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摘摘摘要要要

良率為評估製程能力與品質的重要指標，目前被廣泛地應用於品

質管制、環境監控與其他研究領域。假設目標族群服從常態混合分佈

且規格已指定時，如何有系統地建構良率的信賴區間是目前尚未解決

的問題。本研究提出一個針對常態混合分佈良率的區間估計方法，利

用馬可夫鍊蒙地卡羅法自參數的廣義置信分佈抽樣並計算信賴區間。

透過分析一筆實際環境監控的資料說明新方法的可行性，並藉由數值

模擬評估新方法的表現。根據模擬結果，新方法所建構的信賴區間能

提供足夠的覆蓋率。

關關關鍵鍵鍵字字字: 置信推論、信賴區間、潛在變數、馬可夫鍊蒙地卡羅法、品質
管制。
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Abstract

Conformance proportions, which are often employed in quality control,

environmental monitoring, and many other areas, are important indices for

evaluating product quality and process capability. When the population of

interest is assumed to have a normal mixture distribution and specification

limits are set by a quality engineer, estimating conformance proportions can

be a practical issue. Under the framework of normal mixture distributions,

a new method is proposed in this study to obtain confidence intervals for

conformance proportions. More specifically, a Markov chain Monte Carlo

sampler is developed to generate realizations from the generalized fiducial

distributions. The required interval estimates can then be calculated by using

the obtained realizations. A real-world environmental monitoring example is

used to demonstrate that the proposed method is feasible in practice. Based

on simulation results, it is shown that the proposed method can maintain the

empirical coverage rate sufficiently close to the nominal level.

Keywords: Fiducial inference; Confidence interval; Latent variable; Markov

chain Monte Carlo; Quality control.
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Chapter 1

Introduction

A conformance proportion, which is defined as the probability of a quality characteristic

within the specification limits set by a quality engineer, is an important numerical index

for evaluating product quality and process capability. This numerical measure has been

widely used in quality control, environmental regulation, and many other areas. To the

best of my knowledge, Wang and Lam (1996) appears to be the first statistical reference

regarding the construction of confidence intervals for conformance proportions. Perakis

and Xekalaki (2002) and Perakis and Xekalaki (2005) studied conformance proportions

under various distributional assumptions. Under the framework of linear mixed effects

models, Lee and Liao (2012) and Lee and Liao (2014) developed systematic methods to

obtain confidence intervals for bilateral and unilateral conformance proportions. When

there are two or more quality characteristics of interest, Chen et al. (2015) conducted a

series of Monte Carlo simulations to evaluate different interval estimation methods for

conformance proportions of multiple quality characteristics. When prior knowledge and

information are available, Perakis and Xekalaki (2015) proposed a Bayesian method to

estimate conformance proportions. Recently, Lee et al. (2016) introduced the concept of

reference population-based conformance proportions for the purpose of safety evaluation

of genetically modified crops. The reader can consult Perakis and Xekalaki (2016) for a

comprehensive introduction regarding conformance proportions and related applications.

1
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In practice, sometimes, the population of interest can be characterized by a bimodal

or multimodal distribution. Fitting a normal mixture distribution to the observed data is

a straightforward strategy to characterize the target population. When the population is

assumed to have a normal mixture distribution, the unknown parameters can be estimated

by using the expectation-maximization algorithm developed by Dempster et al (1977).

After obtaining the maximum likelihood estimates, the corresponding Fisher information

matrix can be derived via the systematic procedure proposed by Louis (1982) to construct

frequentist asymptotic inference procedures. On the other hand, when prior information

and knowledge regarding the parameters are available, several Bayesian methods have

been proposed for mixture distributions. For a comprehensive introduction to mixture

distributions and related inference procedures, the reader is referred to McLachlan and

Peel (2000). As far as I know, when the population is assumed to have a normal mixture

distribution, there seems no literature regarding the construction of confidence intervals

for conformance proportions. The aim of this study is to develop a systematic method

for addressing this practical issue. In addition, the concepts of universal and individual

conformance proportions are introduced to take the inherent structure of normal mixture

distributions into account. This novel monitoring strategy allows us to explore the entire

population and subpopulations of interest, respectively.

