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Abstract 

Background Effectiveness of population-based colorectal cancer (CRC) screening with fecal 

immunological test (FIT) in reducing advanced CRC and deaths from CRC is determined by 

structure, process, multistate disease natural history, and screening policy. Systematic 

evaluation of how these factors are interplayed with each other to affect the benefit of screening 

is a thorny issue and cannot rely on traditional experimental and quasi-experimental design and 

statistical analysis. Therefore, a mathematical modelling is considered an alternative approach.   

Aims The consolidated Coxian phase-type Markov (CPHM) process, consisting of three 

structure-process-based, disease-natural-history-based, and prognostics-based CPHM models, 

is therefore proposed for evaluating the effectiveness of screening from the components of 

structure and process to screening policy such as inter-screening interval.   

Data Source This thesis is motivated by population-based screening program for CRC with 

biennial FIT in Taiwan. A total of 5,417,699 eligible population (aged 50-69 years in 2004-

2009) composed our study cohort. In 2004-2014, the program covered 56.7% (n=3,074,538) 

eligible population attending at least one FIT. The positive rate was 6.9% (n=211,888) in the 

first round. Among them, 67% (n=142,800) underwent confirmatory examination. Data on all 

screening history together with screening findings were prospectively collected in the central 

screening monitor system. A total of 120,528 subjects were detected as adenoma. There were 
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71,543 CRC diagnosed upon screening, including 9,168 and 4,653 screen-detected cases in the 

first and subsequent rounds of screen, respectively, 11,904 interval cancers, and 45,818 refusers 

among those never attended. Data on the distribution of AJCC staging were available. 

Methods The first CPHM model together with the likelihood functions pertaining to structure 

and process of population-based service screening was developed to evaluate arrival rate, 

positive rate, compliance with and waiting time for confirmatory diagnosis. The second series 

of CPHM models associated with multi-state disease natural history of CRC were developed 

to model a non-Markovian process with hidden transient states in PCDP and absorbing states 

reaching to CP classified by tumour staging in order to evaluate the potential of upstaging and 

to project the effect of inter-screening interval on effectiveness of screening. The prognosis-

based CPHM model was further used to assess the benefit of screening based on empirical data.    

Results The estimated parameters from structure-process-based CPHM models were used to 

elucidate the relationships among arrival rate, positive rate, and waiting time. Those from the 

second series of natural history CPHM models were used to evaluate the force of upstaging 

(early stage to late stage) within PCDP by age, gender, and location of CRC with the 

theoretically proven indicators and also assess the effect of inter-screening interval on the 

effectiveness of screening. Survival of early and late stage in PCDP and CP, respectively, was 

assessed through prognostics-based CPHM model. Statistical simulation studies on each 
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CPHM model were conducted to elucidate statistical inference on crucial parameters and on 

perturbation analyses with respect to influential parameters.   

Conclusion The consolidated CPHM model composed of a cascade of CPHM models was 

proposed to evaluate multi-throng effectiveness of population-based cancer screening from 

structure, process, and outcome.           
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中文摘要 

研究背景  利用免疫化學法糞便潛血檢查(Fecal immunological test, FIT)進行組織性大規

模篩檢計畫在降低晚期大腸直腸癌發生或大腸直腸癌死亡的效益取決於篩檢計畫的結

構—結果因素、疾病的多階段進展過程及篩檢策略，這些因素的改變如何彼此影響並

決定最終篩檢效益的系統性評估並無法仰賴傳統實驗型或類實驗型研究加以驗證，建

構數學模型進行參數改變的驗證則是另一可行之道。 

研究目的  本論文旨在建立以寇斯為導向之整合隨機模型，考量結構—結果因素、疾病

的多階段進展過程及疾病預後三大面向，用以結構—結果因素或篩檢策略改變時對族

群篩檢效益之影響。 

資料來源  本論文統計模型發展動機源自於臺灣大腸直腸癌大規模篩檢計畫之評估。臺

灣自 2004 年開始由政府提供兩年一次的免疫化學糞便潛血檢驗做為大腸直腸癌篩檢之

工具，本論文以 2004年至 2009年間篩檢的目標族群(50-60歲民眾共 5,417,699人)做為

研究世代。在 2004-2014 年間，共計 3,074,538 人參加過至少一次篩檢，篩檢涵蓋率為

56.7%；參加第一次篩檢的個案中有 211,888人檢查結果為陽性，陽性率為 6.7%；陽性

個案中完成轉介者計 142,800人，轉介完成率為 67%；參與篩檢者在 2004-2014年間共

偵測出 120,528 例大腸腺腫及 71,543 例大腸直腸癌個案(包括 9,168 例第一次篩檢發現

個案及 4,653 例後續篩檢個案)，另有 11,904 人為間隔癌個案，而在未參加篩檢的族群

中則有 45,818人被診斷為大腸直腸癌(拒絕個案)。 
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研究方法  首先建構以寇斯為導向之整合隨機模型，結合不同篩檢模式所因應的概似函

數，估計族群的篩檢參與，在參與個案扺達篩檢計畫後，應用結合寇斯多相模式及閾

值模式描述陽性個案接受轉介之順從度及等候時間的多相樣態，並且以另一寇斯多相

非馬可夫模式探討症狀前期時隱藏狀態的可能性，及抵達症狀期(吸收狀態)依 AJCC癌

症分期分類定義多相態，並據以評估不同篩檢參數對癌症分期分佈之效益，最後，結

合疾病預後的寇斯多相模式，評估篩檢組織面、過程面及結果面三類要素在不同情境

之下對組織性大規模篩檢於降低晚期大腸直腸癌發生或大腸直腸癌死亡的效益之影響。 

結果  以寇斯為導向之整合隨機模型應用於臺灣大腸直腸癌大規模篩檢計畫所估計得到

的參數為基礎，評估不同篩檢參與抵達率、FIT陽性率及大腸鏡陽性轉移等待時間之關

係。第二個寇斯多相非馬可夫模式所估計得到的疾病多階段病程轉移參數則用來評估

篩檢參數對癌症分期分佈的影響，並進一步討論性別、年齡別及部位別(近端大腸及遠

端大腸)在晚期癌症因篩檢計畫所產生的分佈差異，並發展相關統計推論指標評估其影

響性。依大腸直腸癌在症狀前期或症狀期被診斷時的早期及晚期狀態所對應的存活率

建構預後寇斯多相非馬可夫模式。三個寇斯多相非馬可夫模式進一步以電腦模擬方法

得到評估篩檢效益重要指標之統計推論性，並討論篩檢組織面、過程面及結果面三類

要素在不同情境之下對組織性大規模篩檢於降低晚期大腸直腸癌發生或大腸直腸癌死

亡的效益之影響。 

 



doi:10.6342/NTU201901194

vi 
 

結論  本論文利用寇斯多相非馬可夫模式整合隨機模型廣納可能影響篩檢的結構—結果

因素、疾病的多階段進展過程及疾病預後三大面向，並用以估計大規模篩檢計畫之效

益。 
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Chapter 1. Coxian Phase-type Stochastic Process Applied to Population-

based Cancer Screening 

Summary 

  This chapter gives a prelude to the context and organization of my thesis. It begins with 

the provision of the rationale for the use of mathematical modelling approach in evaluation of 

population-based service screening program. Then, it accounts for why the consolidated 

Coxian phase-type Markov process is required to model structure, process, and the outcome 

pertaining to the disease natural history descended from population-based organized service 

screening program. As such a screening process and disease natural history may be a non-

Markovian process the basic concepts of two main methods, supplementary variable and stage 

device method, are introduced. Theoretical aspect of connecting non-Markovian process with 

Coxian phase-type Markov process through the stage device method that is the main approach 

of my thesis is delineated. The titles of the remaining six chapters are provided for the 

panorama of my thesis.    
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1.1 Mathematical modelling for evaluation of population-based organized service 

screening  

Although population-based screening for cancer that can be detected with available 

screening methods has been well applied evaluation of its efficacy and effectiveness often relies 

on a randomized controlled trial or quasi-experimental design with the adequate control group. 

The methodology used for such an evaluation follows intention-to-treat analysis for the former 

and self-section bias adjustment analysis for the latter. Population-based organized service 

screening program is a classical quasi-experimental pattern. Although the methodology on 

selection-bias has been successfully applied to estimating the effectiveness of reducing 

mortality and advanced cancer in population-based screening (Duffy SW et al. (2002), Tabar L 

et al. (2003), and Wu JC et al. (2010)) two reasons preclude one from doing evaluation in this 

way. First of all, the unbiased control group in the absence of screening is hardly available 

when estimating the effectiveness of organized service screening gets involved with self-

selection bias adjustment. It may be possible to use the comparator based on the pre-screening 

period but it becomes intractable when there is an increasing trend in the underlying incidence 

of cancer of interest due to biological plausibility. Second, there are occasions that may not be 

appropriate for the use of experimental or quasi-experimental designs for evaluation of 

effectiveness of population-based organized service screening. Whether the effectiveness of 
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the screening method in reducing advanced cancer varies with anatomic site cannot rely on 

such a kind of design but is amenable to the modelling approach. It is argued that a higher rate 

of interval cancer seen in proximal CRCs in comparison with distal CRCs is mainly due to high 

potential of upstaging or poor sensitivity. To throw light on this argument may resort to a 

mathematical modelling rather than the traditional epidemiological design. Third, evaluation 

of population-based organized service screening with primary endpoint like cause-specific 

mortality may require long-term follow-up and get involved with enormous costs and complex 

logistics. The use of surrogate endpoint such as tumour staging for evaluation of primary 

endpoint is an alternative. The previous study has already demonstrated the advantage of using 

surrogate endpoint may increase statistical efficiency by reducing approximately one-third 

variance when the surrogate endpoint outcome as opposed to primary endpoint (Chiu SYH, et 

al. (2011)). Finally, doing the appraisal of effectiveness in the way indicated above may not 

decipher how and why key components play important role in the quantification of the benefit 

of screening. These include coverage rate, positive rate, compliance rate, and inter-screening 

interval. Analysis of the impact of these complex factors on the effectiveness of population-

based screening requires the development of a comprehensive mathematical model for 

annexing a series of different types of stochastic models including structure, process, and 

natural history of disease outcome in relation to population-based screening. These influential 
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factors are characterized by different aspects including pre-determined designed variables such 

as coverage rate and inter-screening interval and the underlying factors related to the disease 

process of CRC like the mean sojourn time, the test sensitivity of the screening method, and 

different potentials of up-staging progression of CRC by anatomic site.       

 From statistical viewpoint, the use of modelling approach to evaluation of population-

based organized service screening program requires perturbation analysis on the crucial 

parameters and also simulation studies on asymptotic analysis. They have been barely 

addressed.    

 

1.2 Consolidated Coxian phase-type stochastic model  

To deal with the empirical data on these multi-attributes covering structure, process, and 

the outcome of disease natural history, it is indispensable to integrate different types of 

stochastic model into a unifying framework. As far as structure is concerned, it begins with the 

application of a Queue process to deal with coverage rate at different levels of institution in 

various areas. The Hurdle Coxian phase-type (CPH) model is used to deal with the compliance 

with and waiting time (WT) for confirmatory diagnosis. As regards the aspect of disease 

outcome, another CPH is then annexed with the previous CPH tailored for confirmatory 

diagnosis is therefore developed to model the disease progression of natural history with multi-
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state outcomes.        

 

1.3 Coxian phase-type-based model and non-Markovian process  

When the CPH models mentioned above are used to model WT for confirmatory diagnosis 

and model the disease natural history during the pre-clinical detectable phase (PCDP), they 

often violate the Markov property and become a non-Markovian process. There are three main 

methods used for solving such a non-Markovian process. These include the stage device, 

supplementary variables, and embedded Markov process according to the Cox and Miller 

method (Cox and Miller (1965)). Among three methods, the stage device method is the main 

subject of my thesis because the classification of cancer in the PCDP can be divided into k 

stage with TNM information supplemented with other possible biomarkers if available 

although the two latter methods are still very useful. The accurate and optimal classification of 

hidden state of PCDP may also determine whether such a classification of staging is a good 

surrogate endpoint for primary endpoint using cause-specific mortality. For example, the 

classification of stage II and III of CRC in terms of AJCC is not distinct. If only stage is used 

for predicting cause-specific mortality the estimate of predicted effectiveness of reducing 

cause-specific mortality may be conservative.    

The basic concepts of supplementary variable approach on the stage device method are 
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delineated as follows. 

Suppose a subject enters the PCDP at age a and stay at PCDP with time y. If two random 

variables are denoted by A and Y and they are independent with probability density functions 

(p.d.f.) 1exp(-1×a) and f(y).  

Suppose we have three transition probabilities, Pnormal(t), PPCDP(t), and PCP(t), representing 

the probability of staying in normal, PCDP and CP. We then have  

                                  
𝑑

𝑑𝑦
𝑃𝑃𝐶𝐷𝑃(𝑦; 𝑡) +

𝑑

𝑑𝑡
𝑃𝑃𝐶𝐷𝑃(𝑦; 𝑡) = −𝜆2(𝑦)𝑃𝑃𝐶𝐷𝑃(𝑦; 𝑡)                    (1-1) 

                                                           𝑃𝑃𝐶𝐷𝑃(0, 𝑡) = 𝜆1𝑒
−𝜆1𝑡                                              (1-2) 

                                                    
𝑑

𝑑𝑡
𝑃𝐶𝑃 = ∫ 𝑃𝑃𝐶𝐷𝑃(𝑦; 𝑡)𝜆2(𝑦)𝑑𝑦

𝑡

0
                                      (1-3) 

                                             𝑃𝑃𝐶𝐷𝑃(𝑦; 𝑡) = {𝑒
−∫ 𝜆2(𝑢)𝑑𝑢

𝑦
0 }𝑆𝑃𝐶𝐷𝑃(𝑦; 𝑡)                                (1-4) 

                       𝑃𝑃𝐶𝐷𝑃(𝑦; 𝑡) = 𝜆1𝑒
−𝜆1(𝑡−𝑦)exp{−∫ 𝜆2(𝑢)𝑑𝑢

𝑦

0
} = 𝜆1𝑒

−𝜆1(𝑡−𝑦)𝑆(𝑦)            (1-5) 

𝑃𝐶𝑃(𝑡) = ∫ 𝑑𝑢
𝑡

0
∫ 𝑒−𝜆1(𝑢−𝑦)𝑆(𝑦)𝜆2(𝑦)𝑑𝑦
𝑢

0
= ∫ 𝜆1

𝑡

0
𝑒−𝜆1(𝑡−𝑢){1 − 𝑆(𝑢)}𝑑𝑢      (1-6) 

 

The equation (1-5) and (1-6) is simply Prob(𝐴 + 𝑌 < 𝑡). Here, the transition rate (𝜆1) from 

normal to PCDP state follows exponential distribution but the second transition (λ2) that is not 

exponential distribution and is dependent on the duration of y, such a process is a non-Markov 

process. This is often solved by semi-Markov process by the introduction of duration 

distribution for y. My thesis used the alternative approach with the device stage method to 
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derive the distribution of Y that is divided into the sum or K independent random variables, and 

its distribution has Laplace transform 

                                                                   𝛱
𝜆2𝑖

𝜆2𝑖+𝑠
                                                    (1-7) 

When the 𝜆2𝑖’s are all different, (1-7) can be expressed in partial function form 

∑
𝑤𝑖𝜆2𝑖
𝜆2𝑖 + 𝑠

 

So that the p.d.f is  

∑𝑤𝑖𝜆2𝑖𝑒
−𝜆2𝑖𝑦 

The direct application of device stage method to such a non-Markovian process corresponds to 

the so-called phase-type stochastic process. The transition of 𝜆2 is the modified parallel form 

of the stage device method with the p.d.f of each distribution of random variable denoted by x 

expressed by 

∑𝜋𝑖𝜆2𝑒
−𝜆2𝑥. 

      However, when the device stage method is applied to population-based screening data 

using tumour stage to refine the classification of PCDP there is a complication of direct use of 

phase-type process as each state of PCDP has a competing pathway leading to clinical phase 

carrying with each specific tumour stage when staying in the PCDP. 
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      The solution to combine both pathways is the development of Coxian phase-type stochastic 

process, which becomes the main subject of this thesis. There are several Coxian phase-type-

based stochastic process proposed in previous studies (Marshall AH, et al. (2007), Marshall 

AH, et al. (2009), Titman AC et al. (2010)). However, very few studies have noticed the 

possibility of having identifiability problem with the estimation of two correlated transition 

parameters between the transition to adjacent up-staging state and the transition to the 

absorbing state for such a kind of Coxian phase-type-based model. This is the main subject of 

my Chapter 6.         

 

1.4 Overall structure of thesis  

      In the light of the rationales proposed above in Chapter 1, there are the remaining six 

chapters of this thesis that delineate the development of various kinds of Coxian phase-type 

stochastic process and their applications to Taiwanese population-based organized service 

screening program with FIT for CRC. The titles of six chapters are listed as follows.    
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Chapter 2 Literature review   

Chapter 3 Queue, non-compliance, and waiting time of FIT screening service for CRC with 

hurdle Poisson regression model  

Chapter 4 Queue Hurdle Coxian Phase-type Model for Waiting Time in Two-stage 

Population-based Screening   

Chapter 5 Generalized Coxian phase-type Markov process for disease natural history model 

of CRC  

Chapter 6 Statistical indicators for up-staging of CRC assessed by Coxian Phase-type Markov 

process with device stage method 

Chapter 7 Consolidated Coxian phase-type Markov (CPHM) process 
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Chapter 2. Literature Review 

Summary 

Statistical methods that are possibly used for modelling structure, and process of organized 

service screen, and the underlying disease natural history are briefly reviewed. These include 

hurdle regression model for the first and second part, stochastic models for the disease natural 

history part, and Coxian phase-type process for three parts. The critiques of these methods in 

terms of their applications to population-based screening program are several-fold. First, how 

to connect these models to deal with the underlying screening flowchart from structure, process, 

until the disease natural history model has not been well studied. Second, statistical properties 

for modelling the disease natural history haven’t been well elucidated. For example, the 

correlation between upstaging with pre-clinical detectable phase (PCDP) and downstagin from 

PCDP to clinical phase has not been investigated yet. Third, statistical indicators for evaluating 

the force of upstaging have not been developed to judge whether the adoption of screening is 

adequate and how intensive inter-screening interval should be offered. Finally, the 

consolidation of these statistical models into a unified framework for evaluation of 

effectiveness of population-based screening program has been barely addressed. .            
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2.1 Introduction  

     This chapter is to give a brief literature review of statistical methods with relevance that 

may be applied to the empirical data on population-based screening program on structure, 

process, and disease natural history. These include hurdle regression model that is used to 

model the non-attendance rate and non-compliance rate with confirmatory diagnosis, Markov 

process for modelling multi-state disease natural history, and Coxian phase-type distribution 

for modelling relevant transient states and absorbing states.    

 

2.2 Hurdle Regression Model 

     Hurdle regression model is often used to model mixture outcomes. The hurdle model 

consists of binary part and count part. In the binary part, we firstly determine whether the event 

occur (count greater than or equal to one) or not (count equal to zero) by using the logistic 

regression model. Then, we model the number of event given count greater than zero by using 

the Poisson or negative binomial regression model. In the past two decades, the hurdle model 

has been widely applied in healthcare science (Winkelmann, R. (2004), Deb P et al. (2018), 

Langsetmo L et al. (2017), and Neelon B et al. (2013)), and more recently used in other fields 

such as environmental heath, non-communicable disease, and genetics. In 2018, Zhen et al. 

used the negative binomial hurdle model with spatial random effects to predict the risk of 
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children’s lead poisoning by socio-economic variables and environmental factors. The outcome 

is the number of children whose blood lead levels ≧ 10μg/dL in each census block. Because 

some area did not have any cases, which shows the issue of excessive zeros, so the traditional 

Poisson model was not suitable in this situation. Therefore, the hurdle model is an appropriate 

method to overcome this problem and separate zero count and positive counts by two-stage 

approach. The results of model selection demonstrate that the negative binomial hurdle model 

was better than the Poisson hurdle model because it has a dispersion parameter that can further 

account for the overdispersion from the excessive zeros. Lin, et al. (2018) applied hurdle 

regression model to explore the association between Aedes aegypti and characteristics of water 

holding containers in southern Taiwan. The survey data show that most of containers has zero 

Aedes aegypti. Thus, they firstly use a logistic regression model to model the possibility of the 

presence of Aedes aegypti in the containers. The association between location, seasonal, and 

functional characteristics and the number of Aedes aegypti among positive containers were 

further modelled by using Poisson or negative binomial distributions. They also compared 

hurdle model with zero-inflated model which is also commonly used to deal with excess zeros. 

The main difference is that the binary part in zero-inflated model often include false zeros and 

true zeros but that in hurdle model only have true zeros. Hurdle model was selected in this 

study because that all zero containers are all due to the inappropriate environment which means 
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true zeros. 

 

2.3 Multi-state Model for Natural History of Cancer  

Multi-state models are widely used to establish the disease natural history of chronic 

diseases and cancer. Once the natural history in which the disease progression would not be 

interrupted by intervention or treatment has been established, a pseudo-control group can be 

developed to compare with intervention (i.e, aspirin, screening, polypectomy) and then to 

evaluate the efficacy and effectiveness of the intervention. For example, in population-based 

mass screening program, the evaluation of screening effectiveness is difficult without a control 

group. As a result, the three-state model is a typical approach for describing the natural history 

of cancer by screening. In 2000, Chen et al. proposed a three-state model to estimate the mean 

sojourn time on the PCDP in breast cancer screening. The state space was defined as X(t)={0: 

normal, 1: PCDP, 2: clinical phase (CP)}. The definition of PCDP is for those asymptomatic 

individuals detected by screening modality, and CP is for those symptomatic subjects with 

clinical appearance (Day, and Walter, (1984)).The three-state model Markov model can be 

expressed as: 

 

 

No Disease PCDP CP 
𝜆1 𝜆2 
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In their study, they tackle data with irregular screening interval. Therefore, they used 

continuous time three-state Markov model. Such model was governed by the intensity matrix 

(Q) which can be given as follows,  

𝑄 = [
−𝜆1 𝜆1 0
0 −𝜆2 𝜆2
0 0 0

] 

where 𝜆1 is the transition rate from no disease to the PCDP and 𝜆2 is the transition rate from 

the PCDP to CP.  

In 1999, Chen et al. extended the three-state model to the five-state model for the 

prognosis of CRC death. The additional two states are CRC death and other cause of death. 

The model was depicted below. 

 

where 𝜆1 is the transition rate from CRC free to the preclinical CRC, 𝜆2 is the transition rate 

from the preclinical CRC to clinical CRC, 𝜆3 is the transition rate from the clinical CRC to 

death from CRC; 𝜇1, 𝜇2, 𝜇3  are the absorbing rate of other cause death from CRC free, 

preclinical CRC, and clinical CRC, respectively. By using this five-state Markov model, they 

did a simulation to project the efficacy of CRC screening for high-risk group in different 

CRC Free Preclinical CRC Clinical CRC 

CRC Death 
Other Cause 

Death 

𝜆1 𝜆2 

𝜇2 𝜆3 
𝜇1 𝜇3 
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interscreening intervals so that it can provide decision makers a reference of screening policy. 

However, it is not a good model for prediction of death from other disease and evaluation on 

the effectiveness of screening program, because it did not contain any information about 

treatment after diagnosis. In addition, someone might argue that the transition from preclinical 

CRC to CRC death is possible. This model can only be used to evaluate the efficacy of 

prognosis, which can be obtained by survival analysis as well. The difference between two 

approaches is that the multi-state model is a parametric method and the survival analysis is a 

non-parametric method. Therefore, if the state space of five-state model can be defined by 

tumour attributes, cancer stage, or clinical measures, which correlate with prognosis of 

diagnosis outcome, the pathway of disease progression can be predicted accurately. For 

example, Chen et al. (2000) extended the three-state model to a five-state model relating to 

lymph node spread of breast cancer as well as tumour size. Taking lymph node for example, 

the state space of five-state model was no disease (0), PCDP without lymph node involvement 

(1), PCDP with lymph node involvement (2), CP without lymph node involvement (3), and CP 

with lymph node involvement (4) as shown below 

 

No Disease PCDP, Node(-) PCDP, Node(+) 

CP, Node(+) CP, Node(-) 

𝜆1 𝜆2 

𝜆3 𝜆4 
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The intensity matrix can be expressed as 

[
 
 
 
 
−𝜆1 𝜆1 0 0 0
0 −(𝜆2 + 𝜆3) 𝜆2 𝜆3 0
0 0 −𝜆4 0 𝜆4
0 0 0 0 0
0 0 0 0 0 ]

 
 
 
 

 

where 𝜆1 is the transition rate from no disease to the PCDP, 𝜆2 is the transition rate from the 

PCDP without lymph node involvement to PCDP with lymph node involvement, 𝜆3  is the 

transition rate from the PCDP without lymph node involvement to CP without lymph node 

involvement, and 𝜆4 is the transition rate from the PCDP with lymph node involvement to CP 

with lymph node involvement. 

In 2006, Wu et al. aimed to evaluate the cost-effectiveness of CRC screening modalities. 

They proposed a nine-state Markov model to simulate the natural history of CRC. The state 

space is X(t)={0:normal, 1:small adenoma (adenoma size<1 cm), 2:large adenoma (adenoma 

size≧1 cm), 3:pre-clinical early CRC (Duke’s stage A and B), 4:pre-clinical late CRC (Duke’s 

stage C and D), 5:clinical early CRC (Duke’s stage A and B), 6:clinical late CRC (Duke’s stage 

C and D), 7:CRC death, 8:other cause of death}, and the model can be illustrated by 



doi:10.6342/NTU201901194

17 
 

 

where 𝜆1(t)  represents the annual incidence rate allowing to vary with time, following the 

Weibull distribution; 𝜆2 − 𝜆8 are the transition rate with constant over time; μ(t) is the annual 

age-specific mortality from other causes. 

 

2.4 Coxian Phase-type Process 

Coxian Phase-type (CPH) model is a subclass of Phase-type distribution, which is a 

continuous time Markov process and has been widely used in the healthcare industry to model 

the positive-skewed time-to-event data. Using the Phase-type distribution to estimate 

parameters might encounter the identifiability problem staying in a transient phase can transit 

to any other transient phase at the next step. However, the CPH has the ordered phases and can 

only start in the first phase and transit to the sequential transient phase or to the absorbing state. 

Therefore, the parameters need to be estimated reduce to 2k-1 (if the number of phases is k). 

μ(t) μ(t) μ(t) μ(t) μ(t) 

μ(t) μ(t) 

Small 

Adenoma 
Normal 

Large 

Adenoma 

Preclinical 

Early CRC 

Preclinical 

Late CRC 

Clinical 

Early CRC 

Clinical 

Late CRC 

CRC 

Death 

Other Cause 

Death 

𝜆1(t) 𝜆2 𝜆3 𝜆4 

𝜆5 𝜆6 

𝜆7 𝜆8 
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In 1999, Faddy and McClean used it to estimate the length of stay (LOS) of hospital and also 

incorporated covariates (age of patient at admission and year of admission) into the exponential 

regression. The phases can be explained by the severity of disease and identify the patient’s 

characteristics in the variation of duration time. Afterwards, the extension of CPH was 

increased to deal with the complicated information in the era of big data. Marshall et al. (2007) 

proposed the Discrete Conditional Coxian Phase-type (DC-Ph) model applying to the trolley 

waiting time (WT) at Accident and Emergency (A&E) departments. The first part of this model 

was to identify what kind of A&E patients have an emergency admission requiring further 

therapy. If he/she receives an emergency admission, then the second part of this model will 

estimate the WT from the clinician’s decision to admit (DTA) until hospital bed allocation with 

CPH distribution. The illustration of the DC-Ph model can be delineated as 

 

 

 

Those who had non-trauma case (incident type), severe level assigned by hospital staff (priority 

level), or arrived at hospital via ambulance or private transport (arrival mode) would have 

No WT 

 DTA? 

DTA 

No DTA 

Sex 

Arrival mode 

Priority 

Incident 

Age 

Phase 1 Phase k 

Hospital bed (Absorbing) 

… 

Bayesian Network 
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higher likelihood of hospital admission. The DC-Ph model based on patient’s information can 

provide assessment model to predict patient’s risk and improve the efficiency of healthcare 

management. 

As there are a great heterogeneity of patient pathways, McClean et al. (2010) proposed 

the mixed Coxian phase-type model (MC-PH) to deal with this problem and used the Coxian 

phase-type survival tree to estimate parameters. They used survival tree to cluster patients for 

homogeneity by covariates and define more specific pathway for each patient. Then, applying 

the MC-PH distribution, which combines two or more CPH distribution, model the skewed 

time data. The p.d.f is derived by 

f(t) = ∑ 𝝅𝒄exp⁡(𝑸𝒄𝑡)𝒒𝒄
𝑐
𝑖=1 .  

In these c mixture components, it assumes that the transition probability of moving to another 

components is zero. The construction of CPH survival tree can be depicted as 

 

In this example, patients can be clustered into five groups by covariates with survival tree. Each 

of terminal nodes (4-8) have different CPH distribution. The MC-PH can provide more precise 

1 

2 3 4 

5 6 7 8 

(2.1) 



doi:10.6342/NTU201901194

20 
 

information in comparison with C-Ph model.  

