子自旋角動量 S 與其 Z 軸分量 Sz 之數值為:

$$S = \sqrt{\mathrm{s}(\mathrm{s}+1)} \hbar \mathrm{s}_{\mathrm{z}} = \mathrm{m}_{\mathrm{s}}\hbar$$

其中 s = 1/2, $m_s = \pm s = \pm 1/2$, 當藉由施加一外加磁場後,原本電子故有磁矩 μ_s 與磁場 B 會產生交互作用,其位能關係式為:

$$\Delta E = -\mu_s \times B \tag{4}$$

將公式(2)帶入(4)中,可得到:

$$\Delta E = -(-g_s \frac{\mu_B}{\hbar}S) \times B = g_s \frac{\mu_B}{\hbar}BS\cos\theta$$
(5)

又 $S_z = m_s \hbar = S \cos \theta = \pm 1/2 \hbar$,因此可以得知:

$$\Delta E = \pm \frac{1}{2} g_{\rm s} \mu_B B$$

故可推出電子總能量為:

$$E_{M} = E_{0} + \Delta E = E_{0} \pm \frac{1}{2}g_{s}\mu_{B}B$$
(7)

圖 3-64 於磁場中能階分裂之示意圖

由公式(5)中可以得知電子在磁場為 B 時,其兩能階差之數值,如圖 3-64 所 示。當具有頻率為v之光子,其能量 hv 恰好等於兩能階差值 $g_s\mu_B$ B時,則可被化 合物的電子所吸收並改變其自旋組態,因此,電子自旋共振的條件符合 $hv = g_s\mu_BB$ 。

根據電荷分布及總自旋數可得知系統主要為 S = 3/2,因此於本論文中採用 EasySpin 程式進行理論模擬,並選用 S = 3/2的 spin Hamiltonian 進而擬合^[63a]:

$$\widehat{H} = \beta \boldsymbol{H} \cdot \boldsymbol{g} \cdot \widehat{\boldsymbol{S}} + \boldsymbol{D} \left(\widehat{S}_{Z^2} - \frac{5}{4} \right) + \boldsymbol{E} \left(\widehat{S}_{X^2} - \widehat{S}_{y^2} \right)$$
(8)

第一項為電子之間的賽曼效應(Zeeman interaction), S 為總電子自旋,D 為零 場分裂參數(zero-field splitting), E 為菱形參數(rhombic parameter),當 E 值為 0 時,則零場分裂參數 D 值可根據位在低場區域的光譜強度來判斷化合物自旋數 S = $3/2 (m_s = +3/2, +1/2, -1/2, -3/2)$ 的含量,對於 S = 3/2 的自旋系統,假使零場分裂 能與固定微波之頻率比值不大,則會具有三組可躍遷 $\Delta m_s = \pm 1$ 的轉移。

此外,針對不同的系統去進行區分,對於半整數(half-integer)系統(又稱之為 Kramers' systems),主要描述的為 S = n/2 (n = 1, 3, 5...etc)的自旋系統;對於整數 (integer)系統(又稱為整自旋或 non-Kramers' system),主要描述的為 S = n (n = 1, 2... etc)的自旋系統,由於受到外加磁場 B 的作用,使得對於描述不同自旋系統所涵 蓋的 g 值也受到零場作用的影響,對於研究中的化合物,其主要同時具備半整數 自旋系統和整自旋系統,也因此,接下來將對鎳金屬串的部分進行電子自旋共振 的分析,並將其結果與磁化率進行相互比較。

析

圖 3-65 EPR 於 4 K 時之實驗圖: (a)圖為化合物 1; (b)圖為化合物 3; (c)圖為化合物 6; (d)圖為化合物 9

根據實驗於 4 K 所測量的數值,可以發現訊號位在高場 3100-3300 G ($g_{eff} \approx 2.1$) 可判斷為 $m_s = -1/2$ 到 $m_{s=} + 1/2$,而位在低場 1400-1950 G ($g_{eff} \approx 4.28$)則可以證實 S = 3/2 自旋的存在,由圖 3-65 中可以看到,當取代基為甲基苯磺醯基(化合物 1 和 3) 置換為甲基磺醯基(化合物 6 和 9),位在低場位置 S = 3/2 的訊號少了一組 $g_{eff} \approx 4.63$ 的訊號,判斷為配基的微調導致配基效應(ligand effect)使得 EPR 光譜有些許的差 異,此外,由於本實驗只定性量測化合物基本本身的特性,並沒有執行定量的測 量,因此,其強度訊號的高低判斷主要來自於配基效應所導致,但此效應並不影 響化合物自身總自旋為 S = 3/2 的結果,也驗證此四個化合物皆吻合磁性的結果。 接下來,我們使用 EasySpin 程式進行光譜擬合,對於所擬合的結果,如圖 3-66, 可以發現光譜擬合的結果基本上吻合公式 S = 3/2 的自旋,而值得注意的地方在於 甲基磺醯基(化合物 6 和 9)與甲基苯磺醯基(化合物 1 和 3)所具有的配基效應所導致 光譜在低場 1600 G ($g_{apparent} \approx 4.28$)和高場 3150 G ($g_{apparent} \approx 2.16$)區間有些許的不同, 在這裡主要推斷為 D 和 E 值上的差異,對於化合物 6 和 9 而言(相較於 1 和 3),由 於混價單元由 Ni(1)-Ni(2)遷移到 Ni(2)-Ni(3),導致 6 和 9 在結構上形成較為對稱的 構型,也因此造成具有較小的零場分裂值(D 和 E 值),如表 3-8 所示。

圖 3-66 EPR 光譜於 4 K 之實驗與模擬圖: (a)圖為化合物 1;(b)圖為化合物 3;(c)圖為 化合物 6;(d)圖為化合物 9。紅色線為理論值;藍色或黑色線為實驗值

表 3-8 化合物 1, 3, 6 和 9 之擬合參數與數值					
complex	g valu	ie	Dualua (am ⁻¹)	E value (cm ⁻¹)	
	S = 1/2	<i>S</i> = 3/2	-D value (cm ⁻)		
1	2.03, 2.03, 2.21	2.09	1.00(1)	-0.027(2)	
3	2.02, 2.02, 2.23	2.09	1.00(1)	-0.027(2)	
6	-	2.14	0.483(1)	-0.0041(2)	
9	-	2.15	0.483(1)	-0.015(2)	

圖 3-67 化合物 2 之 EPR 實驗於 8、10 和 25 K

由圖 3-67 可以發現化合物 2 在三種溫度下皆沒有明顯的 EPR 訊號,這個結果 也證實化合物 2 的總自旋數主要來自於兩終端鎳金屬的自旋(兩終端皆為 S = 1), 因此可產生總自旋為 S = 0和 S = 2,而此能階差為 $\Delta E \approx 2J \sim 40$ K 熱能,故判斷 由於電子於基態時的 S = 0需要躍遷至第一激發態 S = 2所需要能量高,造成電子 難以傳遞,以至於在 EPR 光譜中並沒有訊號的產生,並且隨著溫度的升高,總自 旋 S = 2 的消馳時間(relaxation time)可能太快,導致訊號變寬,故無法有效觀察到 EPR 光譜訊息。
3-6 具混價單元鎳金屬串之結構、磁化率與 EPR 之綜合討論 與比較

由於這些含混價單元的鎳金屬串的磁性主要取決於金屬中心的鍵結特性和其 周圍的磁中心之偶合,因此,在本論文中執行單晶 X-ray 繞射實驗,並且簡單描述 這些含有混價單元的鎳金屬串所具有的鍵結特性。接下來,將分別對化合物 1、3、 6和9分別進行討論,而主要區別的方式為含有甲基苯磺醯基的化合物 1 和 3,另 一組則是含有甲基磺醯基的化合物 6 和 9。

首先,針對化合物 1 與化合物 3,其混價單元的 Ni-N 鍵長分別為 2.045(3)和 2.027(4)Å,而 Ni-Ni 鍵長分別為 2.2646(6)和 2.2943(7)Å,這個結果顯示化合物本 身具有混價單元的存在。由前個段落根據磁性所得結果,可以得知在 300 K 時, 其有效磁矩會分別達到 4.10和 4.26 $\mu_{\rm B}$,並且在低溫 4 K時則分別為 3.55和 3.50 $\mu_{\rm B}$, 根據數值可得知其與純自旋 S = 3/2 所得數值 3.87 $\mu_{\rm B}$ 吻合,因此可以判斷化合物 1 和 3 屬於順磁性物質,如圖 3-68。

圖 3-68 化合物 1、3、6 和 9 之(a)(b)單晶結構鍵長和(c)(d) 推測自旋耦合示意圖

針對化合物 6 與化合物 9,其混價單元的 Ni-N 鍵長分別為 2.007(5)和 2.020(4) Å, 而 Ni-Ni 鍵長分別為 2.2436(11)和 2.2322(8) Å,這個結果同樣顯示化合物本身具有 混價單元的存在。然而,在磁性結果方面,發現此兩個化合物與 1 和 3 有些許不 同的磁性行為,位在 300 K 時,其有效磁矩會分別達到 3.74 和 3.95 μ B,並且在低 溫 4 K 時則分別為 2.39 和 3.34 μ B,可以發現相較於 1 和 3 而言,化合物 6 和 9 在 低溫區域(4-50 K)的有效磁矩有緩慢增加的趨勢,並且於高溫下達到平衡(波茲曼粒 子效應;Boltzmann population effect),這也顯示了具有其他自旋態的存在,其可能 是由於(1)順磁中心之間具有其他的自旋交換耦合(spin exchange coupling)的存在, 或是(2)受到零場分裂大小的影響,使得 Kramers 的分裂具有 $m_s = 1/2$ 的低能量並同 時在低溫下進行填充所導致,造成這個現象的原因主要來自混價單元由 Ni(1)-Ni(2) (化合物 1 和 3)還移到 Ni(2)-Ni(3) (化合物 6 和 9)的位置,由於化合物 6 和 9 的混 價單元移至金屬串內部,導致結構相較於化合物 1 和 3 而言更趨於對稱(如:化合 物 6 的鍵長 Ni(2)-Ni(3) = 2.2436(11) Å 與 Ni(3)-Ni(4) = 2.2963(11) Å)並改變順磁參 數(如:零磁場分裂...等),然而,根據這些數值仍可得知在高溫時,其與純自旋 S = 3/2 所得數值 3.87 μ B 吻合,因此可以判斷化合物 6 和 9 屬於順磁性物質,如圖 3-68。

根據電子自旋結果顯示,於4K所測量的數值,可以發現訊號位在高場 3150 G $(g_{eff} \approx 2.16)$ 可判斷為 $m_s = -1/2$ 到 $m_s = +1/2$,而位在低場 1600 G $(g_{eff} \approx 4.28)$ 則可以 證實 S = 3/2 自旋的存在,為 $m_s = +1/2$ 到 $m_s = +3/2$ 的存在,藉由 EasySpin 的擬合 結果,如表 3-8 化合物 1,3,6和9之擬合參數與數值,化合物 6 的最佳擬合參數 為g = 2.14(1),D = 0.483(1)和E = -0.0041(2) cm⁻¹,化合物9的參數為g = 2.15(1),D = 0.483(1)和E = -0.015(2) cm⁻¹。而化合物1和3 同樣藉由擬合而得 到具有較大的D和E值的參數,判斷為化合物6和9的混價單元比較接近金屬串 中心,導致其整體結構比較傾向中心對稱而具有較小的零場分裂值,而化合物1 和3 的混價單元坐落在金屬串的端點,使得整體結構比化合物6和9相比來的不 對稱,造成具有較大的零場開裂值,也導致光譜位在1600 G 區域具有較大的分裂

現象且在 3150 G 區域有明顯光譜的差異。然而此四個化合物皆可藉由順磁共振光 譜來驗證同樣屬於順磁性化合物且總自旋為 S = 3/2 的系統。

因此,下面總結了化合物1、3、6和9的磁化率與電子順磁共振的結果:

- (1)對於[Nis]⁹⁺含混價 S = 3/2 單元的系統,其有效磁矩吻合純自旋 S = 3/2 的數值, 證實這四個化合物皆為順磁性化合物。
- (2) 電子順磁共振顯示位在高場 $g_{eff} \approx 2.16$ 和低場 $g_{eff} \approx 4.28$ 的訊號皆隸屬於 S = 3/2的自旋訊號,其結果與磁化率結果一致。
- (3) 電子自旋共振顯示為化合物1和3在高場geff≈4.63的訊號則主要在於配基效應所導致,主要在於1和3的整體結構相較於6和9而言,混價單元的位點越接近金屬中心,其越傾向對稱的構型,然而化合物1和3的混價單元座落在端點上,使其有較高的零場分裂能並造成在低場位置有分裂的情形。
- (4) 根據擬合結果顯示,零場分裂值的大小會使得化合物6和9與1和3有些許的不同,我們判斷主要與零場分裂(ZFS)值有關,這也顯示化合物6和9存在的Kramer分裂在 m_s = 1/2 有較低能量並於低溫下進行電子填充,更可解釋化合物6和9具有溫度相關(temperature dependent)的特性。

3-7 電化學分析

為了探討化合物本身電子轉移的特性,主要藉由施加不同電壓來使得化合物 表面電子能量產生轉變,使得電子可在電子和電致活化物質之間產生轉移現象, 假使電子由電及表面轉移到電致活性物質,則為還原反應,電極為陰極;相反的 現象則為氧化反應,電極為陽極。而一般電化學探討主要以施加外在電壓導致化 合物本身內部電子轉移,而非化合物本身具有電荷轉移特性,因此,探究普通化 學不會發生的反應,即可用電化學的方式來進行。 3-7-1 [Ni5(Tspnda)4](PF6) (1)和[Ni5(Tspnda)4(H2O)2](PF6)2 (2)之電化學

分析與討論

圖 3-69 [Ni₅(Tspnda)₄](PF₆) (1)和[Ni₅(Tspnda)₄(H₂O)₂](PF₆)₂ (2)之循環伏安圖

一般為了瞭解電化學的特性,主要採用循環伏安法(cyclic voltammetry)來進行。 先以CH₂Cl₂作為溶劑配製出0.1 M TBAP 的電解質溶液,再以該溶液配製出0.1 mM 化合物的溶液來進行測量,其中的 TBAP 作為電解質來增加溶液的導電度。當溶 液之中含有氧氣時,其在還原時會產生很強的訊號,進而造成干擾,故在量測前 先通入氮氣至溶液之中數分鐘,以驅趕溶液之中所含的氧氣。實驗使用玻璃碳 (glassy carbon)電極作為工作電極,以Ag/AgCl 電極作為參考電極,白金絲則作為 輔助電極,以每秒 100 mV 的速度掃描+1.5~-1.5 V (vs. Ag/AgCl) 的範圍,即可得 到化合物的循環伏安圖。

圖 3-69 為化合物 1 和 2 在 CH₂Cl₂ 溶劑下的循環伏安圖, 從圖中可以發現在氧 化區段具有一對氧化還原對為 $E_{1/2} = +1.02 V$ (vs. Ag/AgCl)。推測為[Nis¹⁰⁺ \rightarrow Nis¹¹⁺]

的氧化還原對,而在還原區塊具有三對氧化還原對,分別為 $E_{1/2} = -0.01 \times -0.31$ 和 -0.64 V (vs. Ag/AgCl),在反應過程中由 $[Nis^{9+} \rightarrow Nis^{10+}]$ 主要座落在 $E_{1/2} = -0.01$ V 的 位置,然而我們為了嘗試得到 $[Nis]^{8+}$ 的化合物,添加聯胺(hydrazine)還原劑,卻導 致 $[Nis]^{9+}$ 產生分解的現象,也因而在反應過程中,僅能夠於 $[Nis]^{9+}$ (1)添加 $[FeCp_2](PF_6)$ 氧化劑得到 $[Nis]^{10+}$ (2)的化合物。

根據所量測之結果與氧化還原對及電化學反應機制,給定合理的機制流程圖, 如圖 3-70 所示。

圖 3-70 化合物 1 和 2 在 CH₂Cl₂ 之中的電化學反應機制

3-7-2 [Ni5(Tsphpnda)4](PF6) (3)和[Ni5(Tsphpnda)4](PF6)2 (4)之電化學

分析與討論

圖 3-71 [Ni5(Tsphpnda)4](PF6) (3)和[Ni5(Tsphpnda)4](PF6)2 (4)之循環伏安圖

圖 3-71 為化合物 3 和 4 在 CH₂Cl₂ 溶劑下的循環伏安圖,其量測條件與化合物 1 和 2 相同,皆具有四對氧化還原對,並且由圖中可以發現在氧化區段具有一個氧 化還原對為 $E_{1/2} = +0.95$ V (vs. Ag/AgCl)。推測為 $[Nis^{10+} \rightarrow Nis^{11+}]$ 的氧化還原對,而 在還原區塊具有三對氧化還原對,分別為 $E_{1/2} = -0.08 \times -0.38$ 和-0.69 V (vs. Ag/AgCl), 在反應過程中由 $[Nis^{9+} \rightarrow Nis^{10+}]$ 主要座落在 $E_{1/2} = -0.08$ V 的位置,然而我們為了嘗 試得到 $[Nis]^{8+}$ 的化合物,添加聯胺(hydrazine)還原劑,同樣導致 $[Nis]^{9+}$ 產生分解的 現象,也因而在反應過程中,僅能夠於 $[Nis]^{9+}$ (1)添加 $[FeCp_2](PF_6)$ 氧化劑得到 $[Nis]^{10+}$ (2)的化合物。

根據所量測之結果與氧化還原對及電化學反應機制,給定合理的機制流程圖, 如圖 3-72 所示。

圖 3-72 化合物 3 和 4 在 CH₂Cl₂ 之中的電化學反應機制

析與討論

圖 3-73 [Ni5(Mspnda)4](PF6) (6)和[Ni5(Msphpnda)4](PF6) (9)之循環伏安圖

圖 3-73 為化合物 6 和 9 在 CH₂Cl₂溶劑下的循環伏安圖,具有四對氧化還原對, 量測條件與1和2相同,由圖中可以發現在氧化區段具有兩對氧化還原對,第一 對分別為 E_{1/2} = +1.00 和+0.99 V (vs. Ag/AgCl), 推測為[Nis¹⁰⁺→Nis¹¹⁺]的氧化環原 對; 第二對則為 E_{1/2} = +0.07 和+0.06 V (vs. Ag/AgCl), 判斷為[Nis⁹⁺ → Nis¹⁰⁺]的氧 化還原對。而在還原區塊同樣具有兩對氧化還原對,第一對為 E1/2=-0.28 和-0.30 V (vs. Ag/AgCl), 判斷為[Nis⁸⁺→Nis⁹⁺]的氧化還原對; 第二對為 E_{1/2} = -0.60 和-0.65 V (vs. Ag/AgCl),判斷為[Ni5⁷⁺ → Ni5⁸⁺]的氧化還原對,而在反應過程中由[Ni5⁹⁺ → Ni_5^{10+}]主要座落在 $E_{1/2} = +0.07$ 和+0.06 V 的位置, 然而我們為了嘗試得到 $[Ni_5]^{8+}$ 的 化合物,添加聯胺(hydrazine)還原劑,同樣導致[Nis]9+產生分解的現象,也因而在 反應過程中,僅能夠於[Nis]⁹⁺添加[FeCp2](PF6)氧化劑得到[Nis]¹⁰⁺的化合物,由圖

示中可以發現,對於化合物 6 所具有的訊號很低,主要在於其溶解度極差,但仍 可以大致分辨出具有四對氧化還原對,而化合物 9 則因為具有苯環修飾於吡啶的 meta 位置,增加其溶解度,導致在量測過程中較易溶解並進行偵測。

圖 3-74 化合物 6 在 CH₂Cl₂ 之中的電化學反應機制

圖 3-75 化合物 9 在 CH₂Cl₂ 之中的電化學反應機制

析與討論

圖 3-76 [NiMo₂Ni(Tspnda)₄] (14)和[CoMo₂Co(Tspnda)₄] (15)之循環伏安圖

圖 3-76 為化合物 14 和 15 在 CH2Cl2 溶劑下的循環伏安圖,從圖中可以發現化 合物 14 在氧化區中具有一可逆氧化還原對(E1/2 = +0.52 V (vs. Ag/AgCl))及一不可 逆之氧化還原對(E1/2 = +0.97 V (vs. Ag/AgCl)),此氧化還原對推測為鉬雙核單元上 之氧化($Mo_2^{4+} \rightarrow Mo_2^{5+}$),比較本實驗室洪偉捷同學的[$Mo_2NiMo_2(tpda)_4X_2$](X = Cl, NCS)化合物,其所具有的鉬雙核氧化還原對於氧化區為 E1/2 = +0.29 V 和+0.55 V, 皆判斷為鉬雙核之氧化還原對,因此,於E1/2 = +0.52 V的所在位置判斷為鉬雙核 之氧化,而位在還原區上 E1/2 = -0.34 V,判斷為些許雜質的訊號影響;化合物 15 則位在氧化區有一對氧化還原對,位在 E1/2 = +0.28 V (vs. Ag/AgCl),判斷為鉬雙 核的氧化(Mo2⁴⁺→Mo2⁵⁺),而在 E1/2 = +0.58 V 可能為雜值訊號,同樣在還原區上 並沒有觀察到具有氧化還原對,判斷為可能在量測過程中此兩個化合物所具有的 量都相對稀少,以致於無法有效觀測到訊號現象。

圖 3-77 [Mo4(Tsphpnda)3(HTsphpnda)(OAc)] (18)之循環伏安圖

圖 3-77 為錯合物 18 在 CH₂Cl₂溶劑下的循環伏安圖,由圖示中可以看到位在 氧化區具有三對氧化還原對,從圖中可以發現在未施加電流情況下,兩個鉬雙核 金屬單元[Mo₄]⁸⁺會在氧化區 $E_{1/2} = +0.55$ V (vs. Ag/AgCl)會氧化成[Mo₄]⁹⁺,在經過 $E_{1/2} = +1.00$ V (vs. Ag/AgCl)會氧化成[Mo₄]¹⁰⁺,而在 $E_{1/2} = +0.21$ V (vs. Ag/AgCl)可 以還原一個電子形成[Mo₄]⁷⁺,因此,對於化合物 18,我們也給定了一個合理的電 化學反應機制,如圖 3-78 所示。

圖 3-78 化合物 18 在 CH2Cl2 之中的電化學反應機制

圖 3-79 [Co₂Re₂(tpda)₄Cl](PF₆) (19)和[Co₂Re₂(tpda)₄(NCS)](PF₆) (20)之循環伏安圖

圖 3-79 為化合物 19 和 20 在 CH₂Cl₂溶劑下的循環伏安圖,由圖示中可以看到 位在氧化區具有一對氧化還原對,在還原區同樣具有一對氧化還原對,分別為 E_{1/2} = +0.67 V (Cl)和+0.71 V (NCS) (vs. Ag/AgCl),在還原區則分別為 E_{1/2} = -0.22 V (Cl) 和-0.28 V (NCS) (vs. Ag/AgCl),其中 E_{1/2} = +0.67 V (Cl)和+0.71 V (NCS)判斷為 [Co₂Re₂(tpda)₄Cl]^{1+/2+},而 E_{1/2} = -0.22 V (Cl)和-0.28 V (NCS)則為[Co₂Re₂(tpda)₄Cl]^{0/1+}, 根據過去文獻, [Re₂]⁶⁺一般顯示為還原波峰,因此可藉此判斷 E_{1/2} = -0.22 V (Cl)和 -0.28 V (NCS)主要為雙核錸金屬所具有的氧化還原對。

3-8 電子吸收光譜分析

隨著合成金屬串的過程中,採用過渡金屬做為金屬來源,其內部所含d電子 會受到配基配位的影響,因而導致能階分裂的現象。根據不同的配位模式,即會 有不同的軌域分布,進而產生不同的電子組態。當軌域內的電子受到激發時,電 子會進行躍遷動作而透過光譜呈現出來,其吸收峰數目、吸收頻率、吸收強度和 吸收帶寬度等特性會直接反應化合物的結構特性,因此可以藉由電子吸收光譜分 析化合物的過渡金屬離子與和配基間配位時的電子組態,進而探討結構的特性。

一般而言,含過渡金屬離子的化合物會產生的電子吸收躍遷主要可細分為以 下四種類型:

1. 過渡金屬離子內的 d-d 電子躍遷,即 d_{π} - d_{σ^*} (metal d-d transition)。

2. 配基至金屬離子的電荷轉移,即 $\pi_{(L)}$ -d₅* (lgand to metal charge transfer, LMCT)。

3. 金屬離子至配基的電荷轉移,即 d_{π} - $\pi^*_{(L)}$ (metal to ligand charge transfer, MLCT)。

4. 配基內的電子躍遷,即 $\pi_{(L)}$ - $\pi^{*}_{(L)}$ (intra-ligand electronic transition, IL)。

當金屬離子的配位位模式為八面體型(octahedral)時,金屬離子內的 d-d transition 會位在可見光區,該躍遷模式在 selection rule 雖然為 spin allowed,但卻 是 Laporte forbidden,因此消光系數(extinction coefficient)很低,僅位於 10~10²之 間,而另外三種躍遷則同時符合兩種 selection rule,故消光係數皆大於 500,甚至 可高達 10⁴。配基內的電子躍遷通常位於紫外光區;而金屬與配基之間的電荷轉移, 則通常在紫外光區到可見光中的紫藍光區,若因配基或金屬離子本身容易氧化還 原,會使得 HOMO 和 LUMO 之間的能階差變小,導致電荷轉移可能發生在更低 能量的位置。

圖 3-80 [Ni₅(Tspnda)₄](PF₆)(1)、[Ni₅(Tspnda)₄(H₂O)₂](PF₆)₂(2)和 H₂Tspnda 配基在 CH₂Cl₂中的紫外光-可見光吸收光譜圖

圖 3-80 為[Ni₅(Tspnda)4](PF₆)(1)、[Ni₅(Tspnda)4(H₂O)₂](PF₆)₂(2)和 H₂Tspnda 配 基在 CH₂Cl₂之中的電子吸收光譜圖。配製溶液濃度為 1.55 × 10⁻⁵ M,使用的樣品 槽為 1 cm 寬,掃描波長範圍為 200~800 nm,透過公式將所量測得到的吸收度轉 換成消光係數,繪製成消光係數對波長的關係圖。

從圖中可見原本 H₂Tspnda 配基在 239、273、289 (shoulder)、378 和 398 nm 處 的吸收峰,在當 H₂Tspnda 配基脫氫後和鎳金屬離子進行配位後,可以發現原本在 239 和 273 nm 的吸收訊號消光係數的上升現象,有些許藍位移現象,判斷為 sulfonyl group 上的 S=O 鍵所導致,而相較配基位在 378 和 398 nm 的部分,在配基(378 nm) 形成化合物 1 (391 nm)和化合物 2 (389 nm)則有紅位移的現象(在小圖方面,位於 656 nm 具有些許的吸收峰,判斷為 d-d transition 的躍遷範圍。相關數值列於表 3-9。

表 3-9 化合物 1、2 與 H ₂ Ts	spnda 配基之最大吸收波長和消光係數	
Sample	$\lambda_{\max, nm} (\varepsilon, M^{-1} cm^{-1})$	
$(1.55\times10^{-5}M$ in DCM)		
H2Tspnda	239 (1.18×10 ⁵), 273 (6.29×10 ⁴), 289 (5.19×10 ⁴), 378 (1.43×10 ⁵),	
	398 (1.55×10 ⁵)	
[Ni5(Tspnda)4](PF6) (1)	229 (1.40×10 ⁵), 268 (7.82×10 ⁴), 319 (3.46×10 ⁴), 391 (9.57×10 ⁴)	
[Ni-(Tonndo) (U-O)-1(DE-)- (2)	230 (1.91×10 ⁵), 312 (5.56×10 ⁴), 389 (1.32×10 ⁵), 461 (2.74×10 ⁴),	
[N15(15pn(a)4(H2O)2](PF6)2(2)	656 (4.28×10 ³)	

圖 3-81 [Ni₅(Tsphpnda)₄](PF₆)(**3**)、[Ni₅(Tsphpnda)₄](PF₆)₂(**4**)和 H₂Tsphpnda 配基在 CH₂Cl₂之中的紫外光-可見光吸收光譜圖

圖 3-81 可以發現,配基 H₂Tsphpnda 在 232、296、386 和 405 nm 處有吸收峰的產生,其中 232 和 296 nm 的吸收峰很強,這兩個吸收躍遷推測是屬於配基內 sulfonyl group 上的 S=O 鍵所導致。

在當 H₂Tsphpnda 配基脫氫後和鎳金屬離子進行配位形成化合物時,可以發現 原本在 232 nm 的吸收訊號除了消光係數的上升之外,並且同時產生了訊號藍位移 的現象,而分別移動到 229 和 228 nm 的位置。而原本位在 296 nm 的訊號則變為 shoulder 的部分(252、251 nm),位在 386 nm 位置的訊號則因為配基與金屬配位而 產生紅位移現象,分別為化合物 3 位在 402 nm,化合物 4 位在 403 nm,原本配基 的 405 nm 訊號則因與金屬配位形成肩部(shoulder),分別為 547 和 469 nm,此訊號 的改變主要在於 $\pi \rightarrow \pi$ *和 n $\rightarrow \pi$ *的躍遷,而較寬的部分則位在 658 nm,判斷為 d-d transition 的躍遷範圍。相關數值列於表 3-10。

表 3-10 化合物 3、4 與 H2	Tsphpnda 配基之最大吸收波長和消光係數	
Sample) (c M ⁻¹ cm ⁻¹)	
$(1.55\times10^{\text{-5}}\text{M in DCM})$	Amax, nm (c, 1vi Cili)	
H ₂ Tsphpnda	232 (6.5×10 ⁴), 296 (5.19×10 ⁴), 386 (8.79×10 ⁴), 405 (9.66×10 ⁴)	
[Ni5(Tsphpnda)4](PF6) (3)	229 (1.11×10 ⁵), 252 (9.29×10 ⁴), 300 (4.54×10 ⁴), 402 (8.95×10 ⁴),	
	547 (5.76×10 ³)	
[Ni5(Tsphpnda)4](PF6)2 (4)	228 (1.16×10 ⁵), 251 (9.96×10 ⁴), 323 (4.20×10 ⁴), 403 (9.51×10 ⁴),	
	469 (2.30×10 ⁴), 658 (3.00×10 ³)	

圖 3-82 [Ni₅(Mspnda)₄](PF₆) (6)和 H₂Mspnda 配基在 CH₂Cl₂之中的紫外光-可見光 吸收光譜

由圖 3-82 可以發現,配基 H₂Mspnda 在 233、269、286(shoulder)、374 和 392 nm 處有吸收峰的產生,其中 233 和 269 nm 的吸收峰相對較強,這兩個吸收躍遷 推測是屬於配基內 sulfonyl group 上的 S=O 鍵所導致。

當 H₂Mspnda 配基脫氫後和鎳金屬離子進行配位形成化合物 6 時,可以發現化 合物相對訊號來的較低,主要在於化合物 6 對於 DCM 溶劑的溶解度極差,使得化 合物 6 的晶體有大部分尚未被溶解,這也導致消光係數明顯偏低,但仍可看到其 與金屬鍵結後,原本配基位在 374 nm 的訊號產生紅位移的現象,座落在 392 nm, 而原本配基上的 392 nm 的部分則變為 shoulder 的位置,這兩個部分則推測為 $\pi \rightarrow \pi^*$ 和 n $\rightarrow \pi^*$ 的躍遷,然而由於溶解度極差的因素,導致在長波長的地方無法有效觀察 到 d-d transition 的躍遷範圍。相關數值列於表 3-11。

表 3-11 化合物 6 與 H2Ms	pnda 配基之最大吸收波長和消光係數	大港重义
Sample (1.55 × 10 ⁻⁵ M in DCM)	$\lambda_{\max, nm} (\varepsilon, M^{-1} cm^{-1})$	
H-Manndo	233 (6.00×10 ⁵), 269 (2.94×10 ⁵), 286 (2.17×1	10 ⁵), 374 (7.00×10 ⁵),
H2IVISpnda	392 (7.68×10 ⁵)	₹°• ₹
[Ni5(Mspnda)4](PF6) (6)	244 (4.79×10 ³), 392 (4.79×10 ³)	

圖 3-83 [Ni₄(Mspnda)₄(H₂O)₂] (7)和 H₂Mspnda 配基在 CH₂Cl₂之中的紫外光-可見光 吸收光譜圖

圖 3-83 為[Ni₄(Mspnda)₄(H₂O)₂] (7)和 H₂Mspnda 配基在 CH₂Cl₂之中的電子吸 收光譜圖。從圖中可見原本 H₂Mspnda 配基在 233、269、286(shoulder)、374 和 392 nm 處有吸收峰的產生,在當 H₂Mspnda 配基脫氫後和鎳金屬離子進行配位形成化 合物 7 時,可以發現原本在 233 nm 的吸收訊號產生了紅位移的現象,而移動到 246 nm 的位置。除了發生訊號的紅位移現象之外,在配基之中的另外兩個訊號,分別 位於 374 和 392 nm 處,也因為與金屬離子鍵結產生紅位移的現象,移動至 393 和 425 nm (shoulder),推測化合物 7 在 393 和 425 nm 躍遷隸屬於 $\pi \rightarrow \pi * \pi n \rightarrow \pi *$ 的躍 遷,而位在 625 nm 將圖放大可以看到不明顯的小吸收峰,判斷為 d-d transition 的 躍遷範圍。相關數值列於表 3-12。

表 3-12 化合物 7 與 H ₂ Ms	pnda 配基之最大吸收波長和消光係數	大学学校
Sample (1.55 × 10 ⁻⁵ M in DCM)	$\lambda_{\max, nm} (\varepsilon, \mathbf{M}^{-1} \mathbf{cm}^{-1})$	
H2Mspnda	233 (6.00×10 ⁵), 269 (2.94×10 ⁵), 286 (2.17×1 392 (7.68×10 ⁵)	10 ⁵), 374 (7.00×10 ⁵),
$[Ni_4(Mspnda)_4(H_2O)_2]$ (7)	246 (3.92×10 ³), 393 (3.50×10 ³), 425 (1.92×1	10 ³), 625 (9.19×10 ²)

圖 3-84 [Ni₅(Msphpnda)₄](PF₆) (9)、[Ni₅(Msphpnda)₄](PF₆)₂ (11)和 H₂Msphpnda 配基 在 CH₂Cl₂之中的紫外光-可見光吸收光譜圖

圖 3-84 [Ni₅(Msphpnda)₄](PF₆) (9)、[Ni₅(Msphpnda)₄](PF₆)₂ (11)和 H₂Msphpnda 配基在 CH₂Cl₂之中的紫外光-可見光吸收光譜圖從圖中可見原本 H₂Msphpnda 配基 在 231、287、380 和 398 nm 處有吸收峰的產生,在形成鎳金屬串化合物 9 和 11 時,原本的 231 nm 產生藍位移,化合物 9 和化合物 11 皆位在 229 nm,在這主要 判斷為磺醯基 sulfonyl group 所導致,而原本配基上位在 287 nm 位置的則與金屬配 位後紅移到 251 (化合物 9)和 260 (化合物 11) nm,並且在 321 nm (化合物 9)和 297 和 330 nm (化合物 11)也出現訊號,推測座落此範圍的躍遷為 MLCT 的貢獻,同樣 在配基的 380 和 398 nm 位置上則與金屬鍵結紅位移到 401 和 464 (化合物 9)以及 403 和 438 (化合物 11) nm 上,則推斷為 $\pi \rightarrow \pi * \pi$ n→ $\pi *$ 的躍遷,而位在 633 nm 將 圖放大可以看到不明顯的小吸收峰,判斷為 d-d transition 的躍遷範圍。相關數值列 於表 3-13。

表 3-13 化合物 9、11 和 H2Msphpnda 配基之最大吸收波長和消光係數			
Sample	$\lambda_{\max, nm}$ ($\epsilon, M^{-1}cm^{-1}$)		
$(1.55 \times 10^{-5} \mathrm{M \ in \ DCM})$			
H ₂ Msphpnda	231 (3.48×10 ⁵), 287 (2.85×10 ⁵), 380 (4.94×10 ⁵), 398 (5.16×10 ⁵)		
[Ni5(Msphpnda)4](PF6) (9)	229 (5.95×10 ⁵), 251 (5.90×10 ⁵), 321 (2.54×10 ⁵), 401 (6.06×10 ⁵),		
	464 (1.34×10 ⁵), 633 (1.82×10 ³)		
[Ni5(Msphpnda)4](PF6)2 (11)	229 (6.19×10 ⁵), 260 (5.78×10 ⁵), 297 (2.64×10 ⁵), 403 (6.52×10 ⁵),		
	438 (3.31×10 ⁵), 633 (1.82×10 ³)		

圖 3-85 [NiMo₂Ni(Tspnda)₄] (14)、[CoMo₂Co(Tspnda)₄] (15)和 H₂Tspnda 配基在 CH₂Cl₂之中的紫外光-可見光吸收光譜圖

圖 3-85 為化合物 14、15 和 H₂Tspnda 配基在 CH₂Cl₂之中的電子吸收光譜圖。 從圖中可見原本 H₂Tspnda 配基在 239、273、289、378 和 398 nm 處的吸收峰,在 當 H₂Tspnda 配基脫氫後和鉬/鎳金屬離子進行配位形成錯合物 14 和 15 時,可以發 現原本在 239 nm 的吸收訊號產生了訊號藍位移(化合物 14 與化合物 15 皆位在 229 nm)的現象,判斷為磺醯基 sulfonyl group (S=O)所導致,而配基位在 273 nm 位置 的訊號則因與金屬配位移動到 309 nm (shoulder)的部分,配基位於 378 和 398 nm 處 隨著形成化合物而位移到 392 nm 處的躍遷屬於 MLCT,化合物 14 中位在 454 nm 處的躍遷則屬於鉬鉬四重鍵之中的 $\delta \rightarrow \delta^*$ 躍遷,561 nm 處的躍遷則推測是屬於 d-d transition,然而化合物 15 的產率很低,導致無法配製合理濃度並在光譜上看到相 關 d-d transition 的訊息,詳細波長和消光係數列於表 3-14 中。

表 3-14 化合物 14、15 和 H ₂ Tspnda 配基之最大吸收波長和消光係數			
Sample (1.55 × 10 ⁻⁵ M in DCM)	$\lambda_{\max, nm} (\varepsilon, M^{-1} cm^{-1})$		
H ₂ Tspnda	239 (1.18×10 ⁵), 273 (6.29×10 ⁴), 289 (5.19×10 ⁴), 378 (1.43×10 ⁵), 398 (1.55×10 ⁵)		
[NiMo2Ni(Tspnda)4] (14)	229 (4.68×10 ⁴), 309 (1.50×10 ⁴), 392 (3.63×10 ⁴), 411 (2.74×10 ⁴), 454 (1.10×10 ⁴)		
[CoMo ₂ Co(Tspnda) ₄] (15)	229 (6.88×10 ³), 392 (4.21×10 ³)		

圖 3-86 [Co₂Re₂(tpda)₄Cl](PF₆) (**19**)、[Co₂Re₂(tpda)₄(NCS)](PF₆) (**20**)和 H₂tpda 配基在 CH₂Cl₂之中的紫外光-可見光吸收光譜圖

圖 3-86 為化合物 19、20 和 H₂tpda 配基在 CH₂Cl₂之中的電子吸收光譜圖。從 圖中可見 H₂tpda 配基 261,330 和 376(shoulder) nm 處的吸收峰,當配基脫氫後和鍊 金屬與鎳或鈷金屬進行配位後,訊號產生紅位移的現象,以化合物 19 來看,除了 位在 236 nm 位置的訊號主要因為溶劑 CH₂Cl₂所具有特徵訊號外,其他配基位在 330 和 376 nm 位置的訊號則位移到 362 和 453 nm,化合物 20 訊號則位移到 373 和 450 nm,分別位在 362 和 373 nm 位置則判斷為 MLCT 的躍遷,453 和 450 nm 則判斷為錸錸金屬四重鍵中的 $\delta \rightarrow \delta^*$ 躍遷,並且可以觀察到在低消光係數且位在 606 nm (化合物 19)和 324 nm (化合物 20)有訊號的產生,此訊號判斷為 d-d transition, 詳細波長和消光係數列於表 3-15 中。

表 3-15 化合物 19、20 和 H2tpda 配基之最大吸收波長和消光係數			
Sample	$\lambda_{max} = m \left(\epsilon M^{-1} cm^{-1} \right)$		
$(1.55 \times 10^{-5} \text{ M in DCM})$			
H2tpda	261 (8.93×10 ⁴), 330 (7.53×10 ⁴), 376 (4.95×10 ⁴)		
[Co ₂ Re ₂ (tpda) ₄ Cl](PF ₆) (19)	236 (5.58×10 ⁴), 279 (4.37×10 ⁴), 320 (3.87×10 ⁴), 453 (9.41×10 ³),		
	606 (3.36×10 ³)		
$[C_{0}, \mathbf{D}_{0}, (\mathbf{t}_{\mathbf{T}}, \mathbf{d}_{0}), (\mathbf{N}, \mathbf{C}, \mathbf{S})](\mathbf{D}, \mathbf{E}_{0})$	237 (1.00×10 ⁵), 281 (7.73×10 ⁴), 321 (6.72×10 ⁴), 373 (9.03×10 ⁴),		
[C02Ke2(lpua)4(INCS)](PF6) (20)	405 (1.95×10 ⁴), 624 (5.50×10 ³)		

圖 3-87 化合物 1,3,6 和 9 在 DMF 之中的近紅外光光譜

圖 3-87 為 化 合 物 [Ni₅(Tspnda)₄](PF₆) **1**, [Ni₅(Tsphpnda)₄](PF₆) **3**, [Ni₅(Mspnda)₄](PF₆) **6** 和[Ni₅(Msphpnda)₄](PF₆) **9** 在 DMF 之中的近紅外光光譜圖。 從圖中可見位在 1431 nm 和 1556 nm 附近各有一吸收峰,如表 3-16,藉由此兩個 波峰可以判斷[Ni₅]⁹⁺的金屬串化合物內具有混價單元的存在,並且判斷此兩波峰的 吸收為 IVCT (intervalence charge transfer)的特徵峰。

Complex	Band 1		В	and 2
(in DMF)	nm	$\varepsilon (\mathrm{cm}^{-1}\cdot\mathrm{M}^{-1})$	nm	$\varepsilon (\mathrm{cm}^{-1}\cdot\mathrm{M}^{-1})$
1	1431	1.80×10^{3}	1556	$1.03 imes 10^3$
3	1431	1.65×10^{3}	1556	$8.04 imes 10^2$
6	1433	$1.87 imes 10^3$	1556	7.93×10^{2}
9	1431	1.48×10^{3}	1556	7.29×10^2

表 3-16 化合物 1、3、6 和 9 之近紅外光吸收參數

第四章 結論與未來工作

經過不斷嘗試與合成金屬串分子,我們成功得到一系列以含有磺醯基配基的 同核鎳金屬串化合物,並且藉由微調方式(Fine-tune method)以及為了探討配基效應 (ligand effect)進而合成出四種不對稱型的配基,其主要以甲基苯磺醯基萘啶吡啶二 胺(H2Tspnda)和甲基磺醯基萘啶吡啶二胺(H2Mspnda)為主,以及含有苯環修飾等四 條配基進行探討,在這一系列十一個鎳金屬串分子中,我們發現對於主產物五核 鎳金屬串而言,其皆以(2,2)-trans的方式排列組成金屬串分子,而對於副產物四核 鎳金屬串而言,則主要以(2,2)-cis的方式排列組成金屬串分子,對於這些金屬串分 子的主結構,其皆沒有配基和金屬離子失序的現象,因此我們可以透過鍵長等後 續的性質量測來判斷化合物的價數與鍵結特性。對於五個鎳金屬帶九價[Ni5]9+的金 屬串分子,可分為配基為甲基苯磺醯基系列和甲基磺醯基系列,由甲基苯磺醯基 系列所合成出的 [Ni₅(Tspnda)₄](PF₆) (1)、 [Ni₅(Tsphpnda)₄](PF₆) (3) 和 [Ni₅(Tspnda)₄](BF₄)(5), 其皆在鎳金屬的 Ni(1)-Ni(2)顯示較為特別的鍵長,分別為 2.2646(6)、2.2943(7)和 2.2676(9) Å, 並且 Ni-N 之間的鍵長皆大於 2.0 Å, 因此判 斷為具有混價單元(mixed-valence unit) (S = 3/2)的存在,而 Ni(3)、Ni(4)和 Ni(5)到 氯之間的鍵長皆在 1.88-1.95 Å 的範圍,判斷其自旋皆為 S=0,此外,當進行微調 時,由甲基苯磺醯基置換為甲基磺醯基時可以發現,所合成出的[Ni5(Mspnda)4](PF6) (6)和[Ni5(Msphpnda)4](PF6) (9)的混價單元從甲基苯磺醯基系列的 Ni(1)-Ni(2)位置 :遷移至 Ni(2)-Ni(3)的位置,其 Ni-Ni 鍵長分別為 2.2436(11)和 2.2322(8) Å,這也符 合了過去實驗室所認為隨著金屬鏈增長時,當 Ni-Ni 鍵長往內部移動時會有收縮的 現象,這在混價單元上也明顯可見到,然而隨著混價單元往內遷移,使得化合物6 和9的整體結構更趨於對稱,並且內部的 Ni(2)-N(3)與 Ni(3)-Ni(4)兩者的距離差僅 相差 0.05-0.06 Å,使得混價單元於內部更趨於以電子未定域化於 Ni(2)、Ni(3)和 Ni(4)之間,相較於化合物1和3而言,混價單元位在金屬串終端,導致其比6和9 要來得更不對稱,而這也同時影響了零場分裂參數 D 和 E 值,造成電子順磁光譜

在低温時於低場 1600 G 和高場 3150 G 的位置所表現的訊號有所不同,此外,化 合物 6 和 9 的 Ni-N 鍵長也大於 2.0 Å, 而其他 Ni(1)、Ni(2)和 Ni(5)的 Ni-N 鍵長皆 落在 1.88-1.95 Å 的範圍。我們也透過磁化率、EPR 和 Near-IR 分析判斷此四個化 合物的數值符合純自旋理論的數值,故吻合結構鑑定解析所得到的實驗結果(S = 3/2)。而當這些[Nis]9+的化合物氧化後,可得到[Nis]10+的化合物,分別為 $[Ni_{5}(Tspnda)_{4}(H_{2}O)_{2}](PF_{6})_{2}$ (2) $[Ni_{5}(Tsphpnda)_{4}](PF_{6})_{2}$ (4) $[Ni_{5}(Mspnda)_{4}](CF_{3}SO_{3})_{2}$ (8)和[Ni5(Msphpnda)4](PF6)2 (11),其中除了化合物2的金屬鏈具有配位水進行配位, 其他化合物 4、8 和 11 皆呈現五個鎳金屬為低自旋組態的化合物,而造成同系列 的化合物4並無軸向配位水而化合物2具有配位水的原因是化合物4所具有的meta 位苯環立體阻障影響或是較傾向疏水特性的結果,亦或是化合物 2 具有較強的親 電性所導致,也因此,對於這一系列的鎳金屬串,我們歸納出三個重大突破:(1) 成功得到結晶學中少見的對稱型結構、不對稱型電荷密度分布的化合物;(2)文獻 中第一個鎳金屬串以全低自旋組態存在的化合物;(3)透過配基效應,使得混價單 元從 Ni(1)-Ni(2) (化合物 1 和 3) 遷移到 Ni(2)-Ni(3) (化合物 6 和 9),使得金屬 串整 體電子結構趨向穩定且對稱,並且藉由磁性和 EPR 光譜得以佐證,也打破了過去 實驗室一直認為取代基的修飾並不影響金屬鏈電子分布的觀點。

對於異金屬串系列而言,所合成的鉬金屬化合物皆呈現正二價離子,在鍵長 方面,Mo-Mo 鍵長落在 2.09~2.12 Å 的範圍,符合一般鉬鉬四重鍵的鍵長範圍,然 而根據 Mo 金屬的配位模式,皆呈現五配位的配位型態,且自旋數為 S = 0,而第 二種金屬(Ni 或 Co 金屬)則是呈現六配位的配位型態,為 S = 1 (Ni)或 S = 1/2 (Co) 的自旋組態,因此導致化合物 14 和 15 皆呈現順磁的特性,但由於其產率極低, 導致只能做基礎的定性分析;對於錸金屬化合物,錸金屬呈現正三價,而鈷離子 呈現正二價,在鍵長部分,Re-Re 鍵長落在 2.17 Å 左右,符合錸-錸四重鍵的範圍, 並且可發現第五個配位點的其中兩片吡啶上的氮原子會與錸金屬進行配位,當添 加第三種金屬釘(Ru)進行反應後,其 Re-Npyridine 鍵結會打開,使得配基上第五個配

參考文獻

- Bernard, M., "Why Everyone Must Get Ready For The 4th Industrial Revolution" *Forbes*, Retrieved, 2018.
- Drexler, K. E., "Engines of Creation: The Coming Era of Nanotechnology". Doubleday, 1986.
- 3. Aviram, A.; Ratner, M. A., Chem. Phys. Lett. 1974, 29, 277-283.
- 4. Tour, J. M., Acc. Chem. Res. 2000, 33, 791.
- 5. Reed, M. A.; Tour, J. M., Sci. Am. 2000, 282, 86.
- 6. (a) Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S., *Science*, 1964, 145, 1305. (b) Tsai T.-W.; Huang Q.-R.; Peng S.-M.; Jin B.-Y., *J. Phys. Chem. C*, 2010, 114, 3641–3644. (c) Hua S.-A.; Cheng M.-C.; Chen C.-h.; Peng S.-M., *Eur. J. Inorg. Chem.* 2015, 2510–2523.
- 7. Sigal, I. S.; Mann, K. R.; Gray, H. B., J. Am. Chem. Soc. 1980, 102, 7252.
- Barton, J. K.; Best, S. A.; Lippard, S. J.; Walton, R. A., J. Am. Chem. Soc. 1978, 100, 3785.
- 9. (a) Tejel, C.; Ciriano, M. A.; López, J. A.; Lahoz, F. J.; Oro, L. A. Angew. Chem. Int. Ed., 1998, 37, 1542. (b) Tejel, C.; Sommovigo, M.; Ciriano, M. A.; López, J. A.; Lahoz, F. J.; Oro, L. A. Angew. Chem. Int. Ed., 2000, 39, 2336. (c) Tejel, C.; Ciriano, M. A.; Villarroya, B. E.; Gelpi, R., López, J. A.; Lahoz, F. J.; Oro, L. A., Angew. Chem. Int. Ed. 2001, 40, 4084.
- Prater, M. E.; Pence, L. E.; Clerac, R.; Finniss, G. M.; Campana, C.; Jerome, D.; Auban-Senzier, P.; Canadell, E.; Dunbar, K. R., J. Am. Chem. Soc. 1999, 121, 8005.
- 11. Hofmann, K. A.; Bugge, G., Ber. Dtsch. Chem. Ges., 1908, 41, 312.

- 12. Krogmann, K., Angew. Chem. Int. Ed., 1969, 8, 35-42.
- Barton, J. K.; Best, S. A.; Lippard, S. J.; Walton, R. A., J. Am. Chem. Soc. 1978, 100, 3785.
- Prater, M. E.; Pence, L. E.; Clerac, R.; Finniss, G. M.; Campana, C.; Jerome, D.; Auban-Senzier, P.; Canadell, E.; Dunbar, K. R., J. Am. Chem. Soc. 1999, 121, 8005.
- 15. (a) Murahashi, T.; Mochizuki, E.; Kai, Y.; Kurosawa, H., J. Am. Chem. Soc., 1999, 121, 10660. (b) Murahashi, T.; Higuchi, Y.; Katoh, T.; Kurosawa, H., J. Am. Chem. Soc., 2002, 124, 14288. (c) Ishikawa, Y.; Kimura,S.; Takase, K.; Yamamoto, K.; Kurashige, Y.; Yanai, T.; Murahashi, T., Angew. Chem. Int. Ed., 2015, 54, 2482-2486.
- Horiuchi, S.; Tachibana, Y.; Yamashita, M.; Yamamoto, K.; Masai, K.; Takase, K.; Matsutani, T.; Kawamata, S.; Kurashige, Y.; Yanai, T.; Murahashi, T., *Nature Commun.* 2016, 6, 6742.
- Mashima, K.; Nakano, H.; Nakamura, A., J. Am. Chem. Soc. 1993, 115, 11632-11633.
- Nakamae, K.; Takemura, Y.; Kure, B.; Nakajima, T.; Kitagawa, Y.; Tanase, T., Angew. Chem. Int. Ed. 2015, 54, 1016-1021.
- 19. Dolinar, B. S.; Berry, J. F., Inorg. Chem. 2013, 52, 4658-4667.
- 20. (a) Yan, E. C.; Cheng, M. C.; Tsai, M. S.; Peng, S. M., *Chem Commun.* 1994, 2377.
 (b) Sheu, J. T.; Lin, C. C.; Chao, I.; Wang, C. C.; Peng, S. M., *Chem. Commun.* 1996, 315. (c) Kuo, C. K.; Liu, P. C.; Yeh, C. Y.; Chou, C. H.; Taso, T. B.; Lee, G. H.; Peng, S. M. *Chem. Eur. J.* 2007, *13*, 1442. (d) Clerac, R.; Cotton, F. A.; Dunbar, K. R.; Murillo, C. A.; Pascual, I.; Wang, X., *Inorg. Chem.* 1999, *38*, 2655. (e) 李忠 州, 國立台灣大學化學条博士論文, 2005。
- 21. (a) Shieh, S. Y.; Chou, C. C.; Lee, G. H.; Wang, C. C.; Peng, S. M., Angew. Chem.

Int. Ed., 1997, 36, 56. (b) Wang, C. C.; Lo, W. C.; Chou, C. C.; Lee, G. H.; Chen, J.
M.; Peng, S. M., Inorg. Chem. 1998, 37, 4059. (c) Chang, H. C.; Li, J. T.; Wang, C.
C.; Lin, T. W.; Lee, H. C.; Lee, G. H.; Peng, S. M., Eur. J. Inorg. Chem. 1999, 1243.

- (a) Lai, S. Y.; Lin, T. W.; Chen, Y. H.; Wang, C. C.; Lee, G. H.; Yang, M. H.; Leung, M. K.; Peng, S. M., J. Am. Chem. Soc. 1999, 121, 250. (b) Lai, S. Y.; Wang, C. C.; Chen, Y. H.; Lee, C. C.; Liu, Y. H.; Peng, S. M., J. Chin. Chem. Soc. 1999, 46, 477.
 (c) Chen, Y. H.; Lee, C. C.; Wang, C. C.; Lee, G. H.; Lai, S. Y.; Li, F. Y.; Mou, C. Y.; Peng, S. M., Chem. Commun. 1999, 1667. (d) Wang, W. Z.; Ismayilov, R. H.; Lee, G. S.; Liu, I. B. C.; Yeh, C. Y.; Peng, S. M., Dalton Trans. 2007, 830.
- 23. (a) Peng, S. M.; Wang, C. C.; Chiang, Y. L.; Chen, Y. H.; Li, F. Y.; Mou, C. Y.; Leung, M. K., *J. Mag. Mag. Mater.* 2000, 209, 80. (b) Ismayilov, R. H.; Wang, W. Z.; Wang, R. R.; Yeh, C. Y.; Lee, G. S.; Peng, S. M., *Chem. Commun.* 2007, 1121.
- 24. Wibaut, J. P.; Dingemasse, E., Rec. Trav. Chim. Pays-Bas, 1923, 42, 240-250.
- 25. Freeman, H. C.; Snow, M. R., Acta Crystallogr., 1965, 18, 843.
- 26. Hurley, T. J.; Robinson, M. A., Inorg. Chem. 1968, 7, 33-38.
- 27. Aduldecha, S.; Hathaway, B., J. Chem. Soc. Dalton Trans., 1991, 993.
- 28. Wagan, S.; Buchwald, S. L., J. Org. Chem., 1996, 61, 7240-7241.
- Peng, S. M.; Wang, C. C.; Jang Y. L.; Chen Y. H.; Li F. Y.; Mou C. Y.; Leung M. K. J. Magn. Magn. Mater., 2000, 209, 80-83.
- Ismayilov, R. H.; Wang, W. Z.; Wang, R. R.; Yeh C. Y.; Lee, G. H.; Peng S. M., Chem. Commun .2007, 1121-1123.
- 31. Sacconi, L.; Mealli, C.; Gatteschi, D., Inorg. Chem., 1974, 13, 1985-1991.
- 32. Ismayilov, R. H.; Wang, W. Z.; Lee, G. H.; Yeh, C. Y.; Hua, S. A.; Song, Y.; Rohmer, M. M.; Bénard, M.; Peng, S. M., Angew. Chem. Int. Ed., 2011, 50, 2045-2048.

- 33. (a) Chien, C. H.; Chang, J. C.; Yeh, C. Y.; Lee, G. H.; Fang, J. M.; Song, Y.; Peng, S. M., *Dalton Trans.* 2006, *35*, 3249–3256. (b) Chien, C. H.; Chang, J. C.; Yeh, C. Y.; Lee, G. H.; Fang, J. M.; Peng, S. M., *Dalton Trans.* 2006, *35*, 2106–2113.
- Hua, S. A.; Liu, I. P. C.; Hasanov, H.; Huang, G. C.; Ismayilov, R. H.; Chiu, C. L.;
 Yeh, C. Y.; Lee, G. H.; Peng, S. M., *Dalton Trans.* 2010, *39*, 3890–3896.
- 35. 王瑞仁,國立台灣大學化學系博士論文,2007。
- 36. 邱梅君,國立台灣大學化學系碩士論文,2006。
- Yang C. C.; Liu, I. P. C.; Hsu, Y. J.; Lee G. H.; Chen, C. h.; Peng S. M., *Eur. J. Inorg. Chem.* 2013, 263–268.
- Cotton, F. A.; Walton, R. A. Multiple Bonds between Metal Atoms, 3rd ed., Springer, Berlin, 2005.
- **39.** Cotton, F. A., and C. B. Harris., *Inorg. Chem.* **1965**, *4*, 330-333.
- 40. Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S., *Science*, 1964, *145*, 1305.
- **41.** Cotton, F. A.; Curtis, N. F.; Johnson, B. G.; Robinson, W. R., *Inorg. Chem.* **1965**, *4*, 326.
- 42. Berry J. F.; Cotton F. A.; Daniels L. M.; Murillo C. A. and Wang X. *Inorg. Chem.*2003, 42, 2418-2427.
- 43. Yan, E. C.; Cheng, M. C.; Tsai, M. S.; Peng, S. M. J. Chem. Soc., Chem Commun. 1994, 2377.
- 44. Sheu, J. T.; Lin, C. C.; Chao, I.; Wang, C. C.; Peng, S. M., Chem. Commun. 1996, 315.
- **45.** Clerac, R., Cotton, F. A., Daniels, L. M., Dunbar, K. R., Murillo, C. A., PascualI., *Inorg. Chem.* **2000**, *39*, 752–756.
- 46. Rohmer, M.M.; Liu, I. P.-C.; Lin, J. C.; Chiu, M. J.; Lee, C. H.; Lee, G. H.; Bénard, M.; Lopez, X.; Peng, S. M., Angew. Chem. Int. Ed. 2007, 46, 3533.
- 47. (a) Rohmer, M. M.; I. Liu P. C.; Lin, J. C.; Chiu, M. J.; Lee G. S.; Bénard, M. López, X.; Peng, S. M., Angew. Chem. Int. Ed. 2007, 119, 3603. (b) Liu, I. P. C.; Lee, G. H.; Peng, S. M.; Bénard, M.; Rohmer, M. M., Inorg. Chem. 2007, 46, 9602.
- 48. Nippe, M.; Timmer, G. H.; Berry, J. F., Chem. Commun. 2009, 4357–4359.
- 49. Yu, L. C.; Lee, G. H.; Sigrist, M.; Lin, T. S.; Peng, S. M., *Eur. J. Inorg. Chem.*2016, 4250–4256.
- Huang, G. C.; Bénard, M.; Rohmer M.M.; Li, L. A.; Chiu, M. J.; Yeh, C. Y.; Lee, G. H.; Peng, S. M., *Eur. J. Inorg. Chem.* 2008, 1767.
- Cheng, M. C.; Mai, C. L.; Yeh, C. Y.; Lee, G. H.; Peng, S. M., Chem. Commun.
 2013, 49, 7938.
- 52. Huang, M. J.; Hua, S. A.; Fu, M. D.; Huang, G. C.; Yin, C.; Ko, C. H.; Kuo, C. K.; Hsu, C. H.; Lee, G. H.; Ho, K. Y.; Wang, C. H.; Yang, Y. W.; Chen, I-C.; Peng, S. M.; Chen, C. H., *Chem. Eur. J.* 2014, 20, 4526.
- 53. 華紹安,國立台灣大學化學系博士論文,2012。
- 54. 何柏賢,國立台灣大學化學系博士論文,2013。
- Hung, W. C.; Sigrist, M.; Hua, S. A.; Wu, L. C.; Liu, T. J.; Jin B. Y.; Lee, G. H.; Peng, S. M., *Chem. Commun.* 2016, 12380-12382.
- 56. 張惟程,國立台灣大學化學系博士論文,2017。
- 57. 尤崇翰,國立台灣大學化學系博士論文,2017。
- Cotton, F. A.; Curtis, N. F.; Johnson, B. F. G.; Robinson, W. R., *Inorg. Chem.* 1965, 4, 326.
- Yeh, C.-W.; Liu, I. P.-C.; Wang, R.-R.; Yeh, C.-Y.; Lee, G.-H.; Peng, S.-M., *Eur. J. Inorg. Chem.*, 2010, 3153–3159.
- 60. (a) Ross, F. K.; Stucky, G. D., J. Am. Chem. Soc., 1970, 92, 4538–4544; (b) Berry,
 J. F., Cotton, F. A., Daniels, L. M., Murillo, C. A., Wang, X., Inorg. Chem., 2003,

42, 2418-2427; (c) Morelock, M. M., Good, M. L., Trefonas, L. M., Karraker, D., Maleki, L., Eichelberger, H. R., Dodge, J., *J. Am. Chem. Soc.*, **1979**, *101*, 4858-4866; (d) Su, S.-G., Guo, Z.-Y., Li, G.-G., Deng, R.-P., Song, S.-Y., Qin, C., Pan, C.-L., Guo, H.-D., Cao, F., Wang, S., Zhang, H.-J., *Dalton. Trans.*, **2010**, *39*, 9123-9130.

- Yu, C.-H., Kuo, M.-S., Chuang, C.-Y., Lee, G.-H., Hua, S.-A., Jin, B.-Y., Peng, S.-M., *Chem. Asian J.* 2014, *9*, 3111-3115.
- 62. (a) Fox, S., Stibrany, R. T., Potenza, J. A., & Schugar, H. J., Inorg. Chim. Acta,
 2001, 1, 122-126; (b) Brown, D. B. (Ed.). Mixed-Valence Compounds : Theory and
 Applications in Chemistry, Physics, Geology, and Biology, Springer Science &
 Business Media, 2012.
- 63. (a) Kiehl, P., Rohmer, M. M., Bénard, M., Inorg. Chem. 2004, 43, 3151-3158; (b) Berry, J. F., Cotton, F. A., Lu, T. B., Murillo, C. A., Wang, X. P., Inorg. Chem. 2003, 42, 3595-3601;(c) J. H. van Vleck, Theory of Electric and Magnetic Susceptibilities, Oxford University Press, London, 1932; (d) Heisenberg W., Z. Phys. 1926, 38, 411.
- 64. (a) Alan, C., and McLachlan, A. D., Introduction to Magnetic Resonance : with Applications to Chemistry and Chemical Physics, 1967; (b) Ayscough, P. B., Electron Spin Resonance in Chemistry, Barnes and Noble, New York, 1967; (c) Griffith, J. S., On the General Theory of Magnetic Susceptibilities of Polynuclear Transition-metal Compounds. In: Structure and Bonding. Springer, Berlin, Heidelberg, 1972, p.87-126.
- 65. (a) Hagen, W. R., Dalton Trans., 2006, 4415-4434; (b) Hagen, W. R., Biomolecular EPR spectroscopy, 2009; (c) Badarau, I. M., Wickman, H. H., Inorg. Chem. 1985, 24, 1889-1892; (d) Palmer, G., Physical Methods in Bioinorganic Chemistry, L. Que ed. 2000.

附錄 光譜和晶體數據

- 附錄 A MS、IR and NMR spectra about precursors and ligands
- 附錄 B MS、IR and NMR spectra about metal string complexes
- 附錄 C Crystal Structure and Structural Information

附錄 A-1 ¹H NMR spectrum of 2-Amino-7-hydroxy-1,8-naphthyridine was taken at 400 MHz in d_6 -DMSO at 298 K.

附錄 A-2 MALDI-MS spectrum of 2-Amino-7-hydroxy-1,8-naphthyridine.

附錄 A-3 IR spectrum of 2-Amino-7-hydroxy-1,8-naphthyridine.

附錄 A-4 ¹H NMR spectrum of 2,7-Dihydroxy-1,8-naphthyridine was taken at 400 MHz in d_6 -DMSO at 298 K.

附錄 A-5 MALDI-MS spectrum of 2,7-Dihydroxy-1,8-naphthyridine.

附錄 A-6 IR spectrum of 2,7-Dihydroxy-1,8-naphthyridine.

附錄 A-7 ¹H NMR spectrum of 2,7-Dichloro-1,8-naphthyridine was taken at 400 MHz in d_6 -DMSO at 298 K.

附錄 A-8 MALDI-MS spectrum of 2,7-Dichloro-1,8-naphthyridine.

87.0355

82.9955

34 1423.21

39 1964.14

63.8786

93.9274

40 2985.75

附錄 A-9 IR spectrum of 2,7-Dichloro-1,8-naphthyridine.

61.0897

42.0389 70.5899

33 1367.28 38 1653.18

79.6873

48.1537 61.4761

41 3045.53

附錄 A-10¹H NMR spectrum of 2-Amino-7-chloro-1,8-naphthyridinewas taken at 400 MHz in d_6 -DMSO at 298 K.

附錄 A-11 MALDI-MS spectrum of 2-Amino-7-chloro-1,8-naphthyridine.

附錄 A-12 IR spectrum of 2-Amino-7-chloro-1,8-naphthyridine.

附錄 A-13 ¹H NMR spectrum of 2-Amino-5-phenylpyridinewas taken at 400 MHz in d_6 -DMSO at 298 K.

附錄 A-14 MALDI-MS spectrum of 2-Amino-5-phenylpyridine.

45.92

附錄 A-15 IR spectrum of 2-Amino-5-phenylpyridine.