The remainder of this thesis is organized as follows. Chapter 2 first provides some

notation and definitions. Next, when the population of interest is assumed to have a

normal mixture distribution, a novel approach is proposed to obtain confidence intervals

for bilateral and unilateral conformance proportions. Chapter 3 presents some numerical

results to demonstrate that the proposed method can be a satisfactory solution for real-

world applications. Some discussions are given in Chapter 4.

2
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Chapter 2

Methods

On the basis of generalized fiducial inference, when the population is assumed to have

a normal mixture distribution, a novel approach is proposed in this chapter to construct

confidence intervals for conformance proportions.

2.1 Notation and Definitions

Before presenting the proposed method, some notation and definitions used in this study

are first introduced.

2.1.1 Normal Mixture Distributions

Suppose that the population of interest can be split into J heterogeneous subpopulations,

where J represents a known integer greater than or equal to two. Let Xi represent the

continuous response of the ith individual sampled from the population. Assume that Xi

can be characterized by the following normal mixture distribution:

Xi|wi = j ∼ N
(
µj, σ

2
j

)
with probability Pr (Wi = j) = πj,

wherewi denotes the realized value of membership indicator variable of the ith individual,

the subpopulation label j is an integer ranging from 1 to J , µj and σ2
j denote the mean and

3
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variance of the jth subpopulation, respectively, πj represents the corresponding mixing

proportion, and π1 + π2 + · · · + πJ = 1. The membership indicator variable Wi is often

called a latent variable, whose realized value is unobserved in practice. Additionally, it is

assumed that the J subpopulations are labeled properly, so that

µ1 < µ2 < · · · < µJ .

On the other hand, when the random variable Xi is sampled from a J-component normal

mixture distribution, its marginal density function can be written as

f (xi) =
J∑
j=1

πjf (xi|wi = j) ,

where f (xi|wi = j) denotes the conditional probability density function given by

f (xi|wi = j) =
1√

2πσ2
j

exp

{
−(xi − µj)2

2σ2
j

}
.

2.1.2 Conformance Proportions

LetX denote a quantitative quality characteristic of interest. When the lower specification

limit L and the upper specification limit U are both set by a quality engineer, the bilateral

conformance proportion can be defined as follows:

Pr (L < X < U) .

Clearly, a bilateral conformance proportion quantifies the uncertainty of X lying between

the user-specified lower and upper specification limits. The reader can consult Ott et

al. (2005) and Krishnamoorthy and Mathew (2009) for some real-world applications of

bilateral conformance proportions. In some studies, however, only the lower or upper

specification limit is used to evaluate the target quality characteristic. Consequently, the

4
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corresponding conformance proportions are given by

Pr (X > L) and Pr (X < U) ,

which are often called the unilateral conformance proportions. Unilateral conformance

proportions also play a vital role in quality control and environmental monitoring. For

example, Lee and Liao (2014) applied unilateral conformance proportions to evaluate

rice quality and rain acidity.

Specifically, when the quality characteristic of interest is assumed to be a continuous

random variable sampled from a normal mixture distribution, two classes of conformance

proportions, including the individual and universal conformance proportions, are now

introduced for real-world quality assessments. First, the individual bilateral conformance

proportion of the jth subpopulation is defined as follows:

θbj = Pr (L < X < U |W = j)

= Φ

U − µj√
σ2
j

− Φ

L− µj√
σ2
j

 ,

where Φ (·) denotes the cumulative standard normal distribution function. On the other

hand, when unilateral lower or upper specification limit is set by a quality engineer, the

individual unilateral conformance proportions are given by

θlj = Pr (X > L|W = j)

= 1− Φ

L− µj√
σ2
j

 ,

5
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and

θuj = Pr (X < U |W = j)

= Φ

U − µj√
σ2
j

 ,

respectively. Individual conformance proportions are defined by using the conditional

distribution for the jth subpopulation. Therefore, they offer local information regarding

the jth subpopulation. On the other hand, based on the marginal distribution, the universal

bilateral conformance proportion can be written as

θb = Pr (L < X < U)

=
J∑
j=1

Pr (W = j) Pr (L < X < U |W = j)

=
J∑
j=1

πjθbj.