The other method to deal with heterogeneity was using the Coxian phase-type regression 

(Tang et al., (2012)). They incorporated covariates directly into the intensity matrix of the CPH 

distribution. The transition rate and absorbing rate are replaced by 

𝜆𝑘 = 𝜆0𝑘exp⁡(𝑿𝜷) 

and 

𝜇𝑘 = 𝜇0𝑘exp⁡(𝑿𝜷), 

where 𝜆0𝑘 and 𝜇0𝑘 are baseline rate, separately. Then, the p.d.f can be derived as 

f(t) = 𝛑exp(exp(𝑿𝜷)𝐐t) (exp(𝑿𝜷)𝐪) = 𝛑 exp(𝑸̃t) 𝒒̃ 

where 

𝑸̃ = exp(𝑿𝜷)𝐐 

𝒒̃ = exp(𝑿𝜷)𝐪.  

 

In 2017, Donnelly et al. applied the CPH regression model within a two-stage approach that 

using the linear mixed-effect model described how responses changed with time in the first 

stage (Stage I), and using the CPH distribution model the survival process in the second stage 

(Stage II). The random effects considering in Stage I would be counted as covariates within the 

CPH distribution. In Stage I, the response of interest would be modelled by the generalized 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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linear mixed model as below 

𝒀𝒊 = 𝑿𝒊𝜷 + 𝒁𝒊𝒃𝒊 + 𝝐𝒊 

where 𝜷 is a vector of fixed effects, 𝒃𝒊 = (𝑏𝑖0⁡⁡𝑏𝑖1)
T is a vector of individual-specific random 

effects following BN(𝟎, 𝚺)  that 𝑏𝑖0  and 𝑏𝑖1  are random intercept and random slope (rate 

change with time), and 𝝐𝒊 is a vector of residual errors following N(𝟎, 𝑹𝒊) with 𝑹𝒊 = 𝜎
2𝑰. After 

estimating the random effects in Stage I, the predicted value would be used within the CPH 

regression. Then, the p.d.f is given by 

f(t) = 𝛑 exp(exp(𝒃𝒊𝜷)𝐐t) (exp(𝒃𝒊𝜷)𝐪).  

The proposed model can be used to derive individual transition rates for developing a technique 

of personalized medicine. 

 

2.5 Statistical applications to systematic evaluation of population-based screening data   

While these statistical methods are useful on certain occasion their applications to 

population-based screening data are still very limited. First, there is lacking of annexation of 

these proposed models when applied to population-based screening. How to connect these 

models to deal with the underlying screening flowchart from structure, process, until the 

disease natural history model has not been well studied. Second, statistical properties for 

modelling the disease natural history haven’t been well elucidated. For example, the correlation 

(2.7) 

(2.8) 
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between upstaging with pre-clnical detectable phase (PCDP) and downstagin from PCDP to 

clinical phase has not been investigated yet. Third, statistical indicators for evaluating force of 

upstaging have not been developed to judge whether the adoption of screening is adequate and 

how intensive inter-screening interval should be offered. Finally, the consolidation of these 

statistical models into an unified framework is fundamental to evaluation of effectiveness of 

population-based screening program.          
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Chapter 3. Queue, Non-compliance, and Waiting Time of FIT Screening 

Service for CRC with Hurdle Poisson Regression Model 

Summary 

Introduction Population-based colorectal cancer (CRC) screening program with Fecal 

Immunochemical Test (FIT) is often faced with a non-compliance issue and its subsequent 

waiting time (WT) for those FIT positives complying with confirmatory diagnosis.  

Aims To identify factors associated with both of two correlated problems in the same model.   

Methods A total of 294,469 subjects either with positive FIT tests or having family history 

collected from 2004 to 2013 were enrolled for analysis. We applied a hurdle Poisson regression 

model to accommodate the hurdle of compliance and also its related WT for undergoing 

colonoscopy while assessing factors responsible for the mixture of two outcomes.  

Results The effect on compliance and WT varied with contextual factors such as geographic 

areas, type of screening units, and level of urbanization. The hurdle score, representing the risk 

score in association with non-compliance, and the WT score, reflecting the rate of taking 

colonoscopy, were used to classify subjects into each of three groups representing the degree 

of compliance and the level of heath awareness. 

Conclusion Our model was not only successfully applied to evaluating factors associated with 

the compliance and the WT distribution, but also developed into a useful assessment model for 
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stratifying the risk and predicting whether and when screenees comply with the procedure of 

receiving confirmatory diagnosis given contextual factors and individual characteristics. 
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3.1 Introduction 

Hurdle Poisson regression model dealing with non-compliance and waiting time in 

population-based cancer screening      

Population-based screening program is often faced with a non-compliance issue among 

screen-positive waiting for confirmatory examination similar to the scenario seen in most of 

phase III clinical trials (Cuzick J et al. (1997)). It is therefore of great interest to identify factors 

associated with the causes of non-compliance (Duffy SW et al (2002), Giorgi RP et al. (2005), 

and Siddiqui AA et al. (2006)). Taking colorectal cancer (CRC) screening with fecal 

immunological test (FIT) for example, whether to comply with colonoscopy examination 

among those FIT positives is a thorny issue and identifying factors associated with non-

compliance is worthy of being investigated.  

However, in addition to the compliance issue, the subsequent waiting time (WT) for those 

complying with colonoscopy is also a great concern as it is an indicator for the quality assurance 

of organized service screening. The longer the WT, the more likely the quality of screening 

program would be compromised due to the occurrence of interval cancers and also the 

influence of increasing patient’s anxiety (Yu D et al. (2008), and Denters MJ et al. (2013)).  

It is customary to deal with non-compliance and WT in two separate processes. The 

conventional binary model such as logistic regression model is often used for non-compliance 
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whereas the simple Poisson regression model or Cox proportional hazards regression model is 

employed to model the WT process. It should be noted that both non-compliance and its related 

WT issues are correlated, the higher compliance rate, the greater number of positive cases to 

be referred to undergo confirmatory examination, and the longer WT for confirmatory 

diagnosis would be expected. The application of methodology to considering non-compliance 

and WT simultaneously, which has been barely addressed, is therefore required. One of 

candidate models is the use of a hurdle Poisson regression model to elucidate the factors 

responsible for non-compliance and WT for undergoing confirmatory diagnosis i.e. 

colonoscopy. The hurdle regression model proposed by Mullahy (2007) has been widely used 

in health care to solve the problem of heterogeneity in evaluation of hospital visits and health 

care expenditures in relation to zero cost resulting from censoring or no requirement for visit 

(Winkelmann R et al. (2004), and Deb P et al. (2018)) and also in the assessment of health care 

utilization with respect to whether to be hospitalized and the subsequent length of stay for 

hospitalization (Langsetmo L et al. (2017)). 

It is therefore interesting to make better use of hurdle Poisson regression model, taking 

two issues into account, to ascertain contextual factors in association with the infrastructure of 

health care, geographic area and individual characteristics in order to predict whether and when 

is the probability of complying with the procedure of undergoing confirmatory diagnosis. The 
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proposed model was applied to the empirical data from Taiwanese nationwide population-

based CRC screening program.   

 

3.2 Methods 

3.2.1 Study framework and subjects  

The application of both the hurdle model and the CPH model by using Taiwan nationwide 

CRC screening program with FIT. In brief, the program was offered for subjects aged 50 to 69 

years biennially. After being detected as positive cases, screenees would be referred for 

confirmatory diagnosis. Details about the program have been described previously (Chiu HM 

et al. (2015)).  

In this population-based cancer screening program, the eligible subjects pursuant to 

inclusion and exclusion criteria such as age are invited to have the uptake of screen with an 

appropriate screening modality. Some would have the uptake of screen whereas others would 

refuse to take it. This is first level of compliance issue in population-based screening but we 

are not tempted to deal with this issue in the current study. After the uptake of screening, 

attendees are classified into positive and negative results. Both positive and those who have 

family history of CRC among negative subject that are defined as high-risk subjects were 

referred to undergo confirmatory diagnosis such as colonoscopy, sigmoidoscopy or barium 
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enema, but colonoscopy was the primary confirmation tool for CRC in our program. We 

therefore only focused on this instrument. Confirmation with colonoscopy defined by a binary 

outcome is the second level of compliance with the referral of undergoing confirmatory 

diagnosis, yielding non-complier and complier corresponding to the hurdle part and non-hurdle 

part. The overall study framework is shown in Figure 3.1 

All the subjects who had ever attended this nationwide screening program between 2004 

and 2013 with positive FIT and high risk group as defined above were enrolled in this study. 

Those who undertook at unspecified screening unit or non-qualified laboratory, received 

unknown kit to evaluate test characteristics, had missing fecal hemoglobin concentration or 

had been referred for confirmation diagnosis with non-colonoscopy modality were excluded 

from the study. As a result, there were 294,469 referrals either due to FIT positives or high-risk 

subjects used in the following analysis. 

From 2004 to 2013, a total of 3,030,454 subjects participated in at least one time of FIT 

CRC screening. During the inaugural period, there were 1,258,560 screening tests and 46,235 

referrals of whom 41,591 underwent colonoscopy. In the rolling-out period, there were 

3,723,789 screening tests and 270,700 referrals of whom 252,878 underwent colonoscopy.  
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3.2.2 Study variables and definition 

Individual characteristics include gender and age at entry of screen. Contextual factors 

include calendar periods, round of screening, geographic areas (northern, central, southern, 

eastern and offshore islands of Taiwan), type of screening units (hospital, public health center 

of health bureau in individual municipality, or local clinic), and level of urbanization 

(metropolitan, sub-metropolitan and non-metropolitan). In the inaugural 5 years (2004-2009) 

of the screening program, we offered screening service mainly at the public health center of 

the health bureau in the individual municipality. Public health nursing staffs helped the referral 

of subjects to go for confirmatory colonoscopy at the hospitals. From 2010 onwards, for the 

purpose of increasing coverage rate, hospitals and local clinics joined to actively invite people 

for FIT and underwent colonoscopy at hospitals among referrals. Due to the change of 

screening policy, calendar periods were divided into inaugural period (2004-2009) and rolling-

out period (2010-2013). Besides, screenees with positive FIT for first-time screening were 

defined as ‘prevalent screen’ and those for later screening rounds were defined as ‘subsequent 

screen’. 

Table 3.1 indicates most of attendees would undergo confirmatory colonoscopy after 

being detected as positive FIT. The compliance rate with colonoscopy was around 68% and the 

median WT for colonoscopy was 46 days. Individual characteristics had small influence on the 
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compliance rate or the median WT, although male and the elderly had slightly lower 

compliance rate and longer median WT. Significant contextual factors included calendar 

periods, round of screening, and type of screening units. Screenees attending screening at the 

inaugural period had better compliance rate (82%) and shorter median WT (29 days). 

Subsequent cases had higher compliance rate and shorter median WT than prevalent screen 

cases. Among type of screening units, attendees undergoing screening at public health centers 

had the best compliance rate and only needed to wait 35 days for colonoscopy. The differences 

across geographic areas and level of urbanization were not substantial.  

 

3.2.3 Hurdle Poisson regression model analysis   

To accommodate the non-compliance of undergoing colonoscopy (non-complier) and also 

WT for undergoing colonoscopy among the compliers, the hurdle Poison model is proposed to 

consider both the non-complier and the WT distribution for the complier. Note that the time 

waiting for the appointment with colonoscopy administered by gastroenterologist was also 

included in the calculation of WT until the date of confirmatory diagnosis. The WT for 

colonoscopy here was defined from the date of reporting FIT result to the date of confirmatory 

diagnosis with colonoscopy. Because the change in the structure of screening program might 

result in heterogeneity between the inaugural period and rolling out period, we also evaluated 
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the interaction between factors and periods of screening program. 

The hurdle model, proposed by Mullahy (1986), consists of two components: the binary 

part is to measure whether the response crosses over the hurdle or not and the truncated Poisson 

part is to elucidate the response above the hurdle. These two components tackle both zeros and 

the positively skewed non-zero counts (Neelon B et al. (2013)). The hurdle part is the 

application of logistic regression model to identify factors affecting non-compliance with 

colonoscopy and non-hurdle (the progressive) part is modelled by the truncated Poisson 

regression model given the count greater than one to identify factors affecting WT for 

undergoing colonoscopy. In the zero part of truncated hurdle Poisson model, it consists of two 

types of subjects, illustrated by Figure 3.2. One is those who are not willing to undertake the 

confirmatory examination like Subject B and the other is those who are still waiting for 

confirmatory examination in a queue at 30th day (censoring) while the final WT is 37 days for 

Subject A.  

In addition, Figure 3.2 accounts for why we need to use hurdle Poisson regression model 

instead of simple Poisson regression model and logistic regression model. Let the WT start 

from the date of positive FIT until the referral of colonoscopy examination. Suppose the WT 

for colonoscopy for the subject A is 37 days and the subject B is a non-complier, namely the 

infinity of WT, which cannot be captured by simple Poisson model or even negative binominal 
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model. Thus, regarding the WT at 30th day, the waiting status for the subject A cannot be 

distinguished from the subject B although both are distinct. The zero of the subject A is captured 

by the truncated Poisson regression and the zero of the subject B is captured by the logistic 

regression, both of which form hurdle Poisson regression model. Therefore, if we use the 

traditional Poisson regression model, we cannot identify what sort of zero is derived from given 

time t and which factors will affect their health behavior of non-compliance. 

Therefore, in our screening scenario, the hurdle was for those with FIT positive test or 

family history to determine whether he/she received the follow-up confirmation diagnosis. 

After passing through the hurdle, the subsequent truncated model dealt with how many subjects 

undertook the confirmatory examination given a specific period of time so that it can identify 

which factors are responsible for the WT for confirmatory examination.  

 

3.2.4 Likelihood Function for Estimation of Parameters  

After aggregating data by relevant covariates, we assume there are G subsets and define 

confirmation with colonoscopy as a binary outcome,⁡𝑦𝑖𝑗, which represents whether the j-th 

screenee of subset i had underwent colonoscopy or not so that 𝑦𝑖 = ∑ 𝑦𝑖𝑗𝑗  is the number of 

screenees had underwent colonoscopy in subset i and 𝑁𝑖 is the total number of screenee in 

subset i ϵ {1,…,G}. 𝑡𝑖𝑗 is time to undergo colonoscopy of the j-th screenee in subset i so that 
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𝑡𝑖 = ∑ 𝑡𝑖𝑗𝑗  represents total waiting time in subset i. 𝑝𝑖 is the probability of refusing to undergo 

colonoscopy (non-complier), and 𝜆𝑖 is the mean arrival rate of receiving colonoscopy. To easily 

express the likelihood function for the hurdle model, we divided each subset i into two groups 

by non-compliance or compliance, symbolizing i1 and i2 so that i* = {11,12} ∪…∪{G1,G2}.  

The hurdle is crossed if a count is greater than zero. Therefore, the process generates a 

binary response (whether the number of screenees undergoing colonoscopy takes on the value 

zero or a positive value), and the probability mass function (p.m.f) is 

P(𝑌𝑖∗ = 𝑦𝑖∗) = {
⁡⁡𝑝𝑖∗

𝑁𝑖∗−𝑦𝑖∗ ⁡⁡⁡, 𝑦𝑖∗ = 0⁡(𝑖
∗𝜖𝑖1)

(1 − 𝑝𝑖∗)
𝑦𝑖∗ , 𝑦𝑖∗ > 0⁡(𝑖∗𝜖𝑖2)

 

Because 𝑌𝑖∗ is a count data, which follows Poisson distribution, the probability of zero counts 

is 

P(𝑌𝑖∗ = 0) =
𝑒
−𝜆𝑖∗𝑡𝑖∗(𝜆𝑖∗𝑡𝑖∗)

𝑦𝑖∗

𝑦𝑖∗!
= 𝑒−𝜆𝑖∗𝑡𝑖∗  

and the probability of no zero counts equals 1 − 𝑒−𝜆𝑖∗𝑡𝑖∗ . As result, we can obtain the p.m.f of 

truncated Poisson process (given the count greater than one)  

P(𝑌𝑖∗ = 𝑦𝑖∗|𝑌𝑖∗ > 0) =
𝑒
−𝜆𝑖∗𝑡𝑖∗(𝜆𝑖∗𝑡𝑖∗)

𝑦𝑖∗

𝑦𝑖∗!(1−𝑒
−𝜆𝑖∗𝑡𝑖∗)

 

Thus, the p.m.f of hurdle model can be expressed as 

P(𝑌𝑖∗ = 𝑦𝑖∗) = {⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝𝑖∗
𝑁𝑖∗ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡, 𝑓𝑜𝑟⁡𝑦𝑖∗ = 0

(1 − 𝑝𝑖∗)
𝑦𝑖∗

𝑒
−𝜆𝑖∗𝑡𝑖∗(𝜆𝑖∗𝑡𝑖∗)

𝑦𝑖∗

𝑦𝑖∗ !(1−𝑒
−𝜆𝑖∗𝑡𝑖∗)

⁡⁡⁡ , 𝑓𝑜𝑟⁡𝑦𝑖∗ > 0⁡
 

where 0 ≤ 𝑝𝑖∗ ≤ 1⁡; 𝜆𝑖∗ , 𝑡𝑖∗ > 0⁡; 𝑁𝑖∗ , 𝑦𝑖∗ ≥ 0. 

The general form of the likelihood function for the hurdle model is 

(3-1) 

(3-2) 

(3-3) 

(3-4) 
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𝐿 = ∏ 𝑝𝑖∗
𝑁𝑖∗𝑖∗𝜖𝑖1
∏ (1 − 𝑝𝑖∗)

𝑦𝑖∗
𝑒
−𝜆𝑖∗𝑡𝑖∗(𝜆𝑖∗𝑡𝑖∗)

𝑦𝑖∗

𝑦𝑖∗!(1−𝑒
−𝜆𝑖∗𝑡𝑖∗)

𝑖∗𝜖𝑖2  

 To identify the effect of relevant covariates (𝒙𝑖∗  ), we model 𝑝𝑖∗  using the logistic 

regression model 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖∗) = 𝒙𝑖∗𝜸 

and 𝜆𝑖∗ using the Poisson regression model 

𝑙𝑜𝑔(𝜆𝑖∗) = 𝒙𝑖∗𝜷 

Thus, the log-likelihood can be written 

⁡⁡⁡⁡⁡⁡𝑙𝑛𝐿 = 𝑙𝑛 {∏(
𝑒𝒙𝒊∗𝜸

1 + 𝑒𝒙𝒊∗𝜸
)

𝑁𝑖∗

𝑖∗𝜖𝑖0

∏(1−
𝑒𝒙𝒊∗𝜸

1 + 𝑒𝒙𝒊∗𝜸
)

𝑦𝑖∗ 𝑒−𝑒
𝒙𝒊∗𝜷𝑡𝑖∗(𝑒𝒙𝒊∗𝜷𝑡𝑖∗)

𝑦𝑖∗

𝑦𝑖∗! (1 − 𝑒
−𝑒𝒙𝒊∗𝜷𝑡𝑖∗)𝑖∗𝜖𝑖1

} 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= {∑ 𝑁𝑖∗[𝒙𝒊∗𝜸 − 𝑙𝑛(1 + 𝑒
𝒙𝒊∗𝜸)]

𝑖∗𝜖𝑖0

− ∑ 𝑦𝑖∗ 𝑙𝑛(1 + 𝑒
𝒙𝒊∗𝜸)

𝑖∗𝜖𝑖1

} 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+ {∑ 𝑦𝑖∗[𝒙𝒊∗𝜷 + 𝑙𝑛(𝑡𝑖∗)]

𝑖∗𝜖𝑖1

− ∑ 𝑒𝒙𝒊∗𝜷𝑡𝑖∗

𝑖∗𝜖𝑖1

− ∑ 𝑙𝑛 (1 − 𝑒−𝑒
𝒙𝒊∗𝜷𝑡𝑖∗)

𝑖∗𝜖𝑖1

− ∑ 𝑙𝑛(𝑦𝑖∗!)

𝑖∗𝜖𝑖1

} 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= 𝑙 𝑛{𝐿1(𝜸)} + 𝑙 𝑛{𝐿2(𝜷)} 

 

3.3 Result  

3.3.1 Univariate and multivariate analysis of hurdle model 

We used the regression coefficients of the hurdle model to form the scores in association 

with compliance with and the WT for colonoscopy. In hurdle part, the higher the score, the 

higher odds of refusing to take colonoscopy. In univariate analysis, the results of hurdle part in 

(3-5) 

(3-6) 

(3-7) 

(3-8) 
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Table 3.2 show male and the elderly people had higher score among individual characteristics; 

those taking part in the rolling-out period, prevalent cases, central or eastern or offshore islands 

residents, non-metropolitan people, and local clinic among contextual factors had higher score.  

In non-hurdle part, the higher the score, the shorter WT for undergoing colonoscopy was. 

The results of non-hurdle part indicate both individual characteristics among compliers were 

not associated with the WT for colonoscopy. Among contextual factors, those participating in 

screening at the inaugural period, subsequent cases, central Taiwanese, sub-metropolitan 

residents and public health centers had higher score, which means they had shorter WT for 

colonoscopy.  

In the comparison between multivariate analysis and univariate analysis, the results of 

individual characteristics indicate female had higher score for non-compliance whereas male 

had higher risk score with short WT. The elderly had higher score of non-compliance and the 

youngest had the highest score with short WT. Among contextual factors, the results were 

similar to those in univariate analysis on calendar periods, round of screening, and type of 

screening units. In addition, it shows central Taiwanese had the highest score in both parts. 

People dwelling at less urbanized area had higher score of non-compliance. Sub-metropolitan 

residents had the highest score with short WT compared with other level of urbanization.  

Because the change in the structure of screening program between the inaugural period 
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and rolling out period, we further evaluated the interaction between factors and periods of 

screening program. The results of model selection reveal that the effect of the period of 

screening program was modified by geographic areas and type of screening units in hurdle part. 

In addition to these two factors, level of urbanization was also included in non-hurdle part.   

 

3.3.2 Risk stratification  

Based on the regression coefficients of the multivariate hurdle model, we computed the 

score based on the trained regression coefficients multiplied by the covariates of interests 

depending on the risk groups classified by the underlying covariates. The hurdle β-score1 

represents the risk score in association with the non-compliance with colonoscopy. The higher 

β-score1 value was, the higher odds of refusing to take colonoscopy. The WT β-score2, stands 

for the rate of taking colonoscopy. The higher β-score2 value, the shorter WT for undergoing 

colonoscopy was. 

To predict whether and when screenees comply with the procedure of receiving 

colonoscopy given contextual factors and individual characteristics, we therefore classified the 

β-score1 into three groups according to the cutoff of its first quartile value (Q1) and the third 

quartile value (Q3), and β-score2 into five groups according to the cutoff of its 20th, 40th, 60th, 

80th percentile value. In hurdle part, if β-score1 was higher than -0.5320 (Q3), termed as the 
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intractable group, more than 37% had the probability of not complying with colonoscopy; if β-

score1 was lower than -1.0515 (Q1), termed as the compliant group, 26% had the chance of not 

complying with the uptake of colonoscopy; the middle category was the neutral group. In non-

hurdle part, those with β-score2 higher than -3.7246 corresponding to the WT for colonoscopy 

shorter than 41 days could be considered as high health awareness group; those with β-score2 

between -3.7709 and -3.7246 corresponding to the WT for colonoscopy between 41 to 43 days 

were moderate health awareness group; those with β-score2 between -3.8063 and -3.7709 

corresponding to the WT for colonoscopy between 43 and 45 days were modest health 

awareness group; those with β-score2 between -3.8830 and -3.8063 corresponding to the WT 

for colonoscopy between 45 and 49 days were low health awareness group; those with β-score2 

lower than -3.8830 corresponding to the WT for colonoscopy longer than 49 days were shilly-

shally group. 

Assuming there are 4,000,000 eligible subjects attending nationwide population-based 

CRC screening, approximately 2,400,000 of them will be positive FIT tests. In Table 3.3 the 

results of prediction show around 880,000 attendees are the intractable group, 888,000 are the 

neutral group, and 624,000 are the compliant group. An example of characteristics representing 

the intractable group is shown by those female aged 65 to 69, who lived in non-metropolitan 

and central Taiwan, underwent screening at local clinic during the rolling-out period and were 
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detected as positive case of prevalent screen. Her β-score1 would be 0.4578 with 61% of 

probability of non-compliance with colonoscopy. Similar applications to the neutral and the 

compliant groups are described in Table 3.3. In Table 3.4, we also give an example of different 

WT groups. Referrals at subsequent rounds of those male aged 50 to 54, living in metropolitan 

and central Taiwan, undergoing screening at public health center during the inaugural period 

would be classified as high health awareness (β-score2=-3.3546), and the predicted WT for 

colonoscopy would be 29 days. Similar applications to other WT groups are described in Table 

3.4. 

 

3.4 Discussion 

The hurdle Poisson regression model is applied to tackling the issue of both compliance 

and WT while undergoing confirmatory diagnosis of positive screenees that is the routine 

procedure of second stage in population-based cancer screening program. To discuss why 

certain factors predispose to non-compliance and long WT, is particularly meaningful for the 

contextual factors elucidated in the current model. Firstly, for those prevalent screen cases, 

their behavior might think they were not positive cases, so they were not willing to undergo the 

following confirmatory colonoscopy; conversely for those subsequent screen cases, they might 

have higher health consciousness so that they would undergo screening again and receive 
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colonoscopy exam after being detected as positive case; Secondly, Taiwan nationwide 

screening policy has changed since 2010. Before 2010, we offered screening service mainly at 

the public health center, and during the rolling-out period, hospitals joined to actively invite 

peoples for FIT. Therefore, we could find that screenees participating in the place of hospital 

were more willing to undergo colonoscopic exam after entering into the rolling-out period, 

besides, their WT for colonoscopy also shortened with an increase in manpower in the hospital. 

Although local clinics joined to actively invite peoples for FIT during the rolling-out period as 

well, their compliance for colonoscopy was still low and they needed to wait the longest time 

for colonoscopy compared with other institutions; Thirdly, most hospitals and clinics are 

concentrated on northern Taiwan, and in eastern or offshore islands, their medical resources 

are deficient. As a result, eastern or offshore islands residents had higher probability of non-

compliance for colonoscopy compared to northern Taiwanese, and their WT for colonoscopy 

was longer as well. It is an urgent task for the screening organizer to have a remedy for the 

shortage of endoscopic capacity to meet the demand; Finally, metropolitan people might have 

more health information, so they had lower probability of non-compliance for colonoscopy 

compared with non-metropolitan residents. Although metropolitan area had more medical 

resources and capacity of colonoscopy, its number of positive cases was too many to provide 

colonoscopic exam immediately, so they still needed to wait longer time. 
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The proposed model may be worthy of being compared with other previously proposed 

model (Brown ER et al. (2003), and Cheung YB et al. (2002)). In terms of statistical property, 

there are several similar statistical models proposed to deal with the issue. In contrast to the 

cured rate model applied to susceptible and non-susceptible subjects, the proposed hurdle 

model estimates the parameters governing the hurdle part on the basis of the observed 

information whereas the cured model estimated the non-susceptible analogous to the hurdle 

part in the way of latent variable. In addition, there are other models which have the similar 

concept with the hurdle model called the zero-inflated model that have been dealt with count 

responses with excess zeros by COM-Poisson and generalized Poisson model (Conway RW et 

al. (1962), and Consul PC et al. (1992)). The zero-inflated model can deal with zero part (non-

complier) as well, but it is not appropriate to apply to screen data because that most of invited 

subjects are willing to undergo colonoscopy. The essence of this hurdle model is to consider 

the hurdle part as the non-compliance with the referral using a dichotomous variable (yes/no) 

and the non-hurdle part as how long it would take to receive confirmatory diagnosis in terms 

of WT distribution assuming follow the Poisson regression model. Factors associated with the 

hurdle part can be modelled through logistic regression model whereas factors affecting the 

WT are modelled by the truncated Poisson regression model as the counts of event are positive. 

The main advantage of using the proposed hurdle model is to reduce the heterogeneity of the 
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outcome of interest by introducing a mixture of two outcomes corresponding to the logistic 

regression model and the truncated Poisson regression model because the former captures the 

mass function at zero point and the latter part captures the WT of complying with confirmatory 

diagnosis using the WT distribution. The other advantage is that compared with the use of two 

independent models, the simple Poisson regression model for WT and the logistic regression 

model for complier and non-complier, the hurdle model can accommodate the correlation 

between compliance (hurdle) and WT as indicated earlier. In our example, the heterogeneity 

(overdispersion) of using the Poisson regression model can be reduced by using the proposed 

model. The Akaike information criterion (AIC) has been greatly reduced from 839432 to 

362771. In addition, it contains two types of people in the zero part: one is non-complier 

(Subject B), and the other is those who are still waiting for confirmatory examination (Subject 

A) that is regarded as censoring cases. If we use the traditional Poisson regression model, we 

cannot identify which zero given time t is derived from and which factors will affect their health 

behavior of non-compliance.  

The current study still leaves something desired. If the data can provide other information 

such as social-economic status, income or education level, the model may be more explainable 

and can predict well. Although the current model is better than the Poisson model, 

overdispersion may still exists, which means variability still cannot be explained due to 
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correlation and heterogeneity. Nevertheless, the problem of overdispersion dealt with in this 

study is not entirely due to correlated outcome or the heterogeneity beyond the explained 

covariates but the mixture of two outcomes, compliance with and WT for colonoscopy that 

may lead to the identifiability problem without using the hurdle model. This accounts for why 

we did not use negative binomial regression model in our study as it may suffer from such a 

problem although the heterogeneity in terms of AIC may be improved with the incorporation 

of two parameters in negative binomial model rather than one in Poisson model. However, if 

the truncated Poisson regression cannot be explained by covariates or correlated WT one may 

attempt hurdle negative binomial regression model under the framework of generalized mixed 

regression model, which may be the subject of an ongoing research. 