51.3225

38 3418.69

37 3344.45

36 3162.21

47.8603

附錄 A-16 ¹H NMR spectrum of 2-Chloro-7-(pyridylamino)-1,8-naphthyridine (P1) was taken at 400 MHz in d_6 -DMSO at 298 K.

附錄 A-17 MALDI-MS spectrum of 2-Chloro-7-(pyridylamino)-1,8-naphthyridine (P1).

附錄 A-18 IR spectrum of 2-Chloro-7-(pyridylamino)-1,8-naphthyridine (P1).

附錄 A-19 ¹H NMR spectrum of 2-Chloro-7-(5-phenylpyridylamino)-1,8-naphthyridine (P2) was taken at 400 MHz in d_6 -DMSO at 298 K.

附錄 A-20 MALDI-MS spectrum of 2-Chloro-7-(5-phenylpyridylamino)-1,8-naphthyridine (P2).

NO.	CIII-1	% I	NO. CHI-1	% I	NO. CIII-1	% I	NO. CIII-1	% I	NO. CIT-1	70
1	401.121	-65.7722	2 404.978	-68.174	3 408.835	-86.5362	4 412.692	-75.7132	5 416.549	-64.9944
6	420.406	-68.1541	7 424.263	-68.4703	8 428.12	-75.9657	9 431.977	-71.9449	10 435.834	-60.189
11	439.69	-75.7381	12 443.547	-70.9319	13 447.404	-57.9222	14 451.261	-63.2533	15 455.118	-59.6514
16	458.975	-50.2495	17 462.832	-29.1304	18 604.574	83.0253	19 632.055	80.7055	20 690.873	61.9307
21	749.692	69.3221	22 768.494	47.8146	23 832.134	70.9954	24 1003.29	75.3751	25 1030.77	85.8694
26	1132.97	48.7118	27 1345.59	49.1921	28 1377.41	73.9604	29 1421.76	74.4904	30 1470.46	43.9389
31	1491.19	47.089	32 1530.24	54.1805	33 1556.76	66.9073	34 1613.16	33.6166	35 3027.69	87.9072
36	3448.1	76.8312								

附錄 A-21 IR spectrum of 2-Chloro-7-(5-phenylpyridylamino)-1,8-naphthyridine (P2).

附錄 A-22 ¹H NMR spectrum of N-(p-tolyl-sulfonyl)pyridylnaphthyridyl diamine (H₂Tspnda, L1) was taken at 400 MHz in d_6 -DMSO at 298 K.

附錄 A-23 MALDI-MS spectrum of N-(p-tolyl-sulfonyl)pyridylnaphthyridyl diamine (H₂Tspnda, L1).

附錄 A-24 IR spectrum of N-(p-tolyl-sulfonyl)pyridylnaphthyridyl diamine (H₂Tspnda, L1).

附錄 A-25 ¹H NMR spectrum of N-(p-tolyl-sulfonyl)phenylpyridylnaphthyridyl diamine (H₂Tsphpnda, L2) was taken at 400 MHz in d_6 -DMSO at 298 K.

附錄 A-26 MALDI-MS spectrum of N-(p-tolyl-sulfonyl)phenylpyridylnaphthyridyl diamine (H₂Tsphpnda, L2).

附錄 A-27 IR spectrum of N-(p-tolyl-sulfonyl)phenylpyridylnaphthyridyl diamine (H₂Tsphpnda, L2).

附錄 A-28 ¹H NMR spectrum of N-(methyl-sulfonyl)pyridylnaphthyridyl diamine (H₂Mspnda, L3) was taken at 400 MHz in d_6 -DMSO at 298 K.

附錄 A-29 MALDI-MS spectrum of N-(methyl-sulfonyl)pyridylnaphthyridyl diamine (H₂Mspnda, L3).

附錄 A-30 IR spectrum of N-(methyl-sulfonyl)pyridylnaphthyridyl diamine (H₂Mspnda, L3).

附錄 A-31 ¹H NMR spectrum of N-(methyl-sulfonyl)phenylpyridylnaphthyridyl diamine (H₂Msphpnda, L4) was taken at 400 MHz in d_6 -DMSO at 298 K.

附錄 A-32 MALDI-MS spectrum of N-(methyl-sulfonyl)phenylpyridylnaphthyridyl diamine (H₂Msphpnda, L4).

附錄 A-33 IR spectrum of N-(methyl-sulfonyl)phenylpyridylnaphthyridyl diamine (H₂Msphpnda, L4).

附錄 A-34 ¹H NMR spectrum of Tripyridyldiamine (H₂tpda, L5) was taken at 400 MHz in d_6 -DMSO at 298 K.

附錄 A-35 MALDI-MS spectrum of Tripyridyldiamine (H2tpda, L5).

附錄 A-36 IR spectrum of Tripyridyldiamine (H2tpda, L5).

附錄 B-1 ¹H NMR spectrum of $[Ni_5(Tspnda)_4](PF_6)$ (1) was taken at 400 MHz in d_6 -DMSO at 298 K.

附錄 B-2 MALDI-MS spectrum of [Ni₅(Tspnda)₄](PF₆) (1).

附錄 B-3 IR spectrum of [Ni₅(Tspnda)₄](PF₆) (1).

附錄 B-4 MALDI-MS spectrum of [Ni₅(Tspnda)₄(H₂O)₂](PF₆)₂ (2).

附錄 B-5 IR spectrum of [Ni₅(Tspnda)₄(H₂O)₂](PF₆)₂ (2).

附錄 B-6 ¹H NMR spectrum of $[Ni_5(Tsphpnda)_4](PF_6)$ (3) was taken at 400 MHz in d_6 -DMSO at 298 K.

附錄 B-7 MALDI-MS spectrum of [Ni₅(Tsphpnda)₄](PF₆) (3).

附錄 B-8 IR spectrum of [Ni₅(Tsphpnda)₄](PF₆) (3).

附錄 B-9 ¹H NMR spectrum of $[Ni_5(Tsphpnda)_4](PF_6)_2$ (4) was taken at 400 MHz in d_6 -DMSO at 298 K.

附錄 B-10 MALDI-MS spectrum of [Ni₅(Tsphpnda)₄](PF₆)₂ (4).

附錄 B-11 IR spectrum of $[Ni_5(Tsphpnda)_4](PF_6)_2$ (4).

附錄 B-12 MALDI-MS spectrum of [Ni₅(Tspnda)₄](BF₄) (5).

附錄 B-13 IR spectrum of [Ni₅(Tspnda)₄](BF₄) (5).

附錄 B-14 MALDI-MS spectrum of [Ni5(Mspnda)4](PF6) (6).

附錄 B-15 IR spectrum of [Ni₅(Mspnda)₄](PF₆) (6).

附錄 B-16 MALDI-MS spectrum of [Ni4(Mspnda)4(H2O)2] (7).

附錄 B-17 IR spectrum of [Ni₄(Mspnda)₄(H₂O)₂] (7).

附錄 **B-18** ¹H NMR spectrum of $[Ni_5(Mspnda)_4](CF_3SO_3)_2$ (8) was taken at 400 MHz in d_6 -DMSO at 298 K.

附錄 B-19 MALDI-MS spectrum of $[Ni_5(Mspnda)_4](CF_3SO_3)_2$ (8).

附錄 B-20 MALDI-MS spectrum of $[Ni_5(Msphpnda)_4](PF_6)$ (9).

88.3766

附錄 B-21 IR spectrum of $[Ni_5(Msphpnda)_4](PF_6)$ (9).

90.82

附錄 B-22 MALDI-MS spectrum of [Ni4(Msphpnda)4F2](Ni2Cl6O) (10).

附錄 **B-23** ¹H NMR spectrum of $[Ni_5(Msphpnda)_4](PF_6)_2$ (11) was taken at 400 MHz in d_6 -DMSO at 298 K.

附錄 B-24 MALDI-MS spectrum of [Ni5(Msphpnda)4](PF6)2 (11).

附錄 B-25 IR spectrum of $[Ni_5(Msphpnda)_4](PF_6)_2$ (11).

附錄 B-26 MALDI-MS spectrum of [Co₅(Tspnda)₄](PF₆)₂ (12).

附錄 B-27 MALDI-MS spectrum of [Cr₄(Tspnda)₄] (13).

附錄 B-28 MALDI-MS spectrum of [NiMo2Ni(Tspnda)4] (14).

附錄 B-29 IR spectrum of [NiMo₂Ni(Tspnda)₄] (14).

附錄 B-30 MALDI-MS spectrum of [CoMo₂Co(Tspnda)₄] (15).

55.3621 52.2267

29 1334.02 34 1462.74

53.0434 46.7939

46.8586 29.1466

附錄 B-31 IR spectrum of [CoMo₂Co(Tspnda)₄] (15).

37 3447.62

61.7658 55.0821

64.6713

28 1289.66 33 1437.67

26 1145.51 31 1388.5

36 1595.81

49.4164 51.9484

47.0237

附錄 B-32 MALDI-MS spectrum of [Mo4Ni(Tspnda)4](PF6)2 (16).

附錄 B-33 MALDI-MS spectrum of [Mo₄Ni(Tsphpnda)₄](PF₆)₂ (17).

附錄 B-34 MALDI-MS spectrum of [Mo4(Tsphpnda)3(HTsphpnda)(OAc)] (18).

附錄 **B-35** MALDI-MS spectrum of $[Mo_4Ni(Tsphpnda)_4](PF_6)_2$ (17) or $[Mo_4(Tsphpnda)_3(HTsphpnda)(OAc)]$ (18).

附錄 B-36 MALDI-MS spectrum of [Co₂Re₂(tpda)₄Cl](PF₆) (19).

附錄 B-37 IR spectrum of [Co₂Re₂(tpda)₄Cl](PF₆) (19).

附錄 B-38 MALDI-MS spectrum of [Co₂Re₂(tpda)₄(NCS)](PF₆) (20).

附錄 B-39 IR spectrum of [Co₂Re₂(tpda)₄(NCS)](PF₆) (20).

附錄 B-40 MALDI-MS spectrum of [Co₂Re₂Ru(tpda)₄Cl₂](PF₆)₂ (21).

附錄 C Crystal Structure and Structural Information

C-1 [Ni5(Tspnda)4](PF6) (1)

附錄C-1.1. Crystal data and structure refinement for ic18251_sq.

附錄C-1.1. Crystal data and structure	refinement for ic18251_sq.
Identification code	ic18251_sq
Empirical formula	C85H71Cl4.23F4.61N21Ni5O9P0.77S4
Formula weight	2213.85
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P21/c
Unit cell dimensions	$a = 18.1215(7) \text{ Å} \qquad \alpha = 90^{\circ}.$
	$b = 17.4460(6) \text{ Å} \qquad \beta = 98.5260(10)^{\circ}.$
	$c = 31.4395(11) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	9829.7(6) Å ³
Z	4
Density (calculated)	1.496 Mg/m ³
Absorption coefficient	1.226 mm ⁻¹
F(000)	4516
Crystal size	0.272 x 0.187 x 0.180 mm ³
Theta range for data collection	2.420 to 27.496°.
Index ranges	-23<=h<=23, -22<=k<=22, -36<=l<=40
Reflections collected	72290
Independent reflections	22549 [$R(int) = 0.0275$]
Completeness to theta = 25.242°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6931
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	22549 / 82 / 1235
Goodness-of-fit on F ²	1.027
Final R indices [I>2sigma(I)]	R1 = 0.0580, wR2 = 0.1575
R indices (all data)	R1 = 0.0742, wR2 = 0.1766
Extinction coefficient	n/a
Largest diff. peak and hole	2.104 and -1.746 e.Å ⁻³

附錄C-1.2. Bond lengths [Å] and angles [°] for ic18251_sq.			A THE A A
Ni(1)-N(1)	2.049(3)	S(4)-O(8)	1.439(3)
Ni(1)-N(6)	2.061(3)	S(4)-O(7)	1.448(3)
Ni(1)-N(20)	2.083(3)	S(4)-N(20)	1.602(3)
Ni(1)-N(15)	2.083(3)	S(4)-C(74)	1.765(4)
Ni(1)-Ni(2)	2.2646(6)	N(1)-C(1)	1.349(5)
Ni(2)-N(2)	1.995(3)	N(1)-C(5)	1.356(5)
Ni(2)-N(7)	2.004(3)	N(2)-C(6)	1.333(5)
Ni(2)-N(19)	2.041(3)	N(2)-C(5)	1.375(5)
Ni(2)-N(14)	2.043(3)	N(3)-C(10)	1.365(5)
Ni(2)-Ni(3)	2.2991(6)	N(3)-C(6)	1.377(5)
Ni(3)-N(3)	1.918(3)	N(4)-C(13)	1.356(5)
Ni(3)-N(8)	1.921(3)	N(4)-C(10)	1.367(5)
Ni(3)-N(13)	1.933(3)	N(5)-C(13)	1.379(5)
Ni(3)-N(18)	1.937(3)	N(6)-C(21)	1.343(5)
Ni(3)-Ni(4)	2.2953(6)	N(6)-C(25)	1.360(5)
Ni(4)-N(17)	1.882(3)	N(7)-C(26)	1.348(5)
Ni(4)-N(12)	1.883(3)	N(7)-C(25)	1.378(5)
Ni(4)-N(4)	1.912(3)	N(8)-C(26)	1.366(5)
Ni(4)-N(9)	1.915(3)	N(8)-C(30)	1.371(4)
Ni(4)-Ni(5)	2.3277(6)	N(9)-C(33)	1.358(5)
Ni(5)-N(11)	1.917(3)	N(9)-C(30)	1.363(5)
Ni(5)-N(16)	1.921(3)	N(10)-C(33)	1.379(5)
Ni(5)-N(5)	1.927(3)	N(11)-C(41)	1.350(5)
Ni(5)-N(10)	1.932(3)	N(11)-C(45)	1.359(5)
S(1)-O(2)	1.436(3)	N(12)-C(46)	1.367(4)
S(1)-O(1)	1.439(3)	N(12)-C(45)	1.389(5)
S(1)-N(5)	1.635(3)	N(13)-C(46)	1.361(5)
S(1)-C(14)	1.753(4)	N(13)-C(50)	1.377(4)
S(2)-O(3)	1.441(3)	N(14)-C(53)	1.348(4)
S(2)-O(4)	1.445(4)	N(14)-C(50)	1.353(5)
S(2)-N(10)	1.643(3)	N(15)-C(53)	1.369(5)
S(2)-C(34)	1.731(6)	N(16)-C(65)	1.351(5)
S(3)-O(5)	1.440(3)	N(16)-C(61)	1.360(5)
S(3)-O(6)	1.440(3)	N(17)-C(66)	1.362(5)
S(3)-N(15)	1.611(3)	N(17)-C(65)	1.379(5)
S(3)-C(54)	1.771(4)	N(18)-C(66)	1.359(5)

г й т FOL E 1.10051 MAC 1 0 -1 1 .1 1 1

			the state of the s
N(18)-C(70)	1.373(5)	C(37)-C(40')	1.531(9)
N(19)-C(70)	1.347(5)	C(37)-C(40)	1.541(9)
N(19)-C(73)	1.353(5)	C(38)-C(39)	1.382(9)
N(20)-C(73)	1.365(5)	C(41)-C(42)	1.358(6)
C(1)-C(2)	1.379(6)	C(42)-C(43)	1.394(6)
C(2)-C(3)	1.378(7)	C(43)-C(44)	1.373(6)
C(3)-C(4)	1.377(7)	C(44)-C(45)	1.398(5)
C(4)-C(5)	1.405(6)	C(46)-C(47)	1.420(5)
C(6)-C(7)	1.434(5)	C(47)-C(48)	1.365(5)
C(7)-C(8)	1.349(6)	C(48)-C(49)	1.400(5)
C(8)-C(9)	1.409(6)	C(49)-C(50)	1.406(5)
C(9)-C(11)	1.397(6)	C(49)-C(51)	1.420(5)
C(9)-C(10)	1.410(5)	C(51)-C(52)	1.353(6)
C(11)-C(12)	1.354(6)	C(52)-C(53)	1.425(5)
C(12)-C(13)	1.409(5)	C(54)-C(59)	1.368(6)
C(14)-C(15)	1.388(6)	C(54)-C(55)	1.387(7)
C(14)-C(19)	1.393(6)	C(55)-C(56)	1.391(7)
C(15)-C(16)	1.380(6)	C(56)-C(57)	1.395(9)
C(16)-C(17)	1.389(7)	C(57)-C(58)	1.369(9)
C(17)-C(18)	1.393(7)	C(57)-C(60)	1.524(8)
C(17)-C(20)	1.521(7)	C(57)-C(60')	1.538(9)
C(18)-C(19)	1.383(6)	C(58)-C(59)	1.381(7)
C(21)-C(22)	1.372(6)	C(61)-C(62)	1.367(7)
C(22)-C(23)	1.393(6)	C(62)-C(63)	1.379(8)
C(23)-C(24)	1.382(6)	C(63)-C(64)	1.378(7)
C(24)-C(25)	1.410(5)	C(64)-C(65)	1.409(6)
C(26)-C(27)	1.431(5)	C(66)-C(67)	1.421(5)
C(27)-C(28)	1.351(6)	C(67)-C(68)	1.364(6)
C(28)-C(29)	1.417(6)	C(68)-C(69)	1.400(6)
C(29)-C(30)	1.400(5)	C(69)-C(70)	1.409(5)
C(29)-C(31)	1.405(5)	C(69)-C(71)	1.412(6)
C(31)-C(32)	1.356(6)	C(71)-C(72)	1.362(6)
C(32)-C(33)	1.414(5)	C(72)-C(73)	1.427(5)
C(34)-C(35)	1.388(9)	C(74)-C(75)	1.372(6)
C(34)-C(39)	1.393(8)	C(74)-C(79)	1.375(6)
C(35)-C(36)	1.365(10)	C(75)-C(76)	1.387(6)
C(36)-C(37)	1.401(13)	C(76)-C(77)	1.377(7)
C(37)-C(38)	1.417(12)	C(77)-C(78)	1.382(7)

			601010101010
C(77)-C(80)	1.511(6)	N(7)-Ni(2)-Ni(3)	87.35(9)
C(78)-C(79)	1.392(7)	N(19)-Ni(2)-Ni(3)	86.24(9)
P(1)-F(6)	1.536(6)	N(14)-Ni(2)-Ni(3)	86.93(8)
P(1)-F(5)	1.552(6)	Ni(1)-Ni(2)-Ni(3)	179,50(3)
P(1)-F(4)	1.566(6)	N(3)-Ni(3)-N(8)	179.65(14)
P(1)-F(3)	1.573(6)	N(3)-Ni(3)-N(13)	88.99(13)
P(1)-F(1)	1.575(6)	N(8)-Ni(3)-N(13)	90.68(12)
P(1)-F(2)	1.588(6)	N(3)-Ni(3)-N(18)	91.95(13)
C(81)-Cl(3)	1.685(11)	N(8)-Ni(3)-N(18)	88.38(13)
C(81)-Cl(2)	1.785(11)	N(13)-Ni(3)-N(18)	176.25(13)
C(82)-Cl(4)	1.633(9)	N(3)-Ni(3)-Ni(4)	90.02(9)
C(82)-Cl(5)	1.775(10)	N(8)-Ni(3)-Ni(4)	90.10(9)
O(9)-C(83)	1.241(12)	N(13)-Ni(3)-Ni(4)	88.55(9)
N(21)-C(83)	1.281(11)	N(18)-Ni(3)-Ni(4)	87.82(10)
N(21)-C(84)	1.394(12)	N(3)-Ni(3)-Ni(2)	89.74(9)
N(21)-C(85)	1.526(19)	N(8)-Ni(3)-Ni(2)	90.14(9)
		N(13)-Ni(3)-Ni(2)	91.69(9)
N(1)-Ni(1)-N(6)	173.47(13)	N(18)-Ni(3)-Ni(2)	91.94(10)
N(1)-Ni(1)-N(20)	89.47(13)	Ni(4)-Ni(3)-Ni(2)	179.66(3)
N(6)-Ni(1)-N(20)	91.41(13)	N(17)-Ni(4)-N(12)	179.29(14)
N(1)-Ni(1)-N(15)	91.10(12)	N(17)-Ni(4)-N(4)	90.40(14)
N(6)-Ni(1)-N(15)	86.97(12)	N(12)-Ni(4)-N(4)	90.01(13)
N(20)-Ni(1)-N(15)	170.45(13)	N(17)-Ni(4)-N(9)	89.38(14)
N(1)-Ni(1)-Ni(2)	87.52(9)	N(12)-Ni(4)-N(9)	90.18(13)
N(6)-Ni(1)-Ni(2)	86.12(9)	N(4)-Ni(4)-N(9)	177.60(14)
N(20)-Ni(1)-Ni(2)	84.62(9)	N(17)-Ni(4)-Ni(3)	89.88(10)
N(15)-Ni(1)-Ni(2)	85.87(8)	N(12)-Ni(4)-Ni(3)	89.54(9)
N(2)-Ni(2)-N(7)	174.95(13)	N(4)-Ni(4)-Ni(3)	88.90(9)
N(2)-Ni(2)-N(19)	90.08(13)	N(9)-Ni(4)-Ni(3)	88.71(9)
N(7)-Ni(2)-N(19)	89.52(12)	N(17)-Ni(4)-Ni(5)	90.14(10)
N(2)-Ni(2)-N(14)	91.35(12)	N(12)-Ni(4)-Ni(5)	90.43(9)
N(7)-Ni(2)-N(14)	88.44(12)	N(4)-Ni(4)-Ni(5)	90.89(9)
N(19)-Ni(2)-N(14)	172.95(12)	N(9)-Ni(4)-Ni(5)	91.50(9)
N(2)-Ni(2)-Ni(1)	91.98(9)	Ni(3)-Ni(4)-Ni(5)	179.78(3)
N(7)-Ni(2)-Ni(1)	93.07(9)	N(11)-Ni(5)-N(16)	173.01(14)
N(19)-Ni(2)-Ni(1)	94.03(9)	N(11)-Ni(5)-N(5)	91.62(14)
N(14)-Ni(2)-Ni(1)	92.81(8)	N(16)-Ni(5)-N(5)	88.01(14)
N(2)-Ni(2)-Ni(3)	87.61(9)	N(11)-Ni(5)-N(10)	88.07(14)

			1616101076
N(16)-Ni(5)-N(10)	91 28(14)	C(6)-N(3)-Ni(3)	120 7(2)
N(5)-Ni(5)-N(10)	171.26(14)	C(13)-N(4)-C(10)	120.1(2)
N(11)-Ni(5)-Ni(4)	86 60(9)	$C(13) \cdot N(4) \cdot Ni(4)$	119.6(2)
N(16)-Ni(5)-Ni(4)	86.41(10)	C(10)-N(4)-Ni(4)	120.2(2)
N(5) - Ni(5) - Ni(4)	86.09(10)	C(13)-N(5)-S(1)	120.2(2) 122 3(3)
N(10) - Ni(5) - Ni(4)	85.57(10)	C(13)-N(5)-Ni(5)	122.3(3) 120.9(3)
O(2) S(1) O(1)	117 38(17)	$C(13)^{-1}A(3)^{-1}A(3)$ S(1) N(5) Nj(5)	120.9(3)
O(2) - S(1) - O(1) O(2) - S(1) - N(5)	117.30(17) 112.00(18)	C(21) N(6) C(25)	110.04(10) 118.0(3)
O(2)-S(1)-IN(3) O(1) S(1) N(5)	112.09(18) 102.82(17)	C(21) - N(0) - C(23)	110.9(3)
O(1)-S(1)-IN(3) O(2) S(1) C(14)	103.62(17) 108.15(10)	C(21)-IN(0)-INI(1) C(25) N(6) Ni(1)	110.0(3) 122.0(2)
O(2)-S(1)-C(14)	108.13(19)	C(25)-IN(0)-INI(1)	125.0(2)
O(1)-S(1)-C(14)	108.57(19)	C(20)-IN(7)-C(25)	124.7(3)
N(5)-S(1)-C(14)	106.25(17)	C(26)-IN(7)-INI(2)	117.6(2)
O(3)-S(2)-O(4)	118.2(2)	C(25)-N(7)-Ni(2)	117.5(2)
O(3)-S(2)-N(10)	111.85(19)	C(26)-N(8)-C(30)	120.4(3)
O(4)-S(2)-N(10)	102.93(18)	C(26)-N(8)-Ni(3)	121.0(2)
O(3)-S(2)-C(34)	107.2(2)	C(30)-N(8)-Ni(3)	118.1(2)
O(4)-S(2)-C(34)	107.3(3)	C(33)-N(9)-C(30)	120.6(3)
N(10)-S(2)-C(34)	109.1(2)	C(33)-N(9)-Ni(4)	119.0(3)
O(5)-S(3)-O(6)	116.59(17)	C(30)-N(9)-Ni(4)	120.3(2)
O(5)-S(3)-N(15)	113.66(17)	C(33)-N(10)-S(2)	123.7(3)
O(6)-S(3)-N(15)	104.72(16)	C(33)-N(10)-Ni(5)	121.7(2)
O(5)-S(3)-C(54)	106.26(19)	S(2)-N(10)-Ni(5)	112.19(19)
O(6)-S(3)-C(54)	109.67(19)	C(41)-N(11)-C(45)	119.6(3)
N(15)-S(3)-C(54)	105.40(17)	C(41)-N(11)-Ni(5)	118.3(3)
O(8)-S(4)-O(7)	117.4(2)	C(45)-N(11)-Ni(5)	122.1(3)
O(8)-S(4)-N(20)	113.99(19)	C(46)-N(12)-C(45)	124.0(3)
O(7)-S(4)-N(20)	102.16(18)	C(46)-N(12)-Ni(4)	118.5(2)
O(8)-S(4)-C(74)	107.54(19)	C(45)-N(12)-Ni(4)	117.5(2)
O(7)-S(4)-C(74)	107.40(19)	C(46)-N(13)-C(50)	119.8(3)
N(20)-S(4)-C(74)	107.86(19)	C(46)-N(13)-Ni(3)	119.7(2)
C(1)-N(1)-C(5)	119.1(3)	C(50)-N(13)-Ni(3)	120.3(2)
C(1)-N(1)-Ni(1)	118.9(3)	C(53)-N(14)-C(50)	120.0(3)
C(5)-N(1)-Ni(1)	121.9(3)	C(53)-N(14)-Ni(2)	119.3(2)
C(6)-N(2)-C(5)	123.7(3)	C(50)-N(14)-Ni(2)	120.1(2)
C(6)-N(2)-Ni(2)	117.2(2)	C(53)-N(15)-S(3)	122.2(3)
C(5)-N(2)-Ni(2)	118.6(2)	C(53)-N(15)-Ni(1)	121.3(2)
C(10)-N(3)-C(6)	120.5(3)	S(3)-N(15)-Ni(1)	115.20(17)
C(10)-N(3)-Ni(3)	118.4(2)	C(65)-N(16)-C(61)	120.0(4)

			16101010101
C(65)-N(16)-Ni(5)	121 8(3)	C(15)-C(14)-S(1)	118 9(3)
C(61)-N(16)-Ni(5)	118 1(3)	C(19) - C(14) - S(1)	120 7(3)
C(66)-N(17)-C(65)	124 2(3)	C(16)-C(15)-C(14)	120.7(3) 119 4(4)
C(66)-N(17)-Ni(4)	127.2(3) 117 8(2)	C(15) - C(16) - C(17)	121.2(4)
C(65)-N(17)-Ni(4)	117.0(2) 118.0(3)	C(16)-C(17)-C(18)	121.2(4) 118 7(4)
C(66)-N(18)-C(70)	120.0(3)	C(16)-C(17)-C(20)	120.8(5)
C(66)-N(18)-Ni(3)	120.0(3)	C(10)-C(17)-C(20)	120.8(5)
C(70) N(18) Ni(3)	120.1(3) 110.2(2)	C(10) - C(17) - C(20)	120.3(3)
C(70) - N(10) - N(3) C(70) N(10) - C(73)	119.2(2) 120.1(2)	C(19)-C(10)-C(17)	120.0(4)
C(70) - N(19) - C(73) C(70) - N(10) - N(2)	120.1(3)	V(10) - C(19) - C(14)	119.4(4) 122.7(4)
C(70)-N(19)-N(2) C(72) N(10) N:(2)	121.0(2)	N(0)-C(21)-C(22)	123.7(4)
C(73)- $N(19)$ - $N(2)$	110.7(3)	C(21)-C(22)-C(23)	110.2(4)
C(73)-N(20)-S(4)	124.4(3)	C(24)-C(23)-C(22)	119.3(4)
C(73)-N(20)-Ni(1)	124.5(3)	C(23)-C(24)-C(25)	119.7(4)
S(4)-N(20)-Ni(1)	107.44(17)	N(6)-C(25)-N(7)	115.0(3)
N(1)-C(1)-C(2)	122.8(4)	N(6)-C(25)-C(24)	120.2(3)
C(3)-C(2)-C(1)	118.4(4)	N(7)-C(25)-C(24)	124.4(3)
C(4)-C(3)-C(2)	119.9(4)	N(7)-C(26)-N(8)	115.9(3)
C(3)-C(4)-C(5)	119.5(4)	N(7)-C(26)-C(27)	124.6(3)
N(1)-C(5)-N(2)	115.4(3)	N(8)-C(26)-C(27)	119.3(3)
N(1)-C(5)-C(4)	120.2(4)	C(28)-C(27)-C(26)	120.2(4)
N(2)-C(5)-C(4)	124.2(4)	C(27)-C(28)-C(29)	120.5(4)
N(2)-C(6)-N(3)	116.1(3)	C(30)-C(29)-C(31)	117.2(4)
N(2)-C(6)-C(7)	125.0(3)	C(30)-C(29)-C(28)	118.0(3)
N(3)-C(6)-C(7)	118.6(3)	C(31)-C(29)-C(28)	124.8(4)
C(8)-C(7)-C(6)	120.4(4)	N(9)-C(30)-N(8)	117.3(3)
C(7)-C(8)-C(9)	121.2(4)	N(9)-C(30)-C(29)	121.4(3)
C(11)-C(9)-C(8)	125.2(4)	N(8)-C(30)-C(29)	121.4(3)
C(11)-C(9)-C(10)	117.3(4)	C(32)-C(31)-C(29)	121.3(4)
C(8)-C(9)-C(10)	117.4(4)	C(31)-C(32)-C(33)	119.5(4)
N(3)-C(10)-N(4)	117.3(3)	N(9)-C(33)-N(10)	115.3(3)
N(3)-C(10)-C(9)	121.6(3)	N(9)-C(33)-C(32)	119.7(4)
N(4)-C(10)-C(9)	121.1(3)	N(10)-C(33)-C(32)	125.0(3)
C(12)-C(11)-C(9)	121.6(4)	C(35)-C(34)-C(39)	121.5(6)
C(11)-C(12)-C(13)	119.3(4)	C(35)-C(34)-S(2)	118.4(5)
N(4)-C(13)-N(5)	115.3(3)	C(39)-C(34)-S(2)	119.8(4)
N(4)-C(13)-C(12)	120.5(3)	C(36)-C(35)-C(34)	119.2(7)
N(5)-C(13)-C(12)	124.3(4)	C(35)-C(36)-C(37)	121.9(8)
C(15)-C(14)-C(19)	120.4(4)	C(36)-C(37)-C(38)	117.4(6)

			16101010101
C(36)-C(37)-C(40')	130 8(13)	C(56) - C(57) - C(60')	112 0(9)
C(38)-C(37)-C(40')	111 A(13)	C(50)-C(57)-C(50)	121.3(5)
C(36)-C(37)-C(40)	111.4(13) 113.2(11)	C(57)-C(58)-C(58)	110 9(5)
C(30)-C(37)-C(40)	113.2(11) 128.8(11)	N(16) C(61) C(62)	119.9(5)
C(30) - C(37) - C(40)	120.0(11) 121.2(7)	$\Gamma(10)$ - $C(01)$ - $C(02)$	122.4(3)
C(39)- $C(30)$ - $C(31)$	121.3(7) 118 5(7)	C(01)- $C(02)$ - $C(03)$	118.3(4)
N(11) C(41) C(42)	110.3(7) 122.1(4)	C(04)-C(03)-C(02)	120.3(3)
$\Gamma(11)$ - $C(41)$ - $C(42)$	123.1(4)	V(16) C(65) N(17)	119.3(3)
C(41)- $C(42)$ - $C(43)$	110.1(4)	N(10)-C(05)-N(17) N(16)-C(65)-C(64)	110.0(3)
C(44)- $C(43)$ - $C(42)$	119.0(4)	N(10)-C(05)-C(04) N(17)-C(65)-C(64)	119.3(4)
C(43)-C(44)-C(45)	120.1(4)	N(17)-C(05)-C(04) N(18)-C(66)-N(17)	124.5(4)
N(11)-C(45)-N(12)	115.7(3)	N(18)-C(00)-N(17)	115.9(3)
N(11)-C(45)-C(44)	119.4(3)	N(18)-C(66)-C(67)	120.2(4)
N(12)-C(45)-C(44)	124.7(3)	N(1/)-C(66)-C(6/)	123.7(4)
N(13)-C(46)-N(12)	116.2(3)	C(68)-C(67)-C(66)	119.7(4)
N(13)-C(46)-C(47)	120.6(3)	C(67)-C(68)-C(69)	120.8(4)
N(12)-C(46)-C(47)	123.1(3)	C(68)-C(69)-C(70)	118.0(4)
C(48)-C(47)-C(46)	119.5(4)	C(68)-C(69)-C(71)	125.1(4)
C(47)-C(48)-C(49)	120.6(3)	C(70)-C(69)-C(71)	116.9(4)
C(48)-C(49)-C(50)	118.5(3)	N(19)-C(70)-N(18)	116.3(3)
C(48)-C(49)-C(51)	125.0(3)	N(19)-C(70)-C(69)	122.5(4)
C(50)-C(49)-C(51)	116.5(3)	N(18)-C(70)-C(69)	121.2(3)
N(14)-C(50)-N(13)	116.3(3)	C(72)-C(71)-C(69)	120.8(4)
N(14)-C(50)-C(49)	122.7(3)	C(71)-C(72)-C(73)	119.3(4)
N(13)-C(50)-C(49)	121.0(3)	N(19)-C(73)-N(20)	113.6(3)
C(52)-C(51)-C(49)	120.9(3)	N(19)-C(73)-C(72)	120.1(4)
C(51)-C(52)-C(53)	119.6(3)	N(20)-C(73)-C(72)	126.2(4)
N(14)-C(53)-N(15)	114.2(3)	C(75)-C(74)-C(79)	120.3(4)
N(14)-C(53)-C(52)	120.2(3)	C(75)-C(74)-S(4)	119.6(3)
N(15)-C(53)-C(52)	125.6(3)	C(79)-C(74)-S(4)	120.1(3)
C(59)-C(54)-C(55)	120.6(4)	C(74)-C(75)-C(76)	119.8(4)
C(59)-C(54)-S(3)	119.7(3)	C(77)-C(76)-C(75)	121.2(5)
C(55)-C(54)-S(3)	119.6(3)	C(76)-C(77)-C(78)	118.1(4)
C(54)-C(55)-C(56)	118.8(5)	C(76)-C(77)-C(80)	121.3(5)
C(55)-C(56)-C(57)	120.8(6)	C(78)-C(77)-C(80)	120.6(5)
C(58)-C(57)-C(56)	118.5(5)	C(77)-C(78)-C(79)	121.3(5)
C(58)-C(57)-C(60)	113.7(8)	C(74)-C(79)-C(78)	119.3(5)
C(56)-C(57)-C(60)	127.1(8)	F(6)-P(1)-F(5)	98.1(5)
C(58)-C(57)-C(60')	128.3(9)	F(6)-P(1)-F(4)	89.0(5)

F(5)-P(1)-F(4)	96.3(4)	F(4)-P(1)-F(2)	178.1(4)
F(6)-P(1)-F(3)	176.0(4)	F(3)-P(1)-F(2)	90.0(4)
F(5)-P(1)-F(3)	85.8(4)	F(1)-P(1)-F(2)	89.3(4)
F(4)-P(1)-F(3)	89.6(4)	Cl(3)-C(81)-Cl(2)	112.7(5)
F(6)-P(1)-F(1)	87.5(4)	Cl(4)-C(82)-Cl(5)	111.9(5)
F(5)-P(1)-F(1)	172.5(4)	C(83)-N(21)-C(84)	125.6(11)
F(4)-P(1)-F(1)	88.8(4)	C(83)-N(21)-C(85)	115.8(10)
F(3)-P(1)-F(1)	88.7(4)	C(84)-N(21)-C(85)	118.5(10)
F(6)-P(1)-F(2)	91.3(4)	O(9)-C(83)-N(21)	121.6(10)
F(5)-P(1)-F(2)	85.6(4)		

Symmetry transformations used to generate equivalent atoms:

附錄C-2.1. Crystal data and structure	refinement for ic18205.	X III III
Identification code	ic18205	
Empirical formula	C83H64F12N20Ni5C	013P2S4
Formula weight	2261.27	· 學·學·
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Tetragonal	
Space group	I41/acd	
Unit cell dimensions	a = 27.2637(6) Å	$\alpha = 90^{\circ}$.
	b = 27.2637(6) Å	$\beta = 90^{\circ}$.
	c = 50.6630(10) Å	$\gamma = 90^{\circ}$.
Volume	37658.3(18) Å ³	
Z	16	
Density (calculated)	1.595 Mg/m ³	
Absorption coefficient	1.199 mm ⁻¹	
F(000)	18368	
Crystal size	0.442 x 0.249 x 0.037	mm ³
Theta range for data collection	2.495 to 27.498°.	
Index ranges	-35<=h<=31, -35<=k<	<=30, -62<=l<=65
Reflections collected	100982	
Independent reflections	10814 [R(int) = 0.073	6]
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from	equivalents
Max. and min. transmission	0.7456 and 0.5642	
Refinement method	Full-matrix least-squa	tres on F^2
Data / restraints / parameters	10814 / 61 / 644	
Goodness-of-fit on F ²	1.045	
Final R indices [I>2sigma(I)]	R1 = 0.0551, wR2 = 0).1487
R indices (all data)	R1 = 0.0787, wR2 = 0).1640
Extinction coefficient	n/a	
Largest diff. peak and hole	1.816 and -1.262 e.Å ⁻	3

附錄C-2.2. Bond lengths [Å] and angles [°] for ic18205.			A THE A
Ni(1)-O(5)	2.008(3)	N(7)-C(25)	1.389(5)
Ni(1)-N(6)	2.097(3)	N(8)-C(33)	1.364(5)
Ni(1)-N(5)	2.099(3)	N(8)-C(30)#1	1.370(5)
Ni(1)-N(1)	2.111(3)	N(9)-C(26)	1.357(5)
Ni(1)-N(10)	2.126(3)	N(9)-C(30)	1.369(5)
Ni(1)-Ni(2)	2.3911(6)	N(10)-C(33)	1.381(5)
Ni(2)-N(7)	1.879(3)	C(1)-C(2)	1.374(6)
Ni(2)-N(2)	1.882(3)	C(2)-C(3)	1.386(6)
Ni(2)-N(4)	1.930(3)	C(3)-C(4)	1.377(6)
Ni(2)-N(8)	1.931(3)	C(4)-C(5)	1.396(6)
Ni(2)-Ni(3)	2.2988(5)	C(6)-C(7)	1.416(5)
Ni(3)-N(3)#1	1.877(3)	C(7)-C(8)	1.353(6)
Ni(3)-N(3)	1.877(3)	C(8)-C(9)	1.413(6)
Ni(3)-N(9)	1.878(3)	C(9)-C(10)	1.397(5)
Ni(3)-N(9)#1	1.878(3)	C(9)-C(11)#1	1.410(6)
Ni(3)-Ni(2)#1	2.2989(5)	C(10)-N(4)#1	1.375(5)
S(1)-O(2)	1.436(3)	C(11)-C(12)	1.355(6)
S(1)-O(1)	1.443(3)	C(11)-C(9)#1	1.410(6)
S(1)-N(5)	1.629(3)	C(12)-C(13)	1.414(6)
S(1)-C(14)	1.766(4)	C(14)-C(15)	1.383(6)
S(2)-O(3)	1.438(3)	C(14)-C(19)	1.392(6)
S(2)-O(4)	1.447(3)	C(15)-C(16)	1.379(6)
S(2)-N(10)	1.622(3)	C(16)-C(17)	1.385(6)
S(2)-C(34)	1.768(4)	C(17)-C(18)	1.388(6)
N(1)-C(1)	1.346(5)	C(17)-C(20)	1.506(6)
N(1)-C(5)	1.353(5)	C(18)-C(19)	1.371(6)
N(2)-C(6)	1.370(5)	C(21)-C(22)	1.356(7)
N(2)-C(5)	1.387(5)	C(22)-C(23)	1.402(7)
N(3)-C(6)	1.356(5)	C(23)-C(24)	1.368(6)
N(3)-C(10)	1.367(5)	C(24)-C(25)	1.397(6)
N(4)-C(13)	1.361(5)	C(26)-C(27)	1.420(5)
N(4)-C(10)#1	1.375(5)	C(27)-C(28)	1.360(6)
N(5)-C(13)	1.371(5)	C(28)-C(29)	1.416(5)
N(6)-C(21)	1.346(5)	C(29)-C(30)	1.395(5)
N(6)-C(25)	1.356(5)	C(29)-C(31)#1	1.405(5)
N(7)-C(26)	1.362(5)	C(30)-N(8)#1	1.370(5)

гіл rol c . . 19205 h7 C A A 1 1 1 1 1 -

			0101010101010
C(31)-C(32)	1.367(6)	N(5)-Ni(1)-Ni(2)	82.41(9)
C(31)-C(29)#1	1.405(6)	N(1)-Ni(1)-Ni(2)	81.55(9)
C(32)-C(33)	1.408(5)	N(10)-Ni(1)-Ni(2)	82.69(9)
C(34)-C(39)	1.389(6)	N(7)-Ni(2)-N(2)	174.55(13)
C(34)-C(35)	1.392(6)	N(7)-Ni(2)-N(4)	89.70(14)
C(35)-C(36)	1.382(6)	N(2)-Ni(2)-N(4)	90.28(14)
C(36)-C(37)	1.399(7)	N(7)-Ni(2)-N(8)	89.83(14)
C(37)-C(38)	1.390(7)	N(2)-Ni(2)-N(8)	89.84(14)
C(37)-C(40)	1.500(7)	N(4)-Ni(2)-N(8)	176.32(13)
C(38)-C(39)	1.401(6)	N(7)-Ni(2)-Ni(3)	87.15(9)
P(1)-F(4)	1.515(7)	N(2)-Ni(2)-Ni(3)	87.40(10)
P(1)-F(1)	1.551(6)	N(4)-Ni(2)-Ni(3)	87.97(9)
P(1)-F(5)	1.596(4)	N(8)-Ni(2)-Ni(3)	88.36(9)
P(1)-F(5)#1	1.596(4)	N(7)-Ni(2)-Ni(1)	92.49(9)
P(1)-F(2)	1.606(6)	N(2)-Ni(2)-Ni(1)	92.96(10)
P(1)-F(3)	1.660(6)	N(4)-Ni(2)-Ni(1)	91.72(9)
P(2)-F(6)	1.530(7)	N(8)-Ni(2)-Ni(1)	91.95(9)
P(2)-F(6)#2	1.530(7)	Ni(3)-Ni(2)-Ni(1)	179.52(3)
P(2)-F(7)#2	1.578(8)	N(3)#1-Ni(3)-N(3)	90.1(2)
P(2)-F(7)	1.578(8)	N(3)#1-Ni(3)-N(9)	89.99(14)
P(2)-F(8)	1.582(8)	N(3)-Ni(3)-N(9)	179.78(15)
P(2)-F(8)#2	1.582(8)	N(3)#1-Ni(3)-N(9)#1	179.78(16)
O(6)-C(41)	1.402(10)	N(3)-Ni(3)-N(9)#1	89.99(14)
O(7)-C(42)	1.427(9)	N(9)-Ni(3)-N(9)#1	89.92(19)
O(7')-C(42')	1.403(10)	N(3)#1-Ni(3)-Ni(2)	90.19(10)
		N(3)-Ni(3)-Ni(2)	89.97(10)
O(5)-Ni(1)-N(6)	93.99(12)	N(9)-Ni(3)-Ni(2)	90.23(9)
O(5)-Ni(1)-N(5)	95.61(12)	N(9)#1-Ni(3)-Ni(2)	89.61(9)
N(6)-Ni(1)-N(5)	88.29(13)	N(3)#1-Ni(3)-Ni(2)#1	89.97(10)
O(5)-Ni(1)-N(1)	102.34(12)	N(3)-Ni(3)-Ni(2)#1	90.18(10)
N(6)-Ni(1)-N(1)	163.65(13)	N(9)-Ni(3)-Ni(2)#1	89.62(9)
N(5)-Ni(1)-N(1)	89.46(13)	N(9)#1-Ni(3)-Ni(2)#1	90.23(9)
O(5)-Ni(1)-N(10)	99.28(12)	Ni(2)-Ni(3)-Ni(2)#1	179.78(4)
N(6)-Ni(1)-N(10)	89.93(12)	O(2)-S(1)-O(1)	117.00(19)
N(5)-Ni(1)-N(10)	165.09(12)	O(2)-S(1)-N(5)	106.23(18)
N(1)-Ni(1)-N(10)	88.09(12)	O(1)-S(1)-N(5)	112.72(18)
O(5)-Ni(1)-Ni(2)	175.65(9)	O(2)-S(1)-C(14)	106.57(19)
N(6)-Ni(1)-Ni(2)	82.10(9)	O(1)-S(1)-C(14)	107.14(19)

			61010101010
N(5)-S(1)-C(14)	106.57(17)	C(1)-C(2)-C(3)	118.7(4)
O(3)-S(2)-O(4)	115.79(18)	C(4)-C(3)-C(2)	119.2(4)
O(3)-S(2)-N(10)	107.04(17)	C(3)-C(4)-C(5)	119.2(4)
O(4)-S(2)-N(10)	112.71(17)	N(1)-C(5)-N(2)	115.2(3)
O(3)-S(2)-C(34)	106.83(19)	N(1)-C(5)-C(4)	121.2(3)
O(4)-S(2)-C(34)	106.15(19)	N(2)-C(5)-C(4)	122.9(4)
N(10)-S(2)-C(34)	107.93(18)	N(3)-C(6)-N(2)	115.7(3)
C(1)-N(1)-C(5)	117.9(3)	N(3)-C(6)-C(7)	120.0(3)
C(1)-N(1)-Ni(1)	119.8(3)	N(2)-C(6)-C(7)	124.2(3)
C(5)-N(1)-Ni(1)	122.3(3)	C(8)-C(7)-C(6)	119.9(4)
C(6)-N(2)-C(5)	122.7(3)	C(7)-C(8)-C(9)	120.7(4)
C(6)-N(2)-Ni(2)	118.7(3)	C(10)-C(9)-C(11)#1	117.4(4)
C(5)-N(2)-Ni(2)	118.6(3)	C(10)- $C(9)$ - $C(8)$	117.6(4)
C(6)-N(3)-C(10)	120.3(3)	C(11)#1-C(9)-C(8)	125.0(4)
C(6)-N(3)-Ni(3)	119.5(3)	N(3)-C(10)-N(4)#1	116.4(3)
C(10)-N(3)-Ni(3)	119.8(3)	N(3)-C(10)-C(9)	121.5(4)
C(13)-N(4)-C(10)#1	119.6(3)	N(4)#1-C(10)-C(9)	122.1(3)
C(13)-N(4)-Ni(2)	121.0(3)	C(12)-C(11)-C(9)#1	120.4(4)
C(10)#1-N(4)-Ni(2)	119.0(2)	C(11)-C(12)-C(13)	120.8(4)
C(13)-N(5)-S(1)	120.6(3)	N(4)-C(13)-N(5)	114.9(3)
C(13)-N(5)-Ni(1)	118.2(2)	N(4)-C(13)-C(12)	119.5(4)
S(1)-N(5)-Ni(1)	121.17(18)	N(5)-C(13)-C(12)	125.5(4)
C(21)-N(6)-C(25)	118.0(3)	C(15)-C(14)-C(19)	120.2(4)
C(21)-N(6)-Ni(1)	119.9(3)	C(15)-C(14)-S(1)	121.0(3)
C(25)-N(6)-Ni(1)	121.9(3)	C(19)-C(14)-S(1)	118.8(3)
C(26)-N(7)-C(25)	122.5(3)	C(16)-C(15)-C(14)	119.1(4)
C(26)-N(7)-Ni(2)	119.5(2)	C(15)-C(16)-C(17)	121.6(4)
C(25)-N(7)-Ni(2)	117.8(3)	C(16)-C(17)-C(18)	118.3(4)
C(33)-N(8)-C(30)#1	119.2(3)	C(16)-C(17)-C(20)	120.8(4)
C(33)-N(8)-Ni(2)	121.8(3)	C(18)-C(17)-C(20)	120.8(4)
C(30)#1-N(8)-Ni(2)	118.7(3)	C(19)-C(18)-C(17)	121.2(4)
C(26)-N(9)-C(30)	120.5(3)	C(18)-C(19)-C(14)	119.6(4)
C(26)-N(9)-Ni(3)	119.0(3)	N(6)-C(21)-C(22)	123.8(4)
C(30)-N(9)-Ni(3)	120.2(2)	C(21)-C(22)-C(23)	118.4(4)
C(33)-N(10)-S(2)	119.9(3)	C(24)-C(23)-C(22)	119.1(5)
C(33)-N(10)-Ni(1)	118.2(2)	C(23)-C(24)-C(25)	119.5(4)
S(2)-N(10)-Ni(1)	121.85(18)	N(6)-C(25)-N(7)	115.4(3)
N(1)-C(1)-C(2)	123.3(4)	N(6)-C(25)-C(24)	121.2(4)

			and the state of the
N(7)-C(25)-C(24)	123.0(4)	F(1)-P(1)-F(5)	92.8(3)
N(9)-C(26)-N(7)	116.1(3)	F(4)-P(1)-F(5)#1	94.8(4)
N(9)-C(26)-C(27)	120.0(3)	F(1)-P(1)-F(5)#1	87.3(3)
N(7)-C(26)-C(27)	123.6(3)	F(5)-P(1)-F(5)#1	179.8(3)
C(28)-C(27)-C(26)	119.6(4)	F(4)-P(1)-F(2)	91.6(6)
C(27)-C(28)-C(29)	120.4(4)	F(1)-P(1)-F(2)	167.9(6)
C(30)-C(29)-C(31)#1	117.1(4)	F(5)-P(1)-F(2)	86.9(3)
C(30)-C(29)-C(28)	118.2(4)	F(5)#1-P(1)-F(2)	93.0(3)
C(31)#1-C(29)-C(28)	124.7(4)	F(4)-P(1)-F(3)	169.1(6)
N(9)-C(30)-N(8)#1	116.3(3)	F(1)-P(1)-F(3)	84.0(7)
N(9)-C(30)-C(29)	121.0(3)	F(5)-P(1)-F(3)	84.7(3)
N(8)#1-C(30)-C(29)	122.7(3)	F(5)#1-P(1)-F(3)	95.3(3)
C(32)-C(31)-C(29)#1	120.6(4)	F(2)-P(1)-F(3)	83.9(4)
C(31)-C(32)-C(33)	120.2(4)	F(6)-P(2)-F(6)#2	163.4(13)
N(8)-C(33)-N(10)	114.9(3)	F(6)-P(2)-F(7)#2	83.5(7)
N(8)-C(33)-C(32)	120.0(3)	F(6)#2-P(2)-F(7)#2	86.9(7)
N(10)-C(33)-C(32)	125.1(4)	F(6)-P(2)-F(7)	86.9(7)
C(39)-C(34)-C(35)	120.8(4)	F(6)#2-P(2)-F(7)	83.5(7)
C(39)-C(34)-S(2)	119.5(3)	F(7)#2-P(2)-F(7)	109.4(14)
C(35)-C(34)-S(2)	119.6(3)	F(6)-P(2)-F(8)	106.5(8)
C(36)-C(35)-C(34)	119.5(4)	F(6)#2-P(2)-F(8)	86.2(7)
C(35)-C(36)-C(37)	121.2(4)	F(7)#2-P(2)-F(8)	85.4(7)
C(38)-C(37)-C(36)	118.5(4)	F(7)-P(2)-F(8)	161.4(9)
C(38)-C(37)-C(40)	120.8(5)	F(6)-P(2)-F(8)#2	86.2(7)
C(36)-C(37)-C(40)	120.7(5)	F(6)#2-P(2)-F(8)#2	106.5(8)
C(37)-C(38)-C(39)	121.2(4)	F(7)#2-P(2)-F(8)#2	161.4(9)
C(34)-C(39)-C(38)	118.9(4)	F(7)-P(2)-F(8)#2	85.4(7)
F(4)-P(1)-F(1)	100.4(8)	F(8)-P(2)-F(8)#2	82.8(11)
F(4)-P(1)-F(5)	85.2(4)		

Symmetry transformations used to generate equivalent atoms:

#1 -x+1/2,y,-z+2 #2 -y+3/4,-x+3/4,-z+7/4

附錄C-3.1. Crystal data and structure refine	ement for ic18269.	X X X
Identification code	ic18269	
Empirical formula	C109.50H87Cl11F6N2	0Ni5O8PS4
Formula weight	2767.70	*要、學 時間
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 16.4220(7) Å	$\alpha = 73.6370(14)^{\circ}$.
	b = 16.8719(8) Å	$\beta = 76.3465(16)^{\circ}$.
	c = 22.4552(10) Å	$\gamma = 76.0990(18)^{\circ}$.
Volume	5699.4(4) Å ³	
Z	2	
Density (calculated)	1.613 Mg/m ³	
Absorption coefficient	1.232 mm ⁻¹	
F(000)	2816	
Crystal size	0.251 x 0.222 x 0.029 m	nm ³
Theta range for data collection	2.080 to 27.499°.	
Index ranges	-21<=h<=21, -21<=k<=	=21, -29<=l<=29
Reflections collected	47815	
Independent reflections	26098 [R(int) = 0.0282]]
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from eq	uivalents
Max. and min. transmission	0.7456 and 0.6746	
Refinement method	Full-matrix least-square	es on F ²
Data / restraints / parameters	26098 / 60 / 1554	
Goodness-of-fit on F ²	1.034	
Final R indices [I>2sigma(I)]	R1 = 0.0696, wR2 = 0.1	1867
R indices (all data)	R1 = 0.0927, wR2 = 0.2	2046
Extinction coefficient	n/a	
Largest diff. peak and hole	1.691 and -1.520 e.Å -3	

附錄C-3.2. Bond lengths [Å] and angles [°] for ic18269.		× 18 × 17	
Ni(1)-N(1)	1.915(4)	S(4)-O(7)	1.438(3)
Ni(1)-N(20)	1.915(4)	S(4)-O(8)	1.443(3)
Ni(1)-N(15)	1.917(4)	S(4)-N(20)	1.628(3)
Ni(1)-N(6)	1.926(4)	S(4)-C(98)	1.753(5)
Ni(1)-Ni(2)	2.3467(7)	N(1)-C(5)	1.356(5)
Ni(2)-N(2)	1.879(4)	N(1)-C(1)	1.358(5)
Ni(2)-N(7)	1.890(3)	N(2)-C(5)	1.373(5)
Ni(2)-N(19)	1.927(3)	N(2)-C(6)	1.380(5)
Ni(2)-N(14)	1.931(3)	N(3)-C(6)	1.350(5)
Ni(2)-Ni(3)	2.3105(7)	N(3)-C(10)	1.378(5)
Ni(3)-N(13)	1.946(3)	N(4)-C(13)	1.348(5)
Ni(3)-N(18)	1.950(3)	N(4)-C(10)	1.364(5)
Ni(3)-N(3)	1.954(4)	N(5)-C(13)	1.371(6)
Ni(3)-N(8)	1.960(3)	N(6)-C(27)	1.350(5)
Ni(3)-Ni(4)	2.3043(7)	N(6)-C(31)	1.358(5)
Ni(4)-N(17)	1.998(4)	N(7)-C(32)	1.366(5)
Ni(4)-N(12)	2.003(3)	N(7)-C(31)	1.375(5)
Ni(4)-N(9)	2.049(4)	N(8)-C(32)	1.358(5)
Ni(4)-N(4)	2.051(4)	N(8)-C(36)	1.366(5)
Ni(4)-Ni(5)	2.2943(7)	N(9)-C(39)	1.345(5)
Ni(5)-N(11)	2.011(4)	N(9)-C(36)	1.365(5)
Ni(5)-N(16)	2.015(4)	N(10)-C(39)	1.377(6)
Ni(5)-N(5)	2.040(4)	N(11)-C(53)	1.340(5)
Ni(5)-N(10)	2.047(4)	N(11)-C(57)	1.361(5)
S(1)-O(1)	1.428(4)	N(12)-C(58)	1.353(5)
S(1)-O(2)	1.440(4)	N(12)-C(57)	1.376(5)
S(1)-N(5)	1.617(4)	N(13)-C(62)	1.370(5)
S(1)-C(20)	1.780(5)	N(13)-C(58)	1.371(5)
S(2)-O(4)	1.428(4)	N(14)-C(65)	1.362(5)
S(2)-O(3)	1.442(4)	N(14)-C(62)	1.364(5)
S(2)-N(10)	1.607(4)	N(15)-C(65)	1.376(6)
S(2)-C(46)	1.777(5)	N(16)-C(79)	1.351(6)
S(3)-O(5)	1.429(4)	N(16)-C(83)	1.356(5)
S(3)-O(6)	1.441(4)	N(17)-C(84)	1.343(5)
S(3)-N(15)	1.637(4)	N(17)-C(83)	1.378(5)
S(3)-C(72)	1.767(5)	N(18)-C(84)	1.365(5)

۲Å L o

			101010101010
N(18)-C(88)	1.368(5)	C(35)-C(37)	1.420(6)
N(19)-C(91)	1.352(5)	C(37)-C(38)	1.356(7)
N(19)-C(88)	1.374(5)	C(38)-C(39)	1.420(7)
N(20)-C(91)	1.382(5)	C(40)-C(41)	1.387(8)
C(1)-C(2)	1.369(6)	C(40)-C(45)	1.399(8)
C(2)-C(3)	1.412(6)	C(41)-C(42)	1.407(8)
C(2)-C(14)	1.479(6)	C(42)-C(43)	1.369(11)
C(3)-C(4)	1.366(6)	C(43)-C(44)	1.374(11)
C(4)-C(5)	1.407(6)	C(44)-C(45)	1.388(8)
C(6)-C(7)	1.415(6)	C(46)-C(51)	1.388(7)
C(7)-C(8)	1.356(6)	C(46)-C(47)	1.392(7)
C(8)-C(9)	1.412(6)	C(47)-C(48)	1.387(9)
C(9)-C(10)	1.393(6)	C(48)-C(49)	1.354(10)
C(9)-C(11)	1.421(6)	C(49)-C(50)	1.397(9)
C(11)-C(12)	1.342(7)	C(49)-C(52)	1.523(9)
C(12)-C(13)	1.428(7)	C(50)-C(51)	1.391(7)
C(14)-C(19)	1.381(7)	C(53)-C(54)	1.388(6)
C(14)-C(15)	1.397(7)	C(54)-C(55)	1.394(7)
C(15)-C(16)	1.383(7)	C(54)-C(66)	1.477(6)
C(16)-C(17)	1.404(9)	C(55)-C(56)	1.377(6)
C(17)-C(18)	1.361(9)	C(56)-C(57)	1.412(6)
C(18)-C(19)	1.398(7)	C(58)-C(59)	1.420(6)
C(20)-C(25)	1.372(8)	C(59)-C(60)	1.353(6)
C(20)-C(21)	1.397(8)	C(60)-C(61)	1.421(6)
C(21)-C(22)	1.374(9)	C(61)-C(63)	1.405(6)
C(22)-C(23)	1.390(11)	C(61)-C(62)	1.407(6)
C(23)-C(24)	1.406(11)	C(63)-C(64)	1.360(7)
C(23)-C(26)	1.519(9)	C(64)-C(65)	1.407(6)
C(24)-C(25)	1.386(8)	C(66)-C(71)	1.390(7)
C(27)-C(28)	1.371(6)	C(66)-C(67)	1.393(7)
C(28)-C(29)	1.405(7)	C(67)-C(68)	1.389(7)
C(28)-C(40)	1.489(6)	C(68)-C(69)	1.379(9)
C(29)-C(30)	1.369(6)	C(69)-C(70)	1.383(9)
C(30)-C(31)	1.403(6)	C(70)-C(71)	1.378(7)
C(32)-C(33)	1.416(6)	C(72)-C(77)	1.359(8)
C(33)-C(34)	1.350(6)	C(72)-C(73)	1.379(7)
C(34)-C(35)	1.402(7)	C(73)-C(74)	1.396(8)
C(35)-C(36)	1.406(6)	C(74)-C(75)	1.365(9)

			10101010101010
C(75)-C(76)	1.383(10)	P(2)-F(8)	1.598(7)
C(75)-C(78)	1.502(8)	P(2)-F(4)	1.610(7)
C(76)-C(77)	1.379(9)	C(105)-Cl(2)	1.749(9)
C(79)-C(80)	1.377(7)	C(105)-Cl(1)	1.754(10)
C(80)-C(81)	1.399(7)	C(106)-Cl(4')	1.668(9)
C(80)-C(92)	1.487(7)	C(106)-Cl(3')	1.705(9)
C(81)-C(82)	1.376(7)	C(106)-Cl(4)	1.777(9)
C(82)-C(83)	1.403(6)	C(106)-Cl(3)	1.849(9)
C(84)-C(85)	1.428(6)	C(107)-Cl(5)	1.723(10)
C(85)-C(86)	1.348(6)	C(107)-Cl(6)	1.744(10)
C(86)-C(87)	1.420(6)	C(108)-Cl(8')	1.694(9)
C(87)-C(89)	1.399(6)	C(108)-Cl(7)	1.742(8)
C(87)-C(88)	1.402(6)	C(108)-Cl(8)	1.775(8)
C(89)-C(90)	1.361(6)	C(109)-Cl(9')	1.678(9)
C(90)-C(91)	1.409(6)	C(109)-Cl(10)	1.714(8)
C(92)-C(93)	1.373(10)	C(109)-Cl(9)	1.721(8)
C(92)-C(97)	1.375(9)	C(110)-Cl(11)	1.751(10)
C(93)-C(94)	1.407(9)	C(110)-Cl(12)	1.770(10)
C(94)-C(95)	1.382(14)	C(111)-Cl(14)	1.762(10)
C(95)-C(96)	1.350(13)	C(111)-Cl(13)	1.764(10)
C(96)-C(97)	1.387(9)		
C(98)-C(99)	1.378(8)	N(1)-Ni(1)-N(20)	91.09(15)
C(98)-C(103)	1.380(7)	N(1)-Ni(1)-N(15)	88.72(16)
C(99)-C(100)	1.386(9)	N(20)-Ni(1)-N(15)	172.82(14)
C(100)-C(101)	1.397(11)	N(1)-Ni(1)-N(6)	173.37(14)
C(101)-C(102)	1.363(11)	N(20)-Ni(1)-N(6)	87.81(15)
C(101)-C(104)	1.528(10)	N(15)-Ni(1)-N(6)	91.56(16)
C(102)-C(103)	1.377(8)	N(1)-Ni(1)-Ni(2)	86.74(10)
P(1)-F(3)#1	1.575(4)	N(20)-Ni(1)-Ni(2)	86.30(10)
P(1)-F(3)	1.575(4)	N(15)-Ni(1)-Ni(2)	86.53(10)
P(1)-F(1)	1.591(3)	N(6)-Ni(1)-Ni(2)	86.67(10)
P(1)-F(1)#1	1.591(3)	N(2)-Ni(2)-N(7)	179.47(15)
P(1)-F(2)	1.593(4)	N(2)-Ni(2)-N(19)	89.82(15)
P(1)-F(2)#1	1.593(4)	N(7)-Ni(2)-N(19)	89.76(15)
P(2)-F(5)	1.585(7)	N(2)-Ni(2)-N(14)	89.74(15)
P(2)-F(9)	1.593(7)	N(7)-Ni(2)-N(14)	90.67(15)
P(2)-F(7)	1.595(7)	N(19)-Ni(2)-N(14)	178.73(14)
P(2)-F(6)	1.596(7)	N(2)-Ni(2)-Ni(3)	89.17(10)

			13101010700
N(7) - Ni(2) - Ni(3)	90 51(10)	N(11)-Nj(5)-N(16)	175 71(15)
N(10) Ni(2) Ni(3)	90.31(10) 80.36(10)	N(11) - NI(3) - IN(10) N(11) - NI(5) - N(5)	87.66(15)
N(19)-N(2)-N(3) N(14) N(2) N(3)	89.30(10)	N(11) - NI(3) - IN(3) N(16) NI(5) N(5)	87.00(13) 00.51(16)
N(14) - NI(2) - NI(3)	89.44(10)	N(10) - INI(3) - IN(3) N(11) - N'(5) - N(10)	90.31(10)
N(2)-Ni(2)-Ni(1)	90.10(10)	N(11)-INI(5)-IN(10)	92.44(15)
N(7)-INI(2)-INI(1)	90.22(10)	N(10)-IN1(5)-IN(10)	88.91(16)
N(19)-Ni(2)-Ni(1)	90.79(10)	N(5)-Ni(5)-N(10)	1/3.00(14)
N(14)-N1(2)-N1(1)	90.41(10)	$N(11)-N_1(5)-N_1(4)$	85.56(10)
$N_1(3)-N_1(2)-N_1(1)$	179.26(3)	N(16)-Ni(5)-Ni(4)	90.49(10)
N(13)-Ni(3)-N(18)	179.75(15)	N(5)-Ni(5)-Ni(4)	87.22(10)
N(13)-Ni(3)-N(3)	92.20(14)	N(10)-Ni(5)-Ni(4)	85.81(10)
N(18)-Ni(3)-N(3)	87.57(15)	O(1)-S(1)-O(2)	116.6(2)
N(13)-Ni(3)-N(8)	88.61(14)	O(1)-S(1)-N(5)	113.6(2)
N(18)-Ni(3)-N(8)	91.60(14)	O(2)-S(1)-N(5)	103.6(2)
N(3)-Ni(3)-N(8)	176.26(14)	O(1)-S(1)-C(20)	106.6(3)
N(13)-Ni(3)-Ni(4)	90.47(10)	O(2)-S(1)-C(20)	109.7(2)
N(18)-Ni(3)-Ni(4)	89.65(10)	N(5)-S(1)-C(20)	106.4(2)
N(3)-Ni(3)-Ni(4)	91.35(10)	O(4)-S(2)-O(3)	117.6(2)
N(8)-Ni(3)-Ni(4)	92.30(10)	O(4)-S(2)-N(10)	113.1(2)
N(13)-Ni(3)-Ni(2)	89.99(10)	O(3)-S(2)-N(10)	104.0(2)
N(18)-Ni(3)-Ni(2)	89.90(10)	O(4)-S(2)-C(46)	106.3(2)
N(3)-Ni(3)-Ni(2)	88.68(10)	O(3)-S(2)-C(46)	106.6(2)
N(8)-Ni(3)-Ni(2)	87.67(10)	N(10)-S(2)-C(46)	108.8(2)
Ni(4)-Ni(3)-Ni(2)	179.54(3)	O(5)-S(3)-O(6)	117.3(2)
N(17)-Ni(4)-N(12)	176.35(14)	O(5)-S(3)-N(15)	113.0(2)
N(17)-Ni(4)-N(9)	89.00(15)	O(6)-S(3)-N(15)	103.6(2)
N(12)-Ni(4)-N(9)	90.07(15)	O(5)-S(3)-C(72)	108.2(2)
N(17)-Ni(4)-N(4)	90.43(15)	O(6)-S(3)-C(72)	108.3(2)
N(12)-Ni(4)-N(4)	90.17(15)	N(15)-S(3)-C(72)	105.8(2)
N(9)-Ni(4)-N(4)	174.83(14)	O(7)-S(4)-O(8)	117.0(2)
N(17)-Ni(4)-Ni(5)	89.77(10)	O(7)-S(4)-N(20)	104.30(19)
N(12)-Ni(4)-Ni(5)	93.80(10)	O(8)-S(4)-N(20)	112.16(19)
N(9)-Ni(4)-Ni(5)	93.28(10)	O(7)-S(4)-C(98)	109.9(2)
N(4)-Ni(4)-Ni(5)	91.86(10)	O(8)-S(4)-C(98)	107.6(2)
N(17)-Ni(4)-Ni(3)	88.40(10)	N(20)-S(4)-C(98)	105.2(2)
N(12)-Ni(4)-Ni(3)	88.03(10)	C(5)-N(1)-C(1)	119.6(4)
N(9)-Ni(4)-Ni(3)	86.92(10)	C(5)-N(1)-Ni(1)	122.4(3)
N(4)-Ni(4)-Ni(3)	87.92(10)	C(1)-N(1)-Ni(1)	118.0(3)
Ni(5)-Ni(4)-Ni(3)	178.16(3)	C(5)-N(2)-C(6)	122.5(4)