Obviously, a universal bilateral conformance proportion is equal to the weighted sum of

individual conformance proportions by mixing proportions. Similarly, universal unilateral

conformance proportions can be written as

θl = Pr (X > L)

=
J∑
j=1

Pr (W = j) Pr (X > L|W = j)

=
J∑
j=1

πjθlj,

6
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and

θu = Pr (X < U)

=
J∑
j=1

Pr (W = j) Pr (X < U |W = j)

=
J∑
j=1

πjθuj,

respectively. Although universal and individual conformance proportions can be used to

evaluate the corresponding populations, they are complicated functions of all unknown

parameters. To obtain confidence intervals for these complicated functions of parameters,

generalized fiducial inference can be a feasible solution. Before presenting the proposed

method, generalized fiducial inference is briefly introduced in the next section.

2.1.3 Generalized Fiducial Inference

LetX represent a random vector sampled from a distribution with an unknown parameter

vector ζ. Assume thatX can be generated by the following data-generating equation:

X = G (ζ,U) ,

whereG (·) denotes a measurable function, andU denotes a random vector sampled from

a completely known distribution. In addition, the realizations ofX andU are denoted by

x and u, respectively. Let

Q (x,u) = {ζ : x = G (ζ,u)} ,

which can be regarded as an inverse mapping of the data-generating equation G (ζ,U).

Accordingly, a generalized fiducial distribution of ζ can be defined as follows:

V (Q (x,U ∗)) | {Q (x,U ∗) 6= ∅} ,

7
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where U ∗ represents an independent copy of U . Specifically, if there are two or more

elements in Q (x,U ∗), the stochastic scheme V (·) can be used to randomly choose an

element from Q (x,U ∗) for defining a generalized fiducial distribution. The reader is

referred to Hannig (2009) for a rigorous definition regarding V (·). Typically, a random

quantity sampled from a generalized fiducial distribution of ζ is said to be a generalized

fiducial quantity for ζ , abbreviated as GFQ and denoted by Rζ (x) or simply Rζ . Below,

two examples are given to show GFQs for the parameters of normal and multinomial

distributions.

Example 1. Let X1, X2, . . . , Xn represent n independent random variables sampled from

a normal distributionN (µ, σ2). In addition, let x̄ and s2 denote the observed sample mean

and observed sample variance, respectively. Following the recipe proposed by Hannig

(2009), a generalized fiducial distribution of µ and σ2 can be obtained. Specifically, a

GFQ for σ2 is given by

Rσ2 =
(n− 1) s2

V
,

where V denotes a chi-squared random variable with n − 1 degrees of freedom. On the

other hand, a GFQ for µ is given by

Rµ = x̄− Z
√
Rσ2

n
,

where Z represents a standard normal random variable.

Example 2. Let W1,W2, . . . ,Wn denote n independent discrete random variables which

take the value j with probability

Pr (Wi = j) = πj,

where j = 1, 2, . . . , J . Assume that the number of occurrences of j amongw1, w2, . . . , wn

8
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is equal to nj . In addition, let U1, U2, . . . , Un denote n random variables sampled from the

continuous uniform distribution with bounded support between zero and one. As shown

in Hanning (2009), a GFQ for π1 is given by

Rπ1 = U(t1) +D
[
U(t1+1) − U(t1)

]
, (1)

where t1 = n1, and D denotes a discrete uniform random variable taking value either 0

or 1. On the other hand, a GFQ for πj is given by

Rπj = U(tj) +D
[
U(tj+1) − U(tj)

]
−Rπj−1

, (2)

where tj = n1 + n2 + · · · + nj , and j = 2, 3, . . . , J . Note that U(0) and U(n+1) are set

to 0 and 1, respectively, in (1) and (2). In fact, there are several candidate probability

models for D. The reader can consult Hannig (2009) for a fruitful discussion regarding

these candidates.