 

In conclusion, we proposed the hurdle Poisson regression model to evaluate the 

compliance with and the WT for complete confirmatory diagnosis among referrals at first stage 

of screen. This model was successfully applied to evaluating individual attributes and 

contextual factors associated with factors related to the compliance and the WT distribution of 

undergoing colonoscopy, which was further developed into a useful clinical assessment model 

for quantifying the probability of complying with and the rate of taking colonoscopy given 

different individual attributes and contextual factors.   
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Table 3.1 Comparison of referral rate and median waiting time for colonoscopy in inaugural 

and rolling out period 

Characteristics 

No. of FIT tests did not 

receive colonoscopy (%) 

No. of FIT tests received 

colonoscopy (%) 

Median waiting 

time (days) 

Individual characteristics    

Gender    

Male  50,447 (32.33) 105,599 (67.67) 46 

Female 438,10 (31.65) 94,613 (68.35) 45 

Age (years)    

50-54  23,230 (31.75) 49,930 (68.25) 45 

55-59 25,130 (31.70) 54,144 (68.30) 45 

60-64 24,100 (31.83) 51,625 (68.17) 45 

65-69 21,797 (32.87) 44,513 (67.13) 47 

Contextual factors    

Calendar period    

2004-2009 7,608 (18.29) 33,983 (81.71) 29 

2010-2013 86,649 (34.27) 166,229 (65.73) 51 

Screening round    

Prevalent 65,151 (35.02) 120,908 (64.98) 51 

Subsequent 29,106 (26.85) 79,304 (73.15) 39 

Geographic area    

Northern 39,870 (31.60) 86,304 (68.40) 45 

Central 23,172 (33.37) 46,278 (66.63) 43 

Southern 27,604 (31.36) 60,419 (68.64) 47 

Eastern/offshore islands 3,611 (33.37) 7,211 (66.63) 53 
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Level of urbanization    

Metropolitan 72,258 (31.72) 155,552 (68.28) 46 

Sub-metropolitan 6,743 (31.30) 14,798 (68.70) 41 

Non-metropolitan  15,256 (33.81) 29,862 (66.19) 46 

Type of screening units    

Hospital 54,435 (32.09) 115,180 (67.91) 47 

Public health centers  22,609 (25.53) 65,962 (74.47) 35 

Local clinics 17,213 (47.44) 19,070 (52.56) 149 

Overall 94,257 (32.01) 200,212 (67.99) 46 
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Table 3.2 Univariate and multivariate analysis of hurdle part on factors affecting non-

compliance for colonoscopy and non-hurdle part on factors affecting waiting time for 

undergoing colonoscopy 

Characteristics 

Univariate analysis  Multivariate analysis 

Hurdle part Non-hurdle part  Hurdle part Non-hurdle part 

Coefficient Risk 

Score 

Coefficient Risk 

Score 

 Coefficient Risk 

Score 

Coefficient Risk 

Score 

Individual characteristics          

Gender          

Male -2.0920* 0 0.0095 10  0.0312 31 -3.7790* 0 

Female 0.0319 32 -4.0402* 0  -0.7699* 0 0.0046 5 

Age (years)  
 

       

50-54 -2.0920* 0 0.0253 25  0.0024 2 0.0041 4 

55-59 0.0989 99 0.0214 21  -0.7676* 0 0.0084 8 

60-64 0.1248 125 0.0227 23  0.0058 6 0.0075 8 

65-69 0.2232 223 -4.0402* 0  0.0536 54 -3.7820* 0 

Contextual factors          

Calendar period  
 

       

2004-2009 -2.0920* 0 0.2409 241  -1.4967* 0 0.2655 266 

2010-2013 0.7926 793 -4.0402* 0  0.8452 845 -3.8172* 0 

Screening round          

Prevalent 0.4722 472 -4.0402* 0  0.3840 384 -3.7824* 0 

Subsequent -2.0920* 0 0.0376 38  -1.0023* 0 0.0142 14 

Geographic area          

Northern 0.0181 18 0.0891 89  0.0111 11 0.0630 63 

Central 0.1029 103 0.1424 142  0.0916 92 0.1150 115 

Southern -2.0920* 0 0.0284 28  -0.7833* 0 -3.8298* 0 

Eastern/offshore 

islands 

0.0379 
38 

-4.0402* 
0 

 0.0917 
92 

0.0052 
5 

Level of urbanization  
 

       

Metropolitan -2.0920* 0 -4.0402* 0  0.0193 19 -3.7864* 0 



doi:10.6342/NTU201901194

46 
 

Sub-metropolitan 0.0680 68 0.0669 67  -0.7860* 0 0.0496 50 

Non-metropolitan  0.1894 189 0.0174 17  0.1144 114 0.0411 41 

Type of screening units  
 

       

Hospital 0.0811 81 0.1051 105  0.3212 321 0.1215 122 

Public health centers -2.0920* 0 0.1311 131  -1.0707* 0 0.2276 228 

Local clinic 0.7142 714 -4.0402* 0  0.9683 968 -3.9194* 0 

* represents intercept. 
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Table 3.3 Example of characteristics related to compliance groups  

Risk group Risk score 
Number of 

screenee 
Example of Characteristics 

Probability of 

Noncompliance 

Intractable > -0.5320 888,000 A female aged 65 to 69, lived in non-

metropolitan and central Taiwan, underwent 

screening at local clinic during the rolling-

out period and was detected as positive case 

at prevalent screen 

61% 

Neutral -1.0515 ~ -

0.5320 

888,000 A male aged 50 to 54, lived in sub-

metropolitan and southern Taiwan, 

underwent screening at hospital during the 

rolling-out period and was detected as 

positive case at prevalent screen 

33% 

Compliant < -1.0515 624,000 A male aged 50 to 54, lived in metropolitan 

and northern Taiwan, underwent screening at 

public health center during the inaugural 

period and was detected as positive case at 

subsequent rounds 

7% 
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Table 3.4. Example of Characteristics related to waiting-time groups 

Awareness group 

for waiting-time  

Risk score 

(WT days) 
Example of Characteristics 

High health 

awareness 

> -3.7246 

(< 41) 

A male aged 50 to 54, lived in metropolitan 

and central Taiwan, underwent screening at 

public health center during the inaugural 

period and was detected as positive case at 

subsequent rounds (WT=29) 

Moderate health 

awareness 

-3.7709 ~ -3.7246 

(41 ~ 43) 

A male aged 65 to 69, lived in non-

metropolitan and central Taiwan, underwent 

screening at public health center during the 

rolling-out period and was detected as 

positive case at subsequent rounds (WT=43) 

Modest health 

awareness 

-3.8063 ~ -3.7709 

(43 ~ 45) 

A female aged 60 to 64, lived in metropolitan 

and northern Taiwan, underwent screening at 

hospital during the rolling-out period and was 

detected as positive case at prevalent screen 

(WT=44) 

Low health 

awareness 

-3.8830 ~ -3.8063 

(45 ~ 49) 

A female aged 60 to 64, lived in non-

metropolitan and central Taiwan, underwent 

screening at local clinic during the rolling-out 

period and was detected as positive case at 

prevalent screen (WT=47) 

Shilly-shally < -3.8830 

(> 49) 

A female aged 65 to 69, lived in metropolitan 

and northern Taiwan, underwent screening at 

local clinic during the inaugural period and 

was detected as positive case at prevalent 

screen (WT=66) 

Abbreviations: WT, waiting time 
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Figure 3.1. Study framework of hurdle model for referral to confirmatory diagnosis in 

Taiwanese nationwide colorectal cancer screening program 
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Figure 3.2. Illustration of two type of zero on the waiting time (WT) for confirmatory 

examination  
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Chapter 4. Queue Hurdle Coxian Phase-type Model for Waiting Time in 

Two-stage Population-based Screening 

Summary 

Introduction Waiting time (WT) for confirmatory diagnosis in those screened as positives 

plays an important role in the quality assurance of two-stage cancer screening program. It 

requires a sophisticated statistical model considering three joint effects, the arrival rate 

(attending screening), positive rate, and the compliance with confirmatory diagnosis.  

Methods My thesis proposed a Queue Hurdle Coxian phase-type model and applied it to 

Taiwanese colorectal cancer screening program. A series of simulations were applied to assess 

how bias and mean square error behaved.  

Results Projected WT by various scenarios was performed to provide a quantitative assessment 

for the referral policy of WT given clinical capacity. Given 3% positive rate and 60% 

compliance rate, the mean WT increases from 4 days to 43 days as the annual coverage rate 

from 5% to 50%. The mean WT is longer by 10-fold as compliance rate changes from 10% to 

100%. In addition, the mean WT for those with lower WT score is longer than those with higher 

WT score under the same coverage rate, positive rate, and compliance rate.  

Conclusion Queue Hurdle Coxian phase-type model was proposed to model the elements of 

structure and process of population-based screening for colorectal cancer with FIT given 
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limited capacity.   
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4.1 Introduction 

4.1.1 Waiting time in two-stage population-based screening  

Population-based mass screening often involves in two-stage confirmatory procedure such 

as colorectal cancer (CRC) with fecal immunological test (FIT) as first line method and then 

colonoscopy confirmation, and breast cancer with mammography as first line and biopsy 

confirmation. During this two-stage process, the waiting time (WT) for confirmatory diagnosis 

becomes the first concern when clinical capacity of offering confirmatory procedure is limited 

as long WT may cause delayed diagnosis of disease but shortening WT may impose tremendous 

burden on such a confirmatory procedure. The change in cutoff of screening test may affect the 

WT for confirmatory diagnosis. To model the pattern of WT plays an important role in the 

optimal resource allocation to two-stage population-based screening.    

 

4.1.2 Coxian-phase type process     

One of statistical models considered here for modelling WT is the application of Phase-

type time distributions introduced by Neuts (1974) and modified by Fackrell (2009) with 

flexibility to elucidate the underlying dynamic hidden phases to account for progressive multi-

phase transitions. One of a subclass that has been extensively utilized in the healthcare industry 

is the Coxian phase-type (CPH) distribution. The most advantage of using this model is that it 
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can be interpreted as distinct clinical stages of patients in hospital by the clinical experts for 

the ease of understanding. A classical CPH distributions applied to heath care has been 

proposed by Marshall (2007) to classify the potential classifications of hospital length of stay 

of elderly patients so as to evaluate how to allocate the limited medical resources and costs. 

For a better understanding of the system, Marshall further incorporated the Bayesian belief 

networks with CPH distributions to take additional patient information into account (Marshall, 

& McClean, (2003)), and also modelled the multiple patient movements between hospital and 

community by the mixture of conditional CPH distributions for providing alternative care in 

the community and preventing readmission to hospital (Gordon, Marshall, & Cairns, (2016)).  

As the CPH has been used in various scenarios as indicated above it is therefore of great 

interest to apply it to modelling the WT for those who are screened positives with FIT and wait 

for the referral to undergo confirmatory diagnosis with colonoscopy. In addition to estimating 

the WT, it is also very interesting to model how the WT are affected by relevant postulated 

factors such as demographic features, type of institution, geographic areas, and prevalent screen 

or subsequent screen. Taking such information into account enables one to know the 

heterogeneity of the WT for confirmatory diagnosis among compliers by dividing those into 

the short WT group and the long WT group.  

While considering the application of the CPH model to such a two-stage population-based 
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screening data we are faced with two statistical complications that may preclude us from 

directly using the CPH model. First, the WT distribution is strongly determined by the arrival 

process among those who have the uptake of population-based screening for CRC. Second, it 

may also be affected by the compliance with the referral to confirmatory diagnosis. To solve 

the first complication, the Poisson Queue process and its regression model are proposed to 

embed the arrival process of attending CRC screening into the CPH model by estimating the 

arrival rate and its relevant factors. The second is related to the type of the Queue process. The 

CPH model is a specialized case of hyper-exponential queue model. It is natural to consider 

whether it can be used for hypo-exponential as the referral of participants with positive test 

may suffer from the problem of non-compliance. From the methodological viewpoint, how to 

modify the CPH model to accommodate both hyper-exponential and hypo-exponential Queue 

models, which may be adequate for modelling data on WT, making allowance for the non-

compliance of undergoing confirmatory diagnosis. To solve this issue, the Poisson Hurdle 

regression model (Mullahy, 1986) is therefore embedded into the CPH model. 

Therefore, we develop a unifying model to incorporate three processes, the Poisson Queue 

process to model the arrival of having the uptake of screening, the hurdle process to model 

non-compliance, and the CPH process to model WT among compliers, named as Queue Hurdle 

Coxian phase-type model (abbreviated as QH-CPH) to estimate the arrival rate, the rate of 
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complying with confirmatory diagnosis, and the WT and to assess how relevant factors affect 

three processes. The novel model not only can take the arrival rate of eligible screenee into 

account, but also determine factors affecting non-compliance of a follow-up colonoscopy and 

further understand the underlying dynamic hidden phases of the WT according to relevant 

postulated factors.  

 

4.2 Application to confirmatory diagnosis of population-based colorectal cancer screening  

Data 

 The data considered here is from Taiwanese nationwide CRC screening program 

between 2004 and 2009, which offer FIT for subjects aged 50 to 69 years biennially. Those 

positive FIT tests or negative FIT tests with family history were considered as referrals and all 

of them were referred for confirmatory colonoscopic diagnosis. Details about Taiwanese 

nationwide CRC screening program have been described in our previous study (Chiu et al., 

(2015)). In brief, this nationwide program was served in 25 municipalities with a total of 

5,417,699 eligible residents, and 1,160,895 of them attended this program (21.4% coverage of 

population). They undertook screening services mainly at public health center during this 

period. The cutoff value for a positive test was equivalent to 20 μg hemoglobin/g feces (Chen 

et al., (2007)). If those who screened with unspecified FIT brands or at nonqualified 
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laboratories were excluded for our analysis, therefore there were 1,013,183 subjects in our 

study, which yielded 1,232,145 tests of FIT. The eligible FIT among this period was 26,720,380 

visits, so the mean arrival rate per year was 4.61%. Among these FIT tests, 45,305 of them 

were positive results (3.7% of positive rate) and 33,983 had undergone the following 

confirmatory diagnosis with colonoscopy (75% of compliance rate). 

In our data, it demonstrates that if the cutoff FIT value changes to 10 μg hemoglobin/g feces, 

the positive rate will be 7% approximately, which might yield 86,250 positive tests; however, 

after the cutoff value turns to 30 μg hemoglobin/g feces, the number of positive results decline 

to 36,963 tests and the positive rate is around 3%. It is apparent that the number of positive 

tests will be influenced by the cutoff value and further affect the following procedure of 

confirmatory diagnosis such as compliance and the WT given the equivalent clinical capacity. 

In order to analyze this kind of complicated structure data, we proposed an idea to combine 

queue process, Hurdle model, and CPH. We are faced with high demand for around over one 

million participants eligible for the uptake of CRC screening with FIT, yielding a high demand 

for the referral of positive FIT to undergo colonoscopy. In contrast to the conventional Queue 

process that evaluates the arrival rate as opposed to departure rate relating to service time 

distribution, the non-compliance (non-susceptibility) problem for the referral of positive FIT 

made the traditional Queue process infeasible and may resort to the use of Hurdle model. In 
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addition, those who were willing to consent to undergo colonoscopy may be classified into 

different types according to WT for colonoscopy, for example, those who had higher health 

awareness or were prone to anxiety might have shorter WT. This raised the rationale for using 

the CPH model for detecting whether it can identify hidden phase during the WT so as to 

provide a new insight into information used for health promotion for enhancing the referral 

rate. However, the real scenario of WT distribution also include non-response data (time=0) 

and Queue process that render the conventional CPH model inadequate. To solve these issues, 

we therefore developed the Hurdle model in combination with the CPH. The details of this 

unifying QH-CPH model are described in the following section. 

 

4.3 The Queue Hurdle Coxian Phase-type model for CRC screening data 

4.3.1 Model Description 

For the consideration of the arrival rate for eligible screenees, non-compliance with 

colonoscopy (non-complier), and the WT for undergoing colonoscopy (complier) 

simultaneously, we used the Poisson distribution to model arrival rate, the Hurdle model to 

identify factors affecting non-compliance, and the CPH distribution to understand the 

underlying dynamic hidden phases of the WT among compliers. We developed a new Queue 

Hurdle Coxian Phase-type model (QH-CPH), which is the combination of three processes 
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(Figure 4.1): 

(1) Poisson Queue process:  

 𝑍𝑖 = 1  is participant of CRC screening and 𝑍𝑖 = 0  is non-participant i=1,…N 

(=26,720,380) denoted as individuals eligible for FIT tests during six years   

 𝜈 is the mean arrival rate of screenees per person-years 

The Poisson distribution can be expressed as 

𝑓(𝑍𝑖; 𝜈) =
𝜈𝑍𝑖𝑒𝑥𝑝⁡(−𝜈)

𝑍𝑖!
, 𝜈 > 0 

Most of people would participate in CRC screening during the period of March to 

September but some people may join with this screening program between October and 

February. Moreover, the arrival rate is affected by sex and age as well. Then, the Poisson 

regression model was proposed to take these covariates (age, sex, and season) into 

consideration: 

𝑙𝑜𝑔(𝜈) = 𝜶′𝑿 

 

(2) Hurdle model: 

 To accommodate the non-complier of undergoing colonoscopy and also WT for 

undergoing colonoscopy among the compliers, the hurdle model was applied. The Hurdle 

model (Mullahy, (1986)) has two components: a binary part (Hurdle part) to measure the 

(4-1) 

(4-2) 



doi:10.6342/NTU201901194

60 
 

outcome of compliance, which is the application of logistic regression model, and a 

truncated Poisson part (non-hurdle part) to explain the response among the compliers, 

which is modelled by the truncated Poisson regression model given the count greater than 

one. Covariates included in the regression model consist of sex, age, geographic area, type 

of screening units, level of urbanization, and screening round. 

 𝑁𝑗 is the total number of tests in the jth (j=1,2…,m) category of covariates  

 𝑌𝑖𝑗 represents whether the ith individual who had been screened positive underwent 

colonoscopy exam (1=yes, 0=no). 𝑌𝑗 = ∑ 𝑌𝑖𝑗
𝑁𝑗
𝑖=1

  is the total number of screenee 

positive undergoing colonoscopy in the jth category  

 𝑇𝑖𝑗
𝑤  is the WT for colonoscopy. 𝑇𝑗

𝑤 = ∑ 𝑇𝑖𝑗
𝑤𝑁𝑗

𝑖=1
  represents the total WT for 

colonoscopy in the jth category (WT was defined from the date of reporting as 

positive FIT to the date of receiving colonoscopy) 

 𝑝𝑗 is the probability of refusing to undergo colonoscopy (non-complier) 

 𝜏𝑗 is the mean rate of undergoing colonoscopy 

The probability mass function (p.m.f) of truncated Poisson process (given the count 

greater than one) is 

P(𝑌𝑗 = 𝑦𝑗|𝑌𝑗 > 0) =
(𝜏𝑗𝑡𝑗

𝑤)
𝑦𝑗
𝑒𝑥𝑝⁡(−𝜏𝑗𝑡𝑗

𝑤)

𝑦𝑗!⁡(1−𝑒𝑥𝑝⁡(−𝜏𝑗𝑡𝑗
𝑤))

 
(4-3) 
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For 𝑦𝑗 = 0 , the p.m.f of Hurdle model is expressed by P(𝑌𝑗 = 0) = 𝑝𝑗
𝑁𝑗 ; for 𝑦𝑗 > 0 , 

P(𝑌𝑗 = 𝑦𝑗) = (1 − 𝑝𝑗)
𝑦𝑗 1

(1−𝑒
−𝜂𝑗)

×
𝜂𝑗
𝑦𝑗𝑒

−𝜂𝑗

𝑦𝑗!
 where 𝜂𝑗 = 𝜏𝑗 × 𝑡𝑗

𝑤. 

To identify the effect of relevant covariates (𝒙𝑗 ) such as sex, age at screening, 

geographic areas, type of screening units, level of urbanization, and round of screening, 𝑝𝑗 

can be modelled by the logistic regression model 

𝑝𝑗 =
𝑒𝑥𝑝⁡(𝒙𝑗𝜸)

1+𝑒𝑥𝑝⁡(𝒙𝑗𝜸)
 

and 𝜂𝑗 , the estimate of mean count in the jth category, by the Poisson regression model 

𝑙𝑜𝑔(𝜂𝑗) = 𝑜𝑓𝑓𝑠𝑒𝑡(𝑙𝑜𝑔 𝑡𝑤𝑗) + 𝒙𝑗𝜷 

Thus, the log-likelihood can be expressed as 

𝑙𝑛𝐿 = 𝑙𝑛 {∏(𝑝𝑗)
𝑁𝑗
(1 − 𝑝𝑗)

𝑦𝑗 1

(1 − 𝑒−𝜂𝑗)
×
𝜂𝑗
𝑦𝑗𝑒−𝜂𝑗

𝑦𝑗!
} 

⁡⁡⁡⁡= 𝑙 𝑛{𝐿1(𝜸)} + 𝑙 𝑛{𝐿2(𝜷)}⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

 

(3) Coxian Phase-type distribution (CPH): 

 Following the notation of Marshall (2007), the CPH model describes the time to 

absorption of a finite Markov chain in continuous time over the phases {1,2,…,k,k+1}. 

This Markov chain has one absorbing phase (k+1th), and k transient phases (1,…,k), and 

the process only starts in the first transient phase (Figure 4.2). While analyzing the WT 

data, transient phases can represent the hidden transition and absorbing phase as 

(4-4) 

(4-5) 

(4-6) 

(4-
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compliance for colonoscopy. In Figure 4.2, the parameters are defined as follows: 

 𝜆𝑠 : transition rate from transient phase (s) to transient phase (s+1)  

𝑃(𝑋(𝑡 + 𝛥𝑡) = 𝑠 + 1⁡|𝑋(𝑡) = 𝑠) = 𝜆𝑠𝛥𝑡 + 𝑜(𝛥𝑡) for s=1,…,k-1  

 𝜇𝑠 : absorbing rate from transient phase (s) to absorbing phase (k+1), we express 

‘referral rate’ here.  

𝑃(𝑋(𝑡 + 𝛥𝑡) = 𝑘 + 1⁡|𝑋(𝑡) = 𝑠) = 𝜇𝑠𝛥𝑡 + 𝑜(𝛥𝑡) for s=1,…,k.  

 

The random variable T defined as the time to compliance (WT) is said to have a 

CPH distribution. The infinitesimal generator for the Markov chain can be written in 

block-matrix form as 

𝑹 = (
𝑸 𝒒
𝟎 0

) 

𝑸 = [

−(𝜆1 + 𝜇1) 𝜆1 0 ⋯ 0 0
0 −(𝜆2 + 𝜇2) 𝜆2 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 −𝜇𝑘

] 

𝒒 = (𝜇1⁡𝜇2 ⁡⋯⁡𝜇𝑘)
𝑇 

where Q is a matrix of transition rates restricted to the transient phases and q is a vector 

of transition rates from transient phases to the absorbing phase. 

  To ensure absorption in a finite time with probability one, it requires that every non-

absorbing state is transient, so the matrix R can be blocked and let the matrix Q do not 

(4-7) 

(4-8) 
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consider the absorbing state. Due to the absorption in a finite time with probability one, 

the process with Q is an honest Markov process. As getting solution of the differential 

equations by forward and backward Kolmogorov equations, both sets of equations have 

the same unique solution to an honest Markov process (Cox, & Miller, (1965)). Therefore, 

the formal solution of transition probability matrix is  

⁡𝑷(𝒕) = 𝑒𝑥𝑝(𝑹𝑡) 

⁡⁡⁡⁡⁡⁡⁡⁡= ∑ 𝑹𝑛
𝑡𝑛

𝑛!
∞
𝑛=0   

  

  When R is a finite matrix, that is when the number of states of the process is finite, the 

series (4-10) is convergent and (4-9) is the unique solution of both forward and backward 

equations. As a result, the probability density function (p.d.f) of CPH is the derivative of 

the transition probabilities derived from (4-9) as follows:  

𝑓𝑐(𝑡) =
𝑑

𝑑𝑡
𝑃1𝑘(𝑡) 

where 𝑃1𝑘(𝑡) is the (1,k)th element of matrix P(t), represents the probability from the 1st 

phase to absorbing phase at time t. The WT in each phase and the marginal WT are  

 𝑇𝑠 represents the length of WT in phase s, where 𝑇𝑠~𝑒𝑥𝑝⁡(𝜆𝑠 + 𝜇𝑠), the moment-

generating function (MGF) is given by 

𝑀𝑇𝑠
(𝜃) =

𝜆𝑠 + 𝜇𝑠
𝜆𝑠 + 𝜇𝑠 − 𝜃

 

(4-9) 

(4-11) 

(4-10) 
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(4-12) 

𝐸[𝑇𝑠] =
1

𝜆𝑠 + 𝜇𝑠
 

 𝑇 is the marginal mean WT in the system, it can also be calculated by MGF 

𝑀𝑇(𝜃) = ∫ 𝑒𝑡𝜃
∞

−∞

𝑑𝑃1𝑘(𝑡) 

𝐸[𝑇] = 𝑀𝑇
′ (0) 

 

4.3.2 The Queue Hurdle Coxian Phase-type (QH-CPH) model 

With the integration of these three models, the QH-CPH distribution can be expressed as 

𝑓(𝑧, 𝑥, 𝑦, 𝑡; 𝜈, 𝜋, 𝑝, 𝜆, 𝜇) = 𝑒−𝜈{𝜈(1 − 𝜋)1−𝑥[𝜋𝑝1−𝑦[(1 − 𝑝)𝑓𝐶(𝑡)]
𝑦]𝑥}𝑧 

 

 𝜈  is the mean arrival rate of screenees per person-years, which comes from the 

Poisson Queue model (𝑍 = 1  is participant and 𝑍 = 0  is non-participant). The 

Poisson regression form was used to take covariates into account as in (2) 

 𝜋  is the FIT positive rate (𝑋 = 1  is positive result and 𝑋 = 0  is negative result) 

determined by the pre-determined cutoff 

 𝑝 is the probability of refusing to undergo colonoscopy, which can be estimated by 

the Hurdle model (𝑌 = 1 is complier for colonoscopy and 𝑌 = 0 is non-complier). 

The logistic regression form was adopted to distinguish those with specific 

characteristics by transforming coefficients estimated from the binary part of the 
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Hurdle regression model into a new continuous covariate (Noncompliance score; 

score1) then dividing it into a binary outcome according to the cutoff of median value: 

⁡𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝛽0 + 𝛽1 × 𝐺1 

𝐺1 = {
1⁡, 𝑖𝑓⁡𝑠𝑐𝑜𝑟𝑒1 ≥ −1.6711⁡
0⁡, 𝑖𝑓⁡𝑠𝑐𝑜𝑟𝑒1 < −1.6711

 

 𝑇 is the marginal WT for undergoing colonoscopic exam, the p.d.f is 𝑓𝐶(𝑡) of CPH 

distribution in (4-11). The proportional hazards regression form was applied to 

transition/referral rate by the similar method mentioned above except using 

coefficients estimated from the non-hurdle part as score2 (WT score): 

𝜆𝑠 = 𝜆0𝑠exp⁡(𝛾 × 𝐺2) 

𝜇𝑠 = 𝜇0𝑠exp⁡(𝛾 × 𝐺2) 

𝐺2 = {
1⁡, 𝑖𝑓⁡𝑠𝑐𝑜𝑟𝑒2 ≥ −3.4869
0⁡, 𝑖𝑓⁡𝑠𝑐𝑜𝑟𝑒2 < −3.4869

 

 

4.3.3 Criteria for Model Selection  

After constructing the likelihood function of QH-CPH distribution in (12), we decided to 

use the Bayesian information criterion (BIC) (Schwarz, 1978), which is widely applied to 

likelihood-based model, for model selection. In our analyses, we have to determine how many 

phases will be fitted on WT in the beginning, then taking covariates into account on arrival rate, 

positive rate, as well as compliance rate. As parameters need to be estimated increase, the 
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overfitting might occur. As a result, the penalty term, which is greater in BIC than in Akaike 

information criterion, was introduced to deal with this problem. After testing in each stage, the 

most appropriate model would be determined with minimum BIC score. 

 

4.4 Simulation Study 

We set up a scenario similar to Taiwanese population-based two-stage screening for CRC 

between 2004 and 2009, which is a six-year biennual screening program with 4.5% of arrival 

rate (per year), 3.7% of positive rate and 75% of compliance rate. The 2-phase QH-CPH models 

(the optimal model identified with BIC and presented in the results of the following section) to 

assess whether the number of eligible subject would affect the performance of the QH-CPH 

model or not. In Table 4.1, we assume that the manpower of colonoscopists would be increased 

along with the expanded compliers as well as decreased along with the shrinked compliers so 

that it could be affordable to receive colonoscopy exam in 37 waiting days. The result 

demonstrates the marginal expected WTs are very close to our true value (37 days) by using 

the 2-phase QH-CPH model and declined from 39.1 days to 38.3 days as the number of eligible 

subjects increased. With 100 replications, it has a great variation if only 4500 eligible subjects 

in the program; however, after reaching to 4500000 eligible subjects, the variance drops 

substantially. Both of biases and variances decline with an increase of the number of eligible 
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subjects, despite the biases of WT are barely changed after the number of eligible subjects 

exceeded up to 10000. As the sample sizes increase, it results in a tremendous decrease in 

variance from 44.49 to 0.03 as well as the mean square error (MSE) by 47.18 (from 48.9 to 

1.72). Until it reaches up to 80000 eligible subjects, the MSE becomes stable gradually. 