			16101010101010
C(5)-N(2)-Ni(2)	118.6(3)	C(65)-N(15)-S(3)	122.4(3)
C(6)-N(2)-Ni(2)	118.7(3)	C(65)-N(15)-Ni(1)	121.9(3)
C(6)-N(3)-C(10)	118.9(4)	S(3)-N(15)-Ni(1)	113.3(2)
C(6)-N(3)-Ni(3)	119.4(3)	C(79)-N(16)-C(83)	119.2(4)
C(10)-N(3)-Ni(3)	120.9(3)	C(79)-N(16)-Ni(5)	120.4(3)
C(13)-N(4)-C(10)	119.1(4)	C(83)-N(16)-Ni(5)	120.2(3)
C(13)-N(4)-Ni(4)	120.2(3)	C(84)-N(17)-C(83)	121.6(4)
C(10)-N(4)-Ni(4)	120.7(3)	C(84)-N(17)-Ni(4)	117.3(3)
C(13)-N(5)-S(1)	121.4(3)	C(83)-N(17)-Ni(4)	120.2(3)
C(13)-N(5)-Ni(5)	124.1(3)	C(84)-N(18)-C(88)	119.9(4)
S(1)-N(5)-Ni(5)	113.6(2)	C(84)-N(18)-Ni(3)	120.6(3)
C(27)-N(6)-C(31)	120.2(4)	C(88)-N(18)-Ni(3)	118.8(3)
C(27)-N(6)-Ni(1)	117.2(3)	C(91)-N(19)-C(88)	119.7(4)
C(31)-N(6)-Ni(1)	122.4(3)	C(91)-N(19)-Ni(2)	119.5(3)
C(32)-N(7)-C(31)	123.5(3)	C(88)-N(19)-Ni(2)	120.7(3)
C(32)-N(7)-Ni(2)	118.4(3)	C(91)-N(20)-S(4)	122.0(3)
C(31)-N(7)-Ni(2)	118.1(3)	C(91)-N(20)-Ni(1)	121.7(3)
C(32)-N(8)-C(36)	119.8(4)	S(4)-N(20)-Ni(1)	113.56(19)
C(32)-N(8)-Ni(3)	120.2(3)	N(1)-C(1)-C(2)	123.5(4)
C(36)-N(8)-Ni(3)	119.7(3)	C(1)-C(2)-C(3)	116.9(4)
C(39)-N(9)-C(36)	119.4(4)	C(1)-C(2)-C(14)	120.0(4)
C(39)-N(9)-Ni(4)	119.3(3)	C(3)-C(2)-C(14)	123.1(4)
C(36)-N(9)-Ni(4)	121.1(3)	C(4)-C(3)-C(2)	120.3(4)
C(39)-N(10)-S(2)	123.1(3)	C(3)-C(4)-C(5)	120.0(4)
C(39)-N(10)-Ni(5)	125.9(3)	N(1)-C(5)-N(2)	116.1(4)
S(2)-N(10)-Ni(5)	111.0(2)	N(1)-C(5)-C(4)	119.6(4)
C(53)-N(11)-C(57)	119.9(4)	N(2)-C(5)-C(4)	124.1(4)
C(53)-N(11)-Ni(5)	113.8(3)	N(3)-C(6)-N(2)	115.8(4)
C(57)-N(11)-Ni(5)	125.9(3)	N(3)-C(6)-C(7)	121.3(4)
C(58)-N(12)-C(57)	124.1(4)	N(2)-C(6)-C(7)	122.7(4)
C(58)-N(12)-Ni(4)	119.0(3)	C(8)-C(7)-C(6)	119.9(4)
C(57)-N(12)-Ni(4)	116.6(3)	C(7)-C(8)-C(9)	119.5(4)
C(62)-N(13)-C(58)	120.3(4)	C(10)-C(9)-C(8)	118.7(4)
C(62)-N(13)-Ni(3)	118.5(3)	C(10)-C(9)-C(11)	117.4(4)
C(58)-N(13)-Ni(3)	120.8(3)	C(8)-C(9)-C(11)	123.9(4)
C(65)-N(14)-C(62)	120.1(4)	N(4)-C(10)-N(3)	115.8(4)
C(65)-N(14)-Ni(2)	119.7(3)	N(4)-C(10)-C(9)	122.7(4)
C(62)-N(14)-Ni(2)	120.1(3)	N(3)-C(10)-C(9)	121.5(4)

			1610101010
C(12)-C(11)-C(9)	120 3(5)	C(34)- $C(35)$ - $C(37)$	124 8(4)
C(12) = C(11) = C(13)	120.3(3) 120.0(4)	C(36)- $C(35)$ - $C(37)$	116 7(4)
N(4)-C(13)-N(5)	120.0(1) 114 5(4)	N(9)-C(36)-N(8)	116.6(4)
N(4)-C(13)-C(12)	120.7(4)	N(9)-C(36)-C(35)	122 4(4)
N(5)-C(13)-C(12)	120.7(1) 124.8(4)	N(8)-C(36)-C(35)	122.1(1) 121.0(4)
C(19)-C(14)-C(15)	121.0(1) 1189(4)	C(38)-C(37)-C(35)	120.7(5)
C(19)-C(14)-C(2)	120.7(4)	C(37)- $C(38)$ - $C(39)$	120.7(3) 119 4(4)
C(15)-C(14)-C(2)	120.7(4) 120.3(5)	N(9) - C(39) - N(10)	119.4(4) 114.2(4)
C(16)-C(15)-C(14)	120.3(5) 121.0(6)	N(9) - C(39) - C(38)	114.2(4) 120 8(4)
C(15)-C(15)-C(17)	121.0(0) 110.0(6)	N(10)-C(30)-C(38)	120.8(4) 125.0(4)
C(13)-C(10)-C(17)	119.0(0) 120.4(5)	C(41) C(40) C(45)	123.0(4)
C(17) - C(17) - C(10)	120.4(3)	C(41)- $C(40)$ - $C(43)$	110.0(5) 121.1(5)
C(17)-C(18)-C(19)	120.2(0)	C(41)- $C(40)$ - $C(28)$	121.1(3) 120.2(5)
C(14)-C(19)-C(18)	120.4(3)	C(43)-C(40)-C(28)	120.3(3)
C(25)-C(20)-C(21)	120.9(5)	C(40)-C(41)-C(42)	120.9(6)
C(25)-C(20)-S(1)	119.3(5)	C(43)-C(42)-C(41)	119.4(7)
C(21)-C(20)-S(1)	119.8(5)	C(42)- $C(43)$ - $C(44)$	120.3(6)
C(22)-C(21)-C(20)	119.6(7)	C(43)-C(44)-C(45)	120.9(7)
C(21)-C(22)-C(23)	120.6(7)	C(44)-C(45)-C(40)	119.9(6)
C(22)-C(23)-C(24)	119.2(6)	C(51)-C(46)-C(47)	120.5(5)
C(22)-C(23)-C(26)	120.4(7)	C(51)-C(46)-S(2)	123.4(4)
C(24)-C(23)-C(26)	120.4(8)	C(47)-C(46)-S(2)	116.1(4)
C(25)-C(24)-C(23)	120.2(7)	C(48)-C(47)-C(46)	118.7(6)
C(20)-C(25)-C(24)	119.6(6)	C(49)-C(48)-C(47)	122.2(6)
N(6)-C(27)-C(28)	124.0(4)	C(48)-C(49)-C(50)	118.7(5)
C(27)-C(28)-C(29)	116.2(4)	C(48)-C(49)-C(52)	121.0(6)
C(27)-C(28)-C(40)	120.0(4)	C(50)-C(49)-C(52)	120.3(6)
C(29)-C(28)-C(40)	123.6(4)	C(51)-C(50)-C(49)	121.0(6)
C(30)-C(29)-C(28)	120.4(4)	C(46)-C(51)-C(50)	118.8(5)
C(29)-C(30)-C(31)	120.9(4)	N(11)-C(53)-C(54)	124.3(4)
N(6)-C(31)-N(7)	116.1(4)	C(53)-C(54)-C(55)	116.0(4)
N(6)-C(31)-C(30)	118.3(4)	C(53)-C(54)-C(66)	119.8(4)
N(7)-C(31)-C(30)	125.5(4)	C(55)-C(54)-C(66)	124.1(4)
N(8)-C(32)-N(7)	116.7(4)	C(56)-C(55)-C(54)	120.8(4)
N(8)-C(32)-C(33)	120.2(4)	C(55)-C(56)-C(57)	120.2(4)
N(7)-C(32)-C(33)	123.0(4)	N(11)-C(57)-N(12)	114.9(4)
C(34)-C(33)-C(32)	120.3(4)	N(11)-C(57)-C(56)	118.8(4)
C(33)-C(34)-C(35)	120.1(4)	N(12)-C(57)-C(56)	126.0(4)
C(34)-C(35)-C(36)	118.5(4)	N(12)-C(58)-N(13)	116.1(4)

			10/0/0/0/0/0707
N(12)-C(58)-C(59)	124.2(4)	C(81)-C(82)-C(83)	120.6(4)
N(13)-C(58)-C(59)	119.6(4)	N(16)-C(83)-N(17)	116.6(4)
C(60)-C(59)-C(58)	120.7(4)	N(16)-C(83)-C(82)	119.2(4)
C(59)-C(60)-C(61)	120.0(4)	N(17)-C(83)-C(82)	124.0(4)
C(63)-C(61)-C(62)	118.3(4)	N(17)-C(84)-N(18)	116.6(4)
C(63)-C(61)-C(60)	123.5(4)	N(17)-C(84)-C(85)	123.4(4)
C(62)-C(61)-C(60)	118.2(4)	N(18)-C(84)-C(85)	119.8(4)
N(14)-C(62)-N(13)	118.2(4)	C(86)-C(85)-C(84)	120.3(4)
N(14)-C(62)-C(61)	120.6(4)	C(85)-C(86)-C(87)	120.1(4)
N(13)-C(62)-C(61)	121.1(4)	C(89)-C(87)-C(88)	118.1(4)
C(64)-C(63)-C(61)	120.7(4)	C(89)-C(87)-C(86)	123.7(4)
C(63)-C(64)-C(65)	119.3(4)	C(88)-C(87)-C(86)	118.2(4)
N(14)-C(65)-N(15)	115.3(4)	N(18)-C(88)-N(19)	117.3(4)
N(14)-C(65)-C(64)	120.8(4)	N(18)-C(88)-C(87)	121.5(4)
N(15)-C(65)-C(64)	123.9(4)	N(19)-C(88)-C(87)	121.1(4)
C(71)-C(66)-C(67)	118.1(4)	C(90)-C(89)-C(87)	120.7(4)
C(71)-C(66)-C(54)	121.2(4)	C(89)-C(90)-C(91)	119.5(4)
C(67)-C(66)-C(54)	120.6(5)	N(19)-C(91)-N(20)	115.6(4)
C(68)-C(67)-C(66)	120.8(5)	N(19)-C(91)-C(90)	120.9(4)
C(69)-C(68)-C(67)	120.1(5)	N(20)-C(91)-C(90)	123.6(4)
C(68)-C(69)-C(70)	119.5(5)	C(93)-C(92)-C(97)	118.6(6)
C(71)-C(70)-C(69)	120.5(6)	C(93)-C(92)-C(80)	120.0(6)
C(70)-C(71)-C(66)	121.0(5)	C(97)-C(92)-C(80)	121.3(6)
C(77)-C(72)-C(73)	120.4(5)	C(92)-C(93)-C(94)	120.6(8)
C(77)-C(72)-S(3)	120.1(4)	C(95)-C(94)-C(93)	118.8(9)
C(73)-C(72)-S(3)	119.4(4)	C(96)-C(95)-C(94)	121.0(7)
C(72)-C(73)-C(74)	118.6(6)	C(95)-C(96)-C(97)	119.6(8)
C(75)-C(74)-C(73)	121.6(5)	C(92)-C(97)-C(96)	121.4(8)
C(74)-C(75)-C(76)	118.2(5)	C(99)-C(98)-C(103)	121.3(5)
C(74)-C(75)-C(78)	120.4(6)	C(99)-C(98)-S(4)	118.6(4)
C(76)-C(75)-C(78)	121.4(7)	C(103)-C(98)-S(4)	120.1(4)
C(77)-C(76)-C(75)	121.0(7)	C(98)-C(99)-C(100)	118.2(6)
C(72)-C(77)-C(76)	120.1(6)	C(99)-C(100)-C(101)	120.5(7)
N(16)-C(79)-C(80)	123.7(4)	C(102)-C(101)-C(100)	120.0(6)
C(79)-C(80)-C(81)	117.1(4)	C(102)-C(101)-C(104)	121.0(7)
C(79)-C(80)-C(92)	122.3(5)	C(100)-C(101)-C(104)	119.0(8)
C(81)-C(80)-C(92)	120.6(5)	C(101)-C(102)-C(103)	120.1(6)
C(82)-C(81)-C(80)	119.5(5)	C(102)-C(103)-C(98)	119.8(6)

			10 1 the 10	
F(3)#1-P(1)-F(3)	180.0	F(5)-P(2)-F(8)	91.6(5)	
F(3)#1-P(1)-F(1)	90.1(2)	F(9)-P(2)-F(8)	177.8(6)	
F(3)-P(1)-F(1)	89.9(2)	F(7)-P(2)-F(8)	89.4(6)	XX
F(3)#1-P(1)-F(1)#1	89.9(2)	F(6)-P(2)-F(8)	92.6(6)	S.S.P
F(3)-P(1)-F(1)#1	90.1(2)	F(5)-P(2)-F(4)	179.4(5)	
F(1)-P(1)-F(1)#1	180.0	F(9)-P(2)-F(4)	89.9(5)	
F(3)#1-P(1)-F(2)	90.6(3)	F(7)-P(2)-F(4)	88.9(5)	
F(3)-P(1)-F(2)	89.4(3)	F(6)-P(2)-F(4)	89.2(4)	
F(1)-P(1)-F(2)	89.83(19)	F(8)-P(2)-F(4)	88.6(5)	
F(1)#1-P(1)-F(2)	90.17(19)	Cl(2)-C(105)-Cl(1)	109.4(7)	
F(3)#1-P(1)-F(2)#1	89.4(3)	Cl(4')-C(106)-Cl(3')	119.6(9)	
F(3)-P(1)-F(2)#1	90.6(3)	Cl(4)-C(106)-Cl(3)	94.5(6)	
F(1)-P(1)-F(2)#1	90.17(19)	Cl(5)-C(107)-Cl(6)	114.1(5)	
F(1)#1-P(1)-F(2)#1	89.83(19)	Cl(8')-C(108)-Cl(7)	94.1(6)	
F(2)-P(1)-F(2)#1	180.0	Cl(7)-C(108)-Cl(8)	112.6(6)	
F(5)-P(2)-F(9)	90.0(5)	Cl(9')-C(109)-Cl(10)	115.7(7)	
F(5)-P(2)-F(7)	91.6(6)	Cl(10)-C(109)-Cl(9)	119.2(6)	
F(9)-P(2)-F(7)	88.9(5)	Cl(11)-C(110)-Cl(12)	121.5(14)	
F(5)-P(2)-F(6)	90.2(5)	Cl(14)-C(111)-Cl(13)	93.9(11)	
F(9)-P(2)-F(6)	89.0(6)			
F(7)-P(2)-F(6)	177.2(7)			

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,-z

Fig. : The molecular structure of IC18283, thermal ellipsoids drawn at the 50% probability level.

附錄C-4.1. Crystal data and structure refine	ement for ic18283.	
Identification code	ic18283	Y A M
Empirical formula	C112H92Cl16F12N20N	Ni5O8P2S4
Formula weight	3124.98	· · · · · · · · · · · · · · · · · · ·
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 14.6531(5) Å	$\alpha = 86.3807(10)^{\circ}$.
	b = 18.6083(6) Å	$\beta = 88.3058(10)^{\circ}$.
	c = 23.8981(6) Å	$\gamma = 71.2244(11)^{\circ}.$
Volume	6156.9(3) Å ³	
Z	2	
Density (calculated)	1.686 Mg/m ³	
Absorption coefficient	1.275 mm ⁻¹	
F(000)	3164	
Crystal size	0.178 x 0.124 x 0.088 m	nm ³
Theta range for data collection	2.263 to 27.496°.	
Index ranges	-19<=h<=19, -24<=k<=	=24, -31<=l<=29
Reflections collected	53806	
Independent reflections	28199 [R(int) = 0.0190]]
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from eq	uivalents
Max. and min. transmission	0.7456 and 0.7049	
Refinement method	Full-matrix least-square	es on F ²
Data / restraints / parameters	28199 / 78 / 1637	
Goodness-of-fit on F ²	1.017	
Final R indices [I>2sigma(I)]	R1 = 0.0535, wR2 = 0.1	1314
R indices (all data)	R1 = 0.0682, wR2 = 0.1	1440
Extinction coefficient	n/a	
Largest diff. peak and hole	2.114 and -1.429 e.Å ⁻³	

附錄C-4.2. Bond lengths [Å] and angles [°] for ic18283.		× 18 × 1	
Ni(1)-N(1)	1.918(3)	S(4)-O(7)	1.439(3)
Ni(1)-N(6)	1.919(3)	S(4)-O(8)	1.439(3)
Ni(1)-N(20)	1.929(3)	S(4)-N(20)	1.642(3)
Ni(1)-N(15)	1.931(3)	S(4)-C(103)	1.758(4)
Ni(1)-Ni(2)	2.3578(5)	N(1)-C(1)	1.352(4)
Ni(2)-N(2)	1.889(3)	N(1)-C(5)	1.358(4)
Ni(2)-N(7)	1.895(3)	N(2)-C(6)	1.359(4)
Ni(2)-N(19)	1.938(3)	N(2)-C(5)	1.387(4)
Ni(2)-N(14)	1.942(3)	N(3)-C(6)	1.361(4)
Ni(2)-Ni(3)	2.3111(5)	N(3)-C(10)	1.369(4)
Ni(3)-N(3)	1.909(3)	N(4)-C(13)	1.358(4)
Ni(3)-N(13)	1.917(3)	N(4)-C(10)	1.371(4)
Ni(3)-N(18)	1.919(3)	N(5)-C(13)	1.379(4)
Ni(3)-N(8)	1.921(3)	N(6)-C(27)	1.349(4)
Ni(3)-Ni(4)	2.3059(5)	N(6)-C(31)	1.351(4)
Ni(4)-N(12)	1.887(3)	N(7)-C(32)	1.357(4)
Ni(4)-N(17)	1.889(3)	N(7)-C(31)	1.388(4)
Ni(4)-N(4)	1.924(3)	N(8)-C(32)	1.365(4)
Ni(4)-N(9)	1.939(3)	N(8)-C(36)	1.367(4)
Ni(4)-Ni(5)	2.3359(5)	N(9)-C(39)	1.363(4)
Ni(5)-N(11)	1.902(3)	N(9)-C(36)	1.371(4)
Ni(5)-N(16)	1.908(3)	N(10)-C(39)	1.372(4)
Ni(5)-N(5)	1.928(3)	N(11)-C(53)	1.350(4)
Ni(5)-N(10)	1.938(3)	N(11)-C(57)	1.357(4)
S(1)-O(1)	1.437(3)	N(12)-C(58)	1.364(4)
S(1)-O(2)	1.439(3)	N(12)-C(57)	1.382(4)
S(1)-N(5)	1.638(3)	N(13)-C(58)	1.359(4)
S(1)-C(20)	1.761(4)	N(13)-C(62)	1.368(4)
S(2)-O(3)	1.439(3)	N(14)-C(65)	1.356(4)
S(2)-O(4)	1.439(3)	N(14)-C(62)	1.378(4)
S(2)-N(10)	1.639(3)	N(15)-C(65)	1.364(4)
S(2)-C(46)	1.763(3)	N(16)-C(79)	1.354(4)
S(3)-O(6)	1.440(3)	N(16)-C(83)	1.357(4)
S(3)-O(5)	1.442(3)	N(17)-C(84)	1.363(4)
S(3)-N(15)	1.647(3)	N(17)-C(83)	1.379(4)
S(3)-C(72)	1.761(4)	N(18)-C(84)	1.359(4)

гå

N(18)-C(88)	1.367(4)	C(35)-C(36)	1.410(4)
N(19)-C(91)	1.361(4)	C(37)-C(38)	1.353(5)
N(19)-C(88)	1.368(4)	C(38)-C(39)	1.415(5)
N(20)-C(91)	1.369(4)	C(40)-C(41)	1.390(5)
C(1)-C(2)	1.380(4)	C(40)-C(45)	1.393(6)
C(2)-C(3)	1.404(4)	C(41)-C(42)	1.391(6)
C(2)-C(14)	1.481(4)	C(42)-C(43)	1.378(8)
C(3)-C(4)	1.372(4)	C(43)-C(44)	1.366(7)
C(4)-C(5)	1.402(4)	C(44)-C(45)	1.392(5)
C(6)-C(7)	1.426(4)	C(46)-C(51)	1.378(5)
C(7)-C(8)	1.354(5)	C(46)-C(47)	1.389(5)
C(8)-C(9)	1.415(5)	C(47)-C(48)	1.378(5)
C(9)-C(10)	1.406(4)	C(48)-C(49)	1.387(6)
C(9)-C(11)	1.409(5)	C(49)-C(50)	1.386(6)
C(11)-C(12)	1.357(5)	C(49)-C(52)	1.512(6)
C(12)-C(13)	1.415(5)	C(50)-C(51)	1.389(5)
C(14)-C(15)	1.392(5)	C(53)-C(54)	1.380(4)
C(14)-C(19)	1.393(5)	C(54)-C(55)	1.409(5)
C(15)-C(16)	1.390(5)	C(54)-C(66)	1.480(4)
C(16)-C(17)	1.381(6)	C(55)-C(56)	1.371(5)
C(17)-C(18)	1.374(6)	C(56)-C(57)	1.415(4)
C(18)-C(19)	1.394(5)	C(58)-C(59)	1.416(4)
C(20)-C(25)	1.375(6)	C(59)-C(60)	1.349(5)
C(20)-C(21)	1.377(5)	C(60)-C(61)	1.408(5)
C(21)-C(22)	1.380(6)	C(61)-C(62)	1.398(4)
C(22)-C(23)	1.377(7)	C(61)-C(63)	1.407(5)
C(23)-C(24)	1.370(8)	C(63)-C(64)	1.355(5)
C(23)-C(26)	1.508(7)	C(64)-C(65)	1.424(5)
C(24)-C(25)	1.384(7)	C(66)-C(71)	1.389(5)
C(27)-C(28)	1.383(5)	C(66)-C(67)	1.396(5)
C(28)-C(29)	1.401(5)	C(67)-C(68)	1.387(5)
C(28)-C(40)	1.485(5)	C(68)-C(69)	1.380(6)
C(29)-C(30)	1.375(5)	C(69)-C(70)	1.380(6)
C(30)-C(31)	1.409(4)	C(70)-C(71)	1.395(5)
C(32)-C(33)	1.425(4)	C(72)-C(73)	1.383(6)
C(33)-C(34)	1.349(5)	C(72)-C(77)	1.384(6)
C(34)-C(35)	1.410(5)	C(73)-C(74)	1.383(6)
C(35)-C(37)	1.403(5)	C(74)-C(75)	1.386(8)

			10 414 200
C(75)-C(76)	1.386(8)	P(2)-F(9)	1.588(5)
C(75)-C(78)	1.511(6)	P(2)-F(10)	1.594(7)
C(76)-C(77)	1.396(6)	C(105)-Cl(1)	1.752(5)
C(79)-C(80)	1.374(4)	C(105)-Cl(2)	1.760(5)
C(80)-C(81)	1.404(5)	C(106)-Cl(4)	1.739(9)
C(80)-C(92)	1.482(5)	C(106)-Cl(3)	1.771(9)
C(81)-C(82)	1.371(5)	C(107)-Cl(5)	1.730(6)
C(82)-C(83)	1.407(4)	C(107)-Cl(6)	1.776(6)
C(84)-C(85)	1.425(4)	C(108)-Cl(8)	1.741(7)
C(85)-C(86)	1.355(5)	C(108)-Cl(7')	1.754(7)
C(86)-C(87)	1.410(5)	C(108)-Cl(8')	1.773(10)
C(87)-C(88)	1.408(4)	C(108)-Cl(7)	1.780(6)
C(87)-C(89)	1.409(5)	Cl(7')-Cl(8')	2.42(2)
C(89)-C(90)	1.351(5)	C(109)-Cl(9')	1.752(8)
C(90)-C(91)	1.419(5)	C(109)-Cl(10)	1.752(6)
C(92)-C(97)	1.391(5)	C(109)-Cl(9)	1.802(8)
C(92)-C(93)	1.394(5)	C(110)-Cl(12)	1.764(4)
C(93)-C(94)	1.384(5)	C(110)-Cl(11)	1.764(4)
C(94)-C(95)	1.363(6)	C(111)-Cl(13)	1.666(7)
C(95)-C(96)	1.386(6)	C(111)-Cl(14)	1.802(8)
C(96)-C(97)	1.387(5)	C(112)-Cl(15)	1.744(6)
C(98)-C(99)	1.386(6)	C(112)-Cl(16)	1.762(6)
C(98)-C(103)	1.390(5)	C(113)-Cl(17)	1.747(9)
C(99)-C(100)	1.393(6)	C(113)-Cl(18)	1.749(10)
C(100)-C(101)	1.386(6)		
C(100)-C(104)	1.508(6)	N(1)-Ni(1)-N(6)	175.68(11)
C(101)-C(102)	1.382(5)	N(1)-Ni(1)-N(20)	92.00(11)
C(102)-C(103)	1.388(5)	N(6)-Ni(1)-N(20)	87.98(12)
P(1)-F(3)	1.563(3)	N(1)-Ni(1)-N(15)	88.64(11)
P(1)-F(6)	1.566(3)	N(6)-Ni(1)-N(15)	90.81(12)
P(1)-F(4)	1.569(3)	N(20)-Ni(1)-N(15)	172.34(11)
P(1)-F(2)	1.595(3)	N(1)-Ni(1)-Ni(2)	87.93(8)
P(1)-F(1)	1.596(3)	N(6)-Ni(1)-Ni(2)	87.76(8)
P(1)-F(5)	1.602(4)	N(20)-Ni(1)-Ni(2)	86.23(8)
P(2)-F(12)	1.504(6)	N(15)-Ni(1)-Ni(2)	86.17(8)
P(2)-F(11)	1.563(5)	N(2)-Ni(2)-N(7)	179.21(11)
P(2)-F(8)	1.566(4)	N(2)-Ni(2)-N(19)	90.82(11)
P(2)-F(7)	1.576(4)	N(7)-Ni(2)-N(19)	89.27(11)

N(2)-Ni(2)-N(14)	89 86(11)	N(17)-Ni(4)-Ni(5)	90.35(8)
N(7)-Ni(2)-N(14)	90.00(11)	N(4)-Ni(4)-Ni(5)	92 01(8)
N(19)-Ni(2)-N(14)	176 78(11)	N(9)-Ni(4)-Ni(5)	90.87(8)
N(2)-Ni(2)-Ni(3)	89 50(8)	$N_{i}(3) - N_{i}(4) - N_{i}(5)$	179.25(2)
N(7)-Ni(2)-Ni(3)	89.71(8)	N(11)-Ni(5)-N(16)	179.23(2) 174.44(11)
N(19)-Ni(2)-Ni(3)	88 94(8)	N(11) - Ni(5) - N(5)	86.97(11)
N(14)-Ni(2)-Ni(3)	87.91(8)	N(16)-Ni(5)-N(5)	92 25(12)
N(2)-Ni(2)-Ni(1)	90.42(8)	N(11)-Ni(5)-N(10)	90,99(11)
N(7)-Ni(2)-Ni(1)	90.36(8)	N(16)-Ni(5)-N(10)	89.05(12)
N(19)-Ni(2)-Ni(1)	91 52(8)	N(5)-Ni(5)-N(10)	172 17(11)
N(14)-Ni(2)-Ni(1)	91.63(8)	N(11)-Ni(5)-Ni(4)	87 51(8)
$N_{i}(3)-N_{i}(2)-N_{i}(1)$	179 53(3)	N(16)-Ni(5)-Ni(4)	86 94(8)
N(3)-Ni(3)-N(13)	91 41(11)	N(5)-Ni(5)-Ni(4)	85 58(8)
N(3)-Ni(3)-N(18)	88 52(11)	N(10)-Ni(5)-Ni(4)	86 78(8)
N(13)-Ni(3)-N(18)	177 34(11)	$\Omega(1)$ -S(1)- $\Omega(2)$	117 46(16)
N(3)-Ni(3)-N(8)	177 79(11)	O(1) - S(1) - N(5)	104.09(15)
N(13)-Ni(3)-N(8)	87 77(11)	O(2)-S(1)-N(5)	111 92(15)
N(18)-Ni(3)-N(8)	92.39(11)	O(2)-S(1)-I(3) O(1)-S(1)-C(20)	10843(17)
N(3)-Ni(3)-Ni(4)	91.05(8)	O(2)-S(1)-C(20)	108.90(18)
N(13)-Ni(3)-Ni(4)	97.05(0) 87.97(8)	N(5)-S(1)-C(20)	105.29(15)
N(18)-Ni(3)-Ni(4)	89 37(8)	$\Omega(3)$ - $S(2)$ - $\Omega(4)$	103.29(15) 117 50(15)
N(8)-Ni(3)-Ni(4)	90.97(8)	O(3)- $S(2)$ - $N(10)$	117.30(13)
N(3)-Ni(3)-Ni(2)	90.97(8) 89.21(8)	O(4)-S(2)-N(10)	102.47(13)
N(13)-Ni(3)-Ni(2)	91 94(8)	O(3)-S(2)-C(46)	107.97(16)
N(13) - Ni(3) - Ni(2)	90.72(8)	O(4)- $S(2)$ - $C(46)$	108.66(16)
N(8)-Ni(3)-Ni(2)	90.72(0) 88.77(8)	N(10)-S(2)-C(46)	107.11(15)
$N_{i}(4) - N_{i}(3) - N_{i}(2)$	179 73(3)	$\Omega(6)-S(3)-\Omega(5)$	117 55(16)
N(12)-Ni(4)-N(17)	179.75(3) 178.90(12)	O(6)- $S(3)$ - $N(15)$	111.33(10) 111.41(15)
N(12) - Ni(4) - N(4)	89.09(11)	O(5)-S(3)-N(15)	102 89(15)
N(12)-Ni(4)-N(4)	89.85(12)	O(6)-S(3)-C(72)	107.98(17)
N(17)-Ni(4)-N(9)	89.45(11)	O(5)-S(3)-C(72)	109.55(16)
N(12)-Ni(4)-N(9)	91 59(11)	N(15)-S(3)-C(72)	106.97(16)
N(4)-Ni(4)-N(9)	176 77(11)	$\Omega(7)$ - $S(4)$ - $\Omega(8)$	117 47(16)
N(12)-Ni(4)-Ni(3)	90.42(8)	O(7)-S(4)-O(3)	103.22(14)
N(12)-Ni(4)-Ni(3)	90. 4 2(8)	O(8)-S(4)-N(20)	103.22(14) 111.83(15)
$N(\Delta) - Ni(\Delta) - Ni(\Delta)$	88 63(8)	O(7) - S(4) - C(103)	109.02(16)
N(9)-Ni(4)-Ni(3)	88 50(8)	O(8)-S(4)-C(103)	108.12(16)
N(12)-Ni(4)-Ni(5)	89 98(8)	N(20)-S(4)-C(103)	106 65(15)
······································	07.70(0)	(=0,0(1),0(1),0(100)	100.00(10)
			10/010101010101
-------------------	------------	-------------------	-----------------
C(1)-N(1)-C(5)	120.0(3)	C(62)-N(13)-Ni(3)	118.4(2)
C(1)-N(1)-Ni(1)	117.7(2)	C(65)-N(14)-C(62)	119.5(3)
C(5)-N(1)-Ni(1)	122.0(2)	C(65)-N(14)-Ni(2)	118.9(2)
C(6)-N(2)-C(5)	122.1(3)	C(62)-N(14)-Ni(2)	121.6(2)
C(6)-N(2)-Ni(2)	119.3(2)	C(65)-N(15)-S(3)	121.3(2)
C(5)-N(2)-Ni(2)	118.6(2)	C(65)-N(15)-Ni(1)	124.3(2)
C(6)-N(3)-C(10)	120.1(3)	S(3)-N(15)-Ni(1)	111.86(15)
C(6)-N(3)-Ni(3)	120.4(2)	C(79)-N(16)-C(83)	120.1(3)
C(10)-N(3)-Ni(3)	119.2(2)	C(79)-N(16)-Ni(5)	117.3(2)
C(13)-N(4)-C(10)	120.1(3)	C(83)-N(16)-Ni(5)	122.5(2)
C(13)-N(4)-Ni(4)	118.9(2)	C(84)-N(17)-C(83)	122.9(3)
C(10)-N(4)-Ni(4)	120.8(2)	C(84)-N(17)-Ni(4)	118.5(2)
C(13)-N(5)-S(1)	123.5(2)	C(83)-N(17)-Ni(4)	118.5(2)
C(13)-N(5)-Ni(5)	122.3(2)	C(84)-N(18)-C(88)	120.1(3)
S(1)-N(5)-Ni(5)	113.00(15)	C(84)-N(18)-Ni(3)	119.6(2)
C(27)-N(6)-C(31)	120.1(3)	C(88)-N(18)-Ni(3)	119.6(2)
C(27)-N(6)-Ni(1)	116.9(2)	C(91)-N(19)-C(88)	119.4(3)
C(31)-N(6)-Ni(1)	122.7(2)	C(91)-N(19)-Ni(2)	119.5(2)
C(32)-N(7)-C(31)	122.3(3)	C(88)-N(19)-Ni(2)	121.0(2)
C(32)-N(7)-Ni(2)	118.4(2)	C(91)-N(20)-S(4)	121.4(2)
C(31)-N(7)-Ni(2)	119.0(2)	C(91)-N(20)-Ni(1)	124.0(2)
C(32)-N(8)-C(36)	119.8(3)	S(4)-N(20)-Ni(1)	112.89(15)
C(32)-N(8)-Ni(3)	120.3(2)	N(1)-C(1)-C(2)	123.6(3)
C(36)-N(8)-Ni(3)	118.7(2)	C(1)-C(2)-C(3)	116.2(3)
C(39)-N(9)-C(36)	119.4(3)	C(1)-C(2)-C(14)	121.2(3)
C(39)-N(9)-Ni(4)	119.6(2)	C(3)-C(2)-C(14)	122.6(3)
C(36)-N(9)-Ni(4)	121.0(2)	C(4)-C(3)-C(2)	120.8(3)
C(39)-N(10)-S(2)	121.8(2)	C(3)-C(4)-C(5)	120.2(3)
C(39)-N(10)-Ni(5)	122.7(2)	N(1)-C(5)-N(2)	116.8(3)
S(2)-N(10)-Ni(5)	114.36(15)	N(1)-C(5)-C(4)	119.0(3)
C(53)-N(11)-C(57)	121.0(3)	N(2)-C(5)-C(4)	124.1(3)
C(53)-N(11)-Ni(5)	116.6(2)	N(2)-C(6)-N(3)	116.7(3)
C(57)-N(11)-Ni(5)	122.4(2)	N(2)-C(6)-C(7)	123.1(3)
C(58)-N(12)-C(57)	123.6(3)	N(3)-C(6)-C(7)	120.0(3)
C(58)-N(12)-Ni(4)	117.3(2)	C(8)-C(7)-C(6)	120.0(3)
C(57)-N(12)-Ni(4)	118.9(2)	C(7)-C(8)-C(9)	120.3(3)
C(58)-N(13)-C(62)	119.7(3)	C(10)-C(9)-C(11)	117.8(3)
C(58)-N(13)-Ni(3)	121.1(2)	C(10)-C(9)-C(8)	118.1(3)

			60101010101010
C(11)-C(9)-C(8)	124.1(3)	N(8)-C(32)-C(33)	120.3(3)
N(3)-C(10)-N(4)	117.2(3)	C(34)-C(33)-C(32)	119.8(3)
N(3)-C(10)-C(9)	121.3(3)	C(33)-C(34)-C(35)	120.7(3)
N(4)-C(10)-C(9)	121.4(3)	C(37)-C(35)-C(36)	117.5(3)
C(12)-C(11)-C(9)	120.3(3)	C(37)-C(35)-C(34)	124.3(3)
C(11)-C(12)-C(13)	120.4(3)	C(36)-C(35)-C(34)	118.1(3)
N(4)-C(13)-N(5)	115.2(3)	N(8)-C(36)-N(9)	117.1(3)
N(4)-C(13)-C(12)	119.9(3)	N(8)-C(36)-C(35)	121.2(3)
N(5)-C(13)-C(12)	124.9(3)	N(9)-C(36)-C(35)	121.7(3)
C(15)-C(14)-C(19)	119.0(3)	C(38)-C(37)-C(35)	120.8(3)
C(15)-C(14)-C(2)	120.6(3)	C(37)-C(38)-C(39)	120.1(3)
C(19)-C(14)-C(2)	120.4(3)	N(9)-C(39)-N(10)	115.7(3)
C(16)-C(15)-C(14)	120.5(3)	N(9)-C(39)-C(38)	120.2(3)
C(17)-C(16)-C(15)	120.1(4)	N(10)-C(39)-C(38)	124.1(3)
C(18)-C(17)-C(16)	120.0(3)	C(41)-C(40)-C(45)	119.0(3)
C(17)-C(18)-C(19)	120.6(4)	C(41)-C(40)-C(28)	120.3(4)
C(14)-C(19)-C(18)	119.9(3)	C(45)-C(40)-C(28)	120.6(3)
C(25)-C(20)-C(21)	120.0(4)	C(40)-C(41)-C(42)	119.8(4)
C(25)-C(20)-S(1)	120.4(3)	C(43)-C(42)-C(41)	120.5(4)
C(21)-C(20)-S(1)	119.6(3)	C(44)-C(43)-C(42)	120.3(4)
C(20)-C(21)-C(22)	119.6(4)	C(43)-C(44)-C(45)	120.1(5)
C(23)-C(22)-C(21)	121.2(5)	C(44)-C(45)-C(40)	120.4(4)
C(24)-C(23)-C(22)	118.2(4)	C(51)-C(46)-C(47)	120.0(3)
C(24)-C(23)-C(26)	120.0(5)	C(51)-C(46)-S(2)	121.0(3)
C(22)-C(23)-C(26)	121.8(5)	C(47)-C(46)-S(2)	118.8(3)
C(23)-C(24)-C(25)	121.6(5)	C(48)-C(47)-C(46)	119.8(4)
C(20)-C(25)-C(24)	119.2(5)	C(47)-C(48)-C(49)	121.1(4)
N(6)-C(27)-C(28)	123.7(3)	C(50)-C(49)-C(48)	118.4(4)
C(27)-C(28)-C(29)	116.4(3)	C(50)-C(49)-C(52)	121.6(4)
C(27)-C(28)-C(40)	120.7(3)	C(48)-C(49)-C(52)	120.0(4)
C(29)-C(28)-C(40)	122.9(3)	C(49)-C(50)-C(51)	121.1(3)
C(30)-C(29)-C(28)	120.4(3)	C(46)-C(51)-C(50)	119.6(3)
C(29)-C(30)-C(31)	120.2(3)	N(11)-C(53)-C(54)	123.4(3)
N(6)-C(31)-N(7)	116.5(3)	C(53)-C(54)-C(55)	115.8(3)
N(6)-C(31)-C(30)	119.0(3)	C(53)-C(54)-C(66)	119.5(3)
N(7)-C(31)-C(30)	124.3(3)	C(55)-C(54)-C(66)	124.6(3)
N(7)-C(32)-N(8)	116.4(3)	C(56)-C(55)-C(54)	121.4(3)
N(7)-C(32)-C(33)	123.1(3)	C(55)-C(56)-C(57)	119.8(3)

			01010101010
N(11)-C(57)-N(12)	115.9(3)	C(79)-C(80)-C(81)	116.3(3)
N(11)-C(57)-C(56)	118.4(3)	C(79)-C(80)-C(92)	121.2(3)
N(12)-C(57)-C(56)	125.6(3)	C(81)-C(80)-C(92)	122.5(3)
N(13)-C(58)-N(12)	116.2(3)	C(82)-C(81)-C(80)	121.0(3)
N(13)-C(58)-C(59)	120.4(3)	C(81)-C(82)-C(83)	120.0(3)
N(12)-C(58)-C(59)	123.1(3)	N(16)-C(83)-N(17)	116.1(3)
C(60)-C(59)-C(58)	119.8(3)	N(16)-C(83)-C(82)	118.9(3)
C(59)-C(60)-C(61)	120.2(3)	N(17)-C(83)-C(82)	124.7(3)
C(62)-C(61)-C(63)	117.7(3)	N(18)-C(84)-N(17)	116.5(3)
C(62)-C(61)-C(60)	118.6(3)	N(18)-C(84)-C(85)	120.3(3)
C(63)-C(61)-C(60)	123.7(3)	N(17)-C(84)-C(85)	123.1(3)
N(13)-C(62)-N(14)	117.2(3)	C(86)-C(85)-C(84)	119.7(3)
N(13)-C(62)-C(61)	120.9(3)	C(85)-C(86)-C(87)	120.2(3)
N(14)-C(62)-C(61)	121.9(3)	C(88)-C(87)-C(89)	117.7(3)
C(64)-C(63)-C(61)	120.8(3)	C(88)-C(87)-C(86)	118.5(3)
C(63)-C(64)-C(65)	119.9(3)	C(89)-C(87)-C(86)	123.8(3)
N(14)-C(65)-N(15)	116.6(3)	N(18)-C(88)-N(19)	117.2(3)
N(14)-C(65)-C(64)	120.2(3)	N(18)-C(88)-C(87)	120.9(3)
N(15)-C(65)-C(64)	123.2(3)	N(19)-C(88)-C(87)	122.0(3)
C(71)-C(66)-C(67)	118.7(3)	C(90)-C(89)-C(87)	120.3(3)
C(71)-C(66)-C(54)	120.5(3)	C(89)-C(90)-C(91)	120.4(3)
C(67)-C(66)-C(54)	120.7(3)	N(19)-C(91)-N(20)	115.7(3)
C(68)-C(67)-C(66)	120.4(3)	N(19)-C(91)-C(90)	120.2(3)
C(69)-C(68)-C(67)	120.5(4)	N(20)-C(91)-C(90)	124.1(3)
C(70)-C(69)-C(68)	119.6(4)	C(97)-C(92)-C(93)	118.6(3)
C(69)-C(70)-C(71)	120.3(4)	C(97)-C(92)-C(80)	121.1(3)
C(66)-C(71)-C(70)	120.4(4)	C(93)-C(92)-C(80)	120.3(3)
C(73)-C(72)-C(77)	121.2(4)	C(94)-C(93)-C(92)	120.6(4)
C(73)-C(72)-S(3)	120.2(3)	C(95)-C(94)-C(93)	120.5(4)
C(77)-C(72)-S(3)	118.6(3)	C(94)-C(95)-C(96)	119.7(4)
C(74)-C(73)-C(72)	119.2(4)	C(95)-C(96)-C(97)	120.4(4)
C(73)-C(74)-C(75)	121.0(5)	C(96)-C(97)-C(92)	120.1(4)
C(74)-C(75)-C(76)	119.0(4)	C(99)-C(98)-C(103)	119.4(4)
C(74)-C(75)-C(78)	120.4(5)	C(98)-C(99)-C(100)	120.8(4)
C(76)-C(75)-C(78)	120.6(5)	C(101)-C(100)-C(99)	118.5(4)
C(75)-C(76)-C(77)	121.0(5)	C(101)-C(100)-C(104)	120.6(4)
C(72)-C(77)-C(76)	118.6(4)	C(99)-C(100)-C(104)	120.9(4)
N(16)-C(79)-C(80)	123.6(3)	C(102)-C(101)-C(100)	121.7(4)

C(101)-C(102)-C(103)	118.9(4)	F(8)-P(2)-F(7)	90.3(2)
C(102)-C(103)-C(98)	120.6(3)	F(12)-P(2)-F(9)	90.3(4)
C(102)-C(103)-S(4)	119.8(3)	F(11)-P(2)-F(9)	89.6(3)
C(98)-C(103)-S(4)	119.5(3)	F(8)-P(2)-F(9)	89.9(3)
F(3)-P(1)-F(6)	91.4(3)	F(7)-P(2)-F(9)	178.3(3)
F(3)-P(1)-F(4)	93.0(3)	F(12)-P(2)-F(10)	176.6(5)
F(6)-P(1)-F(4)	175.7(3)	F(11)-P(2)-F(10)	86.6(4)
F(3)-P(1)-F(2)	89.86(18)	F(8)-P(2)-F(10)	87.5(4)
F(6)-P(1)-F(2)	89.95(18)	F(7)-P(2)-F(10)	86.2(3)
F(4)-P(1)-F(2)	89.88(18)	F(9)-P(2)-F(10)	92.1(4)
F(3)-P(1)-F(1)	90.46(18)	Cl(1)-C(105)-Cl(2)	111.8(2)
F(6)-P(1)-F(1)	90.05(17)	Cl(4)-C(106)-Cl(3)	112.9(5)
F(4)-P(1)-F(1)	90.09(16)	Cl(5)-C(107)-Cl(6)	112.4(4)
F(2)-P(1)-F(1)	179.68(18)	Cl(7')-C(108)-Cl(8')	86.8(9)
F(3)-P(1)-F(5)	179.0(2)	Cl(8)-C(108)-Cl(7)	117.3(4)
F(6)-P(1)-F(5)	88.5(3)	C(108)-Cl(7')-Cl(8')	46.9(5)
F(4)-P(1)-F(5)	87.2(3)	C(108)-Cl(8')-Cl(7')	46.3(5)
F(2)-P(1)-F(5)	91.10(17)	Cl(9')-C(109)-Cl(10)	107.3(3)
F(1)-P(1)-F(5)	88.58(17)	Cl(10)-C(109)-Cl(9)	111.2(4)
F(12)-P(2)-F(11)	91.0(4)	Cl(12)-C(110)-Cl(11)	111.7(2)
F(12)-P(2)-F(8)	95.0(4)	Cl(13)-C(111)-Cl(14)	110.6(4)
F(11)-P(2)-F(8)	174.0(3)	Cl(15)-C(112)-Cl(16)	111.6(3)
F(12)-P(2)-F(7)	91.3(3)	Cl(17)-C(113)-Cl(18)	111.2(9)
F(11)-P(2)-F(7)	89.9(2)		

附錄C-5.1. Crystal data and structure	refinement for ic18049.	AX B
Identification code	ic18049	1
Empirical formula	C84H68BC18F4N20Ni5O8S4	12
Formula weight	2277.78	19191919
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	$a = 18.1443(8) \text{ Å} \qquad \alpha = 90^{\circ}.$	
	$b = 17.7080(7) \text{ Å}$ $\beta = 98.0442(11)$)°.
	$c = 30.2649(11) \text{ Å} \qquad \gamma = 90^{\circ}.$	
Volume	9628.4(7) Å ³	
Z	4	
Density (calculated)	1.571 Mg/m ³	
Absorption coefficient	1.341 mm ⁻¹	
F(000)	4628	
Crystal size	0.282 x 0.170 x 0.152 mm ³	
Theta range for data collection	2.211 to 27.500°.	
Index ranges	-13<=h<=23, -19<=k<=23, -39<=l<=36	
Reflections collected	49428	
Independent reflections	21946 [R(int) = 0.0350]	
Completeness to theta = 25.242°	99.4 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.6660	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	21946 / 154 / 1258	
Goodness-of-fit on F ²	1.046	
Final R indices [I>2sigma(I)]	R1 = 0.0735, wR2 = 0.1971	
R indices (all data)	R1 = 0.1091, $wR2 = 0.2229$	
Extinction coefficient	n/a	
Largest diff. peak and hole	2.076 and -1.678 e.Å ⁻³	

附錄C-5.2. Bond ler	. Bond lengths [Å] and angles [°] for ic18049.		大 (新) (新) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日	
Ni(1)-N(1)	1.921(5)	S(4)-O(8)	1.431(5)	
Ni(1)-N(6)	1.923(5)	S(4)-O(7)	1.436(5)	
Ni(1)-N(15)	1.925(5)	S(4)-N(20)	1.635(5)	
Ni(1)-N(20)	1.931(5)	S(4)-C(74)	1.765(8)	
Ni(1)-Ni(2)	2.3289(10)	N(1)-C(1)	1.343(7)	
Ni(2)-N(7)	1.879(5)	N(1)-C(5)	1.372(7)	
Ni(2)-N(2)	1.880(4)	N(2)-C(6)	1.371(7)	
Ni(2)-N(14)	1.906(4)	N(2)-C(5)	1.383(7)	
Ni(2)-N(19)	1.913(4)	N(3)-C(6)	1.352(7)	
Ni(2)-Ni(3)	2.2972(9)	N(3)-C(10)	1.372(6)	
Ni(3)-N(18)	1.918(4)	N(4)-C(10)	1.355(7)	
Ni(3)-N(13)	1.918(4)	N(4)-C(13)	1.358(6)	
Ni(3)-N(3)	1.934(4)	N(5)-C(13)	1.364(7)	
Ni(3)-N(8)	1.937(4)	N(6)-C(21)	1.347(7)	
Ni(3)-Ni(4)	2.3032(9)	N(6)-C(25)	1.354(8)	
Ni(4)-N(12)	1.995(4)	N(7)-C(26)	1.365(8)	
Ni(4)-N(17)	2.004(4)	N(7)-C(25)	1.386(7)	
Ni(4)-N(9)	2.043(4)	N(8)-C(26)	1.351(7)	
Ni(4)-N(4)	2.044(4)	N(8)-C(30)	1.376(7)	
Ni(4)-Ni(5)	2.2676(9)	N(9)-C(30)	1.346(7)	
Ni(5)-N(11)	2.040(5)	N(9)-C(33)	1.356(7)	
Ni(5)-N(16)	2.058(4)	N(10)-C(33)	1.356(7)	
Ni(5)-N(5)	2.094(4)	N(11)-C(45)	1.340(8)	
Ni(5)-N(10)	2.099(5)	N(11)-C(41)	1.355(8)	
S(1)-O(1)	1.436(4)	N(12)-C(46)	1.334(7)	
S(1)-O(2)	1.441(4)	N(12)-C(45)	1.377(7)	
S(1)-N(5)	1.612(4)	N(13)-C(50)	1.360(7)	
S(1)-C(14)	1.751(6)	N(13)-C(46)	1.389(7)	
S(2)-O(3)	1.448(4)	N(14)-C(53)	1.357(7)	
S(2)-O(4)	1.450(5)	N(14)-C(50)	1.367(7)	
S(2)-N(10)	1.602(5)	N(15)-C(53)	1.372(7)	
S(2)-C(34)	1.766(6)	N(16)-C(61)	1.345(7)	
S(3)-O(6)	1.436(4)	N(16)-C(65)	1.362(7)	
S(3)-O(5)	1.439(4)	N(17)-C(66)	1.351(7)	
S(3)-N(15)	1.636(5)	N(17)-C(65)	1.379(7)	
S(3)-C(54)	1.757(6)	N(18)-C(70)	1.369(7)	

and angles [°] for is 19040 n atha [Å]. RULES C 5 2 De m d 1a

			the state of the
N(18)-C(66)	1.375(7)	C(32)-C(33)	1.435(8)
N(19)-C(70)	1.364(7)	C(34)-C(35)	1.376(9)
N(19)-C(73)	1.365(7)	C(34)-C(39)	1.390(8)
N(20)-C(73)	1.382(7)	C(35)-C(36)	1.374(10)
C(1)-C(2)	1.365(9)	C(36)-C(37)	1.382(9)
C(2)-C(3)	1.391(9)	C(37)-C(38)	1.388(10)
C(3)-C(4)	1.389(8)	C(37)-C(40)	1.526(9)
C(4)-C(5)	1.395(8)	C(38)-C(39)	1.367(10)
C(6)-C(7)	1.424(7)	C(41)-C(42)	1.387(9)
C(7)-C(8)	1.349(8)	C(42)-C(43)	1.379(10)
C(8)-C(9)	1.408(8)	C(43)-C(44)	1.370(9)
C(9)-C(10)	1.400(7)	C(44)-C(45)	1.422(8)
C(9)-C(11)	1.413(8)	C(46)-C(47)	1.431(8)
C(11)-C(12)	1.353(8)	C(47)-C(48)	1.339(9)
C(12)-C(13)	1.420(7)	C(48)-C(49)	1.425(8)
C(14)-C(19)	1.389(9)	C(49)-C(51)	1.391(8)
C(14)-C(15)	1.396(13)	C(49)-C(50)	1.405(7)
C(14)-C(15')	1.46(3)	C(51)-C(52)	1.372(8)
C(19)-C(18)	1.351(14)	C(52)-C(53)	1.413(8)
C(19)-C(18')	1.49(4)	C(54)-C(55)	1.377(8)
C(15)-C(16)	1.381(15)	C(54)-C(59)	1.391(8)
C(16)-C(17)	1.400(18)	C(55)-C(56)	1.392(9)
C(17)-C(18)	1.42(2)	C(56)-C(57)	1.380(10)
C(17)-C(20)	1.527(15)	C(57)-C(58)	1.393(10)
C(15')-C(16')	1.38(4)	C(57)-C(60)	1.507(10)
C(16')-C(17')	1.42(5)	C(58)-C(59)	1.375(9)
C(17')-C(18')	1.26(5)	C(61)-C(62)	1.378(9)
C(17')-C(20')	1.51(4)	C(62)-C(63)	1.377(9)
C(21)-C(22)	1.369(9)	C(63)-C(64)	1.386(9)
C(22)-C(23)	1.375(11)	C(64)-C(65)	1.398(8)
C(23)-C(24)	1.375(10)	C(66)-C(67)	1.420(8)
C(24)-C(25)	1.404(8)	C(67)-C(68)	1.361(8)
C(26)-C(27)	1.418(8)	C(68)-C(69)	1.418(8)
C(27)-C(28)	1.370(9)	C(69)-C(71)	1.408(8)
C(28)-C(29)	1.390(9)	C(69)-C(70)	1.408(7)
C(29)-C(31)	1.408(9)	C(71)-C(72)	1.358(8)
C(29)-C(30)	1.419(8)	C(72)-C(73)	1.396(8)
C(31)-C(32)	1.352(9)	C(74)-C(79)	1.379(12)

			161010101010101
C(74)-C(75)	1.384(11)	N(20)-Ni(1)-Ni(2)	86.03(14)
C(75)-C(76)	1.414(13)	N(7)-Ni(2)-N(2)	179.1(2)
C(76)-C(77)	1.377(14)	N(7)-Ni(2)-N(14)	90.6(2)
C(77)-C(78)	1.365(13)	N(2)-Ni(2)-N(14)	89.87(19)
C(77)-C(80)	1.528(13)	N(7)-Ni(2)-N(19)	89.6(2)
C(78)-C(79)	1.384(13)	N(2)-Ni(2)-N(19)	89.88(19)
B(1)-F(4)	1.317(7)	N(14)-Ni(2)-N(19)	177.5(2)
B(1)-F(3')	1.331(8)	N(7)-Ni(2)-Ni(3)	89.99(15)
B(1)-F(3)	1.354(7)	N(2)-Ni(2)-Ni(3)	89.29(14)
B(1)-F(2')	1.358(8)	N(14)-Ni(2)-Ni(3)	88.62(14)
B(1)-F(1)	1.360(7)	N(19)-Ni(2)-Ni(3)	88.93(14)
B(1)-F(2)	1.362(7)	N(7)-Ni(2)-Ni(1)	90.02(15)
B(1)-F(4')	1.371(8)	N(2)-Ni(2)-Ni(1)	90.70(14)
C(81)-Cl(2)	1.727(10)	N(14)-Ni(2)-Ni(1)	91.43(14)
C(81)-Cl(1)	1.791(11)	N(19)-Ni(2)-Ni(1)	91.02(14)
C(82)-Cl(3)	1.751(9)	Ni(3)-Ni(2)-Ni(1)	179.95(5)
C(82)-Cl(4)	1.751(9)	N(18)-Ni(3)-N(13)	179.45(19)
C(82')-Cl(4')	1.753(10)	N(18)-Ni(3)-N(3)	90.82(18)
C(82')-Cl(3')	1.756(10)	N(13)-Ni(3)-N(3)	88.63(18)
C(83)-Cl(6)	1.751(9)	N(18)-Ni(3)-N(8)	88.00(18)
C(83)-Cl(5)	1.771(9)	N(13)-Ni(3)-N(8)	92.55(19)
C(83')-Cl(6')	1.745(10)	N(3)-Ni(3)-N(8)	175.95(19)
C(83')-Cl(5')	1.752(10)	N(18)-Ni(3)-Ni(2)	89.92(13)
C(84)-Cl(7)	1.767(9)	N(13)-Ni(3)-Ni(2)	90.07(14)
C(84)-Cl(8)	1.779(9)	N(3)-Ni(3)-Ni(2)	88.71(13)
C(84')-Cl(8')	1.743(10)	N(8)-Ni(3)-Ni(2)	87.42(14)
C(84')-Cl(7')	1.746(10)	N(18)-Ni(3)-Ni(4)	90.35(13)
Cl(7')-Cl(7')#1	1.07(2)	N(13)-Ni(3)-Ni(4)	89.66(14)
		N(3)-Ni(3)-Ni(4)	91.75(13)
N(1)-Ni(1)-N(6)	173.3(2)	N(8)-Ni(3)-Ni(4)	92.13(14)
N(1)-Ni(1)-N(15)	91.9(2)	Ni(2)-Ni(3)-Ni(4)	179.46(4)
N(6)-Ni(1)-N(15)	88.0(2)	N(12)-Ni(4)-N(17)	175.16(19)
N(1)-Ni(1)-N(20)	88.0(2)	N(12)-Ni(4)-N(9)	91.08(18)
N(6)-Ni(1)-N(20)	91.0(2)	N(17)-Ni(4)-N(9)	88.91(18)
N(15)-Ni(1)-N(20)	171.4(2)	N(12)-Ni(4)-N(4)	90.71(18)
N(1)-Ni(1)-Ni(2)	86.46(14)	N(17)-Ni(4)-N(4)	88.68(18)
N(6)-Ni(1)-Ni(2)	86.82(15)	N(9)-Ni(4)-N(4)	172.42(18)
N(15)-Ni(1)-Ni(2)	85.43(14)	N(12)-Ni(4)-Ni(5)	91.73(14)

			16/01010101010
N(17)-Ni(4)-Ni(5)	93.10(13)	O(7)-S(4)-N(20)	112.1(3)
N(9)-Ni(4)-Ni(5)	94.17(13)	O(8)-S(4)-C(74)	109.3(3)
N(4)-Ni(4)-Ni(5)	93.14(12)	O(7)-S(4)-C(74)	108.1(3)
N(12)-Ni(4)-Ni(3)	88.01(14)	N(20)-S(4)-C(74)	105.7(3)
N(17)-Ni(4)-Ni(3)	87.16(13)	C(1)-N(1)-C(5)	119.4(5)
N(9)-Ni(4)-Ni(3)	86.05(13)	C(1)-N(1)-Ni(1)	118.7(4)
N(4)-Ni(4)-Ni(3)	86.66(12)	C(5)-N(1)-Ni(1)	121.8(4)
Ni(5)-Ni(4)-Ni(3)	179.66(4)	C(6)-N(2)-C(5)	123.7(4)
N(11)-Ni(5)-N(16)	173.48(19)	C(6)-N(2)-Ni(2)	118.8(4)
N(11)-Ni(5)-N(5)	90.65(18)	C(5)-N(2)-Ni(2)	117.5(3)
N(16)-Ni(5)-N(5)	87.15(17)	C(6)-N(3)-C(10)	119.8(4)
N(11)-Ni(5)-N(10)	90.36(19)	C(6)-N(3)-Ni(3)	119.5(3)
N(16)-Ni(5)-N(10)	90.78(18)	C(10)-N(3)-Ni(3)	120.5(3)
N(5)-Ni(5)-N(10)	170.22(18)	C(10)-N(4)-C(13)	119.8(4)
N(11)-Ni(5)-Ni(4)	87.60(14)	C(10)-N(4)-Ni(4)	120.3(3)
N(16)-Ni(5)-Ni(4)	86.11(13)	C(13)-N(4)-Ni(4)	119.1(3)
N(5)-Ni(5)-Ni(4)	85.69(12)	C(13)-N(5)-S(1)	123.7(4)
N(10)-Ni(5)-Ni(4)	84.63(13)	C(13)-N(5)-Ni(5)	121.5(3)
O(1)-S(1)-O(2)	116.8(3)	S(1)-N(5)-Ni(5)	112.7(2)
O(1)-S(1)-N(5)	104.1(2)	C(21)-N(6)-C(25)	119.8(5)
O(2)-S(1)-N(5)	113.3(2)	C(21)-N(6)-Ni(1)	118.8(4)
O(1)-S(1)-C(14)	108.6(3)	C(25)-N(6)-Ni(1)	121.4(4)
O(2)-S(1)-C(14)	106.2(3)	C(26)-N(7)-C(25)	124.2(5)
N(5)-S(1)-C(14)	107.5(3)	C(26)-N(7)-Ni(2)	116.9(4)
O(3)-S(2)-O(4)	117.0(3)	C(25)-N(7)-Ni(2)	118.5(4)
O(3)-S(2)-N(10)	113.4(3)	C(26)-N(8)-C(30)	119.9(5)
O(4)-S(2)-N(10)	103.1(2)	C(26)-N(8)-Ni(3)	120.4(4)
O(3)-S(2)-C(34)	107.9(3)	C(30)-N(8)-Ni(3)	118.6(4)
O(4)-S(2)-C(34)	107.5(3)	C(30)-N(9)-C(33)	120.3(5)
N(10)-S(2)-C(34)	107.4(3)	C(30)-N(9)-Ni(4)	121.3(4)
O(6)-S(3)-O(5)	117.7(2)	C(33)-N(9)-Ni(4)	118.5(4)
O(6)-S(3)-N(15)	103.8(2)	C(33)-N(10)-S(2)	124.0(4)
O(5)-S(3)-N(15)	111.3(3)	C(33)-N(10)-Ni(5)	124.7(4)
O(6)-S(3)-C(54)	108.9(3)	S(2)-N(10)-Ni(5)	109.0(2)
O(5)-S(3)-C(54)	108.5(3)	C(45)-N(11)-C(41)	119.6(5)
N(15)-S(3)-C(54)	106.0(3)	C(45)-N(11)-Ni(5)	122.2(4)
O(8)-S(4)-O(7)	117.3(3)	C(41)-N(11)-Ni(5)	118.2(4)
O(8)-S(4)-N(20)	103.6(3)	C(46)-N(12)-C(45)	123.8(5)