2.2 The Proposed Method

Assume that X1, X2, . . . , Xn are n continuous random variables independently sampled

from a normal mixture distribution. When the realized values of membership indicator

variables w1, w2, . . . , wn are all observed, that is, n1, n2, . . . , nJ are all observed, a GFQ

for the jth subpopulation variance σ2
j is given by

Rσ2
j

=
(nj − 1) s2j

Vj
, (3)

where s2j denotes the observed sample variance of the jth subpopulation, and Vj denotes

a chi-squared random variable with nj − 1 degrees of freedom. Similarly, a GFQ for the

9
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jth subpopulation mean µj is given by

Rµj = x̄j − Zj

√
Rσ2

j

nj
, (4)

where x̄j represents the observed sample mean of the jth subpopulation, andZj represents

a standard normal random variable. On the other hand, a GFQ for Rπj can be computed

by using (1) and (2). Accordingly, a GFQ for the jth individual bilateral conformance

proportion θbj can be derived through

Rθbj = Φ

U −Rµj√
Rσ2

j

− Φ

L−Rµj√
Rσ2

j

 . (5)

Similarly, GFQs for the jth individual unilateral conformance proportions θlj and θuj are

given by

Rθlj = 1− Φ

L−Rµj√
Rσ2

j

 , (6)

and

Rθuj = Φ

U −Rµj√
Rσ2

j

 , (7)

respectively. On the other hand, a GFQ for the universal bilateral conformance proportion

is given by

Rθb =
J∑
j=1

Rπj

Φ

U −Rµj√
Rσ2

j

− Φ

L−Rµj√
Rσ2

j

. (8)

10
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In addition, GFQs for universal unilateral conformance proportions are given by

Rθl =
J∑
j=1

Rπj

1− Φ

L−Rµj√
Rσ2

j

, (9)

and

Rθu =
J∑
j=1

RπjΦ

U −Rµj√
Rσ2

j

, (10)

respectively. In practice, however, the realized values of the n membership indicator

variables w1, w2, . . . , wn are unobserved, with the result that all the required GFQs in (1)

to (10) are unavailable. To account for the uncertainty of membership indicator variables

W1,W2, . . . ,Wn, the following Markov chain Monte Carlo (MCMC) sampler is proposed

to generate realizations from the generalized fiducial distributions.

Step 1: Choose a sufficiently large number T as the length of Markov chain. Set t =

0. Generate an arbitrary assignmentw0 = (w0
1, w

0
2, . . . , w

0
n), where w0

i represents a

positive integer ranging from 1 to J for each i.

Step 2: Increase t by 1. Select an element, say wt−1
i , from wt−1. Suppose that

wt−1
i = a, then randomly choose an integer, say b, from {1, 2, . . . , J} \ a. Propose

a new assignment

w∗ = (w∗
1, w

∗
2, . . . , w

∗
n) ,

where w∗
i = b, and w∗

j = wt−1
j for all j 6= i.

Step 3: Calculate the acceptance ratio r via

r =
(nb − 1) Γ

(
n∗
a−1
2

)
Γ
(
n∗
b−1

2

)
[(na − 1) s2a]

na−2
2 [(nb − 1) s2b ]

nb−2

2

(n∗
a − 1) Γ

(
na−1

2

)
Γ
(
nb−1
2

)
[(n∗

a − 1) s∗2a ]
n∗
a−2
2 [(n∗

b − 1) s∗2b ]
n∗
b
−2

2

, (11)

11
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where Γ(·) represents the gamma function, s2a and s2b denote the sample variances

of observations from the ath and bth subpopulations according to the assignment

wt−1, s∗2a and s∗2b represent the sample variances of observations from the ath and

bth subpopulations according to the assignmentw∗. LetU denote a random variable

sampled from uniform (0, 1). The realized value of U is denoted by u. The current

assignment wt is set to

wt =

 w∗ if u ≤ min (r, 1) ;

wt−1 otherwise.