Nevertheless, it is incompatible with a real situation that the mean WT for colonoscopy remains 

on 37 days as the clinical capacity can always suffice such few eligible subjects. Therefore, 

there is a large of gap on MSE between 4500 and 10000 of eligible subjects but if the number 

of eligible subjects equals 4500000, which is pretty close to Taiwanese CRC screening program, 

then the performance of the 2-phase QH-CPH model is stable. Accordingly, if the number of 

eligible subjects is less than 80,000, the 2-phase in QH-CPH model may lead to large variation.  

 

4.5 Results 

4.5.1 Empirical results on Taiwanese two-stage population-based screening for CRC 

According to data on Taiwanese CRC screening program, the empirical results show that 

the continuous WT data are positively skewed with a long tail, representing those few positive 

FIT cases who had not received colonoscopic exam with an extremely long WT (Figure 4.3). 

This suggests the WT had better be modelled by the CPH distribution. The result shows the 2-

phase QH-CPH model is the most appropriate one to capture the WT by the minimum BIC 
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value (Table 4.2). Compared with the 1-phase QH-CPH model, the BIC was reduced by 1324; 

however, it was increased by 15 in comparison to the 3-phase QH-CPH model. Furthermore, 

in the 3-phase QH-CPH model, the estimated referral rate from the moderate waiting phase (μ2) 

equals 0, because the identifiability problem may exist between the referral rate resulting from 

the moderate waiting phase (μ2) and the transition rate from the short waiting phase to moderate 

waiting phase (λ1), which might suggest the 3-phase QH-CPH model was inappropriate.  

The 2-phase QH-CPH model can be classified as short waiting phase and long waiting 

phase (Figure 4.4). The corresponding mean WT was 33 days and 152 days, respectively, and 

the marginal mean WT was 37 days. The mean arrival rate was 4.01% (per person-year). We 

found that most screenees participated in the FIT screening during the period between March 

and September and the rate was pretty low rate from October to February. In addition to season 

effect, the arrival rate might vary with sex and age as well, so that we incorporated these 

covariates into the 2-phase QH-CPH model using the proportional hazards regression form. 

The results suggest the model including season, sex, and age (labelled ‘Model B’ in Table 4.3) 

was better than the original one only with season (BIC was reduced by 93137) as well as the 

model not including age (labelled ‘Model A’ in Table 4.3; BIC was reduced by 70986) and 

show those who were male or young age group had lower arrival rate despite the similar 

findings on the positive rate, the probability of non-compliance with colonoscopy and the WT. 
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The estimated positive rate was 3.7%. The estimated non-compliance rate was 26.3%. It is very 

interesting to note that the referral rate was five times greater in short waiting phase than long 

waiting phase. Around 15% subjects were in a dilemma to be referred to undergo colonoscopy 

so as to be trapped in long waiting phase.  

 Apart from the variation on arrival rates, compliance rates with colonoscopy and the 

median WT varied with these specific characteristics as well. The results of the QH-CPH model 

in Table 4.3 show if we considered the variation of the non-compliance rate as shown in Model 

C, the BIC score was smaller than Model B by 581. To further accommodate the variation of 

WT, we extended Model C to Model D that assessed whether score2 has more impact on the 

transition rate of undergoing colonoscopy (μ1) with short waiting phase, or on the transition 

rate of undergoing colonoscopy (μ2) with long waiting phase or on the transition rate from 

short waiting phase to long waiting phase (λ1). The results of model selection show the model 

with score2 related to 𝜇1 was the most appropriate model (labelled ‘Model D’ in Table 4.3), the 

differences of BIC are 289 and 296 compared to both models with score2 related to λ1 and μ2, 

separately. Table 4.3 shows that this final model (Model D) was much more interpretable than 

the previous one (Model C) due to the reduction of BIC by 287. The probability of not 

complying with colonoscopy was 21% in low score1 group and 31% in high score1 group. 

Among compliers, the mean WT in short waiting phase was 36 days and 29 days in low score2 
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group and high score2 group, separately, and both of the mean WT in longer waiting phase were 

151 days. The corresponding marginal mean WT were 40 days and 33 days for low score and 

high score group, respectively. 

According to the Model D as shown in Table 4.3, we could predict its transition 

probabilities by different WTs among compliers. In Figure 4.5, the probability of staying in 

short waiting phase (P11) declined over time and those with lower score2 had longer WT in 

short waiting phase than higher score2 given the same probability of staying in short waiting 

phase. The transition probability from short waiting phase to long waiting phase (P12) was 

pretty small and no difference was noted between these two groups. The transition probability 

of undergoing colonoscopy (P13 ) increased over time, because attendees would receive 

colonoscopic exam eventually. Under the same transition probability to undergo colonoscopy, 

low score2 group had longer WT than high score2 group. 

 

4.5.2 Projection of WT by different scenarios 

Except the number of eligible subjects, there are still other factors which might affect the 

results. Based on our model, the number of complier with colonoscopy would be influenced 

by three parameters (arrival rate, positive rate, and compliance rate). It is worthwhile to 

examine how the WT will be changed by these parameters by doing sensitivity analysis. Here, 
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we turn arrival rate into annual coverage rate for better understanding of screening application. 

In Figure 4.6, we set 3% of positive rate and 60% of compliance rate for the total of 26,720,380 

eligible FIT tests and assume the equivalent clinical capacity as the period of 2004-2009 in 

Taiwan, the mean WT for colonoscopy prolongs from 4 days to 43 days with increased annual 

coverage rate (dotted line). While positive rate raises to 7% and compliance rate to 90%, the 

mean WT ranges from 15 days to 151 days (solid line). In Figure 4.7, given 20% of annual 

coverage rate and 3% of positive rate, the mean WT increases with enlarged compliance rate 

(dotted line), while annual coverage rate rises to 30% and positive rate to 7%, the mean WT 

lengthens as well (solid line). We can also find that if compliance rate is expanded from 30% 

to 60%, the expected WT doubles in these four situation. Furthermore, we predict the WTs 

taking WT score2 into account given 30% of annual coverage rate and 3% of positive rate (see 

Figure 4.8). If positive cases are in different WT score2 groups, the increasing rates of WT 

between low WT score group and high WT score group are differential. The larger the 

compliance rate, the more incremental WT in low WT score group. For example, it would 

increase by just 1 waiting day for low WT score group compared with high score group under 

10% of compliance rate, however, after reaching to 100% of compliance rate, the 

corresponding figure is increased to 8 days. 
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4.5.3 The Referral Policy of WT for Colonoscopy  

 Based on the results of projections as above, the QH-CPH model provides a quantitative 

assessment of various scenarios on the referral policy of WT given clinical capacity in our 

stimulation study. For example, the Taiwanese national cancer screening policy has changed 

since 2010, the volume of screenees expand rapidly and positive rate ascended (7.3%) so that 

the compliance rate decline (66%) and the WT prolongs (Jen, Hsu, & Chen, (2017)). If the 

mean WT of two months is allowed, we have to recruit screenees in terms of the scale of 

Taiwanese population with a three-year program to reach 90% coverage rate given the positive 

rate is 7% and the compliance rate is 60%. The similar expected WT can be estimated by 

changing the cutoff of screening test and also the compliance rate with confirmatory diagnosis. 

For instance, if we change in cutoff value from 10 μg hemoglobin/g feces to 30 μg 

hemoglobin/g feces, which might result in increased positive rate from 3% to 7%, the estimated 

WT will be prolonged by 2.35-fold under 20% of annual coverage rate and 60% of compliance 

rate. 

 

4.6 Discussion 

The proposed QH-CPH model here has succeeded in linking all the aspects of 

determinants from arrival rate of attending screen, referral rate due to the positivity of screening 
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test, and the compliance with colonoscopy in relation to WT for colonoscopy. The merits of 

this study not only make contribution to developing a new statistical method for modeling joint 

effects of three crucial parameters but also provide a series of projections of WT by different 

scenarios. The further incorporation of relevant covariates is to elucidate the heterogeneity of 

the proposed QH-CPH model, which added to another novelty in the study. When applying the 

QH-CPH model to population-based screening program with the problems of queue and non-

response to colonoscopy the findings gave a clue to explore the reasons dominating such 

differences including provider factors such as the implementation of screening program and 

medical resources and population factors such as the knowledge and attitude toward CRC 

screening and medical interventions. They also provide more insight on the promotion of the 

referral of positive FIT identified from the participants with the uptake of screening program. 

This model can also be extended to estimate the expected costs or utility of screening, because 

each phase might have various costs so that it can evaluate how to allocate the limited medical 

resources and costs.  

One of limitations of the proposed QH-CPH model is related to whether the 

homogeneous processes used in arrival rate, the hurdle part, and the Coxian phase-type process 

can account for the heterogeneity of empirical scenario. To reduce this concern, relevant 

covariates have been incorporated into each process by using proportional hazards regression 
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forms. However, the variation of such a heterogeneity may be explained beyond these 

covariates. The introduction of random effect parameters to each process may provide a 

solution but the likelihood function would become computationally intractable. This becomes 

the subject of ongoing research.     

 

 In conclusion, we developed a new QH-CPH model to solve the compliance with the 

uptake of screening using the Queue process, the problem of non-compliance with the referral 

of positive results of screenees to have confirmatory diagnosis using the Hurdle model in 

combination with the CPH model to identify hidden phases during the WT for undergoing 

colonoscopy for the referrals. With the limited clinical resources, the development of this new 

model not only provides a new insight into the underlying mechanism of WT for early detection 

of CRC, but also can help clinicians or hospital managers improve the quality of service and 

provide some useful information for making decisions. 
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Table 4.1 Simulated results of the 2-phase QH-CPH models based on 100 replications. 

Number of 

eligible subjects 

per year  

Marginal 

True WT 

(days) 

Marginal 

Expected WT 

(days) 

Bias Variance 
Mean Square 

Error (MSE) 

4500 37 39.1 2.1 44.492 48.902 

10000 37 38.6 1.6 16.449 19.009 

20000 37 38.7 1.7 10.233 13.123 

30000 37 38.8 1.8 6.271 9.511 

45000 37 38.5 1.5 4.911 7.161 

80000 37 38.4 1.4 2.179 4.139 

100000 37 38.5 1.5 1.551 3.801 

200000 37 38.5 1.5 0.613 2.863 

450000 37 38.3 1.3 0.296 1.986 

4500000 37 38.3 1.3 0.026 1.716 

 

*arrival rate=4.5%, positive rate=3.7%, compliance rate=75% 
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Table 4.2 The estimated results of 2-phase Queue Hurdle Coxian phase-type (QH-CPH) 

models  

 

Parameters Estimate (SD× 𝟏𝟎−𝟑) 

Arrival rate (𝜈̂)  

Intercept (𝜈̂0) −6.8521⁡(6.64) 

Month (vs. Period 1 (Jan-Feb))  

Period 2 (Mar.-Sep.) (𝛼̂1) 3.6349⁡(6.71) 

Period 3 (Oct.-Dec.) (𝛼̂2) 1.6403⁡(7.16) 

Positive rate (𝜋̂) 0.0368⁡(0.17) 

Probability of non-compliance (𝑝̂) 0.2632⁡(2.07) 

Referral rate (𝜇̂1) 0.0299⁡(0.19) 

Referral rate (𝜇̂2) 0.0066⁡(0.38) 

Transition rate (𝜆̂1) 0.0008⁡(0.08) 

 

𝜇̂𝑠 : referral rate from sth phase to absorbing phase  

𝜆̂𝑠 : transition rate from sth phase to s+1th phase 
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Table 4.3 The comparison of five 2-phase QH-CPH models 

𝜇̂𝑖 : referral rate from ith phase to absorbing phase 

𝜆̂𝑖 : transition rate from ith phase to i+1th phase 

 

Parameters 
Estimate (SD× 𝟏𝟎−𝟑) 

Model A Model B Model C Model D 

Arrival rate (𝜈̂)     

Intercept (𝜈̂0) -6.6478 (6.67) -6.4483 (6.92) -6.4483 (6.90) -6.4484 (6.92) 

Month (vs. Period 1 (Jan-Feb))     

Period 2 (Mar.-Sep.) (𝛼̂1) 3.6412 (6.70) 3.6357 (6.72) 3.6357 (6.69) 3.6357 (6.72) 

Period 3 (Oct.-Dec.) (𝛼̂2) 1.6491 (7.15) 1.6442 (7.17) 1.6442 (7.15) 1.6442 (7.17) 

Sex     

Male (𝛼̂3) -0.4886 (1.86) -0.4844 (1.86) -0.4844 (1.86) -0.4844 (1.86) 

Age (vs. 65-69 yr)     

  50-54 yr (𝛼̂4) - -0.3640 (2.57) -0.3640 (2.57) -0.3640 (2.57) 

  55-59 yr (𝛼̂5) - -0.1719 (2.62) -0.1719 (2.62) -0.1719 (2.61) 

  60-64 yr (𝛼̂6) - -0.1178 (2.85) -0.1178 (2.85) -0.1178 (2.85) 

Positive rate (𝜋̂) 0.0368 (0.17) 0.0368 (0.17) 0.0368 (0.17) 0.0368 (0.17) 

Probability of non-compliance (𝑝̂) 0.2632 (2.07) 0.2632 (2.07)   

Intercept (𝛽̂0) - - -1.3300 (17.04) -1.3299 (18.54) 

Noncompliance Score (𝛽̂1) - - 0.5703 (22.07) 0.5267 (24.84) 

Referral rate (𝜇̂1) 0.0299 (0.19) 0.0299 (0.19) 0.0299 (0.19)  

Baseline of referral rate (𝜇̂01) - - - 0.0272 (0.23) 

WT Score (𝛾) - - - 0.2013 (11.78) 

Referral rate (𝜇̂2) 0.0066 (0.38) 0.0066 (0.38) 0.0066 (0.38) 0.0066 (0.39) 

Transition rate (𝜆̂1) 0.0008 (0.08) 0.0008 (0.08) 0.0008 (0.08) 0.0008 (0.08) 
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Figure 4.1 Queue Hurdle Coxian Phase-type model 

 

FIT(+) consists of positive fecal immunochemical tests (FIT) and negative FIT tests 

with family history  
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Figure 4.2 Coxian Phase-type distribution 

 

 

Figure 4.3 Empirical data on WT for colonoscopy 
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Figure 4.4 Queue Hurdle 2-phase Coxian phase-type model 

 

 

Figure 4.5 Transition probabilities of Coxian two-phase model by risk score 
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Figure 4.6 Predicted waiting time for colonoscopy by different coverage rates as 

given positive rate and compliance rate. 

 

Scenarios Waiting days 

(1) 15 30 45 60 75 91 106 121 136 151 

(2) 10 20 30 40 50 60 70 80 91 101 

(3) 6 13 19 26 32 39 45 52 58 65 

(4) 4 9 13 17 22 26 30 34 39 43 
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Figure 4.7 Predicted waiting time for colonoscopy by different compliance rates as 

given arrival rate and positive rate. 

 

Scenarios Waiting days 

(1) 10 20 30 40 50 60 70 80 91 101 

(2) 7 13 20 27 34 40 47 54 60 67 

(3) 4 9 13 17 22 26 30 34 39 43 

(4) 3 6 9 11 14 17 20 23 26 29 
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Figure 4.8 Predicted waiting time for colonoscopy by different compliance rates with 

different WT score groups as given 30% of annual coverage rate and 3% of positive 

rate. 

   
WT Score Waiting days 

Low 5 9 14 19 24 28 33 38 43 47 

High 4 8 12 16 19 23 27 31 35 39 
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Chapter 5 Generalized Coxian phase-type Markov Process for 

Disease Natural History Model of CRC 

Summary 

Introduction While stochastic process is useful for evaluation of effectiveness of 

population-based service screening with the creation of the pseudo control group, data 

with hidden states within the pre-clinical detectable phase (PCDP) feature with non-

Markov stochastic are often encountered. The device of stage method with a mixture of 

serial and parallel form is therefore proposed to tackle this issue.     

Aim The Coxian phase-type Markov process was therefore created to evaluate the 

effectiveness of population-based cancer screening program   

Data Taiwanese population-based screening for CRC with FIT with the incorporation 

of AJCC tumour stage.  

Method The Coxian phase-type Markov process was used to model hidden transient 

states within PCDP and the corresponding absorbing states reaching to clinical phase. 

The proposed Coxian phase-type Markov process constituted the likelihood functions 

with different detection modes, making allowance for the sensitivity of the screening 

method. Bayesian DAG model was used to estimate the parameters of interest. 

Simulation studies with asymptotic analysis and perturbation analysis were performed 

to elucidate statistical inference and power function of each parameter.   
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Results The transition rates of early and late CRC in the PCDP and both absorbing rates 

to CP using the Coxian phase-type Markov process were estimated, making allowance 

for the sensitivity of the screening method, to represent the force of upstaging and 

downstaging. As considering the measurement errors (sensitivity), the estimated CRC 

incidence is 1.28 per 1000. The transition rate from early PCDP to late PCDP compared 

with that from early PCDP to early CP is approximately 3-fold. Based on the five-state 

model, the projected advanced cancer reduction is 15.44% under 20% coverage rate. 

After coverage rate reaches to 80%, the effectiveness of advanced cancer reduction is 

29.30%. The effectiveness of FIT screening with different inter-screening interval and 

coverage rate was evaluated with the application of the proposed five-state Coxian 

phase-type model.    

Conclusion The Coxian phase-type Markov process with the device stage method was 

proposed to evaluate the effectiveness of population-based screening with non-

Markovian property.      
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5.1 Introduction 

5.1.1 The pseudo control group created from stochastic process  

With the generalized Coxian phase-type Markov process for disease natural 

history model of CRC, one is able to evaluate the long-term effectiveness in organized 

service screening program with escape from the following obstacles. Firstly, there is a 

lacking of the comparator, the control group in the RCT and the unscreened in the 

observational follow-up cohort or the pre-screened group in non-RCT (Chen LS et 

al.(2010)). Second, it may require long-term follow-up data that involve the difficulty 

of logistics of follow-up in both cost and time aspects. The first difficulty may be solved 

by the adjustment for self-selection bias with the attendance rate while the unscreened 

group is taken as the comparator and also the allowance made for the maturation of 

incidence in colorectal cancer when the pre-screened group is used as the comparator. 

The solution to the second issue is the better use of surrogate endpoints. Previous 

studies have already shown that the use of tumour staging as surrogate endpoints may 

not only dispense with the logistics of follow-up but also enhance statistical power 

(Chen THH et al. (1999), and Chiu SY et al. (2011)) compared with the use of primary 

endpoint like CRC death on the basis of the randomized controlled trial. More 

importantly, evaluation of organized screening program with quasi-experimental design 

may answer whether it is effective in reducing CRC mortality and advanced cancer but 
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it may not throw light on why and how it works, which is related to the optimal 

screening interval and age to begin with screen.  

To this end, one may consider a modelling approach like the classical example of 

the MISCAN model and the stochastic process used in the previous studies 

(Buskermolen M et al. (2018), Chen THH et al.(1999), Chen LS et al. (2007), and Wu 

HM et al. (2006)). It builds up the disease natural history of colorectal neoplasia by 

AJCC tumour stage for estimating the expected advanced CRC and death to form the 

pseudo-control group. The expected results from this comparator were compared with 

the corresponding findings given the different screening policies of FIT. So doing 

provides an opportunity to evaluate long-term effectiveness of organized colorectal 

cancer screening in reducing advanced CRC and also subsequent deaths from CRC 

dispensing with the requirement of the comparator and also the necessity of waiting for 

longitudinal follow-up of the entire screened cohort.  

 

5.1.2 Device of stage method for non-Markovian process  

     While Markov process has been extensively applied to multistate disease process, 

which is particularly important for evaluation of population-based periodical screening 

data for example. The most concern over its application is often raised as to whether 

the empirical data are amenable to the assumption of Markov property, that is, the 
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probability of the next state transition is only dependent on the current state rather than 

the previous state.  

In modelling data on population-based screening for cancer and chronic disease, 

we are often faced with three main phenotypes on the status of disease, free of disease 

(FOD), pre-clinical detectable phenotype (PCDP), and clinical phenotype (CP). In the 

case of colorectal cancer screening, three corresponding states are, FOD on colorectal 

cancer (CRC), PCDP CRC, CP CRC. There are several literatures on the application of 

three-state Markov process to modelling the disease natural history of CRC from FOD 

to CP, yielding two important parameters, annual incidence rate of PCDP CRC and the 

dwelling time of lingering with PCDP without progression to CP.    

It is often criticized that three-state Markov process is not sufficient for modelling 

the sample path of empirical data on the disease natural history of CRC from FOD to 

CP when Markov property is applied. The reason is that the transition to CP is highly 

dependent on how long PCDP CRCs stay or what kind of attributes they carry with. 

The Markov property is often problematic when one encounters the empirical data on 

organized service screening with imbalanced design on irregular inter-screening 

interval. If there are measurement errors such as the sensitivity of the screening method 

the Markov property is even worse and should be dealt with. According to the 

classification of AJCC staging classification, low grade of tumour stage of PCDP CRC 
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often stay longer than high grade of tumour stage. In the language of stochastic process, 

this means the sample path of data may be amenable to non-Markovian process.  

To accommodate non-Markovian process, three approaches are considered, 

including device of stage method, supplementary variable, and embedded Markov 

chain, in the development of stochastic process. The two latter are evolved into semi-

Markov process and the former is characterized by phase-type Markov process if the 

assumption of progressive property is made. The device stage of method is the main 

subject of this thesis. 

 

5.1.3 Evaluation of population-based service screening program  

In Taiwan, a nationwide organized colorectal cancer screening with biennial FIT 

has been conducted from 2004 until so far. We are faced with the challenge of whether 

this nationwide organized service screening program is effective in reducing CRC 

mortality and advanced cancer. Is the policy changed into annual regime or triennial 

regime? Do we need to start the screening earlier as the young age has rising incidence? 

It is very interesting to assess these subsidiary issues of screening policy by using a 

modelling approach.       

The aim of this chapter is to estimate the rate of incidence and progression of CRC 

between tumour staging classified by AJCC based on a Coxian phase-type Markov 
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process and then to evaluate long-term effectiveness of Taiwanese nationwide biennial 

FIT screening program.    

 

5.2 Coxian phase-type with devices of stage for non-Markovian process 

5.2.1 Coxian Phase-type Model 

A generalized Coxian phase-type with devices of stage, k phases in PCDP, for 

non-Markovian process has been depicted below. The Coxian phase-type model is a 

special case of multi-state Markov process. The continuous-time Markov process has 

k+1 transient phases, and one absorbing phase. 

 

 

 

The disease progression from phase i to phase (i+1) in a short time interval can be 

denoted by 𝜆𝑖 and the absorbing rate from phase i to absorbing phase denoted by μ𝑖. 

The probability density function (p.d.f) of Coxian phase-type distribution is 

f(t) = 𝛑exp⁡(𝐐t)𝐪 

𝜆1 

Normal 

(Phase 1) 

PCDP 1 

(Phase 2) 

CP 

(Absorbing) 

PCDP m 

(Phase m+1) 

PCDP k 

(Phase k+1) 

… … 

𝜇1 
𝜇𝑚 

𝜇𝑘 
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𝛑 = (1,0, … ,0) 

𝐐 = [

−λ1 λ1 0 ⋯ 0 0
0 −(λ2 + μ1) λ2 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 −μk

] 

𝐪 = (0, μ1, μ2, ⋯ , μk)
T 

where 𝛑 is initial probability vector (1×(k+1)), 𝐐 is intensity matrix restricted to the 

transient phases ((k+1)×(k+1)), and 𝐪 is a vector transition rates from transient phases 

to the absorbing phase ((k+1)×1). 

To ensure absorption with probability one in a finite time, we rewrite the 

infinitesimal matrix in block-matrix,  

𝑹 = [
𝑸 𝒒
𝟎 0

]. 

By using the Kolmogorov differential equations, it has the same unique solution with 

forward equations:  

𝑷′(𝒕) = 𝑷(𝒕)𝑹 

and backward equations (Cox, & Miller, 1965):  

𝑷′(𝒕) = 𝑹𝑷(𝒕) 

where the matrix 𝑷(𝒕) is the transition probabilities. If the matrix R is finite with initial 

condition 𝑷(𝟎) = 𝑰, the formal solution can be derived as 

𝑷(𝒕) = 𝑒𝑥𝑝(𝑹𝑡) 
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5.2.2 Consideration of measurement errors 

Free of measurement errors 

We take a five-state Markov model for example 

 

, the state space is 𝑋𝑡={0: Normal, 1: Preclinical Early CRC (Stage 0/I), 2: Preclinical 

Late CRC (Stage II/III/IV), 3: Clinical Early CRC (Stage 0/I), 4: Clinical Late CRC 

(Stage II/III/IV)}. State 3 and State 4 are absorbing states. The p.d.f is 

f(t) = 𝛑exp⁡(𝐐t)𝐪 

𝛑 = (1,0,0,0,0) 

𝐐 = [

−λ1 λ1 0
0 −(λ2 + μ1) λ2
0 0 −μ2

] 

𝐪 = [
0 0
μ1 0
0 μ2

] 

𝐪 is a 3×2 matrix due to two absorbing phases. 

By using the Kolmogorov differential equations, the transition probability can be given 

by 

Normal 

(State 0) 

Preclinical 

Early CRC 

(State 1) 

Preclinical 

Late CRC 

(State 2) 

Clinical 

Early CRC 

(State 3) 

Clinical 

Late CRC 

(State 4) 

𝜆1 𝜆2 

𝜇1 𝜇2 
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𝐏(t) = 𝐞𝐱𝐩(𝐑t) =

[
 
 
 
 
𝑃00(𝑡) 𝑃01(𝑡) 𝑃02(𝑡) 𝑃03(𝑡) 𝑃04(𝑡)
0 𝑃11(𝑡) 𝑃12(𝑡) 𝑃13(𝑡) 𝑃14(𝑡)
0 0 𝑃22(𝑡) 0 𝑃24(𝑡)
0 0 0 1 0
0 0 0 0 1 ]

 
 
 
 

 

𝑹 = [
𝑸 𝒒
𝟎 0

] =

[
 
 
 
 
−λ1 λ1 0 0 0
0 −(λ2 + μ1) λ2 μ1 0
0 0 −μ2 0 μ2
0 0 0 0 0
0 0 0 0 0 ]

 
 
 
 

 

 

Model with measurement errors  

In clinical reality, the state space 𝑋𝑡  is usually measured by a biomarker of 

screening test (ex: FIT for CRC screening) which may not be a perfect detective 

modality so that it has a measurement error misclassifying outcome results (sensitivity 

and specificity). The Hidden Markov model (HMM) often used to deal with the issue 

of misclassification, which contains initial probability (π), transition probability (P), 

and emitted probability (Φ). In the HMM, there are two process: one is the Hidden 

Markov process (𝑋𝑡), and the other is the observation process (𝑂𝑡). Taking a five-state 

Markov model of CRC disease for example 
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In the screening setting, if the sensitivity of screening test (i.g. FIT) is not 100%, it 

will yield the false negative results, which means those asymptomatic subject might 

have stayed in the preclinical early or late CRC, but they were regarded as a normal 

subject due to the measurement errors. Because we do not know whether he/she had 

preclinical early/late CRC or normal status, it is a Hidden Markov process (gray area 

with dashed line) representing underlying true states. 

As using the HMM, it has to follow  

(1) the Markov assumption,  

P(𝑥𝑡+1 = j|𝑥𝑡 = i, 𝑥𝑡−1 = m,… , 𝑥0 = n) = P(𝑥𝑡+1 = j|𝑥𝑡 = i) = 𝑃𝑖𝑗 

𝜆2 𝜆1 
Normal 

(State 0) 

Preclinical 

Early CRC 

(State 1) 

Preclinical 

Late CRC 

(State 2) 

Clinical 

Early CRC 

(State 3) 

Clinical 

Late CRC 

(State 4) 

𝜇
1
 𝜇

2
 

Normal 

(State 0) 

Hidden Markov process 

(True multi-state process) 

Observation process 

(Observed “misclassification” multi-state process) 

Preclinical 

Early CRC 

(State 1) 

Preclinical 

Late CRC 

(State 2) 
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(2) the stationary assumption,  

𝑃𝑖𝑗 = P(𝑥𝑡1+1 = j|𝑥𝑡1 = i) = P(𝑥𝑡2+1 = j|𝑥𝑡2 = i) 

(3) the observation independence 

P(O|𝑥1, 𝑥2, … , 𝑥𝑇 , π, P,Φ) =∏𝑃(𝑜𝑡|𝑥, π, P,Φ)

𝑇

𝑡=1

. 

So the joint probability distribution can be derived as 

P(X, O) =∏𝑃(𝑥𝑡|𝑥𝑡−1, π, P,Φ)𝑃(𝑜𝑡|𝑥𝑡)

𝑇

𝑡=1

 

Here, we define 𝑋𝑡 as the hidden process with five states (0: Normal, 1: Preclinical 

Early CRC (Stage 0/I), 2: Preclinical Late CRC (Stage II/III/IV), 3: Clinical Early CRC 

(Stage 0/I), 4: Clinical Late CRC (Stage II/III/IV)). State 3 and State 4 are absorbing 

states. The HMM cannot be observed directly but yielded a correlated state with a 

presumed probability distribution (emission probability), and the observed process was 

defined as (𝑂𝑡). The hidden process follows the Markov assumption:  

P(𝑋𝑡 = 𝑥𝑡|𝑋1, … , 𝑋𝑡−1, 𝑂1, … , 𝑂𝑡−1) = P(𝑋𝑡 = 𝑥𝑡|𝑋𝑡−1 = 𝑥𝑡−1). 