C(46) N(12) Ni(4)	116.7(4)	C(10) C(0) C(8)	117 8(5)
C(40)-IN(12)-INI(4) C(45) N(12) Ni(4)	110.7(4)	C(10)- $C(9)$ - $C(8)$	117.8(3)
C(43)-IN(12)-INI(4) C(50) N(12) C(46)	118.0(4)	C(10)- $C(9)$ - $C(11)$	110.3(3) 125.7(5)
C(50) - N(13) - C(40) C(50) - N(12) - N(2)	120.4(4)	V(4) C(10) N(2)	125.7(5)
C(30) - IN(13) - INI(3) C(46) - IN(12) - INI(3)	110.5(3)	N(4)- $C(10)$ - $N(3)$	110.1(4)
C(40)-IN(13)-INI(3) C(52) N(14) C(50)	120.0(4)	N(4)- $C(10)$ - $C(9)$	122.0(3)
C(53)-N(14)-C(50) C(52) N(14) N:(2)	119.9(3)	N(3)-C(10)-C(9)	121.5(5)
C(53)-IN(14)-INI(2)	119.5(4)	C(12)-C(11)-C(9)	121.0(5)
C(50)-N(14)-N(2)	120.8(4)	C(11)-C(12)-C(13)	119.1(5)
C(53)-N(15)-S(3)	122.8(4)	N(4)-C(13)-N(5)	114.1(4)
C(53)-N(15)-Ni(1)	122.0(4)	N(4)-C(13)-C(12)	120.4(5)
S(3)-N(15)-Ni(1)	114.3(2)	N(5)-C(13)-C(12)	125.5(5)
C(61)-N(16)-C(65)	119.6(5)	C(19)-C(14)-C(15)	119.9(7)
C(61)-N(16)-Ni(5)	117.1(4)	C(19)-C(14)-C(15')	115.6(14)
C(65)-N(16)-Ni(5)	123.3(4)	C(19)-C(14)-S(1)	120.4(5)
C(66)-N(17)-C(65)	123.8(4)	C(15)-C(14)-S(1)	118.3(6)
C(66)-N(17)-Ni(4)	117.9(3)	C(15')-C(14)-S(1)	120.1(13)
C(65)-N(17)-Ni(4)	117.9(3)	C(18)-C(19)-C(14)	122.0(9)
C(70)-N(18)-C(66)	119.9(4)	C(14)-C(19)-C(18')	117.5(19)
C(70)-N(18)-Ni(3)	118.3(3)	C(16)-C(15)-C(14)	118.8(11)
C(66)-N(18)-Ni(3)	121.1(3)	C(15)-C(16)-C(17)	121.0(12)
C(70)-N(19)-C(73)	120.2(4)	C(16)-C(17)-C(18)	119.2(10)
C(70)-N(19)-Ni(2)	120.2(3)	C(16)-C(17)-C(20)	120.2(13)
C(73)-N(19)-Ni(2)	119.6(4)	C(18)-C(17)-C(20)	120.6(13)
C(73)-N(20)-S(4)	123.0(4)	C(19)-C(18)-C(17)	119.0(12)
C(73)-N(20)-Ni(1)	121.2(4)	C(16')-C(15')-C(14)	121(3)
S(4)-N(20)-Ni(1)	113.7(3)	C(15')-C(16')-C(17')	122(3)
N(1)-C(1)-C(2)	123.2(6)	C(18')-C(17')-C(16')	117(3)
C(1)-C(2)-C(3)	118.6(6)	C(18')-C(17')-C(20')	123(4)
C(4)-C(3)-C(2)	119.3(6)	C(16')-C(17')-C(20')	120(3)
C(3)-C(4)-C(5)	119.8(5)	C(17')-C(18')-C(19)	126(4)
N(1)-C(5)-N(2)	115.7(5)	N(6)-C(21)-C(22)	122.5(7)
N(1)-C(5)-C(4)	119.8(5)	C(21)-C(22)-C(23)	118.3(7)
N(2)-C(5)-C(4)	124.4(5)	C(22)-C(23)-C(24)	120.4(7)
N(3)-C(6)-N(2)	116.4(4)	C(23)-C(24)-C(25)	119.2(7)
N(3)-C(6)-C(7)	120.7(5)	N(6)-C(25)-N(7)	116.0(5)
N(2)-C(6)-C(7)	122.7(5)	N(6)-C(25)-C(24)	119.7(6)
C(8)-C(7)-C(6)	119.0(5)	N(7)-C(25)-C(24)	124.2(6)
C(7)-C(8)-C(9)	121.3(5)	N(8)-C(26)-N(7)	115.8(5)

			101010101010707
N(8)-C(26)-C(27)	120.4(5)	C(51)-C(49)-C(48)	124.6(5)
N(7)-C(26)-C(27)	123.4(5)	C(50)-C(49)-C(48)	117.7(5)
C(28)-C(27)-C(26)	119.7(6)	N(13)-C(50)-N(14)	117.0(5)
C(27)-C(28)-C(29)	120.9(6)	N(13)-C(50)-C(49)	121.7(5)
C(28)-C(29)-C(31)	125.5(5)	N(14)-C(50)-C(49)	121.3(5)
C(28)-C(29)-C(30)	117.6(6)	C(52)-C(51)-C(49)	121.8(5)
C(31)-C(29)-C(30)	116.8(5)	C(51)-C(52)-C(53)	118.3(5)
N(9)-C(30)-N(8)	116.4(5)	N(14)-C(53)-N(15)	115.0(5)
N(9)-C(30)-C(29)	122.3(5)	N(14)-C(53)-C(52)	121.0(5)
N(8)-C(30)-C(29)	121.3(5)	N(15)-C(53)-C(52)	124.0(5)
C(32)-C(31)-C(29)	120.9(6)	C(55)-C(54)-C(59)	121.0(6)
C(31)-C(32)-C(33)	119.8(6)	C(55)-C(54)-S(3)	120.5(5)
N(9)-C(33)-N(10)	114.3(5)	C(59)-C(54)-S(3)	118.4(5)
N(9)-C(33)-C(32)	119.6(5)	C(54)-C(55)-C(56)	119.0(6)
N(10)-C(33)-C(32)	126.2(5)	C(57)-C(56)-C(55)	121.1(6)
C(35)-C(34)-C(39)	119.7(6)	C(56)-C(57)-C(58)	118.5(6)
C(35)-C(34)-S(2)	119.6(5)	C(56)-C(57)-C(60)	120.6(7)
C(39)-C(34)-S(2)	120.7(5)	C(58)-C(57)-C(60)	120.9(7)
C(36)-C(35)-C(34)	119.7(6)	C(59)-C(58)-C(57)	121.5(6)
C(35)-C(36)-C(37)	121.7(7)	C(58)-C(59)-C(54)	118.8(6)
C(36)-C(37)-C(38)	117.7(6)	N(16)-C(61)-C(62)	122.7(5)
C(36)-C(37)-C(40)	121.4(7)	C(63)-C(62)-C(61)	118.6(6)
C(38)-C(37)-C(40)	120.9(6)	C(62)-C(63)-C(64)	119.5(6)
C(39)-C(38)-C(37)	121.5(6)	C(63)-C(64)-C(65)	119.9(6)
C(38)-C(39)-C(34)	119.7(6)	N(16)-C(65)-N(17)	114.7(5)
N(11)-C(41)-C(42)	122.6(6)	N(16)-C(65)-C(64)	119.7(5)
C(43)-C(42)-C(41)	118.0(6)	N(17)-C(65)-C(64)	125.1(5)
C(44)-C(43)-C(42)	120.4(6)	N(17)-C(66)-N(18)	115.3(5)
C(43)-C(44)-C(45)	119.3(6)	N(17)-C(66)-C(67)	125.0(5)
N(11)-C(45)-N(12)	115.8(5)	N(18)-C(66)-C(67)	119.4(5)
N(11)-C(45)-C(44)	120.0(5)	C(68)-C(67)-C(66)	121.0(5)
N(12)-C(45)-C(44)	124.0(6)	C(67)-C(68)-C(69)	119.8(5)
N(12)-C(46)-N(13)	116.1(5)	C(71)-C(69)-C(70)	117.6(5)
N(12)-C(46)-C(47)	125.2(5)	C(71)-C(69)-C(68)	124.4(5)
N(13)-C(46)-C(47)	118.3(5)	C(70)-C(69)-C(68)	118.0(5)
C(48)-C(47)-C(46)	121.2(5)	N(19)-C(70)-N(18)	117.3(5)
C(47)-C(48)-C(49)	120.5(5)	N(19)-C(70)-C(69)	120.9(5)
C(51)-C(49)-C(50)	117.6(5)	N(18)-C(70)-C(69)	121.8(5)

			60101010101010
C(72)-C(71)-C(69)	120.8(5)	F(3')-B(1)-F(1)	114.8(10)
C(71)-C(72)-C(73)	119.8(5)	F(3)-B(1)-F(1)	104.6(7)
N(19)-C(73)-N(20)	114.9(5)	F(2')-B(1)-F(1)	106.4(9)
N(19)-C(73)-C(72)	120.4(5)	F(4)-B(1)-F(2)	112.1(8)
N(20)-C(73)-C(72)	124.6(5)	F(3)-B(1)-F(2)	107.8(7)
C(79)-C(74)-C(75)	119.8(8)	F(1)-B(1)-F(2)	108.1(8)
C(79)-C(74)-S(4)	119.8(6)	F(3')-B(1)-F(4')	107.7(10)
C(75)-C(74)-S(4)	120.4(6)	F(2')-B(1)-F(4')	105.9(10)
C(74)-C(75)-C(76)	119.7(8)	F(1)-B(1)-F(4')	110.5(9)
C(77)-C(76)-C(75)	119.8(9)	Cl(2)-C(81)-Cl(1)	109.6(5)
C(78)-C(77)-C(76)	119.2(9)	Cl(3)-C(82)-Cl(4)	112.0(6)
C(78)-C(77)-C(80)	120.6(9)	Cl(4')-C(82')-Cl(3')	101.7(9)
C(76)-C(77)-C(80)	120.2(10)	Cl(6)-C(83)-Cl(5)	113.9(7)
C(77)-C(78)-C(79)	122.0(9)	Cl(6')-C(83')-Cl(5')	110.7(12)
C(74)-C(79)-C(78)	119.4(9)	Cl(7)-C(84)-Cl(8)	112.1(8)
F(4)-B(1)-F(3)	114.2(8)	Cl(8')-C(84')-Cl(7')	92.9(13)
F(3')-B(1)-F(2')	111.3(10)	Cl(7')#1-Cl(7')-C(84')	136(3)
F(4)-B(1)-F(1)	109.7(7)		

#1 -x-1,-y,-z+1

附錄C-6.1. Crystal data and structure refin	nement for ic18592.	
Identification code	ic18592	
Empirical formula	C65H61Cl6F6N22Ni5	O10PS4
Formula weight	2089.81	· 學·學·
Temperature	150(2) K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 14.1494(4) Å	$\alpha = 76.2023(16)^{\circ}$.
	b = 17.0242(6) Å	$\beta = 72.4156(14)^{\circ}$.
	c = 17.9497(6) Å	$\gamma = 78.5677(14)^{\circ}$.
Volume	3965.4(2) Å ³	
Z	2	
Density (calculated)	1.750 Mg/m ³	
Absorption coefficient	5.080 mm ⁻¹	
F(000)	2120	
Crystal size	0.128 x 0.076 x 0.038	mm ³
Theta range for data collection	2.631 to 69.997°.	
Index ranges	-17<=h<=17, -20<=k<	=20, -21<=l<=21
Reflections collected	24981	
Independent reflections	15015 [R(int) = 0.0293	3]
Completeness to theta = 67.679°	99.8 %	
Absorption correction	Semi-empirical from e	quivalents
Max. and min. transmission	0.7533 and 0.5837	
Refinement method	Full-matrix least-squar	res on F ²
Data / restraints / parameters	15015 / 58 / 1095	
Goodness-of-fit on F ²	1.035	
Final R indices [I>2sigma(I)]	R1 = 0.0854, wR2 = 0	.2581
R indices (all data)	R1 = 0.0986, wR2 = 0	.2791
Extinction coefficient	n/a	
Largest diff. peak and hole	1.715 and -2.378 e.Å -3	3

附錄C-6.2. Bond lengths [Å] and angles [°] for ic18592.			X H X X
	1.920(5)	S(4)-O(8)	1.417(6)
Ni(1)-N(15)	1.922(5)	S(4)-O(7)	1.439(5)
Ni(1)-N(1)	1.931(5)	S(4)-N(20)	1.634(4)
Ni(1)-N(6)	1.935(5)	S(4)-C(56')	1.768(9)
Ni(1)-Ni(2)	2.3487(11)	S(4)-C(56)	1.779(9)
Ni(2)-N(2)	1.900(4)	N(1)-C(5)	1.347(7)
Ni(2)-N(7)	1.905(5)	N(1)-C(1)	1.353(7)
Ni(2)-N(14)	1.953(5)	N(2)-C(6)	1.374(7)
Ni(2)-N(19)	1.954(5)	N(2)-C(5)	1.378(7)
Ni(2)-Ni(3)	2.2963(11)	N(3)-C(6)	1.353(7)
Ni(3)-N(3)	1.999(4)	N(3)-C(10)	1.356(7)
Ni(3)-N(8)	2.000(5)	N(4)-C(13)	1.352(7)
Ni(3)-N(13)	2.006(5)	N(4)-C(10)	1.375(7)
Ni(3)-N(18)	2.016(5)	N(5)-C(13)	1.394(7)
Ni(3)-Ni(4)	2.2436(11)	N(6)-C(15)	1.341(8)
Ni(4)-N(17)	1.993(5)	N(6)-C(19)	1.359(7)
Ni(4)-N(12)	1.999(5)	N(7)-C(19)	1.365(8)
Ni(4)-N(4)	2.016(4)	N(7)-C(20)	1.394(7)
Ni(4)-N(9)	2.023(4)	N(8)-C(20)	1.340(8)
Ni(4)-Ni(5)	2.3235(11)	N(8)-C(24)	1.366(7)
Ni(5)-N(11)	1.933(5)	N(9)-C(27)	1.354(7)
Ni(5)-N(16)	1.938(5)	N(9)-C(24)	1.366(7)
Ni(5)-N(10)	1.943(5)	N(10)-C(27)	1.369(8)
Ni(5)-N(5)	1.949(5)	N(11)-C(29)	1.346(8)
S(1)-O(1)	1.433(5)	N(11)-C(33)	1.369(7)
S(1)-O(2)	1.436(5)	N(12)-C(34)	1.355(7)
S(1)-N(5)	1.627(4)	N(12)-C(33)	1.372(8)
S(1)-C(14)	1.774(8)	N(13)-C(38)	1.350(7)
S(2)-O(4)	1.433(5)	N(13)-C(34)	1.373(7)
S(2)-O(3)	1.435(4)	N(14)-C(41)	1.350(7)
S(2)-N(10)	1.637(5)	N(14)-C(38)	1.384(7)
S(2)-C(28)	1.753(7)	N(15)-C(41)	1.367(8)
S(3)-O(6)	1.423(5)	N(16)-C(43)	1.354(7)
S(3)-O(5)	1.438(5)	N(16)-C(47)	1.364(8)
S(3)-N(15)	1.631(5)	N(17)-C(48)	1.357(7)
S(3)-C(42)	1.767(7)	N(17)-C(47)	1.377(7)

附錄C-62 Bond lengths [Å] and angles [°] for ic18502

N(18)-C(52)	1.350(7)	C(43)-C(44)	1.383(10)
N(18)-C(48)	1.351(7)	C(44)-C(45)	1.387(11)
N(19)-C(55)	1.354(7)	C(45)-C(46)	1.379(9)
N(19)-C(52)	1.385(7)	C(46)-C(47)	1.396(9)
N(20)-C(55)	1.364(7)	C(48)-C(49)	1.433(8)
C(1)-C(2)	1.366(9)	C(49)-C(50)	1.360(9)
C(2)-C(3)	1.399(9)	C(50)-C(51)	1.418(8)
C(3)-C(4)	1.376(8)	C(51)-C(52)	1.404(8)
C(4)-C(5)	1.404(8)	C(51)-C(53)	1.415(8)
C(6)-C(7)	1.439(7)	C(53)-C(54)	1.354(9)
C(7)-C(8)	1.341(8)	C(54)-C(55)	1.421(8)
C(8)-C(9)	1.422(8)	P(1)-F(3)	1.582(5)
C(9)-C(10)	1.401(8)	P(1)-F(4)	1.583(6)
C(9)-C(11)	1.416(8)	P(1)-F(2)	1.585(5)
C(11)-C(12)	1.358(9)	P(1)-F(6)	1.588(5)
C(12)-C(13)	1.400(8)	P(1)-F(1)	1.588(5)
C(15)-C(16)	1.366(10)	P(1)-F(5)	1.594(5)
C(16)-C(17)	1.408(11)	O(9)-C(57)	1.239(10)
C(17)-C(18)	1.340(11)	O(9')-C(57)	1.238(10)
C(18)-C(19)	1.410(9)	N(21)-C(57)	1.345(8)
C(20)-C(21)	1.419(8)	N(21)-C(59)	1.440(10)
C(21)-C(22)	1.369(9)	N(21)-C(58')	1.447(10)
C(22)-C(23)	1.417(9)	N(21)-C(58)	1.450(10)
C(23)-C(25)	1.407(9)	N(21)-C(59')	1.453(10)
C(23)-C(24)	1.409(8)	O(10)-C(60)	1.242(16)
C(25)-C(26)	1.354(9)	N(22)-C(60)	1.343(8)
C(26)-C(27)	1.431(8)	N(22)-C(61)	1.451(9)
C(29)-C(30)	1.358(9)	N(22)-C(61')	1.461(10)
C(30)-C(31)	1.395(8)	N(22)-C(62)	1.466(8)
C(31)-C(32)	1.382(9)	C(63)-Cl(2)	1.721(15)
C(32)-C(33)	1.395(9)	C(63)-Cl(1)	1.760(14)
C(34)-C(35)	1.429(8)	C(64)-Cl(3)	1.703(15)
C(35)-C(36)	1.361(8)	C(64)-Cl(4)	1.729(16)
C(36)-C(37)	1.409(9)	C(65)-Cl(6')	1.727(10)
C(37)-C(39)	1.402(8)	C(65)-Cl(5)	1.778(9)
C(37)-C(38)	1.418(8)	C(65)-Cl(6)	1.799(9)
C(39)-C(40)	1.346(9)		
C(40)-C(41)	1.438(8)	N(20)-Ni(1)-N(15)	173.62(19)

			A0101010107
N(20)-Ni(1)-N(1)	92.3(2)	Ni(4)-Ni(3)-Ni(2)	179.74(5)
N(15)-Ni(1)-N(1)	87.6(2)	N(17)-Ni(4)-N(12)	179.9(3)
N(20)-Ni(1)-N(6)	88.4(2)	N(17)-Ni(4)-N(4)	90.07(19)
N(15)-Ni(1)-N(6)	91.0(2)	N(12)-Ni(4)-N(4)	89.94(18)
N(1)-Ni(1)-N(6)	173.2(2)	N(17)-Ni(4)-N(9)	91.6(2)
N(20)-Ni(1)-Ni(2)	87.59(14)	N(12)-Ni(4)-N(9)	88.4(2)
N(15)-Ni(1)-Ni(2)	86.04(14)	N(4)-Ni(4)-N(9)	178.02(18)
N(1)-Ni(1)-Ni(2)	86.79(14)	N(17)-Ni(4)-Ni(3)	89.71(13)
N(6)-Ni(1)-Ni(2)	86.50(14)	N(12)-Ni(4)-Ni(3)	90.23(13)
N(2)-Ni(2)-N(7)	178.8(2)	N(4)-Ni(4)-Ni(3)	89.44(13)
N(2)-Ni(2)-N(14)	90.43(19)	N(9)-Ni(4)-Ni(3)	89.53(13)
N(7)-Ni(2)-N(14)	88.4(2)	N(17)-Ni(4)-Ni(5)	90.07(13)
N(2)-Ni(2)-N(19)	90.09(19)	N(12)-Ni(4)-Ni(5)	89.98(13)
N(7)-Ni(2)-N(19)	91.0(2)	N(4)-Ni(4)-Ni(5)	90.48(13)
N(14)-Ni(2)-N(19)	179.44(19)	N(9)-Ni(4)-Ni(5)	90.56(13)
N(2)-Ni(2)-Ni(3)	90.35(14)	Ni(3)-Ni(4)-Ni(5)	179.77(5)
N(7)-Ni(2)-Ni(3)	89.95(14)	N(11)-Ni(5)-N(16)	176.2(2)
N(14)-Ni(2)-Ni(3)	89.81(13)	N(11)-Ni(5)-N(10)	90.3(2)
N(19)-Ni(2)-Ni(3)	89.97(13)	N(16)-Ni(5)-N(10)	88.4(2)
N(2)-Ni(2)-Ni(1)	89.76(14)	N(11)-Ni(5)-N(5)	88.11(19)
N(7)-Ni(2)-Ni(1)	89.95(14)	N(16)-Ni(5)-N(5)	92.9(2)
N(14)-Ni(2)-Ni(1)	90.83(13)	N(10)-Ni(5)-N(5)	175.01(19)
N(19)-Ni(2)-Ni(1)	89.39(13)	N(11)-Ni(5)-Ni(4)	88.31(14)
Ni(3)-Ni(2)-Ni(1)	179.35(5)	N(16)-Ni(5)-Ni(4)	88.07(14)
N(3)-Ni(3)-N(8)	176.97(18)	N(10)-Ni(5)-Ni(4)	87.48(14)
N(3)-Ni(3)-N(13)	91.31(18)	N(5)-Ni(5)-Ni(4)	87.75(14)
N(8)-Ni(3)-N(13)	87.03(19)	O(1)-S(1)-O(2)	116.6(3)
N(3)-Ni(3)-N(18)	89.01(18)	O(1)-S(1)-N(5)	104.7(2)
N(8)-Ni(3)-N(18)	92.64(19)	O(2)-S(1)-N(5)	112.9(3)
N(13)-Ni(3)-N(18)	179.52(19)	O(1)-S(1)-C(14)	109.3(4)
N(3)-Ni(3)-Ni(4)	91.34(13)	O(2)-S(1)-C(14)	108.4(4)
N(8)-Ni(3)-Ni(4)	91.18(14)	N(5)-S(1)-C(14)	104.1(3)
N(13)-Ni(3)-Ni(4)	89.95(13)	O(4)-S(2)-O(3)	117.0(3)
N(18)-Ni(3)-Ni(4)	90.42(13)	O(4)-S(2)-N(10)	112.9(3)
N(3)-Ni(3)-Ni(2)	88.58(13)	O(3)-S(2)-N(10)	103.2(2)
N(8)-Ni(3)-Ni(2)	88.89(14)	O(4)-S(2)-C(28)	107.6(3)
N(13)-Ni(3)-Ni(2)	89.81(12)	O(3)-S(2)-C(28)	109.6(3)
N(18)-Ni(3)-Ni(2)	89.83(13)	N(10)-S(2)-C(28)	106.0(3)

			1610101010
O(6)-S(3)-O(5)	1167(3)	C(24)-N(8)-Ni(3)	119 3(4)
O(6)-S(3)-N(15)	113 3(3)	C(27)-N(9)-C(24)	120 3(5)
O(5)-S(3)-N(15)	104 4(3)	C(27)-N(9)-Ni(4)	120.5(5) 118 7(4)
O(5)-S(3)-C(42)	107.4(3)	C(24) - N(9) - Ni(4)	120.9(3)
O(5)-S(3)-C(42)	107.4(3) 108.8(4)	C(27)-N(10)-S(2)	123.6(4)
N(15)-S(3)-C(42)	105.6(3)	C(27)-N(10)-S(2)	125.0(4)
$\Omega(13) - S(3) - C(42)$ $\Omega(8) - S(4) - \Omega(7)$	105.0(3) 115.9(3)	S(2) - N(10) - Ni(5)	123.3(4)
O(8) - S(4) - O(7)	112.5(3)	S(2) - IN(10) - INI(3) C(20) N(11) C(22)	111.1(3) 110.0(5)
O(3)-S(4)-IN(20)	112.0(3)	C(29)-N(11)-C(33) C(20) N(11) N;(5)	116.1(4)
O(7)- $S(4)$ - $IN(20)$	103.3(3)	C(29)- $N(11)$ - $NI(3)C(22)$ $N(11)$ $NI(5)$	110.1(4) 124.0(4)
O(3)-S(4)-C(30)	97.1(9)	C(33)-IN(11)-INI(3) C(24) IN(12) C(22)	124.0(4)
U(7)-S(4)-U(30)	112.0(11) 112.6(0)	C(34) - N(12) - C(33)	123.0(3)
N(20)-S(4)-C(50)	113.0(9)	C(34) - N(12) - NI(4) C(22) - N(12) - NI(4)	110.7(4)
O(8)-S(4)-C(56)	113.9(0)	C(33)-IN(12)-INI(4) C(28)-IN(12)-C(24)	110.1(5)
U(7)-S(4)-U(50)	107.5(7)	C(38) - N(13) - C(34)	119.9(5)
N(20)-S(4)-C(50)	100.2(5)	C(38)-N(13)-NI(3)	119.1(4)
C(5)-N(1)-C(1)	120.4(5)	C(34)-N(13)-N(3)	120.3(3)
C(5)-N(1)-Ni(1)	121.9(4)	C(41)-N(14)-C(38)	120.2(5)
C(1)-N(1)-N(1)	117.1(4)	C(41)-N(14)-Ni(2)	118.5(4)
C(6)-N(2)-C(5)	122.1(4)	$C(38)-N(14)-N_1(2)$	121.3(3)
C(6)-N(2)-Ni(2)	120.7(3)	C(41)-N(15)-S(3)	124.2(4)
C(5)-N(2)-Ni(2)	117.1(4)	C(41)-N(15)-Ni(1)	122.9(4)
C(6)-N(3)-C(10)	120.0(4)	S(3)-N(15)-Ni(1)	112.7(3)
C(6)-N(3)-Ni(3)	119.7(4)	C(43)-N(16)-C(47)	120.3(5)
C(10)-N(3)-Ni(3)	119.9(3)	C(43)-N(16)-Ni(5)	115.9(4)
C(13)-N(4)-C(10)	119.2(5)	C(47)-N(16)-Ni(5)	123.7(4)
C(13)-N(4)-Ni(4)	120.0(4)	C(48)-N(17)-C(47)	123.6(5)
C(10)-N(4)-Ni(4)	120.8(3)	C(48)-N(17)-Ni(4)	118.8(4)
C(13)-N(5)-S(1)	122.4(4)	C(47)-N(17)-Ni(4)	117.5(4)
C(13)-N(5)-Ni(5)	124.1(3)	C(52)-N(18)-C(48)	121.2(5)
S(1)-N(5)-Ni(5)	113.5(2)	C(52)-N(18)-Ni(3)	118.6(4)
C(15)-N(6)-C(19)	120.0(5)	C(48)-N(18)-Ni(3)	119.3(4)
C(15)-N(6)-Ni(1)	118.1(4)	C(55)-N(19)-C(52)	119.3(5)
C(19)-N(6)-Ni(1)	121.9(4)	C(55)-N(19)-Ni(2)	119.5(4)
C(19)-N(7)-C(20)	122.7(5)	C(52)-N(19)-Ni(2)	121.2(4)
C(19)-N(7)-Ni(2)	118.5(4)	C(55)-N(20)-S(4)	123.1(4)
C(20)-N(7)-Ni(2)	118.8(4)	C(55)-N(20)-Ni(1)	121.0(4)
C(20)-N(8)-C(24)	119.5(5)	S(4)-N(20)-Ni(1)	115.7(3)
C(20)-N(8)-Ni(3)	119.4(4)	N(1)-C(1)-C(2)	122.3(5)

			1610101010
C(1)- $C(2)$ - $C(3)$	118.7(5)	N(9) - C(24) - C(23)	122 3(5)
C(1)-C(2)-C(3)	118.7(5)	N(9)-C(24)-C(23) N(8)-C(24)-C(23)	122.3(5)
C(4) - C(3) - C(2)	120.6(6)	$\Gamma(0) = C(24) = C(23)$	122.2(5)
N(1) C(5) N(2)	120.0(0)	C(20)-C(23)-C(23)	110.6(5)
N(1) - C(3) - N(2) N(1) - C(5) - C(4)	110.0(3) 110.2(5)	C(23)-C(20)-C(27) N(0) $C(27)$ N(10)	115.0(5)
N(1)-C(3)-C(4) N(2) C(5) C(4)	119.2(3)	N(9)-C(27)-N(10) N(0)-C(27)-C(26)	110.5(5)
N(2)-C(3)-C(4) N(2)-C(6)-N(2)	123.9(3)	N(9)-C(27)-C(20) N(10)-C(27)-C(26)	119.0(3) 125.1(5)
N(3)-C(0)-N(2) N(2)-C(6)-C(7)	110.9(5)	N(10)-C(27)-C(20) N(11)-C(20)-C(20)	123.1(3) 122.2(5)
N(3)-C(0)-C(7)	119.9(3)	N(11)-C(29)-C(30)	123.3(3)
N(2)-C(0)-C(7)	124.1(5)	C(29)-C(30)-C(31)	118.4(6)
C(8)-C(7)-C(6)	119.6(5)	C(32)-C(31)-C(30)	118.8(6)
C(7)-C(8)-C(9)	120.9(5)	C(31)-C(32)-C(33)	121.1(5)
C(10)-C(9)-C(11)	117.2(5)	N(11)-C(33)-N(12)	115.6(5)
C(10)-C(9)-C(8)	117.1(5)	N(11)-C(33)-C(32)	118.4(5)
C(11)-C(9)-C(8)	125.7(5)	N(12)-C(33)-C(32)	125.9(5)
N(3)-C(10)-N(4)	115.7(5)	N(12)-C(34)-N(13)	115.1(5)
N(3)-C(10)-C(9)	122.3(5)	N(12)-C(34)-C(35)	124.5(5)
N(4)-C(10)-C(9)	122.0(5)	N(13)-C(34)-C(35)	120.1(5)
C(12)-C(11)-C(9)	120.4(5)	C(36)-C(35)-C(34)	119.5(6)
C(11)-C(12)-C(13)	120.1(5)	C(35)-C(36)-C(37)	120.7(5)
N(4)-C(13)-N(5)	114.3(5)	C(39)-C(37)-C(36)	124.8(6)
N(4)-C(13)-C(12)	121.1(5)	C(39)-C(37)-C(38)	117.4(6)
N(5)-C(13)-C(12)	124.6(5)	C(36)-C(37)-C(38)	117.8(5)
N(6)-C(15)-C(16)	123.0(6)	N(13)-C(38)-N(14)	116.8(5)
C(15)-C(16)-C(17)	117.3(7)	N(13)-C(38)-C(37)	121.9(5)
C(18)-C(17)-C(16)	120.3(7)	N(14)-C(38)-C(37)	121.3(5)
C(17)-C(18)-C(19)	120.5(6)	C(40)-C(39)-C(37)	121.2(6)
N(6)-C(19)-N(7)	116.5(5)	C(39)-C(40)-C(41)	120.4(5)
N(6)-C(19)-C(18)	118.9(6)	N(14)-C(41)-N(15)	116.4(5)
N(7)-C(19)-C(18)	124.4(5)	N(14)-C(41)-C(40)	119.4(5)
N(8)-C(20)-N(7)	115.5(5)	N(15)-C(41)-C(40)	124.1(5)
N(8)-C(20)-C(21)	121.2(5)	N(16)-C(43)-C(44)	122.3(6)
N(7)-C(20)-C(21)	122.9(5)	C(43)-C(44)-C(45)	118.2(6)
C(22)-C(21)-C(20)	119.5(6)	C(46)-C(45)-C(44)	119.3(7)
C(21)-C(22)-C(23)	120.1(6)	C(45)-C(46)-C(47)	121.3(6)
C(25)-C(23)-C(24)	116.6(6)	N(16)-C(47)-N(17)	115.9(5)
C(25)-C(23)-C(22)	126.1(6)	N(16)-C(47)-C(46)	118.6(5)
C(24)-C(23)-C(22)	117.3(5)	N(17)-C(47)-C(46)	125.3(5)
N(9)-C(24)-N(8)	115.5(5)	N(18)-C(48)-N(17)	116.1(5)

N(18)-C(48)-C(49)	119.2(5)	F(6)-P(1)-F(1)	90.7(3)	
N(17)-C(48)-C(49)	124.6(5)	F(3)-P(1)-F(5)	89.8(3)	
C(50)-C(49)-C(48)	120.5(5)	F(4)-P(1)-F(5)	89.2(3)	
C(49)-C(50)-C(51)	119.4(5)	F(2)-P(1)-F(5)	89.5(3)	
C(52)-C(51)-C(53)	118.6(5)	F(6)-P(1)-F(5)	177.7(3)	
C(52)-C(51)-C(50)	118.3(5)	F(1)-P(1)-F(5)	89.9(3)	
C(53)-C(51)-C(50)	123.1(5)	C(57)-N(21)-C(59)	128.9(14)	
N(18)-C(52)-N(19)	117.2(5)	C(57)-N(21)-C(58')	127(2)	
N(18)-C(52)-C(51)	121.5(5)	C(57)-N(21)-C(58)	109.3(15)	
N(19)-C(52)-C(51)	121.3(5)	C(59)-N(21)-C(58)	121.2(18)	
C(54)-C(53)-C(51)	119.4(6)	C(57)-N(21)-C(59')	103.9(17)	
C(53)-C(54)-C(55)	120.9(5)	C(58')-N(21)-C(59')	128(3)	
N(19)-C(55)-N(20)	116.8(5)	O(9')-C(57)-N(21)	135(3)	
N(19)-C(55)-C(54)	120.4(5)	O(9)-C(57)-N(21)	117.5(19)	
N(20)-C(55)-C(54)	122.8(5)	C(60)-N(22)-C(61)	118.6(14)	
F(3)-P(1)-F(4)	178.5(4)	C(60)-N(22)-C(61')	141.2(18)	
F(3)-P(1)-F(2)	89.7(3)	C(60)-N(22)-C(62)	121.3(10)	
F(4)-P(1)-F(2)	89.2(3)	C(61)-N(22)-C(62)	119.9(14)	
F(3)-P(1)-F(6)	92.5(3)	C(61')-N(22)-C(62)	92.8(16)	
F(4)-P(1)-F(6)	88.5(3)	O(10)-C(60)-N(22)	123.9(12)	
F(2)-P(1)-F(6)	89.9(3)	Cl(2)-C(63)-Cl(1)	113.8(8)	
F(3)-P(1)-F(1)	89.8(3)	Cl(3)-C(64)-Cl(4)	114.2(9)	
F(4)-P(1)-F(1)	91.4(4)	Cl(6')-C(65)-Cl(5)	106.7(8)	
F(2)-P(1)-F(1)	179.2(3)	Cl(5)-C(65)-Cl(6)	137.1(10)	

附錄C-7.1. Crystal data and structure refine	ement for ic17678.
Identification code	ic17678
Empirical formula	C59H54.44Cl6N20Ni4O10.22S4
Formula weight	1782.96
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a = 12.0858(5) \text{ Å}$ $\alpha = 78.5539(14)^{\circ}.$
	b = 13.1134(6) Å β = 81.3112(13)°.
	$c = 23.6935(11) \text{ Å} \qquad \gamma = 81.0551(14)^{\circ}.$
Volume	3607.5(3) Å ³
Z	2
Density (calculated)	1.641 Mg/m ³
Absorption coefficient	1.437 mm ⁻¹
F(000)	1816
Crystal size	0.110 x 0.100 x 0.090 mm ³
Theta range for data collection	2.167 to 25.000°.
Index ranges	-14<=h<=13, -15<=k<=15, -28<=l<=28
Reflections collected	22532
Independent reflections	12716 [R(int) = 0.0228]
Completeness to theta = 25.000°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.7038
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	12716 / 10 / 963
Goodness-of-fit on F ²	1.075
Final R indices [I>2sigma(I)]	R1 = 0.0523, wR2 = 0.1201
R indices (all data)	R1 = 0.0727, wR2 = 0.1303
Extinction coefficient	n/a
Largest diff. peak and hole	1.569 and -1.122 e.Å ⁻³

附錄C-7.2. Bond lengths [Å] and angles [°] for ic17678.				
Ni(1)-O(9)	2.025(3)	S(4)-C(42)	1.761(6)	
Ni(1)-N(1)	2.082(4)	N(1)-C(5)	1.346(6)	
Ni(1)-N(6)	2.085(4)	N(1)-C(1)	1.350(6)	
Ni(1)-N(14)	2.122(4)	N(2)-C(6)	1.370(6)	
Ni(1)-N(19)	2.156(4)	N(2)-C(5)	1.381(6)	
Ni(1)-Ni(2)	2.3667(8)	N(3)-C(6)	1.360(6)	
Ni(2)-N(2)	1.882(4)	N(3)-C(10)	1.365(6)	
Ni(2)-N(18)	1.888(4)	N(4)-C(13)	1.357(6)	
Ni(2)-N(7)	1.889(4)	N(4)-C(10)	1.364(6)	
Ni(2)-N(13)	1.909(4)	N(5)-C(13)	1.353(7)	
Ni(2)-Ni(3)	2.3253(8)	N(6)-C(15)	1.356(6)	
Ni(3)-N(17)	1.876(4)	N(6)-C(19)	1.361(6)	
Ni(3)-N(12)	1.894(4)	N(7)-C(20)	1.373(6)	
Ni(3)-N(8)	1.902(4)	N(7)-C(19)	1.387(6)	
Ni(3)-N(3)	1.905(4)	N(8)-C(20)	1.352(6)	
Ni(3)-Ni(4)	2.3718(8)	N(8)-C(24)	1.377(6)	
Ni(4)-O(10)	2.022(3)	N(9)-C(24)	1.364(6)	
Ni(4)-N(11)	2.082(4)	N(9)-C(27)	1.365(6)	
Ni(4)-N(16)	2.100(4)	N(10)-C(27)	1.348(6)	
Ni(4)-N(9)	2.143(4)	N(11)-C(29)	1.352(6)	
Ni(4)-N(4)	2.151(4)	N(11)-C(33)	1.357(6)	
S(1)-O(1)	1.447(4)	N(12)-C(34)	1.367(6)	
S(1)-O(2)	1.447(4)	N(12)-C(33)	1.389(6)	
S(1)-N(5)	1.593(4)	N(13)-C(34)	1.360(6)	
S(1)-C(14)	1.757(6)	N(13)-C(38)	1.379(6)	
S(2)-O(3)	1.442(4)	N(14)-C(38)	1.360(6)	
S(2)-O(4)	1.448(4)	N(14)-C(41)	1.370(6)	
S(2)-N(10)	1.616(4)	N(15)-C(41)	1.351(6)	
S(2)-C(28)	1.757(5)	N(16)-C(43)	1.353(6)	
S(3)-O(6)	1.443(4)	N(16)-C(47)	1.358(6)	
S(3)-O(5)	1.445(4)	N(17)-C(48)	1.367(6)	
S(3)-N(20)	1.595(4)	N(17)-C(47)	1.388(6)	
S(3)-C(56)	1.756(6)	N(18)-C(48)	1.363(6)	
S(4)-O(8)	1.441(5)	N(18)-C(52)	1.376(6)	
S(4)-O(7)	1.442(4)	N(19)-C(55)	1.359(6)	
S(4)-N(15)	1.600(4)	N(19)-C(52)	1.363(6)	

and longths $[\overset{\land}{h}]$ and analog $[^{\circ}]$ for MC 7 2 D

			and the state of the second
N(20)-C(55)	1.366(6)	C(48)-C(49)	1.412(7)
C(1)-C(2)	1.380(7)	C(49)-C(50)	1.360(7)
C(2)-C(3)	1.379(7)	C(50)-C(51)	1.408(7)
C(3)-C(4)	1.378(7)	C(51)-C(52)	1.400(6)
C(4)-C(5)	1.404(7)	C(51)-C(53)	1.417(6)
C(6)-C(7)	1.403(7)	C(53)-C(54)	1.347(7)
C(7)-C(8)	1.351(7)	C(54)-C(55)	1.424(7)
C(8)-C(9)	1.411(7)	C(57)-Cl(2)	1.755(6)
C(9)-C(11)	1.404(7)	C(57)-Cl(1)	1.755(6)
C(9)-C(10)	1.409(7)	C(58)-Cl(4)	1.740(7)
C(11)-C(12)	1.339(7)	C(58)-Cl(3)	1.774(8)
C(12)-C(13)	1.435(8)	C(59)-Cl(6)	1.706(9)
C(15)-C(16)	1.363(7)	C(59)-Cl(5)	1.723(9)
C(16)-C(17)	1.396(7)	C(59')-Cl(5')	1.748(8)
C(17)-C(18)	1.371(8)	C(59')-Cl(6')	1.760(9)
C(18)-C(19)	1.391(7)	C(59")-Cl(5")	1.742(10)
C(20)-C(21)	1.413(7)	C(59")-Cl(6")	1.749(10)
C(21)-C(22)	1.373(7)		
C(22)-C(23)	1.404(7)	O(9)-Ni(1)-N(1)	94.44(14)
C(23)-C(24)	1.400(7)	O(9)-Ni(1)-N(6)	93.89(14)
C(23)-C(25)	1.418(7)	N(1)-Ni(1)-N(6)	87.33(15)
C(25)-C(26)	1.342(7)	O(9)-Ni(1)-N(14)	100.15(14)
C(26)-C(27)	1.427(7)	N(1)-Ni(1)-N(14)	89.39(15)
C(29)-C(30)	1.366(7)	N(6)-Ni(1)-N(14)	165.79(14)
C(30)-C(31)	1.397(7)	O(9)-Ni(1)-N(19)	99.66(13)
C(31)-C(32)	1.378(7)	N(1)-Ni(1)-N(19)	165.73(14)
C(32)-C(33)	1.393(7)	N(6)-Ni(1)-N(19)	89.50(15)
C(34)-C(35)	1.413(7)	N(14)-Ni(1)-N(19)	90.29(15)
C(35)-C(36)	1.359(7)	O(9)-Ni(1)-Ni(2)	175.87(10)
C(36)-C(37)	1.415(7)	N(1)-Ni(1)-Ni(2)	83.04(10)
C(37)-C(38)	1.396(7)	N(6)-Ni(1)-Ni(2)	82.74(10)
C(37)-C(39)	1.416(7)	N(14)-Ni(1)-Ni(2)	83.13(10)
C(39)-C(40)	1.347(8)	N(19)-Ni(1)-Ni(2)	82.76(10)
C(40)-C(41)	1.426(7)	N(2)-Ni(2)-N(18)	176.34(16)
C(43)-C(44)	1.362(8)	N(2)-Ni(2)-N(7)	89.33(17)
C(44)-C(45)	1.382(7)	N(18)-Ni(2)-N(7)	91.32(16)
C(45)-C(46)	1.382(7)	N(2)-Ni(2)-N(13)	88.27(16)
C(46)-C(47)	1.385(7)	N(18)-Ni(2)-N(13)	90.82(16)

			A610101010
N(7)-Ni(2)-N(13)	175.23(15)	N(9)-Ni(4)-Ni(3)	83.58(10)
N(2)-Ni(2)-Ni(3)	85.69(11)	N(4)-Ni(4)-Ni(3)	83.04(10)
N(18)-Ni(2)-Ni(3)	90.77(11)	O(1)-S(1)-O(2)	116.0(2)
N(7)-Ni(2)-Ni(3)	85.84(11)	O(1)-S(1)-N(5)	113.5(2)
N(13)-Ni(2)-Ni(3)	89.86(11)	O(2)-S(1)-N(5)	105.1(2)
N(2)-Ni(2)-Ni(1)	91.11(11)	O(1)-S(1)-C(14)	107.3(3)
N(18)-Ni(2)-Ni(1)	92.46(11)	O(2)-S(1)-C(14)	106.5(3)
N(7)-Ni(2)-Ni(1)	92.14(11)	N(5)-S(1)-C(14)	107.9(3)
N(13)-Ni(2)-Ni(1)	92.04(11)	O(3)-S(2)-O(4)	115.0(2)
Ni(3)-Ni(2)-Ni(1)	176.23(3)	O(3)-S(2)-N(10)	113.6(2)
N(17)-Ni(3)-N(12)	88.52(17)	O(4)-S(2)-N(10)	111.4(2)
N(17)-Ni(3)-N(8)	91.60(17)	O(3)-S(2)-C(28)	108.5(3)
N(12)-Ni(3)-N(8)	175.85(15)	O(4)-S(2)-C(28)	107.2(3)
N(17)-Ni(3)-N(3)	175.20(15)	N(10)-S(2)-C(28)	99.8(2)
N(12)-Ni(3)-N(3)	88.94(16)	O(6)-S(3)-O(5)	115.8(2)
N(8)-Ni(3)-N(3)	90.64(16)	O(6)-S(3)-N(20)	114.8(2)
N(17)-Ni(3)-Ni(2)	85.75(11)	O(5)-S(3)-N(20)	105.4(2)
N(12)-Ni(3)-Ni(2)	85.37(11)	O(6)-S(3)-C(56)	106.8(3)
N(8)-Ni(3)-Ni(2)	90.50(11)	O(5)-S(3)-C(56)	107.4(3)
N(3)-Ni(3)-Ni(2)	89.99(11)	N(20)-S(3)-C(56)	106.0(3)
N(17)-Ni(3)-Ni(4)	91.59(11)	O(8)-S(4)-O(7)	116.3(3)
N(12)-Ni(3)-Ni(4)	92.06(11)	O(8)-S(4)-N(15)	112.4(2)
N(8)-Ni(3)-Ni(4)	92.09(11)	O(7)-S(4)-N(15)	105.2(2)
N(3)-Ni(3)-Ni(4)	92.57(11)	O(8)-S(4)-C(42)	108.3(3)
Ni(2)-Ni(3)-Ni(4)	176.34(3)	O(7)-S(4)-C(42)	106.7(3)
O(10)-Ni(4)-N(11)	93.99(14)	N(15)-S(4)-C(42)	107.6(3)
O(10)-Ni(4)-N(16)	91.96(14)	C(5)-N(1)-C(1)	118.9(4)
N(11)-Ni(4)-N(16)	90.08(16)	C(5)-N(1)-Ni(1)	120.5(3)
O(10)-Ni(4)-N(9)	99.13(14)	C(1)-N(1)-Ni(1)	120.4(3)
N(11)-Ni(4)-N(9)	166.84(14)	C(6)-N(2)-C(5)	122.3(4)
N(16)-Ni(4)-N(9)	88.42(15)	C(6)-N(2)-Ni(2)	119.4(3)
O(10)-Ni(4)-N(4)	102.34(14)	C(5)-N(2)-Ni(2)	118.3(3)
N(11)-Ni(4)-N(4)	88.87(15)	C(6)-N(3)-C(10)	120.4(4)
N(16)-Ni(4)-N(4)	165.70(14)	C(6)-N(3)-Ni(3)	117.8(3)
N(9)-Ni(4)-N(4)	89.36(15)	C(10)-N(3)-Ni(3)	121.1(3)
O(10)-Ni(4)-Ni(3)	173.95(10)	C(13)-N(4)-C(10)	118.7(4)
N(11)-Ni(4)-Ni(3)	83.26(10)	C(13)-N(4)-Ni(4)	122.0(3)
N(16)-Ni(4)-Ni(3)	82.68(10)	C(10)-N(4)-Ni(4)	118.8(3)

			000000000000000000000000000000000000000
C(13)-N(5)-S(1)	123.0(4)	C(52)-N(19)-Ni(1)	119.2(3)
C(15)-N(6)-C(19)	118.1(4)	C(55)-N(20)-S(3)	124.4(3)
C(15)-N(6)-Ni(1)	120.4(3)	N(1)-C(1)-C(2)	122.7(5)
C(19)-N(6)-Ni(1)	121.4(3)	C(3)-C(2)-C(1)	118.4(5)
C(20)-N(7)-C(19)	122.7(4)	C(4)-C(3)-C(2)	120.0(5)
C(20)-N(7)-Ni(2)	117.9(3)	C(3)-C(4)-C(5)	119.0(5)
C(19)-N(7)-Ni(2)	119.0(3)	N(1)-C(5)-N(2)	115.7(4)
C(20)-N(8)-C(24)	121.3(4)	N(1)-C(5)-C(4)	121.1(4)
C(20)-N(8)-Ni(3)	117.2(3)	N(2)-C(5)-C(4)	122.9(4)
C(24)-N(8)-Ni(3)	120.4(3)	N(3)-C(6)-N(2)	115.8(4)
C(24)-N(9)-C(27)	117.6(4)	N(3)-C(6)-C(7)	120.8(4)
C(24)-N(9)-Ni(4)	118.9(3)	N(2)-C(6)-C(7)	123.2(4)
C(27)-N(9)-Ni(4)	123.2(3)	C(8)-C(7)-C(6)	119.5(5)
C(27)-N(10)-S(2)	122.3(3)	C(7)-C(8)-C(9)	120.7(5)
C(29)-N(11)-C(33)	117.8(4)	C(11)-C(9)-C(10)	116.9(5)
C(29)-N(11)-Ni(4)	120.5(3)	C(11)-C(9)-C(8)	124.9(5)
C(33)-N(11)-Ni(4)	121.6(3)	C(10)-C(9)-C(8)	118.2(4)
C(34)-N(12)-C(33)	122.6(4)	N(4)-C(10)-N(3)	116.7(4)
C(34)-N(12)-Ni(3)	119.1(3)	N(4)-C(10)-C(9)	123.1(4)
C(33)-N(12)-Ni(3)	118.3(3)	N(3)-C(10)-C(9)	120.2(4)
C(34)-N(13)-C(38)	120.6(4)	C(12)-C(11)-C(9)	120.6(5)
C(34)-N(13)-Ni(2)	117.9(3)	C(11)-C(12)-C(13)	120.7(5)
C(38)-N(13)-Ni(2)	120.4(3)	N(5)-C(13)-N(4)	114.6(5)
C(38)-N(14)-C(41)	117.9(4)	N(5)-C(13)-C(12)	125.6(5)
C(38)-N(14)-Ni(1)	119.8(3)	N(4)-C(13)-C(12)	119.7(4)
C(41)-N(14)-Ni(1)	122.2(3)	N(6)-C(15)-C(16)	123.1(5)
C(41)-N(15)-S(4)	124.7(4)	C(15)-C(16)-C(17)	118.6(5)
C(43)-N(16)-C(47)	117.6(4)	C(18)-C(17)-C(16)	119.3(5)
C(43)-N(16)-Ni(4)	121.6(3)	C(17)-C(18)-C(19)	119.7(5)
C(47)-N(16)-Ni(4)	120.8(3)	N(6)-C(19)-N(7)	115.0(4)
C(48)-N(17)-C(47)	121.9(4)	N(6)-C(19)-C(18)	121.1(4)
C(48)-N(17)-Ni(3)	118.6(3)	N(7)-C(19)-C(18)	123.8(4)
C(47)-N(17)-Ni(3)	119.4(3)	N(8)-C(20)-N(7)	116.9(4)
C(48)-N(18)-C(52)	120.7(4)	N(8)-C(20)-C(21)	120.2(4)
C(48)-N(18)-Ni(2)	117.0(3)	N(7)-C(20)-C(21)	122.7(4)
C(52)-N(18)-Ni(2)	121.0(3)	C(22)-C(21)-C(20)	119.1(5)
C(55)-N(19)-C(52)	117.5(4)	C(21)-C(22)-C(23)	120.5(5)
C(55)-N(19)-Ni(1)	123.1(3)	C(24)-C(23)-C(22)	119.0(4)

			COLOR ALL ALL	
C(24)-C(23)-C(25)	117.0(5)	N(15)-C(41)-C(40)	125.7(4)	
C(22)-C(23)-C(25)	124.0(5)	N(14)-C(41)-C(40)	119.8(4)	16191
N(9)-C(24)-N(8)	116.7(4)	N(16)-C(43)-C(44)	123.6(5)	01010
N(9)-C(24)-C(23)	123.6(4)	C(43)-C(44)-C(45)	118.6(5)	Į
N(8)-C(24)-C(23)	119.7(4)	C(46)-C(45)-C(44)	119.3(5)	
C(26)-C(25)-C(23)	120.2(5)	C(45)-C(46)-C(47)	119.3(5)	
C(25)-C(26)-C(27)	120.1(4)	N(16)-C(47)-C(46)	121.5(4)	
N(10)-C(27)-N(9)	115.3(4)	N(16)-C(47)-N(17)	114.7(4)	
N(10)-C(27)-C(26)	123.8(4)	C(46)-C(47)-N(17)	123.6(4)	
N(9)-C(27)-C(26)	120.9(4)	N(18)-C(48)-N(17)	116.7(4)	
N(11)-C(29)-C(30)	123.4(5)	N(18)-C(48)-C(49)	119.8(4)	
C(29)-C(30)-C(31)	118.8(5)	N(17)-C(48)-C(49)	123.1(4)	
C(32)-C(31)-C(30)	118.8(5)	C(50)-C(49)-C(48)	120.1(4)	
C(31)-C(32)-C(33)	119.5(5)	C(49)-C(50)-C(51)	120.4(4)	
N(11)-C(33)-N(12)	115.4(4)	C(52)-C(51)-C(50)	118.6(4)	
N(11)-C(33)-C(32)	121.6(4)	C(52)-C(51)-C(53)	117.1(4)	
N(12)-C(33)-C(32)	122.7(4)	C(50)-C(51)-C(53)	124.3(4)	
N(13)-C(34)-N(12)	115.5(4)	N(19)-C(52)-N(18)	115.7(4)	
N(13)-C(34)-C(35)	120.7(4)	N(19)-C(52)-C(51)	123.9(4)	
N(12)-C(34)-C(35)	123.6(4)	N(18)-C(52)-C(51)	120.4(4)	
C(36)-C(35)-C(34)	118.9(4)	C(54)-C(53)-C(51)	119.7(4)	
C(35)-C(36)-C(37)	121.1(5)	C(53)-C(54)-C(55)	120.5(4)	
C(38)-C(37)-C(36)	118.4(4)	N(19)-C(55)-N(20)	113.7(4)	
C(38)-C(37)-C(39)	117.0(4)	N(19)-C(55)-C(54)	121.0(4)	
C(36)-C(37)-C(39)	124.5(5)	N(20)-C(55)-C(54)	125.3(4)	
N(14)-C(38)-N(13)	115.8(4)	Cl(2)-C(57)-Cl(1)	111.4(3)	
N(14)-C(38)-C(37)	124.0(4)	Cl(4)-C(58)-Cl(3)	111.4(4)	
N(13)-C(38)-C(37)	120.2(4)	Cl(6)-C(59)-Cl(5)	115.6(8)	
C(40)-C(39)-C(37)	119.7(5)	Cl(5')-C(59')-Cl(6')	110.3(6)	
C(39)-C(40)-C(41)	121.2(5)	Cl(5")-C(59")-Cl(6")	114.7(9)	
N(15)-C(41)-N(14)	114.5(4)			

附錄C-8.1. Crystal data and structure	refinement for ic18492.	*	
Identification code	ic18492		
Empirical formula	C59H46Cl2F6N20Ni	5014S6	
Formula weight	1929.97	· 學 · 學 / 1000	
Temperature	150(2) K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 25.0742(9) Å	$\alpha = 90^{\circ}$.	
	b = 14.4767(6) Å	$\beta = 90.625(2)^{\circ}$.	
	c = 18.9389(7) Å	$\gamma = 90^{\circ}$.	
Volume	6874.3(5) Å ³		
Z	4		
Density (calculated)	1.865 Mg/m ³		
Absorption coefficient	4.779 mm ⁻¹		
F(000)	3904		
Crystal size	0.131 x 0.039 x 0.019) mm ³	
Theta range for data collection	3.525 to 69.975°.		
Index ranges	-30<=h<=30, -17<=k	<=17, -23<=l<=22	
Reflections collected	19278		
Independent reflections	6438 [R(int) = 0.0518	3]	
Completeness to theta = 67.679°	98.7 %	98.7 %	
Absorption correction	Semi-empirical from	Semi-empirical from equivalents	
Max. and min. transmission	0.7533 and 0.6451		
Refinement method	Full-matrix least-squa	ares on F ²	
Data / restraints / parameters	6438 / 103 / 539		
Goodness-of-fit on F ²	1.177		
Final R indices [I>2sigma(I)]	R1 = 0.1035, wR2 = 0.10355, wR2 = 0.103555, wR2 = 0.103555, wR2 = 0.103555, wR2 = 0.103555, wR2 = 0	0.2910	
R indices (all data)	R1 = 0.1421, wR2 = 0.1421, w	0.3294	
Extinction coefficient	n/a		
Largest diff. peak and hole	1.302 and -1.000 e.Å	-3	

附錄C-8.2. Bond len	gths [Å] and angles [°] for ic18492.	X H X
Ni(1)-N(1)#1	1.910(8)	N(6)-Ni(1)#1	1.912(7)
Ni(1)-N(6)#1	1.912(7)	N(7)-C(20)	1.375(10)
Ni(1)-N(5)	1.913(7)	N(7)-C(19)	1.378(9)
Ni(1)-N(10)	1.917(8)	N(7)-Ni(2)#1	1.888(7)
Ni(1)-Ni(2)	2.3521(16)	N(8)-C(20)	1.342(9)
Ni(2)-N(7)#1	1.888(7)	N(8)-C(24)	1.387(10)
Ni(2)-N(2)#1	1.888(7)	N(9)-C(27)	1.362(10)
Ni(2)-N(4)	1.934(7)	N(9)-C(24)	1.370(10)
Ni(2)-N(9)	1.942(7)	N(10)-C(27)	1.376(10)
Ni(2)-Ni(3)	2.3036(11)	C(1)-C(2)	1.383(14)
Ni(3)-N(3)#1	1.923(6)	C(2)-C(3)	1.341(14)
Ni(3)-N(3)	1.923(6)	C(3)-C(4)	1.392(13)
Ni(3)-N(8)#1	1.931(6)	C(4)-C(5)	1.417(12)
Ni(3)-N(8)	1.931(6)	C(6)-C(7)	1.392(13)
Ni(3)-Ni(2)#1	2.3036(11)	C(7)-C(8)	1.341(12)
S(1)-O(2)	1.428(7)	C(8)-C(9)	1.431(13)
S(1)-O(1)	1.434(7)	C(9)-C(10)	1.378(12)
S(1)-N(5)	1.640(6)	C(9)-C(11)	1.423(12)
S(1)-C(14)	1.767(12)	C(11)-C(12)	1.320(13)
S(2)-O(4)	1.422(7)	C(12)-C(13)	1.428(12)
S(2)-O(3)	1.436(7)	C(15)-C(16)	1.381(13)
S(2)-N(10)	1.639(6)	C(16)-C(17)	1.397(13)
S(2)-C(28)	1.756(11)	C(17)-C(18)	1.377(11)
N(1)-C(5)	1.354(10)	C(18)-C(19)	1.389(12)
N(1)-C(1)	1.391(11)	C(20)-C(21)	1.403(13)
N(1)-Ni(1)#1	1.910(8)	C(21)-C(22)	1.362(13)
N(2)-C(6)	1.373(10)	C(22)-C(23)	1.419(12)
N(2)-C(5)	1.383(10)	C(23)-C(24)	1.380(12)
N(2)-Ni(2)#1	1.888(7)	C(23)-C(25)	1.436(12)
N(3)-C(6)	1.374(10)	C(25)-C(26)	1.338(12)
N(3)-C(10)	1.376(10)	C(26)-C(27)	1.406(12)
N(4)-C(13)	1.363(10)	S(3)-O(7)	1.450(9)
N(4)-C(10)	1.383(10)	S(3)-O(6)	1.464(9)
N(5)-C(13)	1.384(11)	S(3)-O(5)	1.478(9)
N(6)-C(15)	1.372(9)	S(3)-C(29)	1.794(6)
N(6)-C(19)	1.374(10)	C(29)-F(3)	1.348(9)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	款 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 STOP
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccc} C(29')-F(3') & 1.355(9) & N(3)\#1-Ni(3)-Ni(2)\#1 & 90.81(18) \\ C(29')-F(1') & 1.367(9) & N(3)-Ni(3)-Ni(2)\#1 & 89.29(18) \\ C(29')-F(2') & 1.375(9) & N(8)\#1-Ni(3)-Ni(2)\#1 & 90.51(18) \\ C(30)-Cl(1) & 1.741(10) & N(8)-Ni(3)-Ni(2) \#1 & 89.39(18) \\ C(30)-Cl(2) & 1.749(9) & N(3)\#1-Ni(3)-Ni(2) & 89.29(18) \\ Cl(2)-Cl(2)\#1 & 1.51(3) & N(3)-Ni(3)-Ni(2) & 90.81(18) \\ & N(8)\#1-Ni(3)-Ni(2) & 90.81(18) \\ & N(8)\#1-Ni(3)-Ni(2) & 90.51(18) \\ N(1)\#1-Ni(1)-N(6)\#1 & 173.4(3) & N(8)-Ni(3)-Ni(2) & 90.51(18) \\ N(1)\#1-Ni(1)-N(5) & 92.4(3) & Ni(2)\#1-Ni(3)-Ni(2) & 179.87(11) \\ N(6)\#1-Ni(1)-N(5) & 88.9(3) & O(2)-S(1)-O(1) & 117.6(4) \\ N(1)\#1-Ni(1)-N(10) & 87.8(3) & O(2)-S(1)-N(5) & 104.8(4) \\ N(6)\#1-Ni(1)-N(10) & 173.4(3) & O(2)-S(1)-C(14) & 107.7(5) \\ \end{array}$	
$\begin{array}{cccccc} C(29')\text{-}F(1') & 1.367(9) & N(3)\text{-}Ni(2)\#1 & 89.29(18) \\ C(29')\text{-}F(2') & 1.375(9) & N(8)\#1\text{-}Ni(3)\text{-}Ni(2)\#1 & 90.51(18) \\ C(30)\text{-}Cl(1) & 1.741(10) & N(8)\text{-}Ni(3)\text{-}Ni(2)\#1 & 89.39(18) \\ C(30)\text{-}Cl(2) & 1.749(9) & N(3)\#1\text{-}Ni(3)\text{-}Ni(2) & 89.29(18) \\ Cl(2)\text{-}Cl(2)\#1 & 1.51(3) & N(3)\text{-}Ni(2) & 90.81(18) \\ & N(8)\#1\text{-}Ni(3)\text{-}Ni(2) & 89.39(18) \\ N(1)\#1\text{-}Ni(1)\text{-}N(6)\#1 & 173.4(3) & N(8)\text{-}Ni(3)\text{-}Ni(2) & 90.51(18) \\ N(1)\#1\text{-}Ni(1)\text{-}N(5) & 92.4(3) & Ni(2)\#1\text{-}Ni(3)\text{-}Ni(2) & 179.87(11) \\ N(6)\#1\text{-}Ni(1)\text{-}N(5) & 88.9(3) & O(2)\text{-}S(1)\text{-}O(1) & 117.6(4) \\ N(1)\#1\text{-}Ni(1)\text{-}N(10) & 87.8(3) & O(2)\text{-}S(1)\text{-}N(5) & 104.8(4) \\ N(6)\#1\text{-}Ni(1)\text{-}N(10) & 90.2(3) & O(1)\text{-}S(1)\text{-}N(5) & 112.7(4) \\ N(5)\text{-}Ni(1)\text{-}N(10) & 173.4(3) & O(2)\text{-}S(1)\text{-}C(14) & 107.7(5) \\ \end{array}$	
$\begin{array}{ccccccc} C(29')-F(2') & 1.375(9) & N(8)\#1-Ni(3)-Ni(2)\#1 & 90.51(18) \\ C(30)-Cl(1) & 1.741(10) & N(8)-Ni(3)-Ni(2)\#1 & 89.39(18) \\ C(30)-Cl(2) & 1.749(9) & N(3)\#1-Ni(3)-Ni(2) & 89.29(18) \\ Cl(2)-Cl(2)\#1 & 1.51(3) & N(3)-Ni(3)-Ni(2) & 90.81(18) \\ & N(8)\#1-Ni(3)-Ni(2) & 89.39(18) \\ N(1)\#1-Ni(1)-N(6)\#1 & 173.4(3) & N(8)-Ni(3)-Ni(2) & 90.51(18) \\ N(1)\#1-Ni(1)-N(5) & 92.4(3) & Ni(2)\#1-Ni(3)-Ni(2) & 179.87(11) \\ N(6)\#1-Ni(1)-N(5) & 88.9(3) & O(2)-S(1)-O(1) & 117.6(4) \\ N(1)\#1-Ni(1)-N(10) & 87.8(3) & O(2)-S(1)-N(5) & 104.8(4) \\ N(6)\#1-Ni(1)-N(10) & 90.2(3) & O(1)-S(1)-N(5) & 112.7(4) \\ N(5)-Ni(1)-N(10) & 173.4(3) & O(2)-S(1)-C(14) & 107.7(5) \\ \end{array}$	
$\begin{array}{ccccccc} C(30)-Cl(1) & 1.741(10) & N(8)-Ni(3)-Ni(2)\#1 & 89.39(18) \\ C(30)-Cl(2) & 1.749(9) & N(3)\#1-Ni(3)-Ni(2) & 89.29(18) \\ Cl(2)-Cl(2)\#1 & 1.51(3) & N(3)-Ni(2) & 90.81(18) \\ & & N(8)\#1-Ni(3)-Ni(2) & 89.39(18) \\ N(1)\#1-Ni(1)-N(6)\#1 & 173.4(3) & N(8)-Ni(3)-Ni(2) & 90.51(18) \\ N(1)\#1-Ni(1)-N(5) & 92.4(3) & Ni(2)\#1-Ni(3)-Ni(2) & 179.87(11) \\ N(6)\#1-Ni(1)-N(5) & 88.9(3) & O(2)-S(1)-O(1) & 117.6(4) \\ N(1)\#1-Ni(1)-N(10) & 87.8(3) & O(2)-S(1)-N(5) & 104.8(4) \\ N(6)\#1-Ni(1)-N(10) & 90.2(3) & O(1)-S(1)-N(5) & 112.7(4) \\ N(5)-Ni(1)-N(10) & 173.4(3) & O(2)-S(1)-C(14) & 107.7(5) \\ \end{array}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
N(8)#1-Ni(3)-Ni(2)89.39(18) $N(1)$ #1-Ni(1)-N(6)#1173.4(3) $N(8)$ -Ni(3)-Ni(2)90.51(18) $N(1)$ #1-Ni(1)-N(5)92.4(3) $Ni(2)$ #1-Ni(3)-Ni(2)179.87(11) $N(6)$ #1-Ni(1)-N(5)88.9(3) $O(2)$ -S(1)-O(1)117.6(4) $N(1)$ #1-Ni(1)-N(10)87.8(3) $O(2)$ -S(1)-N(5)104.8(4) $N(6)$ #1-Ni(1)-N(10)90.2(3) $O(1)$ -S(1)-N(5)112.7(4) $N(5)$ -Ni(1)-N(10)173.4(3) $O(2)$ -S(1) $C(14)$ 107.7(5)	
N(1)#1-Ni(1)-N(6)#1173.4(3) $N(8)-Ni(3)-Ni(2)$ 90.51(18) $N(1)#1-Ni(1)-N(5)$ 92.4(3) $Ni(2)#1-Ni(3)-Ni(2)$ 179.87(11) $N(6)#1-Ni(1)-N(5)$ 88.9(3) $O(2)-S(1)-O(1)$ 117.6(4) $N(1)#1-Ni(1)-N(10)$ 87.8(3) $O(2)-S(1)-N(5)$ 104.8(4) $N(6)#1-Ni(1)-N(10)$ 90.2(3) $O(1)-S(1)-N(5)$ 112.7(4) $N(5)-Ni(1)-N(10)$ 173.4(3) $O(2)-S(1)-C(14)$ 107.7(5)	
N(1)#1-Ni(1)-N(5)92.4(3) $Ni(2)#1-Ni(3)-Ni(2)$ 179.87(11) $N(6)#1-Ni(1)-N(5)$ 88.9(3) $O(2)-S(1)-O(1)$ 117.6(4) $N(1)#1-Ni(1)-N(10)$ 87.8(3) $O(2)-S(1)-N(5)$ 104.8(4) $N(6)#1-Ni(1)-N(10)$ 90.2(3) $O(1)-S(1)-N(5)$ 112.7(4) $N(5)-Ni(1)-N(10)$ 173.4(3) $O(2)-S(1)-C(14)$ 107.7(5)	
N(6)#1-Ni(1)-N(5)88.9(3) $O(2)$ -S(1)- $O(1)$ 117.6(4)N(1)#1-Ni(1)-N(10)87.8(3) $O(2)$ -S(1)-N(5)104.8(4)N(6)#1-Ni(1)-N(10)90.2(3) $O(1)$ -S(1)-N(5)112.7(4)N(5)-Ni(1)-N(10)173.4(3) $O(2)$ -S(1) $C(14)$ 107.7(5)	
N(1)#1-Ni(1)-N(10)87.8(3) $O(2)-S(1)-N(5)$ 104.8(4) $N(6)#1-Ni(1)-N(10)$ 90.2(3) $O(1)-S(1)-N(5)$ 112.7(4) $N(5)-Ni(1)-N(10)$ 173.4(3) $O(2)-S(1)$ $C(14)$ 107.7(5)	
N(6)#1-Ni(1)-N(10) 90.2(3) O(1)-S(1)-N(5) 112.7(4) N(5)-Ni(1)-N(10) 173.4(3) O(2)-S(1) C(14) 107.7(5)	
N(5)-Ni(1)-N(10) 173 $A(3)$ $O(2)-S(1) C(14)$ 107 7(5)	
$1(3)^{-1}(1)^{-1}(10) = 1/3.7(3) = 0(2)^{-1}(1)^{-1}(10) = 10/.7(3)$	
N(1)#1-Ni(1)-Ni(2) 86.97(19) O(1)-S(1)-C(14) 107.6(5)	
N(6)#1-Ni(1)-Ni(2) 86.65(19) N(5)-S(1)-C(14) 105.8(5)	
N(5)-Ni(1)-Ni(2) 87.17(19) O(4)-S(2)-O(3) 117.5(4)	
N(10)-Ni(1)-Ni(2) 86.27(19) O(4)-S(2)-N(10) 102.8(4)	
N(7)#1-Ni(2)-N(2)#1 178.3(3) O(3)-S(2)-N(10) 113.6(4)	
N(7)#1-Ni(2)-N(4) 90.1(3) O(4)-S(2)-C(28) 109.4(4)	
N(2)#1-Ni(2)-N(4) 91.1(3) O(3)-S(2)-C(28) 107.9(5)	
N(7)#1-Ni(2)-N(9) 88.5(3) N(10)-S(2)-C(28) 104.9(4)	
N(2)#1-Ni(2)-N(9) 90.3(3) C(5)-N(1)-C(1) 118.3(8)	
N(4)-Ni(2)-N(9) 178.2(3) C(5)-N(1)-Ni(1)#1 122.8(5)	
N(7)#1-Ni(2)-Ni(3) 89.20(19) C(1)-Ni(1)#1 117.6(6)	
N(2)#1-Ni(2)-Ni(3) 89.60(18) C(6)-N(2)-C(5) 122.0(7)	
N(4)-Ni(2)-Ni(3) 89.12(18) C(6)-N(2)-Ni(2)#1 120.9(5)	
N(9)-Ni(2)-Ni(3) 89.65(18) C(5)-N(2)-Ni(2)#1 117.0(5)	
N(7)#1-Ni(2)-Ni(1) 90.87(19) C(6)-N(3)-C(10) 119.1(7)	
N(2)#1-Ni(2)-Ni(1) 90.35(18) C(6)-N(3)-Ni(3) 120.8(5)	
N(4)-Ni(2)-Ni(1) 90.25(18) C(10)-N(3)-Ni(3) 120.1(5)	
N(9)-Ni(2)-Ni(1) 90.98(18) C(13)-N(4)-C(10) 118.3(7)	
Ni(3)-Ni(2)-Ni(1) 179.37(8) C(13)-N(4)-Ni(2) 120.5(5)	