Step 4: Based on the current assignment wt, generate realizations of GFQs via (1)

to (10).

Step 5: If t < T , back to Step 2. Otherwise, stop.

The number of burn-in iterations is set to T/2 in this study, and different values of T are

set in the real data analysis and simulation studies, which will be mentioned later in the

next chapter. After an adequate burn-in period, the proposed MCMC sampler can be used

to generate realizations of GFQs from the generalized fiducial distributions. Specifically,

the acceptance ratio r in (11) is a special case of equation (8) in Tsai (2019). This compact

expression allows a practitioner to update the assignments in a computationally efficient

manner.

12
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Chapter 3

Results

Some numerical results are presented in this chapter to show that my proposal is a feasible

and efficient method for real-world applications.

3.1 An Application to Lake Acidity Data

In 1983, the Environmental Protection Agency of the United States began the National

Surface Water Survey to monitor water quality and acidification trends of lakes and

streams in the United States. This project collected water samples from different lakes

to analyze acid neutralizing capacities, pH levels, and other chemical attributes. When

analyzing the observed data, most chemical attributes can be fitted by single probability

models. As seen from Figure 3.1, however, it seems not adequate to fit the observed values

of acid neutralizing capacities collected from north central Wisconsin by using a single

probability distribution. Crawford et al. (1994) used a two-component normal mixture

distribution to characterized this data set. The same probability model is applied in this

study. Specifically, a lower specification limit is set to zero, which means that the lake

water cannot neutralize acid. In other word, the level of acidification is rather severe.

To obtain confidence intervals for conformance proportions, the proposed MCMC

sampler is implemented to generate realizations of required GFQs. The first 5,000,000

iterations are treated as burn-in samples, and then one realization is chosen in every 50

13
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Acid Neutralizing Capacity
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Figure 3.1: Histogram of lake acidity data

iterations for thinning the Markov chain. In total, 100,000 realizations are obtained for

each GFQ. First, autocorrelation functions and trace plots are employed for diagnosing

the obtained Markov samples. As shown in Figure 3.2, all autocorrelation coefficients

are smaller than 0.2, so the obtained realizations are subjectively treated as independent

samples in the subsequent analysis. On the other hand, there appears to be no specific

pattern in each trace plot in Figure 3.2, which indicates that the obtained realizations

are sampled from a stationary distribution. The formal testing procedure proposed by

Geweke (1992) is further used to evaluate each Markov sequence. Note that Geweke’s

test statistic can be easily obtained by using the R package coda. When the significance

level is set to 0.05, according to the p-values reported in Table 3.1, no strong evidence

14
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against the assumption that these realizations are sampled from stationary distributions

is observed. Subsequently, confidence intervals for conformance proportions are derived

by using the obtained realizations of GFQs. When the lower specification limit is set to

zero, as shown in Table 3.1, the true value of universal unilateral conformance proportion

lies between 0.852 and 0.931 with 95% confidence. This interval estimate provides global

information regarding the entire lake population. Specifically, with 95% confidence, the

interval 0.789 to 0.915 contains the true value of the individual unilateral conformance

proportion of the first subpopulation. Lastly, the interval 0.883 to 0.977 contains the true

value of the individual unilateral conformance proportion of the second subpopulation

with 95% confidence. Clearly, these confidence intervals provide local information about

the two lake subpopulations. The 99% confidence intervals presented in Table 3.1 can be

interpreted similarly. From this real-world application, the proposed method appears to be

a feasible solution to obtain confidence intervals for universal and individual conformance

proportions. In the next section, the proposed method will be thoroughly evaluated via a

series of simulation studies.