The transition probability from state i to state j is 

𝑃𝑖𝑗 = P(𝑋𝑡 = j|𝑋𝑡−1 = i), 

and the initial probability defined as 

𝛑 = (𝜋1, … , 𝜋𝑚) = (P(𝑋1 = 0),… , P(𝑋1 = 4)) = (1,0,0,0,0) 

with ∑ 𝜋𝑖
𝑚
𝑖=1 = 1 . On the other hand, the observed process has the conditional 
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independence assumption:  

P(𝑂𝑡 = 𝑜𝑡|𝑋1, … , 𝑋𝑡, 𝑂1, … , 𝑂𝑡−1) = P(𝑂𝑡 = 𝑜𝑡|𝑋𝑡 = 𝑥𝑡) = 𝑒𝑜𝑥 

which is the definition of emitted probability. Consider the emitted probability in the 

CPH model to adjust sensitivities of FIT test, which can be defined as 

Sensitivity of early CRC: P(𝑂𝑡 = 1|𝑋𝑡 = 1) = 𝑒11 and 

Sensitivity of late CRC: P(𝑂𝑡 = 2|𝑋𝑡 = 2) = 𝑒22. 

 

5.2.3 Likelihood functions  

In the screening program, there are four types of detection mode, the corresponding 

likelihood are given as 

Free of measurement errors 

Prevalent screen 

Because screening program is provided to those asymptomatic subjects, the likelihood 

for participant at the first screen is the conditional probability, which is conditional on 

no previous clinical cancer. If the subject is diagnosed as prevalent screen-detected 

cancer then the likelihood is given by 

𝐿𝑃𝑆𝐷,𝐸𝑎𝑟𝑙𝑦(. ) =
𝑃01(𝑎𝑔𝑒𝑠)

𝑃00(𝑎𝑔𝑒) + 𝑃01(𝑎𝑔𝑒) + 𝑃02(𝑎𝑔𝑒)
 

𝐿𝑃𝑆𝐷,𝐿𝑎𝑡𝑒(. ) =
𝑃02(𝑎𝑔𝑒𝑠)

𝑃00(𝑎𝑔𝑒) + 𝑃01(𝑎𝑔𝑒) + 𝑃02(𝑎𝑔𝑒)
 

If the subject is free of CRC, the likelihood is  
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𝐿𝑁1(. ) =
𝑃00(𝑎𝑔𝑒)

𝑃00(𝑎𝑔𝑒𝑒) + 𝑃01(𝑎𝑔𝑒𝑒) + 𝑃02(𝑎𝑔𝑒𝑒)
 

where 𝑎𝑔𝑒𝑠  is age at first screen for ith individual, and 𝑎𝑔𝑒  is the eligible age for 

screening in the first year. 

 

Subsequent subjects 

The likelihood of subject diagnosed as subsequent screen-detected cancer is given by 

𝐿𝑆𝑆𝐷,𝐸𝑎𝑟𝑙𝑦(. ) = 𝑃01(𝑡𝑗 − 𝑡𝑗−1) 

𝐿𝑆𝑆𝐷,𝐿𝑎𝑡𝑒(. ) = 𝑃02(𝑡𝑗 − 𝑡𝑗−1) 

If the subject is free of CRC, the likelihood is 

𝐿𝑁2(. ) = 𝑃00(𝑡𝑗 − 𝑡𝑗−1) 

where 𝑡𝑗 − 𝑡𝑗−1 is the interscreening interval between the time of last screen (𝑡𝑗−1) and 

the current screen (𝑡𝑗) 

If subject had a normal results but was diagnosed as clinical CRC before the next screen 

(Interval cancer), the likelihood is 

𝐿𝐼𝐶,𝐸𝑎𝑟𝑙𝑦(. ) = 𝑃01(𝐷 − 𝑡𝑗−1)𝜇1 

𝐿𝐼𝐶,𝐿𝑎𝑡𝑒(. ) = 𝑃02(𝐷 − 𝑡𝑗−1)𝜇2 

where D is the diagnosis time of CRC (the date of being reported in national cancer 

registry), and 𝑡𝑗−1 is the last screen date. Because we can know the exact diagnosis time, 

it can be expressed by the p.d.f. 
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If those ever screened subjects had a normal results at the last time of screening, they 

would be followed until the end of study or the upper limit of screening age, the 

likelihood is  

𝐿𝑛𝑜𝑛𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑒(. ) = 1 − 𝑃03(𝐸 − 𝑡𝑗−1) − 𝑃04(𝐸 − 𝑡𝑗−1) 

where E is the end date of study or upper limit screening age, and 𝑡𝑗−1 is the last screen 

date. 

 

Refuser 

As the prevalent subjects, the likelihood of refuser is also conditional on no previous 

cancer, but we know no if he/she had PCDP early cancer or PCDP late cancer because 

he/she did not participant the screening program during the period, so if refuser was 

diagnosed as clinical CRC, the likelihood can be given by 

 

𝐿𝑅𝑒𝑓𝑢𝑠𝑒𝑟,𝐸𝑎𝑟𝑙𝑦(. ) =
𝑃00(𝑎𝑔𝑒)𝑃01(𝐷 − 𝑎𝑔𝑒)𝜇1 + 𝑃01(𝑎𝑔𝑒)𝑃11(𝐷 − 𝑎𝑔𝑒)𝜇1

𝑃00(𝑎𝑔𝑒) + 𝑃01(𝑎𝑔𝑒) + 𝑃02(𝑎𝑔𝑒)
 

𝐿𝑅𝑒𝑓𝑢𝑠𝑒𝑟,𝐿𝑎𝑡𝑒(. )

=
𝑃00(𝑎𝑔𝑒)𝑃02(𝐷 − 𝑎𝑔𝑒)𝜇2 + 𝑃01(𝑎𝑔𝑒)𝑃12(𝐷 − 𝑎𝑔𝑒)𝜇2 + 𝑃02(𝑎𝑔𝑒)𝑃22(𝐷 − 𝑎𝑔𝑒)𝜇2

𝑃00(𝑎𝑔𝑒) + 𝑃01(𝑎𝑔𝑒) + 𝑃02(𝑎𝑔𝑒)
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If non-attendee is free of CRC, the likelihood is 

 

𝐿𝑁3(. ) = 1 −
𝑃00(𝑎𝑔𝑒)[𝑃03(𝐸 − 𝑎𝑔𝑒) + 𝑃04(𝐸 − 𝑎𝑔𝑒)]

𝑃00(𝑎𝑔𝑒) + 𝑃01(𝑎𝑔𝑒) + 𝑃02(𝑎𝑔𝑒)

−
𝑃01(𝑎𝑔𝑒)[𝑃13(𝐸 − 𝑎𝑔𝑒) + 𝑃14(𝐸 − 𝑎𝑔𝑒)]

𝑃00(𝑎𝑔𝑒) + 𝑃01(𝑎𝑔𝑒) + 𝑃02(𝑎𝑔𝑒)

−
𝑃02(𝑎𝑔𝑒)𝑃24(𝐸 − 𝑎𝑔𝑒)

𝑃00(𝑎𝑔𝑒) + 𝑃01(𝑎𝑔𝑒) + 𝑃02(𝑎𝑔𝑒)
 

 

where D is the diagnosis time of CRC (the date of being reported in national cancer 

registry), E is the end date of study or upper limit screening age, and 𝑎𝑔𝑒 is the eligible 

age for screen in the first year. 

 

With Measurement errors  

To take sensitivities of FIT test into account, we firstly define the important indicators 

as follows, 

Sensitivity of early CRC: sen1 = 𝑒11 = P(𝑂𝑡 = 1|𝑋𝑡 = 1), 

Sensitivity of late CRC: sen2 = 𝑒22 = P(𝑂𝑡 = 2|𝑋𝑡 = 2), 

True negative of normal result: TN =
𝑃00(𝑡)

𝑃00(𝑡)+𝑃01(𝑡)(1−𝑠𝑒𝑛1)+𝑃02(𝑡)(1−𝑠𝑒𝑛2)
 

False negative of early CRC: FN1 =
𝑃01(𝑡)(1−𝑠𝑒𝑛1)

𝑃00(𝑡)+𝑃01(𝑡)(1−𝑠𝑒𝑛1)+𝑃02(𝑡)(1−𝑠𝑒𝑛2)
 

False negative of late CRC: FN2 =
𝑃02(𝑡)(1−𝑠𝑒𝑛2)

𝑃00(𝑡)+𝑃01(𝑡)(1−𝑠𝑒𝑛1)+𝑃02(𝑡)(1−𝑠𝑒𝑛2)
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The likelihoods of different detection mode are given as 

Prevalent screen 

𝐿𝑃𝑆𝐷,𝐸𝑎𝑟𝑙𝑦(. ) =
𝑃01(𝑎𝑔𝑒𝑠)𝑠𝑒𝑛1

𝑃00(𝑎𝑔𝑒) + 𝑃01(𝑎𝑔𝑒) + 𝑃02(𝑎𝑔𝑒)
 

𝐿𝑃𝑆𝐷,𝐿𝑎𝑡𝑒(. ) =
𝑃02(𝑎𝑔𝑒𝑠)𝑠𝑒𝑛2

𝑃00(𝑎𝑔𝑒) + 𝑃01(𝑎𝑔𝑒) + 𝑃02(𝑎𝑔𝑒)
 

𝐿𝑁1(. ) =
𝑃00(𝑎𝑔𝑒𝑠) + 𝑃01(𝑎𝑔𝑒𝑠)(1 − 𝑠𝑒𝑛1) + 𝑃02(𝑎𝑔𝑒𝑠)(1 − 𝑠𝑒𝑛2)

𝑃00(𝑎𝑔𝑒) + 𝑃01(𝑎𝑔𝑒) + 𝑃02(𝑎𝑔𝑒)
 

where 𝑎𝑔𝑒𝑠 is age at first screen for ith individual, and 𝑎𝑔𝑒 is the eligible age for screen 

in the first year. 

 

Subsequent subjects 

𝐿𝑆𝑆𝐷,𝐸𝑎𝑟𝑙𝑦(. ) = 𝑇𝑁 × 𝑃01(𝑡𝑗 − 𝑡𝑗−1)𝑠𝑒𝑛1 + 𝐹𝑁1 × 𝑃11(𝑡𝑗 − 𝑡𝑗−1) 

𝐿𝑆𝑆𝐷,𝐿𝑎𝑡𝑒(. ) = 𝑇𝑁 × 𝑃02(𝑡𝑗 − 𝑡𝑗−1)𝑠𝑒𝑛2 + 𝐹𝑁1 × 𝑃12(𝑡𝑗 − 𝑡𝑗−1) 

+𝐹𝑁2 × 𝑃22(𝑡𝑗 − 𝑡𝑗−1) 

𝐿𝑁2(. ) = 𝑇𝑁 × (𝑃00(𝑡𝑗 − 𝑡𝑗−1) + 𝑃01(𝑡𝑗 − 𝑡𝑗−1)(1 − 𝑠𝑒𝑛1)

+ 𝑃02(𝑡𝑗 − 𝑡𝑗−1)(1 − 𝑠𝑒𝑛2)) 

𝐿𝐼𝐶,𝐸𝑎𝑟𝑙𝑦(. ) = 𝑇𝑁 × 𝑃01(𝐷 − 𝑡𝑗−1)𝜇1 + 𝐹𝑁1 × 𝑃11(𝐷 − 𝑡𝑗−1)𝜇1 

𝐿𝐼𝐶,𝐿𝑎𝑡𝑒(. ) = 𝑇𝑁 × 𝑃02(𝐷 − 𝑡𝑗−1)𝜇2 + 𝐹𝑁1 × 𝑃12(𝐷 − 𝑡𝑗−1)𝜇2 

+𝐹𝑁2 × 𝑃22(𝐷 − 𝑡𝑗−1)𝜇2 

𝐿𝑛𝑜𝑛𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑒(. ) = 𝑇𝑁 × (1 − 𝑃03(𝐸 − 𝑡𝑗−1) − 𝑃04(𝐸 − 𝑡𝑗−1)) 

+𝐹𝑁1 × (1 − 𝑃13(𝐸 − 𝑡𝑗−1) − 𝑃14(𝐸 − 𝑡𝑗−1)) + 𝐹𝑁2 × (1 − 𝑃24(𝐸 − 𝑡𝑗−1)) 
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where 𝑡𝑗 − 𝑡𝑗−1 is the interscreening interval between the time of last screen (𝑡𝑗−1) and 

the current screen (𝑡𝑗), D is the diagnosis time of CRC (the date of being reported in 

national cancer registry), and E is the end date of study or upper limit screening age.  

Because the false negative case was missed at last screen, the underlying population 

for the present screen comprise true negative (𝑇𝑁), and false negative (𝐹𝑁1, 𝐹𝑁2), 

which are the function of t that depend on the round of screening,  

t = {
⁡⁡⁡⁡⁡⁡⁡𝑎𝑔𝑒𝑠⁡⁡⁡⁡, 𝑓𝑜𝑟⁡𝑡ℎ𝑒⁡2𝑛𝑑⁡𝑟𝑜𝑢𝑛𝑑
⁡⁡⁡⁡⁡𝑡𝑗 − 𝑡𝑗−1⁡⁡⁡, 𝑓𝑜𝑟⁡𝑡ℎ𝑒⁡𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑡

 

 

Refuser 

Because subjects have never participated in the FIT screening program, the result will 

not be affected by the sensitivities of FIT. Therefore, the likelihood functions are the 

same as the approach of free of measurement errors.  

 

5.2.4 Bayesian DAG (directed acyclic graphic model)   

 We constructed a Bayesian directed acyclic graphic (DAG) model for the 

estimation of disease natural history of CRC. Figure 5.1 depicts the Bayesian DAG 

model for a five-state model. Let ={0,1,2,3,4} denote the state space, where 0 is for 

CRC free, 1 and 2 for early and late CRC in PCDP, respectively, and 3 and 4 for their 

counterparts in CP. The numbers of participants classified as state 0, 1, 2 at the first 
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screen, denoted by 𝑿𝑭 = {𝑂0, 𝑂1, 𝑂2}  following a multinomial distribution with 𝑷𝑭 , 

which are the same as the likelihood of prevalent subjects and can be expressed as  

𝑿𝑭⁡~⁡𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙⁡(𝑷𝑭, 𝑵𝑭), 

the numbers of attendees in state 0, 1, 2, 3, and 4 at the subsequent screen (k-th) given 

the state m (m=0, 1, 2) classified in the last screen ((k-1)-th), denoted by 𝑿𝑺𝒎 =

{𝑂0
𝑘|𝑂𝑚

𝑘−1, 𝑂1
𝑘|𝑂𝑚

𝑘−1, 𝑂2
𝑘|𝑂𝑚

𝑘−1, 𝑂3
𝑘|𝑂𝑚

𝑘−1, 𝑂4
𝑘|𝑂𝑚

𝑘−1}  following multinomial 

distributions with 𝑷𝑺𝒎, which are the same as the likelihood of subsequent subjects and 

can be expressed as 

𝑿𝑺𝒎 ⁡~⁡𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙⁡(𝑷𝑺𝒎 , 𝑵𝑺𝒎). 

Because FIT screening is only provided to those asymptom subjects, we assume 𝑿𝑭 in 

state 0/1/2 and 𝑿𝑺𝒎  with m=0, 1, 2.  

 For those who never screen, the numbers of refusers classified as state 0, 1, 2, 

3, and 4, denoted by 𝑿𝑪 = {𝑂0, 𝑂1, 𝑂2, 𝑂3, 𝑂4}  following a multinomial distribution 

with 𝑷𝑪, which are the same as the likelihood of refuser and can be expressed as  

𝑿𝑪⁡~⁡𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙⁡(𝑷𝑪, 𝑵𝑪). 

 

Bayesian MCMC estimation  

The parameters of the five-state model of natural history were estimated by using 

the Markov Chain Monte Carlo simulation with Bayesian approach. We assigned a non-
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informative prior distribution for parameters 𝚯 = (𝜆1, 𝜆2, 𝜇1, 𝜇2)  in the transition 

probabilities including incidence rate and three transition rates as gamma distribution; 

𝚯~Gamma(0.001,0.001), 

and the prior of parameters of sensitivities 𝚽 = (𝑒11, 𝑒22)  are assigned as beta 

distribution; 

𝚽~𝐵𝑒𝑡𝑎(10,10). 

Then, the full joint probability distribution can be given as 

P(𝑿𝑭, 𝑿𝑺𝒎 , 𝑿𝑪, 𝚯,𝚽) ∝ P(𝑿𝑭|𝚯,𝚽) × P(𝑿𝑺𝒎|𝚯,𝚽) × P(𝑿𝑪|𝚯) × P(𝚯) × P(𝚽). 

We set 30 of tuning iterations with 50 of burn-in iterations for reducing the correlation, 

and run 150,000 of MCMC iterations excluding the burn-in samples. The total samples 

of the posterior distribution are 5,000. After setting the initial value of parameters 𝚯 =

(0.001,0.1,0.1,0.1)  and 𝚽 = (𝑒11, 𝑒22) = (0.7,0.7) , the priors would be updated by 

data (likelihood), and we can get the estimated parameters and the 95% highest 

posterior density (HPD) region from samples of the posterior distribution by using 

Gibbs Sampling algorithm. 

 

Gibbs Sampling algorithm 

 Gibbs sampler samples from the conditional distributions which was 

decomposed by the full joint posterior distribution. Let 𝛀 = (𝚯,𝚽) =
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(𝜆1, 𝜆2, 𝜇1, 𝜇2, 𝑒11, 𝑒22) = (𝜃1, … , 𝜃6)  be the parameter space and the full posterior 

conditional distribution be P(𝜃𝑖|𝜃𝑗 , 𝑖 ≠ 𝑗, 𝑿𝑭, 𝑿𝑺𝒎 , 𝑿𝑪) ∝ P(𝑿𝑭, 𝑿𝑺𝒎 , 𝑿𝑪|𝛀) × P(𝛀) , 

then the conditional distribution of 𝜃1 (𝜆1) given 𝜃𝑗 = 𝜃𝑗
′, where 2≦j≦6, is 

P(𝜃1|𝜃𝑗 = 𝜃𝑗
′, 2 ≤ j ≤ 6, 𝑿𝑭, 𝑿𝑺𝒎 , 𝑿𝑪)

∝ P(𝑿𝑭, 𝑿𝑺𝒎 , 𝑿𝑪|𝛀 = (𝜃1, 𝜃2
′ , … , 𝜃6

′)) × P(𝛀 = (𝜃1, 𝜃2
′ , … , 𝜃6

′)). 

The steps of Gibbs sampling algorithm: 

(1) Start from the initial value of 𝛀𝟎 = (𝜃1
0, 𝜃2

0, … , 𝜃6
0) = (0.001,0.1,0.1,0.1,0.7,0.7). 

(2) Update parameters at first time:  

- Sample 𝜃1
1 from P(𝜃1|𝜃2

0, … , 𝜃6
0, 𝑿𝑭, 𝑿𝑺𝒎 , 𝑿𝑪) 

- Sample 𝜃2
1 from P(𝜃2|𝜃1

1, … , 𝜃6
0, 𝑿𝑭, 𝑿𝑺𝒎 , 𝑿𝑪) 

- Sample 𝜃3
1 from P(𝜃3|𝜃1

1, 𝜃2
1, … , 𝜃6

0, 𝑿𝑭, 𝑿𝑺𝒎 , 𝑿𝑪) 

⁞ 

- Sample 𝜃6
1 from P(𝜃6|𝜃1

1, 𝜃2
1, … , 𝜃5

1, 𝑿𝑭, 𝑿𝑺𝒎 , 𝑿𝑪) 

(3) Update parameters at (t+1) times:  

- Sample 𝜃1
𝑡+1 from P(𝜃1|𝜃2

𝑡 , … , 𝜃6
𝑡, 𝑿𝑭, 𝑿𝑺𝒎 , 𝑿𝑪) 

- Sample 𝜃2
𝑡+1 from P(𝜃2|𝜃1

𝑡+1, … , 𝜃6
𝑡, 𝑿𝑭, 𝑿𝑺𝒎 , 𝑿𝑪) 

⁞ 

- Sample 𝜃6
𝑡+1 from P(𝜃6|𝜃1

𝑡+1, 𝜃2
𝑡+1, … , 𝜃5

𝑡+1, 𝑿𝑭, 𝑿𝑺𝒎 , 𝑿𝑪) 

until t=5000, then stop.  
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5.3 Illustration with data from service screening program 

5.3.1 Taiwanese population-based service CRC screening program 

Data used in this study were derived from the Taiwanese nationwide CRC 

screening program which was organized by the Health Promotion Administration and 

has been launched since 2004. The details of the Taiwanese CRC program have been 

provided elsewhere (Chiu et al. (2015)). In brief, the program provided FIT screening 

biennially for residents aged 50-69 years since 2004. Subjects with positive FIT would 

be invited to take the follow-up confirmatory exam by public health nurses from 

community or medical staff from medical units. A computerized system for reporting 

screening finding, referral outcomes, and diagnosis has been built at the inception of 

the program. All records of adenomas lesion and CRC (screen-detected cases) identified 

at screening were kept in the system. The screening dataset regularly is compared with 

the National Cancer Registry to systematically identified CRCs outside the screening 

visits, such as interval cancers and refusers. The screening dataset is also regularly 

linked to the National Death Registry to ascertain the vital status. In this study, we 

enrolled all eligible population (aged 50-69 years) in 2004-2009 as the basis of my 

analysis cohort, which involved 5,417,699 eligible population. All screening records 

were retrieved until the end of 2014.    

The screening findings in first and subsequent rounds of screening is shown in 
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Table 5.1. Among the eligible population, there were 3,074,538 (56.7%) subjects 

attended screens at least once. The proportion of female attendees (55% and 63% in the 

first and later screens, respectively) is larger than male. Positive FIT findings were 

found in 7% attendees in the first screening round, and 6% in later rounds. The referral 

rates for confirmatory colonoscopy among those with positive FITs were 67% and 75% 

in the first and later rounds of screening. Until the end of 2014, the mean follow-up 

time is 4.86 years in screened group, and 9.02 years in unscreened group, and 9168 

CRCs were detected at the first screen, 4653 were found in the later screens, 11,904 

cancers diagnosed due to symptoms after their negative screening finding (interval 

cancer), and 45,818 CRCs were identified in the Cancer Registry among those refused 

to attend screening. The proportion of Stage 0/I CRCs was highest in cancers detected 

in screen-detected cancers (48% in prevalence screening, and 58% in subsequent 

screens), followed by interval cancer (39%), and refuser CRCs (22%) (Figure 5.2). On 

the other hand, the distribution of Stage IV cancers was highest in refuser CRCs (26%), 

followed by interval cancer (17%), and screen-detected cases (10% in prevalent screen, 

and 6% in subsequent screens). Table 5.2 lists number of subjects in different detection 

modes as defined in the above section. 
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5.3.2 Estimated results for the multi-state evolution of colorectal neoplasm 

 Table 5.3 shows the estimated results of Coxian phase-type Markov model for 

the disease natural history of colorectal cancer. We characterized two phases in light of 

the AJCC staging in both PCDP and CP, but with different definitions for the two phases: 

 Model 1: Phase I—stage 0/I; Phase II—stage II/III/IV 

 Model 2: Phase I—stage 0/I/II; Phase II—stage III/IV 

 Model 3: Phase I—stage 0/I/II/III; Phase II—stage IV 

 

The estimated results for the abovementioned three models are shown in Table 

5.3. The incidence of preclinical cancer were estimated as 1.28 (95% CI: 1.27, 1.29) 

per 1000 in all the three models. In Model 1, the instantaneous transition rate from stage 

0/I to stage II/III/IV in PCDP before developing clinical symptom was estimated as 

0.4624. The transition from PCDP to CP was faster in late stage (stage II/III/IV) (0.5231, 

95% CI: 0.5008, 0.5462) than in the early stage (stage 0/I) (0.1448, 95% CI: 0.1364, 

0.1543). The sensitivity for stage 0/I and stage II+ were estimated as 61% (95% CI: 

57%, 64%) and 78% (95% CI: 75%, 81%), respectively. 

If stage II was classified as early stage (Model 2) rather than late stage (Model 

1), the transition within PCDP become more difficult with slower transition rate (0.2648, 

95% CI: 0.2525,0.2780), but the transition from PCDP to CP for both early and late 
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stage became faster. Because both the two phases in Model 2 were more severe than 

their counterparts in Model 1, the two estimates of sensitivity became larger (69% for 

early cancer of stage 0/I/II, and 74% for late cancer of stage III/IV). The similar 

phenomena were observed in Model 3. The DIC statistics for Model 1-3 were 1162853, 

1174327, and 1152114, respectively. Although Model 3 defining Stage IV has a smallest 

DIC, defining stage IV as advanced CRC is contradict to the concept of early detection 

in screening, we therefore chose Model 1 as the best model for further investigation. 

Table 5.4 shows the estimated results of Coxian phase-type for the natural history 

of CRC with different number of phases in PCDP and CP, from 2-phase (five-state 

model), 3-phase (seven-state model), to 4-phase (nine-state) model. Regardless of 

number of phases in PCDP and CP, the estimated incidence of CRC was consistent 

across models. The further split of stage IV from late CRC in the seven-state model 

(DIC=1,217,330), and further division of stage II and III in the nine-state model 

(DIC=1,260,090) showed poor performance in terms of higher DIC than that in the 

five-state model (DIC=1,164,440). Following results in Table 5.3 and 5.4, the five-state 

model defining stage 0/I as early cancer and stage II/III/IV as advanced cancer is the 

best model structure for the disease natural history for CRC. The final model would be 

used in further analysis. 

We further explored whether the estimated results would be affected by exclusion 
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of refusers. The comparators would be the data with inclusion of refusers without (also 

the five-state model in Table 5.4) and with (also Model 1 in Table 5.3) considering 

sensitivity. Note that the former assumes sensitivity as 100%. The last column lists their 

corresponding estimates without non-attenders. Table 5.5 shows that if we do not take 

non-attendee into consideration, the estimated incidence rate (𝜆1) would be inflated to 

0.2 per 1000 regardless of with or without measurement error. Taking sensitivities of 

FIT into account, all estimated transition rates in the model without non-attendee were 

greater than that in the model with non-attendee. After tackling the problem of 

selection-bias and measurement error, the estimated parameters of incidence rate, 

transition rate from early PCDP to advanced PCDP, transition rate from early PCDP to 

early CP, and transition rate from advanced PCDP to advanced CP are 12.8 per 10,000, 

0.4624, 0.1448, and 0.5231, respectively. The sensitivities are 60.68% for early CRC 

and 77.98% for advanced CRC. The estimated results of this final model were used as 

the base case of further simulation study. Figure 5.3 shows the dynamic curves of 

cumulative risk of developing early PCDP, late PCDP, early CP, and late CP from 

normal, and early PCDP based on the final model.  

 

5.4 Simulation Study of Asymptotic Analysis 

In order to elucidate how the screening characteristics, including screening rate, 
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inter-screening interval, and sensitivity of screening tool (FIT) influence the efficacy of 

screening in terms of the reduction of advanced CRC and mortality from CRC, we 

conducted a series of simulations with varying values of abovementioned parameters 

compared with no screening as a control group.  

Each scenario was simulated with different cohort size from 10,000 to 1,000,000 

to check the asymptotic property for the simulated effectiveness, and yield the 

asymptotic estimate of number needed to screen (NNS) to reduce one adverse event 

(advanced CRC or CRC death). We also reported the bias, coverage rate, and power to 

its reference results of effectiveness given the simulation with a true cohort size 

(n=5,417,699) given 100 times trials for each scenario. 

 

5.4.1 Design for the simulation of asymptotic analysis 

We set the base case of screening program was 60% screening rate, 2-year inter-

screening interval with sensitivity of early CRC and advanced CRC as 60.68% and 

77.98%, respectively. The three scenarios were like the follows.  

 Scenario I: changing screening rate with 40%, 60%, and 80% 

 Scenario II: changing inter-screening interval with 1-, 2-, and 3-yearly 

 Scenario III: with improved sensitivity for early CRC and advanced CRC as 75% 

and 85%, respectively  
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5.4.2 Algorithm for the computer simulation 

     Given the best model we had in Section 5.3 (see below), we developed the computer 

micro-simulation algorithm to generate the underlying distribution of sojourn times, 

also called as holding time in different states, and the embedded discrete-time Markov 

chain. Secondly, we superimposed the assigned screening characteristics to yield cases 

of different detection modes with different scenarios. The detailed procedure was 

described below. 