			161010101010
C(10) - N(4) - Ni(2)	120.9(5)	C(11) - C(12) - C(13)	120 3(7)
C(13)-N(5)-S(1)	120.9(5)	N(4)-C(13)-N(5)	120.3(7) 114 8(7)
C(13)-N(5)-N(1)	121.9(0) 122.4(5)	N(4)-C(13)-C(12)	120 3(7)
S(1) N(5) N(1)	122.4(3)	N(4)-C(13)-C(12) N(5) C(13) C(12)	120.3(7)
S(1) - IN(3) - IN(1) C(15) N(6) C(10)	113.9(4)	N(5)-C(15)-C(12)	124.9(7)
C(15) - N(0) - C(19) C(15) - N(6) - N(1) + 1	119.4(7)	$\Gamma(0)$ - $C(15)$ - $C(16)$	120.9(8)
C(13)-IN(0)-INI(1)#1 C(10) N(6) N(1)#1	110.9(0) 122.7(5)	C(13)-C(10)-C(17) C(18) C(17) C(16)	119.8(7)
C(19)-IN(0)-INI(1)#1 C(20) N(7) C(10)	123.7(3)	C(18)-C(17)-C(10)	110.0(0)
C(20) - N(7) - C(19)	122.3(7)	C(17)-C(18)-C(19)	120.3(8)
C(20)-IN(7)-INI(2)#1	118.3(5)	N(6)-C(19)-N(7)	115.1(7)
C(19)-N(7)-N(2)#1	119.2(5)	N(6)-C(19)-C(18)	120.4(7)
C(20)-N(8)-C(24)	120.2(7)	N(7)-C(19)-C(18)	124.3(7)
C(20)-N(8)-Ni(3)	119.6(5)	N(8)-C(20)-N(7)	116.5(7)
C(24)-N(8)-Ni(3)	118.9(5)	N(8)-C(20)-C(21)	120.2(7)
C(27)-N(9)-C(24)	119.4(7)	N(7)-C(20)-C(21)	123.1(7)
C(27)-N(9)-Ni(2)	120.0(5)	C(22)-C(21)-C(20)	120.7(7)
C(24)-N(9)-Ni(2)	120.6(5)	C(21)-C(22)-C(23)	119.3(9)
C(27)-N(10)-S(2)	122.9(6)	C(24)-C(23)-C(22)	118.6(8)
C(27)-N(10)-Ni(1)	124.9(6)	C(24)-C(23)-C(25)	118.0(7)
S(2)-N(10)-Ni(1)	111.9(4)	C(22)-C(23)-C(25)	123.4(9)
C(2)-C(1)-N(1)	122.1(8)	N(9)-C(24)-C(23)	122.1(7)
C(3)-C(2)-C(1)	119.1(8)	N(9)-C(24)-N(8)	116.9(7)
C(2)-C(3)-C(4)	121.1(10)	C(23)-C(24)-N(8)	121.0(7)
C(3)-C(4)-C(5)	118.8(9)	C(26)-C(25)-C(23)	119.0(8)
N(1)-C(5)-N(2)	115.8(7)	C(25)-C(26)-C(27)	121.6(8)
N(1)-C(5)-C(4)	120.4(7)	N(9)-C(27)-N(10)	114.5(7)
N(2)-C(5)-C(4)	123.5(7)	N(9)-C(27)-C(26)	119.8(7)
N(2)-C(6)-N(3)	115.1(7)	N(10)-C(27)-C(26)	125.7(7)
N(2)-C(6)-C(7)	123.6(7)	O(7)-S(3)-O(6)	107(2)
N(3)-C(6)-C(7)	121.1(7)	O(7)-S(3)-O(5)	103(2)
C(8)-C(7)-C(6)	119.8(8)	O(6)-S(3)-O(5)	121(2)
C(7)-C(8)-C(9)	120.4(8)	O(7)-S(3)-C(29)	93.1(11)
C(10)-C(9)-C(11)	117.5(8)	O(6)-S(3)-C(29)	104.5(18)
C(10)-C(9)-C(8)	118.2(8)	O(5)-S(3)-C(29)	122.9(16)
C(11)-C(9)-C(8)	124.3(8)	F(3)-C(29)-F(1)	119.0(19)
N(3)-C(10)-C(9)	121.2(7)	F(3)-C(29)-F(2)	111(2)
N(3)-C(10)-N(4)	116.2(7)	F(1)-C(29)-F(2)	111.3(19)
C(9)-C(10)-N(4)	122.6(7)	F(3)-C(29)-S(3)	108.4(13)
C(12)-C(11)-C(9)	120.9(8)	F(1)-C(29)-S(3)	97.7(12)

F(2)-C(29)-S(3)	107.6(18)	F(3')-C(29')-F(2')	101.5(19)
O(6')-S(3')-O(7')	116(2)	F(1')-C(29')-F(2')	112.5(19)
O(6')-S(3')-O(5')	125(2)	F(3')-C(29')-S(3')	114.2(10)
O(7')-S(3')-O(5')	110(2)	F(1')-C(29')-S(3')	107.4(14)
O(6')-S(3')-C(29')	91.8(18)	F(2')-C(29')-S(3')	111.6(16)
O(7')-S(3')-C(29')	86.2(13)	Cl(1)-C(30)-Cl(2)	116.6(12)
O(5')-S(3')-C(29')	120.3(14)	Cl(2)#1-Cl(2)-C(30)	149.6(12)
F(3')-C(29')-F(1')	109.7(18)		

#1 -x+1,y,-z+1/2

附錄C-9.1. Crystal data and structure	refinement for ic18032.		
Identification code	ic18032		
Empirical formula	C91H83Cl8F6N20Ni5O8PS4	<u>s</u> for	
Formula weight	2435.13		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P21/n		
Unit cell dimensions	$a = 16.2704(5) \text{ Å} \qquad \alpha = 90^{\circ}.$		
	$b = 37.9133(11) \text{ Å} \qquad \beta = 104.9136(8)^{\circ}.$		
	$c = 16.4754(5) \text{ Å} \qquad \gamma = 90^{\circ}.$		
Volume	9820.7(5) Å ³		
Z	4		
Density (calculated)	1.647 Mg/m ³		
Absorption coefficient	1.339 mm ⁻¹		
F(000)	4968		
Crystal size	0.330 x 0.221 x 0.028 mm ³		
Theta range for data collection	2.307 to 27.500°.		
Index ranges	-21<=h<=21, -49<=k<=49, -21<=l<=20		
Reflections collected	79975		
Independent reflections	22548 [R(int) = 0.0721]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7456 and 0.6141		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	22548 / 262 / 1339		
Goodness-of-fit on F ²	1.068		
Final R indices [I>2sigma(I)]	R1 = 0.0713, $wR2 = 0.1545$		
R indices (all data)	R1 = 0.1095, wR2 = 0.1717		
Extinction coefficient	n/a		
Largest diff. peak and hole	2.062 and -1.396 e.Å ⁻³		
附錄C-9.2. Bond ler	ngths [Å] and angles [°] for ic18032.	**************************************
-------------------	-------------------------	-----------------	--
Ni(1)-N(15)	1.906(4)	S(4)-O(7)	1.434(4)
Ni(1)-N(20)	1.913(4)	S(4)-O(8)	1.441(5)
Ni(1)-N(1)	1.915(4)	S(4)-N(20)	1.632(4)
Ni(1)-N(6)	1.917(4)	S(4)-C(80)	1.734(8)
Ni(1)-Ni(2)	2.3540(8)	S(4)-C(80')	1.770(9)
Ni(2)-N(2)	1.904(4)	N(1)-C(1)	1.349(6)
Ni(2)-N(7)	1.910(4)	N(1)-C(5)	1.363(6)
Ni(2)-N(19)	1.960(4)	N(2)-C(5)	1.378(6)
Ni(2)-N(14)	1.961(4)	N(2)-C(6)	1.383(6)
Ni(2)-Ni(3)	2.2992(8)	N(3)-C(6)	1.345(6)
Ni(3)-N(8)	2.013(4)	N(3)-C(10)	1.358(6)
Ni(3)-N(13)	2.021(4)	N(4)-C(13)	1.349(6)
Ni(3)-N(18)	2.022(4)	N(4)-C(10)	1.369(6)
Ni(3)-N(3)	2.024(4)	N(5)-C(13)	1.384(6)
Ni(3)-Ni(4)	2.2322(8)	N(6)-C(21)	1.348(6)
Ni(4)-N(17)	2.003(4)	N(6)-C(25)	1.365(6)
Ni(4)-N(12)	2.004(4)	N(7)-C(25)	1.377(6)
Ni(4)-N(9)	2.033(4)	N(7)-C(26)	1.384(6)
Ni(4)-N(4)	2.036(4)	N(8)-C(26)	1.347(6)
Ni(4)-Ni(5)	2.3193(8)	N(8)-C(30)	1.356(6)
Ni(5)-N(16)	1.910(4)	N(9)-C(33)	1.344(6)
Ni(5)-N(11)	1.919(4)	N(9)-C(30)	1.372(6)
Ni(5)-N(5)	1.947(4)	N(10)-C(33)	1.388(6)
Ni(5)-N(10)	1.947(4)	N(11)-C(41)	1.354(6)
S(1)-O(1)	1.432(4)	N(11)-C(45)	1.367(6)
S(1)-O(2)	1.433(4)	N(12)-C(45)	1.360(6)
S(1)-N(5)	1.630(4)	N(12)-C(46)	1.367(6)
S(1)-C(20)	1.759(6)	N(13)-C(50)	1.358(6)
S(2)-O(4)	1.428(4)	N(13)-C(46)	1.359(6)
S(2)-O(3)	1.436(4)	N(14)-C(53)	1.353(6)
S(2)-N(10)	1.630(4)	N(14)-C(50)	1.385(6)
S(2)-C(40)	1.752(6)	N(15)-C(53)	1.374(6)
S(3)-O(5)	1.428(4)	N(16)-C(61)	1.354(6)
S(3)-O(6)	1.429(4)	N(16)-C(65)	1.370(6)
S(3)-N(15)	1.647(4)	N(17)-C(65)	1.354(6)
S(3)-C(60)	1.744(6)	N(17)-C(66)	1.359(6)

时待C-Q 2 Bond lengths [Å] and angles [°] for ic18032

			AG101010107
N(18)-C(70)	1 357(6)	C(36)-C(37)	1 379(9)
N(18) - C(66)	1.361(6)	C(37)- $C(38)$	1.368(9)
N(19)-C(73)	1.361(6)	C(38)- $C(39)$	1.401(7)
N(19)-C(70)	1.383(6)	C(41)-C(42)	1 374(7)
N(20)-C(73)	1.370(6)	C(42)- $C(43)$	1.406(7)
C(1)-C(2)	1.361(7)	C(42)- $C(54)$	1.488(6)
C(2)-C(3)	1 408(7)	C(43)- $C(44)$	1.371(7)
C(2)- $C(14)$	1.494(7)	C(44)-C(45)	1.419(7)
C(3)-C(4)	1 375(7)	C(46)-C(47)	1 420(7)
C(4)- $C(5)$	1.373(7) 1 404(7)	C(47)- $C(48)$	1.355(7)
C(6)-C(7)	1.412(7)	C(48)- $C(49)$	1.333(7) 1 412(7)
C(7)- $C(8)$	1.368(7)	C(49)- $C(50)$	1.112(7) 1 405(7)
C(8)-C(9)	1.306(7)	C(49)- $C(51)$	1.406(7)
C(9)-C(10)	1.401(7)	C(51)- $C(52)$	1.348(8)
C(9)- $C(11)$	1.101(7) 1.413(7)	C(52)- $C(53)$	1.370(0) 1 427(7)
C(11)- $C(12)$	1.113(7)	C(54)- $C(59)$	1.327(7)
C(12)-C(13)	1.307(0) 1.420(7)	C(54)- $C(55)$	1.307(7) 1 394(7)
C(12) C(15)	1.420(7)	C(55)- $C(56)$	1.394(7)
C(14) - C(19)	1.303(7)	C(56)- $C(57)$	1.302(0)
C(15)-C(16)	1 389(8)	C(57)- $C(58)$	1.377(9)
C(16)- $C(17)$	1 384(9)	C(58)- $C(59)$	1.377(5)
C(17)- $C(18)$	1.365(10)	C(61)- $C(62)$	1.300(7)
C(18)- $C(19)$	1.303(10)	C(62)- $C(63)$	1.373(7)
C(21)- $C(22)$	1.390(0)	C(62) - C(74')	1.466(19)
C(22)- $C(23)$	1.303(7) 1 403(7)	C(62) - C(74)	1.400(17)
C(22) - C(34)	1.409(7)	C(63)- $C(64)$	1.373(7)
C(22) C(34)	1.409(7) 1 364(7)	C(64)- $C(65)$	1.373(7) 1 403(7)
C(24)- $C(25)$	1.30+(7) 1.410(7)	C(66)-C(67)	1.405(7)
C(24)-C(23)	1.410(7) 1.429(7)	C(67)- $C(68)$	1.490(7)
C(27)- $C(28)$	1.429(7) 1 344(7)	C(68)- $C(69)$	1.349(0) 1 407(7)
C(28)-C(29)	1.3++(7) 1.413(7)	C(69)-C(71)	1.407(7)
C(29)-C(29)	1.413(7)	C(69)-C(70)	1.379(7) 1 410(7)
C(29) - C(31)	1.409(7)	C(71)- $C(72)$	1.410(7)
C(2) - C(31)	1.409(7) 1.364(7)	C(72)-C(73)	1.3+9(0) 1 $416(7)$
C(31)-C(32)	1.30+(7)	C(72)-C(79)	1.410(7)
C(32) = C(33) C(34) = C(39)	1.713(7) 1 38/(8)	C(74)-C(75)	1.302(10) 1.42(2)
C(34)-C(35)	1.304(0)	C(75)- $C(75)$	1.42(2) 1.42(2)
C(3+)-C(33) C(35) C(36)	1.373(0)	C(75)-C(70)	1.42(2) 1.272(10)
U(33) - U(30)	1.304(0)	U(10) - U(11)	1.372(19)

			01010101010
C(77)-C(78)	1.401(17)	N(15)-Ni(1)-N(20)	174.71(17)
C(78)-C(79)	1.371(18)	N(15)-Ni(1)-N(1)	88.32(18)
C(74')-C(75')	1.34(3)	N(20)-Ni(1)-N(1)	90.89(18)
C(74')-C(79')	1.42(3)	N(15)-Ni(1)-N(6)	91.34(17)
C(75')-C(76')	1.36(3)	N(20)-Ni(1)-N(6)	88.95(18)
C(76')-C(77')	1.32(3)	N(1)-Ni(1)-N(6)	174.42(17)
C(77')-C(78')	1.34(2)	N(15)-Ni(1)-Ni(2)	87.85(12)
C(78')-C(79')	1.41(2)	N(20)-Ni(1)-Ni(2)	86.89(12)
P(1)-F(3)	1.539(6)	N(1)-Ni(1)-Ni(2)	87.18(12)
P(1)-F(1)	1.549(5)	N(6)-Ni(1)-Ni(2)	87.25(12)
P(1)-F(4)	1.552(6)	N(2)-Ni(2)-N(7)	179.56(18)
P(1)-F(5)	1.560(6)	N(2)-Ni(2)-N(19)	88.35(17)
P(1)-F(2)	1.563(5)	N(7)-Ni(2)-N(19)	91.26(17)
P(1)-F(6)	1.575(6)	N(2)-Ni(2)-N(14)	91.68(17)
P(1')-F(1')	1.540(7)	N(7)-Ni(2)-N(14)	88.71(17)
P(1')-F(5')	1.543(8)	N(19)-Ni(2)-N(14)	179.88(19)
P(1')-F(6')	1.544(8)	N(2)-Ni(2)-Ni(3)	90.29(12)
P(1')-F(2')	1.553(7)	N(7)-Ni(2)-Ni(3)	89.50(12)
P(1')-F(3')	1.561(8)	N(19)-Ni(2)-Ni(3)	89.60(11)
P(1')-F(4')	1.565(8)	N(14)-Ni(2)-Ni(3)	90.52(12)
C(81)-C(82)	1.492(7)	N(2)-Ni(2)-Ni(1)	89.97(12)
C(81)-Cl(1)	1.779(6)	N(7)-Ni(2)-Ni(1)	90.24(12)
C(82)-Cl(2)	1.761(6)	N(19)-Ni(2)-Ni(1)	90.38(11)
C(83)-C(84)	1.456(8)	N(14)-Ni(2)-Ni(1)	89.50(12)
C(83)-Cl(3)	1.715(8)	Ni(3)-Ni(2)-Ni(1)	179.74(4)
C(84)-Cl(4)	1.715(7)	N(8)-Ni(3)-N(13)	87.69(16)
C(85)-C(86)	1.478(9)	N(8)-Ni(3)-N(18)	92.50(16)
C(85)-Cl(5)	1.736(9)	N(13)-Ni(3)-N(18)	179.40(17)
C(86)-Cl(6)	1.731(9)	N(8)-Ni(3)-N(3)	177.68(16)
C(87)-C(88)	1.458(9)	N(13)-Ni(3)-N(3)	92.72(16)
C(87)-Cl(7)	1.654(8)	N(18)-Ni(3)-N(3)	87.08(16)
C(87)-Cl(7')	1.868(9)	N(8)-Ni(3)-Ni(4)	90.79(11)
C(88)-Cl(8')	1.672(10)	N(13)-Ni(3)-Ni(4)	90.60(11)
C(88)-Cl(8)	1.753(8)	N(18)-Ni(3)-Ni(4)	89.96(11)
C(89)-C(89)#1	1.437(13)	N(3)-Ni(3)-Ni(4)	91.49(11)
C(89)-C(90)	1.521(10)	N(8)-Ni(3)-Ni(2)	89.29(11)
C(90)-C(91)	1.548(10)	N(13)-Ni(3)-Ni(2)	89.32(11)
		N(18)-Ni(3)-Ni(2)	90.11(11)

			101010101010
N(3)-Ni(3)-Ni(2)	88.43(11)	N(10)-S(2)-C(40)	106.2(3)
Ni(4)-Ni(3)-Ni(2)	179.89(4)	O(5)-S(3)-O(6)	117.4(2)
N(17)-Ni(4)-N(12)	179.27(18)	O(5)-S(3)-N(15)	104.0(2)
N(17)-Ni(4)-N(9)	91.60(17)	O(6)-S(3)-N(15)	112.5(2)
N(12)-Ni(4)-N(9)	89.05(17)	O(5)-S(3)-C(60)	108.3(3)
N(17)-Ni(4)-N(4)	88.22(17)	O(6)-S(3)-C(60)	108.5(3)
N(12)-Ni(4)-N(4)	91.13(17)	N(15)-S(3)-C(60)	105.5(3)
N(9)-Ni(4)-N(4)	179.80(17)	O(7)-S(4)-O(8)	117.9(3)
N(17)-Ni(4)-Ni(3)	90.50(11)	O(7)-S(4)-N(20)	104.3(2)
N(12)-Ni(4)-Ni(3)	89.84(11)	O(8)-S(4)-N(20)	111.9(3)
N(9)-Ni(4)-Ni(3)	90.34(11)	O(7)-S(4)-C(80)	111.6(6)
N(4)-Ni(4)-Ni(3)	89.58(11)	O(8)-S(4)-C(80)	101.8(6)
N(17)-Ni(4)-Ni(5)	89.47(11)	N(20)-S(4)-C(80)	109.4(6)
N(12)-Ni(4)-Ni(5)	90.19(11)	O(7)-S(4)-C(80')	103.4(8)
N(9)-Ni(4)-Ni(5)	89.51(11)	O(8)-S(4)-C(80')	117.7(7)
N(4)-Ni(4)-Ni(5)	90.58(11)	N(20)-S(4)-C(80')	99.3(7)
Ni(3)-Ni(4)-Ni(5)	179.84(4)	C(1)-N(1)-C(5)	119.7(4)
N(16)-Ni(5)-N(11)	176.17(17)	C(1)-N(1)-Ni(1)	117.6(3)
N(16)-Ni(5)-N(5)	91.14(18)	C(5)-N(1)-Ni(1)	122.7(3)
N(11)-Ni(5)-N(5)	89.37(17)	C(5)-N(2)-C(6)	121.4(4)
N(16)-Ni(5)-N(10)	88.49(18)	C(5)-N(2)-Ni(2)	118.6(3)
N(11)-Ni(5)-N(10)	90.74(18)	C(6)-N(2)-Ni(2)	119.9(3)
N(5)-Ni(5)-N(10)	176.10(17)	C(6)-N(3)-C(10)	120.1(4)
N(16)-Ni(5)-Ni(4)	88.16(12)	C(6)-N(3)-Ni(3)	119.4(3)
N(11)-Ni(5)-Ni(4)	88.07(12)	C(10)-N(3)-Ni(3)	119.0(3)
N(5)-Ni(5)-Ni(4)	87.48(12)	C(13)-N(4)-C(10)	119.8(4)
N(10)-Ni(5)-Ni(4)	88.62(12)	C(13)-N(4)-Ni(4)	119.0(3)
O(1)-S(1)-O(2)	117.8(3)	C(10)-N(4)-Ni(4)	121.0(3)
O(1)-S(1)-N(5)	113.0(2)	C(13)-N(5)-S(1)	122.3(4)
O(2)-S(1)-N(5)	103.6(2)	C(13)-N(5)-Ni(5)	125.4(3)
O(1)-S(1)-C(20)	107.3(3)	S(1)-N(5)-Ni(5)	112.2(2)
O(2)-S(1)-C(20)	108.6(3)	C(21)-N(6)-C(25)	119.9(4)
N(5)-S(1)-C(20)	105.8(3)	C(21)-N(6)-Ni(1)	117.5(3)
O(4)-S(2)-O(3)	117.3(2)	C(25)-N(6)-Ni(1)	122.5(3)
O(4)-S(2)-N(10)	112.8(2)	C(25)-N(7)-C(26)	121.4(4)
O(3)-S(2)-N(10)	104.5(2)	C(25)-N(7)-Ni(2)	117.7(3)
O(4)-S(2)-C(40)	107.6(3)	C(26)-N(7)-Ni(2)	120.9(3)
O(3)-S(2)-C(40)	107.9(3)	C(26)-N(8)-C(30)	119.7(4)

			10101010101010
C(26)-N(8)-Ni(3)	119.2(3)	N(1)-C(1)-C(2)	124.2(4)
C(30)-N(8)-Ni(3)	120.1(3)	C(1)-C(2)-C(3)	116.8(4)
C(33)-N(9)-C(30)	119.7(4)	C(1)-C(2)-C(14)	120.8(4)
C(33)-N(9)-Ni(4)	120.4(3)	C(3)-C(2)-C(14)	122.4(5)
C(30)-N(9)-Ni(4)	119.9(3)	C(4)-C(3)-C(2)	120.0(5)
C(33)-N(10)-S(2)	123.7(4)	C(3)-C(4)-C(5)	120.3(5)
C(33)-N(10)-Ni(5)	123.7(3)	N(1)-C(5)-N(2)	116.1(4)
S(2)-N(10)-Ni(5)	112.5(2)	N(1)-C(5)-C(4)	118.9(4)
C(41)-N(11)-C(45)	120.4(4)	N(2)-C(5)-C(4)	124.9(4)
C(41)-N(11)-Ni(5)	115.5(3)	N(3)-C(6)-N(2)	115.4(4)
C(45)-N(11)-Ni(5)	124.1(3)	N(3)-C(6)-C(7)	120.5(4)
C(45)-N(12)-C(46)	123.7(4)	N(2)-C(6)-C(7)	123.9(4)
C(45)-N(12)-Ni(4)	117.5(3)	C(8)-C(7)-C(6)	119.6(5)
C(46)-N(12)-Ni(4)	118.3(3)	C(7)-C(8)-C(9)	120.4(5)
C(50)-N(13)-C(46)	120.0(4)	C(10)-C(9)-C(8)	117.4(4)
C(50)-N(13)-Ni(3)	118.8(3)	C(10)-C(9)-C(11)	117.2(5)
C(46)-N(13)-Ni(3)	119.5(3)	C(8)-C(9)-C(11)	125.4(5)
C(53)-N(14)-C(50)	118.9(4)	N(3)-C(10)-N(4)	115.7(4)
C(53)-N(14)-Ni(2)	120.1(3)	N(3)-C(10)-C(9)	122.0(4)
C(50)-N(14)-Ni(2)	120.9(3)	N(4)-C(10)-C(9)	122.3(4)
C(53)-N(15)-S(3)	124.1(3)	C(12)-C(11)-C(9)	120.6(5)
C(53)-N(15)-Ni(1)	123.3(3)	C(11)-C(12)-C(13)	119.5(5)
S(3)-N(15)-Ni(1)	111.9(2)	N(4)-C(13)-N(5)	114.5(4)
C(61)-N(16)-C(65)	120.4(4)	N(4)-C(13)-C(12)	120.5(5)
C(61)-N(16)-Ni(5)	115.4(3)	N(5)-C(13)-C(12)	124.9(4)
C(65)-N(16)-Ni(5)	124.1(3)	C(15)-C(14)-C(19)	119.0(5)
C(65)-N(17)-C(66)	123.6(4)	C(15)-C(14)-C(2)	120.3(5)
C(65)-N(17)-Ni(4)	118.1(3)	C(19)-C(14)-C(2)	120.6(5)
C(66)-N(17)-Ni(4)	118.0(3)	C(14)-C(15)-C(16)	120.7(6)
C(70)-N(18)-C(66)	120.2(4)	C(17)-C(16)-C(15)	119.5(6)
C(70)-N(18)-Ni(3)	118.0(3)	C(18)-C(17)-C(16)	120.5(5)
C(66)-N(18)-Ni(3)	120.0(3)	C(17)-C(18)-C(19)	120.6(6)
C(73)-N(19)-C(70)	118.7(4)	C(18)-C(19)-C(14)	119.7(6)
C(73)-N(19)-Ni(2)	119.2(3)	N(6)-C(21)-C(22)	123.7(5)
C(70)-N(19)-Ni(2)	122.0(3)	C(21)-C(22)-C(23)	116.3(4)
C(73)-N(20)-S(4)	121.9(4)	C(21)-C(22)-C(34)	120.9(4)
C(73)-N(20)-Ni(1)	124.1(3)	C(23)-C(22)-C(34)	122.8(5)
S(4)-N(20)-Ni(1)	113.1(2)	C(24)-C(23)-C(22)	121.0(5)

C(23)-C(24)-C(25)120.2(5)N(13)-C(46)-C(47)120.3(4)N(6)-C(25)-C(24)118.7(4)C(48)-C(47)-C(46)119.7(5)N(7)-C(25)-C(24)124.6(4)C(47)-C(48)-C(49)120.5(5)N(8)-C(26)-N(7)115.5(4)C(50)-C(49)-C(51)118.0(5)N(8)-C(26)-C(27)120.6(4)C(51)-C(49)-C(48)117.7(5)N(7)-C(26)-C(27)123.7(4)C(51)-C(49)-C(48)124.3(5)C(28)-C(27)-C(26)119.0(4)N(13)-C(50)-N(14)116.9(4)C(27)-C(28)-C(29)121.7(5)N(13)-C(50)-C(49)121.4(4)C(30)-C(29)-C(28)116.4(4)C(52)-C(51)115.9(4)N(8)-C(30)-C(29)122.4(4)N(14)-C(53)-N(15)115.9(4)N(8)-C(30)-C(29)121.7(4)N(14)-C(53)-N(15)115.9(4)N(8)-C(30)-C(29)122.4(4)N(14)-C(53)-N(15)115.9(4)N(8)-C(30)-C(29)121.7(4)N(15)-C(53)119.2(5)N(8)-C(30)-C(29)121.7(4)N(15)-C(53)-C(52)122.9(4)C(31)-C(32)-C(33)119.5(5)C(59)-C(54)-C(55)119.1(5)C(31)-C(32)-C(33)119.5(5)C(59)-C(54)-C(55)119.1(5)C(31)-C(32)-C(32)121.1(4)C(56)-C(55)-C(54)120.4(5)N(9)-C(33)-C(32)121.1(4)C(56)-C(55)-C(54)120.4(5)N(10)-C(33)-C(32)124.3(4)C(57)-C(56)-C(55)119.8(5)C(34)-C(32)120.4(5)C(58)-C(57)-C(56)120.4(5)N(10)-C(35)-C(34)120.4(5)C(66)-C(57)-C(56)120.4(5)C(34)-C(34)-C(25)120.4(5)C(66)-C(57)-C(56) <th></th> <th></th> <th></th> <th>and the trans</th>				and the trans
$\begin{split} & \text{C(23)-C(24)-C(25)} & \text{I20.2(5)} & \text{N(13)-C(46)-C(14')} & \text{I20.3(4)} \\ & \text{N(6)-C(25)-N(7)} & \text{I16.6(4)} & \text{N(12)-C(46)-C(47)} & \text{I24.6(4)} \\ & \text{N(6)-C(25)-C(24)} & \text{I18.7(4)} & \text{C(48)-C(47)-C(46)} & \text{I19.7(5)} \\ & \text{N(7)-C(25)-C(24)} & \text{I24.6(4)} & \text{C(50)-C(49)-C(51)} & \text{I18.0(5)} \\ & \text{N(8)-C(26)-N(7)} & \text{I15.5(4)} & \text{C(50)-C(49)-C(48)} & \text{I17.7(5)} \\ & \text{N(7)-C(26)-C(27)} & \text{I23.7(4)} & \text{C(51)-C(49)-C(48)} & \text{I24.3(5)} \\ & \text{C(28)-C(27)-C(26)} & \text{I19.0(4)} & \text{N(13)-C(50)-N(14)} & \text{I16.9(4)} \\ & \text{C(27)-C(28)-C(29)} & \text{I21.7(5)} & \text{N(13)-C(50)-C(49)} & \text{I21.1(4)} \\ & \text{C(30)-C(29)-C(28)} & \text{I16.4(4)} & \text{C(52)-C(51)} & \text{C(14)} & \text{C(30)-C(29)-C(28)} \\ & \text{C(30)-C(29)-C(28)} & \text{I16.4(4)} & \text{C(52)-C(53)} & \text{I19.2(5)} \\ & \text{N(8)-C(30)-N(9)} & \text{I15.9(4)} & \text{N(14)-C(53)-N(15)} & \text{I15.9(4)} \\ & \text{N(8)-C(30)-C(29)} & \text{I22.4(4)} & \text{N(14)-C(53)-N(15)} & \text{I15.9(4)} \\ & \text{N(9)-C(30)-C(29)} & \text{I22.4(4)} & \text{N(14)-C(53)-C(52)} & \text{I22.1(3)} \\ & \text{N(9)-C(30)-C(29)} & \text{I22.4(4)} & \text{N(14)-C(53)-C(52)} & \text{I22.9(4)} \\ & \text{C(32)-C(31)-C(29)} & \text{I20.6(5)} & \text{C(59)-C(54)-C(52)} & \text{I19.1(5)} \\ & \text{C(31)-C(32)-C(33)} & \text{I19.5(5)} & \text{C(59)-C(54)-C(42)} & \text{I20.3(5)} \\ & \text{N(9)-C(33)-C(29)} & \text{I21.7(4)} & \text{N(15)-C(53)} & \text{I19.1(5)} \\ & \text{C(31)-C(32)} & \text{I12.1(4)} & \text{C(56)-C(55)} & \text{I19.1(5)} \\ & \text{C(31)-C(32)} & \text{I21.1(4)} & \text{C(56)-C(55)} & \text{I19.1(5)} \\ & \text{C(39)-C(34)-C(22)} & \text{I20.4(5)} & \text{C(57)-C(56)} & \text{I20.4(5)} \\ & \text{N(10)-C(33)-C(32)} & \text{I21.1(4)} & \text{C(56)-C(55)} & \text{I19.8(5)} \\ & \text{C(39)-C(34)-C(22)} & \text{I20.4(5)} & \text{C(58)-C(57)-C(56)} & \text{I20.4(5)} \\ & \text{N(10)-C(33)-C(32)} & \text{I21.1(4)} & \text{C(56)-C(55)} & \text{I19.8(5)} \\ \\ & \text{C(39)-C(34)-C(22)} & \text{I20.4(5)} & \text{C(61)-C(62)} & \text{I23.5(5)} \\ \\ & \text{C(39)-C(34)-C(22)} & \text{I20.4(5)} & \text{C(58)-C(57)-C(56)} & \text{I20.4(5)} \\ \\ & \text{C(30)-C(35)-C(34)} & \text{I20.2(6)} & \text{C(61)-C(62)} & \text{I23.5(5)} \\ \\ & \text{C(37)-C(36)-C(35)} & \text{I20.1(6)} & \text{C(61)-C(62)} & \text{I23.5(5)} \\ \\ & \text{C(37)-C(38)-C(39)} & \text{I20.2(6)} & C(61)-C(6$		100.0(5)		
N(6)-C(25)-N(7) $116.6(4)$ $N(12)-C(46)-C(47)$ $1124.6(4)$ $N(6)-C(25)-C(24)$ $118.7(4)$ $C(48)-C(47)-C(46)$ $119.7(5)$ $N(7)-C(25)-C(24)$ $124.6(4)$ $C(47)-C(48)-C(49)$ $120.5(5)$ $N(8)-C(26)-N(7)$ $115.5(4)$ $C(50)-C(49)-C(48)$ $117.7(5)$ $N(8)-C(26)-C(27)$ $123.7(4)$ $C(51)-C(49)-C(48)$ $124.3(5)$ $C(28)-C(27)-C(26)$ $119.0(4)$ $N(13)-C(50)-N(14)$ $116.9(4)$ $C(27)-C(28)-C(29)$ $121.7(5)$ $N(13)-C(50)-C(49)$ $121.7(4)$ $C(30)-C(29)-C(31)$ $117.5(5)$ $N(14)-C(53)-C(49)$ $121.4(4)$ $C(30)-C(29)-C(28)$ $116.4(4)$ $C(52)-C(51)$ $119.2(5)$ $N(8)-C(30)-N(9)$ $115.9(4)$ $N(14)-C(53)-N(15)$ $115.9(4)$ $N(8)-C(30)-N(9)$ $115.9(4)$ $N(14)-C(53)-C(52)$ $122.3(4)$ $N(8)-C(30)-C(29)$ $121.7(4)$ $N(14)-C(53)-C(52)$ $122.9(4)$ $C(32)-C(31)-C(29)$ $122.4(4)$ $N(14)-C(53)-C(52)$ $122.9(4)$ $N(3)-C(29)$ $121.7(4)$ $N(14)-C(53)-C(52)$ $122.9(4)$ $N(3)-C(30)-C(29)$ $121.7(4)$ $N(14)-C(53)-C(52)$ $122.9(4)$ $C(32)-C(31)-C(29)$ $120.6(5)$ $C(59)-C(54)-C(42)$ $120.6(5)$ $N(9)-C(33)-N(10)$ $114.6(4)$ $C(55)-C(54)-C(42)$ $120.6(5)$ $N(10)-C(33)-C(32)$ $121.1(4)$ $C(56)-C(55)-C(54)$ $120.4(5)$ $N(10)-C(33)-C(32)$ $124.3(4)$ $C(57)-C(56)-C(55)$ $119.8(5)$ $C(39)-C(34)-C(22)$ $120.4(5)$ $C(58)-C(57)-C(56)$ $120.4(5)$ <tr< td=""><td>C(23)-C(24)-C(25)</td><td>120.2(5)</td><td>N(13)-C(46)-C(47)</td><td>120.3(4)</td></tr<>	C(23)-C(24)-C(25)	120.2(5)	N(13)-C(46)-C(47)	120.3(4)
N(6)-C(25)-C(24) 118.7(4) C(48)-C(47)-C(46) -119.7(5) N(7)-C(25)-C(24) 124.6(4) C(47)-C(48)-C(49) 120.5(5) N(8)-C(26)-N(7) 115.5(4) C(50)-C(49)-C(48) 117.7(5) N(8)-C(26)-C(27) 123.7(4) C(51)-C(49)-C(48) 124.3(5) C(28)-C(27)-C(26) 119.0(4) N(13)-C(50)-N(14) 116.9(4) C(27)-C(28)-C(29) 121.7(5) N(13)-C(50)-C(49) 121.7(4) C(30)-C(29)-C(28) 116.4(4) C(52)-C(51)-C(49) 121.1(5) C(31)-C(29)-C(28) 126.1(5) C(51)-C(52)-C(53) 119.2(5) N(8)-C(30)-C(29) 121.7(4) N(14)-C(53)-N(15) 115.9(4) N(8)-C(30)-C(29) 122.4(4) N(14)-C(53)-C(52) 121.3(4) N(9)-C(30)-C(29) 122.4(4) N(14)-C(53)-C(52) 122.9(4) C(32)-C(31)-C(29) 120.6(5) C(59)-C(54)-C(52) 120.4(5) N(9)-C(30)-C(29) 120.4(5) C(59)-C(54)-C(52) 120.4(5) N(10)-C(32)-C(33) 119.5(5) C(59)-C(54)-C(42) 120.3(5) C(31)-C(22)-C(33) 119.5(5) C(58)-C(59)-C(54) 120.4(5) N(10)-C(33)-C(32)	N(6)-C(25)-N(7)	116.6(4)	N(12)-C(46)-C(47)	124.6(4)
$\begin{split} & N(7)-C(25)-C(24) & 124.6(4) & C(47)-C(48)-C(49) & 120.5(5) \\ & N(8)-C(26)-N(7) & 115.5(4) & C(50)-C(49)-C(51) & 118.0(5) \\ & N(8)-C(26)-C(27) & 120.6(4) & C(51)-C(49)-C(48) & 124.3(5) \\ & C(28)-C(27)-C(26) & 119.0(4) & N(13)-C(50)-N(14) & 116.9(4) \\ & C(27)-C(28)-C(29) & 121.7(5) & N(13)-C(50)-C(49) & 121.7(4) \\ & C(30)-C(29)-C(21) & 117.5(5) & N(14)-C(50)-C(49) & 121.7(4) \\ & C(30)-C(29)-C(28) & 116.4(4) & C(52)-C(51)-C(49) & 121.7(4) \\ & C(30)-C(29)-C(28) & 126.1(5) & C(51)-C(52)-C(53) & 119.2(5) \\ & N(8)-C(30)-N(9) & 115.9(4) & N(14)-C(53)-N(15) & 115.9(4) \\ & N(8)-C(30)-C(29) & 122.4(4) & N(14)-C(53)-C(52) & 122.9(4) \\ & C(32)-C(30)-C(29) & 122.4(4) & N(14)-C(53)-C(52) & 122.9(4) \\ & C(32)-C(30)-C(29) & 121.7(4) & N(15)-C(53)-C(52) & 122.9(4) \\ & N(9)-C(30)-C(29) & 121.7(4) & N(15)-C(53)-C(52) & 122.9(4) \\ & C(32)-C(31)-C(29) & 120.6(5) & C(59)-C(54) & 120.6(5) \\ & N(9)-C(33)-N(10) & 114.6(4) & C(55)-C(54) & 120.4(5) \\ & C(31)-C(32)-C(33) & 119.5(5) & C(59)-C(54) & 120.4(5) \\ & N(9)-C(33)-C(32) & 121.1(4) & C(56)-C(55) & 119.8(5) \\ & C(39)-C(34)-C(22) & 120.4(5) & C(57)-C(56) & 120.4(5) \\ & C(39)-C(34)-C(22) & 120.4(5) & C(57)-C(56) & 120.4(5) \\ & C(39)-C(34)-C(22) & 120.4(5) & C(57)-C(58) & C(59) & 120.4(5) \\ \\ & C(39)-C(34)-C(22) & 120.4(5) & C(57)-C(58) & 120.4(5) \\ & C(39)-C(34)-C(22) & 120.4(5) & C(57)-C(56) & 120.4(5) \\ \\ & C(39)-C(34)-C(22) & 120.4(5) & C(61)-C(62)-C(74) & 123.6(7) \\ \\ & C(39)-C(38)-C(39) & 120.1(6) & C(61)-C(62)-C(74) & 123.6(7) \\ \\ & $	N(6)-C(25)-C(24)	118.7(4)	C(48)-C(47)-C(46)	119.7(5)
N(8)-C(26)-N(7)115.5(4)C(50)-C(49)-C(51)118.0(5)N(8)-C(26)-C(27)123.7(4)C(50)-C(49)-C(48)117.7(5)N(7)-C(26)-C(27)123.7(4)C(51)-C(49)-C(48)124.3(5)C(28)-C(27)-C(26)119.0(4)N(13)-C(50)-N(14)116.9(4)C(30)-C(29)-C(21)117.5(5)N(14)-C(50)-C(49)121.7(4)C(30)-C(29)-C(28)116.4(4)C(52)-C(51)-C(49)121.1(5)C(31)-C(29)-C(28)126.1(5)C(51)-C(52)-C(53)119.2(5)N(8)-C(30)-N(9)115.9(4)N(14)-C(53)-N(15)115.9(4)N(8)-C(30)-C(29)122.4(4)N(14)-C(53)-C(52)121.3(4)N(9)-C(30)-C(29)122.4(4)N(14)-C(53)-C(52)122.9(4)C(32)-C(31)-C(29)120.6(5)C(59)-C(54)-C(55)119.1(5)C(31)-C(29)120.6(5)C(59)-C(54)-C(52)120.4(5)N(9)-C(33)-C(29)121.1(4)C(56)-C(55)-C(54)120.4(5)N(9)-C(33)-C(32)121.1(4)C(56)-C(55)-C(54)120.4(5)N(9)-C(33)-C(32)124.3(4)C(57)-C(56)120.4(5)N(10)-C(33)-C(32)120.4(5)C(58)-C(59)-C(54)120.3(5)C(39)-C(34)-C(22)120.4(5)C(58)-C(59)-C(54)120.3(5)C(30)-C(34)-C(22)120.4(5)C(58)-C(59)-C(54)120.3(5)C(34)-C(35)118.7(5)C(58)-C(59)-C(54)120.3(5)C(34)-C(35)120.1(6)C(61)-C(62)-C(74)118.9(9)C(34)-C(35)120.1(6)C(61)-C(62)-C(74)118.9(9)C(34)-C(36)-C(38)120.2(6)C(61)-C(62)-C(74)123.9(N(7)-C(25)-C(24)	124.6(4)	C(47)-C(48)-C(49)	120.5(5)
N(8)-C(26)-C(27) $120.6(4)$ $C(50)-C(49)-C(48)$ $117.7(5)$ $N(7)-C(26)-C(27)$ $123.7(4)$ $C(51)-C(49)-C(48)$ $124.3(5)$ $C(28)-C(27)-C(26)$ $119.0(4)$ $N(13)-C(50)-N(14)$ $116.9(4)$ $C(27)-C(28)-C(29)$ $121.7(5)$ $N(13)-C(50)-C(49)$ $121.7(4)$ $C(30)-C(29)-C(28)$ $116.4(4)$ $C(52)-C(51)-C(49)$ $121.1(5)$ $C(31)-C(29)-C(28)$ $116.4(4)$ $C(52)-C(51)-C(49)$ $121.1(5)$ $C(31)-C(29)-C(28)$ $126.1(5)$ $C(51)-C(52)-C(53)$ $119.2(5)$ $N(8)-C(30)-N(9)$ $115.9(4)$ $N(14)-C(53)-N(15)$ $115.9(4)$ $N(8)-C(30)-C(29)$ $122.4(4)$ $N(14)-C(53)-C(52)$ $122.9(4)$ $N(8)-C(30)-C(29)$ $121.7(4)$ $N(15)-C(53)-C(52)$ $122.9(4)$ $N(8)-C(30)-C(29)$ $121.7(4)$ $N(15)-C(53)-C(52)$ $122.9(4)$ $N(8)-C(30)-C(29)$ $121.7(4)$ $N(15)-C(53)-C(52)$ $120.4(5)$ $N(9)-C(33)-C(29)$ $120.6(5)$ $C(59)-C(54)-C(52)$ $119.1(5)$ $C(31)-C(32)-C(33)$ $119.5(5)$ $C(59)-C(54)-C(42)$ $120.3(5)$ $N(9)-C(33)-C(32)$ $124.3(4)$ $C(57)-C(56)-C(55)$ $119.8(5)$ $N(10)-C(33)-C(32)$ $124.3(4)$ $C(57)-C(58)-C(59)$ $120.4(5)$ $N(10)-C(3)-C(34)-C(22)$ $120.4(5)$ $C(58)-C(57)-C(56)$ $120.4(5)$ $C(39)-C(34)-C(22)$ $120.4(5)$ $C(58)-C(57)-C(56)$ $120.4(5)$ $C(39)-C(34)-C(22)$ $120.4(5)$ $C(58)-C(57)-C(56)$ $120.4(5)$ $C(39)-C(34)-C(22)$ $120.4(5)$ $C(58)-C(57)-C(56)$ 1	N(8)-C(26)-N(7)	115.5(4)	C(50)-C(49)-C(51)	118.0(5)
N(7)-C(26)-C(27)123.7(4)C(51)-C(49)-C(48)124.3(5) $C(28)$ -C(27)-C(26)119.0(4) $N(13)$ -C(50)-N(14)116.9(4) $C(27)$ -C(28)-C(29)121.7(5) $N(13)$ -C(50)-C(49)121.7(4) $C(30)$ -C(29)-C(31)117.5(5) $N(14)$ -C(50)-C(49)121.1(4) $C(30)$ -C(29)-C(28)116.4(4)C(52)-C(51)-C(49)121.1(5) $C(31)$ -C(29)-C(28)126.1(5)C(51)-C(52)-C(53)119.2(5) $N(8)$ -C(30)-N(9)115.9(4) $N(14)$ -C(53)-N(15)115.9(4) $N(8)$ -C(30)-C(29)122.4(4) $N(14)$ -C(53)-C(52)121.3(4) $N(9)$ -C(30)-C(29)121.7(4) $N(15)$ -C(53)-C(52)129.9(4) $C(32)$ -C(31)-C(29)120.6(5)C(59)-C(54)-C(55)119.1(5) $C(31)$ -C(29)120.6(5)C(59)-C(54)-C(55)119.1(5) $C(31)$ -C(32)-C(32)121.1(4)C(55)-C(54)-C(42)120.3(5) $N(9)$ -C(33)-N(10)114.6(4)C(55)-C(54)-L(42)120.4(5) $N(10)$ -C(33)-C(32)124.3(4)C(57)-C(56)-C(55)119.8(5) $C(39)$ -C(34)-C(22)120.4(5)C(58)-C(57)-C(56)120.4(5) $N(10)$ -C(33)-C(32)124.3(4)C(57)-C(58)-C(59)120.0(5) $C(33)$ -C(34)-C(22)120.8(5)C(58)-C(59)-C(54)120.3(5) $C(36)$ -C(35)-C(34)120.6(6) $N(16)$ -C(61)-C(62)123.6(5) $C(37)$ -C(36)-C(35)120.1(6)C(61)-C(62)-C(74)118.9(9) $C(37)$ -C(36)-C(35)120.1(5)C(61)-C(62)-C(74)118.9(9) $C(34)$ -C(39)-C(38)120.2(6)C(61)-C(62)-C(74)123.9(4) <td>N(8)-C(26)-C(27)</td> <td>120.6(4)</td> <td>C(50)-C(49)-C(48)</td> <td>117.7(5)</td>	N(8)-C(26)-C(27)	120.6(4)	C(50)-C(49)-C(48)	117.7(5)
C(28)-C(27)-C(26)119.0(4) $N(13)-C(50)-N(14)$ 116.9(4) $C(27)-C(28)-C(29)$ 121.7(5) $N(13)-C(50)-C(49)$ 121.7(4) $C(30)-C(29)-C(31)$ 117.5(5) $N(14)-C(50)-C(49)$ 121.4(4) $C(30)-C(29)-C(28)$ 126.1(5) $C(51)-C(52)-C(53)$ 119.2(5) $N(8)-C(30)-N(9)$ 115.9(4) $N(14)-C(53)-N(15)$ 115.9(4) $N(8)-C(30)-C(29)$ 122.4(4) $N(14)-C(53)-C(52)$ 121.3(4) $N(9)-C(30)-C(29)$ 121.7(4) $N(15)-C(53)-C(52)$ 122.9(4) $C(32)-C(31)-C(29)$ 120.6(5) $C(59)-C(54)-C(55)$ 119.1(5) $C(31)-C(29)$ 120.6(5) $C(59)-C(54)-C(42)$ 120.6(5) $N(9)-C(33)-C(32)$ 121.1(4) $C(55)-C(54)-C(42)$ 120.4(5) $N(9)-C(33)-C(32)$ 121.1(4) $C(56)-C(55)-C(54)$ 120.4(5) $N(9)-C(33)-C(32)$ 124.3(4) $C(57)-C(56)-C(55)$ 119.8(5) $C(39)-C(34)-C(22)$ 120.4(5) $C(58)-C(57)-C(56)$ 120.4(5) $N(10)-C(33)-C(32)$ 120.4(5) $C(58)-C(57)-C(56)$ 120.4(5) $C(35)-C(34)-C(22)$ 120.8(5) $C(58)-C(57)-C(56)$ 120.4(5) $C(36)-C(35)-C(34)$ 120.6(6) $N(16)-C(61)-C(62)$ 123.6(5) $C(37)-C(36)-C(35)$ 120.1(6) $C(61)-C(62)-C(74)$ 123.9(9) $C(37)-C(36)-C(35)$ 120.1(6) $C(61)-C(62)-C(74)$ 123.9(9) $C(37)-C(38)-C(39)$ 120.2(6) $C(61)-C(62)-C(74)$ 125.8(7) $C(41)-C(42)-C(43)$ 116.3(4) $C(64)-C(65)-C(65)$ 121.2(5) $C(41)-C(42)-C(54)$ 120.4(5) $N(17)-C(65)-N(16$	N(7)-C(26)-C(27)	123.7(4)	C(51)-C(49)-C(48)	124.3(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(28)-C(27)-C(26)	119.0(4)	N(13)-C(50)-N(14)	116.9(4)
C(30)-C(29)-C(31)117.5(5)N(14)-C(50)-C(49)121.4(4)C(30)-C(29)-C(28)116.4(4)C(52)-C(51)-C(49)121.1(5)C(31)-C(29)-C(28)126.1(5)C(51)-C(52)-C(53)119.2(5)N(8)-C(30)-N(9)115.9(4)N(14)-C(53)-N(15)115.9(4)N(8)-C(30)-C(29)122.4(4)N(14)-C(53)-C(52)121.3(4)N(9)-C(30)-C(29)121.7(4)N(15)-C(53)-C(52)122.9(4)C(32)-C(31)-C(29)120.6(5)C(59)-C(54)-C(42)120.6(5)N(9)-C(33)-C(29)120.6(5)C(59)-C(54)-C(42)120.6(5)N(9)-C(33)-N(10)114.6(4)C(55)-C(54)-C(42)120.3(5)N(9)-C(33)-C(32)121.1(4)C(56)-C(55)-C(54)120.4(5)N(10)-C(33)-C(32)124.3(4)C(57)-C(56)-C(55)119.8(5)C(39)-C(34)-C(22)120.4(5)C(58)-C(59)120.0(5)C(39)-C(34)-C(22)120.4(5)C(58)-C(59)120.0(5)C(35)-C(34)-C(22)120.8(5)C(58)-C(59)-C(54)120.3(5)C(36)-C(35)-C(34)120.6(6)N(16)-C(61)-C(62)123.6(5)C(37)-C(36)120.1(6)C(61)-C(62)-C(74)123.9(9)C(37)-C(36)120.1(5)C(61)-C(62)-C(74)118.9(9)C(34)-C(39)-C(38)120.2(6)C(61)-C(62)-C(74)117.6(7)N(11)-C(41)-C(42)123.9(4)C(63)-C(62)120.3(5)C(41)-C(42)-C(54)120.3(4)C(64)-C(65)121.2(5)C(34)-C(35)120.2(6)C(61)-C(62)-C(74)125.8(7)C(41)-C(42)-C(54)123.3(4)N(17)-C(65)-N(16)115.6(4)<	C(27)-C(28)-C(29)	121.7(5)	N(13)-C(50)-C(49)	121.7(4)
C(30)-C(29)-C(28)116.4(4) $C(52)-C(51)-C(49)$ 121.1(5) $C(31)-C(29)-C(28)$ 126.1(5) $C(51)-C(52)-C(53)$ 119.2(5) $N(8)-C(30)-N(9)$ 115.9(4) $N(14)-C(53)-N(15)$ 115.9(4) $N(8)-C(30)-C(29)$ 122.4(4) $N(14)-C(53)-C(52)$ 121.3(4) $N(9)-C(30)-C(29)$ 121.7(4) $N(15)-C(53)-C(52)$ 122.9(4) $C(32)-C(31)-C(29)$ 120.6(5) $C(59)-C(54)-C(55)$ 119.1(5) $C(31)-C(32)-C(33)$ 119.5(5) $C(59)-C(54)-C(42)$ 120.6(5) $N(9)-C(33)-N(10)$ 114.6(4) $C(55)-C(54)-C(42)$ 120.3(5) $N(9)-C(33)-C(32)$ 121.1(4) $C(56)-C(55)-C(54)$ 120.4(5) $N(10)-C(33)-C(32)$ 124.3(4) $C(57)-C(56)-C(55)$ 119.8(5) $C(39)-C(34)-C(22)$ 120.4(5) $C(57)-C(58)-C(59)$ 120.0(5) $C(35)-C(34)-C(22)$ 120.4(5) $C(58)-C(59)-C(54)$ 120.3(5) $C(36)-C(35)-C(34)$ 120.6(6) $N(16)-C(61)-C(62)$ 123.6(5) $C(37)-C(36)-C(35)$ 120.1(6) $C(61)-C(62)-C(74)$ 123.9(9) $C(37)-C(36)-C(35)$ 120.1(5) $C(61)-C(62)-C(74)$ 118.9(9) $C(34)-C(39)-C(38)$ 120.2(6) $C(63)-C(62)-C(74)$ 118.9(9) $C(34)-C(39)-C(38)$ 120.2(6) $C(61)-C(62)-C(74)$ 118.9(9) $C(41)-C(42)-C(54)$ 120.3(4) $N(16)-C(65)-N(16)$ 115.6(4) $C(41)-C(42)-C(54)$ 120.3(4) $N(16)-C(65)-C(64)$ 127.9(5) $C(41)-C(42)-C(54)$ 120.3(4) $N(17)-C(65)-N(16)$ 115.6(4) $C(41)-C(42)-C(54)$ 120.3(4) $N(17)-C(6$	C(30)-C(29)-C(31)	117.5(5)	N(14)-C(50)-C(49)	121.4(4)
C(31)-C(29)-C(28)126.1(5) $C(51)-C(52)-C(53)$ 119.2(5) $N(8)-C(30)-N(9)$ 115.9(4) $N(14)-C(53)-N(15)$ 115.9(4) $N(8)-C(30)-C(29)$ 122.4(4) $N(14)-C(53)-C(52)$ 121.3(4) $N(9)-C(30)-C(29)$ 121.7(4) $N(15)-C(53)-C(52)$ 122.9(4) $C(32)-C(31)-C(29)$ 120.6(5) $C(59)-C(54)-C(55)$ 119.1(5) $C(31)-C(32)-C(33)$ 119.5(5) $C(59)-C(54)-C(42)$ 120.6(5) $N(9)-C(33)-N(10)$ 114.6(4) $C(55)-C(54)-C(42)$ 120.4(5) $N(9)-C(33)-C(32)$ 121.1(4) $C(56)-C(55)-C(54)$ 120.4(5) $N(10)-C(33)-C(32)$ 124.3(4) $C(57)-C(56)-C(55)$ 119.8(5) $C(39)-C(34)-C(22)$ 120.4(5) $C(57)-C(56)-C(55)$ 120.4(5) $C(39)-C(34)-C(22)$ 120.4(5) $C(57)-C(58)-C(59)$ 120.0(5) $C(35)-C(34)-C(22)$ 120.8(5) $C(58)-C(59)-C(54)$ 120.3(5) $C(36)-C(35)-C(34)$ 120.6(6) $N(16)-C(61)-C(62)$ 123.6(5) $C(37)-C(36)-C(35)$ 120.1(6) $C(61)-C(62)-C(74)$ 123.9(9) $C(37)-C(36)-C(38)$ 120.2(6) $C(61)-C(62)-C(74)$ 118.9(9) $C(34)-C(39)-C(38)$ 120.2(6) $C(63)-C(62)-C(74)$ 118.9(9) $C(34)-C(39)-C(34)$ 116.3(4) $C(64)-C(63)-C(62)$ 120.3(5) $C(41)-C(42)-C(54)$ 120.3(4) $N(17)-C(65)-N(16)$ 115.6(4) $C(41)-C(42)-C(54)$ 120.3(4) $N(17)-C(65)-N(16)$ 115.6(4) $C(41)-C(42)-C(54)$ 120.3(4) $N(17)-C(65)-C(64)$ 126.3(5) $C(43)-C(42)-C(54)$ 120.3(4) $N(17)-C(6$	C(30)-C(29)-C(28)	116.4(4)	C(52)-C(51)-C(49)	121.1(5)
N(8)-C(30)-N(9) $115.9(4)$ $N(14)-C(53)-N(15)$ $115.9(4)$ $N(8)-C(30)-C(29)$ $122.4(4)$ $N(14)-C(53)-C(52)$ $121.3(4)$ $N(9)-C(30)-C(29)$ $121.7(4)$ $N(15)-C(53)-C(52)$ $122.9(4)$ $C(32)-C(31)-C(29)$ $120.6(5)$ $C(59)-C(54)-C(52)$ $119.1(5)$ $C(31)-C(32)-C(33)$ $119.5(5)$ $C(59)-C(54)-C(42)$ $120.6(5)$ $N(9)-C(33)-N(10)$ $114.6(4)$ $C(55)-C(54)-C(42)$ $120.3(5)$ $N(9)-C(33)-C(32)$ $121.1(4)$ $C(56)-C(55)-C(54)$ $120.4(5)$ $N(10)-C(33)-C(32)$ $124.3(4)$ $C(57)-C(56)-C(55)$ $119.8(5)$ $C(39)-C(34)-C(35)$ $118.7(5)$ $C(58)-C(57)-C(56)$ $120.4(5)$ $C(39)-C(34)-C(22)$ $120.4(5)$ $C(57)-C(58)-C(59)$ $120.0(5)$ $C(35)-C(34)-C(22)$ $120.8(5)$ $C(58)-C(59)-C(54)$ $120.3(5)$ $C(36)-C(35)-C(34)$ $120.6(6)$ $N(16)-C(61)-C(62)$ $123.6(5)$ $C(37)-C(36)-C(35)$ $120.1(6)$ $C(61)-C(62)-C(74)$ $123.9(9)$ $C(37)-C(36)-C(38)$ $120.2(6)$ $C(63)-C(62)-C(74)$ $118.9(9)$ $C(34)-C(39)-C(38)$ $120.2(6)$ $C(63)-C(62)-C(74)$ $125.8(7)$ $C(41)-C(42)-C(54)$ $120.4(4)$ $C(63)-C(62)-C(74)$ $125.8(7)$ $C(41)-C(42)-C(54)$ $120.4(4)$ $C(63)-C(64)-C(65)$ $121.2(5)$ $C(43)-C(42)-C(54)$ $120.4(4)$ $C(63)-C(64)-C(65)$ $121.2(5)$ $C(43)-C(42)-C(54)$ $120.4(4)$ $C(63)-C(64)-C(65)$ $121.2(5)$ $C(44)-C(43)-C(42)$ $120.4(4)$ $C(63)-C(64)-C(65)$ 12	C(31)-C(29)-C(28)	126.1(5)	C(51)-C(52)-C(53)	119.2(5)
N(8)-C(30)-C(29) $122.4(4)$ $N(14)-C(53)-C(52)$ $121.3(4)$ $N(9)-C(30)-C(29)$ $121.7(4)$ $N(15)-C(53)-C(52)$ $122.9(4)$ $C(32)-C(31)-C(29)$ $120.6(5)$ $C(59)-C(54)-C(52)$ $119.1(5)$ $C(31)-C(32)-C(33)$ $119.5(5)$ $C(59)-C(54)-C(42)$ $120.6(5)$ $N(9)-C(33)-N(10)$ $114.6(4)$ $C(55)-C(54)-C(42)$ $120.3(5)$ $N(9)-C(33)-C(32)$ $121.1(4)$ $C(56)-C(55)-C(54)$ $120.4(5)$ $N(10)-C(33)-C(32)$ $124.3(4)$ $C(57)-C(56)-C(55)$ $119.8(5)$ $C(39)-C(34)-C(32)$ $120.4(5)$ $C(57)-C(56)$ $120.4(5)$ $C(39)-C(34)-C(22)$ $120.4(5)$ $C(57)-C(58)-C(59)$ $120.0(5)$ $C(35)-C(34)-C(22)$ $120.8(5)$ $C(58)-C(59)-C(54)$ $120.3(5)$ $C(35)-C(34)-C(35)$ $120.1(6)$ $C(61)-C(62)-C(74)$ $118.9(9)$ $C(37)-C(38)-C(39)$ $120.2(6)$ $C(63)-C(62)-C(74)$ $118.9(9)$ $C(34)-C(39)-C(38)$ $120.2(6)$ $C(63)-C(62)-C(74)$ $125.8(7)$ $C(41)-C(42)-C(54)$ $120.4(4)$ $C(63)-C(62)-C(74)$ $125.8(7)$ $C(41)-C(42)-C(54)$ $120.4(4)$ $C(63)-C(64)-C(65)$ $121.2(5)$ $C(44)-C(43)-C(42)$ $120.7(5)$ $N(17)-C(65)-N(16)$ $115.6($	N(8)-C(30)-N(9)	115.9(4)	N(14)-C(53)-N(15)	115.9(4)
N(9)-C(30)-C(29)121.7(4) $N(15)-C(53)-C(52)$ 122.9(4) $C(32)-C(31)-C(29)$ 120.6(5) $C(59)-C(54)-C(55)$ 119.1(5) $C(31)-C(32)-C(33)$ 119.5(5) $C(59)-C(54)-C(42)$ 120.6(5) $N(9)-C(33)-N(10)$ 114.6(4) $C(55)-C(54)-C(42)$ 120.3(5) $N(9)-C(33)-C(32)$ 121.1(4) $C(56)-C(55)-C(54)$ 120.4(5) $N(10)-C(33)-C(32)$ 124.3(4) $C(57)-C(56)-C(55)$ 119.8(5) $C(39)-C(34)-C(22)$ 120.4(5) $C(57)-C(56)-C(55)$ 120.4(5) $C(39)-C(34)-C(22)$ 120.4(5) $C(57)-C(58)-C(59)$ 120.0(5) $C(35)-C(34)-C(22)$ 120.8(5) $C(58)-C(59)-C(54)$ 120.3(5) $C(36)-C(35)-C(34)$ 120.6(6) $N(16)-C(61)-C(62)$ 123.6(5) $C(37)-C(36)-C(35)$ 120.1(6) $C(61)-C(62)-C(74)$ 123.9(9) $C(37)-C(38)-C(39)$ 120.2(6) $C(63)-C(62)-C(74)$ 118.9(9) $C(34)-C(39)-C(38)$ 120.2(6) $C(63)-C(62)-C(74)$ 125.8(7) $C(41)-C(41)-C(42)$ 123.9(4) $C(63)-C(62)-C(74)$ 125.8(7) $C(41)-C(42)-C(43)$ 116.3(4) $C(64)-C(63)-C(62)$ 120.3(5) $C(41)-C(42)-C(54)$ 120.3(5) $N(17)-C(65)-N(16)$ 115.6(4) $C(44)-C(43)-C(45)$ 120.6(5) $N(16)-C(65)-C(64)$ 117.9(4) $N(12)-C(45)-N(11)$ 116.3(4) $N(17)-C(65)-C(64)$ 117.9(4) $N(12)-C(45)-C(44)$ 125.6(4) $N(17)-C(66)-C(67)$ 124.6(4) $N(11)-C(45)-C(44)$ 117.8(4) $N(18)-C(66)-C(67)$ 120.1(4) $N(13)-C(46)-N(12)$ 114.9(4) $C(68)-$	N(8)-C(30)-C(29)	122.4(4)	N(14)-C(53)-C(52)	121.3(4)
C(32)-C(31)-C(29) $120.6(5)$ $C(59)-C(54)-C(55)$ $119.1(5)$ $C(31)-C(32)-C(33)$ $119.5(5)$ $C(59)-C(54)-C(42)$ $120.6(5)$ $N(9)-C(33)-N(10)$ $114.6(4)$ $C(55)-C(54)-C(42)$ $120.3(5)$ $N(9)-C(33)-C(32)$ $121.1(4)$ $C(56)-C(55)-C(54)$ $120.4(5)$ $N(10)-C(33)-C(32)$ $124.3(4)$ $C(57)-C(56)-C(55)$ $119.8(5)$ $C(39)-C(34)-C(35)$ $118.7(5)$ $C(58)-C(57)-C(56)$ $120.4(5)$ $C(39)-C(34)-C(22)$ $120.4(5)$ $C(57)-C(58)-C(59)$ $120.0(5)$ $C(35)-C(34)-C(22)$ $120.8(5)$ $C(58)-C(59)-C(54)$ $120.3(5)$ $C(36)-C(35)-C(34)$ $120.6(6)$ $N(16)-C(61)-C(62)$ $123.6(5)$ $C(37)-C(36)-C(35)$ $120.1(6)$ $C(61)-C(62)-C(74)$ $123.9(9)$ $C(37)-C(36)-C(35)$ $120.1(5)$ $C(61)-C(62)-C(74)$ $118.9(9)$ $C(37)-C(38)-C(39)$ $120.2(6)$ $C(63)-C(62)-C(74)$ $118.9(9)$ $C(34)-C(39)-C(38)$ $120.2(6)$ $C(61)-C(62)-C(74)$ $118.9(9)$ $C(34)-C(39)-C(38)$ $120.2(6)$ $C(63)-C(62)-C(74)$ $125.8(7)$ $C(41)-C(41)-C(42)$ $123.9(4)$ $C(63)-C(62)-C(74)$ $125.8(7)$ $C(41)-C(42)-C(43)$ $116.3(4)$ $N(17)-C(65)-N(16)$ $115.6(4)$ $C(44)-C(43)-C(45)$ $120.6(5)$ $N(16)-C(65)-C(64)$ $126.3(5)$ $C(44)-C(43)-C(42)$ $120.7(5)$ $N(17)-C(65)-C(64)$ $117.9(4)$ $N(12)-C(45)-N(11)$ $116.3(4)$ $N(17)-C(66)-N(18)$ $115.1(4)$ $N(12)-C(45)-C(44)$ $125.6(4)$ $N(17)-C(66)-C(67)$ <td< td=""><td>N(9)-C(30)-C(29)</td><td>121.7(4)</td><td>N(15)-C(53)-C(52)</td><td>122.9(4)</td></td<>	N(9)-C(30)-C(29)	121.7(4)	N(15)-C(53)-C(52)	122.9(4)
C(31)-C(32)-C(33) $119.5(5)$ $C(59)-C(54)-C(42)$ $120.6(5)$ $N(9)-C(33)-N(10)$ $114.6(4)$ $C(55)-C(54)-C(42)$ $120.3(5)$ $N(9)-C(33)-C(32)$ $121.1(4)$ $C(56)-C(55)-C(54)$ $120.4(5)$ $N(10)-C(33)-C(32)$ $124.3(4)$ $C(57)-C(56)-C(55)$ $119.8(5)$ $C(39)-C(34)-C(22)$ $120.4(5)$ $C(57)-C(58)-C(59)$ $120.4(5)$ $C(39)-C(34)-C(22)$ $120.4(5)$ $C(57)-C(58)-C(59)$ $120.0(5)$ $C(35)-C(34)-C(22)$ $120.8(5)$ $C(58)-C(59)-C(54)$ $120.3(5)$ $C(35)-C(34)-C(22)$ $120.8(5)$ $C(58)-C(59)-C(54)$ $120.3(5)$ $C(36)-C(35)-C(34)$ $120.6(6)$ $N(16)-C(61)-C(62)$ $123.6(5)$ $C(37)-C(36)-C(35)$ $120.1(6)$ $C(61)-C(62)-C(74)$ $118.9(9)$ $C(37)-C(38)-C(39)$ $120.2(6)$ $C(61)-C(62)-C(74)$ $118.9(9)$ $C(34)-C(39)-C(38)$ $120.2(6)$ $C(61)-C(62)-C(74)$ $117.6(7)$ $N(11)-C(41)-C(42)$ $123.9(4)$ $C(63)-C(62)-C(74)$ $125.8(7)$ $C(41)-C(42)-C(54)$ $120.4(4)$ $C(63)-C(64)-C(65)$ $121.2(5)$ $C(43)-C(42)-C(54)$ $120.4(4)$ $C(63)-C(64)-C(65)$ $121.2(5)$ $C(43)-C(42)-C(54)$ $120.3(5)$ $N(17)-C(65)-N(16)$ $115.6(4)$ $C(44)-C(43)-C(45)$ $120.6(5)$ $N(17)-C(65)-C(64)$ $117.9(4)$ $N(12)-C(45)-N(11)$ $116.3(4)$ $N(17)-C(66)-N(18)$ $115.1(4)$ $N(12)-C(45)-N(11)$ $116.3(4)$ $N(17)-C(66)-C(67)$ $124.6(4)$ $N(11)-C(45)-C(44)$ $125.6(4)$ $N(17)-C(66)-C(67)$ <td< td=""><td>C(32)-C(31)-C(29)</td><td>120.6(5)</td><td>C(59)-C(54)-C(55)</td><td>119.1(5)</td></td<>	C(32)-C(31)-C(29)	120.6(5)	C(59)-C(54)-C(55)	119.1(5)
N(9)-C(33)-N(10) $114.6(4)$ C(55)-C(54)-C(42) $120.3(5)$ N(9)-C(33)-C(32) $121.1(4)$ C(56)-C(55)-C(54) $120.4(5)$ N(10)-C(33)-C(32) $124.3(4)$ C(57)-C(56)-C(55) $119.8(5)$ C(39)-C(34)-C(35) $118.7(5)$ C(58)-C(57)-C(56) $120.4(5)$ C(39)-C(34)-C(22) $120.4(5)$ C(57)-C(58)-C(59) $120.0(5)$ C(35)-C(34)-C(22) $120.8(5)$ C(58)-C(59)-C(54) $120.3(5)$ C(36)-C(35)-C(34) $120.6(6)$ N(16)-C(61)-C(62) $123.6(5)$ C(36)-C(35)-C(34) $120.1(6)$ C(61)-C(62)-C(63) $116.5(5)$ C(37)-C(36)-C(35) $120.1(6)$ C(61)-C(62)-C(74') $123.9(9)$ C(37)-C(38)-C(39) $120.2(6)$ C(61)-C(62)-C(74') $118.9(9)$ C(34)-C(39)-C(38) $120.2(6)$ C(61)-C(62)-C(74') $117.6(7)$ N(11)-C(41)-C(42) $123.9(4)$ C(63)-C(62)-C(74) $125.8(7)$ C(41)-C(42)-C(43) $116.3(4)$ C(64)-C(63)-C(62) $120.3(5)$ C(41)-C(42)-C(54) $120.4(4)$ C(63)-C(64)-C(65) $121.2(5)$ C(43)-C(42)-C(54) $123.3(4)$ N(17)-C(65)-N(16) $115.6(4)$ C(44)-C(43)-C(42) $120.7(5)$ N(17)-C(65)-C(64) $117.9(4)$ N(12)-C(45)-N(11) $116.3(4)$ N(17)-C(66)-N(18) $115.1(4)$ N(12)-C(45)-N(11) $116.3(4)$ N(17)-C(66)-C(67) $124.6(4)$ N(11)-C(45)-C(44) $125.6(4)$ N(17)-C(66)-C(67) $120.1(4)$ N(12)-C(45)-N(11) $116.3(4)$ N(17)-C(66)-C(67) $120.1(4)$ N(13)-C(46)-N(12) $114.9(4)$ C(6	C(31)-C(32)-C(33)	119.5(5)	C(59)-C(54)-C(42)	120.6(5)
N(9)-C(33)-C(32) $121.1(4)$ C(56)-C(55)-C(54) $120.4(5)$ N(10)-C(33)-C(32) $124.3(4)$ C(57)-C(56)-C(55) $119.8(5)$ C(39)-C(34)-C(35) $118.7(5)$ C(58)-C(57)-C(56) $120.4(5)$ C(39)-C(34)-C(22) $120.4(5)$ C(57)-C(58)-C(59) $120.0(5)$ C(35)-C(34)-C(22) $120.8(5)$ C(58)-C(59)-C(54) $120.3(5)$ C(36)-C(35)-C(34) $120.6(6)$ N(16)-C(61)-C(62) $123.6(5)$ C(37)-C(36)-C(35) $120.1(6)$ C(61)-C(62)-C(74) $123.9(9)$ C(37)-C(36)-C(35) $120.1(5)$ C(61)-C(62)-C(74) $118.9(9)$ C(37)-C(38)-C(39) $120.2(6)$ C(63)-C(62)-C(74) $118.9(9)$ C(34)-C(39)-C(38) $120.2(6)$ C(63)-C(62)-C(74) $117.6(7)$ N(11)-C(41)-C(42) $123.9(4)$ C(63)-C(62)-C(74) $125.8(7)$ C(41)-C(42)-C(43) $116.3(4)$ C(64)-C(63)-C(62) $120.3(5)$ C(41)-C(42)-C(54) $120.4(4)$ C(63)-C(64)-C(65) $121.2(5)$ C(43)-C(42)-C(54) $120.3(5)$ $N(17)-C(65)-N(16)$ $115.6(4)$ C(44)-C(43)-C(42) $120.3(5)$ $N(17)-C(65)-C(64)$ $126.3(5)$ C(43)-C(44)-C(45) $120.6(5)$ $N(16)-C(65)-C(64)$ $117.9(4)$ N(12)-C(45)-N(11) $116.3(4)$ $N(17)-C(66)-N(18)$ $115.1(4)$ N(12)-C(45)-N(11) $116.3(4)$ $N(17)-C(66)-C(67)$ $124.6(4)$ N(11)-C(45)-C(44) $125.6(4)$ $N(17)-C(66)-C(67)$ $120.1(4)$ N(13)-C(46)-N(12) $114.9(4)$ $C(68)-C(67)-C(66)$ $119.0(5)$	N(9)-C(33)-N(10)	114.6(4)	C(55)-C(54)-C(42)	120.3(5)
N(10)-C(33)-C(32)124.3(4)C(57)-C(56)-C(55)119.8(5)C(39)-C(34)-C(35)118.7(5)C(58)-C(57)-C(56)120.4(5)C(39)-C(34)-C(22)120.4(5)C(57)-C(58)-C(59)120.0(5)C(35)-C(34)-C(22)120.8(5)C(58)-C(59)-C(54)120.3(5)C(36)-C(35)-C(34)120.6(6)N(16)-C(61)-C(62)123.6(5)C(37)-C(36)-C(35)120.1(6)C(61)-C(62)-C(63)116.5(5)C(38)-C(37)-C(36)120.1(5)C(61)-C(62)-C(74')123.9(9)C(37)-C(38)-C(39)120.2(6)C(63)-C(62)-C(74')118.9(9)C(34)-C(39)-C(38)120.2(6)C(61)-C(62)-C(74)117.6(7)N(11)-C(41)-C(42)123.9(4)C(63)-C(62)-C(74)125.8(7)C(41)-C(42)-C(43)116.3(4)C(64)-C(63)-C(62)120.3(5)C(41)-C(42)-C(54)120.4(4)C(63)-C(64)-C(65)121.2(5)C(43)-C(42)-C(54)120.7(5)N(17)-C(65)-N(16)115.6(4)C(44)-C(43)-C(45)120.6(5)N(16)-C(65)-C(64)126.3(5)C(43)-C(44)-C(45)120.6(5)N(16)-C(65)-C(64)117.9(4)N(12)-C(45)-N(11)116.3(4)N(17)-C(66)-N(18)115.1(4)N(12)-C(45)-C(44)125.6(4)N(17)-C(66)-C(67)124.6(4)N(11)-C(45)-C(44)117.8(4)N(18)-C(66)-C(67)120.1(4)N(13)-C(46)-N(12)114.9(4)C(68)-C(67)-C(66)119.0(5)	N(9)-C(33)-C(32)	121.1(4)	C(56)-C(55)-C(54)	120.4(5)
C(39)-C(34)-C(35)118.7(5) $C(58)-C(57)-C(56)$ 120.4(5) $C(39)-C(34)-C(22)$ 120.4(5) $C(57)-C(58)-C(59)$ 120.0(5) $C(35)-C(34)-C(22)$ 120.8(5) $C(58)-C(59)-C(54)$ 120.3(5) $C(36)-C(35)-C(34)$ 120.6(6) $N(16)-C(61)-C(62)$ 123.6(5) $C(37)-C(36)-C(35)$ 120.1(6) $C(61)-C(62)-C(63)$ 116.5(5) $C(38)-C(37)-C(36)$ 120.1(5) $C(61)-C(62)-C(74')$ 123.9(9) $C(37)-C(38)-C(39)$ 120.2(6) $C(63)-C(62)-C(74')$ 118.9(9) $C(34)-C(39)-C(38)$ 120.2(6) $C(61)-C(62)-C(74)$ 117.6(7) $N(11)-C(41)-C(42)$ 123.9(4) $C(63)-C(62)-C(74)$ 125.8(7) $C(41)-C(42)-C(43)$ 116.3(4) $C(64)-C(63)-C(62)$ 120.3(5) $C(41)-C(42)-C(54)$ 120.4(4) $C(63)-C(64)-C(65)$ 121.2(5) $C(43)-C(42)-C(54)$ 123.3(4) $N(17)-C(65)-N(16)$ 115.6(4) $C(44)-C(43)-C(45)$ 120.6(5) $N(16)-C(65)-C(64)$ 126.3(5) $C(43)-C(44)-C(45)$ 120.6(5) $N(16)-C(65)-C(64)$ 117.9(4) $N(12)-C(45)-N(11)$ 116.3(4) $N(17)-C(66)-N(18)$ 115.1(4) $N(12)-C(45)-C(44)$ 125.6(4) $N(17)-C(66)-C(67)$ 124.6(4) $N(11)-C(45)-C(44)$ 117.8(4) $N(18)-C(66)-C(67)$ 120.1(4) $N(13)-C(46)-N(12)$ 114.9(4) $C(68)-C(67)-C(66)$ 119.0(5)	N(10)-C(33)-C(32)	124.3(4)	C(57)-C(56)-C(55)	119.8(5)
C(39)-C(34)-C(22) $120.4(5)$ $C(57)-C(58)-C(59)$ $120.0(5)$ $C(35)-C(34)-C(22)$ $120.8(5)$ $C(58)-C(59)-C(54)$ $120.3(5)$ $C(36)-C(35)-C(34)$ $120.6(6)$ $N(16)-C(61)-C(62)$ $123.6(5)$ $C(37)-C(36)-C(35)$ $120.1(6)$ $C(61)-C(62)-C(63)$ $116.5(5)$ $C(38)-C(37)-C(36)$ $120.1(5)$ $C(61)-C(62)-C(74')$ $123.9(9)$ $C(37)-C(38)-C(39)$ $120.2(6)$ $C(63)-C(62)-C(74')$ $118.9(9)$ $C(34)-C(39)-C(38)$ $120.2(6)$ $C(63)-C(62)-C(74')$ $117.6(7)$ $N(11)-C(41)-C(42)$ $123.9(4)$ $C(63)-C(62)-C(74)$ $125.8(7)$ $C(41)-C(42)-C(43)$ $116.3(4)$ $C(64)-C(63)-C(62)$ $120.3(5)$ $C(41)-C(42)-C(54)$ $120.4(4)$ $C(63)-C(64)-C(65)$ $121.2(5)$ $C(43)-C(42)-C(54)$ $123.3(4)$ $N(17)-C(65)-N(16)$ $115.6(4)$ $C(44)-C(43)-C(42)$ $120.7(5)$ $N(17)-C(65)-C(64)$ $126.3(5)$ $C(43)-C(44)-C(45)$ $120.6(5)$ $N(16)-C(65)-C(64)$ $117.9(4)$ $N(12)-C(45)-N(11)$ $116.3(4)$ $N(17)-C(66)-N(18)$ $115.1(4)$ $N(12)-C(45)-C(44)$ $125.6(4)$ $N(17)-C(66)-C(67)$ $124.6(4)$ $N(11)-C(45)-C(44)$ $117.8(4)$ $N(18)-C(66)-C(67)$ $120.1(4)$ $N(13)-C(46)-N(12)$ $114.9(4)$ $C(68)-C(67)-C(66)$ $119.0(5)$	C(39)-C(34)-C(35)	118.7(5)	C(58)-C(57)-C(56)	120.4(5)
C(35)-C(34)-C(22) $120.8(5)$ $C(58)-C(59)-C(54)$ $120.3(5)$ $C(36)-C(35)-C(34)$ $120.6(6)$ $N(16)-C(61)-C(62)$ $123.6(5)$ $C(37)-C(36)-C(35)$ $120.1(6)$ $C(61)-C(62)-C(63)$ $116.5(5)$ $C(38)-C(37)-C(36)$ $120.1(5)$ $C(61)-C(62)-C(74')$ $123.9(9)$ $C(37)-C(38)-C(39)$ $120.2(6)$ $C(63)-C(62)-C(74')$ $118.9(9)$ $C(34)-C(39)-C(38)$ $120.2(6)$ $C(61)-C(62)-C(74')$ $117.6(7)$ $N(11)-C(41)-C(42)$ $123.9(4)$ $C(63)-C(62)-C(74)$ $125.8(7)$ $C(41)-C(42)-C(43)$ $116.3(4)$ $C(64)-C(63)-C(62)$ $120.3(5)$ $C(41)-C(42)-C(54)$ $120.4(4)$ $C(63)-C(64)-C(65)$ $121.2(5)$ $C(43)-C(42)-C(54)$ $123.3(4)$ $N(17)-C(65)-N(16)$ $115.6(4)$ $C(44)-C(43)-C(42)$ $120.7(5)$ $N(17)-C(65)-C(64)$ $126.3(5)$ $C(43)-C(44)-C(45)$ $120.6(5)$ $N(16)-C(65)-C(64)$ $117.9(4)$ $N(12)-C(45)-N(11)$ $116.3(4)$ $N(17)-C(66)-N(18)$ $115.1(4)$ $N(12)-C(45)-C(44)$ $125.6(4)$ $N(17)-C(66)-C(67)$ $124.6(4)$ $N(11)-C(45)-C(44)$ $117.8(4)$ $N(18)-C(66)-C(67)$ $120.1(4)$ $N(13)-C(46)-N(12)$ $114.9(4)$ $C(68)-C(67)-C(66)$ $119.0(5)$	C(39)-C(34)-C(22)	120.4(5)	C(57)-C(58)-C(59)	120.0(5)
C(36)-C(35)-C(34) $120.6(6)$ $N(16)-C(61)-C(62)$ $123.6(5)$ $C(37)-C(36)-C(35)$ $120.1(6)$ $C(61)-C(62)-C(63)$ $116.5(5)$ $C(38)-C(37)-C(36)$ $120.1(5)$ $C(61)-C(62)-C(74')$ $123.9(9)$ $C(37)-C(38)-C(39)$ $120.2(6)$ $C(63)-C(62)-C(74')$ $118.9(9)$ $C(34)-C(39)-C(38)$ $120.2(6)$ $C(61)-C(62)-C(74')$ $117.6(7)$ $N(11)-C(41)-C(42)$ $123.9(4)$ $C(63)-C(62)-C(74)$ $125.8(7)$ $C(41)-C(42)-C(43)$ $116.3(4)$ $C(63)-C(62)-C(74)$ $125.8(7)$ $C(41)-C(42)-C(43)$ $116.3(4)$ $C(63)-C(64)-C(65)$ $121.2(5)$ $C(41)-C(42)-C(54)$ $120.4(4)$ $C(63)-C(64)-C(65)$ $121.2(5)$ $C(43)-C(42)-C(54)$ $123.3(4)$ $N(17)-C(65)-N(16)$ $115.6(4)$ $C(43)-C(43)-C(42)$ $120.7(5)$ $N(16)-C(65)-C(64)$ $126.3(5)$ $C(43)-C(44)-C(45)$ $120.6(5)$ $N(16)-C(65)-C(64)$ $117.9(4)$ $N(12)-C(45)-N(11)$ $116.3(4)$ $N(17)-C(66)-N(18)$ $115.1(4)$ $N(12)-C(45)-C(44)$ $125.6(4)$ $N(17)-C(66)-C(67)$ $124.6(4)$ $N(11)-C(45)-C(44)$ $117.8(4)$ $N(18)-C(66)-C(67)$ $120.1(4)$ $N(13)-C(46)-N(12)$ $114.9(4)$ $C(68)-C(67)-C(66)$ $119.0(5)$	C(35)-C(34)-C(22)	120.8(5)	C(58)-C(59)-C(54)	120.3(5)
C(37)-C(36)-C(35) $120.1(6)$ $C(61)-C(62)-C(63)$ $116.5(5)$ $C(38)-C(37)-C(36)$ $120.1(5)$ $C(61)-C(62)-C(74')$ $123.9(9)$ $C(37)-C(38)-C(39)$ $120.2(6)$ $C(63)-C(62)-C(74')$ $118.9(9)$ $C(34)-C(39)-C(38)$ $120.2(6)$ $C(61)-C(62)-C(74')$ $117.6(7)$ $N(11)-C(41)-C(42)$ $123.9(4)$ $C(63)-C(62)-C(74)$ $125.8(7)$ $C(41)-C(42)-C(43)$ $116.3(4)$ $C(64)-C(63)-C(62)$ $120.3(5)$ $C(41)-C(42)-C(54)$ $120.4(4)$ $C(63)-C(64)-C(65)$ $121.2(5)$ $C(43)-C(42)-C(54)$ $123.3(4)$ $N(17)-C(65)-N(16)$ $115.6(4)$ $C(43)-C(43)-C(42)$ $120.7(5)$ $N(17)-C(65)-C(64)$ $126.3(5)$ $C(43)-C(44)-C(45)$ $120.6(5)$ $N(16)-C(65)-C(64)$ $117.9(4)$ $N(12)-C(45)-N(11)$ $116.3(4)$ $N(17)-C(66)-N(18)$ $115.1(4)$ $N(12)-C(45)-C(44)$ $125.6(4)$ $N(17)-C(66)-C(67)$ $124.6(4)$ $N(11)-C(45)-C(44)$ $117.8(4)$ $N(18)-C(66)-C(67)$ $120.1(4)$ $N(13)-C(46)-N(12)$ $114.9(4)$ $C(68)-C(67)-C(66)$ $119.0(5)$	C(36)-C(35)-C(34)	120.6(6)	N(16)-C(61)-C(62)	123.6(5)
C(38)-C(37)-C(36) $120.1(5)$ $C(61)-C(62)-C(74')$ $123.9(9)$ $C(37)-C(38)-C(39)$ $120.2(6)$ $C(63)-C(62)-C(74')$ $118.9(9)$ $C(34)-C(39)-C(38)$ $120.2(6)$ $C(61)-C(62)-C(74')$ $117.6(7)$ $N(11)-C(41)-C(42)$ $123.9(4)$ $C(63)-C(62)-C(74)$ $125.8(7)$ $C(41)-C(42)-C(43)$ $116.3(4)$ $C(64)-C(63)-C(62)$ $120.3(5)$ $C(41)-C(42)-C(54)$ $120.4(4)$ $C(63)-C(64)-C(65)$ $121.2(5)$ $C(43)-C(42)-C(54)$ $123.3(4)$ $N(17)-C(65)-N(16)$ $115.6(4)$ $C(43)-C(42)-C(54)$ $120.7(5)$ $N(17)-C(65)-C(64)$ $126.3(5)$ $C(43)-C(44)-C(45)$ $120.6(5)$ $N(16)-C(65)-C(64)$ $117.9(4)$ $N(12)-C(45)-N(11)$ $116.3(4)$ $N(17)-C(66)-N(18)$ $115.1(4)$ $N(12)-C(45)-C(44)$ $125.6(4)$ $N(17)-C(66)-C(67)$ $124.6(4)$ $N(11)-C(45)-C(44)$ $117.8(4)$ $N(18)-C(66)-C(67)$ $120.1(4)$ $N(13)-C(46)-N(12)$ $114.9(4)$ $C(68)-C(67)-C(66)$ $119.0(5)$	C(37)-C(36)-C(35)	120.1(6)	C(61)-C(62)-C(63)	116.5(5)
C(37)-C(38)-C(39) $120.2(6)$ $C(63)-C(62)-C(74')$ $118.9(9)$ $C(34)-C(39)-C(38)$ $120.2(6)$ $C(61)-C(62)-C(74)$ $117.6(7)$ $N(11)-C(41)-C(42)$ $123.9(4)$ $C(63)-C(62)-C(74)$ $125.8(7)$ $C(41)-C(42)-C(43)$ $116.3(4)$ $C(64)-C(63)-C(62)$ $120.3(5)$ $C(41)-C(42)-C(54)$ $120.4(4)$ $C(63)-C(64)-C(65)$ $121.2(5)$ $C(43)-C(42)-C(54)$ $123.3(4)$ $N(17)-C(65)-N(16)$ $115.6(4)$ $C(44)-C(43)-C(42)$ $120.7(5)$ $N(17)-C(65)-C(64)$ $126.3(5)$ $C(43)-C(44)-C(45)$ $120.6(5)$ $N(16)-C(65)-C(64)$ $117.9(4)$ $N(12)-C(45)-N(11)$ $116.3(4)$ $N(17)-C(66)-N(18)$ $115.1(4)$ $N(12)-C(45)-C(44)$ $125.6(4)$ $N(17)-C(66)-C(67)$ $124.6(4)$ $N(11)-C(45)-C(44)$ $117.8(4)$ $N(18)-C(66)-C(67)$ $120.1(4)$ $N(13)-C(46)-N(12)$ $114.9(4)$ $C(68)-C(67)-C(66)$ $119.0(5)$	C(38)-C(37)-C(36)	120.1(5)	C(61)-C(62)-C(74')	123.9(9)
C(34)-C(39)-C(38) $120.2(6)$ $C(61)-C(62)-C(74)$ $117.6(7)$ $N(11)-C(41)-C(42)$ $123.9(4)$ $C(63)-C(62)-C(74)$ $125.8(7)$ $C(41)-C(42)-C(43)$ $116.3(4)$ $C(64)-C(63)-C(62)$ $120.3(5)$ $C(41)-C(42)-C(54)$ $120.4(4)$ $C(63)-C(64)-C(65)$ $121.2(5)$ $C(43)-C(42)-C(54)$ $123.3(4)$ $N(17)-C(65)-N(16)$ $115.6(4)$ $C(44)-C(43)-C(42)$ $120.7(5)$ $N(17)-C(65)-C(64)$ $126.3(5)$ $C(43)-C(44)-C(45)$ $120.6(5)$ $N(16)-C(65)-C(64)$ $117.9(4)$ $N(12)-C(45)-N(11)$ $116.3(4)$ $N(17)-C(66)-N(18)$ $115.1(4)$ $N(12)-C(45)-C(44)$ $125.6(4)$ $N(17)-C(66)-C(67)$ $124.6(4)$ $N(11)-C(45)-C(44)$ $117.8(4)$ $N(18)-C(66)-C(67)$ $120.1(4)$ $N(13)-C(46)-N(12)$ $114.9(4)$ $C(68)-C(67)-C(66)$ $119.0(5)$	C(37)-C(38)-C(39)	120.2(6)	C(63)-C(62)-C(74')	118.9(9)
N(11)-C(41)-C(42) $123.9(4)$ $C(63)-C(62)-C(74)$ $125.8(7)$ $C(41)-C(42)-C(43)$ $116.3(4)$ $C(64)-C(63)-C(62)$ $120.3(5)$ $C(41)-C(42)-C(54)$ $120.4(4)$ $C(63)-C(64)-C(65)$ $121.2(5)$ $C(43)-C(42)-C(54)$ $123.3(4)$ $N(17)-C(65)-N(16)$ $115.6(4)$ $C(44)-C(43)-C(42)$ $120.7(5)$ $N(17)-C(65)-C(64)$ $126.3(5)$ $C(43)-C(44)-C(45)$ $120.6(5)$ $N(16)-C(65)-C(64)$ $117.9(4)$ $N(12)-C(45)-N(11)$ $116.3(4)$ $N(17)-C(66)-N(18)$ $115.1(4)$ $N(12)-C(45)-C(44)$ $125.6(4)$ $N(17)-C(66)-C(67)$ $124.6(4)$ $N(11)-C(45)-C(44)$ $117.8(4)$ $N(18)-C(66)-C(67)$ $120.1(4)$ $N(13)-C(46)-N(12)$ $114.9(4)$ $C(68)-C(67)-C(66)$ $119.0(5)$	C(34)-C(39)-C(38)	120.2(6)	C(61)-C(62)-C(74)	117.6(7)
C(41)-C(42)-C(43) $116.3(4)$ $C(64)-C(63)-C(62)$ $120.3(5)$ $C(41)-C(42)-C(54)$ $120.4(4)$ $C(63)-C(64)-C(65)$ $121.2(5)$ $C(43)-C(42)-C(54)$ $123.3(4)$ $N(17)-C(65)-N(16)$ $115.6(4)$ $C(44)-C(43)-C(42)$ $120.7(5)$ $N(17)-C(65)-C(64)$ $126.3(5)$ $C(43)-C(44)-C(45)$ $120.6(5)$ $N(16)-C(65)-C(64)$ $117.9(4)$ $N(12)-C(45)-N(11)$ $116.3(4)$ $N(17)-C(66)-N(18)$ $115.1(4)$ $N(12)-C(45)-C(44)$ $125.6(4)$ $N(17)-C(66)-C(67)$ $124.6(4)$ $N(11)-C(45)-C(44)$ $117.8(4)$ $N(18)-C(66)-C(67)$ $120.1(4)$ $N(13)-C(46)-N(12)$ $114.9(4)$ $C(68)-C(67)-C(66)$ $119.0(5)$	N(11)-C(41)-C(42)	123.9(4)	C(63)-C(62)-C(74)	125.8(7)
C(41)-C(42)-C(54) $120.4(4)$ $C(63)-C(64)-C(65)$ $121.2(5)$ $C(43)-C(42)-C(54)$ $123.3(4)$ $N(17)-C(65)-N(16)$ $115.6(4)$ $C(44)-C(43)-C(42)$ $120.7(5)$ $N(17)-C(65)-C(64)$ $126.3(5)$ $C(43)-C(44)-C(45)$ $120.6(5)$ $N(16)-C(65)-C(64)$ $117.9(4)$ $N(12)-C(45)-N(11)$ $116.3(4)$ $N(17)-C(66)-N(18)$ $115.1(4)$ $N(12)-C(45)-C(44)$ $125.6(4)$ $N(17)-C(66)-C(67)$ $124.6(4)$ $N(11)-C(45)-C(44)$ $117.8(4)$ $N(18)-C(66)-C(67)$ $120.1(4)$ $N(13)-C(46)-N(12)$ $114.9(4)$ $C(68)-C(67)-C(66)$ $119.0(5)$	C(41)-C(42)-C(43)	116.3(4)	C(64)-C(63)-C(62)	120.3(5)
C(43)-C(42)-C(54) $123.3(4)$ $N(17)-C(65)-N(16)$ $115.6(4)$ $C(44)-C(43)-C(42)$ $120.7(5)$ $N(17)-C(65)-C(64)$ $126.3(5)$ $C(43)-C(44)-C(45)$ $120.6(5)$ $N(16)-C(65)-C(64)$ $117.9(4)$ $N(12)-C(45)-N(11)$ $116.3(4)$ $N(17)-C(66)-N(18)$ $115.1(4)$ $N(12)-C(45)-C(44)$ $125.6(4)$ $N(17)-C(66)-C(67)$ $124.6(4)$ $N(11)-C(45)-C(44)$ $117.8(4)$ $N(18)-C(66)-C(67)$ $120.1(4)$ $N(13)-C(46)-N(12)$ $114.9(4)$ $C(68)-C(67)-C(66)$ $119.0(5)$	C(41)-C(42)-C(54)	120.4(4)	C(63)-C(64)-C(65)	121.2(5)
C(44)-C(43)-C(42) $120.7(5)$ $N(17)-C(65)-C(64)$ $126.3(5)$ $C(43)-C(44)-C(45)$ $120.6(5)$ $N(16)-C(65)-C(64)$ $117.9(4)$ $N(12)-C(45)-N(11)$ $116.3(4)$ $N(17)-C(66)-N(18)$ $115.1(4)$ $N(12)-C(45)-C(44)$ $125.6(4)$ $N(17)-C(66)-C(67)$ $124.6(4)$ $N(11)-C(45)-C(44)$ $117.8(4)$ $N(18)-C(66)-C(67)$ $120.1(4)$ $N(13)-C(46)-N(12)$ $114.9(4)$ $C(68)-C(67)-C(66)$ $119.0(5)$	C(43)-C(42)-C(54)	123.3(4)	N(17)-C(65)-N(16)	115.6(4)
C(43)-C(44)-C(45) $120.6(5)$ $N(16)-C(65)-C(64)$ $117.9(4)$ $N(12)-C(45)-N(11)$ $116.3(4)$ $N(17)-C(66)-N(18)$ $115.1(4)$ $N(12)-C(45)-C(44)$ $125.6(4)$ $N(17)-C(66)-C(67)$ $124.6(4)$ $N(11)-C(45)-C(44)$ $117.8(4)$ $N(18)-C(66)-C(67)$ $120.1(4)$ $N(13)-C(46)-N(12)$ $114.9(4)$ $C(68)-C(67)-C(66)$ $119.0(5)$	C(44)-C(43)-C(42)	120.7(5)	N(17)-C(65)-C(64)	126.3(5)
N(12)-C(45)-N(11)116.3(4)N(17)-C(66)-N(18)115.1(4)N(12)-C(45)-C(44)125.6(4)N(17)-C(66)-C(67)124.6(4)N(11)-C(45)-C(44)117.8(4)N(18)-C(66)-C(67)120.1(4)N(13)-C(46)-N(12)114.9(4)C(68)-C(67)-C(66)119.0(5)	C(43)-C(44)-C(45)	120.6(5)	N(16)-C(65)-C(64)	117.9(4)
N(12)-C(45)-C(44)125.6(4) $N(17)-C(66)-C(67)$ 124.6(4) $N(11)-C(45)-C(44)$ 117.8(4) $N(18)-C(66)-C(67)$ 120.1(4) $N(13)-C(46)-N(12)$ 114.9(4) $C(68)-C(67)-C(66)$ 119.0(5)	N(12)-C(45)-N(11)	116.3(4)	N(17)-C(66)-N(18)	115.1(4)
N(11)-C(45)-C(44)117.8(4)N(18)-C(66)-C(67)120.1(4)N(13)-C(46)-N(12)114.9(4)C(68)-C(67)-C(66)119.0(5)	N(12)-C(45)-C(44)	125.6(4)	N(17)-C(66)-C(67)	124.6(4)
N(13)-C(46)-N(12) 114.9(4) C(68)-C(67)-C(66) 119.0(5)	N(11)-C(45)-C(44)	117.8(4)	N(18)-C(66)-C(67)	120.1(4)
	N(13)-C(46)-N(12)	114.9(4)	C(68)-C(67)-C(66)	119.0(5)