Table 3.1: Confidence intervals for lake acidity data

95% Confidence interval 99% Confidence interval Geweke’s test

Parameter Lower limit Upper limit Lower limit Upper limit p-value

θl 0.852 0.931 0.835 0.940 0.575
θl1 0.789 0.915 0.763 0.930 0.758
θl2 0.883 0.977 0.859 0.983 0.310
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Figure 3.2: Autocorrelation functions and trace plots
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3.2 Simulation Studies

To evaluate the proposed method, eight scenarios with different marginal density curves

in Table 3.2 are considered. Although the number of subpopulations J is set to two for

each scenario in this study, the proposed method can be readily applied to handle the cases

of J > 2 without any difficulty. Two sets of mixing proportions (π1, π2) = (0.4, 0.6) and

(0.2, 0.8) are chosen for the simulation studies. The sample sizes n are set to 50, 100, 200

and 300, respectively. In addition, the specification limits (L,U) are set to (9, 16) and

(8, 17) for determining the true values of conformance proportions. By varying the true

models exhibited in Table 3.2, n responses are generated to emulate observations from

real-world applications.

To take the membership uncertainty of n individuals into account, n discrete random

variables W1,W2, . . . ,Wn are first generated via the following scheme:

Pr (Wi = j) = πj.

Next, if the realized valuewi = 1, then the correspondingXi is generated fromN (µ1, σ
2
1).

Otherwise, the corresponding Xi is simulated from N (µ2, σ
2
2). For each combination of

simulation parameters, including scenario and specification limits, 5000 simulated data

sets are generated. Subsequently, 100, 000 realizations of GFQs are generated for each

simulated data set, and the required confidence intervals are then computed by using the

obtained realizations. The performance of the proposed method is evaluated in terms of

its empirical coverage rate at the nominal level 0.95. Specifically, the empirical coverage

rate is defined as the proportion of the 5000 obtained confidence intervals containing the

true conformance proportion. All simulation results are collected in Tables 3.3 to 3.5.

According to the empirical coverage rates in Tables 3.3 to 3.5, when the sample size

n is small, the proposed method appears to be conservative for estimating conformance

proportions. Specifically, when the specification limits (L,U) are set to (8, 17) and n =

17
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Table 3.2: Normal mixture distributions for simulation studies

Scenario µ1 σ2
1 π1 µ2 σ2

2 π2

1 10 1 0.4 15 2 0.6
2 10 2 0.6 15 1 0.4
3 10 1 0.2 15 2 0.8
4 10 2 0.8 15 1 0.2
5 10 1 0.4 15 4 0.6
6 10 4 0.6 15 1 0.4
7 10 1 0.2 15 4 0.8
8 10 4 0.8 15 1 0.2

50 or 100, the empirical coverage rates of scenarios 5, 6, 7 and 8 in Table 3.3 are slightly

lower than the nominal level 0.95, primarily due to the fact that the sample size ni is rather

small and subpopulation variance σ2
i is relatively large. However, when the sample size is

large, the proposed method can maintain empirical coverage rate sufficiently close to the

nominal level. When the sample size n is 300, the gaps between the empirical coverage

rates and nominal level are negligible. In summary, the proposed method appear to be a

satisfactory solution for each scenario in Table 3.2.
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Figure 3.3: Marginal density curves of scenarios 1 to 4
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Figure 3.4: Marginal density curves of scenarios 5 to 8
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Table 3.3: Empirical coverage rates for conformance proportions of entire population

(L,U) = (9, 16) (L,U) = (8, 17)

Scenario Type n=50 n=100 n=200 n=300 n=50 n=100 n=200 n=300

1
θb 0.962 0.956 0.949 0.945 0.945 0.951 0.949 0.953
θl 0.967 0.949 0.954 0.954 0.952 0.955 0.951 0.948
θu 0.957 0.952 0.945 0.950 0.961 0.954 0.950 0.950

2
θb 0.965 0.949 0.947 0.949 0.939 0.948 0.950 0.952
θl 0.958 0.955 0.950 0.949 0.954 0.955 0.952 0.953
θu 0.968 0.948 0.957 0.950 0.954 0.947 0.947 0.953

3
θb 0.966 0.951 0.954 0.950 0.949 0.956 0.949 0.955
θl 0.979 0.969 0.954 0.956 0.964 0.952 0.949 0.946
θu 0.963 0.951 0.952 0.949 0.959 0.953 0.950 0.954