 

 

Step 1. Simulate the underlying distribution of sojourn time 

Let random variables T0, T1, and T2 denote the sojourn time of staying in state 0 

(normal), state 1 (early PCDP), and state 2 (late PCDP) before further departure. Each 

sojourn time would independently follow an exponential distribution with parameters 

of 𝜆1 = 0.00128, 𝜆2 + 𝜇1 = 0.6072, and 𝜇2 = 0.5231 (see Table 5.4). The transition 

probability matrix of the embedded Markov Chain matrix is 

Normal 

(State 0) 

Preclinical 

Early CRC 

(State 1) 

Preclinical 

Late CRC 

(State 2) 

Clinical 

Early CRC 

(State 3) 

Clinical 

Late CRC 

(State 4) 

𝜆1 𝜆2 

𝜇1 𝜇2 
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𝑁𝑜𝑟𝑚𝑎𝑙
𝐸𝑎𝑟𝑙𝑦⁡𝑃𝐶𝐷𝑃
𝐿𝑎𝑡𝑒⁡𝑃𝐶𝐷𝑃
𝐸𝑎𝑟𝑙𝑦⁡𝐶𝑃
𝐿𝑎𝑡𝑒⁡𝐶𝑃 (

 
 
 

0 1 0 0 0

0 0
𝜆2

𝜆2 + 𝜇1

𝜇1
𝜆2 + 𝜇1

0

0 0 0 0 1
0 0 0 0 0
0 0 0 0 0)

 
 
 

 

 

Accordingly, the pathway for departing from State 1 can be either pathway (I) 

0124, or pathway (II) 013. For any subject arrives at state 1, the departing 

pathway will be randomly allocate with a randomly number following uniform 

distribution between 0 and 1. The detailed procedures are as follow. 

(1) Independently generate T0, T1, and T2 with distribution as follow: 

          𝑇0~exp⁡(𝜆1) 

          𝑇1~exp⁡(𝜆2 + 𝜇1) 

          𝑇2~exp⁡(𝜇2) 

(2) Generate U~Uniform(0,1)  

(3) If U lies between 0 and 
𝜆2

𝜆2+𝜇1
, then the underlying state transition will follow the 

pathway (I) 0124. Otherwise, the transition will follow pathway (II) 

013. 

(4) The total time (T ) from birth to absorbing state (state 3 or state 4) is 0 1 2T T T  for 

pathway (I) or 0 1T T  for pathway (II). 
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Step 2. Scheduled screen and consequent data on detection mode 

The following algorithms are used to get the data in screen program.  

(1) Given r times scheduled screening at ages, 1,..., rC C . 

(2) For pathway (I) 0124, if age at any specific schedule time point Cm < T0 then 

the occupied state at Cm denoted by Y(Cm) is assigned as 0. If Cm lies between T0 

and T0+ T1 then Y(Cm) is assigned as 1. If Cm lies between T0+ T1 and the total time 

(T), then Y(Cm) is assigned as 2. If Cm is beyond T, then Y(Cm) is assigned as 4. 

(3) For pathway (II) 013, Cm < T0 then Y(Cm) is assigned as 0. If Cm lies between 

T0 and the total time (T= T0+ T1), then Y(Cm) is assigned as 1. If Cm is beyond T, 

then Y(Cm) is assigned as 3. 

(4) Repeat m from 1 to r to get individual’s screening history and decide the data 

realization of the r time points. The number of detected cases in each screen can be 

calculated. For example, in the first round of screen, the number of early screen-

detected cases is  
1

1( ) 1
n

I Y C  , and the number of late screen-detected cases is 

 
1

1( ) 2
n

I Y C  . 

 

5.4.3 Simulation results 

Table 5.6 shows the results of asymptotic analysis for the effectiveness in terms 

of advanced cancer reduction with varying simulated cohort size under different 
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scenarios. Compared to the reference value of 24.86% reduction, the bias across three 

scenarios and different sample size yielded a bias less than 1%, and all the coverage 

rates were higher than 92%. The power to detect a significant reduction would be 

affected by sample size (Figure 5.4). Almost all scenarios with sample size larger than 

30,000 can reach 90% or higher power. The power function for annual screening was 

better than its counterpart of two-yearly and three-yearly. The asymptotic NNS to 

reduce one advanced CRC with 40%, 60%, and 80% screening rate were 380, 309, and 

260, respectively.  

Compared to the base case: 2-yearly screening of 60% screening rate (NNS=309), 

a shorter inter-screening interval had smaller NNS, 220 for annual screening. Similar 

phenomenon was observed with better performed screening tool, 265. 

Table 5.7 shows the results of asymptotic analysis for the effectiveness in terms 

of CRC mortality reduction with varying simulated cohort size under different scenarios. 

Compared to the reference value of 20.93%, the bias for simulation size larger than 

30,000 can be restrained with 1% across all the three scenarios. The coverage rate of 

mortality reduction was larger than 92%. For the power to provide a significant 

reduction in CRC mortality, we would need a cohort size no smaller than 100,000 

(Figure 5.5). Almost all scenarios with sample size larger than 100,000 can reach 90% 

or higher power. The power function for annual screening was better than its counterpart 
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of two-yearly and three-yearly.. The asymptotic NNS to reduce one CRC death with 

40%, 60%, and 80% screening rate were 882, 750, and 656, respectively.  

Compared to the basecase: 2-yearly screening of 60% screening rate (NNS=750), 

a shorter inter-screening interval had smaller NNS, 544 for annual screening. Similar 

phenomenon was observed with better performed screening tool of enhanced sensitivity 

for early and late CRCs, 638. 

 

5.5 Perturbation analysis on effectiveness of FIT screening 

In order to test the influence of screening characteristics on the effectiveness of 

FIT screening—screening rate, inter-screening interval, and sensitivity of FIT, we 

applied another series of screening, with the following three scenarios: 

 Scenario I: changing screening rate from 10% to 100% with 10% increments 

 Scenario II: changing inter-screening interval with 1-, 2-, and 3-yearly 

 Scenario III: with improved sensitivity for early CRC and advanced CRC from 

60% to 80% and 80% to 100%, respectively 

The parameter of the base case were the same as the ones used in previous section.  

Table 5.8 shows the effectiveness on advanced cancer reduction. With increasing 

coverage rate, the advanced cancer reduction increased from 13.18% for 10% screen 

rate to 34.10% with 100% screen rate, and the number needed to be screened decreased 
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from 599 to 225 (Table 5.8, Figure 5.6). With lengthen inter-screening intervals, the 

efficacy declines and the number need to screen increased (Table 5.9, Figure 5.7). The 

advanced cancer reduction increased with improved sensitivities. The higher 

sensitivities (no matter in early stage of advanced stage), the less advanced cancers at 

diagnosis, which yielded more efficient screening (smaller number needed to be 

screened). The similar findings were seen in reducing clinically-detected cancers (Table 

5.9), and mortality reduction (Table 5.10). 

 

5.6 Discussion     

5.6.1 Device of stage method with Coxian phase-type Markov process  

    This chapter demonstrate the use of device of stage method with the mixture of serial 

form and the parallel form, named as Coxian phase-type Markov process to tackle the 

problem of data with non-Markovian structure. The concept of device of stage method 

incorporated tumour stage into transient states in the PCDP built in the proposed Coxian 

phase-type Markov process provide an opportunity to evaluate the effectiveness of 

reducing advanced CRC as a result from screening with perturbation analysis on three 

parameters, including coverage rate, sensitivity, and inter-screening interval.     
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5.6.2 The comparison of transition rate between g-FOBT and FIT  

In the previous study of Nottingham and Denmark RCTs for CRC screening 

which provided the biennial fecal occult blood (FOB) test to subjects aged 45-74 years 

(Chiu SYH et al. (2011)), the estimated results of five-state CRC natural history model 

by Dukes’ stage demonstrated that the CRC incidence was 1.48 per 1000, which was 

higher than our results in Taiwan, and the annual progression rate from PCDP localized 

CRC (Dukes’ A, B) to PCDP non-localized CRC (Dukes’ C, D), the rate from PCDP 

localized CRC to clinical localized CRC, and the rate from PCDP non-localized CRC 

to clinical non-localized CRC were 0.28, 0.22, and 0.72, respectively. Despite the 

definition of advanced CRC are different in comparison with our study, we had a greater 

rate from early PCDP to late PCDP (0.4624). 

The Coxian phase-type stochastic process was used to estimate the tumour-stage-

based natural history of CRC and project the effectiveness of population-based 

screening program. Under 60% coverage rate, biennial FIT screening led to 25% 

advanced CRC reduction, and 311 number need to be screened (NNS). As the inter-

screening interval shortened to annual program, the reduction increased by 10% and 

NNS was reduced to 222. Asymptotic and perturbation analysis also revealed the 

required sample size to reach statistical power and also statistical impacts regarding 

different effect sizes as a result of various screening policies. Such a modelling 
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approach also provides an alternative method in contrast to the traditional study design 

based on population-based experimental and quasi-experimental design requiring the 

control group. 

 

5.6.3 Limitations 

     The device stage method may not be appropriate for non-Markov structure in some 

occasions particularly when number of stages increase, which may lead to too many 

parameters in contrast to sparse data. To relieve this concern, the semi-Markov model 

with the supplementary approach or the embedded Markov chain method can be 

considered.   

 

    In conclusion, we propose Coxian phase-type Markov process to deal with non-

Markovian stochastic process. The model form with the incorporation of tumour stage, 

making allowance for measurement error, was applied to evaluating the effectiveness 

of population-based screening for CRC with FIT.       
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Table 5.1 Descriptive results of demographic features, and basic screening 

characteristics.   

 First Round Subsequent Round 

Number of FIT test 3,074,538 2,552,925# 

    Gender   

        Male 1,376,955 (44.8%) 949,204 (37.2%) 

        Female 1,697,534 (55.2%) 1,603,721 (62.8%) 

    Age group   

        50-54 808,767 (26.3%) 215,411 (8.4%) 

        55-59 991,314 (32.2%) 878,488 (34.4%) 

        60-64 720,564 (23.4%) 819,006 (32.1%) 

        65-69 553,893 (18.1%) 640,020 (25.1%) 

Number of Positive test 211,888 (6.9%) 159,382 (6.2%) 

Number of referral  142,800 (67%) 119,648 (75%) 

Adenoma 65,557 54,971 

    PPV+ 46% 46% 

    Detection rate 21‰ 22‰ 

Advanced adenoma 18,346 11,290 

    PPV+ 13% 9% 

    Detection rate 6‰ 4‰ 

Colorectal Cancer 9,168 4,653 

    PPV+ 6% 4% 

    Detection rate 3‰ 2‰ 

# Number of repeated subject is 1,583,805 (repeated rate=52%) 

+ PPV (Positive Predictive Value) = number of disease / number of compliers 

 

  



doi:10.6342/NTU201901194

120 
 

Table 5.2 Frequencies of different types of CRC disease progression from normal, 

through PCDP, until CP.    

Screening finding by round Status Frequency 

Prevalent screening Normal 3065370 

 Stage 1 CRC 3899 

 Stage 2 CRC 1445 

 Stage 3 CRC 2010 

 Stage 4 CRC 777 

 Stage missing CRC 1037 

Subsequent screening Normal 2548272 

 Stage 1 CRC 2439 

 Stage 2 CRC 599 

 Stage 3 CRC 925 

 Stage 4 CRC 272 

 Stage missing CRC 418 

Interval cancer Stage 1 CRC 4111 

 Stage 2 CRC 2048 

 Stage 3 CRC 2635 

 Stage 4 CRC 1851 

 Stage missing CRC 1259 

Refuser Normal 2540619 

 Stage 1 CRC 8539 

 Stage 2 CRC 9286 

 Stage 3 CRC 11165 

 Stage 4 CRC 10152 

 Stage missing CRC 6676 

Censoring+  2927405 

 

+ Censoring:normal state until the end of follow-up 
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Table 5.3 Estimated results of dwell times of staying in non-advanced and advanced 

CRC and the corresponding sensitivity.  

 Model 1 

(Stage 2 as cutoff) 

Model 2 

(Stage 3 as cutoff)  

Model 3 

(Stage 4 as cutoff) 

 Estimate 

(HPD interval) 

Estimate 

(HPD interval) 

Estimate 

(HPD interval) 

Incidence rate 
0.00128 

(0.00127,0.00129) 

0.00128 

(0.00127,0.00129) 

0.00128 

(0.00126,0.00128) 

Transition rate    

Early PCDP  

→ Late PCDP 

0.4624 

(0.4354,0.4901) 

0.2648 

(0.2525,0.2780) 

0.0900 

(0.0865,0.0934) 

Early PCDP  

→ Early CP 

0.1448 

(0.1364,0.1543) 

0.2283 

(0.2173,0.2397) 

0.2708 

(0.2608,0.2804) 

Late PCDP  

→ Late CP 

0.5231 

(0.5008,0.5462) 

0.5344 

(0.5066,0.5620) 

0.9748 

(0.8880,1.0771) 

Sensitivity    

Early PCDP 
0.6068 

(0.5717,0.6432) 

0.6873 

(0.6559,0.7167) 

0.7145 

(0.6927, 0.7374) 

Late PCDP 
0.7798 

(0.7535,0.8066) 

0.7417 

(0.7121,0.7706) 

0.8028 

(0.7484,0.8579) 

PCDP: pre-clinical detectable phase; CP: clinical phase; MST: mean sojourn time 
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Table 5.4 Estimated results of transition rates of CRC natural history by using multi-

state models without measurement errors 

Transition rates 
Estimate HPD Interval 

DIC 
(Mean) Lower Upper 

Five-state     

Incidence rate (𝜆1) 0.00131 0.00130 0.00132 1164440 

PCDP (Stage 0/I) → PCDP (Stage II+) (𝜆2) 0.8917 0.8689 0.9134  

PCDP (Stage 0/I) → CP (Stage 0/I) (𝜆3) 0.2748 0.2672 0.283  

PCDP (Stage II+) → CP (Stage II+) (𝜆4) 0.7485 0.7285 0.7685  

Seven-state     

Incidence rate (𝜆1) 0.00132 0.00131 0.00133 1217330 

PCDP (Stage 0/I) → PCDP (Stage II/III) (𝜆2) 0.8931 0.8710 0.9144  

PCDP (Stage II/III) → PCDP (Stage IV) (𝜆3) 0.3226 0.3127 0.3328  

PCDP (Stage 0/I) → CP (Stage 0/I) (𝜆4) 0.2739 0.2662 0.2814  

PCDP (Stage II/III) → CP (Stage II/III) (𝜆5) 0.6371 0.6174 0.6553  

PCDP (Stage IV) → CP (Stage IV) (𝜆6) 1.6644 1.5593 1.7701  

Nine-state     

Incidence rate (𝜆1) 0.00132 0.00131 0.00133 1260090 

PCDP (Stage 0/I) → PCDP (Stage II) (𝜆2) 0.8832 0.8607 0.9043 

PCDP (Stage II) → PCDP (Stage III) (𝜆3) 2.1830 2.0752 2.2909 

PCDP (Stage III) → PCDP (Stage IV) (𝜆4) 0.6297 0.6057 0.6567 

PCDP (Stage 0/I) → CP (Stage 0/I) (𝜆5) 0.2685 0.2608 0.2763 

PCDP (Stage II) → CP (Stage II) (𝜆6) 0.8624 0.8188 0.9059 

PCDP (Stage III) → CP (Stage III) (𝜆7) 0.6812 0.6549 0.7097 

PCDP (Stage IV) → CP (Stage IV) (𝜆8) 1.7889 1.6550 1.9084 
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Table 5.5 Estimated results of transition rates of CRC natural history by using five-

state models considering with and without those non-attendee of FIT screening 

 With non-attendee Without non-attendee 

 Estimate  

(HPD interval) 

Estimate  

(HPD interval) 

Without measurement error 

Incidence rate (𝜆1) 0.00131 

(0.00130,0.00132) 

0.00152 

(0.00150,0.00154) 

PCDP (Stage 0/I) → PCDP (Stage II+) (𝜆2) 0.8917 

(0.8689,0.9134) 

0.8650 

(0.8437,0.8885) 

PCDP (Stage 0/I) → CP (Stage 0/I) (𝜆3) 0.2748 

(0.2672,0.2830) 

0.3380 

(0.3262,0.3491) 

PCDP (Stage II+) → CP (Stage II+) (𝜆4) 0.7485 

(0.7285,0.7685) 

0.7727 

(0.7534,0.7928) 

With measurement error 

Incidence rate (𝜆1) 0.00128 

(0.00127,0.00129) 

0.00142 

(0.00140,0.00144) 

PCDP (Stage 0/I) → PCDP (Stage II+) (𝜆2) 0.4624 

(0.4354,0.4901) 

0.4934 

(0.4578,0.5247) 

PCDP (Stage 0/I) → CP (Stage 0/I) (𝜆3) 0.1448 

(0.1364,0.1543) 

0.2048 

(0.1895,0.2198) 

PCDP (Stage II+) → CP (Stage II+) (𝜆4) 0.5231 

(0.5008,0.5462) 

0.5294 

(0.5046,0.5539) 

Sensitivity of Early PCDP 
0.6068 

(0.5717,0.6432) 

0.6722 

(0.6296,0.7150) 

Sensitivity of Late PCDP 
0.7798 

(0.7535,0.8066) 

0.7790 

(0.7530,0.8066) 
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Table 5.6 Simulated results of asymptotic analysis on the effectiveness of advanced 

cancer reduction 

Sample size Bias Coverage rate Power NNS (95% C.I.) 

Scenario I: Changing Screening rate 

40% Screening rate 

10,000 0.0107 95.2% 54% 582 (-2289, 3454) 

30,000 0.0050 94.2% 91% 473 (-519, 1465) 

50,000 -0.0002 95.6% 99% 405 (153, 657) 

100,000 -0.0002 92.8% 100% 392 (235, 550) 

300,000 0.00002 93.8% 100% 382 (301, 464) 

500,000 0.0005 95.6% 100% 382 (320, 444) 

1,000,000 0.0001 96.2% 100% 380 (337, 423) 

60% Screening rate 

10,000 0.0045 96.2% 69% 369 (-891, 1629) 

30,000 -0.0024 96.2% 98% 330 (50, 610) 

50,000 -0.0006 94.6% 100% 321 (169, 473) 

100,000 -0.0004 95.4% 100% 314 (220, 407)  

300,000 0.0010 93.0% 100% 313 (254, 371) 

500,000 0.0013 94.2% 100% 311 (270, 353) 

1,000,000 -0.0001 96.8% 100% 309 (281, 336) 

80% Screening rate 

10,000 0.0019 95.2% 83% 318 (-260, 896) 

30,000 0.0059 95.0% 100% 280 (129, 432) 

50,000 0.0002 95.6% 100% 267 (173, 360) 

100,000 0.0003 94.2% 100% 264 (195, 333) 

300,000 0.0010 94.8% 100% 266 (226, 298) 

500,000 0.0004 95.2% 100% 261 (232, 290) 

1,000,000 -0.0002 94.6% 100% 260 (240, 280) 

NNS: Number needed to be screened 
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Table 5.6 (Continued) 

Sample size Bias Coverage rate Power NNS (95% C.I.) 

Scenario II: Changing Inter-screening interval 

Annual screening interval 

10,000 0.0044 93.8% 93% 252 (20, 483) 

30,000 -0.0024 93.4% 100% 226 (135, 316) 

50,000 0.0013 95.2% 100% 226( 160, 291) 

100,000 0.0021 94.6% 100% 224 (177, 271) 

300,000 0.0010 95.8% 100% 222 (196, 247) 

500,000 0.0011 95.0% 100% 221 (201, 241) 

1,000,000 -0.0004 95.8% 100% 220 (207, 233) 

Biennial screening interval 

10,000 0.0028 94.6% 70% 361 (-1225, 1947) 

30,000 0.0017 95.4% 98% 335 (109, 562) 

50,000 -0.0018 96.2% 100% 318 (176, 461) 

100,000 0.0003 95.2% 100% 315 (218, 413) 

300,000 -0.0006 94.8% 100% 309 (257, 361) 

500,000 0.0012 94.0% 100% 311 (270, 353) 

1,000,000 0.0002 94.8% 100% 309 (280, 338) 

Triennial screening interval 

10,000 -0.0073 94.8% 51% 403 (-1951, 2756) 

30,000 0.0032 94.0% 89% 491 (-378, 1359) 

50,000 0.0018 96.2% 98% 430 (115, 745) 

100,000 0.0016 96.2% 100% 411 (236, 587) 

300,000 0.0009 94.2% 100% 399 (310, 488) 

500,000 0.0003 95.6% 100% 395 (329, 462) 

1,000,000 0.0007 94.8% 100% 395 (350, 440) 

NNS: Number needed to be screened 
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Table 5.6 (Continued) 

Sample size Bias Coverage rate Power NNS (95% C.I.) 

Scenario III: Changing sensitivities of FIT: 75% for early CRC and 85% for advanced 

CRC 

10,000 0.0061 96.4% 81% 339 (-330, 1008) 

30,000 -0.0026 94.6% 100% 274 (137, 411) 

50,000 0.0047 95.4% 100% 278 (170, 387) 

100,000 0.0019 96.6% 100% 270 (204, 336) 

300,000 0.0002 94.6% 100% 266 (228, 304) 

500,000 0.0005 94.6% 100% 266 (236, 295) 

1,000,000 0.0004 95.2% 100% 265 (244, 286) 

NNS: Number needed to be screened 
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Table 5.7 Simulated results of asymptotic analysis on the effectiveness of CRC 

mortality reduction 

Sample size Bias Coverage rate Power NNS (95% C.I.) 

Scenario I: Changing Screening rate 

40% Screening rate 

5,000 0.0424 95.4% 19% 328 (-3065, 3721) 

10,000 0.0135 95.6% 28% 592 (-3878, 5063) 

30,000 0.0011 95.0% 58% 1092 (-4684, 6742) 

50,000 0.0035 92.0% 77% 1399 (-5521, 8318) 

100,000 0.0024 95.0% 96% 1031 (-107, 2132) 

300,000 0.0023 94.6% 100% 915 (585, 1246) 

500,000 0.0003 95.4% 100% 893 (663, 1122) 

1,000,000 -0.0007 96.2% 100% 880 (721, 1039) 

3,000,000 0.0003 95.4% 100% 882 (790, 973) 

60% Screening rate 

5,000 0.0347 94.2% 22% 436 (-2969, 3842) 

10,000 0.0153 94.8% 35% 845 (-3743, 5433) 

30,000 0.0020 95.4% 70% 1018 (-2328, 4364) 

50,000 0.00002 96.4% 88% 840 (-252, 1932) 

100,000 0.0005 95.2% 99% 803 (298, 1308) 

300,000 0.0014 96.6% 100% 770 (541, 1000) 

500,000 0.0013 95.6% 100% 763 (592, 935) 

1,000,000 0.0006 95.0% 100% 756 (635, 877) 

3,000,000 -0.00009 94.8% 100% 750 (682, 819) 

80% Screening rate 

5,000 0.0181 94.6% 27% 453 (-2523, 3429) 

10,000 0.0193 96.6% 42% 837 (-3168, 4842) 

30,000 0.0045 94.4% 81% 856 (-2680, 4392) 

50,000 0.0079 95.4% 95% 778 (-101, 1657) 

100,000 0.0020 97.2% 100% 690 (353, 1026) 

300,000 0.0029 95.4% 100% 672 (499, 846) 

500,000 0.0013 96.4% 100% 662 (536, 789) 

1,000,000 -0.0003 96.0% 100% 655 (568, 742) 

3,000,000 0.0005 95.8% 100% 656 (605, 707) 

NNS: Number needed to be screened 
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Table 5.7 (Continued) 

Sample size Bias Coverage rate Power NNS (95% C.I.) 

Scenario II: Changing Inter-screening interval 

Annual screening interval 

5,000 0.0221 96.0% 35% 538 (-1874, 2951) 

10,000 0.0055 96.2% 55% 624 (-2197, 3445) 

30,000 0.0085 95.2% 92% 666 (-2313, 3644) 

50,000 0.0002 95.4% 99% 582 (198, 965) 

100,000 -0.0011 93.8% 100% 560 (333, 786) 

300,000 -0.0001 95.6% 100% 548 (437, 660) 

500,000 0.0017 94.6% 100% 551 (460, 641) 

1,000,000 0.0010 95.2% 100% 547 (485, 610) 

3,000,000 -0.0003 95.4% 100% 544 (509, 579) 

Biennial screening interval 

5,000 0.0347 94.2% 22% 436 (-2969, 3842) 

10,000 0.0153 94.8% 35% 845 (-3743, 5433) 

30,000 0.0020 95.4% 70% 1018 (-2328, 4364) 

50,000 0.00002 96.4% 88% 840 (-252, 1932) 

100,000 0.0005 95.2% 99% 803 (298, 1308) 

300,000 0.0014 96.6% 100% 770 (541, 1000) 

500,000 0.0013 95.6% 100% 763 (592, 935) 

1,000,000 0.0006 95.0% 100% 756 (635, 877) 

3,000,000 -0.00009 94.8% 100% 750 (682, 819) 

Triennial screening interval 

5,000 0.0248 95.0% 17% 373 (-3236, 3982) 

10,000 0.0015 95.4% 26% 702 (-3486, 4890) 

30,000 0.0077 94.0% 53% 976 (-6638, 8589) 

50,000 0.0025 94.8% 72% 1263 (-3334, 5859) 

100,000 0.0020 96.8% 93% 1049 (164, 1934) 

300,000 0.0002 96.8% 100% 970 (579, 1360) 

500,000 -0.0009 95.8% 100% 948 (662, 1235) 

1,000,000 -0.0004 95.0% 100% 942 (756, 1128) 

3,000,000 0.0003 95.8% 100% 941 (835, 1047) 

NNS: Number needed to be screened 
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Table 5.7 (Continued) 

Sample size Bias Coverage rate Power NNS (95% C.I.) 

Scenario III: Changing sensitivities of FIT: 75% for early CRC and 85% for advanced 

CRC 

5,000 0.0374 95.6% 26% 312 (-2549, 3172) 

10,000 0.0091 96.4% 41% 784 (-3464, 5033) 

30,000 -0.0003 94.4% 79% 735 (-1488, 2958) 

50,000 -0.0003 94.6% 93% 814 (-3578, 5206) 

100,000 0.0011 95.2% 100% 670 (340, 1001) 

300,000 0.0003 95.6% 100% 649 (477, 821) 

500,000 0.0004 94.8% 100% 645 (520, 770) 

1,000,000 0.0006 94.4% 100% 642 (558, 727) 

3,000,000 -0.0003 95.0% 100% 638 (589, 687) 

NNS: Number needed to be screened 
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Table 5.8 Relative risk, absolute risk, and NNS for assessing FIT screening policy on 

advanced cancer reduction 

Coverage rate 

(%) 

Number of  

advanced cancer 

Advanced cancer 

reduction  

(95% CI; %) 

Number 

needed to be 

screened Control Invited 

Scenario I: Change coverage rates 

10% 3913 3396 13.18 (9.12-17.25) 599 (372-826) 

20% 3914 3309 15.44 (11.47-19.41) 507 (352-662) 

30% 3906 3212 17.73 (13.91-21.55) 439 (329-549) 

40% 3916 3121 20.27 (16.50-24.04) 382 (300-464) 

50% 3910 3031 22.48 (18.84-26.11) 344 (279-409) 

60% 3912 2940 24.83 (21.21-28.46) 311 (257-364) 

70% 3916 2849 27.22 (23.70-30.75) 283 (238-328) 

80% 3909 2763 29.30 (25.83-32.77) 263 (225-301) 

90% 3914 2667 31.84 (28.70-34.99) 241 (212-271) 

100% 3914 2579 34.10 (30.90-37.30) 225 (199-252) 

     

Scenario II: Change inter-screening interval 

1-yearly 5379 2553 34.72 (31.31-38.14) 222 (195-249) 

2-yearly 5379 2937 24.84 (21.43-28.25) 311 (259-362) 

3-yearly 5376 3150 19.45 (15.65-23.25) 399 (309-489) 

     

Scenario III: sensitivity of early and advanced CRC 

(Early Late)     

60% 80% 3922 2947 24.85 (21.26-28.44) 310 (257-363) 

65% 80% 3918 2902 25.91 (22.42-29.41) 297 (250-345) 

70% 85% 3950 2863 27.51 (24.09-30.94) 277 (236-319) 

75% 85% 3953 2819 28.65 (24.99-32.31) 266 (225-307) 

75% 90% 3975 2825 28.92 (25.50-32.33) 262 (225-299) 

80% 95% 4010 2782 30.60 (27.38-33.83) 245 (214-277) 

80% 100% 4039 2787 30.97 (27.57-34.36) 241 (209-273) 
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Table 5.9 Relative risk, absolute risk, and NNS for assessing FIT screening policy on 

clinically detected CRCs 

Coverage 

rate (%) 

Number of clinically-

detected CRC 

Number of 

clinically-detected 

CRC reduction 

RR 

(95% CI) 

Control Invited 

Scenario I: Change coverage rates 

10% 4575 4270  305  6.64 (2.77-10.52) 

20% 4575 3966  609  13.28 (9.66-16.90) 

30% 4570 3659  916  19.92 (16.35-23.49) 

40% 4570 3359  1216  26.49 (23.15-29.82) 

50% 4574 3056  1518  33.16 (30.09-36.23) 

60% 4568 2755  1820  39.69 (36.82-42.56) 

70% 4577 2446  2128  46.53 (43.91-49.16) 

80% 4567 2148  2426  52.95 (50.59-55.32) 

90% 4569 1841  2734  59.70 (57.49-61.92) 

100% 4572 1544  3030  66.22 (64.23-68.20) 

     

Scenario II: Change inter-screening interval 

1-yearly 4566 2315 2251 49.29 (46.66-51.93) 

2-yearly 4566 2755 1811 39.65 (36.79-42.52) 

3-yearly 4565 3087 1479 32.35 (29.30-35.41) 

     

Scenario III: sensitivity of early and advanced CRC 

(Early Late)     

60% 80% 4573  2747  1826  39.92 (36.98-42.86) 

65% 80% 4568  2713  1855  40.59 (37.68-43.49) 

70% 85% 4571  2652  1919  41.97 (39.37-44.57) 

75% 85% 4569  2617  1951  42.69 (39.91-45.48) 

75% 90% 4570  2590  1980  43.32 (40.63-46.01) 

80% 95% 4573  2528  2045  44.72 (42.01-47.42) 

80% 100% 4575  2500  2075  45.34 (42.76-47.91) 

  



doi:10.6342/NTU201901194

132 
 

Table 5.10 Relative risk, absolute risk, and NNS for assessing FIT screening policy on 

CRC mortality reduction 

Coverage rate 

(%) 

Number of CRC 

death 

CRC mortality 

reduction 

(95% CI; %) 

Number needed 

to be screened 
Control Invited 

Scenario I: Change coverage rates 

10% 1914 1661 13.18 (7.32-19.04) 1384 (-3822-6590) 

20% 1914 1632 14.69 (9.02-20.36) 1122 (543-1701) 

30% 1915 1601 16.34 (10.53-22.15) 1000 (538-1462) 

40% 1911 1572 17.70 (12.39-23.01) 913 (578-1248) 

50% 1913 1544 19.24 (13.67-24.81) 837 (539-1136) 

60% 1913 1512 20.93 (15.56-26.29) 765 (534-995) 

70% 1914 1484 22.44 (17.20-27.69) 711 (502-920) 

80% 1915 1457 23.88 (18.63-29.13) 666 (491-841) 

90% 1915 1426 25.53 (20.47-30.59) 621 (475-767) 

100% 1913 1397 26.92 (22.13-31.72) 588 (465-712) 

     

Scenario II: Change inter-screening interval 

1-yearly 1912 1362 28.71 (23.68-33.75) 552 (433-671) 

2-yearly 1209 1514 20.63 (15.10-26.17) 780 (523-1036) 

3-yearly 1914 1595 16.65 (11.39-21.91) 972 (583-1361) 

     

Scenario III: sensitivity of early and advanced CRC 

(Early Late)     

60% 80% 1923 1517 21.08 (15.59-26.57) 756 (522-989) 

65% 80% 1921 1498 21.97 (16.80-27.14) 723 (522-989) 

70% 85% 1934 1485 23.17 (18.19-28.15) 679 (520-857) 

75% 85% 1936 1466 24.28 (19.18-29.38) 647 (484-810) 

75% 90% 1948 1473 24.35 (19.28-29.42) 641 (480-802) 

80% 95% 1967 1456 25.93 (20.79-31.08) 595 (454-737) 

80% 100% 1978 1458 26.27 (21.43-31.11) 584 (450-717) 
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Figure 5.1 The Bayesian directed acyclic graph (DAG) model for the five-state model 

with measurement errors 

 

 

Annotation: 

(a) Nc, NF, NS0, NS1, NS2: total number of subjects in the control group (refuser), 

attending first screen, and in State 0-2 from previous time point among those 

attending subsequent screens. 