			10101 x 1 x 10101
C(67)-C(68)-C(69)	121.4(5)	F(1)-P(1)-F(2)	91.4(3)
C(71)-C(69)-C(68)	124.5(5)	F(4)-P(1)-F(2)	178.3(5)
C(71)-C(69)-C(70)	117.9(5)	F(5)-P(1)-F(2)	87.7(4)
C(68)-C(69)-C(70)	117.6(5)	F(3)-P(1)-F(6)	89.7(5)
N(18)-C(70)-N(19)	116.7(4)	F(1)-P(1)-F(6)	177.4(5)
N(18)-C(70)-C(69)	121.6(4)	F(4)-P(1)-F(6)	91.1(6)
N(19)-C(70)-C(69)	121.7(4)	F(5)-P(1)-F(6)	89.2(4)
C(72)-C(71)-C(69)	120.7(5)	F(2)-P(1)-F(6)	88.6(5)
C(71)-C(72)-C(73)	120.3(5)	F(1')-P(1')-F(5')	91.4(6)
N(19)-C(73)-N(20)	115.7(4)	F(1')-P(1')-F(6')	176.2(10)
N(19)-C(73)-C(72)	120.7(4)	F(5')-P(1')-F(6')	90.9(7)
N(20)-C(73)-C(72)	123.6(5)	F(1')-P(1')-F(2')	87.2(7)
C(79)-C(74)-C(75)	120.5(13)	F(5')-P(1')-F(2')	87.1(7)
C(79)-C(74)-C(62)	123.5(11)	F(6')-P(1')-F(2')	89.8(9)
C(75)-C(74)-C(62)	115.9(10)	F(1')-P(1')-F(3')	89.0(6)
C(74)-C(75)-C(76)	118.1(13)	F(5')-P(1')-F(3')	173.5(10)
C(77)-C(76)-C(75)	119.8(13)	F(6')-P(1')-F(3')	88.3(7)
C(76)-C(77)-C(78)	120.4(12)	F(2')-P(1')-F(3')	86.4(7)
C(79)-C(78)-C(77)	120.0(11)	F(1')-P(1')-F(4')	87.8(7)
C(74)-C(79)-C(78)	121.0(12)	F(5')-P(1')-F(4')	101.3(12)
C(75')-C(74')-C(79')	117.2(17)	F(6')-P(1')-F(4')	94.7(14)
C(75')-C(74')-C(62)	127.2(16)	F(2')-P(1')-F(4')	170.3(11)
C(79')-C(74')-C(62)	115.4(14)	F(3')-P(1')-F(4')	85.2(7)
C(74')-C(75')-C(76')	122.9(19)	C(82)-C(81)-Cl(1)	114.0(5)
C(77')-C(76')-C(75')	119.9(18)	C(81)-C(82)-Cl(2)	113.6(5)
C(76')-C(77')-C(78')	121.8(17)	C(84)-C(83)-Cl(3)	123.9(8)
C(77')-C(78')-C(79')	119.4(16)	C(83)-C(84)-Cl(4)	118.7(8)
C(78')-C(79')-C(74')	118.2(16)	C(86)-C(85)-Cl(5)	122.3(10)
F(3)-P(1)-F(1)	92.9(4)	C(85)-C(86)-Cl(6)	116.2(11)
F(3)-P(1)-F(4)	89.2(5)	C(88)-C(87)-Cl(7)	122.6(10)
F(1)-P(1)-F(4)	88.8(4)	C(88)-C(87)-Cl(7')	123.0(10)
F(3)-P(1)-F(5)	178.9(5)	C(87)-C(88)-Cl(8')	116.6(12)
F(1)-P(1)-F(5)	88.2(4)	C(87)-C(88)-Cl(8)	113.1(9)
F(4)-P(1)-F(5)	90.6(5)	C(89)#1-C(89)-C(90)	117.0(7)
F(3)-P(1)-F(2)	92.5(5)	C(89)-C(90)-C(91)	116.4(6)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,-z+1

附錄C-10.1. Crystal data and structure	refinement for ic18319.
Identification code	ic18319
Empirical formula	C85H74.50Cl13F2N20.50Ni6O9.50S4
Formula weight	2514.50
Temperature	150(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	P21/n
Unit cell dimensions	$a = 17.1823(3) \text{ Å} \qquad \alpha = 90^{\circ}.$
	$b = 28.7193(6) \text{ Å} \qquad \beta = 106.5003(10)^{\circ}.$
	$c = 21.4807(4) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	10163.4(3) Å ³
Z	4
Density (calculated)	1.643 Mg/m ³
Absorption coefficient	5.694 mm ⁻¹
F(000)	5100
Crystal size	0.416 x 0.035 x 0.021 mm ³
Theta range for data collection	2.640 to 69.999°.
Index ranges	-20<=h<=20, -32<=k<=35, -21<=l<=26
Reflections collected	41441
Independent reflections	18576 [R(int) = 0.0349]
Completeness to theta = 67.679°	96.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7533 and 0.5433
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	18576 / 125 / 1306
Goodness-of-fit on F ²	1.022
Final R indices [I>2sigma(I)]	R1 = 0.0917, wR2 = 0.2551
R indices (all data)	R1 = 0.1075, wR2 = 0.2670
Extinction coefficient	n/a
Largest diff. peak and hole	2.428 and -2.306 e.Å ⁻³

附錄C-10.2. Bond lengths [Å] and angles [°]	for ic18319.	大港重改
N:(1) E(1)	1.077(4)	S(A) C(7A)	1 722(8)
NI(1)-F(1)	1.977(4)	S(4)-C(74)	1.733(8)
N1(1)-N(6)	2.052(5)	N(1)-C(1)	1.343(8)
$N_1(1) - N(1)$	2.060(5)	N(1)-C(5)	1.354(8)
$N_1(1) - N(19)$	2.138(5)	N(2)-C(6)	1.364(8)
Ni(1)-N(14)	2.156(5)	N(2)-C(5)	1.383(8)
Ni(1)-Ni(2)	2.3562(14)	N(3)-C(6)	1.364(8)
Ni(2)-N(7)	1.891(5)	N(3)-C(10)	1.367(8)
Ni(2)-N(13)	1.904(5)	N(4)-C(13)	1.347(8)
Ni(2)-N(2)	1.906(5)	N(4)-C(10)	1.363(8)
Ni(2)-N(18)	1.914(5)	N(5)-C(13)	1.385(9)
Ni(2)-Ni(3)	2.3227(14)	N(6)-C(25)	1.354(8)
Ni(3)-N(12)	1.875(5)	N(6)-C(21)	1.357(8)
Ni(3)-N(8)	1.891(5)	N(7)-C(26)	1.367(8)
Ni(3)-N(17)	1.900(5)	N(7)-C(25)	1.387(8)
Ni(3)-N(3)	1.910(5)	N(8)-C(26)	1.350(8)
Ni(3)-Ni(4)	2.3524(14)	N(8)-C(30)	1.376(8)
Ni(4)-F(2)	1.978(4)	N(9)-C(33)	1.330(8)
Ni(4)-N(16)	2.054(5)	N(9)-C(30)	1.364(8)
Ni(4)-N(11)	2.078(5)	N(10)-C(33)	1.390(9)
Ni(4)-N(9)	2.136(5)	N(11)-C(45)	1.343(9)
Ni(4)-N(4)	2.157(5)	N(11)-C(41)	1.345(8)
S(1)-O(2)	1.417(6)	N(12)-C(46)	1.362(8)
S(1)-O(1)	1.432(6)	N(12)-C(45)	1.392(8)
S(1)-N(5)	1.639(6)	N(13)-C(46)	1.356(8)
S(1)-C(14)	1.755(9)	N(13)-C(50)	1.374(8)
S(2)-O(3)	1.421(6)	N(14)-C(53)	1.309(8)
S(2)-O(4)	1.440(7)	N(14)-C(50)	1.363(8)
S(2)-N(10)	1.638(6)	N(15)-C(53)	1.399(8)
S(2)-C(34)	1.736(11)	N(16)-C(61)	1.330(8)
S(3)-O(6)	1.431(5)	N(16)-C(65)	1.353(8)
S(3)-O(5)	1.434(5)	N(17)-C(66)	1.358(8)
S(3)-N(15)	1.647(5)	N(17)-C(65)	1.391(8)
S(3)-C(54)	1.755(8)	N(18)-C(66)	1.364(8)
S(4)-O(8)	1.431(5)	N(18)-C(70)	1.365(8)
S(4)-O(7)	1.434(6)	N(19)-C(73)	1.345(8)
S(4)-N(20)	1.627(6)	N(19)-C(70)	1.377(8)

附錄C-10.2 Bond lengths [Å] and angles [9] for ic 18210

N(20)-C(73)	1.376(8)	C(42)-C(43)	1.411(10)
C(1)-C(2)	1.382(10)	C(42)-C(55)	1.479(10)
C(2)-C(3)	1.391(10)	C(43)-C(44)	1.374(10)
C(2)-C(15)	1.491(9)	C(44)-C(45)	1.397(10)
C(3)-C(4)	1.378(10)	C(46)-C(47)	1.426(9)
C(4)-C(5)	1.399(9)	C(47)-C(48)	1.361(10)
C(6)-C(7)	1.414(9)	C(48)-C(49)	1.414(10)
C(7)-C(8)	1.344(10)	C(49)-C(50)	1.407(9)
C(8)-C(9)	1.422(10)	C(49)-C(51)	1.422(10)
C(9)-C(11)	1.398(10)	C(51)-C(52)	1.352(10)
C(9)-C(10)	1.407(9)	C(52)-C(53)	1.421(9)
C(11)-C(12)	1.362(11)	C(55)-C(56)	1.379(12)
C(12)-C(13)	1.397(11)	C(55)-C(60)	1.409(12)
C(15)-C(20)	1.386(11)	C(56)-C(57)	1.396(13)
C(15)-C(16)	1.400(11)	C(57)-C(58)	1.382(16)
C(16)-C(17)	1.392(11)	C(58)-C(59)	1.340(15)
C(17)-C(18)	1.382(14)	C(59)-C(60)	1.399(13)
C(18)-C(19)	1.349(15)	C(61)-C(62)	1.387(9)
C(19)-C(20)	1.403(12)	C(62)-C(63)	1.397(10)
C(21)-C(22)	1.371(10)	C(62)-C(75)	1.489(9)
C(22)-C(23)	1.410(11)	C(63)-C(64)	1.374(10)
C(22)-C(35)	1.484(11)	C(64)-C(65)	1.392(9)
C(23)-C(24)	1.373(10)	C(66)-C(67)	1.419(9)
C(24)-C(25)	1.388(10)	C(67)-C(68)	1.335(10)
C(26)-C(27)	1.436(9)	C(68)-C(69)	1.420(9)
C(27)-C(28)	1.362(10)	C(69)-C(70)	1.394(9)
C(28)-C(29)	1.413(9)	C(69)-C(71)	1.398(9)
C(29)-C(31)	1.399(9)	C(71)-C(72)	1.361(10)
C(29)-C(30)	1.412(9)	C(72)-C(73)	1.408(9)
C(31)-C(32)	1.357(9)	C(75)-C(80)	1.393(11)
C(32)-C(33)	1.404(10)	C(75)-C(76)	1.402(11)
C(35)-C(40)	1.363(15)	C(76)-C(77)	1.410(11)
C(35)-C(36)	1.390(13)	C(77)-C(78)	1.364(13)
C(36)-C(37)	1.394(13)	C(78)-C(79)	1.379(14)
C(37)-C(38)	1.333(19)	C(79)-C(80)	1.393(11)
C(38)-C(39)	1.40(2)	Ni(5)-O(9')	1.875(17)
C(39)-C(40)	1.419(19)	Ni(5)-O(9)	1.906(15)
C(41)-C(42)	1.377(10)	Ni(5)-Cl(1)	2.190(3)

			01010101010
Ni(5)-Cl(3)	2.206(4)	N(7)-Ni(2)-N(2)	88.6(2)
Ni(5)-Cl(2)	2.229(4)	N(13)-Ni(2)-N(2)	176.2(2)
Ni(6)-O(9)	1.787(14)	N(7)-Ni(2)-N(18)	175.2(2)
Ni(6)-O(9')	1.824(18)	N(13)-Ni(2)-N(18)	91.2(2)
Ni(6)-Cl(4)	2.214(4)	N(2)-Ni(2)-N(18)	88.2(2)
Ni(6)-Cl(6)	2.234(7)	N(7)-Ni(2)-Ni(3)	86.36(17)
Ni(6)-Cl(5)	2.244(5)	N(13)-Ni(2)-Ni(3)	90.21(16)
O(10)-C(81)	1.193(10)	N(2)-Ni(2)-Ni(3)	86.05(16)
N(21)-C(81)	1.359(10)	N(18)-Ni(2)-Ni(3)	89.91(16)
N(21)-C(82)	1.452(10)	N(7)-Ni(2)-Ni(1)	91.77(17)
N(21)-C(83)	1.453(10)	N(13)-Ni(2)-Ni(1)	91.61(16)
C(84)-Cl(8)	1.748(10)	N(2)-Ni(2)-Ni(1)	92.15(16)
C(84)-Cl(7)	1.758(10)	N(18)-Ni(2)-Ni(1)	91.86(16)
C(85)-Cl(10)	1.749(17)	Ni(3)-Ni(2)-Ni(1)	177.44(6)
C(85)-Cl(9)	1.777(16)	N(12)-Ni(3)-N(8)	91.3(2)
C(86)-Cl(11)	1.744(14)	N(12)-Ni(3)-N(17)	89.2(2)
C(86)-Cl(12)	1.764(12)	N(8)-Ni(3)-N(17)	176.2(2)
C(87)-Cl(16)	1.682(9)	N(12)-Ni(3)-N(3)	175.7(2)
C(87)-Cl(14)	1.693(9)	N(8)-Ni(3)-N(3)	90.5(2)
C(87)-Cl(13)	1.841(9)	N(17)-Ni(3)-N(3)	88.8(2)
C(87)-Cl(15)	1.852(9)	N(12)-Ni(3)-Ni(2)	86.03(17)
		N(8)-Ni(3)-Ni(2)	90.35(16)
F(1)-Ni(1)-N(6)	92.64(18)	N(17)-Ni(3)-Ni(2)	85.93(16)
F(1)-Ni(1)-N(1)	92.82(18)	N(3)-Ni(3)-Ni(2)	90.03(16)
N(6)-Ni(1)-N(1)	89.9(2)	N(12)-Ni(3)-Ni(4)	90.25(17)
F(1)-Ni(1)-N(19)	98.96(18)	N(8)-Ni(3)-Ni(4)	92.72(16)
N(6)-Ni(1)-N(19)	168.3(2)	N(17)-Ni(3)-Ni(4)	91.04(16)
N(1)-Ni(1)-N(19)	88.1(2)	N(3)-Ni(3)-Ni(4)	93.58(16)
F(1)-Ni(1)-N(14)	98.36(17)	Ni(2)-Ni(3)-Ni(4)	175.24(6)
N(6)-Ni(1)-N(14)	89.1(2)	F(2)-Ni(4)-N(16)	92.50(19)
N(1)-Ni(1)-N(14)	168.8(2)	F(2)-Ni(4)-N(11)	92.18(19)
N(19)-Ni(1)-N(14)	90.7(2)	N(16)-Ni(4)-N(11)	91.0(2)
F(1)-Ni(1)-Ni(2)	175.01(12)	F(2)-Ni(4)-N(9)	99.33(18)
N(6)-Ni(1)-Ni(2)	83.66(15)	N(16)-Ni(4)-N(9)	168.2(2)
N(1)-Ni(1)-Ni(2)	83.85(15)	N(11)-Ni(4)-N(9)	88.2(2)
N(19)-Ni(1)-Ni(2)	84.68(14)	F(2)-Ni(4)-N(4)	100.56(19)
N(14)-Ni(1)-Ni(2)	84.96(14)	N(16)-Ni(4)-N(4)	89.1(2)
N(7)-Ni(2)-N(13)	91.8(2)	N(11)-Ni(4)-N(4)	167.3(2)

			1610101010
N(9)-Ni(4)-N(4)	89 1(2)	C(10)-N(3)-Ni(3)	119 8(4)
F(2)-Ni(4)-Ni(3)	175 66(13)	C(13)-N(4)-C(10)	117.5(6)
N(16)-Ni(4)-Ni(3)	84 66(15)	C(13)-N(4)-Ni(4)	122 7(4)
N(11)-Ni(4)-Ni(3)	84 60(15)	C(10) - N(4) - Ni(4)	119 8(4)
N(9)-Ni(4)-Ni(3)	83.51(15)	C(13)-N(5)-S(1)	126 6(5)
N(4)-Ni(4)-Ni(3)	82.71(15)	C(25)-N(6)-C(21)	118 9(6)
O(2)- $S(1)$ - $O(1)$	121.1(4)	C(25)-N(6)-Ni(1)	121.7(4)
O(2)-S(1)-N(5)	103.8(3)	C(21)-N(6)-Ni(1)	119.4(4)
O(1)-S(1)-N(5)	108.9(3)	C(26)-N(7)-C(25)	123.1(5)
O(2)-S(1)-C(14)	107.9(5)	C(26)-N(7)-Ni(2)	117.8(4)
O(1)- $S(1)$ - $C(14)$	109.2(4)	C(25)-N(7)-Ni(2)	118.9(4)
N(5)-S(1)-C(14)	104.6(4)	C(26)-N(8)-C(30)	120.8(5)
O(3)-S(2)-O(4)	118.6(4)	C(26)-N(8)-Ni(3)	117.9(4)
O(3)-S(2)-N(10)	110.6(3)	C(30)-N(8)-Ni(3)	120.3(4)
O(4)-S(2)-N(10)	103.7(3)	C(33)-N(9)-C(30)	117.8(6)
O(3)-S(2)-C(34)	109.2(5)	C(33)-N(9)-Ni(4)	123.0(5)
O(4)-S(2)-C(34)	109.5(5)	C(30)-N(9)-Ni(4)	119.0(4)
N(10)-S(2)-C(34)	104.3(5)	C(33)-N(10)-S(2)	129.2(5)
O(6)-S(3)-O(5)	118.9(3)	C(45)-N(11)-C(41)	119.4(6)
O(6)-S(3)-N(15)	104.4(3)	C(45)-N(11)-Ni(4)	119.2(4)
O(5)-S(3)-N(15)	109.9(3)	C(41)-N(11)-Ni(4)	121.4(4)
O(6)-S(3)-C(54)	110.1(4)	C(46)-N(12)-C(45)	121.8(5)
O(5)-S(3)-C(54)	108.4(3)	C(46)-N(12)-Ni(3)	118.9(4)
N(15)-S(3)-C(54)	104.2(3)	C(45)-N(12)-Ni(3)	119.2(4)
O(8)-S(4)-O(7)	118.8(3)	C(46)-N(13)-C(50)	119.9(5)
O(8)-S(4)-N(20)	104.1(3)	C(46)-N(13)-Ni(2)	117.5(4)
O(7)-S(4)-N(20)	110.0(3)	C(50)-N(13)-Ni(2)	121.7(4)
O(8)-S(4)-C(74)	108.5(4)	C(53)-N(14)-C(50)	117.6(5)
O(7)-S(4)-C(74)	109.0(4)	C(53)-N(14)-Ni(1)	124.6(4)
N(20)-S(4)-C(74)	105.5(4)	C(50)-N(14)-Ni(1)	117.5(4)
C(1)-N(1)-C(5)	119.6(5)	C(53)-N(15)-S(3)	127.1(5)
C(1)-N(1)-Ni(1)	118.2(4)	C(61)-N(16)-C(65)	119.2(6)
C(5)-N(1)-Ni(1)	122.2(4)	C(61)-N(16)-Ni(4)	119.7(4)
C(6)-N(2)-C(5)	122.8(5)	C(65)-N(16)-Ni(4)	121.1(4)
C(6)-N(2)-Ni(2)	117.9(4)	C(66)-N(17)-C(65)	122.5(5)
C(5)-N(2)-Ni(2)	119.0(4)	C(66)-N(17)-Ni(3)	117.7(4)
C(6)-N(3)-C(10)	120.5(5)	C(65)-N(17)-Ni(3)	119.6(4)
C(6)-N(3)-Ni(3)	117.9(4)	C(66)-N(18)-C(70)	119.9(5)

			AND/DITES
$C(\mathcal{L})$ $N(10)$ $N'(2)$	117 4(4)	C(15) $C(20)$ $C(10)$	110 7(0)
C(66)-N(18)-Ni(2)	11/.4(4)	C(15)-C(20)-C(19)	119.7(8)
C(70)-N(18)-Ni(2)	121.5(4)	N(6)-C(21)-C(22)	123.6(6)
C(73)-N(19)-C(70)	117.1(5)	C(21)-C(22)-C(23)	116.8(7)
C(73)-N(19)-Ni(1)	124.3(4)	C(21)-C(22)-C(35)	120.2(7)
C(70)-N(19)-Ni(1)	118.5(4)	C(23)-C(22)-C(35)	122.9(7)
C(73)-N(20)-S(4)	127.2(5)	C(24)-C(23)-C(22)	120.1(7)
N(1)-C(1)-C(2)	123.5(6)	C(23)-C(24)-C(25)	119.8(6)
C(1)-C(2)-C(3)	116.6(6)	N(6)-C(25)-N(7)	115.2(6)
C(1)-C(2)-C(15)	120.0(6)	N(6)-C(25)-C(24)	120.7(6)
C(3)-C(2)-C(15)	123.4(6)	N(7)-C(25)-C(24)	123.9(6)
C(4)-C(3)-C(2)	120.9(7)	N(8)-C(26)-N(7)	117.1(5)
C(3)-C(4)-C(5)	119.3(6)	N(8)-C(26)-C(27)	120.1(6)
N(1)-C(5)-N(2)	115.4(5)	N(7)-C(26)-C(27)	122.7(6)
N(1)-C(5)-C(4)	120.0(6)	C(28)-C(27)-C(26)	119.1(6)
N(2)-C(5)-C(4)	124.5(6)	C(27)-C(28)-C(29)	121.3(6)
N(2)-C(6)-N(3)	116.1(5)	C(31)-C(29)-C(30)	117.2(6)
N(2)-C(6)-C(7)	123.0(6)	C(31)-C(29)-C(28)	125.2(6)
N(3)-C(6)-C(7)	120.5(6)	C(30)-C(29)-C(28)	117.6(6)
C(8)-C(7)-C(6)	119.1(6)	N(9)-C(30)-N(8)	116.5(5)
C(7)-C(8)-C(9)	121.5(7)	N(9)-C(30)-C(29)	122.6(6)
C(11)-C(9)-C(10)	117.5(7)	N(8)-C(30)-C(29)	120.9(6)
C(11)-C(9)-C(8)	124.9(7)	C(32)-C(31)-C(29)	120.2(6)
C(10)-C(9)-C(8)	117.5(6)	C(31)-C(32)-C(33)	119.1(6)
N(4)-C(10)-N(3)	116.6(6)	N(9)-C(33)-N(10)	114.5(6)
N(4)-C(10)-C(9)	122.8(6)	N(9)-C(33)-C(32)	123.0(6)
N(3)-C(10)-C(9)	120.6(6)	N(10)-C(33)-C(32)	122.5(6)
C(12)-C(11)-C(9)	120.1(7)	C(40)-C(35)-C(36)	118.8(9)
C(11)-C(12)-C(13)	119.2(7)	C(40)-C(35)-C(22)	120.2(9)
N(4)-C(13)-N(5)	115.1(6)	C(36)-C(35)-C(22)	121.0(8)
N(4)-C(13)-C(12)	122.8(6)	C(35)-C(36)-C(37)	120.7(10)
N(5)-C(13)-C(12)	122.1(6)	C(38)-C(37)-C(36)	120.1(11)
C(20)-C(15)-C(16)	119.3(7)	C(37)-C(38)-C(39)	121.2(11)
C(20)-C(15)-C(2)	120.4(7)	C(38)-C(39)-C(40)	118.3(14)
C(16)-C(15)-C(2)	120.2(7)	C(35)-C(40)-C(39)	120.5(13)
C(17)-C(16)-C(15)	119.5(8)	N(11)-C(41)-C(42)	123.5(6)
C(18)-C(17)-C(16)	120.4(9)	C(41)-C(42)-C(43)	117.0(6)
C(19)-C(18)-C(17)	120.4(8)	C(41)-C(42)-C(55)	122.8(7)
C(18)-C(19)-C(20)	120.7(9)	C(43)-C(42)-C(55)	120.2(6)

			1610101010
C(44)-C(43)-C(42)	119.7(6)	N(17)-C(66)-N(18)	116.4(6)
C(43)-C(44)-C(45)	119.6(6)	N(17)-C(66)-C(67)	122.7(6)
N(11)-C(45)-N(12)	115.8(6)	N(18)-C(66)-C(67)	120.4(6)
N(11)-C(45)-C(44)	120.7(6)	C(68)-C(67)-C(66)	119.7(6)
N(12)-C(45)-C(44)	123.3(6)	C(67)- $C(68)$ - $C(69)$	120.6(6)
N(13)-C(46)-N(12)	116.3(6)	C(70)- $C(69)$ - $C(71)$	118.4(6)
N(13)-C(46)-C(47)	121.3(6)	C(70)-C(69)-C(68)	118.3(6)
N(12)-C(46)-C(47)	122.3(6)	C(71)-C(69)-C(68)	123.3(6)
C(48)-C(47)-C(46)	119.3(6)	N(18)-C(70)-N(19)	116.5(5)
C(47)- $C(48)$ - $C(49)$	119.7(6)	N(18)-C(70)-C(69)	121.0(6)
C(50)-C(49)-C(48)	119.5(6)	N(19)-C(70)-C(69)	122.5(6)
C(50)-C(49)-C(51)	117.4(6)	C(72)-C(71)-C(69)	119.9(6)
C(48)-C(49)-C(51)	123.1(6)	C(71)-C(72)-C(73)	119.0(6)
N(14)-C(50)-N(13)	117.2(5)	N(19)-C(73)-N(20)	114.8(6)
N(14)-C(50)-C(49)	122.5(6)	N(19)-C(73)-C(72)	122.9(6)
N(13)-C(50)-C(49)	120.3(6)	N(20)-C(73)-C(72)	122.2(6)
C(52)-C(51)-C(49)	119.9(6)	C(80)-C(75)-C(76)	118.6(7)
C(51)-C(52)-C(53)	118.0(6)	C(80)-C(75)-C(62)	120.6(7)
N(14)-C(53)-N(15)	114.8(6)	C(76)-C(75)-C(62)	120.6(7)
N(14)-C(53)-C(52)	124.4(6)	C(75)-C(76)-C(77)	119.5(8)
N(15)-C(53)-C(52)	120.8(6)	C(78)-C(77)-C(76)	120.8(8)
C(56)-C(55)-C(60)	118.9(7)	C(77)-C(78)-C(79)	120.1(8)
C(56)-C(55)-C(42)	120.8(8)	C(78)-C(79)-C(80)	120.2(8)
C(60)-C(55)-C(42)	120.3(8)	C(79)-C(80)-C(75)	120.8(8)
C(55)-C(56)-C(57)	120.9(9)	O(9')-Ni(5)-Cl(1)	103.9(5)
C(58)-C(57)-C(56)	118.4(11)	O(9)-Ni(5)-Cl(1)	111.1(4)
C(59)-C(58)-C(57)	122.3(10)	O(9')-Ni(5)-Cl(3)	128.0(8)
C(58)-C(59)-C(60)	119.9(10)	O(9)-Ni(5)-Cl(3)	96.3(7)
C(59)-C(60)-C(55)	119.6(9)	Cl(1)-Ni(5)-Cl(3)	108.50(18)
N(16)-C(61)-C(62)	124.3(6)	O(9')-Ni(5)-Cl(2)	99.4(7)
C(61)-C(62)-C(63)	116.1(6)	O(9)-Ni(5)-Cl(2)	124.2(6)
C(61)-C(62)-C(75)	119.6(6)	Cl(1)-Ni(5)-Cl(2)	107.46(14)
C(63)-C(62)-C(75)	124.1(6)	Cl(3)-Ni(5)-Cl(2)	107.95(13)
C(64)-C(63)-C(62)	120.4(6)	O(9)-Ni(6)-Cl(4)	121.5(5)
C(63)-C(64)-C(65)	119.8(6)	O(9')-Ni(6)-Cl(4)	102.6(6)
N(16)-C(65)-N(17)	115.2(5)	O(9)-Ni(6)-Cl(6)	90.7(7)
N(16)-C(65)-C(64)	120.2(6)	O(9')-Ni(6)-Cl(6)	125.4(8)
N(17)-C(65)-C(64)	124.4(6)	Cl(4)-Ni(6)-Cl(6)	108.7(2)

O(9)-Ni(6)-Cl(5)	116.9(5)	C(82)-N(21)-C(83)	113(2)
O(9')-Ni(6)-Cl(5)	100.8(6)	O(10)-C(81)-N(21)	124.4(17)
Cl(4)-Ni(6)-Cl(5)	106.3(2)	Cl(8)-C(84)-Cl(7)	118.5(15)
Cl(6)-Ni(6)-Cl(5)	111.4(2)	Cl(10)-C(85)-Cl(9)	111.4(9)
Ni(6)-O(9)-Ni(5)	143.7(13)	Cl(11)-C(86)-Cl(12)	112.6(8)
Ni(6)-O(9')-Ni(5)	143.1(15)	Cl(14)-C(87)-Cl(13)	107.5(7)
C(81)-N(21)-C(82)	121.4(17)	Cl(16)-C(87)-Cl(15)	101.9(8)
C(81)-N(21)-C(83)	125(3)		

Symmetry transformations used to generate equivalent atoms:

附錄C-11.1. Crystal data and structure refin	nement for ic18554.	****
Identification code	ic18554	
Empirical formula	C85H70Cl10F12N20Ni50	D8P2S4
Formula weight	2565.84	· 學·學 / / / / / /
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 32.1417(7) Å	$\alpha = 90^{\circ}$.
	b = 13.4697(3) Å	$\beta = 96.7840(6)^{\circ}$.
	c = 23.6404(5) Å	$\gamma = 90^{\circ}$.
Volume	10163.2(4) Å ³	
Z	4	
Density (calculated)	1.677 Mg/m ³	
Absorption coefficient	1.372 mm ⁻¹	
F(000)	5184	
Crystal size	0.262 x 0.123 x 0.086 mm	l ³
Theta range for data collection	2.272 to 27.493°.	
Index ranges	-41<=h<=41, -17<=k<=17	7, -30<=l<=25
Reflections collected	38627	
Independent reflections	11660 [R(int) = 0.0325]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.7456 and 0.7013	
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	11660 / 64 / 726	
Goodness-of-fit on F ²	1.045	
Final R indices [I>2sigma(I)]	R1 = 0.0683, wR2 = 0.189	95
R indices (all data)	R1 = 0.0921, wR2 = 0.218	86
Extinction coefficient	n/a	
Largest diff. peak and hole	2.297 and -1.274 e.Å ⁻³	