4
θb 0.965 0.954 0.953 0.951 0.952 0.952 0.948 0.953
θl 0.963 0.952 0.948 0.948 0.959 0.954 0.946 0.947
θu 0.976 0.966 0.961 0.951 0.960 0.952 0.953 0.949

5
θb 0.970 0.961 0.953 0.955 0.948 0.954 0.951 0.949
θl 0.970 0.964 0.950 0.951 0.923 0.956 0.957 0.954
θu 0.957 0.954 0.951 0.951 0.968 0.958 0.955 0.950

6
θb 0.966 0.961 0.959 0.955 0.948 0.950 0.947 0.948
θl 0.959 0.954 0.958 0.952 0.963 0.955 0.950 0.952
θu 0.972 0.963 0.951 0.950 0.924 0.950 0.957 0.955

7
θb 0.970 0.967 0.957 0.956 0.950 0.945 0.953 0.947
θl 0.975 0.977 0.961 0.955 0.921 0.921 0.948 0.958
θu 0.962 0.960 0.954 0.953 0.965 0.956 0.958 0.948

8
θb 0.967 0.966 0.957 0.959 0.949 0.949 0.949 0.945
θl 0.962 0.956 0.950 0.951 0.967 0.958 0.953 0.947
θu 0.979 0.973 0.965 0.952 0.912 0.930 0.947 0.949

21



doi:10.6342/NTU201900936

Table 3.4: Empirical coverage rates for conformance proportions of subpopulation 1

(L,U) = (9, 16) (L,U) = (8, 17)

Scenario Type n=50 n=100 n=200 n=300 n=50 n=100 n=200 n=300

1
θb1 0.970 0.951 0.960 0.952 0.961 0.954 0.948 0.943
θl1 0.971 0.951 0.960 0.952 0.965 0.954 0.948 0.943
θu1 0.971 0.953 0.953 0.954 0.967 0.957 0.954 0.949

2
θb1 0.967 0.957 0.948 0.950 0.962 0.955 0.952 0.950
θl1 0.969 0.958 0.948 0.950 0.964 0.955 0.952 0.950
θu1 0.971 0.954 0.958 0.956 0.974 0.963 0.958 0.951

3
θb1 0.983 0.973 0.957 0.952 0.962 0.955 0.947 0.946
θl1 0.986 0.972 0.956 0.953 0.985 0.968 0.950 0.947
θu1 0.955 0.939 0.947 0.954 0.954 0.942 0.942 0.945

4
θb1 0.971 0.959 0.954 0.950 0.973 0.961 0.945 0.948
θl1 0.973 0.958 0.955 0.950 0.973 0.961 0.945 0.948
θu1 0.976 0.966 0.955 0.951 0.968 0.967 0.960 0.954

5
θb1 0.980 0.962 0.954 0.954 0.981 0.967 0.958 0.951
θl1 0.980 0.963 0.954 0.954 0.983 0.967 0.958 0.951
θu1 0.982 0.971 0.958 0.960 0.981 0.972 0.959 0.950

6
θb1 0.981 0.971 0.959 0.953 0.977 0.962 0.954 0.952
θl1 0.985 0.970 0.956 0.954 0.981 0.967 0.955 0.952
θu1 0.989 0.971 0.948 0.947 0.988 0.967 0.947 0.941

7
θb1 0.991 0.986 0.969 0.960 0.985 0.978 0.962 0.959
θl1 0.991 0.978 0.965 0.959 0.996 0.987 0.970 0.963
θu1 0.968 0.974 0.962 0.956 0.966 0.974 0.960 0.956

8
θb1 0.984 0.980 0.963 0.959 0.985 0.981 0.966 0.953
θl1 0.988 0.983 0.964 0.961 0.988 0.982 0.968 0.954
θu1 0.989 0.979 0.969 0.956 0.990 0.981 0.964 0.958
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Table 3.5: Empirical coverage rates for conformance proportions of subpopulation 2

(L,U) = (9, 16) (L,U) = (8, 17)