(b) Xc[m], XF[m], XS0[m], XS1[m], XS2[m]: number of subjects in state m in the 

control group (refuser), attending first screen, and in State 0-2 from previous time 

point among those attending subsequent screens. 

(c) 𝜆𝑖: transition rates 

(d) Sen1 and Sen2: sensitivity of FIT for early and late CRC 
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Figure 5.2 Distribution of AJCC tumour staging of CRC 

 

 
Screen-detected Cancer Clinical-detected Cancer 

Prevalent Subsequent Interval cancer Refuser 

0/I 3899 2439 4111 8539 

II 1445 599 2048 9286 

III 2010 925 2635 11165 

IV 777 272 1851 10152 

NA 1037 418 1259 6676 

Overall 9168 4653 11904 45818 
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Figure 5.3 Dynamic curves of early and late CRC progressions  
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Figure 5.4 Power function of asymptotic analysis on the effectiveness of advanced 

cancer reduction by inter-screening interval 

 

 

 

Figure 5.5 Power function of asymptotic analysis on the effectiveness of CRC 

mortality reduction by inter-screening interval 
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Figure 5.6 Number and proportion of advanced cancer by different scenarios 

(a) Change coverage rates  

 

 

(b) Change inter-screening intervals 
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Chapter 6 Statistical Indicators for Up-staging of CRC Assessed by 

Coxian Phase-type Markov Process with Device Stage Method 

                                                       Summary 

Introduction Despite the fact that non-Markov process has been developed for 

modelling the disease natural history of colorectal cancer with three phenotypes (free 

of colorectal cancer (CRC) (state 1), pre-clinical detectable phase (PCDP) (state 2), and 

clinical phase (CP)) (state 3) by tumour stage, how to assess the force of upstaging 

before surfacing to CP has been never quantified.  

Aims This chapter is to develop statistical indicators underpinning with Coxian phase-

type Markov process as proposed in Chapter 5 for evaluation of the rate of upstaging 

between transient states within PCDP relative to that of downstaging to absorbing state 

of CP   

Statistical methods The indicator was developed with the relative rate between 

upstaging within the latent state of PCDP (2m, m=1,…..,k sub-state of state 2) and 

surfacing to CP with downstaging stage ((3m, m=1,…..,k), sub-state of state 3) to assess 

whether the poorer performance of proximal CRC as compared with distal CRC was 

due to poor sensitivity or high potential of upstaging ad to quantify the force of 

upstaging by location. The other indicator characterized by multi-nominal odds ratios 

was also proposed to assess how the effect of inter-screening interval on the reduction 
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of advanced CRC varies with the location (proximal and distal site) of occurrence of 

CRC. 

       Analytical formula and simulation with stochastic integration were developed to 

prove the use of relative rate (RR=2m/3m) for assessing the force of upstaging as 

opposed to downstaging. A series of simulation studies with perturbation analysis by 

the order of 2m and 3m were conducted to assess the influence of three scenarios (2m 

> 3m, 2m  < 3m , and 2m  = 3m) associated with the effect of inter-screening interval 

the reduction of advanced CRC.      

Applications These indicators were applied to five-state (k=2) Coxian phase-type 

Markov process to evaluating the force of upstaging from early CRC to late CRC within 

PCDP by the location (proximal and distal site) of CRC using data on Taiwanese 

national colorectal cancer screening program.  

Results Estimated results show the incidence of distal CRC is three-fold of the proximal 

CRC, but all of transition rates after entering PCDP for proximal CRC is faster than 

distal CRC. The proximal CRC (RR=4.46) had statistically significantly higher 

potential of upstaging from early to late CRC in the PCDP compared with the distal one 

(RR=2.87) but the estimates of the sensitivity of FIT test in early and later stage of CRC 

were identical between the proximal CRC and the distal one. The effect of shorting 

inter-screening interval from triennial to annual regime on the reduction of advanced 
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CRC was therefore more remarkable in the proximal site in comparison with the distal 

one. In addition, the higher folds of 2m / 3m, the greater effectiveness of advanced 

CRC reduction as well. 

Conclusion The proposed statistical indicators under the context of Coxian phase-type 

Markov process were not only theoretically sound but had high potential of practical 

use in quantifying the force of upstaging within latent PCDP. The application of these 

indicators to evaluation of upstaging in population-based organized service screening 

provides a new insight into a higher potential of upstaging for proximal CRCs compared 

with distal CRCs, which also accounts for the performance of FIT associated with 

proximal CRC attributed to upstaging rather than poor sensitivity.         
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6.1 Introduction  

       While the stage device method underpinning Coxian phase-type Markov process 

is proposed to turn non-Markovian process into Markov process statistical application 

to elucidating the disease progression, particularly latent state transition, has been not 

well studies yet. In the real world, there are many classifications of states defined by 

various phenotypes of disease from different aspects. These include symptoms and 

signs of disease from patients’ viewpoint, clinical attributes diagnosed from medical 

devices or physician, psychosocial contextual factors derived from social environments, 

pathological diagnosis of stage and class of disease with or without aided by molecular 

markers originated from laboratory science. In the domain of disease screening for 

instance, the administration of new screening method has identified a series of 

asymptomatic states in parallel with symptomatic states defined by pathological stages.  

          In the previous literatures, there are numerous mathematical modelling 

approaches that have been developed for quantifying the disease progression but few 

studies have been devoted to the development of statistical indicators for assessing the 

relative force of transition to severe disease status (up-staging) with different aspects. 

If the disease can be defined by three main classes according to patient symptoms and 

signs, apparently healthy, asymptomatic, and symptomatic, how can information 

derived from other aspects be incorporated into three main classes for assessing the 
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force of transition to different pathways?  

         In the context of Coxian phase-type Markov process applied to the progression of 

colorectal cancer (CRC), asymptomatic state is defined as pre-clinical detectable phase 

(PCDP) and symptomatic state is defined as clinical phase (CP). Pathological staging 

according to AJCC system can be factored into PCDP and CP. The transient states 

between the stages of disease within the PCDP can be modelled by phase-type process 

and the clinical phase become absorbing state characterized by the corresponding 

pathological stage.  

       It is therefore interesting to assess whether the force of the transition to adjacent 

state with severe stage (up-staging) within PCDP is greater than that of the absorbing 

into CP with the same stage. For instance, for two transient states, early and late CRC, 

and two corresponding absorbing states it is very interesting to ask whether the 

transition rate form early PCDP to late PCDP is greater than the transition from early 

PCDP to early CP. There is lacking of a statistical indicator for evaluating such a relative 

contribution particularly when there are numerous states in the PCDP. It should be noted 

that the sensitivity of the screening test may further complicate such an assessment.  

      The usefulness of this indicator is two-fold. It is useful for evaluating the difference 

between the proximal CRC and the distal CRC with adjustment for the sensitivity of 

the screening test. The indicator can also aid in the evaluation of the effect of inter-
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screening interval on advanced cancer when the location of CRC is taken into account.   

     The specific aim of this study is to develop a useful statistical indicator underpinning 

Coxian phase-type Markov process on which we are based to evaluate the relative force 

of the transition to severe PCDP in comparison with the transition to the absorbing state 

of early CRC. The impact of this relative force on inter-screening interval can be 

assessed.   

 

6.2 Data  

    Data used in this chapter is the same as those before. The chapter only adds 

information on CRC by location. The frequencies, demographic characteristics and 

tumour attributes of distal and proximal cancers are listed in Table 6.1. The higher male 

proportion (62%) was observed in distal colon compared with proximal colon (51%). 

There were 25602 CRCs detected in this screening program. 45502 CRCs were 

classified as cancers from refuser. Of these, there were 53179 cases (75%) of distal 

cancer and 17925 cases (25%) of proximal cancer. There were 18914 cases (31%) of 

carcinoma in situ and stage I (35.0%), 13260 stage II (21%), 16649 stage III  (27%), 

and 13007 stage IV (12%).  
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6.3 Methodology    

6.3.1 Model specification  

         Figure 6.1 is a five-state Coxian phase-type Markov model that includes free of 

CRC (state 1), early and late PCDP (state 22 and state 23), and two corresponding states 

in the CP making allowance for the sensitivity of FIT test captured by false negative 

cases.  The main focus of this chapter here is to compare relative rate of 21 and 31 in 

order to assess the force of upstaging within latent PCDP as indicated below.  

Information on screen-detected CRC and the counterpart of those free of CRC was used 

to capture the transition of upstaging from early to late CRC within the transient state 

of PCDP. Information accrued from interval cancers and refuser was used to capture 

downstaging to CP taking into account false negative CRC.   

 

6.3.2 State-specific regression model and likelihood function  

        Coxian phase-type Markov regression model was developed to model each 

transition rate as a function of age, gender, and location of CRC (proximal and distal 

site). That means those are treated as state-specific covariates incorporated into the 

transition rate in proportional hazard regression form as follows. 

𝜆𝑖𝑗 = 𝜆0,𝑖𝑗 exp(𝜷𝑿) , i, j = 1,… ,m                               (6.1) 

Note that these covariates are also modelled as a function of stage-specific sensitivity 
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by using logistic regression model.  

         The likelihood functions based on the Coxian phase-type Markov regression 

model were formed in a similar manner as developed in Chapter 5. 

   

6.3.3 Statistical Indicator for quantifying latent potential of progression to 

advanced CRC 

When the proposed Coxian phase-type Markov process with (K+1) state is applied to 

K phase-type in the PCDP (state 21,…..2K) and one absorbing CP but with different  

states (31,…..,3K) defined by k state of tumour stage, the transition rate of state 2m to 

the absorbing CP with state 3m  denoted by 3m always competes with that of state 2m 

to the adjacent progressive 2m+1 state denoted by 2m. There is a premise that stage 1 

to k has ordinal property. It means the higher the value the severe tumour stage is 

represented. To measure the potential of up-staging, following the incidence rate of 

entering first state of PCDP denoted by state 21, the relative rate of up-staging between 

2m/3m and  has  the following property  

 

                          2m/3m =P2m, 2m+1(t)+ ………+P2m, 2K(t)/P2m,3m(t),                         (6.2) 

where m=1,2…….,k.        
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Proof:  

When m=2 

 

 

𝑃21,22(𝑡) + 𝑃21,32(𝑡)
𝑃21,31(𝑡)
⁄   

=
∫ 𝜆21∙𝑒

−(𝜆21+𝜆31)𝑡1∙𝑒−𝜆32(𝑡−𝑡1)𝑑𝑡1
𝑡

0
+∫ 𝜆21∙𝑒

−(𝜆21+𝜆31)𝑡1∙(1−𝑒−𝜆32(𝑡−𝑡1))𝑑𝑡1
𝑡

0

∫ 𝜆31∙𝑒
−(𝜆21+𝜆31)𝑡1𝑑𝑡1

𝑡

0

  

=
∫ 𝜆21∙𝑒

−(𝜆21+𝜆31)𝑡1𝑑𝑡1
𝑡

0

∫ 𝜆31∙𝑒
−(𝜆21+𝜆31)𝑡1𝑑𝑡1

𝑡

0

=
𝜆21

𝜆31
                                                                          (6.3) 

 

 

When m=3 

 

 

𝑃21,22(𝑡) + 𝑃21,32(𝑡) + 𝑃21,23(𝑡) + 𝑃21,33(𝑡)
𝑃21,31(𝑡)
⁄   
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=
{
 
 

 
 ∫ 𝜆21∙𝑒

−(𝜆21+𝜆31)∙𝑡1∙𝑒−(𝜆22+𝜆32)∙(𝑡−𝑡1)𝑑𝑡1
𝑡

0

+∫ 𝜆21∙𝑒
−(𝜆21+𝜆31)∙𝑡1∙∫ 𝜆32∙𝑒

−(𝜆32+𝜆22)∙𝑡2𝑑𝑡2
𝑡−𝑡1
0

𝑑𝑡1
𝑡

0

+∫ 𝜆21∙𝑒
−(𝜆21+𝜆31)∙𝑡1∙∫ 𝜆22∙𝑒

−(𝜆32+𝜆22)∙𝑡2∙𝑒−𝜆33∙(𝑡−𝑡1−𝑡2)𝑑𝑡2
𝑡−𝑡1
0

𝑑𝑡1
𝑡

0

+∫ 𝜆21∙𝑒
−(𝜆21+𝜆31)∙𝑡1∙∫ 𝜆22∙𝑒

−(𝜆23+𝜆32)∙𝑡2∙(1−𝑒−𝜆33∙(𝑡−𝑡1−𝑡2))𝑑𝑡2
𝑡−𝑡1
0

𝑑𝑡1
𝑡

0 }
 
 

 
 

∫ 𝜆31∙𝑒
−(𝜆21+𝜆31)∙𝑡1𝑑𝑡1

𝑡

0

  

 

= {
 
 

 
 ∫ 𝜆21∙𝑒

−(𝜆21+𝜆31)∙𝑡1∙𝑒−(𝜆22+𝜆32)∙(𝑡−𝑡1)𝑑𝑡1
𝑡

0

+∫ 𝜆21∙𝑒
−(𝜆21+𝜆31)∙𝑡1∙∫ 𝜆32∙𝑒

−(𝜆32+𝜆22)∙𝑡2𝑑𝑡2
𝑡−𝑡1
0

𝑑𝑡1
𝑡

0

+∫ 𝜆21∙𝑒
−(𝜆21+𝜆31)∙𝑡1∙∫ 𝜆22∙𝑒

−(𝜆32+𝜆22)∙𝑡2𝑑𝑡2
𝑡−𝑡1
0

𝑑𝑡1
𝑡

0 }
 
 

 
 

∫ 𝜆31∙𝑒
−(𝜆21+𝜆31)∙𝑡1𝑑𝑡1

𝑡

0

  

 

=
∫ 𝜆21∙𝑒

−(𝜆21+𝜆31)𝑡1𝑑𝑡1
𝑡

0

∫ 𝜆31∙𝑒
−(𝜆21+𝜆31)𝑡1𝑑𝑡1

𝑡

0

=
𝜆21

𝜆31
                                                                          (6.4) 

 

When m=k 

 

 

𝑃2122(𝑡)+𝑃2123(𝑡)+⋯+𝑃212𝑘
(𝑡)+𝑃213𝑘

(𝑡)

𝑃2131(𝑡)+𝑃2132(𝑡)+⋯+𝑃213𝑘−1
(𝑡)

                                                                 (6.5) 

where 𝑃2122(𝑡) + 𝑃2123(𝑡) + ⋯+ 𝑃212𝑘(𝑡) + 𝑃213𝑘(𝑡) 

⁡= ∫ …
𝑡

0

∫ 𝜆2(𝑘−1)

𝑡−𝑡1−⋯−𝑡𝑘−1

0

𝑒
−(λ2(𝑘−1)

+λ3(𝑘−1)
)𝑡𝑘−1𝑒−λ3𝑘

(𝑡−𝑡1−𝑡𝑘−1)

𝑑𝑡1…𝑑𝑡𝑘−1 
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⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+∫ …
𝑡

0

∫ 𝜆2(𝑘−1)

𝑡−𝑡1−𝑡𝑘−2

0

𝑒
−(λ2(𝑘−1)

+λ3(𝑘−1)
)𝑡𝑘−1(1

− 𝑒−λ3𝑘
(𝑡−𝑡1−𝑡𝑘−1)

)𝑑𝑡1…𝑑𝑡𝑘−1 

= ∫ 𝜆21

𝑡

0

𝑒−(λ21+λ31)𝑡1𝑒−(λ22+λ32)(𝑡−𝑡1)𝑑𝑡1

+∫ 𝜆21

𝑡

0

𝑒−(λ21+λ31)𝑡1(1 − 𝑒−(λ22+λ32)(𝑡−𝑡1))𝑑𝑡1 

+⋯ = ∫ 𝜆21𝑒
−(λ21+λ31)𝑡1

𝑡

0
𝑒−(λ22+λ32)(𝑡−𝑡1)𝑑𝑡1 +

∫ 𝜆21𝑒
−(λ21+λ31)𝑡1

𝑡

0
∫ 𝜆22𝑒

−(λ22+λ32)𝑡2
𝑡−𝑡1

0
𝑒−(λ23+λ33)(𝑡−𝑡1−𝑡2)𝑑𝑡2 +⋯+

∫ …∫ 𝜆2(𝑘−1)

𝑡−𝑡1−𝑡𝑘−2

0

𝑒
−(λ2(𝑘−1)

+λ3(𝑘−1)
)𝑡𝑘−1𝑑𝑡𝑘−1

𝑡

0
                                                 (6.6) 

 

It is hypothesized that when 2m is greater than 3m, tumour has a stronger 

tendency to deteriorate into severe stage in the absence of intervention such as screening 

and otherwise down-staging is noted.   

This indicator is used for assessing whether the potential of progression varies 

with the location of CRC. It is postulated that the potential of progression for CRCs 

occurring from the proximal site is higher than those originated from the distal site. 

However, this indicator may be confounded by the sensitivity of screening method that 

is used for early detection of CRC because the detectability of each screening tool may 

be also subject to the location of CRC. The proposed Coxian phase-type Markov 

process in Chapter 3 has taken into account the sensitivity of measurement error.   
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6.3.4 Evaluation of the efficacy of screening policy by the location of CRC  

       To evaluate whether and how the efficacy of reducing advanced CRC as a result of 

the change in inter-screening interval varies with the location of CRC. Another indicator 

is proposed  

            OR=[P2m, 2m+1(t)+ ………+P2m, 2K(t)]/[P2m,2m(t)+ P2m,3m(t)]= 

                  =[(ΩP
2m+1+……….. ΩP

2k)/(1+ ΩP
3m)]/[(ΩD

2m+1+……….. ΩD
2k)/(1+ ΩD

3m)] 

                                                                                                                                  (6.7) 

 

6.4 Estimated results  

6.4.1 Transition rates by location of CRC       

 Figure 6.2 shows the pre-clinical incidence rates of CRC by location of CRC. The 

incidence rates per 100,000 of CRC for distal and proximal colon were estimated as 95 

and 33, respectively, with the approximate ratio of 3:1. To test the potential of 

progression to up-staging CRC, two sets of transition parameters by location of CRC 

are compared. The higher transition rate (0.6591) from early PCDP to early PCDP was 

observed for proximal cancer compared with distal cancer (0.4085). Proximal cancer 

had also faster transition rate (0.5505) than distal cancer (0.5085). However, compared 

with other transition parameters, the transition rates from early PCDP to early CP 

(around 0.14) were lower and identical for both of distal and proximal cancer. The 
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estimated results are also showed in Table 6.2. 

For detecting the early pre-clinical detected CRC, 0.60 of sensitivity was estimated 

for both of distal and proximal cancer whereas the sensitivity for distal and proximal 

cancer were 0.79 and 0.75, respectively, for identifying the late pre-clinical detected 

CRC. There is not much difference in the test sensitivity estimates of early and late 

CRC between proximal and distal CRCs.  

        The findings of transition rates of up-staging within PCDP and from PCDP to CP 

with the same stage together with the test sensitivity suggest that the later tumour stage 

found in proximal CRC as opposed to that in distal CRC is largely due to a high 

potential of up-staging before surfacing to CP rather than the poor test sensitivities.       

 

6.4.2 Gender-age-specific transition by location of CRC  

For distal colon, the incidence rates of entering PCDP for men increased with 

advancing age given the finding that aged 50-54, 55-59, 60-64 and 65-69 were 

estimated as 78, 111, 159 and 226 per 100,000, respectively (Table 6.3). Those 

incidence rates for each age group were lower in women than in men. It is very 

interesting to note that the annual transition rates from early PCDP to early CP, from 

late PCDP to late CP, and from late PCDP to late CP not only increased with advancing 

age but also faster in women than in men. The higher sensitivity for detection of both 
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early and late pre-clinical detected cancer for each age group were found in women 

compared with men. The better sensitivity for cancer detection was observed in late 

PCDP compared with detection on early PCDP. Similar findings were found in 

proximal colon. However, again, the higher transition rates for each age group from 

early PCDP to late PCDP and from late PCDP to late CP as found in the overall group 

was observed for proximal cancer compared with distal cancer. 

        Table 6.4 shows the potential of up-staging according to the equation (6.3) 

indicated in the methodological section. The relative rate of up-staging was 3.19 (95% 

CI:3.13-3.26) for the overall CRC, 2.87 (95% CI:2.80-2.93) for the distal CRC, and 

4.46 (95% CI:4.27-4.65) for the  proximal CRC, which indicates the proximal CRC had 

higher potential of up-staging than the distal CRC.     

      Table 6.5 shows the corresponding findings by gender and age groups. The similar 

finding was still noted that the proximal CRC was more likely to have up-staging than 

the distal one. The additional interesting findings are that a higher potential of up-

staging of CRC was found in females and young age group.   

       Table 6.6 shows the effect of inter-screening interval on the proportion of advanced 

CRC by the location of CRC. Generally speaking, the proportion of advanced CRC 

increased with the length of inter-screening interval. The difference in the proportion 

of advanced CRC between proximal site and distal site widened when inter-screening 
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interval was lengthened. The similar findings by age and gender were noted (Table 6.7). 

Using the micro-simulation method yielded the similar finding as shown in Table 6.8 

compared with those shown in Table 6.6 

 

 

6.5 Simulation Study 

In this chapter, we used a simulation study to study how the ratio of transition 

in the phase-type distribution in PCDP to that entering into absorbing state affects the 

effectiveness of FIT screening. Taking a five-state model as an example (see below), 

will be the ratio of transition rate travelling in the PCDP (𝜆2) to that entering into CP 

(𝜇1) for early PCDP larger than 1?  

 

 

 

To do so, our simulation has to consider the correlation between the estimated transition 

rates as the empirical data shown. In the simulation algorithm we developed in Chapter 

Normal 

(State 0) 

Preclinical 

Early CRC 

(State 1) 

Preclinical 

Late CRC 

(State 2) 

Clinical 

Early CRC 

(State 3) 

Clinical 

Late CRC 

(State 4) 

𝜆1 𝜆2 

𝜇1 𝜇2 
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5, we independently generated three sojourn times for state 0, 1, and 2, but confined the 

total time to the screening schedule. The question is, will the estimates based on data 

simulated in this way yield correlated estimated results? Or a simulation considering 

correlated sojourn time, such as Copula algorithm, is the only way to create data for 

correlated estimated parameters?  

Figure 6.3 shows the correlation matrix of estimates based on empirical data, 

simulation algorithm in Chapter 5, and Copular algorithm. With the empirical data, 𝜆21 

and 𝜆31 are highly positively corrected (r=0.75), and 𝜆32 is negatively associated with 

𝜆21 (r = -0.1871) and 𝜆31 (r = -0.2137). Interestingly, although we simulated data with 

independent sojourn times, with confined total time the estimates of parameters were 

correlated, but with weaker correlation compared to that with empirical data. For 

example, correlation between 𝜆21  and 𝜆31  (r = 0.4693) became weaker than its 

counterpart with empirical data (r = 0.7437). So are correlation between 𝜆32 and 𝜆21, 

and between 𝜆32 and 𝜆31. Nevertheless, the positivity of correlation remains the same. 

When we used Copula algorithm to create the three distributions for sojourn time, the 

correlation between 𝜆21 and 𝜆31 became slightly stronger (r = 0.5924), but 𝜆21 and 𝜆31 

would be over-estimated, whereas 𝜆32 been underestimated. 

       By simulating the data, Tables 6.9-6.10 give the results two scenarios between 𝜆21 

and 𝜆31to quantify the benefit of screening. A larger benefit is noted for a higher rate of 
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𝜆21 /𝜆31when the screening is administered. Note that a smaller difference was noted 

for shortening the length of inter-screening interval given 𝜆21  < 𝜆31 in contrast to the 

opposite   𝜆21  >  𝜆31.   

 

6.6 Discussion  

6.6.1 Theoretical property  

        From the statistical viewpoint, the novel advance of this chapter is to develop 

statistical indicators for quantifying the force of upstaging within PCDP and its 

application to evaluation the potential of upstaging varying age, gender, and location of 

CRC. It is very interesting to note that the indicator of upstaging is simply modelled by 

relative rate of 2m/3m independent of follow-up time t as the model form after the 

transition entering the PCDP based on such a kind of Coxian phase-type model has a 

very good mathematical property because of symmetric structure between transient 

states within PCDP and absorbing states of CP reflecting the mirror of tumour staging 

between two opposite states. This has been proven by several mathematical algebra of 

stochastic integration of multiple integral from time t1 to tk-1 with the general formula 

for the transient states from 1 to k as seen in the equation (6.5). The similar logic is also 

applied to another indicator with cumulative logistic regression form with various types 

of odds ratio as seen in the equation (6.7) for evaluation of the effect of inter-screening 
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interval on the reduction of advanced CRC.  

        The former indicator is very useful for different sites of cancer screening by 

examining whether an intensive screening is required and also whether screening is 

justified. When there is a situation: 2m > 3m , the higher the relative rate, the higher 

the odds of applying intensive inter-screening interval. In contrast, the opposite (2m < 

3m) may render the administration of population-based screening unjustified.   

        The chapter also did various scenarios on the order of 2m and 3m. It can be easily 

seen that the effect of inter-screening interval on the reduction of advanced cancer is 

more remarkable in the scenario when 2m > 3m than that in the scenario when  2m  < 

3m.         

 

6.6.2 Statistical evaluation of the disease natural history of CRC by location   

These two indicators were applied to evaluating the contrast of the force of 

upstaging between the proximal colon and the distal colon and assessing whether the 

impact of inter-screening on the reduction of advanced CRC varied with location. The 

results found there is strong justification for adopting population-based screening as 

2m > 3m and the proximal colon requires an intensive screening policy compared with 

the distal colon as relative rate of 2m/3m was higher in the proximal colon than the 

distal colon. When different inter-screening interval was applied the impact of 
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shortening inter-screening interval in the proximal colon has a more remarkable effect 

than that in the distal colon.   

 

6.6.3 Clinical applications 

From the practical aspect, this is also the first study to elucidate the disease 

progression of distal and proximal colorectal cancer and its associated factors based on 

empirical longitudinal screening data. The major findings accrued from transition 

parameters may have significant implications for revealing different patterns of disease 

progression in distal and proximal colon. The incidence rate derived from annual 

transition rate from free of CRC to pre-clinical cancer for distal colon which is 3-fold 

higher than proximal colon. The higher incidence populations arise in the distal colon 

which is consistent with a previous epidemiological study (Haenszel et al., (1973)). 