附錄C-11.2. Bond lengths [Å] and angles [°] for ic18554.			X HE A	
Ni(1)-N(10)	1.910(4)	N(6)-Ni(1)#1	1.921(4)	
Ni(1)-N(5)#1	1.916(4)	N(7)-C(26)	1.359(5)	
Ni(1)-N(6)#1	1.921(4)	N(7)-C(25)	1.387(5)	
Ni(1)-N(1)	1.928(4)	N(7)-Ni(2)#1	1.892(4)	
Ni(1)-Ni(2)	2.3518(7)	N(8)-C(26)	1.365(5)	
Ni(2)-N(7)#1	1.892(4)	N(8)-C(30)	1.371(5)	
Ni(2)-N(2)	1.894(4)	N(9)-C(33)	1.355(5)	
Ni(2)-N(4)#1	1.932(4)	N(9)-C(30)	1.373(5)	
Ni(2)-N(9)	1.937(4)	N(10)-C(33)	1.375(6)	
Ni(2)-Ni(3)	2.3154(5)	C(1)-C(2)	1.381(6)	
Ni(3)-N(3)	1.920(4)	C(2)-C(3)	1.395(6)	
Ni(3)-N(3)#1	1.920(4)	C(2)-C(15)	1.485(6)	
Ni(3)-N(8)	1.921(4)	C(3)-C(4)	1.378(6)	
Ni(3)-N(8)#1	1.921(4)	C(4)-C(5)	1.407(6)	
Ni(3)-Ni(2)#1	2.3154(5)	C(6)-C(7)	1.420(6)	
S(1)-O(2)	1.428(4)	C(7)-C(8)	1.352(7)	
S(1)-O(1)	1.434(4)	C(8)-C(9)	1.410(7)	
S(1)-N(10)	1.637(4)	C(9)-C(11)	1.403(7)	
S(1)-C(34)	1.750(6)	C(9)-C(10)	1.407(6)	
S(2)-O(4)	1.429(4)	C(11)-C(12)	1.351(8)	
S(2)-O(3)	1.435(4)	C(12)-C(13)	1.417(7)	
S(2)-N(5)	1.630(4)	C(15)-C(16)	1.380(7)	
S(2)-C(14)	1.733(7)	C(15)-C(20)	1.393(7)	
N(1)-C(5)	1.352(5)	C(16)-C(17)	1.387(7)	
N(1)-C(1)	1.355(5)	C(17)-C(18)	1.384(8)	
N(2)-C(6)	1.369(5)	C(18)-C(19)	1.374(9)	
N(2)-C(5)	1.379(5)	C(19)-C(20)	1.392(7)	
N(3)-C(6)	1.364(5)	C(21)-C(22)	1.376(7)	
N(3)-C(10)	1.367(6)	C(22)-C(23)	1.405(7)	
N(4)-C(13)	1.364(6)	C(22)-C(35)	1.482(12)	
N(4)-C(10)	1.367(6)	C(22)-C(35')	1.491(18)	
N(4)-Ni(2)#1	1.932(4)	C(23)-C(24)	1.363(7)	
N(5)-C(13)	1.372(6)	C(24)-C(25)	1.401(6)	
N(5)-Ni(1)#1	1.916(4)	C(26)-C(27)	1.416(6)	
N(6)-C(21)	1.349(5)	C(27)-C(28)	1.355(7)	
N(6)-C(25)	1.357(5)	C(28)-C(29)	1.407(6)	

			16161010101010
C(29)-C(30)	1.405(6)	C(43)-Cl(5)	1.718(10)
C(29)-C(31)	1.411(7)	C(43)-Cl(6)	1.745(10)
C(31)-C(32)	1.347(7)		A A
C(32)-C(33)	1.416(7)	N(10)-Ni(1)-N(5)#1	174.46(16)
C(35)-C(36)	1.37(2)	N(10)-Ni(1)-N(6)#1	90.83(17)
C(35)-C(40)	1.42(2)	N(5)#1-Ni(1)-N(6)#1	88.52(18)
C(36)-C(37)	1.416(12)	N(10)-Ni(1)-N(1)	88.79(16)
C(37)-C(38)	1.301(18)	N(5)#1-Ni(1)-N(1)	91.35(17)
C(38)-C(39)	1.44(2)	N(6)#1-Ni(1)-N(1)	174.70(15)
C(39)-C(40)	1.380(11)	N(10)-Ni(1)-Ni(2)	87.83(11)
C(35')-C(36')	1.36(2)	N(5)#1-Ni(1)-Ni(2)	86.65(12)
C(35')-C(40')	1.42(2)	N(6)#1-Ni(1)-Ni(2)	87.67(11)
C(36')-C(37')	1.403(16)	N(1)-Ni(1)-Ni(2)	87.03(11)
C(37')-C(38')	1.291(19)	N(7)#1-Ni(2)-N(2)	178.26(15)
C(38')-C(39')	1.43(2)	N(7)#1-Ni(2)-N(4)#1	89.60(16)
C(39')-C(40')	1.392(14)	N(2)-Ni(2)-N(4)#1	90.18(16)
F(1)-P(1')	1.512(6)	N(7)#1-Ni(2)-N(9)	90.16(16)
F(1)-P(1)	1.605(6)	N(2)-Ni(2)-N(9)	90.02(15)
P(1)-F(4)	1.546(11)	N(4)#1-Ni(2)-N(9)	178.50(14)
P(1)-F(3)	1.564(9)	N(7)#1-Ni(2)-Ni(3)	89.07(11)
P(1)-F(6)	1.578(8)	N(2)-Ni(2)-Ni(3)	89.20(10)
P(1)-F(5)	1.589(12)	N(4)#1-Ni(2)-Ni(3)	89.02(11)
P(1)-F(2)	1.590(9)	N(9)-Ni(2)-Ni(3)	89.51(10)
P(1')-F(5')	1.52(2)	N(7)#1-Ni(2)-Ni(1)	90.74(11)
P(1')-F(4')	1.548(15)	N(2)-Ni(2)-Ni(1)	90.99(10)
P(1')-F(2')	1.570(15)	N(4)#1-Ni(2)-Ni(1)	91.34(11)
P(1')-F(3')	1.595(16)	N(9)-Ni(2)-Ni(1)	90.14(10)
P(1')-F(6')	1.600(18)	Ni(3)-Ni(2)-Ni(1)	179.59(3)
F(2')-Cl(4')#2	2.107(18)	N(3)-Ni(3)-N(3)#1	87.8(2)
C(41)-Cl(1)	1.728(8)	N(3)-Ni(3)-N(8)	92.23(16)
C(41)-Cl(2)	1.729(7)	N(3)#1-Ni(3)-N(8)	179.11(14)
C(41')-Cl(1')	1.738(10)	N(3)-Ni(3)-N(8)#1	179.10(14)
C(41')-Cl(2')	1.739(10)	N(3)#1-Ni(3)-N(8)#1	92.23(16)
C(42)-Cl(4')	1.657(9)	N(8)-Ni(3)-N(8)#1	87.8(2)
C(42)-Cl(3')	1.725(9)	N(3)-Ni(3)-Ni(2)#1	90.54(10)
C(42)-Cl(3)	1.735(8)	N(3)#1-Ni(3)-Ni(2)#1	89.64(10)
C(42)-Cl(4)	1.744(8)	N(8)-Ni(3)-Ni(2)#1	89.47(10)
Cl(4')-F(2')#2	2.107(18)	N(8)#1-Ni(3)-Ni(2)#1	90.36(10)

			1010101010
N(3) - Ni(3) - Ni(2)	89 63(10)	C(26) - N(8) - C(30)	110 9(4)
N(3)=1Ni(3)=1Ni(2) N(3)=1Ni(3)=Ni(2)	90 53(10)	C(26)-N(8)-N(3)	119.7(3)
N(3) = Ni(3) = Ni(2)	90.36(10)	C(20)-N(8)-Ni(3)	119.7(3)
N(8) = N(3) - N(2) N(8) = 1 N(3) - N(2)	90.30(10) 80.47(10)	C(30) - N(0) - N(3) C(32) N(0) C(30)	119.8(3)
$N_{(0)}$ #1- $N_{(0)}$ - $N_{(2)}$	39.47(10)	C(33) - N(9) - C(30) C(33) - N(0) - Ni(2)	119.3(4) 120 4(3)
O(2) S(1) O(1)	1/9.77(4)	C(33)-IN(9)-INI(2) C(30) N(0) Ni(2)	120.4(3)
O(2) - S(1) - O(1) O(2) - S(1) - O(1)	110.7(2)	C(30)-IN(9)-INI(2) C(32) N(10) S(1)	120.3(3) 123.5(3)
O(2)-S(1)-N(10) O(1) S(1) N(10)	112.9(2)	C(33)-IN(10)-S(1) C(32) N(10) Ni(1)	123.3(3) 122.7(3)
O(1)-S(1)-N(10)	104.3(2)	C(33)-IN(10)-INI(1)	122.7(3)
O(2)- $S(1)$ - $C(34)$	109.4(3)	S(1)-IN(10)-INI(1)	113.0(2)
O(1)-S(1)-C(34)	107.8(3)	N(1)-C(1)-C(2)	123.1(4)
N(10)-S(1)-C(34)	104.9(3)	C(1)-C(2)-C(3)	117.0(4)
O(4)- $S(2)$ - $O(3)$	117.6(3)	C(1)-C(2)-C(15)	120.6(4)
O(4)-S(2)-N(5)	112.3(2)	C(3)-C(2)-C(15)	122.4(4)
O(3)-S(2)-N(5)	104.2(2)	C(4)-C(3)-C(2)	120.4(4)
O(4)-S(2)-C(14)	108.6(3)	C(3)-C(4)-C(5)	120.1(4)
O(3)-S(2)-C(14)	108.4(3)	N(1)-C(5)-N(2)	116.7(4)
N(5)-S(2)-C(14)	104.9(3)	N(1)-C(5)-C(4)	119.1(4)
C(5)-N(1)-C(1)	120.2(4)	N(2)-C(5)-C(4)	124.1(4)
C(5)-N(1)-Ni(1)	122.9(3)	N(3)-C(6)-N(2)	116.5(4)
C(1)-N(1)-Ni(1)	116.6(3)	N(3)-C(6)-C(7)	120.1(4)
C(6)-N(2)-C(5)	122.2(4)	N(2)-C(6)-C(7)	123.2(4)
C(6)-N(2)-Ni(2)	119.2(3)	C(8)-C(7)-C(6)	120.1(4)
C(5)-N(2)-Ni(2)	118.5(3)	C(7)-C(8)-C(9)	120.1(5)
C(6)-N(3)-C(10)	120.0(4)	C(11)-C(9)-C(10)	117.6(4)
C(6)-N(3)-Ni(3)	119.8(3)	C(11)-C(9)-C(8)	123.8(5)
C(10)-N(3)-Ni(3)	119.7(3)	C(10)-C(9)-C(8)	118.5(4)
C(13)-N(4)-C(10)	119.4(4)	N(3)-C(10)-N(4)	117.2(4)
C(13)-N(4)-Ni(2)#1	119.5(3)	N(3)-C(10)-C(9)	120.9(4)
C(10)-N(4)-Ni(2)#1	121.0(3)	N(4)-C(10)-C(9)	121.8(4)
C(13)-N(5)-S(2)	124.3(3)	C(12)-C(11)-C(9)	120.9(5)
C(13)-N(5)-Ni(1)#1	123.9(3)	C(11)-C(12)-C(13)	120.0(5)
S(2)-N(5)-Ni(1)#1	110.9(2)	N(4)-C(13)-N(5)	115.8(4)
C(21)-N(6)-C(25)	119.7(4)	N(4)-C(13)-C(12)	120.3(4)
C(21)-N(6)-Ni(1)#1	117.7(3)	N(5)-C(13)-C(12)	123.9(4)
C(25)-N(6)-Ni(1)#1	122.5(3)	C(16)-C(15)-C(20)	119.2(4)
C(26)-N(7)-C(25)	121.7(4)	C(16)-C(15)-C(2)	120.9(4)
C(26)-N(7)-Ni(2)#1	119.6(3)	C(20)-C(15)-C(2)	119.9(4)
C(25)-N(7)-Ni(2)#1	118.6(3)	C(15)-C(16)-C(17)	120.7(5)

			61010101010
C(18) - C(17) - C(16)	110 0(5)	C(39) - C(40) - C(35)	120.8(10)
C(10)-C(17)-C(10)	119.9(5)	C(35)-C(40)-C(35)	115 9(15)
C(19)-C(10)-C(17)	119.9(5)	C(36') - C(35') - C(40')	115.9(13) 126.4(13)
C(18)-C(19)-C(20) C(10) C(20) C(15)	120.3(5)	C(30) - C(35) - C(22) C(40') C(35') C(22)	116(2)
N(6) C(21) C(22)	120.0(3)	C(40) - C(35) - C(22) C(35') - C(35') - C(37')	110(2) 120 1(14)
$\Gamma(0)$ - $C(21)$ - $C(22)$	125.8(4)	C(33) - C(30) - C(37)	120.1(14) 123 8(16)
C(21)-C(22)-C(23)	110.2(4) 124.0(7)	C(38) - C(37) - C(30)	123.8(10) 117.1(17)
C(21)-C(22)-C(33)	124.0(7)	C(37) - C(38) - C(39)	117.1(17) 119 5(14)
C(23)-C(22)-C(33)	116.0(0)	C(40) - C(39) - C(38)	110.3(14)
C(21)-C(22)-C(35)	110.2(8)	C(39)-C(40)-C(35)	121.0(15)
C(23)-C(22)-C(35)	127.3(9)	F(4)-P(1)-F(3)	90.8(7)
C(24)- $C(23)$ - $C(22)$	120.5(5)	F(4)-P(1)-F(6)	90.5(6)
C(23)-C(24)-C(25)	120.5(4)	F(3)-P(1)-F(6)	1/8.0(5)
N(6)-C(25)-N(7)	116.6(4)	F(4)-P(1)-F(5)	179.1(7)
N(6)-C(25)-C(24)	118.9(4)	F(3)-P(1)-F(5)	88.3(7)
N(7)-C(25)-C(24)	124.3(4)	F(6)-P(1)-F(5)	90.4(6)
N(7)-C(26)-N(8)	116.5(4)	F(4)-P(1)-F(2)	90.2(6)
N(7)-C(26)-C(27)	123.2(4)	F(3)-P(1)-F(2)	88.9(5)
N(8)-C(26)-C(27)	120.1(4)	F(6)-P(1)-F(2)	92.6(5)
C(28)-C(27)-C(26)	120.5(4)	F(5)-P(1)-F(2)	89.4(6)
C(27)-C(28)-C(29)	119.5(4)	F(4)-P(1)-F(1)	90.4(6)
C(30)-C(29)-C(28)	119.1(4)	F(3)-P(1)-F(1)	92.1(4)
C(30)-C(29)-C(31)	117.2(4)	F(6)-P(1)-F(1)	86.4(4)
C(28)-C(29)-C(31)	123.6(4)	F(5)-P(1)-F(1)	90.0(4)
N(8)-C(30)-N(9)	117.4(4)	F(2)-P(1)-F(1)	178.9(4)
N(8)-C(30)-C(29)	120.6(4)	F(1)-P(1')-F(5')	94.1(8)
N(9)-C(30)-C(29)	121.9(4)	F(1)-P(1')-F(4')	89.0(6)
C(32)-C(31)-C(29)	121.0(5)	F(5')-P(1')-F(4')	176.9(10)
C(31)-C(32)-C(33)	119.9(4)	F(1)-P(1')-F(2')	178.1(7)
N(9)-C(33)-N(10)	116.1(4)	F(5')-P(1')-F(2')	85.4(9)
N(9)-C(33)-C(32)	120.6(4)	F(4')-P(1')-F(2')	91.4(8)
N(10)-C(33)-C(32)	123.2(4)	F(1)-P(1')-F(3')	91.1(7)
C(36)-C(35)-C(40)	118.9(10)	F(5')-P(1')-F(3')	87.2(9)
C(36)-C(35)-C(22)	120.6(14)	F(4')-P(1')-F(3')	93.1(9)
C(40)-C(35)-C(22)	119.4(16)	F(2')-P(1')-F(3')	90.7(8)
C(35)-C(36)-C(37)	119.3(11)	F(1)-P(1')-F(6')	100.5(7)
C(38)-C(37)-C(36)	122.1(12)	F(5')-P(1')-F(6')	89.7(9)
C(37)-C(38)-C(39)	120.4(11)	F(4')-P(1')-F(6')	89.3(8)
C(40)-C(39)-C(38)	117.7(10)	F(2')-P(1')-F(6')	77.7(9)

			ASIA STOLETON
F(3')-P(1')-F(6')	168.2(9)	Cl(4')-C(42)-Cl(3')	125.0(9)
P(1')-F(2')-Cl(4')#2	149.6(8)	Cl(3)-C(42)-Cl(4)	110.1(5)
Cl(1)-C(41)-Cl(2)	110.4(5)	C(42)-Cl(4')-F(2')#2	137.0(8)
Cl(1')-C(41')-Cl(2')	120.0(17)	Cl(5)-C(43)-Cl(6)	102.0(9)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+1/2 #2 -x+1,-y+1,-z+1

附錄C-12.1. Crystal data and structure refi	nement for ic17558.
Identification code	ic17558
Empirical formula	C84H68Cl7Mo2N20Ni2O8S4
Formula weight	2171.27
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a = 13.9276(4) \text{ Å}$ $\alpha = 83.0621(13)^{\circ}.$
	b = 17.9755(6) Å β = 88.8078(12)°.
	$c = 17.9912(6) \text{ Å} \qquad \gamma = 75.9409(12)^{\circ}.$
Volume	4337.1(2) Å ³
Z	2
Density (calculated)	1.663 Mg/m ³
Absorption coefficient	1.092 mm ⁻¹
F(000)	2198
Crystal size	0.200 x 0.100 x 0.050 mm ³
Theta range for data collection	2.281 to 27.499°.
Index ranges	-18<=h<=17, -23<=k<=23, -23<=l<=23
Reflections collected	36559
Independent reflections	19902 [R(int) = 0.0269]
Completeness to theta = 25.242°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6706
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	19902 / 22 / 1182
Goodness-of-fit on F ²	1.017
Final R indices [I>2sigma(I)]	R1 = 0.0409, wR2 = 0.0976
R indices (all data)	R1 = 0.0587, wR2 = 0.1068
Extinction coefficient	n/a
Largest diff. peak and hole	1.751 and -1.558 e.Å ⁻³

附錄C-12.2. Bond lengths [Å] and angles [°] for ic17558.			X HE A	
Mo(1)-Mo(2)	2.1074(4)	S(4)-C(74)	1.774(4)	
Mo(1)-N(18)	2.136(2)	N(1)-C(5)	1.351(4)	
Mo(1)-N(8)	2.151(2)	N(1)-C(1)	1.362(4)	
Mo(1)-N(14)	2.180(2)	N(2)-C(6)	1.373(4)	
Mo(1)-N(2)	2.186(3)	N(2)-C(5)	1.394(4)	
Mo(2)-N(3)	2.144(2)	N(3)-C(6)	1.360(4)	
Mo(2)-N(13)	2.158(2)	N(3)-C(10)	1.379(4)	
Mo(2)-N(17)	2.185(2)	N(4)-C(13)	1.350(4)	
Mo(2)-N(9)	2.188(2)	N(4)-C(10)	1.352(4)	
Ni(1)-N(20)	2.063(3)	N(5)-C(13)	1.365(4)	
Ni(1)-N(1)	2.075(3)	N(6)-C(21)	1.338(4)	
Ni(1)-N(6)	2.075(3)	N(6)-C(25)	1.355(4)	
Ni(1)-O(5)	2.208(2)	N(7)-C(26)	1.340(4)	
Ni(1)-N(19)	2.213(3)	N(7)-C(25)	1.386(4)	
Ni(1)-N(7)	2.253(3)	N(8)-C(30)	1.356(4)	
Ni(2)-N(5)	2.070(3)	N(8)-C(26)	1.370(4)	
Ni(2)-N(11)	2.079(3)	N(9)-C(33)	1.351(4)	
Ni(2)-N(16)	2.082(3)	N(9)-C(30)	1.353(4)	
Ni(2)-O(3)	2.138(2)	N(10)-C(33)	1.358(4)	
Ni(2)-N(12)	2.223(3)	N(11)-C(41)	1.342(4)	
Ni(2)-N(4)	2.241(3)	N(11)-C(45)	1.350(4)	
S(1)-O(2)	1.440(3)	N(12)-C(46)	1.339(4)	
S(1)-O(1)	1.443(3)	N(12)-C(45)	1.382(4)	
S(1)-N(5)	1.597(3)	N(13)-C(50)	1.361(4)	
S(1)-C(14)	1.776(4)	N(13)-C(46)	1.366(4)	
S(2)-O(4)	1.445(2)	N(14)-C(53)	1.354(4)	
S(2)-O(3)	1.463(2)	N(14)-C(50)	1.355(4)	
S(2)-N(10)	1.569(3)	N(15)-C(53)	1.353(4)	
S(2)-C(34)	1.772(3)	N(16)-C(65)	1.349(4)	
S(3)-O(6)	1.445(2)	N(16)-C(61)	1.354(4)	
S(3)-O(5)	1.466(2)	N(17)-C(66)	1.367(4)	
S(3)-N(15)	1.566(3)	N(17)-C(65)	1.400(4)	
S(3)-C(54)	1.774(3)	N(18)-C(66)	1.359(4)	
S(4)-O(8)	1.442(3)	N(18)-C(70)	1.376(4)	
S(4)-O(7)	1.445(3)	N(19)-C(73)	1.348(4)	
S(4)-N(20)	1.599(3)	N(19)-C(70)	1.353(4)	

			10 ×12 ×12
N(20)-C(73)	1.370(4)	C(42)-C(43)	1.385(6)
C(1)-C(2)	1.369(5)	C(43)-C(44)	1.380(5)
C(2)-C(3)	1.396(5)	C(44)-C(45)	1.402(5)
C(3)-C(4)	1.371(5)	C(46)-C(47)	1.438(4)
C(4)-C(5)	1.412(4)	C(47)-C(48)	1.357(5)
C(6)-C(7)	1.432(4)	C(48)-C(49)	1.418(5)
C(7)-C(8)	1.355(5)	C(49)-C(50)	1.401(4)
C(8)-C(9)	1.411(5)	C(49)-C(51)	1.406(5)
C(9)-C(10)	1.408(4)	C(51)-C(52)	1.364(5)
C(9)-C(11)	1.409(5)	C(52)-C(53)	1.419(4)
C(11)-C(12)	1.364(5)	C(54)-C(59)	1.377(5)
C(12)-C(13)	1.418(4)	C(54)-C(55)	1.382(5)
C(14)-C(15)	1.386(5)	C(55)-C(56)	1.388(5)
C(14)-C(19)	1.388(5)	C(56)-C(57)	1.385(6)
C(15)-C(16)	1.388(6)	C(57)-C(58)	1.384(6)
C(16)-C(17)	1.384(7)	C(57)-C(60)	1.511(6)
C(17)-C(18)	1.390(6)	C(58)-C(59)	1.387(5)
C(17)-C(20)	1.512(6)	C(61)-C(62)	1.370(5)
C(18)-C(19)	1.387(6)	C(62)-C(63)	1.394(5)
C(21)-C(22)	1.370(5)	C(63)-C(64)	1.373(5)
C(22)-C(23)	1.392(5)	C(64)-C(65)	1.407(4)
C(23)-C(24)	1.386(5)	C(66)-C(67)	1.433(4)
C(24)-C(25)	1.405(4)	C(67)-C(68)	1.355(5)
C(26)-C(27)	1.439(4)	C(68)-C(69)	1.423(5)
C(27)-C(28)	1.358(5)	C(69)-C(71)	1.402(5)
C(28)-C(29)	1.420(5)	C(69)-C(70)	1.408(4)
C(29)-C(31)	1.407(5)	C(71)-C(72)	1.365(5)
C(29)-C(30)	1.410(4)	C(72)-C(73)	1.414(5)
C(31)-C(32)	1.377(5)	C(74)-C(79)	1.383(5)
C(32)-C(33)	1.417(4)	C(74)-C(75)	1.386(5)
C(34)-C(35)	1.366(5)	C(75)-C(76)	1.389(5)
C(34)-C(39)	1.376(5)	C(76)-C(77)	1.385(5)
C(35)-C(36)	1.383(5)	C(77)-C(78)	1.386(6)
C(36)-C(37)	1.360(6)	C(77)-C(80)	1.509(5)
C(37)-C(38)	1.381(6)	C(78)-C(79)	1.381(5)
C(37)-C(40)	1.508(6)	C(81)-Cl(2)	1.732(9)
C(38)-C(39)	1.397(6)	C(81)-Cl(1)	1.758(9)
C(41)-C(42)	1.382(5)	C(81')-Cl(1')	1.687(12)

			1010101010
C(81') $C(2')$	1 821(11)	$N(1) N_{1}(1) O(5)$	177 50(0)
C(81)-C(2)	1.621(11)	N(1)-Ni(1)-O(3) N(6)-Ni(1)-O(5)	81 66(10)
C(82) - CI(3)	1.09(2) 1.724(17)	N(0) - N(1) - O(3) N(20) N(1) N(10)	62 57(10)
C(82)-CI(3)	1.724(17) 1.746(6)	N(20)-INI(1)-IN(19) N(1) N(1) N(10)	04.20(10)
C(82)-CI(4)	1.740(0) 1.720(12)	N(1) - N(1) - N(19) N(6) N(1) N(10)	94.29(10)
C(83)-CI(3)#1	1.720(12)	N(0) - NI(1) - N(19)	104.10(10)
C(83)-CI(5)	1.853(11)	O(5)-INI(1)-IN(19)	85.63(9)
CI(5)-C(83)#1	1.720(12)	N(20)-N1(1)-N(7)	168.35(10)
C(84)-CI(6)	1.736(8)	N(1)-N(1)-N(7)	88.01(10)
C(84)-CI(7)	1.807(7)	N(6)-Ni(1)-N(7)	61.83(10)
C(84')-Cl(6')	1.730(9)	O(5)-Ni(1)-N(7)	93.98(9)
C(84')-Cl(7')	1.741(9)	N(19)-Ni(1)-N(7)	128.87(10)
C(84")-Cl(6")	1.748(10)	N(5)-Ni(2)-N(11)	106.84(11)
C(84")-Cl(7")	1.766(10)	N(5)-Ni(2)-N(16)	94.78(11)
		N(11)-Ni(2)-N(16)	97.17(10)
Mo(2)-Mo(1)-N(18)	90.91(7)	N(5)-Ni(2)-O(3)	85.87(10)
Mo(2)-Mo(1)-N(8)	97.20(7)	N(11)-Ni(2)-O(3)	81.21(10)
N(18)-Mo(1)-N(8)	171.70(10)	N(16)-Ni(2)-O(3)	178.37(10)
Mo(2)-Mo(1)-N(14)	87.22(7)	N(5)-Ni(2)-N(12)	169.09(10)
N(18)-Mo(1)-N(14)	92.62(9)	N(11)-Ni(2)-N(12)	62.25(10)
N(8)-Mo(1)-N(14)	89.55(9)	N(16)-Ni(2)-N(12)	86.68(10)
Mo(2)-Mo(1)-N(2)	92.78(7)	O(3)-Ni(2)-N(12)	92.40(9)
N(18)-Mo(1)-N(2)	89.17(9)	N(5)-Ni(2)-N(4)	62.18(10)
N(8)-Mo(1)-N(2)	88.67(9)	N(11)-Ni(2)-N(4)	165.40(10)
N(14)-Mo(1)-N(2)	178.21(9)	N(16)-Ni(2)-N(4)	93.51(10)
Mo(1)-Mo(2)-N(3)	90.96(7)	O(3)-Ni(2)-N(4)	88.12(9)
Mo(1)-Mo(2)-N(13)	96.99(7)	N(12)-Ni(2)-N(4)	128.59(9)
N(3)-Mo(2)-N(13)	170.58(10)	O(2)-S(1)-O(1)	116.28(16)
Mo(1)-Mo(2)-N(17)	92.72(7)	O(2)-S(1)-N(5)	106.58(15)
N(3)-Mo(2)-N(17)	89.15(9)	O(1)-S(1)-N(5)	112.09(15)
N(13)-Mo(2)-N(17)	85.46(9)	O(2)-S(1)-C(14)	108.89(17)
Mo(1)-Mo(2)-N(9)	86.89(7)	O(1)-S(1)-C(14)	106.28(17)
N(3)-Mo(2)-N(9)	94.79(9)	N(5)-S(1)-C(14)	106.29(16)
N(13)-Mo(2)-N(9)	90.68(9)	O(4)-S(2)-O(3)	116.14(14)
N(17)-Mo(2)-N(9)	176.05(9)	O(4)-S(2)-N(10)	115.35(15)
N(20)-Ni(1)-N(1)	93.55(11)	O(3)-S(2)-N(10)	103.88(14)
N(20)-Ni(1)-N(6)	106.53(11)	O(4)-S(2)-C(34)	106.13(15)
N(1)-Ni(1)-N(6)	98.00(10)	O(3)-S(2)-C(34)	104.44(15)
N(20)-Ni(1)-O(5)	84.20(10)	N(10)-S(2)-C(34)	110.40(16)

			16101010101
$\Omega(6)$ - $S(3)$ - $\Omega(5)$	115 60(14)	C(33)-N(9)-C(30)	120 3(3)
O(6)-S(3)-N(15)	115.80(11)	$C(33)-N(9)-M_0(2)$	116 1(2)
O(5)-S(3)-N(15)	103.55(14)	C(30)-N(9)-Mo(2)	123 6(2)
O(6)-S(3)-C(54)	106.60(15)	C(33)-N(10)-S(2)	123.6(2)
O(5)-S(3)-C(54)	107.38(14)	C(41)-N(11)-C(45)	120.1(3)
N(15)-S(3)-C(54)	107.41(15)	C(41)-N(11)-Ni(2)	140.1(3)
O(8)-S(4)-O(7)	117.01(16)	C(45)-N(11)-Ni(2)	97.1(2)
O(8)-S(4)-N(20)	105.76(15)	C(46)-N(12)-C(45)	121.7(3)
O(7)-S(4)-N(20)	112.32(15)	C(46)-N(12)-Ni(2)	140.1(2)
O(8)-S(4)-C(74)	107.22(15)	C(45)-N(12)-Ni(2)	89.88(19)
O(7)- $S(4)$ - $C(74)$	106.68(16)	C(50)-N(13)-C(46)	119.7(3)
N(20)-S(4)-C(74)	107.40(15)	$C(50) - N(13) - M_0(2)$	116.1(2)
S(2)-O(3)-Ni(2)	123.44(13)	C(46)-N(13)-Mo(2)	123.6(2)
S(3)-O(5)-Ni(1)	120.35(13)	C(53)-N(14)-C(50)	119.9(3)
C(5)-N(1)-C(1)	118.3(3)	C(53)-N(14)-Mo(1)	115.9(2)
C(5)-N(1)-Ni(1)	129.8(2)	C(50) - N(14) - Mo(1)	124.2(2)
C(1)-N(1)-Ni(1)	111.4(2)	C(53)-N(15)-S(3)	124.0(2)
C(6)-N(2)-C(5)	116.4(3)	C(65)-N(16)-C(61)	118.2(3)
C(6)-N(2)-Mo(1)	115.20(19)	C(65)-N(16)-Ni(2)	129.0(2)
C(5)-N(2)-Mo(1)	127.4(2)	C(61)-N(16)-Ni(2)	110.5(2)
C(6)-N(3)-C(10)	119.2(3)	C(66)-N(17)-C(65)	116.6(3)
C(6)-N(3)-Mo(2)	120.6(2)	C(66)-N(17)-Mo(2)	115.95(19)
C(10)-N(3)-Mo(2)	119.7(2)	C(65)-N(17)-Mo(2)	125.7(2)
C(13)-N(4)-C(10)	118.6(3)	C(66)-N(18)-C(70)	119.7(3)
C(13)-N(4)-Ni(2)	89.92(19)	C(66)-N(18)-Mo(1)	120.7(2)
C(10)-N(4)-Ni(2)	151.5(2)	C(70)-N(18)-Mo(1)	119.6(2)
C(13)-N(5)-S(1)	122.6(2)	C(73)-N(19)-C(70)	118.9(3)
C(13)-N(5)-Ni(2)	96.98(19)	C(73)-N(19)-Ni(1)	90.29(19)
S(1)-N(5)-Ni(2)	140.42(17)	C(70)-N(19)-Ni(1)	150.2(2)
C(21)-N(6)-C(25)	120.1(3)	C(73)-N(20)-S(4)	123.5(2)
C(21)-N(6)-Ni(1)	139.7(2)	C(73)-N(20)-Ni(1)	96.24(19)
C(25)-N(6)-Ni(1)	98.1(2)	S(4)-N(20)-Ni(1)	140.24(16)
C(26)-N(7)-C(25)	123.2(3)	N(1)-C(1)-C(2)	123.9(3)
C(26)-N(7)-Ni(1)	141.2(2)	C(1)-C(2)-C(3)	117.9(3)
C(25)-N(7)-Ni(1)	89.42(19)	C(4)-C(3)-C(2)	119.0(3)
C(30)-N(8)-C(26)	120.3(3)	C(3)-C(4)-C(5)	120.6(3)
C(30)-N(8)-Mo(1)	116.03(19)	N(1)-C(5)-N(2)	119.1(3)
C(26)-N(8)-Mo(1)	123.6(2)	N(1)-C(5)-C(4)	119.8(3)

			AND TO TO TO
N(2)-C(5)-C(4)	121 0(3)	C(27) - C(28) - C(29)	121 1(3)
N(2)-C(5)-C(4) N(3)-C(6)-N(2)	115 8(3)	C(21)-C(20)-C(20)	117 8(3)
N(3) = C(6) = C(7)	120.8(3)	C(31) - C(29) - C(28)	126 4(3)
N(3)-C(6)-C(7)	123.3(3)	C(31)-C(29)-C(28)	115.8(3)
$\Gamma(2) = C(0) = C(7)$	123.3(3) 110.0(3)	N(9) - C(30) - N(8)	113.0(3) 114.8(3)
C(3)-C(3)-C(9)	119.9(3) 120.1(3)	N(9) - C(30) - N(8)	121.6(3)
C(10)-C(0)-C(11)	120.1(3) 117.7(3)	N(9)-C(30)-C(29)	121.0(3)
C(10) - C(9) - C(11)	117.7(3) 118 5(3)	$\Gamma(8)$ - $C(30)$ - $C(23)$	123.0(3) 120.4(3)
C(10)-C(9)-C(8)	110.3(3) 122.7(2)	C(32)- $C(31)$ - $C(23)$	120.4(3)
V(11)-C(9)-C(8)	123.7(3)	V(31) - C(32) - C(33) N(0) - C(32) - N(10)	119.0(3)
N(4)-C(10)-N(3)	110.1(3)	N(9)-C(33)-N(10) N(0)-C(22)-C(22)	110.3(3)
N(4)-C(10)-C(9)	122.4(3)	N(9)-C(33)-C(32)	120.8(3)
N(3)-C(10)-C(9)	121.4(3)	N(10)-C(33)-C(32)	128.7(3)
C(12)-C(11)-C(9)	120.5(3)	C(35)-C(34)-C(39)	120.0(3)
C(11)-C(12)-C(13)	118.4(3)	C(35)-C(34)-S(2)	119.5(3)
N(4)-C(13)-N(5)	110.5(3)	C(39)-C(34)-S(2)	120.5(3)
N(4)-C(13)-C(12)	122.3(3)	C(34)-C(35)-C(36)	120.1(4)
N(5)-C(13)-C(12)	127.2(3)	C(37)-C(36)-C(35)	121.8(4)
C(15)-C(14)-C(19)	119.7(4)	C(36)-C(37)-C(38)	117.4(4)
C(15)-C(14)-S(1)	119.6(3)	C(36)-C(37)-C(40)	120.4(4)
C(19)-C(14)-S(1)	120.6(3)	C(38)-C(37)-C(40)	122.2(4)
C(14)-C(15)-C(16)	119.7(4)	C(37)-C(38)-C(39)	122.0(4)
C(17)-C(16)-C(15)	121.2(4)	C(34)-C(39)-C(38)	118.5(4)
C(16)-C(17)-C(18)	118.6(4)	N(11)-C(41)-C(42)	121.6(3)
C(16)-C(17)-C(20)	121.1(4)	C(41)-C(42)-C(43)	118.9(3)
C(18)-C(17)-C(20)	120.2(4)	C(44)-C(43)-C(42)	119.8(3)
C(19)-C(18)-C(17)	120.8(4)	C(43)-C(44)-C(45)	118.7(3)
C(18)-C(19)-C(14)	120.0(4)	N(11)-C(45)-N(12)	109.2(3)
N(6)-C(21)-C(22)	122.2(3)	N(11)-C(45)-C(44)	120.7(3)
C(21)-C(22)-C(23)	118.7(3)	N(12)-C(45)-C(44)	129.7(3)
C(24)-C(23)-C(22)	119.9(3)	N(12)-C(46)-N(13)	115.3(3)
C(23)-C(24)-C(25)	118.3(3)	N(12)-C(46)-C(47)	126.0(3)
N(6)-C(25)-N(7)	108.8(3)	N(13)-C(46)-C(47)	118.6(3)
N(6)-C(25)-C(24)	120.5(3)	C(48)-C(47)-C(46)	120.8(3)
N(7)-C(25)-C(24)	130.5(3)	C(47)-C(48)-C(49)	120.7(3)
N(7)-C(26)-N(8)	114.8(3)	C(50)-C(49)-C(51)	117.7(3)
N(7)-C(26)-C(27)	126.8(3)	C(50)-C(49)-C(48)	116.3(3)
N(8)-C(26)-C(27)	118.2(3)	C(51)-C(49)-C(48)	125.9(3)
C(28)-C(27)-C(26)	120.7(3)	N(14)-C(50)-N(13)	114.4(3)

N(14)-C(50)-C(49)	121.8(3)	C(71)-C(69)-C(68)	124.4(3)
N(13)-C(50)-C(49)	123.7(3)	C(70)-C(69)-C(68)	117.4(3)
C(52)-C(51)-C(49)	120.7(3)	N(19)-C(70)-N(18)	116.2(3)
C(51)-C(52)-C(53)	119.0(3)	N(19)-C(70)-C(69)	121.7(3)
N(15)-C(53)-N(14)	109.7(3)	N(18)-C(70)-C(69)	122.1(3)
N(15)-C(53)-C(52)	129.6(3)	C(72)-C(71)-C(69)	120.6(3)
N(14)-C(53)-C(52)	120.7(3)	C(71)-C(72)-C(73)	118.1(3)
C(59)-C(54)-C(55)	120.2(3)	N(19)-C(73)-N(20)	109.8(3)
C(59)-C(54)-S(3)	119.6(3)	N(19)-C(73)-C(72)	122.4(3)
C(55)-C(54)-S(3)	120.1(3)	N(20)-C(73)-C(72)	127.7(3)
C(54)-C(55)-C(56)	119.3(4)	C(79)-C(74)-C(75)	120.5(3)
C(57)-C(56)-C(55)	121.5(4)	C(79)-C(74)-S(4)	120.0(3)
C(58)-C(57)-C(56)	118.0(4)	C(75)-C(74)-S(4)	119.5(3)
C(58)-C(57)-C(60)	120.7(4)	C(74)-C(75)-C(76)	119.1(3)
C(56)-C(57)-C(60)	121.3(4)	C(77)-C(76)-C(75)	121.4(4)
C(57)-C(58)-C(59)	121.2(4)	C(76)-C(77)-C(78)	118.2(3)
C(54)-C(59)-C(58)	119.7(4)	C(76)-C(77)-C(80)	120.4(4)
N(16)-C(61)-C(62)	123.9(3)	C(78)-C(77)-C(80)	121.4(3)
C(61)-C(62)-C(63)	118.1(3)	C(79)-C(78)-C(77)	121.6(3)
C(64)-C(63)-C(62)	118.6(3)	C(78)-C(79)-C(74)	119.3(3)
C(63)-C(64)-C(65)	120.7(3)	Cl(2)-C(81)-Cl(1)	111.4(5)
N(16)-C(65)-N(17)	119.5(3)	Cl(1')-C(81')-Cl(2')	112.6(6)
N(16)-C(65)-C(64)	119.9(3)	Cl(3')-C(82)-Cl(4)	116.9(9)
N(17)-C(65)-C(64)	120.6(3)	Cl(3)-C(82)-Cl(4)	112.7(7)
N(18)-C(66)-N(17)	115.9(3)	Cl(5)#1-C(83)-Cl(5)	107.2(5)
N(18)-C(66)-C(67)	120.1(3)	C(83)#1-Cl(5)-C(83)	72.8(5)
N(17)-C(66)-C(67)	123.9(3)	Cl(6)-C(84)-Cl(7)	109.0(6)
C(68)-C(67)-C(66)	120.2(3)	Cl(6')-C(84')-Cl(7')	111.2(7)
C(67)-C(68)-C(69)	120.5(3)	Cl(6")-C(84")-Cl(7")	107.7(8)
C(71)-C(69)-C(70)	118.1(3)		

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,-z+2

Fig. : The molecular structure of IC18022, thermal ellipsolds drawn at the 50% probability level.

附錄C-13.1. Crystal data and structure refin	nement for ic18022.	**************************************
Identification code	ic18022	
Empirical formula	C83.50H67Cl7Co2Mo2	2N20O8S4
Formula weight	2164.70	· 梁· 學 「1001
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 13.9513(5) Å	$\alpha = 83.0732(14)^{\circ}$.
	b = 17.9210(7) Å	$\beta = 88.7028(13)^{\circ}$.
	c = 17.9919(7) Å	$\gamma = 76.0950(13)^{\circ}$.
Volume	4334.6(3) Å ³	
Z	2	
Density (calculated)	1.659 Mg/m ³	
Absorption coefficient	1.040 mm ⁻¹	
F(000)	2186	
Crystal size	0.272 x 0.139 x 0.107 n	nm ³
Theta range for data collection	2.440 to 27.500°.	
Index ranges	-16<=h<=18, -23<=k<=23, -23<=l<=23	
Reflections collected	35146	
Independent reflections	19891 [R(int) = 0.0204]]
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.6542	
Refinement method	Full-matrix least-square	es on F ²
Data / restraints / parameters	19891 / 17 / 1176	
Goodness-of-fit on F ²	1.021	
Final R indices [I>2sigma(I)]	R1 = 0.0423, wR2 = 0.0)999
R indices (all data)	R1 = 0.0560, wR2 = 0.1	1079
Extinction coefficient	n/a	
Largest diff. peak and hole	1.763 and -1.960 e.Å -3	

附錄C-13.2. Bond le	ngths [Å] and angles	[°] for ic18022.	* ^諸 ぶ 四
Mo(1)-Mo(2)	2.1077(4)	S(4)-C(74)	1.768(3)
Mo(1)-N(13)	2.147(3)	N(1)-C(1)	1.343(4)
Mo(1)-N(3)	2.160(2)	N(1)-C(5)	1.348(4)
Mo(1)-N(19)	2.187(2)	N(2)-C(6)	1.333(4)
Mo(1)-N(7)	2.188(2)	N(2)-C(5)	1.386(4)
Mo(2)-N(8)	2.141(2)	N(3)-C(10)	1.361(4)
Mo(2)-N(18)	2.152(3)	N(3)-C(6)	1.366(4)
Mo(2)-N(4)	2.180(3)	N(4)-C(10)	1.353(4)
Mo(2)-N(12)	2.188(2)	N(4)-C(13)	1.356(4)
Co(1)-N(15)	2.067(3)	N(5)-C(13)	1.349(4)
Co(1)-N(6)	2.080(3)	N(6)-C(25)	1.351(4)
Co(1)-N(1)	2.081(3)	N(6)-C(21)	1.351(4)
Co(1)-O(7)	2.143(2)	N(7)-C(26)	1.364(4)
Co(1)-N(2)	2.227(3)	N(7)-C(25)	1.400(4)
Co(1)-N(14)	2.240(3)	N(8)-C(26)	1.358(4)
Co(2)-N(10)	2.064(3)	N(8)-C(30)	1.369(4)
Co(2)-N(16)	2.074(3)	N(9)-C(33)	1.349(4)
Co(2)-N(11)	2.075(3)	N(9)-C(30)	1.360(4)
Co(2)-N(9)	2.209(3)	N(10)-C(33)	1.368(4)
Co(2)-O(1)	2.210(2)	N(11)-C(45)	1.347(4)
Co(2)-N(17)	2.260(3)	N(11)-C(41)	1.363(4)
S(1)-O(2)	1.443(2)	N(12)-C(46)	1.371(4)
S(1)-O(1)	1.466(2)	N(12)-C(45)	1.395(4)
S(1)-N(5)	1.568(3)	N(13)-C(46)	1.354(4)
S(1)-C(14)	1.773(3)	N(13)-C(50)	1.376(4)
S(2)-O(3)	1.441(3)	N(14)-C(53)	1.350(4)
S(2)-O(4)	1.446(2)	N(14)-C(50)	1.356(4)
S(2)-N(10)	1.601(3)	N(15)-C(53)	1.369(4)
S(2)-C(34)	1.772(3)	N(16)-C(61)	1.343(4)
S(3)-O(6)	1.441(3)	N(16)-C(65)	1.348(4)
S(3)-O(5)	1.444(3)	N(17)-C(66)	1.331(4)
S(3)-N(15)	1.597(3)	N(17)-C(65)	1.388(4)
S(3)-C(54)	1.776(4)	N(18)-C(70)	1.356(4)
S(4)-O(8)	1.445(2)	N(18)-C(66)	1.369(4)
S(4)-O(7)	1.462(2)	N(19)-C(73)	1.351(4)
S(4)-N(20)	1.570(3)	N(19)-C(70)	1.356(4)

ı rîı

			10 10 13 H
N(20)-C(73)	1.355(4)	C(42)-C(43)	1.394(5)
C(1)-C(2)	1.376(5)	C(43)-C(44)	1.375(5)
C(2)-C(3)	1.384(6)	C(44)-C(45)	1.414(4)
C(3)-C(4)	1.379(5)	C(46)-C(47)	1.431(4)
C(4)-C(5)	1.400(5)	C(47)-C(48)	1.357(5)
C(6)-C(7)	1.439(4)	C(48)-C(49)	1.415(5)
C(7)-C(8)	1.357(5)	C(49)-C(50)	1.408(4)
C(8)-C(9)	1.416(5)	C(49)-C(51)	1.409(5)
C(9)-C(10)	1.403(4)	C(51)-C(52)	1.365(5)
C(9)-C(11)	1.406(5)	C(52)-C(53)	1.418(4)
C(11)-C(12)	1.369(5)	C(54)-C(55)	1.382(5)
C(12)-C(13)	1.415(4)	C(54)-C(59)	1.389(5)
C(14)-C(19)	1.379(5)	C(55)-C(56)	1.385(6)
C(14)-C(15)	1.381(5)	C(56)-C(57)	1.381(6)
C(15)-C(16)	1.388(5)	C(57)-C(58)	1.394(6)
C(16)-C(17)	1.382(6)	C(57)-C(60)	1.512(6)
C(17)-C(18)	1.381(6)	C(58)-C(59)	1.386(6)
C(17)-C(20)	1.517(5)	C(61)-C(62)	1.375(5)
C(18)-C(19)	1.391(5)	C(62)-C(63)	1.396(5)
C(21)-C(22)	1.373(5)	C(63)-C(64)	1.388(5)
C(22)-C(23)	1.392(5)	C(64)-C(65)	1.410(5)
C(23)-C(24)	1.371(5)	C(66)-C(67)	1.444(4)
C(24)-C(25)	1.407(4)	C(67)-C(68)	1.358(5)
C(26)-C(27)	1.433(4)	C(68)-C(69)	1.419(5)
C(27)-C(28)	1.349(5)	C(69)-C(70)	1.407(4)
C(28)-C(29)	1.421(5)	C(69)-C(71)	1.408(5)
C(29)-C(31)	1.408(5)	C(71)-C(72)	1.375(5)
C(29)-C(30)	1.409(4)	C(72)-C(73)	1.421(4)
C(31)-C(32)	1.364(5)	C(74)-C(79)	1.368(5)
C(32)-C(33)	1.416(5)	C(74)-C(75)	1.379(5)
C(34)-C(39)	1.384(5)	C(75)-C(76)	1.400(6)
C(34)-C(35)	1.384(5)	C(76)-C(77)	1.383(7)
C(35)-C(36)	1.392(5)	C(77)-C(78)	1.369(6)
C(36)-C(37)	1.394(5)	C(77)-C(80)	1.511(6)
C(37)-C(38)	1.387(6)	C(78)-C(79)	1.382(5)
C(37)-C(40)	1.505(5)	C(81)-Cl(1)	1.734(8)
C(38)-C(39)	1.385(5)	C(81)-Cl(1)#1	1.807(11)
C(41)-C(42)	1.371(5)	Cl(1)-C(81)#1	1.807(11)

			1610101010T
C(82)-Cl(3')	1.717(8)	N(1)-Co(1)-O(7)	81.23(10)
C(82)-Cl(2)	1.748(5)	N(15)-Co(1)-N(2)	168.99(10)
C(82)-Cl(3)	1.759(6)	N(6)-Co(1)-N(2)	86.70(10)
C(83)-C(5)	1.660(6)	N(1)-Co(1)-N(2)	62.26(10)
C(83)-Cl(4)	1.735(6)	O(7)-Co(1)-N(2)	92.43(9)
C(83)-Cl(5')	1.920(6)	N(15)-Co(1)-N(14)	62.25(10)
C(84)-Cl(6)	1.746(8)	N(6)-Co(1)-N(14)	93.55(10)
C(84)-Cl(7)	1.801(8)	N(1)-Co(1)-N(14)	165.30(10)
C(84')-Cl(6')	1.733(8)	O(7)- $Co(1)$ - $N(14)$	87.99(9)
C(84')-Cl(7')	1.744(9)	N(2)-Co(1)-N(14)	128.62(10)
C(84")-Cl(7")	1.741(10)	N(10)-Co(2)-N(16)	106.66(11)
C(84")-Cl(6")	1.762(10)	N(10)-Co(2)-N(11)	93.50(11)
		N(16)-Co(2)-N(11)	98.14(10)
Mo(2)-Mo(1)-N(13)	90.86(7)	N(10)-Co(2)-N(9)	62.49(10)
Mo(2)-Mo(1)-N(3)	97.09(7)	N(16)-Co(2)-N(9)	164.05(10)
N(13)-Mo(1)-N(3)	170.58(10)	N(11)-Co(2)-N(9)	94.33(10)
Mo(2)-Mo(1)-N(19)	86.83(7)	N(10)-Co(2)-O(1)	84.22(10)
N(13)-Mo(1)-N(19)	94.87(9)	N(16)-Co(2)-O(1)	81.56(10)
N(3)-Mo(1)-N(19)	90.62(9)	N(11)-Co(2)-O(1)	177.50(10)
Mo(2)-Mo(1)-N(7)	92.68(7)	N(9)-Co(2)-O(1)	85.54(9)
N(13)-Mo(1)-N(7)	89.13(9)	N(10)-Co(2)-N(17)	168.34(10)
N(3)-Mo(1)-N(7)	85.48(9)	N(16)-Co(2)-N(17)	61.70(10)
N(19)-Mo(1)-N(7)	175.98(9)	N(11)-Co(2)-N(17)	87.87(10)
Mo(1)-Mo(2)-N(8)	90.97(7)	N(9)-Co(2)-N(17)	128.99(10)
Mo(1)-Mo(2)-N(18)	97.24(7)	O(1)-Co(2)-N(17)	94.15(9)
N(8)-Mo(2)-N(18)	171.60(10)	O(2)-S(1)-O(1)	115.49(14)
Mo(1)-Mo(2)-N(4)	87.12(7)	O(2)-S(1)-N(5)	115.57(15)
N(8)-Mo(2)-N(4)	92.50(9)	O(1)-S(1)-N(5)	103.78(14)
N(18)-Mo(2)-N(4)	89.72(9)	O(2)-S(1)-C(14)	106.66(15)
Mo(1)-Mo(2)-N(12)	92.87(7)	O(1)-S(1)-C(14)	107.44(15)
N(8)-Mo(2)-N(12)	89.12(9)	N(5)-S(1)-C(14)	107.45(15)
N(18)-Mo(2)-N(12)	88.67(9)	O(3)-S(2)-O(4)	117.15(16)
N(4)-Mo(2)-N(12)	178.38(9)	O(3)-S(2)-N(10)	105.83(15)
N(15)-Co(1)-N(6)	94.70(10)	O(4)-S(2)-N(10)	112.14(15)
N(15)-Co(1)-N(1)	106.74(11)	O(3)-S(2)-C(34)	107.32(15)
N(6)-Co(1)-N(1)	97.23(11)	O(4)-S(2)-C(34)	106.54(16)
N(15)-Co(1)-O(7)	85.91(10)	N(10)-S(2)-C(34)	107.41(15)
N(6)-Co(1)-O(7)	178.45(10)	O(6)-S(3)-O(5)	116.30(16)
			1010101010
------------------	------------	-------------------	------------
O(6)-S(3)-N(15)	106.50(15)	C(33)-N(10)-S(2)	123.5(2)
O(5)-S(3)-N(15)	112.11(15)	C(33)-N(10)-Co(2)	96.3(2)
O(6)-S(3)-C(54)	108.80(16)	S(2)-N(10)-Co(2)	140.13(16)
O(5)-S(3)-C(54)	106.21(16)	C(45)-N(11)-C(41)	118.4(3)
N(15)-S(3)-C(54)	106.49(16)	C(45)-N(11)-Co(2)	130.0(2)
O(8)-S(4)-O(7)	116.09(15)	C(41)-N(11)-Co(2)	111.1(2)
O(8)-S(4)-N(20)	115.26(15)	C(46)-N(12)-C(45)	116.7(2)
O(7)-S(4)-N(20)	103.91(14)	C(46)-N(12)-Mo(2)	114.96(19)
O(8)-S(4)-C(74)	106.00(15)	C(45)-N(12)-Mo(2)	127.4(2)
O(7)-S(4)-C(74)	104.76(14)	C(46)-N(13)-C(50)	119.5(3)
N(20)-S(4)-C(74)	110.36(16)	C(46)-N(13)-Mo(1)	120.5(2)
S(1)-O(1)-Co(2)	120.17(13)	C(50)-N(13)-Mo(1)	119.5(2)
S(4)-O(7)-Co(1)	123.36(13)	C(53)-N(14)-C(50)	118.6(3)
C(1)-N(1)-C(5)	119.6(3)	C(53)-N(14)-Co(1)	89.97(19)
C(1)-N(1)-Co(1)	140.6(2)	C(50)-N(14)-Co(1)	151.3(2)
C(5)-N(1)-Co(1)	97.2(2)	C(53)-N(15)-S(3)	122.4(2)
C(6)-N(2)-C(5)	121.8(3)	C(53)-N(15)-Co(1)	97.00(19)
C(6)-N(2)-Co(1)	140.0(2)	S(3)-N(15)-Co(1)	140.64(17)
C(5)-N(2)-Co(1)	89.75(18)	C(61)-N(16)-C(65)	120.2(3)
C(10)-N(3)-C(6)	120.0(3)	C(61)-N(16)-Co(2)	139.4(2)
C(10)-N(3)-Mo(1)	115.9(2)	C(65)-N(16)-Co(2)	98.3(2)
C(6)-N(3)-Mo(1)	123.6(2)	C(66)-N(17)-C(65)	123.9(3)
C(10)-N(4)-C(13)	119.9(3)	C(66)-N(17)-Co(2)	141.2(2)
C(10)-N(4)-Mo(2)	124.3(2)	C(65)-N(17)-Co(2)	89.03(19)
C(13)-N(4)-Mo(2)	115.9(2)	C(70)-N(18)-C(66)	120.4(3)
C(13)-N(5)-S(1)	124.2(2)	C(70)-N(18)-Mo(2)	116.2(2)
C(25)-N(6)-C(21)	117.9(3)	C(66)-N(18)-Mo(2)	123.4(2)
C(25)-N(6)-Co(1)	129.1(2)	C(73)-N(19)-C(70)	120.3(3)
C(21)-N(6)-Co(1)	110.7(2)	C(73)-N(19)-Mo(1)	116.0(2)
C(26)-N(7)-C(25)	116.7(3)	C(70)-N(19)-Mo(1)	123.7(2)
C(26)-N(7)-Mo(1)	115.91(19)	C(73)-N(20)-S(4)	123.8(2)
C(25)-N(7)-Mo(1)	125.6(2)	N(1)-C(1)-C(2)	122.1(3)
C(26)-N(8)-C(30)	119.9(3)	C(1)-C(2)-C(3)	118.8(3)
C(26)-N(8)-Mo(2)	120.4(2)	C(4)-C(3)-C(2)	119.7(3)
C(30)-N(8)-Mo(2)	119.5(2)	C(3)-C(4)-C(5)	118.8(3)
C(33)-N(9)-C(30)	119.0(3)	N(1)-C(5)-N(2)	109.3(3)
C(33)-N(9)-Co(2)	90.53(19)	N(1)-C(5)-C(4)	120.8(3)
C(30)-N(9)-Co(2)	149.9(2)	N(2)-C(5)-C(4)	129.5(3)

			1510101010m
N(2)-C(6)-N(3)	115 4(3)	C(31)- $C(29)$ - $C(30)$	118 2(3)
N(2)-C(6)-C(7)	126 0(3)	C(31) - C(29) - C(28)	124 3(3)
N(3)-C(6)-C(7)	118 5(3)	C(30)- $C(29)$ - $C(28)$	117 3(3)
C(8)-C(7)-C(6)	120.8(3)	N(9)-C(30)-N(8)	116.6(3)
C(7)- $C(8)$ - $C(9)$	120.8(3)	N(9) - C(30) - C(29)	121 4(3)
C(10)- $C(9)$ - $C(11)$	120.0(3) 117.7(3)	N(8)-C(30)-C(29)	121.1(3) 122.0(3)
C(10)- $C(9)$ - $C(8)$	116 3(3)	C(32)-C(31)-C(29)	122.6(3)
C(10) C(9) C(8)	125 9(3)	C(31)- $C(32)$ - $C(33)$	118 3(3)
N(4)-C(10)-N(3)	114 6(3)	N(9)-C(33)-N(10)	109.6(3)
N(4) - C(10) - C(9)	121.9(3)	N(9) = C(33) = C(32)	109.0(3) 122.4(3)
N(3)-C(10)-C(9)	121.5(3) 123.5(3)	N(10) - C(33) - C(32)	122.4(3) 128.0(3)
C(12)-C(11)-C(9)	120.6(3)	C(39)-C(34)-C(35)	120.0(3)
C(12)-C(11)-C(13)	120.0(3) 119.0(3)	C(39)-C(34)-S(2)	120.3(3) 120.0(3)
N(5) - C(13) - N(4)	109.7(3)	C(35)-C(34)-S(2)	110.5(3)
N(5) - C(13) - N(4)	109.7(3)	C(34) - C(34) - S(2)	119.3(3) 110.3(3)
N(3)-C(13)-C(12) N(4) C(13) C(12)	129.3(3) 120.7(3)	C(34)-C(35)-C(30) C(35)-C(36)-C(37)	119.3(3) 121.0(3)
$\Gamma(4)$ - $C(13)$ - $C(12)$	120.7(3)	C(33)-C(30)-C(37) C(32)-C(37)-C(36)	121.0(3) 119.2(2)
C(19)-C(14)-C(15)	120.1(3)	C(38)-C(37)-C(30)	118.3(3)
C(19)-C(14)-S(1)	120.3(3)	C(38)-C(37)-C(40)	121.4(3)
C(15)-C(14)-S(1)	119.4(3)	C(30)-C(37)-C(40)	120.3(4)
C(14)-C(15)-C(16)	119.4(4)	C(39)-C(38)-C(37)	121.3(3)
C(17)-C(16)-C(15)	121.4(4)	C(34)-C(39)-C(38)	119.5(3)
C(18)-C(17)-C(16)	118.3(4)	N(11)-C(41)-C(42)	123.7(3)
C(18)-C(17)-C(20)	121.1(4)	C(41)-C(42)-C(43)	118.0(3)
C(16)-C(17)-C(20)	120.6(4)	C(44)-C(43)-C(42)	119.2(3)
C(17)-C(18)-C(19)	121.1(4)	C(43)-C(44)-C(45)	120.1(3)
C(14)-C(19)-C(18)	119.7(4)	N(11)-C(45)-N(12)	119.2(3)
N(6)-C(21)-C(22)	124.2(3)	N(11)-C(45)-C(44)	120.1(3)
C(21)-C(22)-C(23)	117.9(3)	N(12)-C(45)-C(44)	120.7(3)
C(24)-C(23)-C(22)	118.7(3)	N(13)-C(46)-N(12)	116.2(3)
C(23)-C(24)-C(25)	120.6(3)	N(13)-C(46)-C(47)	120.6(3)
N(6)-C(25)-N(7)	119.5(3)	N(12)-C(46)-C(47)	123.1(3)
N(6)-C(25)-C(24)	120.0(3)	C(48)-C(47)-C(46)	120.1(3)
N(7)-C(25)-C(24)	120.5(3)	C(47)-C(48)-C(49)	119.8(3)
N(8)-C(26)-N(7)	116.2(3)	C(50)-C(49)-C(51)	118.0(3)
N(8)-C(26)-C(27)	119.7(3)	C(50)-C(49)-C(48)	118.4(3)
N(7)-C(26)-C(27)	124.1(3)	C(51)-C(49)-C(48)	123.4(3)
C(28)-C(27)-C(26)	120.5(3)	N(14)-C(50)-N(13)	116.4(3)
C(27)-C(28)-C(29)	120.4(3)	N(14)-C(50)-C(49)	122.1(3)

N(13)-C(50)-C(49)	121.5(3)	C(70)-C(69)-C(68)	115.9(3)
C(52)-C(51)-C(49)	120.3(3)	C(71)-C(69)-C(68)	126.3(3)
C(51)-C(52)-C(53)	118.4(3)	N(19)-C(70)-N(18)	114.5(3)
N(14)-C(53)-N(15)	110.3(3)	N(19)-C(70)-C(69)	121.7(3)
N(14)-C(53)-C(52)	122.3(3)	N(18)-C(70)-C(69)	123.8(3)
N(15)-C(53)-C(52)	127.3(3)	C(72)-C(71)-C(69)	120.6(3)
C(55)-C(54)-C(59)	119.9(4)	C(71)-C(72)-C(73)	118.9(3)
C(55)-C(54)-S(3)	119.6(3)	N(19)-C(73)-N(20)	110.5(3)
C(59)-C(54)-S(3)	120.5(3)	N(19)-C(73)-C(72)	120.7(3)
C(54)-C(55)-C(56)	119.7(4)	N(20)-C(73)-C(72)	128.8(3)
C(57)-C(56)-C(55)	121.4(4)	C(79)-C(74)-C(75)	120.1(3)
C(56)-C(57)-C(58)	118.3(4)	C(79)-C(74)-S(4)	119.4(3)
C(56)-C(57)-C(60)	121.8(4)	C(75)-C(74)-S(4)	120.5(3)
C(58)-C(57)-C(60)	119.9(4)	C(74)-C(75)-C(76)	118.6(4)
C(59)-C(58)-C(57)	120.9(4)	C(77)-C(76)-C(75)	121.6(4)
C(58)-C(59)-C(54)	119.7(4)	C(78)-C(77)-C(76)	117.9(4)
N(16)-C(61)-C(62)	122.3(3)	C(78)-C(77)-C(80)	119.8(4)
C(61)-C(62)-C(63)	118.3(3)	C(76)-C(77)-C(80)	122.2(4)
C(64)-C(63)-C(62)	120.2(3)	C(77)-C(78)-C(79)	121.2(4)
C(63)-C(64)-C(65)	118.1(3)	C(74)-C(79)-C(78)	120.3(4)
N(16)-C(65)-N(17)	109.0(3)	Cl(1)-C(81)-Cl(1)#1	108.5(5)
N(16)-C(65)-C(64)	120.7(3)	C(81)-Cl(1)-C(81)#1	71.5(5)
N(17)-C(65)-C(64)	130.1(3)	Cl(3')-C(82)-Cl(2)	115.7(5)
N(17)-C(66)-N(18)	115.2(3)	Cl(2)-C(82)-Cl(3)	112.5(4)
N(17)-C(66)-C(67)	126.9(3)	Cl(5)-C(83)-Cl(4)	106.5(4)
N(18)-C(66)-C(67)	117.8(3)	Cl(4)-C(83)-Cl(5')	119.7(4)
C(68)-C(67)-C(66)	121.1(3)	Cl(6)-C(84)-Cl(7)	108.8(6)
C(67)-C(68)-C(69)	120.8(3)	Cl(6')-C(84')-Cl(7')	111.0(6)
C(70)-C(69)-C(71)	117.7(3)	Cl(7")-C(84")-Cl(6")	108.8(8)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+2

附錄C-14.1. Crystal data and structure	e refinement for ic18914.	# 2.9 M
Identification code	ic18914	
Empirical formula	C111H87Cl10Mo4N2	20O10S4
Formula weight	2727.50	· 學·學·
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 14.3804(6) Å	$\alpha = 84.1490(13)^{\circ}.$
	b = 15.5124(7) Å	$\beta = 75.0446(12)^{\circ}$.
	c = 25.5611(11) Å	$\gamma = 89.8729(12)^{\circ}.$
Volume	5478.5(4) Å ³	
Z	2	
Density (calculated)	1.653 Mg/m ³	
Absorption coefficient	0.838 mm ⁻¹	
F(000)	2750	
Crystal size	0.290 x 0.200 x 0.024	mm ³
Theta range for data collection	1.997 to 27.499°.	
Index ranges	-18<=h<=18, -20<=k	<=20, -33<=l<=33
Reflections collected	50104	
Independent reflections	25148 [R(int) = 0.023	35]
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from	equivalents
Max. and min. transmission	0.7456 and 0.6856	
Refinement method	Full-matrix least-squa	ares on F ²
Data / restraints / parameters	25148 / 30 / 1444	
Goodness-of-fit on F ²	1.065	
Final R indices [I>2sigma(I)]	R1 = 0.0701, wR2 = 0	0.1860
R indices (all data)	R1 = 0.0867, wR2 = 0	0.1997
Extinction coefficient	n/a	
Largest diff. peak and hole	2.550 and -1.914 e.Å ⁻	-3