Scenario Type n=50 n=100 n=200 n=300 n=50 n=100 n=200 n=300

1
θb2 0.970 0.956 0.945 0.952 0.963 0.953 0.949 0.952
θl2 0.969 0.957 0.946 0.954 0.968 0.958 0.952 0.945
θu2 0.972 0.957 0.944 0.952 0.967 0.954 0.949 0.952

2
θb2 0.968 0.954 0.952 0.955 0.962 0.948 0.945 0.953
θl2 0.972 0.956 0.952 0.953 0.967 0.956 0.950 0.952
θu2 0.972 0.955 0.952 0.955 0.966 0.949 0.945 0.953

3
θb2 0.970 0.956 0.953 0.951 0.973 0.956 0.948 0.952
θl2 0.972 0.962 0.957 0.956 0.973 0.963 0.951 0.953
θu2 0.971 0.956 0.953 0.951 0.973 0.956 0.948 0.952

4
θb2 0.985 0.976 0.960 0.949 0.962 0.955 0.953 0.950
θl2 0.955 0.948 0.950 0.950 0.954 0.944 0.941 0.946
θu2 0.985 0.972 0.960 0.949 0.984 0.967 0.957 0.950

5
θb2 0.984 0.970 0.959 0.959 0.982 0.964 0.957 0.951
θl2 0.989 0.969 0.953 0.956 0.987 0.972 0.953 0.950
θu2 0.989 0.971 0.957 0.960 0.986 0.964 0.958 0.952

6
θb2 0.976 0.962 0.953 0.956 0.982 0.965 0.958 0.954
θl2 0.979 0.968 0.959 0.959 0.985 0.971 0.962 0.957
θu2 0.978 0.963 0.953 0.956 0.983 0.966 0.958 0.954

7
θb2 0.985 0.980 0.964 0.956 0.986 0.978 0.966 0.954
θl2 0.990 0.983 0.966 0.957 0.991 0.982 0.967 0.951
θu2 0.990 0.984 0.968 0.957 0.988 0.980 0.967 0.955

8
θb2 0.994 0.986 0.969 0.958 0.983 0.981 0.963 0.959
θl2 0.966 0.973 0.963 0.954 0.968 0.976 0.964 0.960
θu2 0.991 0.981 0.966 0.958 0.995 0.988 0.972 0.964
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Chapter 4

Discussion

When the population of interest is assumed to have a normal mixture distribution with J

subpopulations, where J is a known positive integer, a new method is proposed in this

study to obtain confidence intervals for conformance proportions. Based on simulation

results, the proposed method can maintain the empirical coverage rate sufficiently close

to the nominal level. Accordingly, it is recommended for real-world applications.

In practice, however, the number of subpopulations J could be an unknown integer,

so that a practitioner needs to estimate J before applying the proposed method. Under the

framework of normal mixture distributions, some statistical methods have been proposed

to estimate the number of subpopulations. The proposals include those by Richardson

and Green (1997) and Dellaportas and Papageorgiou (2006), among others. Sometimes,

estimating the number of subpopulations J can be a challenging task. A typical example

is the stamp thickness data set presented in Izeman and Sommer (1988). As seen from

Figure 4.1, the number of subpopulations is not trivial. Based on the analysis results by

McLachlan and Peel (2000), both three-component and seven-component normal mixture

distributions can be used to fit this data set. Intuitively, if J is misspecified, the proposed

method might be relatively inefficient for estimating the conformance proportions. The

performance of the proposed method under a misspecified J will be addressed in a future

study.

24



doi:10.6342/NTU201900936

Thickness 

D
en

si
ty

0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13

0
20

40
60

80

Figure 4.1: Histogram of stamp thickness data

Multivariate normal mixture distributions are commonly used to characterize multiple

quality characteristics observed from difference sources. Recently, Zimmer et al. (2016)

introduced some applications of bivariate normal mixture distributions. An alternative

research topic is to extend the proposed method to construct confidence regions under the

assumption of multivariate normal mixture distributions. This interesting topic will be

one of my future research projects.
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