Although the higher incidence of CRC indicates the more disease burden on distal colon, 

the transition rates from asymptomatic PCDP phase to symptomatic CP phase were 

lower in the distal colon compared with the proximal colon. The comparison between 

distal and proximal colon for the transition rates from asymptomatic phase to 

symptomatic phase may reveal that the distal colon is more likely to prevent. Due to 

the slower progression, subjects with negative finding from FIT are less likely to be 

missed as interval cancer. On the other hand, the progression rate from asymptomatic 
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phase to symptomatic phase for the proximal colon is much faster. This reveals that 

proximal cancer may present at a more advanced stage as shown in the previous study 

(Slattery et al., (1996)). A review study demonstrated that interval CRCs are 2.4 times 

more likely to be proximal CRCs than the detected CRCs and were less likely to present 

at an advanced stage (Singh et al., (2014)). In UK FOB-based bowel cancer screening 

data, such a tendency to arise in the proximal colon was also observed (Blanks et al., 

(2019)). However, the estimated FIT sensitivity for late CRC did not show much 

different between proximal colon (75%) and distal colon (79%). Both of the sensitivity 

for early CRC in distal and proximal colon were also identical as 60%. Our finding 

suggests that the higher proportion of proximal colon in interval cancers is not because 

the sensitivity of FIT but that is the faster progression rate of proximal colon.  

For the natural history of distal colon, the transition rates from early PCDP to early 

CP (0.4085) and from late PCDP to late CP (0.5080) are comparable with those from 

other studies addressing mass screening for CRC. The meta-analysis from two 

randomized control trial, the Nottingham and Funen studies, the transition rates also 

estimated from the same five-state Markov model of 0.2754 for pre-clinical Dukes’ 

stage A or B to pre-clinical Dukes’ stage C or D and 0.7627 for pre-clinical Dukes’ stage 

C or D to clinical Dukes’ stage C or D (Chiu et al., (2011)). This current estimate for 

early PCDP to early CP is also slightly higher than the estimate of 0.30 but lower than 
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the estimate of 0.92 for late PCDP to late CP given for Taiwanese subjects with the pilot 

FIT screening (Yang et al., (2006)). The different results could be possible due to the 

different classification of early and late tumour stages. It should be noted that the 

transition rates for two directions are the opposite for the proximal cancer. The faster 

progression at early cancer phase but lower progression at late cancer phase were 

observed. This indicated that biennial FIT may not be sufficient to detect proximal 

cancer at early cancer phase. 

We found that the estimated incidence rates increased by age and males have the 

higher estimated incidence rate than women. The basic epidemiological profiles from 

these findings are coherent with our current knowledge. However, the faster transition 

rates from early PCDP to early CP, from late PCDP to late CP, and from late PCDP to 

late CP were found in women. The higher sensitivity for detection of both early and late 

pre-clinical detected cancer for each age group were also found in women. The poorer 

accuracy in in detecting proximal serrated polyps from fecal immunochemical test 

particularly in women has been demonstrated in the previous studies (Larsen et al., 

(2010), Caldarella et al., (2013), Carot et al., (2018)). Again, the inconsistent finding 

can be explained as the faster progression rate of proximal colon rather than poor 

sensitivity in women.  

This thesis also found the disease progression of CRC varied with age and gender. 
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We found that the estimated incidence rates increased by age and males have the higher 

estimated incidence rate than women. The basic epidemiological profiles from these 

findings are close to our current knowledge. However, the faster transition rates from 

early PCDP to early CP, from late PCDP to late CP, and from late PCDP to late CP were 

found in women. The higher sensitivity for detection of both early and late pre-clinical 

detected cancer for each age group were also found in women. In addition to revealing 

differences between distal and proximal segments, these findings may also reveal the 

possibility of differences in gene expression patterns related to age, gender and ethnicity. 

Such findings could prove relevant not only to the risk of developing CRC but also to 

the type of cancer that develops. The further study on the mechanism for disease 

progression related to age and gender should be further conducted.  

 

In conclusion, the multi-state disease progression in distal and proximal cancer was 

quantified in order to answer the questions for the decent screening interval with 

individualized characteristics and how the performance of screening program is. 

Results of transition parameters from models by looking at the two segments can be 

very useful to evaluate the effectiveness of colorectal cancer screening regime. 
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Table 6.1 Distribution of selected characteristics associated with distal and proximal 

cancer 

Characteristics N % 
 Distal  Proximal 

N %  N % 

Male 41843 59% 32738 62%  9105 51% 

Female 29261 41% 20441 38%  8820 49% 

Age at diagnosis 

50-54 6954 10% 5437 10%  1517 8% 

55-59 13772 19% 10542 20%  3230 18% 

60-64 14746 21% 11255 21%  3491 20% 

65-69 15884 22% 11803 22%  4081 23% 

>=70 19748 28% 14142 27%  5606 31% 

Cancer Detection Mode 

Screen-detected at 

prevalent screen 
9151 13% 7170 13%  1981 11% 

Screen-detected at 

subsequent screen 
4645 7% 3386 6%  1259 7% 

Interval Cancer 11806 17% 8415 16%  3391 19% 

Refuser 45502 64% 34208 64%  11294 63% 

AJCC Stage        

Stage 0/I 18914 31% 15021 33%  3893 24% 

Stage II 13260 21% 9119 20%  4141 26% 

Stage III 16649 27% 12514 27%  4135 26% 

Stage IV 13007 21% 9197 20%  3810 24% 

Not known 9274  7328   1946  

Total 71104  53179 75%  17925 25% 
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Table 6.2  Estimated results of five-state natural history of CRC by location of CRC  

 Incidence rate 

Transition rate Sensitivity 

Early PCDP → Late 

PCDP 

Early PCDP → 

Early CP 

Late PCDP → Late 

CP 
Early PCDP Late PCDP 

Location of CRC       

  Distal 
0.00095 

(0.00094,0.00096) 

0.4085 

(0.3818,0.4327) 

0.1424 

(0.1332,0.1515) 

0.5080 

(0.4836,0.5335) 

0.6068 

(0.5701,0.6425) 

0.7913 

(0.7597,0.8199) 

  Proximal 
0.00033 

(0.00032,0.00033) 

0.6591 

(0.5602,0.7864) 

0.1476 

(0.1244,0.1758) 

0.5505 

(0.4996,0.5995) 

0.6048 

(0.5016,0.7075) 

0.7481 

(0.6943,0.8064) 

Overall 
0.00128 

(0.00127,0.00129) 

0.4624 

(0.4354,0.4901) 

0.1448 

(0.1364,0.1543) 

0.5231 

(0.5008,0.5462) 

0.6068 

(0.5717,0.6432) 

0.7798 

(0.7535,0.8066) 
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Table 6.3 Estimated results of five-state model of CRC natural history by age, gender, and location of CRC 

Gender/Age 

groups 
Incidence rate 

Transition rate Sensitivity* 

Early PCDP → 

 Late PCDP 

Early PCDP → Early 

CP 

Late PCDP → 

Late CP 
Early PCDP Late PCDP 

Distal 

Male       

  50-54 yr 0.00078 0.2324 0.0797 0.3037 

52.4% (50-54 yr) 

56.0% (55-59 yr) 

59.6% (60-64 yr) 

63.0% (65-69 yr) 

68.4% (50-54 yr) 

69.5% (55-59 yr) 

70.6% (60-64 yr) 

71.6% (65-69 yr) 

  55-59 yr 0.00111 0.3025 0.1079 0.3701 

  60-64 yr 0.00159 0.3938 0.1459 0.4510 

  65-69 yr 0.00226 0.5127 0.1973 0.5495 

Female     

  50-54 yr 0.00053 0.3347 0.1094 0.3736 

  55-59 yr 0.00076 0.4357 0.1479 0.4553 

  60-64 yr 0.00108 0.5673 0.2001 0.5548 

  65-69 yr 0.00154 0.7385 0.2706 0.6761 

Proximal 

Male       

  50-54 yr 0.00027 0.3839 0.0852 0.3344 

53.0% (50-54 yr) 

56.6% (55-59 yr) 

60.1% (60-64 yr) 

63.6% (65-69 yr) 

64.6% (50-54 yr) 

65.8% (55-59 yr) 

66.9% (60-64 yr) 

68.0% (65-69 yr) 

  55-59 yr 0.00038 0.4998 0.1153 0.4075 

  60-64 yr 0.00055 0.6506 0.1559 0.4966 

  65-69 yr 0.00078 0.8470 0.2108 0.6052 

Female     

  50-54 yr 0.00018 0.5529 0.1169 0.4115 

  55-59 yr 0.00026 0.7199 0.1581 0.5014 

  60-64 yr 0.00037 0.9372 0.2139 0.6110 

  65-69 yr 0.00053 1.2200 0.2892 0.7446 

*sensitivity: logistic regression model with age, and location of CRC  
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Table 6.4 Relative rates (RRs) of up-staging by location of CRC  

Location of CRC RR of up-staging (
λ21

λ31
⁄ ) 95% CI of RR (

λ21
λ31
⁄ ) 

  Distal 2.87 (2.80, 2.93) 

  Proximal 4.46 (4.27, 4.65) 

Overall 3.19 (3.13, 3.26) 

 

Var (
λ21

λ31
⁄ ) = 𝑉𝑎𝑟(λ21) + 𝑉𝑎𝑟(λ31) − 2𝐶𝑜𝑣(λ21, λ31)⁡ 

95%CI − 2.87 ± 1.96 × √Var (
λ21

λ31
⁄ ) 

 

** The 95% CI for the total population obtained from the analytic form was 3.17-

3.21. 
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Table 6.5 Sex-age-specific relative rates of up-staging by location of CRC 

Gender/Age groups RR of up-staging (
λ21

λ31
⁄ ) 95% CI of RR (

λ21
λ31
⁄ ) 

Distal 

 Male   

 50-54 2.91 (2.82, 3.02) 

 55-59 2.80 (2.73, 2.88) 

 60-64 2.70 (2.62, 2.79) 

 65-69 2.59 (2.50, 2.69) 

 Female   

 50-54 3.05 (2.93, 3.18) 

 55-59 2.95 (2.84, 3.05) 

 60-64 2.83 (2.75, 2.95) 

 65-69 2.73 (2.63, 2.85) 

Proximal 

 Male   

 50-54 4.52 (4.29, 4.75) 

 55-59 4.35 (4.14, 4.55) 

 60-64 4.17 (3.97, 4.37) 

 65-69 4.01 (3.81, 4.23) 

 Female   

 50-54 4.72 (4.50, 5.00) 

 55-59 4.55 (4.33, 4.77) 

 60-64 4.38 (4.17, 4.59) 

 65-69 4.21 (4.03, 4.46) 
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Table 6.6 The odds ratio for up-staging of CRC in proximal compared to distal 

assessed by Coxian Phase-type Markov process using analytic form 

Inter-screening interval Advanced Distal CRC 
Advanced Proximal 

CRC 
OR 

Annual 31.41% 45.24% 1.80  

Biennial 49.51% 65.43% 1.93  

Triennial 59.95% 74.44% 1.95  

 

Table 6.7 The odds ratio for up-staging of CRC in proximal compared to distal by age, 

and sex assessed by Coxian Phase-type Markov process using analytic form 

Inter-screening interval Advanced Distal CRC 
Advanced Proximal 

CRC 
OR 

 Female aged 50    

Annual 27.03% 40.30% 1.82  

Biennial 44.36% 60.92% 1.96  

Triennial 55.48% 71.48% 2.01  

 Female aged 60    

Annual 39.61% 55.67% 1.91  

Biennial 57.99% 73.27% 1.99  

Triennial 66.53% 78.84% 1.87  

 Male aged 50    

Annual 19.96% 30.64% 1.77  

Biennial 34.57% 49.81% 1.88  

Triennial 45.27% 61.80% 1.96  

 Male aged 60    

Annual 30.43% 44.66% 1.84  

Biennial 48.17% 64.59% 1.96  

Triennial 58.51% 73.49% 1.97  
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Table 6.8 The odds ratio for up-staging of CRC in proximal compared to distal assessed by Coxian Phase-type Markov process using 

microsimulation approach 

Inter-screening interval 
Distal Proximal 

OR 
Total CRC Advanced CRC % Total CRC Advanced CRC % 

Annual 71058  22320  31.41 70840  31910  45.05 1.79 

Biennial 71311  35394  49.63 70464  46116  65.45 1.92 

Triennial 70805  42510  60.04 70909  52915  74.62 1.96 

Distal CRC: λ1=0.00128,⁡λ21=0.4085, λ31=0.1424, λ32=0.5080    

Proximal CRC: λ1=0.00128,⁡λ21=0.6591, λ31=0.1476, λ32=0.5505   

 



doi:10.6342/NTU201901194

167 
 

Table 6.9 The odds ratio for up-staging of CRC with 1-year and 2-year inter-screening 

interval compared to triennial screening assessed by Coxian Phase-type Markov 

process using analytic form 

Inter-screening interval Advanced CRC OR 

𝜆21 > 𝜆31 

𝜆21=0.45, λ31=0.15  

Triennial 62.60% Reference 

Biennial 52.41% 0.66  

Annual 33.84% 0.31  

𝜆21=0.4, λ31=0.2   

Triennial 55.65% Reference 

Biennial 46.59% 0.70 

Annual 30.08% 0.34 

𝜆21=0.45, λ31=0.3   

Triennial 53.68% Reference 

Biennial 46.61% 0.75 

Annual 31.66% 0.40 

𝜆21 < 𝜆31 

𝜆21=0.15, λ31=0.45   

Triennial 20.87% Reference 

Biennial 17.47% 0.80  

Annual 11.28% 0.48  

𝜆21=0.2, λ31=0.4   

Triennial 27.82% Reference 

Biennial 23.29% 0.79 

Annual 15.04% 0.46 

𝜆21=0.3, λ31=0.45   

Triennial 35.78% Reference 

Biennial 31.07% 0.81 

Annual 21.11% 0.48 

𝜆21 = 𝜆31 

𝜆21=0.3, λ31=0.3   

Triennial 41.74% Reference 

Biennial 34.94% 0.75  

Annual 22.56% 0.41  

Assuming 𝜆1=0.00128, and 𝜆32=0.5  
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Table 6.10 The odds ratio for up-staging of CRC with 1-year and 2-year inter-

screening interval compared to triennial screening assessed by Coxian Phase-type 

Markov process using microsimulation 

Inter-screening 

interval 
Total CRC 

Advanced 

CRC 
% OR 

𝜆21 > 𝜆31 

𝜆21=0.45, 𝜆31=0.15     

Triennial 70820  44122  62.30% Reference 

Biennial 71011  37313  52.55% 0.67  

Annual 70975  23988  33.80% 0.31  

𝜆21=0.4, 𝜆31=0.2     

Triennial 70207  39116  55.72% Reference 

Biennial 70216  32608  46.44% 0.69  

Annual 70812  21293  30.07% 0.34  

𝜆21=0.45, 𝜆31=0.3     

Triennial 70988  38112  53.69% Reference 

Biennial 70564  32856  46.56% 0.75  

Annual 70747  22725  32.12% 0.41  

𝜆21 < 𝜆31 

𝜆21=0.15, 𝜆31=0.45     

Triennial 70475  14854  21.08% Reference 

Biennial 71196  12510  17.57% 0.80  

Annual 70916  8000  11.28% 0.48  

𝜆21=0.2, 𝜆31=0.4     

Triennial 70552  19598  27.78% Reference 

Biennial 70808  16428  23.20% 0.79  

Annual 71162  10809  15.19% 0.47  

𝜆21=0.3, 𝜆31=0.45     

Triennial 70773  25210  35.62% Reference 

Biennial 70816  22101  31.21% 0.82  

Annual 70617  14921  21.13% 0.48  

𝜆21 = 𝜆31 

𝜆21=0.3, 𝜆31=0.3     

Triennial 70717  29751  42.07% Reference 

Biennial 70441  24564  34.87% 0.74  

Annual 70414  15707  22.31% 0.40  

Assuming 𝜆1=0.00128, and 𝜆32=0.5 
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Figure 6.1 Five-state Coxian phase-type Markov model with the corresponding detection model observed in screening 
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Figure 6.2. Estimates of progression rates with five-state Markov model for distal and 

proximal cancer 
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Figure 6.3 The correlation matrix of estimated parameters 

(A) Estimation based on empirical data 

 Estimate Correlation matrix 

  𝜆1 𝜆21 𝜆31 𝜆32 

𝜆1 0.00131 1.0000 0.0601 0.0515 0.0714 

𝜆21 0.8917 0.0601 1.0000 0.7437 -0.1871 

𝜆31 0.2748 0.0515 0.7437 1.0000 -0.2137 

𝜆32 0.7485 0.0714 -0.1871 -0.2137 1.0000 

 

(B) Estimation based on independent sojourn times with confined total time 

 Estimate Correlation matrix 

  𝜆1 𝜆21 𝜆31 𝜆32 

𝜆1 0.00129 1.0000 0.0736 0.0356 0.0714 

𝜆21 0.9531 0.0736 1.0000 0.4693 -0.0805 

𝜆31 0.2815 0.0356 0.4693 1.0000 -0.1280 

𝜆32 0.7936 0.0714 -0.0805 -0.1280 1.0000 

 

(C) Estimation based on data from Copula algorithm 

 Estimate Correlation matrix 

  𝜆1 𝜆21 𝜆31 𝜆32 

𝜆1 0.00129 1.0000 0.0195 0.0687 0.0887 

𝜆21 1.1594 0.0195 1.0000 0.5924 -0.0830 

𝜆31 0.4854 0.0687 0.5924 1.0000 -0.1183 

𝜆32 0.6438 0.0887 -0.0830 -0.1183 1.0000 
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Chapter 7 Consolidated Coxian phase-type Markov (CPHM) Process 

Summary 

Background Whether population-based organized service screening can bring the 

benefit of reducing advanced cancer and death from specific-cause, i.e. colorectal 

cancer (CRC) is determined by a constellation of factors.  

Methods We constructed a consolidated Coxian phase-type Markov (CPHM) model to 

assess the effectiveness of population-based FIT screening in CRC mortality reduction. 

The consolidated CPHM model include three parts: (1) structure-process—from the 

arrival until the referral system to undergo colonoscopy, (2) disease natural history of 

multistate CRC for three major phenotypes, free of CRC, CRC in the PCDP, and CRC 

in the CP with hidden phases, and (3) prognostic of CRC survival. Designed variables 

and non-designed variables in each part of CPHM process were considered. A series of 

simulation was adopted with the perturbation of coverage rate for FIT screening, 

positive rate of FIT, referral rate of confirmatory colonoscopy among cases with 

positive FIT.   

Results The effectiveness of CRC mortality reduction is affected by coverage rate and 

sensitivity. A FIT program with 10% coverage rate resulted in mortality reduction by 

5.6% in contrast to 58.8% for 100% coverage rate. The corresponding numbers needed 

to screen were 3433 and 339, respectively, indicating more efficiency with high 

coverage rate. Higher sensitivity also yielded higher benefit. The consolidated CPHM 

investigate the influence on effectiveness of the population-based program, and found 

that coverage rate and referral rate for confirmatory colonoscopy had a large impact on 

the effectiveness of FIT program. Higher positive rate of FIT may correlated with a 

larger benefit, but with a less magnitude compared with coverage and referral rate.    
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Conclusion We developed a consolidated CPHM to incorporate structure-process 

factors, disease natural history of multistate CRC, and prognostic of CRC survival for 

the systematical evaluation of population-based FIT screening in CRC mortality 

reduction. 
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7.1 Introduction  

7.1.1 Rationale for the development of consolidated CPHM process  

         Whether population-based organized service screening can bring the benefit of 

reducing advanced cancer and death from specific-cause, i.e. colorectal cancer is 

determined by a constellation of factors including structure and process of screening 

program, multistate disease natural history, and screening policy such as inter-screening 

interval, age to begin with screen, and age to terminate screening. It should be noted 

that the determinants in structure of screening pertains to the capacity of professional 

facility, cost, and health behavior of participants. Factors responsible for the process of 

screening include the detectability of the screening method, referral rate, and waiting 

time for confirmatory diagnosis. After considering the structure and process, the 

elucidation of disease natural history model as seen in the previous chapters by the use 

of CPHM plays an important role in the assessment of how the adoption of screening 

interrupts the disease natural history in the absence of screening and how its effect is 

affected by the test sensitivity. The disease natural history of CRC by location can also 

decipher what is the force of upstaging transition or poor sensitivity accounts for the 

poor performance of detecting proximal CRCs, including higher advanced cancer rate, 

interval cancer rate, and smaller reduction of CRC mortality.   

 

7.1.2 Property of CPHM for population-based screening program  

         Based on the context and methods of previous chapters, each phase of population-

based screening program like Taiwanese colorectal cancer screening with FIT test can 

be very well integrated as a unified framework. This is partially due to the adequacy of 

phase-type process that accommodate serial transitions of screening process as seen in 

Chapters 3-4 and serial disease progression of disease natural history as seen in Chapter 
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5-6 and partially due to the competing form of transient states in parallel with absorbing 

states that are well adapted to biological plausibility, health behavior, and clinical 

interpretation. The additional property of CPHM is featured with a series of clear 

temporal relationship. However, to consolidate different parts of CPHM require a 

Bayesian consolidated analysis to connect each part as a whole. 

 

7.2 Study framework of consolidated CPHM for modelling population-based 

screening   

Figure 7.1 displays how three Coxian phase-type Markov (CPHM) processes can 

be consolidated as a unified framework for modelling structure, process, disease natural 

history of multistate CRC, and prognostic of CRC survival based on each  CPHM 

described in the previous Chapters 4-5.  

The first part of structure-process-based CPHM model is the modification of QH-

CPH model that capture a complex screening program from the arrival until the referral 

system to undergo colonoscopy as proposed in Chapter 4. As described in Chapter 4, it 

is very interesting to note that Queue process for modelling the arrival rate of screenees 

and the rate of FIT positive can be integrated as one transient sate (FIT positive) and 

one absorbing state (no FIT test). The similar logic is also applied to non-compliance 

with colonoscopy (one absorbing) and compliance with colonoscopy with hidden phase 

of waiting time.  

The second part is pertaining to CPHM process for multistate disease natural 

history of CRC that is capture by three main phenotypes, free of CRC, CRC in the 

PCDP, and CRC in the CP from the two latter of which hidden phases of PCDP are 

further derived by using tumour staging.   

The third part is the prognosis of CRC. We first develop QH-CPH model to 
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capture a complex screening program from the arrival until the referral system.to 

undergo colonoscopy Here, we then by linking QH-CPH model with to the disease 

natural history of CRC with Coxian-phase type model. 

 

7.3 Designed and inherited non-designed variables  

The variables in each part of CPHM process can be divided into two type, 

designed variables and non-designed variables. In the first part of the uptake of 

screening and positive results of FIT, the attendance rate is a non-designed variable that 

inherited from individual health behaviour. The positive FIT is the mixture of a design-

based variable and a non-designed variable. The former is related to the cutoff of f-Hb 

that is dependent on the pre-determined cutoff and the latter is pertaining to individual 

susceptibility to CRC. Similarly, the compliance with colonoscopy and waiting time is 

also the mixture of a designed variable that is subject to the capacity of professional 

manpower and a non-designed variable that is determined by participant’s health 

behavior. Most of variables pertaining to the disease natural history of CRC are non-

designed variables inherited from individual disease properties.   

 

7.4 Simulation  

We simulated 300,000 cohort with 100 replications by the 5-state CRC natural 

history model to generate the number of CRC (including early stage cancer and 

advanced cancer) and the number of CRC death in the invited group and pseudo control 

group (uninvited group) which did not exposed in FIT screening during the periods of 

12 years. The base case parameters of CRC natural history were derived from the 

estimated results of five-state model of CRC natural history and parameters from CRC 

to CRC death were modelled by AFT model considering the type of detected CRC 
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(PCDP: screened-detected CRC or CP: clinical detected CRC) and staging of CRC 

(Early CRC or late CRC). The base case parameters are shown in the Figure 7.2. 

 

7.4.1 The projection of effectiveness with varying screening parameters 

We set the basecase of screening program was 57% screening rate, 2-year inter-

screening interval with sensitivity of early CRC and advanced CRC as 60.68% and 

77.98%, respectively. The three scenarios were like the follows.  

 Scenario I: changing screening rate from 10% to 100% 

 Scenario II: changing inter-screening interval with 1-, 2-, and 3-yearly 

 Scenario III: with improved sensitivity between 60% and 80% for early CRC and 

between 80% and 100% for advanced CRC, respectively. 

 

Given the Taiwanese scenario (basecase), the estimated CRC mortality reduction 

was 33.52% (95% CI=28.05%-38.99%).  

Table 7.1 shows the projection of effectiveness in terms of mortality reduction 

from CRC. Given 10% coverage rate, CRC mortality would be reduced by 5.76%. With 

increasing coverage rate, the benefit of CRC mortality reduction gets larger. A CRC 

mortality reduction by 58.80% is anticipated with a 100% coverage rate (Figure 7.3). 

Higher coverage rate also results in lower number needed to screen (NNS) in order to 

reduce one CRC death, hence higher efficiency. The NNS decreases from 3433 (10% 

coverage rate) to 339 (100% coverage rate). When sensitivity of early stage cancer 

being improved from 60% to 80% and the sensitivity of advanced cancer from 80% to 

100%, the CRC mortality reduction is increased by 5% (from 35% to 40%), and the 

number needed to screen decrease from 568 to 497. 
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7.4.2 The projection of effectiveness with consolidated CPHM underpinning 

In light of the consolidated CPHM framework, we investigate the effectiveness 

of screening with different arrival rate (attendance to screen), positive rate of FIT, and 

process to undertaking colonoscopy (Figure 7.1). The influence of these factors were 

examined under three designed inter-screening intervals: 1-, 2-, and 3-yearly.  

Figure 7.4 shows the results of effectiveness of FIT screening using consolidated 

CPHM. The effectiveness is larger affected by coverage rate and referral rate, but 

slightly affected by positive rate. Given 7% positive rate and 60% referral rate, 

screening program with 40%, 60%, and 80% yielded 14%, 21%, and 28% mortality 

reduction, respectively. Given 7% positive rate and 60% screening rate, 21%, 28%, and 

36% mortality can be anticipated with 40%, 60%, and 80% compliance for 

confirmatory colonoscopy, respectively. Compared with their counterparts in a program 

given 4% positive rate, screening program with higher positivity rate generally can 

result in higher effectiveness.  

 

7.5 Discussion 

We developed a consolidated CPHM to incorporate structure-process factors, 

disease natural history of multistate CRC, and prognostic of CRC survival for the 

systematical evaluation of population-based FIT screening in CRC mortality reduction. 

This approach can be used as a guide to construct the decision analysis for evaluation 

of population-based screening program, as shown in Figure 7.5. Through this decision 

analysis, systematic evaluation of effectiveness in reducing advanced cancer and cause-

specific mortality can be done from participant behavior factors such as attendance rate, 

the selection of cutoff of the screening method, compliance rate with confirmatory 

diagnosis, quality assurance like program sensitivity to screening policy such a kind of 
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CPHM not only aids in health policy-maker for designing evidence based screening 

policy and physician for sharing decision-making with patient but provide the capacity 

of population-based screening program given limited resources.  

The framework of consolidated CPHM model is the backbone of economic 

evaluation of screening policy. More importantly, decision analysis play an important 

role in big data analysis for the development of an artificial intelligent system for 

population-based screening program. 
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Table 7.1 The projection of effectiveness in terms of CRC mortality reduction 

Parameters 

Number of CRC Death CRC Mortality 

reduction  

(95% CI; %) 

Number needed 

to be screened 
Control group 

(Uninvited) 
Invited group 

Scenario I: Change coverage rates 

10 1500 1413 5.76 (-1.08-12.60) 3433 

20 1505 1327 11.76 (5.11-18.42) 1686 

30 1503 1238 17.53 (11.48-23.58) 1135 

40 1507 1151 23.60 (17.96-29.25) 841 

50 1502 1060 29.40 (23.80-35.00) 678 

60 1503 973 35.21 (30.15-40.27) 566 

70 1501 884 41.02 (36.11-45.93) 487 

80 1502 797 46.93 (42.48-51.38) 425 

90 1499 709 52.72 (48.77-56.66) 379 

100 1504 619 58.80 (54.94-62.66) 339 

Scenario II: Change inter-screening interval 

1-yearly 1497 880 41.18 (36.26-46.09) 486 

2-yearly 1501 973 35.09 (29.50-40.68) 569 

3-yearly 1505 1022 32.01 (26.76-37.27) 622 

Scenario III: sensitivity of early and advanced CRC 

60% 80% 1500 971 35.19 (30.08-40.30) 568 

65% 80% 1502 960 36.01 (30.77-41.25) 554 

70% 85% 1505 948 36.97 (31.86-42.09) 538 

75% 85% 1500 939 37.36 (32.21-42.50) 535 

75% 90% 1499 926 38.22 (33.23-43.22) 523 

80% 95% 1502 910 39.38 (34.40-44.37) 507 

80% 100% 1502 898 40.15 (35.47-44.83) 497 
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Figure 7.1.  The consolidated QH-CPH model with consolidated CPHM underpinning 
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Figure 7.2 Base case parameters for the disease natural history of CRC and the hazard 

to CRC death 

 

 

Figure 7.3. The projected number of CRC death with different coverage rate 
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Figure 7.4 Predicted effectiveness on mortality reduction by different scenarios in the 

biennial screening regime  

(a) Given 7% positive rate 

 
 

(b) Given 4% positive rate 
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Figure 7.5 Decision framework of population-based CRC screening with consolidated 

Coxian phase-type Markov (CPHM) process 

 

(A) Decision tree for the consolidated CPHM 

 

(B) Natural history model for multi-state CRC
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