附錄C-14.2. Bond lengths [Å] and angles [°]	for ic18914.	
Mo(1)-Mo(2)	2.1018(6)	N(1)-C(1)	1.349(6)
Mo(1)-N(17)	2.159(4)	N(1)-C(5)	1.366(7)
Mo(1)-N(6)	2.169(4)	N(2)-C(5)	1.357(7)
Mo(1)-N(1)	2.176(4)	N(2)-C(6)	1.386(7)
Mo(1)-N(15)	2.184(4)	N(3)-C(6)	1.339(7)
Mo(2)-N(14)	2.135(4)	N(3)-C(10)	1.347(7)
Mo(2)-N(7)	2.157(4)	N(4)-C(13)	1.344(7)
Mo(2)-N(2)	2.176(4)	N(4)-C(10)	1.374(7)
Mo(2)-N(16)	2.182(4)	N(5)-C(13)	1.375(8)
Mo(3)-Mo(4)	2.1049(6)	N(6)-C(27)	1.350(6)
Mo(3)-O(10)	2.130(4)	N(6)-C(31)	1.366(6)
Mo(3)-N(4)	2.158(5)	N(7)-C(31)	1.367(6)
Mo(3)-N(9)	2.173(4)	N(7)-C(32)	1.394(6)
Mo(3)-N(12)	2.190(5)	N(8)-C(32)	1.332(7)
Mo(4)-O(9)	2.109(4)	N(8)-C(36)	1.354(6)
Mo(4)-N(11)	2.136(5)	N(9)-C(39)	1.351(6)
Mo(4)-N(5)	2.162(5)	N(9)-C(36)	1.377(7)
Mo(4)-N(10)	2.169(5)	N(10)-C(39)	1.367(7)
S(1)-O(2)	1.450(6)	N(11)-C(57)	1.361(7)
S(1)-O(1)	1.462(6)	N(11)-C(53)	1.369(7)
S(1)-N(5)	1.627(5)	N(12)-C(57)	1.375(7)
S(1)-C(20)	1.738(8)	N(12)-C(58)	1.389(7)
S(2)-O(4)	1.435(5)	N(13)-C(58)	1.317(7)
S(2)-O(3)	1.445(5)	N(13)-C(62)	1.362(7)
S(2)-N(10)	1.634(5)	N(14)-C(65)	1.353(7)
S(2)-C(46)	1.761(6)	N(14)-C(62)	1.361(7)
S(3)-O(6)	1.439(5)	N(15)-C(65)	1.379(7)
S(3)-O(5)	1.449(4)	N(16)-C(79)	1.359(7)
S(3)-N(15)	1.632(4)	N(16)-C(83)	1.364(7)
S(3)-C(72)	1.766(6)	N(17)-C(83)	1.366(7)
S(4)-O(8)	1.430(5)	N(17)-C(84)	1.367(7)
S(4)-O(7)	1.449(5)	N(18)-C(88)	1.333(7)
S(4)-N(20)	1.603(6)	N(18)-C(84)	1.350(7)
S(4)-C(98)	1.770(7)	N(19)-C(91)	1.356(8)
O(9)-C(105)	1.280(7)	N(19)-C(88)	1.385(7)
O(10)-C(105)	1.272(7)	N(20)-C(91)	1.328(8)

			10 10 Hit 10 0
C(1)-C(2)	1.393(8)	C(40)-C(41)	1.409(7)
C(2)-C(3)	1.404(8)	C(41)-C(42)	1.391(8)
C(2)-C(14)	1.483(8)	C(42)-C(43)	1.340(9)
C(3)-C(4)	1.362(8)	C(43)-C(44)	1.399(10)
C(4)-C(5)	1.421(7)	C(44)-C(45)	1.404(9)
C(6)-C(7)	1.424(7)	C(46)-C(51)	1.372(9)
C(7)-C(8)	1.374(8)	C(46)-C(47)	1.376(10)
C(8)-C(9)	1.408(8)	C(47)-C(48)	1.373(11)
C(9)-C(11)	1.405(8)	C(48)-C(49)	1.388(11)
C(9)-C(10)	1.408(7)	C(49)-C(50)	1.374(10)
C(11)-C(12)	1.356(9)	C(49)-C(52)	1.520(10)
C(12)-C(13)	1.431(9)	C(50)-C(51)	1.370(9)
C(14)-C(15)	1.388(9)	C(53)-C(54)	1.370(9)
C(14)-C(19)	1.402(9)	C(54)-C(55)	1.421(9)
C(15)-C(16)	1.387(9)	C(54)-C(66)	1.494(8)
C(16)-C(17)	1.391(12)	C(55)-C(56)	1.363(9)
C(17)-C(18)	1.360(12)	C(56)-C(57)	1.425(8)
C(18)-C(19)	1.370(10)	C(58)-C(59)	1.434(8)
C(20)-C(21)	1.390(11)	C(59)-C(60)	1.349(9)
C(20)-C(25)	1.399(12)	C(60)-C(61)	1.413(9)
C(21)-C(22)	1.349(15)	C(61)-C(62)	1.400(7)
C(22)-C(23)	1.389(17)	C(61)-C(63)	1.404(8)
C(23)-C(24)	1.388(15)	C(63)-C(64)	1.363(9)
C(23)-C(26)	1.553(15)	C(64)-C(65)	1.418(8)
C(24)-C(25)	1.366(12)	C(66)-C(71)	1.380(9)
C(27)-C(28)	1.382(7)	C(66)-C(67)	1.387(9)
C(28)-C(29)	1.414(7)	C(67)-C(68)	1.386(9)
C(28)-C(40)	1.476(7)	C(68)-C(69)	1.351(11)
C(29)-C(30)	1.374(7)	C(69)-C(70)	1.376(11)
C(30)-C(31)	1.408(7)	C(70)-C(71)	1.394(9)
C(32)-C(33)	1.417(7)	C(72)-C(77)	1.347(10)
C(33)-C(34)	1.360(7)	C(72)-C(73)	1.377(9)
C(34)-C(35)	1.409(8)	C(73)-C(74)	1.387(11)
C(35)-C(36)	1.398(7)	C(74)-C(75)	1.369(12)
C(35)-C(37)	1.423(7)	C(75)-C(76)	1.349(11)
C(37)-C(38)	1.354(8)	C(75)-C(78)	1.509(10)
C(38)-C(39)	1.425(8)	C(76)-C(77)	1.387(11)
C(40)-C(45)	1.390(8)	C(79)-C(80)	1.372(7)

			1310101010
C(90) C(91)	1 409(0)	$M_{2}(2) M_{2}(1) N(17)$	00 55(12)
C(80) - C(81)	1.408(9)	MO(2) - MO(1) - N(17) MO(2) - MO(1) - N(6)	90.00(12)
C(80)-C(92)	1.482(8)	MO(2)-MO(1)-N(0) N(17) Mo(1) N(6)	95.90(11)
C(81)-C(82)	1.359(9)	N(1/)-MO(1)-N(6)	88.31(10)
C(82)-C(83)	1.412(8)	MO(2)-MO(1)-N(1)	94.09(11)
C(84)-C(85)	1.426(8)	N(1/)-MO(1)-N(1)	169.36(16)
C(85)-C(86)	1.365(9)	N(6)-Mo(1)-N(1)	81.88(15)
C(86)-C(87)	1.402(9)	Mo(2)-Mo(1)-N(15)	91.84(12)
C(87)-C(88)	1.407(8)	N(17)-Mo(1)-N(15)	98.16(17)
C(87)-C(89)	1.422(8)	N(6)-Mo(1)-N(15)	171.31(16)
C(89)-C(90)	1.345(10)	N(1)-Mo(1)-N(15)	91.21(16)
C(90)-C(91)	1.447(9)	Mo(1)-Mo(2)-N(14)	92.26(12)
C(92)-C(97)	1.390(9)	Mo(1)-Mo(2)-N(7)	91.44(11)
C(92)-C(93)	1.396(8)	N(14)-Mo(2)-N(7)	175.15(16)
C(93)-C(94)	1.386(9)	Mo(1)-Mo(2)-N(2)	91.07(12)
C(94)-C(95)	1.352(11)	N(14)-Mo(2)-N(2)	88.73(16)
C(95)-C(96)	1.388(9)	N(7)-Mo(2)-N(2)	94.34(16)
C(96)-C(97)	1.405(8)	Mo(1)-Mo(2)-N(16)	94.31(12)
C(98)-C(103)	1.379(10)	N(14)-Mo(2)-N(16)	91.94(16)
C(98)-C(99)	1.389(9)	N(7)-Mo(2)-N(16)	84.66(16)
C(99)-C(100)	1.359(12)	N(2)-Mo(2)-N(16)	174.54(16)
C(100)-C(101)	1.350(13)	Mo(4)-Mo(3)-O(10)	91.46(10)
C(101)-C(102)	1.408(12)	Mo(4)-Mo(3)-N(4)	93.81(13)
C(101)-C(104)	1.517(12)	O(10)-Mo(3)-N(4)	88.50(17)
C(102)-C(103)	1.375(10)	Mo(4)-Mo(3)-N(9)	90.89(11)
C(105)-C(106)	1.489(8)	O(10)-Mo(3)-N(9)	88.08(16)
C(108)-Cl(1')	1.686(9)	N(4)-Mo(3)-N(9)	174.26(17)
C(108)-Cl(2')	1.706(8)	Mo(4)-Mo(3)-N(12)	90.75(12)
C(108)-Cl(2)	1.737(8)	O(10)-Mo(3)-N(12)	175.69(16)
C(108)-Cl(1)	1.782(8)	N(4)-Mo(3)-N(12)	87.66(18)
C(109)-Cl(4)	1.719(13)	N(9)-Mo(3)-N(12)	95.58(16)
C(109)-Cl(3)	1.751(13)	Mo(3)-Mo(4)-O(9)	91.94(11)
C(110)-Cl(5)	1.697(8)	Mo(3)-Mo(4)-N(11)	94.56(12)
C(110)-Cl(6)	1.794(9)	O(9)-Mo(4)-N(11)	172.83(16)
C(111)-Cl(7)	1.705(15)	Mo(3)-Mo(4)-N(5)	90.20(13)
C(111)-Cl(8)	1.756(14)	O(9)-Mo(4)-N(5)	93.81(19)
C(112)-Cl(10)	1.723(11)	N(11)-Mo(4)-N(5)	89.18(19)
C(112)-Cl(9)	1.803(12)	Mo(3)-Mo(4)-N(10)	93.31(12)
		O(9)-Mo(4)-N(10)	90.71(18)

			101010101010
N(11)-Mo(4)-N(10)	85.91(18)	C(13)-N(5)-S(1)	122.7(4)
N(5)-Mo(4)-N(10)	174.18(18)	C(13)-N(5)-Mo(4)	122.5(4)
O(2)-S(1)-O(1)	116.7(3)	S(1)-N(5)-Mo(4)	114.4(3)
O(2)-S(1)-N(5)	112.7(3)	C(27)-N(6)-C(31)	119.4(4)
O(1)-S(1)-N(5)	102.4(3)	C(27)-N(6)-Mo(1)	121.8(3)
O(2)-S(1)-C(20)	107.1(4)	C(31)-N(6)-Mo(1)	117.9(3)
O(1)-S(1)-C(20)	113.1(4)	C(31)-N(7)-C(32)	119.7(4)
N(5)-S(1)-C(20)	104.2(3)	C(31)-N(7)-Mo(2)	120.4(3)
O(4)-S(2)-O(3)	118.2(3)	C(32)-N(7)-Mo(2)	115.2(3)
O(4)-S(2)-N(10)	112.5(3)	C(32)-N(8)-C(36)	117.4(4)
O(3)-S(2)-N(10)	102.8(3)	C(39)-N(9)-C(36)	119.2(4)
O(4)-S(2)-C(46)	106.8(3)	C(39)-N(9)-Mo(3)	122.2(4)
O(3)-S(2)-C(46)	107.5(3)	C(36)-N(9)-Mo(3)	118.5(3)
N(10)-S(2)-C(46)	108.8(3)	C(39)-N(10)-S(2)	123.0(4)
O(6)-S(3)-O(5)	117.7(3)	C(39)-N(10)-Mo(4)	119.9(3)
O(6)-S(3)-N(15)	112.5(3)	S(2)-N(10)-Mo(4)	116.3(3)
O(5)-S(3)-N(15)	103.5(2)	C(57)-N(11)-C(53)	119.7(5)
O(6)-S(3)-C(72)	106.8(3)	C(57)-N(11)-Mo(4)	118.8(4)
O(5)-S(3)-C(72)	108.5(3)	C(53)-N(11)-Mo(4)	121.0(4)
N(15)-S(3)-C(72)	107.4(3)	C(57)-N(12)-C(58)	117.8(5)
O(8)-S(4)-O(7)	116.6(3)	C(57)-N(12)-Mo(3)	118.8(4)
O(8)-S(4)-N(20)	108.2(3)	C(58)-N(12)-Mo(3)	119.1(4)
O(7)-S(4)-N(20)	113.0(3)	C(58)-N(13)-C(62)	118.0(4)
O(8)-S(4)-C(98)	107.5(3)	C(65)-N(14)-C(62)	120.0(4)
O(7)-S(4)-C(98)	107.0(3)	C(65)-N(14)-Mo(2)	123.0(4)
N(20)-S(4)-C(98)	103.6(3)	C(62)-N(14)-Mo(2)	117.0(3)
C(105)-O(9)-Mo(4)	117.5(4)	C(65)-N(15)-S(3)	120.7(4)
C(105)-O(10)-Mo(3)	117.1(4)	C(65)-N(15)-Mo(1)	120.4(3)
C(1)-N(1)-C(5)	119.8(4)	S(3)-N(15)-Mo(1)	118.4(2)
C(1)-N(1)-Mo(1)	121.6(3)	C(79)-N(16)-C(83)	119.2(4)
C(5)-N(1)-Mo(1)	116.9(3)	C(79)-N(16)-Mo(2)	122.2(4)
C(5)-N(2)-C(6)	120.4(4)	C(83)-N(16)-Mo(2)	117.0(3)
C(5)-N(2)-Mo(2)	119.1(3)	C(83)-N(17)-C(84)	123.3(5)
C(6)-N(2)-Mo(2)	119.4(3)	C(83)-N(17)-Mo(1)	121.6(3)
C(6)-N(3)-C(10)	117.6(4)	C(84)-N(17)-Mo(1)	115.1(4)
C(13)-N(4)-C(10)	119.8(5)	C(88)-N(18)-C(84)	117.5(5)
C(13)-N(4)-Mo(3)	120.1(4)	C(91)-N(19)-C(88)	124.2(5)
C(10)-N(4)-Mo(3)	120.0(4)	C(91)-N(20)-S(4)	123.4(5)

			60101010107
N(1)-C(1)-C(2)	123.8(5)	C(24)- $C(23)$ - $C(22)$	119 0(9)
C(1)-C(2)-C(3)	116.3(5)	C(24)-C(23)-C(26)	117.9(12)
C(1)- $C(2)$ - $C(14)$	120.4(5)	C(22)-C(23)-C(26)	123.0(10)
C(3)-C(2)-C(14)	123.2(5)	C(25)-C(24)-C(23)	120.4(10)
C(4)-C(3)-C(2)	120.9(5)	C(24)-C(25)-C(20)	119.5(9)
C(3)-C(4)-C(5)	120.4(5)	N(6)-C(27)-C(28)	124.2(5)
N(2)-C(5)-N(1)	116.5(4)	C(27)-C(28)-C(29)	116.0(5)
N(2)-C(5)-C(4)	124.6(5)	C(27)-C(28)-C(40)	121.6(5)
N(1)-C(5)-C(4)	118.8(5)	C(29)-C(28)-C(40)	122.4(5)
N(3)-C(6)-N(2)	115.8(4)	C(30)-C(29)-C(28)	120.9(5)
N(3)-C(6)-C(7)	122.0(5)	C(29)-C(30)-C(31)	119.8(5)
N(2)-C(6)-C(7)	121.8(5)	N(6)-C(31)-N(7)	115.4(4)
C(8)-C(7)-C(6)	119.5(5)	N(6)-C(31)-C(30)	119.6(4)
C(7)-C(8)-C(9)	119.5(5)	N(7)-C(31)-C(30)	124.8(4)
C(11)-C(9)-C(10)	118.4(5)	N(8)-C(32)-N(7)	115.5(4)
C(11)-C(9)-C(8)	124.9(5)	N(8)-C(32)-C(33)	122.9(4)
C(10)-C(9)-C(8)	116.6(5)	N(7)-C(32)-C(33)	121.1(5)
N(3)-C(10)-N(4)	114.3(5)	C(34)-C(33)-C(32)	118.9(5)
N(3)-C(10)-C(9)	124.7(5)	C(33)-C(34)-C(35)	119.8(5)
N(4)-C(10)-C(9)	120.9(5)	C(36)-C(35)-C(34)	117.2(5)
C(12)-C(11)-C(9)	120.3(6)	C(36)-C(35)-C(37)	118.3(5)
C(11)-C(12)-C(13)	119.3(6)	C(34)-C(35)-C(37)	124.5(5)
N(4)-C(13)-N(5)	112.8(5)	N(8)-C(36)-N(9)	114.9(4)
N(4)-C(13)-C(12)	120.7(5)	N(8)-C(36)-C(35)	123.8(5)
N(5)-C(13)-C(12)	126.5(5)	N(9)-C(36)-C(35)	121.3(5)
C(15)-C(14)-C(19)	118.0(6)	C(38)-C(37)-C(35)	120.1(5)
C(15)-C(14)-C(2)	121.7(5)	C(37)-C(38)-C(39)	119.2(5)
C(19)-C(14)-C(2)	120.2(6)	N(9)-C(39)-N(10)	113.0(5)
C(16)-C(15)-C(14)	121.1(7)	N(9)-C(39)-C(38)	121.2(5)
C(15)-C(16)-C(17)	119.7(8)	N(10)-C(39)-C(38)	125.8(5)
C(18)-C(17)-C(16)	119.1(7)	C(45)-C(40)-C(41)	117.6(5)
C(17)-C(18)-C(19)	121.9(7)	C(45)-C(40)-C(28)	121.4(5)
C(18)-C(19)-C(14)	120.1(7)	C(41)-C(40)-C(28)	120.9(5)
C(21)-C(20)-C(25)	120.1(8)	C(42)-C(41)-C(40)	120.8(5)
C(21)-C(20)-S(1)	119.5(7)	C(43)-C(42)-C(41)	121.4(6)
C(25)-C(20)-S(1)	120.3(6)	C(42)-C(43)-C(44)	119.5(6)
C(22)-C(21)-C(20)	119.4(10)	C(43)-C(44)-C(45)	120.2(6)
C(21)-C(22)-C(23)	121.5(9)	C(40)-C(45)-C(44)	120.5(6)

			1510101076
C(51) C(46) C(47)	110 3(6)	C(68) C(67) C(66)	110 0(7)
C(51)-C(40)-C(47)	119.3(0) 120.2(5)	C(08) - C(07) - C(00) C(60) - C(68) - C(67)	119.9(7)
C(31)-C(40)-S(2)	120.2(5)	C(09)-C(00)-C(07)	121.2(7) 110.0(7)
C(47)-C(40)-S(2)	120.3(3)	C(08) - C(09) - C(70) C(60) - C(70) - C(71)	119.9(7)
C(48)- $C(47)$ - $C(40)$	119.0(7)	C(69)-C(70)-C(71)	119.7(7)
C(47)-C(48)-C(49)	121.3(8)	C(00)-C(71)-C(70)	120.0(6)
C(50)- $C(49)$ - $C(48)$	118.2(7)	C(77) - C(72) - C(73)	118.7(6)
C(50)-C(49)-C(52)	121.2(7)	C(77) - C(72) - S(3)	121.5(5)
C(48)-C(49)-C(52)	120.4(7)	C(73)-C(72)-S(3)	119.7(5)
C(51)-C(50)-C(49)	120.4(6)	C(72)-C(73)-C(74)	118.8(8)
C(50)-C(51)-C(46)	121.1(6)	C(75)-C(74)-C(73)	122.8(7)
N(11)-C(53)-C(54)	123.6(6)	C(76)-C(75)-C(74)	116.9(7)
C(53)-C(54)-C(55)	116.9(5)	C(76)-C(75)-C(78)	119.9(8)
C(53)-C(54)-C(66)	119.5(6)	C(74)-C(75)-C(78)	123.1(7)
C(55)-C(54)-C(66)	123.6(6)	C(75)-C(76)-C(77)	121.4(8)
C(56)-C(55)-C(54)	120.3(6)	C(72)-C(77)-C(76)	121.3(7)
C(55)-C(56)-C(57)	120.4(6)	N(16)-C(79)-C(80)	124.7(5)
N(11)-C(57)-N(12)	115.7(5)	C(79)-C(80)-C(81)	115.1(5)
N(11)-C(57)-C(56)	119.0(5)	C(79)-C(80)-C(92)	122.3(5)
N(12)-C(57)-C(56)	125.1(5)	C(81)-C(80)-C(92)	122.5(5)
N(13)-C(58)-N(12)	116.8(5)	C(82)-C(81)-C(80)	121.8(5)
N(13)-C(58)-C(59)	121.5(5)	C(81)-C(82)-C(83)	120.1(5)
N(12)-C(58)-C(59)	121.6(5)	N(16)-C(83)-N(17)	114.1(5)
C(60)-C(59)-C(58)	119.7(5)	N(16)-C(83)-C(82)	118.5(5)
C(59)-C(60)-C(61)	120.3(5)	N(17)-C(83)-C(82)	127.1(5)
C(62)-C(61)-C(63)	117.3(5)	N(18)-C(84)-N(17)	111.9(5)
C(62)-C(61)-C(60)	115.9(5)	N(18)-C(84)-C(85)	121.2(5)
C(63)-C(61)-C(60)	126.8(5)	N(17)-C(84)-C(85)	126.5(5)
N(14)-C(62)-N(13)	113.7(4)	C(86)-C(85)-C(84)	119.6(6)
N(14)-C(62)-C(61)	121.8(5)	C(85)-C(86)-C(87)	120.3(6)
N(13)-C(62)-C(61)	124.5(5)	C(86)-C(87)-C(88)	115.8(5)
C(64)-C(63)-C(61)	121.2(5)	C(86)-C(87)-C(89)	126.8(6)
C(63)-C(64)-C(65)	119.0(5)	C(88)-C(87)-C(89)	117.4(6)
N(14)-C(65)-N(15)	111.9(5)	N(18)-C(88)-N(19)	115.0(5)
N(14)-C(65)-C(64)	120.3(5)	N(18)-C(88)-C(87)	125.6(5)
N(15)-C(65)-C(64)	127.8(5)	N(19)-C(88)-C(87)	119.4(5)
C(71)-C(66)-C(67)	118.7(6)	C(90)-C(89)-C(87)	121.5(6)
C(71)-C(66)-C(54)	121.1(6)	C(89)-C(90)-C(91)	121.3(6)
C(67)-C(66)-C(54)	120.1(6)	N(20)-C(91)-N(19)	124.4(6)

N(20)-C(91)-C(90)	119.5(6)	C(100)-C(101)-C(102)	118.5(8)
N(19)-C(91)-C(90)	116.1(6)	C(100)-C(101)-C(104)	121.8(9)
C(97)-C(92)-C(93)	117.9(5)	C(102)-C(101)-C(104)	119.7(10)
C(97)-C(92)-C(80)	121.0(5)	C(103)-C(102)-C(101)	121.2(8)
C(93)-C(92)-C(80)	121.0(6)	C(102)-C(103)-C(98)	118.5(7)
C(94)-C(93)-C(92)	120.4(6)	O(10)-C(105)-O(9)	121.9(5)
C(95)-C(94)-C(93)	121.5(6)	O(10)-C(105)-C(106)	119.3(5)
C(94)-C(95)-C(96)	119.9(6)	O(9)-C(105)-C(106)	118.8(5)
C(95)-C(96)-C(97)	119.2(6)	Cl(1')-C(108)-Cl(2')	117.3(8)
C(92)-C(97)-C(96)	121.1(6)	Cl(2)-C(108)-Cl(1)	104.8(5)
C(103)-C(98)-C(99)	120.0(7)	Cl(4)-C(109)-Cl(3)	112.4(7)
C(103)-C(98)-S(4)	121.2(5)	Cl(5)-C(110)-Cl(6)	111.4(5)
C(99)-C(98)-S(4)	118.6(6)	Cl(7)-C(111)-Cl(8)	109.6(9)
C(100)-C(99)-C(98)	120.3(8)	Cl(10)-C(112)-Cl(9)	112.5(6)
C(101)-C(100)-C(99)	121.4(8)		

Symmetry transformations used to generate equivalent atoms:

附錄C-15.1. Crystal data and structure refinement for ic17398.

Identification code	ic17398	7 4	
Empirical formula	C64H52Cl5Co2F6N20	PRe2	
Formula weight	1913.74	· 學·學	
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 14.8333(2) Å	$\alpha = 86.8840(6)^{\circ}.$	
	b = 15.2556(2) Å	$\beta = 71.6517(6)^{\circ}$.	
	c = 17.2969(2) Å	$\gamma = 64.1580(6)^{\circ}$.	
Volume	3327.86(7) Å ³		
Z	2		
Density (calculated)	1.910 Mg/m ³		
Absorption coefficient	4.417 mm ⁻¹		
F(000)	1868		
Crystal size	0.25 x 0.14 x 0.12 mm ³		
Theta range for data collection	1.25 to 27.50°.		
Index ranges	-19<=h<=19, -19<=k<	=19, -22<=l<=22	
Reflections collected	47131		
Independent reflections	15233 [R(int) = 0.0256	5]	
Completeness to theta = 27.50°	99.7 %		
Absorption correction	Semi-empirical from e	quivalents	
Max. and min. transmission	0.6193 and 0.4048		
Refinement method	Full-matrix least-squar	es on F ²	
Data / restraints / parameters	15233 / 31 / 935		
Goodness-of-fit on F ²	1.119		
Final R indices [I>2sigma(I)]	R1 = 0.0327, wR2 = 0.	R1 = 0.0327, $wR2 = 0.0908$	
R indices (all data)	R1 = 0.0540, wR2 = 0.	1102	
Largest diff. peak and hole	1.922 and -1.480 e.Å ⁻³		

附錄C-15.2. Bond le	engths [Å] and angles	[°] for ic17398.	X HE AN
Re(1)-N(14)	2.075(4)	N(6)-C(20)	1.363(6)
Re(1)-N(4)	2.078(4)	N(7)-C(20)	1.378(6)
Re(1)-N(9)	2.111(4)	N(7)-C(21)	1.380(6)
Re(1)-N(19)	2.115(4)	N(8)-C(21)	1.376(6)
Re(1)-Re(2)	2.1778(3)	N(8)-C(25)	1.378(6)
Re(1)-N(20)	2.477(4)	N(9)-C(25)	1.370(6)
Re(1)-N(10)	2.493(4)	N(9)-C(26)	1.377(6)
Re(2)-N(3)	2.062(4)	N(10)-C(30)	1.331(7)
Re(2)-N(13)	2.065(4)	N(10)-C(26)	1.355(6)
Re(2)-N(8)	2.089(4)	N(11)-C(31)	1.366(6)
Re(2)-N(18)	2.099(4)	N(11)-C(35)	1.368(6)
Re(2)-Co(1)	2.3754(6)	N(12)-C(36)	1.379(6)
Co(1)-N(7)	1.914(4)	N(12)-C(35)	1.379(6)
Co(1)-N(17)	1.918(4)	N(13)-C(36)	1.378(6)
Co(1)-N(12)	1.919(4)	N(13)-C(40)	1.380(6)
Co(1)-N(2)	1.927(4)	N(14)-C(40)	1.367(6)
Co(1)-Co(2)	2.2735(9)	N(14)-C(41)	1.445(6)
Co(2)-N(6)	1.960(4)	N(15)-C(41)	1.324(6)
Co(2)-N(16)	1.960(4)	N(15)-C(45)	1.344(8)
Co(2)-N(1)	1.976(4)	N(16)-C(46)	1.363(6)
Co(2)-N(11)	1.978(4)	N(16)-C(50)	1.368(6)
Co(2)-Cl(1)	2.3702(14)	N(17)-C(50)	1.367(6)
N(1)-C(5)	1.359(6)	N(17)-C(51)	1.379(6)
N(1)-C(1)	1.362(6)	N(18)-C(51)	1.372(6)
N(2)-C(5)	1.377(6)	N(18)-C(55)	1.382(6)
N(2)-C(6)	1.388(6)	N(19)-C(56)	1.369(6)
N(3)-C(6)	1.373(6)	N(19)-C(55)	1.371(6)
N(3)-C(10)	1.387(6)	N(20)-C(60)	1.330(7)
N(4)-C(10)	1.368(7)	N(20)-C(56)	1.349(6)
N(4)-C(11)	1.40(5)	C(1)-C(2)	1.362(8)
N(4)-C(11')	1.51(11)	C(2)-C(3)	1.391(8)
N(5)-C(15)	1.35(6)	C(3)-C(4)	1.368(7)
N(5)-C(11)	1.37(7)	C(4)-C(5)	1.414(7)
N(5')-C(15')	1.30(12)	C(6)-C(7)	1.376(7)
N(5')-C(11')	1.27(15)	C(7)-C(8)	1.405(8)
N(6)-C(16)	1.363(6)	C(8)-C(9)	1.372(8)

ъгÅ

			Section 1
C(9)-C(10)	1.399(7)	C(52)-C(53)	1.372(7)
C(11)-C(12)	1.40(6)	C(53)-C(54)	1.371(7)
C(12)-C(13)	1.37(3)	C(54)-C(55)	1.389(7)
C(13)-C(14)	1.39(2)	C(56)-C(57)	1.392(7)
C(14)-C(15)	1.39(3)	C(57)-C(58)	1.361(9)
C(11')-C(12')	1.34(13)	C(58)-C(59)	1.390(9)
C(12')-C(13')	1.44(6)	C(59)-C(60)	1.375(9)
C(13')-C(14')	1.35(5)	P(1)-F(2')	1.48(3)
C(14')-C(15')	1.33(7)	P(1)-F(4)	1.551(5)
C(16)-C(17)	1.361(7)	P(1)-F(1')	1.56(5)
C(17)-C(18)	1.388(8)	P(1)-F(5)	1.571(5)
C(18)-C(19)	1.388(8)	P(1)-F(3)	1.572(5)
C(19)-C(20)	1.403(7)	P(1)-F(1)	1.59(2)
C(21)-C(22)	1.389(7)	P(1)-F(6)	1.610(5)
C(22)-C(23)	1.383(8)	P(1)-F(2)	1.632(10)
C(23)-C(24)	1.389(8)	C(61)-C(62)	1.411(12)
C(24)-C(25)	1.406(7)	C(61)-Cl(2)	1.857(10)
C(26)-C(27)	1.389(7)	C(62)-Cl(3)	1.730(8)
C(27)-C(28)	1.391(7)	C(63)-C(64)	1.489(10)
C(28)-C(29)	1.384(8)	C(63)-Cl(4)	1.747(9)
C(29)-C(30)	1.382(7)	C(64)-Cl(5)	1.770(7)
C(31)-C(32)	1.360(7)	C(63')-C(64')	1.520(10)
C(32)-C(33)	1.385(7)	C(63')-Cl(4)	1.757(10)
C(33)-C(34)	1.370(7)	C(64')-Cl(5')	1.777(10)
C(34)-C(35)	1.397(7)		
C(36)-C(37)	1.380(7)	N(14)-Re(1)-N(4)	177.74(15)
C(37)-C(38)	1.401(7)	N(14)-Re(1)-N(9)	91.59(15)
C(38)-C(39)	1.361(7)	N(4)-Re(1)-N(9)	90.36(16)
C(39)-C(40)	1.405(7)	N(14)-Re(1)-N(19)	88.86(15)
C(41)-C(42)	1.383(7)	N(4)-Re(1)-N(19)	89.11(16)
C(42)-C(43)	1.384(7)	N(9)-Re(1)-N(19)	175.33(15)
C(43)-C(44)	1.372(8)	N(14)-Re(1)-Re(2)	89.30(11)
C(44)-C(45)	1.357(9)	N(4)-Re(1)-Re(2)	89.63(12)
C(46)-C(47)	1.367(7)	N(9)-Re(1)-Re(2)	88.04(11)
C(47)-C(48)	1.392(8)	N(19)-Re(1)-Re(2)	87.32(11)
C(48)-C(49)	1.367(7)	N(14)-Re(1)-N(20)	97.69(15)
C(49)-C(50)	1.413(7)	N(4)-Re(1)-N(20)	81.97(16)
C(51)-C(52)	1.397(7)	N(9)-Re(1)-N(20)	128.32(15)

			1610101010
N(19)-Re(1)-N(20)	56 17(15)	$N(6)-C_0(2)-N(16)$	171 77(17)
Re(2)- $Re(1)$ - $N(20)$	142,43(10)	N(6)-Co(2)-N(1)	87.90(17)
N(14)-Re(1)-N(10)	81 26(15)	N(16)-Co(2)-N(1)	88 91(17)
N(4)-Re(1)-N(10)	100 79(15)	N(6)-Co(2)-N(11)	93 32(17)
N(9)-Re(1)-N(10)	55 90(15)	N(16)-Co(2)-N(11)	88 59(16)
N(19)-Re(1)-N(10)	128.74(15)	N(1)-Co(2)-N(11)	170.38(17)
Re(2)- $Re(1)$ - $N(10)$	142.08(10)	N(6)-Co(2)-Co(1)	85.50(12)
N(20)-Re(1)-N(10)	75.44(14)	N(16)-Co(2)-Co(1)	86.67(12)
N(3)-Re(2)-N(13)	173.19(15)	N(1)-Co(2)-Co(1)	85.13(12)
N(3)-Re(2)-N(8)	89.59(15)	N(11)-Co(2)-Co(1)	85.45(12)
N(13)-Re(2)-N(8)	91.31(15)	N(6)-Co(2)-Cl(1)	93.02(12)
N(3)-Re(2)-N(18)	89.26(15)	N(16)-Co(2)-Cl(1)	94.84(13)
N(13)-Re(2)-N(18)	88.84(15)	N(1)-Co(2)-Cl(1)	95.49(13)
N(8)-Re(2)-N(18)	171.35(15)	N(11)-Co(2)-Cl(1)	93.97(12)
N(3)-Re(2)-Re(1)	93.28(12)	Co(1)-Co(2)-Cl(1)	178.38(5)
N(13)-Re(2)-Re(1)	93.39(11)	C(5)-N(1)-C(1)	118.8(4)
N(8)-Re(2)-Re(1)	93.95(11)	C(5)-N(1)-Co(2)	120.8(3)
N(18)-Re(2)-Re(1)	94.67(11)	C(1)-N(1)-Co(2)	120.4(4)
N(3)-Re(2)-Co(1)	87.19(12)	C(5)-N(2)-C(6)	122.3(4)
N(13)-Re(2)-Co(1)	86.13(11)	C(5)-N(2)-Co(1)	115.4(3)
N(8)-Re(2)-Co(1)	86.50(11)	C(6)-N(2)-Co(1)	122.3(3)
N(18)-Re(2)-Co(1)	84.88(11)	C(6)-N(3)-C(10)	120.9(4)
Re(1)-Re(2)-Co(1)	179.351(18)	C(6)-N(3)-Re(2)	120.5(3)
N(7)-Co(1)-N(17)	179.32(18)	C(10)-N(3)-Re(2)	118.6(3)
N(7)-Co(1)-N(12)	90.81(17)	C(10)-N(4)-C(11)	113.6(18)
N(17)-Co(1)-N(12)	89.18(17)	C(10)-N(4)-C(11')	121(4)
N(7)-Co(1)-N(2)	89.56(17)	C(11)-N(4)-C(11')	11(4)
N(17)-Co(1)-N(2)	90.48(17)	C(10)-N(4)-Re(1)	122.0(3)
N(12)-Co(1)-N(2)	178.18(18)	C(11)-N(4)-Re(1)	124.4(17)
N(7)-Co(1)-Co(2)	89.70(12)	C(11')-N(4)-Re(1)	116(4)
N(17)-Co(1)-Co(2)	89.62(12)	C(15)-N(5)-C(11)	115(5)
N(12)-Co(1)-Co(2)	91.13(12)	C(15')-N(5')-C(11')	123(10)
N(2)-Co(1)-Co(2)	90.65(12)	C(16)-N(6)-C(20)	118.9(4)
N(7)-Co(1)-Re(2)	89.67(12)	C(16)-N(6)-Co(2)	119.8(3)
N(17)-Co(1)-Re(2)	91.02(12)	C(20)-N(6)-Co(2)	120.4(3)
N(12)-Co(1)-Re(2)	89.50(12)	C(20)-N(7)-C(21)	121.3(4)
N(2)-Co(1)-Re(2)	88.72(12)	C(20)-N(7)-Co(1)	114.2(3)
Co(2)-Co(1)-Re(2)	179.11(3)	C(21)-N(7)-Co(1)	123.0(3)

			CONTRACTOR
C(21)-N(8)-C(25)	121.1(4)	C(1)-C(2)-C(3)	118.7(5)
C(21)-N(8)-Re(2)	119.6(3)	C(4)-C(3)-C(2)	119.9(5)
C(25)-N(8)-Re(2)	119.2(3)	C(3)-C(4)-C(5)	119.5(5)
C(25)-N(9)-C(26)	128.9(4)	N(1)-C(5)-N(2)	115.2(4)
C(25)-N(9)-Re(1)	123.6(3)	N(1)-C(5)-C(4)	120.2(4)
C(26)-N(9)-Re(1)	107.5(3)	N(2)-C(5)-C(4)	124.5(5)
C(30)-N(10)-C(26)	120.4(4)	N(3)-C(6)-C(7)	120.5(5)
C(30)-N(10)-Re(1)	148.6(4)	N(3)-C(6)-N(2)	113.8(4)
C(26)-N(10)-Re(1)	90.4(3)	C(7)-C(6)-N(2)	125.6(5)
C(31)-N(11)-C(35)	117.7(4)	C(6)-C(7)-C(8)	118.4(5)
C(31)-N(11)-Co(2)	121.6(3)	C(9)-C(8)-C(7)	121.8(5)
C(35)-N(11)-Co(2)	120.6(3)	C(8)-C(9)-C(10)	118.7(5)
C(36)-N(12)-C(35)	122.4(4)	N(4)-C(10)-N(3)	114.4(4)
C(36)-N(12)-Co(1)	120.5(3)	N(4)-C(10)-C(9)	126.1(5)
C(35)-N(12)-Co(1)	117.0(3)	N(3)-C(10)-C(9)	119.5(5)
C(36)-N(13)-C(40)	121.1(4)	N(5)-C(11)-C(12)	123(5)
C(36)-N(13)-Re(2)	120.6(3)	N(5)-C(11)-N(4)	116(4)
C(40)-N(13)-Re(2)	118.0(3)	C(12)-C(11)-N(4)	121(4)
C(40)-N(14)-C(41)	113.6(4)	C(13)-C(12)-C(11)	119(3)
C(40)-N(14)-Re(1)	122.2(3)	C(12)-C(13)-C(14)	119.1(16)
C(41)-N(14)-Re(1)	123.1(3)	C(13)-C(14)-C(15)	118.9(19)
C(41)-N(15)-C(45)	115.5(5)	N(5)-C(15)-C(14)	124(3)
C(46)-N(16)-C(50)	119.0(4)	N(5')-C(11')-C(12')	123(10)
C(46)-N(16)-Co(2)	121.2(3)	N(5')-C(11')-N(4)	119(10)
C(50)-N(16)-Co(2)	119.8(3)	C(12')-C(11')-N(4)	118(7)
C(50)-N(17)-C(51)	122.5(4)	C(11')-C(12')-C(13')	116(6)
C(50)-N(17)-Co(1)	116.7(3)	C(14')-C(13')-C(12')	118(3)
C(51)-N(17)-Co(1)	120.7(3)	C(15')-C(14')-C(13')	120(4)
C(51)-N(18)-C(55)	120.5(4)	N(5')-C(15')-C(14')	121(7)
C(51)-N(18)-Re(2)	121.0(3)	C(17)-C(16)-N(6)	123.2(5)
C(55)-N(18)-Re(2)	118.5(3)	C(16)-C(17)-C(18)	118.6(5)
C(56)-N(19)-C(55)	128.8(4)	C(19)-C(18)-C(17)	119.5(5)
C(56)-N(19)-Re(1)	106.3(3)	C(18)-C(19)-C(20)	119.7(5)
C(55)-N(19)-Re(1)	124.9(3)	N(6)-C(20)-N(7)	114.7(4)
C(60)-N(20)-C(56)	120.2(5)	N(6)-C(20)-C(19)	120.0(5)
C(60)-N(20)-Re(1)	148.5(4)	N(7)-C(20)-C(19)	124.9(5)
C(56)-N(20)-Re(1)	90.2(3)	N(8)-C(21)-N(7)	114.9(4)
C(2)-C(1)-N(1)	122.9(5)	N(8)-C(21)-C(22)	120.4(5)

			105101155
$\mathbf{N}(7) = \mathbf{C}(21) = \mathbf{C}(22)$	1247(5)	C(AC) C(AT) C(AD)	110 ((5)
N(7)-C(21)-C(22)	124.7(5)	C(46)-C(47)-C(48)	118.6(5)
C(23)-C(22)-C(21)	118.7(5)	C(49)-C(48)-C(47)	119.7(5)
C(22)-C(23)-C(24)	121.5(5)	C(48)-C(49)-C(50)	120.4(5)
C(23)-C(24)-C(25)	118.9(5)	N(17)-C(50)-N(16)	115.3(4)
N(9)-C(25)-N(8)	112.7(4)	N(17)-C(50)-C(49)	125.2(5)
N(9)-C(25)-C(24)	127.9(5)	N(16)-C(50)-C(49)	119.4(4)
N(8)-C(25)-C(24)	119.3(5)	N(18)-C(51)-N(17)	114.7(4)
N(10)-C(26)-N(9)	106.1(4)	N(18)-C(51)-C(52)	119.8(5)
N(10)-C(26)-C(27)	121.3(5)	N(17)-C(51)-C(52)	125.5(5)
N(9)-C(26)-C(27)	132.5(5)	C(53)-C(52)-C(51)	118.9(5)
C(26)-C(27)-C(28)	117.5(5)	C(54)-C(53)-C(52)	121.6(5)
C(29)-C(28)-C(27)	120.9(5)	C(53)-C(54)-C(55)	119.4(5)
C(30)-C(29)-C(28)	118.2(5)	N(19)-C(55)-N(18)	112.4(4)
N(10)-C(30)-C(29)	121.7(5)	N(19)-C(55)-C(54)	128.0(5)
C(32)-C(31)-N(11)	123.4(5)	N(18)-C(55)-C(54)	119.6(5)
C(31)-C(32)-C(33)	118.9(5)	N(20)-C(56)-N(19)	107.0(4)
C(34)-C(33)-C(32)	119.0(5)	N(20)-C(56)-C(57)	121.1(5)
C(33)-C(34)-C(35)	120.5(5)	N(19)-C(56)-C(57)	131.9(5)
N(11)-C(35)-N(12)	114.9(4)	C(58)-C(57)-C(56)	118.0(6)
N(11)-C(35)-C(34)	120.3(4)	C(57)-C(58)-C(59)	121.1(6)
N(12)-C(35)-C(34)	124.7(4)	C(60)-C(59)-C(58)	118.0(6)
N(13)-C(36)-N(12)	113.8(4)	N(20)-C(60)-C(59)	121.7(6)
N(13)-C(36)-C(37)	119.2(4)	F(2')-P(1)-F(4)	73.9(8)
N(12)-C(36)-C(37)	126.9(5)	F(2')-P(1)-F(1')	163(2)
C(36)-C(37)-C(38)	120.0(5)	F(4)-P(1)-F(1')	89.1(18)
C(39)-C(38)-C(37)	120.8(5)	F(2')-P(1)-F(5)	101.5(10)
C(38)-C(39)-C(40)	119.2(5)	F(4)-P(1)-F(5)	87.7(3)
N(14)-C(40)-N(13)	114.6(4)	F(1')-P(1)-F(5)	78.4(15)
N(14)-C(40)-C(39)	125.7(4)	F(2')-P(1)-F(3)	77.3(10)
N(13)-C(40)-C(39)	119.7(4)	F(4)-P(1)-F(3)	97.1(3)
N(15)-C(41)-C(42)	123.6(5)	F(1')-P(1)-F(3)	104.4(13)
N(15)-C(41)-N(14)	118.1(4)	F(5)-P(1)-F(3)	174.4(4)
C(42)-C(41)-N(14)	118.3(4)	F(2')-P(1)-F(1)	157.1(13)
C(41)-C(42)-C(43)	118.9(5)	F(4)-P(1)-F(1)	92.9(8)
C(44)-C(43)-C(42)	118.5(5)	F(1')-P(1)-F(1)	18.4(16)
C(45)-C(44)-C(43)	117.8(6)	F(5)-P(1)-F(1)	96.5(7)
N(15)-C(45)-C(44)	125.7(6)	F(3)-P(1)-F(1)	86.1(7)
N(16)-C(46)-C(47)	123.0(5)	F(2')-P(1)-F(6)	107.7(8)

F(4)-P(1)-F(6)	177.3(4)	F(1)-P(1)-F(2)	171.1(8)
F(1')-P(1)-F(6)	89.3(18)	F(6)-P(1)-F(2)	85.0(5)
F(5)-P(1)-F(6)	89.8(3)	C(62)-C(61)-Cl(2)	114.6(7)
F(3)-P(1)-F(6)	85.4(3)	C(61)-C(62)-Cl(3)	112.1(7)
F(1)-P(1)-F(6)	86.2(8)	C(64)-C(63)-Cl(4)	102.8(13)
F(2')-P(1)-F(2)	28.0(10)	C(63)-C(64)-Cl(5)	122.0(17)
F(4)-P(1)-F(2)	95.9(5)	C(64')-C(63')-Cl(4)	121(3)
F(1')-P(1)-F(2)	162.8(19)	C(63')-C(64')-Cl(5')	129(4)
F(5)-P(1)-F(2)	85.4(5)	C(63)-Cl(4)-C(63')	21(2)
F(3)-P(1)-F(2)	91.3(5)		

Symmetry transformations used to generate equivalent atoms:

附錄C-16.1. Crystal data and structure refinement for ic18729.

Identification code ic18729 Empirical formula C69H64Co2F6N21O2PRe2S 1886.70 Formula weight Temperature 150(2) K 0.71073 Å Wavelength Monoclinic Crystal system Space group $P2_1/n$ Unit cell dimensions $\alpha = 90^{\circ}$. a = 15.5868(6) Å $\beta = 90.5361(8)^{\circ}$. b = 16.3901(6) Å c = 27.2161(10) Å $\gamma = 90^{\circ}$. Volume 6952.6(4) Å³ Ζ 4 1.802 Mg/m^3 Density (calculated) 4.072 mm⁻¹ Absorption coefficient 3720 F(000) 0.234 x 0.116 x 0.033 mm³ Crystal size Theta range for data collection 2.351 to 27.499°. -20<=h<=20, -21<=k<=21, -35<=l<=35 Index ranges Reflections collected 56392 Independent reflections 15961 [R(int) = 0.0417]Completeness to theta = 25.242° 99.9 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.7456 and 0.5836 Full-matrix least-squares on F² Refinement method Data / restraints / parameters 15961 / 25 / 947 Goodness-of-fit on F^2 1.111 Final R indices [I>2sigma(I)] R1 = 0.0354, wR2 = 0.0744R indices (all data) R1 = 0.0459, wR2 = 0.0784Extinction coefficient n/a 1.490 and -0.895 e.Å -3 Largest diff. peak and hole

附錄C-16.2. Bond lengths [Å] and angles [°] for ic18729.			****	
Re(1)-N(14)	2.069(4)	N(7)-C(21)	1.364(6)	
Re(1)-N(19)	2.086(4)	N(7)-C(20)	1.373(6)	
Re(1)-N(4)	2.094(4)	N(8)-C(25)	1.374(6)	
Re(1)-N(9)	2.110(3)	N(8)-C(21)	1.377(6)	
Re(1)-Re(2)	2.1748(2)	N(9)-C(25)	1.361(6)	
Re(1)-N(10)	2.427(4)	N(9)-C(26)	1.369(6)	
Re(1)-N(5)	2.511(4)	N(10)-C(30)	1.328(6)	
Re(2)-N(13)	2.060(4)	N(10)-C(26)	1.355(6)	
Re(2)-N(18)	2.066(3)	N(11)-C(31)	1.347(6)	
Re(2)-N(3)	2.089(3)	N(11)-C(35)	1.366(6)	
Re(2)-N(8)	2.093(4)	N(12)-C(35)	1.361(6)	
Re(2)-Co(2)	2.3823(6)	N(12)-C(36)	1.386(6)	
Co(1)-N(6)	1.954(4)	N(13)-C(36)	1.372(6)	
Co(1)-N(16)	1.970(4)	N(13)-C(40)	1.380(6)	
Co(1)-N(1)	1.970(4)	N(14)-C(40)	1.368(6)	
Co(1)-N(11)	1.971(4)	N(14)-C(41)	1.439(6)	
Co(1)-N(21)	2.007(4)	N(15)-C(41)	1.353(7)	
Co(1)-Co(2)	2.2722(8)	N(15)-C(45)	1.358(8)	
Co(2)-N(7)	1.905(4)	N(16)-C(46)	1.357(6)	
Co(2)-N(12)	1.917(4)	N(16)-C(50)	1.364(6)	
Co(2)-N(2)	1.919(4)	N(17)-C(50)	1.361(6)	
Co(2)-N(17)	1.925(4)	N(17)-C(51)	1.378(6)	
S(1)-C(61)	1.62(3)	N(18)-C(55)	1.367(5)	
S(1')-C(61')	1.66(6)	N(18)-C(51)	1.382(6)	
N(1)-C(1)	1.346(6)	N(19)-C(55)	1.348(6)	
N(1)-C(5)	1.358(6)	N(19)-C(56)	1.446(6)	
N(2)-C(6)	1.370(6)	N(20)-C(56)	1.321(6)	
N(2)-C(5)	1.371(6)	N(20)-C(60)	1.343(7)	
N(3)-C(6)	1.376(6)	N(21)-C(61')	1.15(6)	
N(3)-C(10)	1.378(6)	N(21)-C(61)	1.17(3)	
N(4)-C(10)	1.354(6)	C(1)-C(2)	1.373(8)	
N(4)-C(11)	1.380(6)	C(2)-C(3)	1.385(9)	
N(5)-C(15)	1.329(6)	C(3)-C(4)	1.364(7)	
N(5)-C(11)	1.359(6)	C(4)-C(5)	1.401(7)	
N(6)-C(16)	1.346(6)	C(6)-C(7)	1.392(6)	
N(6)-C(20)	1.357(6)	C(7)-C(8)	1.390(7)	

			16161610161616
C(8)-C(9)	1.370(7)	C(56)-C(57)	1.391(7)
C(9)-C(10)	1.398(6)	C(57)-C(58)	1.382(7)
C(11)-C(12)	1.400(6)	C(58)-C(59)	1.373(8)
C(12)-C(13)	1.369(7)	C(59)-C(60)	1.375(8)
C(13)-C(14)	1.385(8)	P(1)-F(5)	1.564(4)
C(14)-C(15)	1.390(7)	P(1)-F(1)	1.578(4)
C(16)-C(17)	1.366(9)	P(1)-F(6)	1.581(4)
C(17)-C(18)	1.377(9)	P(1)-F(2)	1.582(3)
C(18)-C(19)	1.371(7)	P(1)-F(3)	1.593(3)
C(19)-C(20)	1.400(7)	P(1)-F(4)	1.595(4)
C(21)-C(22)	1.388(6)	O(1)-C(63)	1.433(13)
C(22)-C(23)	1.384(7)	O(1)-C(64)	1.457(12)
C(23)-C(24)	1.380(7)	C(62)-C(63)	1.479(9)
C(24)-C(25)	1.399(6)	C(64)-C(65)	1.469(15)
C(26)-C(27)	1.401(6)	O(2)-C(68)	1.342(12)
C(27)-C(28)	1.380(7)	O(2)-C(67)	1.454(10)
C(28)-C(29)	1.384(7)	C(66)-C(67)	1.451(12)
C(29)-C(30)	1.372(7)	C(68)-C(69)	1.455(13)
C(31)-C(32)	1.371(8)		
C(32)-C(33)	1.390(8)	N(14)-Re(1)-N(19)	177.19(14)
C(33)-C(34)	1.366(7)	N(14)-Re(1)-N(4)	89.39(14)
C(34)-C(35)	1.409(7)	N(19)-Re(1)-N(4)	88.15(14)
C(36)-C(37)	1.382(6)	N(14)-Re(1)-N(9)	89.87(14)
C(37)-C(38)	1.393(7)	N(19)-Re(1)-N(9)	92.48(14)
C(38)-C(39)	1.369(7)	N(4)-Re(1)-N(9)	175.57(14)
C(39)-C(40)	1.398(6)	N(14)-Re(1)-Re(2)	89.16(10)
C(41)-C(42)	1.365(7)	N(19)-Re(1)-Re(2)	89.40(10)
C(42)-C(43)	1.381(8)	N(4)-Re(1)-Re(2)	87.87(10)
C(43)-C(44)	1.349(11)	N(9)-Re(1)-Re(2)	87.76(10)
C(44)-C(45)	1.373(11)	N(14)-Re(1)-N(10)	100.35(14)
C(46)-C(47)	1.375(7)	N(19)-Re(1)-N(10)	82.23(14)
C(47)-C(48)	1.380(7)	N(4)-Re(1)-N(10)	127.61(14)
C(48)-C(49)	1.375(7)	N(9)-Re(1)-N(10)	56.81(13)
C(49)-C(50)	1.402(6)	Re(2)-Re(1)-N(10)	142.90(9)
C(51)-C(52)	1.382(6)	N(14)-Re(1)-N(5)	81.61(14)
C(52)-C(53)	1.384(7)	N(19)-Re(1)-N(5)	98.12(13)
C(53)-C(54)	1.366(7)	N(4)-Re(1)-N(5)	56.20(13)
C(54)-C(55)	1.413(6)	N(9)-Re(1)-N(5)	127.96(13)

			NGI GLOLOV GY
Re(2)-Re(1)-N(5)	142 73(9)	N(7)-Co(2)-Co(1)	89 52(11)
N(10)-Re(1)-N(5)	74 37(13)	N(12)-Co(2)-Co(1)	91 02(11)
N(13)-Re(2)-N(18)	173 09(14)	N(2)-Co(2)-Co(1)	90.69(12)
N(13)-Re(2)-N(3)	88 90(14)	N(17)-Co(2)-Co(1)	90.23(11)
N(18)-Re(2)-N(3)	89.42(14)	$N(7)$ - $C_0(2)$ - $R_e(2)$	89.91(11)
N(13)-Re(2)-N(8)	90.38(14)	$N(12)-C_0(2)-Re(2)$	89 59(11)
N(13) - Re(2) - N(3)	90.34(14)	N(12) = Co(2) = Re(2)	89.89(12)
N(3) - Re(2) - N(8)	171.90(14)	N(2) = CO(2) = RO(2) N(17) = CO(2) = RO(2)	89.16(11)
N(13) - Re(2) - Re(1)	93.86(10)	R(1) = Co(2) = Re(2)	179 16(4)
N(13)- $Rc(2)$ - $Rc(1)$	93.80(10)	C(1) = C(2) = RC(2)	179.10(+) 110.3(4)
N(10)-Re(2)-Re(1) $N(2) P_0(2) P_0(1)$	92.93(10)	C(1)-N(1)-C(3)	119.3(4)
N(3)-Re(2)-Re(1) $N(8) P_{2}(2) P_{2}(1)$	94.02(10)	C(1)-N(1)-CO(1)	120.0(4)
N(0)-Re(2)-Re(1) $N(12) P_0(2) C_0(2)$	94.08(10)	C(3)-N(1)-CO(1)	120.0(3)
N(13)-Re(2)-Co(2)	80.55(10)	C(0)-N(2)-C(3)	122.2(4)
N(18)-Re(2)-Co(2)	86.68(10)	C(0)-N(2)-CO(2)	121.5(5)
N(3)-Re(2)-Co(2)	86.08(10)	C(5)-N(2)-Co(2)	116.3(3)
N(8)-Re(2)-Co(2)	85.82(10)	C(6)-N(3)-C(10)	121.4(4)
Re(1)- $Re(2)$ - $Co(2)$	179.600(18)	C(6)-N(3)-Re(2)	119.9(3)
N(6)-Co(1)-N(16)	88.24(17)	C(10)-N(3)-Re(2)	118.8(3)
N(6)-Co(1)-N(1)	172.70(17)	C(10)-N(4)-C(11)	127.8(4)
N(16)-Co(1)-N(1)	91.39(16)	C(10)-N(4)-Re(1)	124.8(3)
N(6)-Co(1)-N(11)	90.17(18)	C(11)-N(4)-Re(1)	107.4(3)
N(16)-Co(1)-N(11)	170.99(16)	C(15)-N(5)-C(11)	119.7(4)
N(1)-Co(1)-N(11)	89.06(17)	C(15)-N(5)-Re(1)	149.9(4)
N(6)-Co(1)-N(21)	93.73(18)	C(11)-N(5)-Re(1)	88.9(3)
N(16)-Co(1)-N(21)	94.03(17)	C(16)-N(6)-C(20)	118.7(5)
N(1)-Co(1)-N(21)	93.57(18)	C(16)-N(6)-Co(1)	121.4(4)
N(11)-Co(1)-N(21)	94.92(17)	C(20)-N(6)-Co(1)	119.9(3)
N(6)-Co(1)-Co(2)	86.96(12)	C(21)-N(7)-C(20)	121.4(4)
N(16)-Co(1)-Co(2)	85.58(11)	C(21)-N(7)-Co(2)	121.4(3)
N(1)-Co(1)-Co(2)	85.74(12)	C(20)-N(7)-Co(2)	117.2(3)
N(11)-Co(1)-Co(2)	85.48(12)	C(25)-N(8)-C(21)	121.2(4)
N(21)-Co(1)-Co(2)	179.20(14)	C(25)-N(8)-Re(2)	119.3(3)
N(7)-Co(2)-N(12)	89.90(16)	C(21)-N(8)-Re(2)	119.4(3)
N(7)-Co(2)-N(2)	179.39(17)	C(25)-N(9)-C(26)	129.4(4)
N(12)-Co(2)-N(2)	89.53(16)	C(25)-N(9)-Re(1)	125.0(3)
N(7)-Co(2)-N(17)	90.14(16)	C(26)-N(9)-Re(1)	105.6(3)
N(12)-Co(2)-N(17)	178.75(16)	C(30)-N(10)-C(26)	121.3(4)
N(2)-Co(2)-N(17)	90.43(16)	C(30)-N(10)-Re(1)	147.3(3)

C(26)-N(10)-Re(1)	91.3(3)	N(3)-C(6)-C(7)	119.0(4)
C(31)-N(11)-C(35)	119.4(4)	C(8)-C(7)-C(6)	119.1(5)
C(31)-N(11)-Co(1)	120.0(3)	C(9)-C(8)-C(7)	121.2(5)
C(35)-N(11)-Co(1)	120.5(3)	C(8)-C(9)-C(10)	119.2(5)
C(35)-N(12)-C(36)	123.0(4)	N(4)-C(10)-N(3)	112.6(4)
C(35)-N(12)-Co(2)	115.5(3)	N(4)-C(10)-C(9)	128.1(4)
C(36)-N(12)-Co(2)	121.3(3)	N(3)-C(10)-C(9)	119.3(4)
C(36)-N(13)-C(40)	121.2(4)	N(5)-C(11)-N(4)	106.9(4)
C(36)-N(13)-Re(2)	120.7(3)	N(5)-C(11)-C(12)	121.4(4)
C(40)-N(13)-Re(2)	118.0(3)	N(4)-C(11)-C(12)	131.5(4)
C(40)-N(14)-C(41)	115.0(4)	C(13)-C(12)-C(11)	117.9(5)
C(40)-N(14)-Re(1)	122.4(3)	C(12)-C(13)-C(14)	120.9(5)
C(41)-N(14)-Re(1)	122.6(3)	C(13)-C(14)-C(15)	118.3(5)
C(41)-N(15)-C(45)	115.5(6)	N(5)-C(15)-C(14)	121.9(5)
C(46)-N(16)-C(50)	118.9(4)	N(6)-C(16)-C(17)	122.9(6)
C(46)-N(16)-Co(1)	120.4(3)	C(16)-C(17)-C(18)	118.9(5)
C(50)-N(16)-Co(1)	120.3(3)	C(19)-C(18)-C(17)	119.4(6)
C(50)-N(17)-C(51)	122.6(4)	C(18)-C(19)-C(20)	119.7(5)
C(50)-N(17)-Co(2)	115.2(3)	N(6)-C(20)-N(7)	115.2(4)
C(51)-N(17)-Co(2)	121.9(3)	N(6)-C(20)-C(19)	120.3(4)
C(55)-N(18)-C(51)	121.6(4)	N(7)-C(20)-C(19)	124.3(5)
C(55)-N(18)-Re(2)	118.2(3)	N(7)-C(21)-N(8)	115.1(4)
C(51)-N(18)-Re(2)	120.2(3)	N(7)-C(21)-C(22)	125.3(4)
C(55)-N(19)-C(56)	113.7(4)	N(8)-C(21)-C(22)	119.5(4)
C(55)-N(19)-Re(1)	121.4(3)	C(23)-C(22)-C(21)	119.1(4)
C(56)-N(19)-Re(1)	123.8(3)	C(24)-C(23)-C(22)	121.3(5)
C(56)-N(20)-C(60)	116.6(5)	C(23)-C(24)-C(25)	118.9(4)
C(61')-N(21)-Co(1)	159(2)	N(9)-C(25)-N(8)	112.1(4)
C(61)-N(21)-Co(1)	171.5(14)	N(9)-C(25)-C(24)	128.4(4)
N(1)-C(1)-C(2)	122.4(5)	N(8)-C(25)-C(24)	119.5(4)
C(1)-C(2)-C(3)	118.8(5)	N(10)-C(26)-N(9)	106.1(4)
C(4)-C(3)-C(2)	119.3(5)	N(10)-C(26)-C(27)	120.2(4)
C(3)-C(4)-C(5)	120.3(5)	N(9)-C(26)-C(27)	133.7(4)
N(1)-C(5)-N(2)	115.5(4)	C(28)-C(27)-C(26)	117.6(4)
N(1)-C(5)-C(4)	119.8(4)	C(27)-C(28)-C(29)	121.1(5)
N(2)-C(5)-C(4)	124.6(5)	C(30)-C(29)-C(28)	118.5(5)
N(2)-C(6)-N(3)	115.1(4)	N(10)-C(30)-C(29)	121.3(5)
N(2)-C(6)-C(7)	125.8(4)	N(11)-C(31)-C(32)	123.3(5)

			10 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C(31)-C(32)-C(33)	117.8(5)	C(53)-C(54)-C(55)	118.9(4)
C(34)-C(33)-C(32)	120.0(5)	N(19)-C(55)-N(18)	115.6(4)
C(33)-C(34)-C(35)	120.3(5)	N(19)-C(55)-C(54)	125.2(4)
N(12)-C(35)-N(11)	115.9(4)	N(18)-C(55)-C(54)	119.2(4)
N(12)-C(35)-C(34)	124.9(4)	N(20)-C(56)-C(57)	123.5(4)
N(11)-C(35)-C(34)	119.0(4)	N(20)-C(56)-N(19)	118.1(4)
N(13)-C(36)-C(37)	120.0(4)	C(57)-C(56)-N(19)	118.4(4)
N(13)-C(36)-N(12)	114.5(4)	C(58)-C(57)-C(56)	118.5(5)
C(37)-C(36)-N(12)	125.5(4)	C(59)-C(58)-C(57)	118.9(5)
C(36)-C(37)-C(38)	118.7(5)	C(58)-C(59)-C(60)	118.2(5)
C(39)-C(38)-C(37)	121.5(5)	N(20)-C(60)-C(59)	124.3(5)
C(38)-C(39)-C(40)	119.3(4)	N(21)-C(61)-S(1)	174.5(17)
N(14)-C(40)-N(13)	114.7(4)	N(21)-C(61')-S(1')	170(4)
N(14)-C(40)-C(39)	126.2(4)	F(5)-P(1)-F(1)	91.8(3)
N(13)-C(40)-C(39)	119.1(4)	F(5)-P(1)-F(6)	91.0(3)
N(15)-C(41)-C(42)	123.9(5)	F(1)-P(1)-F(6)	176.4(3)
N(15)-C(41)-N(14)	116.9(5)	F(5)-P(1)-F(2)	92.1(2)
C(42)-C(41)-N(14)	119.1(5)	F(1)-P(1)-F(2)	91.4(2)
C(41)-C(42)-C(43)	118.3(6)	F(6)-P(1)-F(2)	90.7(2)
C(44)-C(43)-C(42)	119.8(7)	F(5)-P(1)-F(3)	88.7(2)
C(43)-C(44)-C(45)	118.9(6)	F(1)-P(1)-F(3)	88.4(2)
N(15)-C(45)-C(44)	123.5(7)	F(6)-P(1)-F(3)	89.6(2)
N(16)-C(46)-C(47)	123.4(5)	F(2)-P(1)-F(3)	179.1(2)
C(46)-C(47)-C(48)	117.8(5)	F(5)-P(1)-F(4)	178.4(3)
C(49)-C(48)-C(47)	120.2(5)	F(1)-P(1)-F(4)	88.8(3)
C(48)-C(49)-C(50)	120.1(5)	F(6)-P(1)-F(4)	88.3(3)
N(17)-C(50)-N(16)	115.6(4)	F(2)-P(1)-F(4)	89.3(2)
N(17)-C(50)-C(49)	124.6(4)	F(3)-P(1)-F(4)	89.8(2)
N(16)-C(50)-C(49)	119.6(4)	C(63)-O(1)-C(64)	107.4(9)
N(17)-C(51)-C(52)	126.4(4)	O(1)-C(63)-C(62)	110.9(11)
N(17)-C(51)-N(18)	114.5(4)	O(1)-C(64)-C(65)	109.4(9)
C(52)-C(51)-N(18)	119.1(4)	C(68)-O(2)-C(67)	112.9(8)
C(51)-C(52)-C(53)	119.8(4)	C(66)-C(67)-O(2)	106.2(7)
C(54)-C(53)-C(52)	121.4(4)	O(2)-C(68)-C(69)	113.0(9)

Symmetry transformations used to generate equivalent atoms: